Science.gov

Sample records for absorption fine structures

  1. Extended X-ray absorption fine structure of bimetallic nanoparticles

    PubMed Central

    2011-01-01

    Summary Electronic and magnetic properties strongly depend on the structure of the material, especially on the crystal symmetry and chemical environment. In nanoparticles, the break of symmetry at the surface may yield different physical properties with respect to the corresponding bulk material. A useful tool to investigate the electronic structure, magnetic behaviour and local crystallographic structure is X-ray absorption spectroscopy. In this review, recent developments in the field of extended X-ray absorption fine structure measurements and in the analysis methods for structural investigations of bimetallic nanoparticles are highlighted. The standard analysis based on Fourier transforms is compared to the relatively new field of wavelet transforms that have the potential to outperform traditional analysis, especially in bimetallic alloys. As an example, the lattice expansion and inhomogeneous alloying found in FePt nanoparticles is presented, and this is discussed below in terms of the influence of employed density functional theory calculations on the magnetic properties. PMID:21977436

  2. Extended x-ray absorption fine structure in photoelectron emission

    SciTech Connect

    Rothberg, G.M.; Choudhary, K.M.; denBoer, M.L.; Williams, G.P.; Hecht, M.H.; Lindau, I.

    1984-09-17

    We report the first definitive measurements of extended x-ray absorption fine structure (EXAFS) made by monitoring the direct photoelectron emission as a function of photon energy. We have measured EXAFS associated with the Mn 3p and F 2s core levels in evaporated films of MnF/sub 2/ and found good agreement with bulk transmission EXAFS associated with the Mn 1s level. Photoelectron EXAFS makes possible surface-sensitive structural determinations using vacuum uv radiation on a virtually unlimited range of systems.

  3. Extended x-ray absorption fine structure studies of hemoglobin

    SciTech Connect

    Shulman, R.G.

    1987-02-01

    Results of extended x-ray absorption fine structure (EXAFS) studies of the iron atom in deoxygenated hemoglobin are reviewed. It is shown that the iron-porphinato nitrogen distance has been determined to be 2.06 +/- 0.01 A by two independent investigations. Difficulties experienced in using this distance to calculate the iron's distance above the plane by triangulation are shown to be due to ignoring differences between ferrous and ferric hemes. It is concluded that the iron is 0.2 +/- 0.1/0.2 A above the plane of the nitrogens as originally shown.

  4. Improved self-absorption correction for extended x-ray absorption fine-structure measurements

    SciTech Connect

    Booth, C.H.; Bridges, F.

    2003-06-04

    Extended x-ray absorption fine-structure (EXAFS) data collected in the fluorescence mode are susceptible to an apparent amplitude reduction due to the self-absorption of the fluorescing photon by the sample before it reaches a detector. Previous treatments have made the simplifying assumption that the effect of the EXAFS on the correction term is negligible, and that the samples are in the thick limit. We present a nearly exact treatment that can be applied for any sample thickness or concentration, and retains the EXAFS oscillations in the correction term.

  5. Local structure studies of some cobalt (II) complexes using extended X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Ninama, Samrath; Trivedi, Apurva

    2014-09-01

    Extended X-ray Absorption Fine Structure (EXAFS) analysis of Cobalt (II) complex as a ligand of 2 -methyl-3-[(bis-aniline(R) phenyl]-3H-l,5 benzodiazepine for finding local structure using conventional method .The Co(II) complexes were prepared by chemical root method. The EXAFS spectra were recorded at Cobalt K-edge i.e.; 7709 eV using Dispersive EXFAS beam line at 2.5GeV Indus-2 Synchrotron Radiation Source(SRS) at RRCAT, Indore, India. The recorded EXAFS data were analysed using the computer software Athena for determine the nearest neighbouring distances (bond lengths) of these complexes with conventional methods and it compared with Fourier transform(FT) analysis. The Fourier Transform convert EXAFS data signal into r-space or k-space. This is useful for visualizing the major contributions to the EXAFS spectrum.

  6. X-ray absorption fine structure study of heavily P doped (111) and (001) diamond

    NASA Astrophysics Data System (ADS)

    Shikata, Shinichi; Yamaguchi, Koji; Fujiwara, Akihiko; Tamenori, Yusuke; Yahiro, Jumpei; Kunisu, Masahiro; Yamada, Takatoshi

    2017-02-01

    X-ray absorption fine structure (XANES) measurements were carried out for P doped (111) and (001) diamond films, and the results were compared with those from simulations. For the (111) spectrum, the main strong peak observed at 2147.0 eV and three broad peaks centered at 2150 eV, 2157 eV, and 2165 eV were observed. The assignment with the estimation by the simulation of the XANES peaks showed the interstitial sites additional to the substitutional site. The Extended X-ray Absorption Fine Structure (EXAFS) result of the P doped (111) diamond showed that the first and second neighboring peaks are observed at 1.21 A and 2.0 A, respectively. The assignment with the estimation by the simulation of the EXAFS peaks also showed the interstitial sites additional to the substitutional site. Overall, P in diamonds presumably has dopant sites in both the substitutional and interstitial sites.

  7. The 16th International Conference on X-ray Absorption Fine Structure (XAFS16)

    NASA Astrophysics Data System (ADS)

    Grunwaldt, J.-D.; Hagelstein, M.; Rothe, J.

    2016-05-01

    This preface of the proceedings volume of the 16th International Conference on X- ray Absorption Fine Structure (XAFS16) gives a glance on the five days of cutting-edge X-ray science which were held in Karlsruhe, Germany, August 23 - 28, 2015. In addition, several satellite meetings took place in Hamburg, Berlin and Stuttgart, a Sino-German workshop, three data analysis tutorials as well as special symposia on industrial catalysis and XFELs were held at the conference venue.

  8. Novel angular encoder for a quick-extended x-ray absorption fine structure monochromator

    SciTech Connect

    Stoetzel, J.; Luetzenkirchen-Hecht, D.; Frahm, R.; Fonda, E.; De Oliveira, N.; Briois, V.

    2008-08-15

    New concepts for time-resolved x-ray absorption spectroscopy using the quick-extended x-ray absorption fine structure (QEXAFS) method are presented. QEXAFS is a powerful tool to gain structural information about, e.g., fast chemical reactions or phase transitions on a subsecond scale. This can be achieved with a monochromator design that employs a channel-cut crystal on a cam driven tilt table for rapid angular oscillations of the Bragg angle. A new angular encoder system and a new data acquisition were described and characterized that were applied to a QEXAFS monochromator to get spectra with a directly measured accurate energy scale. New electronics were designed to allow a fast acquisition of the Bragg angle values and the absorption data during the measurements simultaneously.

  9. X-Ray Absorption Fine Structure Study for Fe60Ni40 Alloy

    SciTech Connect

    Yang, Dong-Seok; Oh, Kyuseung; Na, Wonkyung; Kim, Nayoung; Yoo, Yong-Goo; Min, Seung-Gi; Yu, Seong-Cho

    2007-02-02

    Fe60Ni40 alloys were fabricated by the mechanical alloying process with process periods of 1, 2, 4, 6, 12 and 24 hours, respectively. The formation of alloy and the structural evolution of the alloy were examined by X-ray diffraction and extended X-ray absorption fine structure methods. With increase of alloying time the BCC phase of iron was changed significantly during the mechanical alloying process. The alloying was activated in about 6 hours and completed in about 24 hours.

  10. Local atomic structure of a clean surface by surface-extended x-ray absorption fine structure: Amorphized Si

    SciTech Connect

    Comin, F.; Incoccia, L.; Lagarde, P.; Rossi, G.; Citrin, P.H.

    1985-01-14

    The application of near-edge surface, extended x-ray absorption fine structure to the study of a clean surface is reported. Direct evidence is found for surface recrystallization of ion-damaged (amorphized) Si, whereas no such evidence is seen for evaporated (amorphous) Si. The procedures described here are applicable to almost all clean or adsorbate-covered surfaces.

  11. Solution spectroelectrochemical cell for in situ X-ray absorption fine structure

    SciTech Connect

    Antonio, M.R.; Soderholm, L.; Song, I.

    1995-06-12

    A purpose-built spectroelectrochemical cell for in situ fluorescence XAFS (X-ray Absorption Fine Structure) measurements of bulk solution species during constant-potential electrolysis is described. The cell performance was demonstrated by the collection of europium L{sub 3}-edge XANES (X-ray Absorption Near Edge Structure) throughout the course of electrolysis of an aqueous solution of EuCl{sub 3}{center_dot}6H{sub 2}O in 1 M H{sub 2}SO{sub 4}. The europium L{sub 3}-edge resonances reported here for the Eu{sup III} and Eu{sup II} ions demonstrate that their 2p{sub 3/2} {yields} 5d electronic transition probabilities are not the same.

  12. Surface extended x-ray absorption fine structure of low-Z absorbates using fluorescence detection

    SciTech Connect

    Stoehr, J.; Kollin, E.B.; Fischer, D.A.; Hastings, J.B.; Zaera, F.; Sette, F.

    1985-05-01

    Comparison of x-ray fluorescence yield (FY) and electron yield surface extended x-ray absorption fine structure spectra above the S K-edge for c(2 x 2) S on Ni(100) reveals an order of magnitude higher sensitivity of the FY technique. Using FY detection, thiophene (C/sub 4/H/sub 4/S) chemisorption on Ni(100) is studied with S coverages down to 0.08 monolayer. The molecule dissociates at temperatures as low as 100K by interaction with fourfold hollow Ni sites. Blocking of these sites by oxygen leaves the molecule intact.

  13. Extended X-ray absorption fine structure (EXAFS) study of CaSO 4:Dy phosphors

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, D.; Bakshi, A. K.; Ciatto, G.; Aquilanti, G.; Pradhan, A. S.; Pascarelli, S.

    2006-03-01

    Extended X-ray absorption fine structure (EXAFS) measurements have been carried out on CaSO 4:Dy phosphors at the Dy L 3 edge with synchrotron radiation. The data have been analysed to find out the Dy-S and Dy-O bond lengths in the neighborhood of the Dy atoms. Measurements have been carried out over several samples thermally annealed for different cycles at 400 °C in air for 1 h and the change in bond lengths in samples with increasing number of annealing cycles have been studied by analyzing the EXAFS data.

  14. Spiky Fine Structure of Type III-like Radio Bursts in Absorption

    NASA Astrophysics Data System (ADS)

    Chernov, G. P.; Yan, Y. H.; Tan, C. M.; Chen, B.; Fu, Q. J.

    2010-03-01

    An uncommon fine structure in the radio spectrum consisting of bursts in absorption was observed with the Chinese Solar Broadband Radiospectrometer (SBRS) in the frequency range of 2.6 - 3.8 GHz during an X3.4/4B flare on 13 December 2006 in active region NOAA 10930 (S05W33). Usual fine structures in emission such as spikes, zebra stripes, and drifting fibers were observed at the peak of every new flare brightening. Within an hour at the decay phase of the event we observed bursts consisting of spikes in absorption, which pulsated periodically in frequency. Their instantaneous frequency bandwidths were found to be in the 75 MHz range. Moreover, in the strongest Type III-like bursts in absorption, the spikes showed stripes of the zebra-pattern (ZP) that drifted to higher frequencies. All spikes had the duration as short as down to the limit of the instrument resolution of ≈8 ms. The TRACE 195 Å images indicate that the magnetic reconnection at this moment occurred in the western edge of the flare loop arcade. Taking into account the presence of the reverse-drifting bursts in emission, in the course of the restoration of the magnetic structures in the corona, the acceleration of the beams of fast particles must have occurred both upward and downward at different heights. The upward beams will be captured by the magnetic trap, where the loss-cone distribution of fast particles (responsible for the emission of continuum and ZP) were formed. An additional injection of fast particles will fill the loss-cone later, breaking the loss-cone distribution. Therefore, the generation of continuum will be quenched at these moments, which was evidenced by the formation of bursts in absorption.

  15. Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory

    SciTech Connect

    Mantouvalou, I. Witte, K.; Martyanov, W.; Jonas, A.; Grötzsch, D.; Kanngießer, B.; Streeck, C.; Löchel, H.; Rudolph, I.; Erko, A.; Stiel, H.

    2016-05-16

    With the help of adapted off-axis reflection zone plates, near edge X-ray absorption fine structure spectra at the C and N K-absorption edge have been recorded using a single 1.2 ns long soft X-ray pulse. The transmission experiments were performed with a laser-produced plasma source in the laboratory rendering time resolved measurements feasible independent on large scale facilities. A resolving power of E/ΔE ∼ 950 at the respective edges could be demonstrated. A comparison of single shot spectra with those collected with longer measuring time proves that all features of the used reference samples (silicon nitrate and polyimide) can be resolved in 1.2 ns. Hence, investigations of radiation sensitive biological specimen become possible due to the high efficiency of the optical elements enabling low dose experiments.

  16. The Effect of X-Ray Absorption Fine Structure in Soft X-ray Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Owens, Alan; Denby, Michael; Wells, Alan; Keay, Adam; Graessle, Dale E.; Blake, Richard L.

    1997-02-01

    Recent in-orbit measurements by high resolution soft X-ray telescopes have revealed low-level fine structure in target spectra that cannot be attributed to a celestial source. Ultimately, this can be traced to the ability of the new high spectral resolution silicon detectors to resolve X-ray absorption fine structure (XAFS) produced in the various detection subsystems. Based on measurements taken at the Daresbury Synchrotron Radiation Source (SRS) and the National Synchrotron Light Source (NSLS), we have modeled the full-up response function of the Joint European X-ray Telescope (JET-X), taking into account edge structure generated in the detectors, filters, and mirrors. It is found that unfolding celestial source spectra using a response function in which the detailed edge shapes are calculated from standard absorption cross sections leads to the generation of spectral artifacts at every absorption edge. These in turn produce unacceptably high values of χ2 in model fits for total source fluxes above ~4 × 104 counts. For JET-X, this corresponds to a source strength of ~0.4 millicrab observed for 105 s. Statistically significant ``linelike'' features are introduced into the derived source spectra with amplitudes as great as 10% of the source flux. For JET-X, these features rise above the 3 σ level for integral source exposures above ~5 × 104 source counts. The largest deviations in the residuals arise near 0.5 keV and 2.2 keV and are attributed to XAFS produced in the oxide surface layers of the CCD and the gold reflective surface of the mirrors, respectively. These results are significant for data interpretation tasks with the ASCA, JET-X, XMM, and Advanced X-Ray Astrophysics Facility (AXAF) telescopes.

  17. Negative thermal expansion in CuCl: An extended x-ray absorption fine structure study

    SciTech Connect

    Vaccari, M.; Grisenti, R.; Fornasini, P.; Rocca, F.; Sanson, A.

    2007-05-01

    Extended x-ray absorption fine structure (EXAFS) has been measured from liquid helium to ambient temperature at the Cu K edge of copper chloride (CuCl) to investigate the local origin of negative thermal expansion. A quantitative analysis of the first coordination shell, performed by the cumulant method, reveals that the nearest-neighbor Cu-Cl interatomic distance undergoes a strong positive expansion, contrasting with the much weaker negative expansion of the crystallographic distance between average atomic positions below 100 K. The anisotropy of relative thermal vibrations, monitored by the ratio {gamma} between perpendicular and parallel mean square relative displacements, is considerably high, while the diffraction thermal factors are isotropic. The relative perpendicular vibrations measured by EXAFS are related to the tension mechanism and to the transverse acoustic modes, which are considered responsible for negative thermal expansion in zinc-blende structures.

  18. Xe nanocrystals in Si studied by x-ray absorption fine structure spectroscopy

    SciTech Connect

    Faraci, Giuseppe; Pennisi, Agata R.; Zontone, Federico

    2007-07-15

    The structural configuration of Xe clusters, obtained by ion implantation in a Si matrix, has been investigated as a function of the temperature by x-ray absorption fine structure spectroscopy. In contrast with previous results, we demonstrate that an accurate analysis of the data, using high order cumulants, gives evidence of Xe fcc nanocrystals at low temperature, even in the as-implanted Si; expansion of the Xe lattice is always found as a function of the temperature, with no appreciable overpressure. We point out that a dramatic modification of these conclusions can be induced by an incorrect analysis using standard symmetrical pair distribution function G(r); for this reason, all the results were checked by x-ray diffraction measurements.

  19. Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis

    SciTech Connect

    Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

    1984-01-01

    The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures.

  20. The coefficient of bond thermal expansion measured by extended x-ray absorption fine structure.

    PubMed

    Fornasini, P; Grisenti, R

    2014-10-28

    The bond thermal expansion is in principle different from the lattice expansion and can be measured by correlation sensitive probes such as extended x-ray absorption fine structure (EXAFS) and diffuse scattering. The temperature dependence of the coefficient α(bond)(T) of bond thermal expansion has been obtained from EXAFS for CdTe and for Cu. A coefficient α(tens)(T) of negative expansion due to tension effects has been calculated from the comparison of bond and lattice expansions. Negative lattice expansion is present in temperature intervals where α(bond) prevails over α(tens); this real-space approach is complementary but not equivalent to the Grüneisen theory. The relevance of taking into account the asymmetry of the nearest-neighbours distribution of distances in order to get reliable bond expansion values and the physical meaning of the third cumulant are thoroughly discussed.

  1. Nearest-neighbour distribution of distances in crystals from extended X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Fornasini, P.; Grisenti, R.; Dapiaggi, M.; Agostini, G.; Miyanaga, T.

    2017-07-01

    Extended X-ray absorption fine structure (EXAFS) is a powerful probe of the distribution of nearest-neighbour distances around selected atomic species. We consider here the effect of vibrational disorder in crystals. The potential of EXAFS for the accurate evaluation of the coefficient of bond thermal expansion and its temperature dependence is discussed, with the aim of stimulating and facilitating the comparison with the results from total scattering experiments. The meaning of the distribution asymmetry in crystals and its connection with the effective potential anharmonicity and the bond expansion is quantitatively explored by comparing the results for a number of different systems. The extent of the relative atomic vibrations perpendicular to the bond direction and the perpendicular to parallel anisotropy are correlated with the extent of lattice negative thermal expansion as well as with the ionic mobility in superionic crystals.

  2. Nearest-neighbour distribution of distances in crystals from extended X-ray absorption fine structure.

    PubMed

    Fornasini, P; Grisenti, R; Dapiaggi, M; Agostini, G; Miyanaga, T

    2017-07-28

    Extended X-ray absorption fine structure (EXAFS) is a powerful probe of the distribution of nearest-neighbour distances around selected atomic species. We consider here the effect of vibrational disorder in crystals. The potential of EXAFS for the accurate evaluation of the coefficient of bond thermal expansion and its temperature dependence is discussed, with the aim of stimulating and facilitating the comparison with the results from total scattering experiments. The meaning of the distribution asymmetry in crystals and its connection with the effective potential anharmonicity and the bond expansion is quantitatively explored by comparing the results for a number of different systems. The extent of the relative atomic vibrations perpendicular to the bond direction and the perpendicular to parallel anisotropy are correlated with the extent of lattice negative thermal expansion as well as with the ionic mobility in superionic crystals.

  3. Extended X-ray absorption fine structural studies of copper and nickel ferrites

    NASA Astrophysics Data System (ADS)

    Malviya, P. K.; Sharma, P.; Mishra, Ashutosh; Bhalse, D.

    2014-09-01

    The Cu-Ni ferrites with general formula Cu1-xNix Fe2O4 (where x=0.0, 0.05, 0.10, 0. 15, 0.20) were prepared by solid state root method. X-ray, K- absorption fine structural measurements were carried out. EXAFS spectra have been recorded at the K-edge of Fe using the dispersive EXAFS (DEXAFS) beam line at 2.5GeV Indus-2 synchrotron radiation source RRCAT, Indore, India. The EXAFS data have been analysed using the computer software Athena. These have been used to determine the bond lengths in these ferrites with the help of four different methods, namely, Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods.

  4. Near-edge X-ray absorption fine structure spectroscopy of MDI and TDI polyurethane polymers

    SciTech Connect

    Urquhart, S.G.; Smith, A.P.; Ade, H.W.; Hitchcock, A.P.; Rightor, E.G.; Lidy, W.

    1999-06-03

    The sensitivity of near-edge X-ray absorption fine structure (NEXAFS) to differences in key chemical components of polyurethane polymers is presented. Carbon is NEXAFS spectra of polyurethane polymers made from 4,4{prime}-methylene di-p-phenylene isocyanate (MDI) and toluene diisocyanate (TDI) isocyanate monomers illustrate that there is an unambiguous spectroscopic fingerprint for distinguishing between MDI-based and TDI-based polyurethane polymers. NEXAFS spectra of MDI and TDI polyurea and polyurethane models show that the urea and carbamate (urethane) linkages in these polymers can be distinguished. The NEXAFS spectroscopy of the polyether component of these polymers is discussed, and the differences between the spectra of MDI and TDI polyurethanes synthesized with polyether polyols of different molecular composition and different molecular weight are presented. These polymer spectra reported herein provide appropriate model spectra to represent the pure components for quantitative microanalysis.

  5. Extended x-ray absorption fine structure studies of IBS Fe--Tb alloy films

    SciTech Connect

    Harris, V.G.; Aylesworth, K.D.; Kim, K.H.; Elam, W.T.; Koon, N.C. )

    1991-11-15

    We have employed extended x-ray absorption fine structure (EXAFS) analysis to study the compositional dependence of the atomic structure in Fe--Tb alloy films. Fourier transforms of EXAFS data, relative to both the Fe {ital K} and the Tb {ital L}{sub III} absorption edges, provide information about the local atomic environments relative to each atom. Results indicate the Fe EXAFS data to be dominated by Fe--Fe correlations, and consists of contributions from two Fe atomic shells at radial distances near 2.47 and 2.66 A and a Tb shell near 2.91 A. The coordination number of the Fe shells are measured to increase, while radial distances decrease, with increased Fe content. The Tb EXAFS data was found to have an atomic shells of Fe and Tb at 2.91 and 3.47 A, respectively. Analysis suggests that the Fe shell is very disordered and is comprised of approximately 9.5 atoms while the Tb shell has {approx}3 atoms.

  6. X-ray absorption fine structure study of multinuclear copper(I) thiourea mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Gaur, Abhijeet; Shrivastava, B. D.; Srivastava, K.; Prasad, J.; Raghuwanshi, V. S.

    2013-07-01

    X-ray absorption fine structure spectra of five copper(I) thiourea complexes [Cu4(thu)6 (NO3)4 (H2O)4] (1), [Cu4(thu)9 (NO3)4 (H2O)4] (2), [Cu2(thu)6 (SO4) H2O] (3), [Cu2(thu)5 (SO4) (H2O)3] (4), and [Cu(thu)Cl 0.5H2O] (5) have been investigated. Complexes 1 and 3 are supposed to have one type of copper centers in trigonal planar and tetrahedral environment, respectively. Complexes 2 and 4 are supposed to have two types of copper centers, one center having trigonal planar geometry and another center having tetrahedral geometry. The aim of the present work is to show how extended X-ray absorption fine structure (EXAFS) spectra of these complexes, having different types of coordination environment, can be analyzed to yield the coordination geometry around one type of copper centers present in complexes 1 and 3, and two types of copper centers present in complexes 2 and 4. The crystal structure of complex 5 is unavailable due to inability of growing its single crystals, and hence the coordination geometry of this complex has been determined from EXAFS. The structural parameters determined from the EXAFS spectra have been reported and the coordination geometry has been depicted for the metal centers present in all the five complexes. Also, the chemical shifts have been used to determine the oxidation state of copper in these complexes. The X-ray absorption near edge spectra features have also been correlated with the coordination geometry. Also, the presence of both three and four coordinated Cu(I) centers in complexes 2 and 4 has been suggested from a comparison of the intensity of the feature at 8984 eV with those of 1 and 3. Further, in case of complex 5, the high intensity of peak A at 8986.5 eV is found to correspond to the presence of Cl coordinated to the copper center.

  7. Apparent mismatch between extended x-ray absorption fine structure and diffraction structures of crystalline metastable WO3 phases.

    PubMed

    Moscovici, J; Rougier, A; Laruelle, S; Michalowicz, A

    2006-09-28

    The local structure of monoclinic, monohydrate, hexagonal, and pyrochlore WO3 phases was investigated by the extended x-ray absorption fine structure spectroscopy as preliminary studies of model compounds of amorphous and thin film WO3 based electrochromic species. In the four cases, we found a large W-O distribution of distances ranging from 1.70 to 2.35 A. The apparent discrepancy of these results and previously published crystal structures are discussed and interpreted as the detection of vacancies and local distortion disorder.

  8. Study on the Coordination Structure of Pt Sorbed on Bacterial Cells Using X-Ray Absorption Fine Structure Spectroscopy

    PubMed Central

    Tanaka, Kazuya; Watanabe, Naoko

    2015-01-01

    Biosorption has been intensively investigated as a promising technology for the recovery of precious metals from solution. However, the detailed mechanism responsible for the biosorption of Pt on a biomass is not fully understood because of a lack of spectroscopic studies. We applied X-ray absorption fine structure spectroscopy to elucidate the coordination structure of Pt sorbed on bacterial cells. We examined the sorption of Pt(II) and Pt(IV) species on bacterial cells of Bacillus subtilis and Shewanella putrefaciens in NaCl solutions. X-ray absorption near-edge structure and extended X-ray absorption fine structure (EXAFS) of Pt-sorbed bacteria suggested that Pt(IV) was reduced to Pt(II) on the cell’s surface, even in the absence of an organic material as an exogenous electron donor. EXAFS spectra demonstrated that Pt sorbed on bacterial cells has a fourfold coordination of chlorine ions, similar to PtCl42-, which indicated that sorption on the protonated amine groups of the bacterial cells. This work clearly demonstrated the coordination structure of Pt sorbed on bacterial cells. The findings of this study will contribute to the understanding of Pt biosorption on biomass, and facilitate the development of recovery methods for rare metals using biosorbent materials. PMID:25996945

  9. Speciation of Gold Nanoparticles by Ex Situ Extended X-ray Absorption Fine Structure and X-ray Absorption Near Edge Structure.

    PubMed

    Giorgetti, Marco; Aquilanti, Giuliana; Ballarin, Barbara; Berrettoni, Mario; Cassani, Maria Cristina; Fazzini, Silvia; Nanni, Daniele; Tonelli, Domenica

    2016-07-05

    A combined X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) methodology is here presented on a series of partially and fully reduced Au(III) samples. This allows monitoring the relative fraction of Au(III) and Au(0) in the studied samples, displaying a consistent and independent outcome. The strategy followed is based, for the first time, on two structural models that can be fitted simultaneously, and it evaluates the correlation among strongly correlated parameters such as coordination number and the Debye-Waller factor. The results of the present EXAFS and XANES approach can be extended to studies based on X-ray absorption spectroscopy experiments for the in situ monitoring of the formation of gold nanoclusters.

  10. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  11. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    SciTech Connect

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10{sup –5}, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10{sup –5} in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10{sup –5}, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10{sup –5}. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10{sup –5}. We conclude that spectroscopic measurements of

  12. Constraining the Variation of the Fine-structure Constant with Observations of Narrow Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10-5, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (- 0.59 ± 0.55) × 10-5 in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10-5, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (- 0.47 ± 0.53) × 10-5. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (- 0.01 ± 0.26) × 10-5. We conclude that spectroscopic measurements of quasar absorption lines are not yet capable of

  13. Vibronic fine structure in high-resolution x-ray absorption spectra from ion-bombarded boron nitride nanotubes

    SciTech Connect

    Petravic, Mladen; Peter, Robert; Varasanec, Marijana; Li Luhua; Chen Ying; Cowie, Bruce C. C.

    2013-05-15

    The authors have applied high-resolution near-edge x-ray absorption fine structure measurements around the nitrogen K-edge to study the effects of ion-bombardment on near-surface properties of boron nitride nanotubes. A notable difference has been observed between surface sensitive partial electron yield (PEY) and bulk sensitive total electron yield (TEY) fine-structure measurements. The authors assign the PEY fine structure to the coupling of excited molecular vibrational modes to electronic transitions in NO molecules trapped just below the surface. Oxidation resistance of the boron nitride nanotubes is significantly reduced by low energy ion bombardment, as broken B-N bonds are replaced by N-O bonds involving oxygen present in the surface region. In contrast to the PEY spectra, the bulk sensitive TEY measurements on as-grown samples do not exhibit any fine structure while the ion-bombarded samples show a clear vibronic signature of molecular nitrogen.

  14. Sorption mechanisms of zinc to calcium silicate hydrate: X-ray absorption fine structure (XAFS) investigation.

    PubMed

    Ziegler, F; Scheidegger, A M; Johnson, C A; Dähn, R; Wieland, E

    2001-04-01

    In this study, X-ray absorption fine structure (XAFS) spectroscopy has been used to further elucidate the binding mechanisms of Zn(II) to calcium silicate hydrate (C-S-H), the quantitatively most important cement mineral. Such knowledge is essential for the assessment of the longterm behavior of cement-stabilized waste materials. XAFS spectra of the Zn(II) equilibrated with C-S-H(I) for up to 28 days are best modeled by tetrahedral coordination of Zn(II) by four O atoms in the first atomic shell. Beyond the first coordination shell, data analysis of more highly concentrated samples suggests the presence of two distinct Zn distances and possibly the presence of an Si shell. On the basis of the comparison with a set of reference compounds, this coordination environment can be reasonably related to the structure of hemimorphite, a naturally occurring zinc silicate, and/or the presence of gamma-Zn(OH)2. At the lowest Zn uptake, the above fitting approach failed and data could be described best with a Zn-Si and a Zn-Ca shell. Previous work has been able to show that Zn(II) diffuses into the C-S-H(I) particles and does not form discrete precipitates, so the findings appear to confirm the incorporation of Zn(II) in the interlayer of C-S-H(I).

  15. Modeling the structure and composition of nanoparticles by extended X-Ray absorption fine-structure spectroscopy

    SciTech Connect

    Frenkel, Anatoly I.; Yevick, Aaron; Cooper, Chana; Vasic, Relja

    2011-07-19

    Many metal clusters in the 1-nm size range are catalytically active, and their enhanced reactivity is often attributed to their size, structure, morphology, and details of alloying. Synchrotron sources provide a wide range of opportunities for studying catalysis. Among them, extended X-ray absorption fine-structure (EXAFS) spectroscopy is the premier method for investigating structure and composition of nanocatalysts. In this review, we summarize common methods of EXAFS analysis for geometric and compositional characterization of nanoparticles. We discuss several aspects of the experiments and analyses that are critical for reliably modeling EXAFS data. The most important are sample homogeneity, the width of the size and compositional distribution functions, and accounting for multiple-scattering contributions to EXAFS. We focus on the contribution of structural disorder and structural/compositional heterogeneity to the accuracy of three-dimensional modeling.

  16. Radiation effects in water ice: a near-edge x-ray absorption fine structure study.

    PubMed

    Laffon, C; Lacombe, S; Bournel, F; Parent, Ph

    2006-11-28

    The changes in the structure and composition of vapor-deposited ice films irradiated at 20 K with soft x-ray photons (3-900 eV) and their subsequent evolution with temperatures between 20 and 150 K have been investigated by near-edge x-ray absorption fine structure spectroscopy (NEXAFS) at the oxygen K edge. We observe the hydroxyl OH, the atomic oxygen O, and the hydroperoxyl HO(2) radicals, as well as the oxygen O(2) and hydrogen peroxide H(2)O(2) molecules in irradiated porous amorphous solid water (p-ASW) and crystalline (I(cryst)) ice films. The evolution of their concentrations with the temperature indicates that HO(2), O(2), and H(2)O(2) result from a simple step reaction fuelled by OH, where O(2) is a product of HO(2) and HO(2) a product of H(2)O(2). The local order of ice is also modified, whatever the initial structure is. The crystalline ice I(cryst) becomes amorphous. The high-density amorphous phase (I(a)h) of ice is observed after irradiation of the p-ASW film, whose initial structure is the normal low-density form of the amorphous ice (I(a)l). The phase I(a)h is thus peculiar to irradiated ice and does not exist in the as-deposited ice films. A new "very high density" amorphous phase-we call I(a)vh-is obtained after warming at 50 K the irradiated p-ASW ice. This phase is stable up to 90 K and partially transforms into crystalline ice at 150 K.

  17. Extended x-ray-absorption fine structure—Auger process for surface structure analysis: Theoretical considerations of a proposed experiment

    PubMed Central

    Landman, Uzi; Adams, David L.

    1976-01-01

    A method for surface structure analysis is proposed. The proposed process combines x-ray photoabsorption and Auger electron emission. The extended x-ray-absorption fine structure, occurring for photon energies above an atomic absorption edge, contains structural information of the microscopic environment due to the coupling of the photoelectron final state with the atomic initial state. Measurement of the variations in the intensity of particular Auger lines, as a function of the incident radiation energy, provides a surface sensitive measure of the photoabsorption cross section in the media. Theoretical considerations of the physical processes underlying the proposed experiment and its feasibility, and a discussion of background contributions are presented. PMID:16592339

  18. Local Structure Around Te in Heavily Doped GaAs:Te using X-Ray Absorption Fine Structure

    SciTech Connect

    Pietnoczka, A.; Bacewicz, R.; Slupinski, T.; Antonowicz, J.; Wei, Su-Huai

    2012-04-01

    The annealing of heavily doped GaAs:Te can significantly change the free electron concentration in a reversible manner. These changes of electrical properties are accompanied by the structural changes of GaAs:Te solid solution. We used X-ray Absorption Fine Structure at K-edge of tellurium to determine local changes around Te atoms for different states of the GaAs:Te crystals caused by the annealing corresponding to different electron concentrations. The best EXAFS fit for the samples with high electron concentration was obtained for the substitutional Te{sub As} model with elongated Te-Ga bonds (as compared to the As-Ga distance). For the samples in the low concentration state the best fit was for the pairs of Te atoms forming a rhombohedral symmetry double-DX centre, with the proportional admixture of the substitutional tellurium.

  19. Local structure of Se in cancrinite: X-ray absorption fine structure theoretical analysis

    NASA Astrophysics Data System (ADS)

    Soldatov, A. V.; Yalovega, G. E.

    2000-04-01

    A theoretical "ab initio" analysis of the polarized X-ray absorption spectrum of selenium in a cancrinite matrix based on a full multiple-scattering theory has been performed. Comparison of the theoretical spectra with the experimental results shows that Se atoms form dimerized chains in the channels of the cancrinite matrix with an interchain distance of about 4.8 Å. In addition the distribution of unoccupied partial s-, p- and d- electronic states of Se has been obtained. Density of states analysis provides some insight into the chemical bonding of Se in cancrinite. The results suggest that the interaction of Se atoms with the matrix is the cause of the unusually large Se-Se distance in dimers.

  20. Geometric Structure Determination of N694C Lipoxygenase: a Comparative Near-Edge X-Ray Absorption Spectroscopy And Extended X-Ray Absorption Fine Structure Study

    SciTech Connect

    Sarangi, R.; Hocking, R.K.; Neidig, M.L.; Benfatto, M.; Holman, T.R.; Solomon, E.I.; Hodgson, K.O.; Hedman, B.

    2009-05-27

    The mononuclear nonheme iron active site of N694C soybean lipoxygenase (sLO1) has been investigated in the resting ferrous form using a combination of Fe-K-pre-edge, near-edge (using the minuit X-ray absorption near-edge full multiple-scattering approach), and extended X-ray absorption fine structure (EXAFS) methods. The results indicate that the active site is six-coordinate (6C) with a large perturbation in the first-shell bond distances in comparison to the more ordered octahedral site in wild-type sLO1. Upon mutation of the asparigine to cystiene, the short Fe-O interaction with asparigine is replaced by a weak Fe-(H{sub 2}O), which leads to a distorted 6C site with an effective 5C ligand field. In addition, it is shown that near-edge multiple scattering analysis can give important three-dimensional structural information, which usually cannot be accessed using EXAFS analysis. It is further shown that, relative to EXAFS, near-edge analysis is more sensitive to partial coordination numbers and can be potentially used as a tool for structure determination in a mixture of chemical species.

  1. In operando X-ray absorption fine structure studies of polyoxometalate molecular cluster batteries: polyoxometalates as electron sponges.

    PubMed

    Wang, Heng; Hamanaka, Shun; Nishimoto, Yoshio; Irle, Stephan; Yokoyama, Toshihiko; Yoshikawa, Hirofumi; Awaga, Kunio

    2012-03-14

    We carried out in operando Mo K-edge X-ray absorption fine structure measurements on the rechargeable molecular cluster batteries (MCBs) of polyoxometalates (POMs), in which a Keggin-type POM, [PMo(12)O(40)](3-), is utilized as a cathode active material with a lithium metal anode. The POM-MCBs exhibit a large capacity of ca. 270 (A h)/kg in a voltage range between V = 4.0 V and V = 1.5 V. X-ray absorption near-edge structure analyses demonstrate that all 12 Mo(6+) ions in [PMo(12)O(40)](3-) are reduced to Mo(4+) in the discharging process. This means the formation of a super-reduced state of the POM, namely, [PMo(12)O(40)](27-), which stores 24 electrons, and this electron number can explain the large capacity of the POM-MCBs. Furthermore, extended X-ray absorption fine structure analyses reveal the molecular structure of [PMo(12)O(40)](27-), which is slightly reduced in size compared to the original [PMo(12)O(40)](3-) and involves Mo(4+) metal-metal-bonded triangles. Density functional theory calculations suggest that these triangles are formed because of the large number of additional electrons in the super-reduced state.

  2. Near Edge X-Ray Absorption Fine Structure Spectroscopy with X-Ray Free-Electron Lasers

    SciTech Connect

    Bernstein, D.P.; Acremann, Y.; Scherz, A.; Burkhardt, M.; Stohr, J.; Beye, M.; Schlotter, W.F.; Beeck, T.; Sorgenfrei, F.; Pietzsch, A.; Wurth, W.; Fohlisch, A.; /Hamburg U.

    2009-12-11

    We demonstrate the feasibility of Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy on solids by means of femtosecond soft x-ray pulses from a free-electron laser (FEL). Our experiments, carried out at the Free-Electron Laser at Hamburg (FLASH), used a special sample geometry, spectrographic energy dispersion, single shot position-sensitive detection and a data normalization procedure that eliminates the severe fluctuations of the incident intensity in space and photon energy. As an example we recorded the {sup 3}D{sub 1} N{sub 4,5}-edge absorption resonance of La{sup 3+}-ions in LaMnO{sub 3}. Our study opens the door for x-ray absorption measurements on future x-ray FEL facilities.

  3. Extended x-ray absorption fine structure studies of the atomic structure of nanoparticles in different metallic matrices.

    PubMed

    Baker, S H; Roy, M; Gurman, S J; Binns, C

    2009-05-06

    It has been appreciated for some time that the novel properties of particles in the size range 1-10 nm are potentially exploitable in a range of applications. In order to ultimately produce commercial devices containing nanosized particles, it is necessary to develop controllable means of incorporating them into macroscopic samples. One way of doing this is to embed the nanoparticles in a matrix of a different material, by co-deposition for example, to form a nanocomposite film. The atomic structure of the embedded particles can be strongly influenced by the matrix. Since some of the key properties of materials, including magnetism, strongly depend on atomic structure, the ability to determine atomic structure in embedded nanoparticles is very important. This review focuses on nanoparticles, in particular magnetic nanoparticles, embedded in different metal matrices. Extended x-ray absorption fine structure (EXAFS) provides an excellent means of probing atomic structure in nanocomposite materials, and an overview of this technique is given. Its application in probing catalytic metal clusters is described briefly, before giving an account of the use of EXAFS in determining atomic structure in magnetic nanocomposite films. In particular, we focus on cluster-assembled films comprised of Fe and Co nanosized particles embedded in various metal matrices, and show how the crystal structure of the particles can be changed by appropriate choice of the matrix material. The work discussed here demonstrates that combining the results of structural and magnetic measurements, as well as theoretical calculations, can play a significant part in tailoring the properties of new magnetic cluster-assembled materials.

  4. Photoluminescence and extended X-ray absorption fine structure studies on cadmium telluride material

    NASA Astrophysics Data System (ADS)

    Liu, Xiangxin

    The direct-band-gap semiconductor CdTe is an important material for fabricating high efficiency, polycrystalline thin-film solar cells in a heterojunction configuration. The outstanding physical properties of this material such as its good band-gap match to the solar spectrum, ease of fabrication of stoichiometric films, and easy grain boundary passivation make it an important candidate for large area, thin-film solar cells. However, there are several poorly understood processing steps that are commonly utilized in cell fabrication. One of these is a CdCl2 treatment near 400°C in the presence of oxygen, which can improve the cell efficiency a factor of two or more. Another factor is the role of copper in cell performance. In high performance CdS/CdTe thin-film solar cells, copper is usually included in the fabrication of low-resistance back contacts to obtain heavy p-type doping of the absorber CdTe at the contact. However, most of the copper is not electrically active. For example, secondary ion mass spectroscopy (SIMS) on typical CdTe cells has shown Cu concentrations of 1019 atoms/cm3 and even higher, although capacitance-voltage (C-V) measurements indicate typical ionized acceptor levels on the order of 1014/cm 3. Thus, there is great interest in the location and role of this inactive copper in CdTe photovoltaic (PV) devices. In this thesis, I will describe results obtained on magnetron-sputtered CdTe films that were diffused with copper following the procedure used for creating a cell back contact. Extended X-ray Absorption Fine Structure (EXAFS) measurements identified the chemical environment of the majority of the copper and show major differences depending on whether the CdTe film has been treated with chloride prior to the Cu diffusion. The EXAFS data indicate that the Cu chemistry is strongly affected by the chloride treatments---predominantly Cu2Te when Cu was diffused into the as-deposited CdTe film, but a Cu2O environment when Cu was diffused after

  5. Development of the surface-sensitive soft x-ray absorption fine structure measurement technique for the bulk insulator

    SciTech Connect

    Yonemura, Takumi Iihara, Junji; Uemura, Shigeaki; Yamaguchi, Koji; Niibe, Masahito

    2016-07-27

    We have succeeded in measuring X-ray absorption fine structure (TEY-XAFS) spectra of insulating plate samples by total electron yield. The biggest problem is how to suppress the charge-up. We have attempted to deposit a gold stripe electrode on the surface and obtained a TEY-XAFS spectrum. This indicates that the metal stripe electrode is very useful in the TEY-XAFS measurement of the insulating plate samples. In the detailed analysis, we have found that the effective area for suppressing charge-up was approximately 120 μm from the edge of the electrode.

  6. PREFACE: The 15th International Conference on X-ray Absorption Fine Structure (XAFS15)

    NASA Astrophysics Data System (ADS)

    Wu, Z. Y.

    2013-04-01

    The 15th International Conference on X-ray Absorption Fine Structure (XAFS15) was held on 22-28 July 2012 in Beijing, P. R. China. About 340 scientists from 34 countries attended this important international event. Main hall Figure 1. Main hall of XAFS15. The rapidly increasing application of XAFS to the study of a large variety of materials and the operation of the new SR source led to the first meeting of XAFS users in 1981 in England. Following that a further 14 International Conferences have been held. Comparing a breakdown of attendees according to their national origin, it is clear that participation is spreading to include attendees from more and more countries every year. The strategy of development in China of science and education is increasing quickly thanks to the large investment in scientific and technological research and infrastructure. There are three Synchrotron Radiation facilities in mainland China, Hefei Light Source (HLS) in the National Natural Science Foundation of China (NSRL), Beijing Synchrotron Radiation Facility (BSRF) in the Institute of High Energy Physics, and Shanghai Synchrotron Radiation Facility (SSRF) in the Shanghai Institute of Applied Physics. More than 10000 users and over 5000 proposals run at these facilities. Among them, many teams from the USA, Japan, German, Italy, Russia, and other countries. More than 3000 manuscript were published in SCI journals, including (incomplete) Science (7), Nature (10), Nature Series (7), PNAS (3), JACS (12), Angew. Chem. Int. Ed. (15), Nano Lett. (2), etc. In XAFS15, the participants contributed 18 plenary invited talks, 16 parallel invited talks, 136 oral presentations, 12 special talks, and 219 poster presentations. Wide communication was promoted in the conference halls, the classical banquet restaurant, and the Great Wall. Parallel hallCommunicationPoster room Figure 2. Parallel hallFigure 3. CommunicationFigure 4. Poster room This volume contains 136 invited and contributed papers

  7. Clarifying the chemical state of additives in membranes for polymer electrolyte fuel cells by X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Tanuma, Toshihiro; Itoh, Takanori

    2016-02-01

    Cerium and manganese compounds are used in the membrane for polymer electrolyte fuel cells (PEFCs) as radical scavengers to mitigate chemical degradation of the membrane. The chemical states of cerium and manganese in the membrane were investigated using a fluorescence X-ray absorption fine structure (XAFS) technique. Membrane electrode assemblies (MEAs) were subjected to open circuit voltage (OCV) condition, under which hydroxyl radicals attack the membrane; a shift in absorption energy in X-ray absorption near edge structure (XANES) spectra was compared between Ce- and Mn-containing membranes before and after OCV testing. In the case of the Ce-containing MEA, there was no significant difference in XANES spectra before and after OCV testing, whereas in the case of the Mn-containing MEA, there was an obvious shift in XANES absorption energy after OCV testing, indicating that Mn atoms with higher valence state than 2+ exist in the membrane after OCV testing. This can be attributed to the difference in the rate of reduction; the reaction of Ce4+ with ·OOH is much faster than that of Mn3+ with ·OOH, leaving some of the Mn atoms with higher valence state. It was confirmed that cerium and manganese redox couples reduced the attack from radicals, mitigating membrane degradation.

  8. Ligand Exchange Reactions of a Monomeric Zirconium Carbonate Complex with Carboxylic Acids Studied by Extended X-ray Absorption Fine Structure, UV Absorption and Raman Spectrophotometry.

    PubMed

    Takasaki, Fumiyuki; Fujiwara, Kazuhiko; Kikuchi, Tomomi; Tanno, Takenori; Nakajima, Yasushi; Toyoda, Yasunori; Ogawa, Nobuaki

    2017-01-01

    Ligand exchange reactions of a monomeric zirconium carbonate complex with carboxylic acids were studied by means of extended X-ray absorption fine structure (EXAFS), UV absorption spectrophotometry and Raman spectrometry. Three carboxylic acids, gluconic acid, and L-tartaric acid and citric acid, which are mono-, di- and tri-carboxylic acids, respectively, were employed in this study. These three carboxylic acids gave different spectral signatures and concentration dependences, respectively. In the gluconic acid system, the peaks on Fourier transform of EXAFS spectrum and Raman spectrum caused by carbonate ion coordinating to zirconium atom were obviously decreased with increasing gluconic acid concentration compared to the other two carboxylic acid systems. This indicates the high association ability of gluconic acid to zirconium, which was revealed by UV spectrophotometric analysis.

  9. X-ray absorption fine structure (XAFS) analyses of Ni species trapped in graphene sheet of carbon nanofibers

    SciTech Connect

    Ushiro, Mayuko; Uno, Kanae; Fujikawa, Takashi; Sato, Yoshinori; Tohji, Kazuyuki; Watari, Fumio; Chun, W.-J.; Koike, Yuichiro; Asakura, Kiyotaka

    2006-04-01

    Metal impurities in the carbon nanotubes and carbon nanofibers play an important role in understanding their physical and chemical properties. We apply the Ni K-edge x-ray absorption fine structure analyses to the local electronic and geometric structures around embedded Ni impurities used as catalysts in a carbon nanofiber in combination with multiple scattering analyses. We find almost Ni catalysts as metal particles are removed by the purification treatment. Even after the purification, residual 100 ppm Ni species are still absorbed; most of them are in monomer structure with Ni-C bond length 1.83 A, and each of them is substituted for a carbon atom in a graphene sheet.

  10. Iron distances in hemoglobin: comparison of x-ray crystallographic and extended x-ray absorption fine structure studies

    SciTech Connect

    Fermi, G.; Perutz, M.F.; Shulman, R.G.

    1987-09-01

    A comparison is presented of the structures obtained around the iron atom in deoxyhemoglobin (Hb). The data come from extended x-ray absorption fine structure (EXAFS) studies of the iron, which gave Fe-porphyrin nitrogen distances of 2.06 +- 0.01 A, and from the most recent high-resolution x-ray crystallographic study, which gave exactly the same distance-2.06 +- 0.02 A. The distance of Fe above the plane of the porphyrin nitrogens was 0.38 +- 0.04 A from the crystallographic study; this value is not far from the upper limit of the distances 0.20 +- /sub 0.20//sup 0.10/ A calculated from the EXAFS experiment by triangulation. These distances above the nitrogen plane are shorter than those estimated in the earliest x-ray structures

  11. X-ray absorption fine structure spectroscopic determination of plutonium speciation at the Rocky Flats environmental technology

    SciTech Connect

    Lezama-pacheco, Juan S; Conradson, Steven D; Clark, David L

    2008-01-01

    X-ray Absorption Fine Structure spectroscopy was used to probe the speciation of the ppm level Pu in thirteen soil and concrete samples from the Rocky Flats Environmental Technology Site in support of the site remediation effort that has been successfully completed since these measurements. In addition to X-ray Absorption Near Edge Spectra, two of the samples yielded Extended X-ray Absorption Fine Structure spectra that could be analyzed by curve-fits. Most of these spectra exhibited features consistent with PU(IV), and more specificaJly, PuO{sub 2+x}-type speciation. Two were ambiguous, possibly indicating that Pu that was originally present in a different form was transforming into PuO{sub 2+x}, and one was interpreted as demonstrating the presence of an unusual Pu(VI) compound, consistent with its source being spills from a PUREX purification line onto a concrete floor and the resultant extreme conditions. These experimental results therefore validated models that predicted that insoluble PuO{sub 2+x} would be the most stable form of Pu in equilibrium with air and water even when the source terms were most likely Pu metal with organic compounds or a Pu fire. A corollary of these models' predictions and other in situ observations is therefore that the minimal transport of Pu that occurred on the site was via the resuspension and mobilization of colloidal particles. Under these conditions, the small amounts of diffusely distributed Pu that were left on the site after its remediation pose only a negligible hazard.

  12. Quick extended x-ray absorption fine structure instrument with millisecond time scale, optimized for in situ applications

    SciTech Connect

    Khalid, S.; Caliebe, W.; Siddons, P.; So, I.; Clay, b.; Hanson, J.; Wang, Q.; Frenkel, A.; Marinkovicl, N.; Hould, N.; ginder-Vogel, M.; Landrot, G.L.; Sparks, D.L.; Ganjoo, A.

    2010-01-19

    In order to learn about in situ structural changes in materials at subseconds time scale, we have further refined the techniques of quick extended x-ray absorption fine structure (QEXAFS) and quick x-ray absorption near edge structure (XANES) spectroscopies at beamline X18B at the National Synchrotron Light Source. The channel cut Si (111) monochromator oscillation is driven through a tangential arm at 5 Hz, using a cam, dc motor, pulley, and belt system. The rubber belt between the motor and the cam damps the mechanical noise. EXAFS scan taken in 100 ms is comparable to standard data. The angle and the angular range of the monochromator can be changed to collect a full EXAFS or XANES spectrum in the energy range 4.7-40.0 KeV. The data are recorded in ascending and descending order of energy, on the fly, without any loss of beam time. The QEXAFS mechanical system is outside the vacuum system, and therefore changing the mode of operation from conventional to QEXAFS takes only a few minutes. This instrument allows the acquisition of time resolved data in a variety of systems relevant to electrochemical, photochemical, catalytic, materials, and environmental sciences.

  13. Quick extended x-ray absorption fine structure instrument with millisecond time scale, optimized for in situ applications.

    PubMed

    Khalid, S; Caliebe, W; Siddons, P; So, I; Clay, B; Lenhard, T; Hanson, J; Wang, Q; Frenkel, A I; Marinkovic, N; Hould, N; Ginder-Vogel, M; Landrot, G L; Sparks, D L; Ganjoo, A

    2010-01-01

    In order to learn about in situ structural changes in materials at subseconds time scale, we have further refined the techniques of quick extended x-ray absorption fine structure (QEXAFS) and quick x-ray absorption near edge structure (XANES) spectroscopies at beamline X18B at the National Synchrotron Light Source. The channel cut Si (111) monochromator oscillation is driven through a tangential arm at 5 Hz, using a cam, dc motor, pulley, and belt system. The rubber belt between the motor and the cam damps the mechanical noise. EXAFS scan taken in 100 ms is comparable to standard data. The angle and the angular range of the monochromator can be changed to collect a full EXAFS or XANES spectrum in the energy range 4.7-40.0 KeV. The data are recorded in ascending and descending order of energy, on the fly, without any loss of beam time. The QEXAFS mechanical system is outside the vacuum system, and therefore changing the mode of operation from conventional to QEXAFS takes only a few minutes. This instrument allows the acquisition of time resolved data in a variety of systems relevant to electrochemical, photochemical, catalytic, materials, and environmental sciences.

  14. Luminescence and Valence of Tb Ions in Alkaline Earth Stannates and Zirconates Examined by X-ray Absorption Fine Structures.

    PubMed

    Ueda, Kazushige; Shimizu, Yuhei; Nagamizu, Kouta; Matsuo, Masashi; Honma, Tetsuo

    2017-10-03

    The difference in Tb(3+) green luminescence intensities in doped perovskite(ABO3)-type alkaline earth stannates, AeSnO3 (Ae = Ca, Sr, Ba), and the Mg codoping effect on the luminescence intensities in doped CaMO3 (M = Sn, Zr) were investigated utilizing the X-ray absorption fine structures (XAFS) of the Tb LIII absorption edge. It is considered that the local symmetry at A sites is responsible for the different Tb(3+) luminescence intensities in AeSnO3 (Ae = Ca, Sr, Ba) doped with Tb ions at A sites. However, it was found from the XAFS spectra that some Tb ions are unintentionally stabilized at B sites as Tb(4+), especially in BaSnO3. Not only the central symmetry for Tb(3+) at A sites but also the presence of Tb(4+) at B sites were considered to bring about the absence of Tb(3+) luminescence in doped cubic BaSnO3. No obvious changes in the Tb(3+) local structure at A sites were detected between Tb single doped and Tb-Mg codoped CaMO3 (M = Sn, Zr) from the extended XAFS oscillation, but the trace of Tb(4+) at B sites in the Tb single doped sample was observed in the X-ray absorption near edge structures. It is, therefore, considered that the Tb(3+) luminescence enhancement by Mg codoping is primarily attributed to the charge compensation rather than the changes in the local structure around Tb(3+) at A sites.

  15. Zinc cysteine active sites of metalloproteins: A density functional theory and x-ray absorption fine structure study

    NASA Astrophysics Data System (ADS)

    Dimakis, Nicholas; Farooqi, Mohammed Junaid; Garza, Emily Sofia; Bunker, Grant

    2008-03-01

    Density functional theory (DFT) and x-ray absorption fine structure (XAFS) spectroscopy are complementary tools for the biophysical study of active sites in metalloproteins. DFT is used to compute XAFS multiple scattering Debye Waller factors, which are then employed in genetic algorithm-based fitting process to obtain a global fit to the XAFS in the space of fitting parameters. Zn-Cys sites, which serve important functions as transcriptional switches in Zn finger proteins and matrix metalloproteinases, previously have proven intractable by this method; here these limitations are removed. In this work we evaluate optimal DFT nonlocal functionals and basis sets for determining optimal geometries and vibrational densities of states of mixed ligation Zn(His)4-n(Cys)n sites. Theoretical results are compared to experimental XAFS measurements and Raman spectra from the literature and tabulated for use.

  16. Time-resolved pump and probe x-ray absorption fine structure spectroscopy at beamline P11 at PETRA III

    SciTech Connect

    Göries, D. Roedig, P.; Stübe, N.; Meyer, J.; Warmer, M.; Weckert, E.; Meents, A.; Dicke, B.; Naumova, M.; Rübhausen, M.; Galler, A.; Gawelda, W.; Geßler, P.; Sotoudi Namin, H.; Beckmann, A.; Britz, A.; Bressler, C.; Schlie, M.

    2016-05-15

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy){sub 3}. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our results further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM).

  17. Note: Construction of x-ray scattering and x-ray absorption fine structure beamline at the Pohang Light Source

    SciTech Connect

    Lee, Ik-Jae; Yu, Chung-Jong; Yun, Young-Duck; Lee, Chae-Soon; Seo, In Deuk; Kim, Hyo-Yun; Lee, Woul-Woo; Chae, Keun Hwa

    2010-02-15

    A new hard x-ray beamline, 10B KIST-PAL beamline (BL10B), has been designed and constructed at the Pohang Light Source (PLS) in Korea. The beamline, operated by Pohang Accelerator Laboratory-Korean Institute of Science and Technology consortium, is dedicated to x-ray scattering (XRS) and x-ray absorption fine structure (XAFS) experiments. X rays with photon energies from 4.0 to 16.0 keV are delivered to the experimental station passing a collimating mirror, a fixed-exit double-crystal Si(111) monochromator, and a toroidal mirror. Basic experimental equipments for XAFS measurement, a high resolution diffractometry, an image plate detector system, and a hot stage have been prepared for the station. From our initial commissioning and performance testing of the beamline, it is observed that BL10B beamline can perform XRS and XAFS measurements successfully.

  18. Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts.

    PubMed

    Frenkel, Anatoly I

    2012-12-21

    Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to study short range order in heterometallic alloys for almost four decades. In this critical review, experimental, theoretical and data analytical approaches are revisited to examine their power, and limitations, in studies of bimetallic nanocatalysts. This article covers the basics of EXAFS experiments, data analysis, and modelling of nanoscale clusters. It demonstrates that, in the best case scenario, quantitative information about the nanocatalyst's size, shape, details of core-shell architecture, as well as static and dynamic disorder in metal-metal bond lengths can be obtained. The article also emphasizes the main challenge accompanying such insights: the need to account for the statistical nature of the EXAFS technique, and discusses corrective strategies.

  19. X-ray absorption fine-structure spectroscopy studies of Fe sites in natural human neuromelanin and synthetic analogues.

    PubMed Central

    Kropf, A J; Bunker, B A; Eisner, M; Moss, S C; Zecca, L; Stroppolo, A; Crippa, P R

    1998-01-01

    X-ray absorption fine-structure spectroscopy is used to study the local environment of the iron site in natural (human) neuromelanin extracted from substantia nigra tissue and in various synthetic neuromelanins. All the materials show Fe centered in a nearest neighbor sixfold (distorted) oxygen octahedron; the Fe-O distances, while slightly different in the natural and synthetic neuromelanin, are both approximately 2.0 A. Appreciable differences arise, however, in the second (and higher) coordination shells. In this case the synthetic melanin has the four planar oxygens bound to carbon rings with Fe-C distances of approximately 2.82 and 4.13 A; the human sample does not show the 2.82 A link but instead indicates a double shell at approximately 3.45 and 3.78 A. PMID:9826634

  20. X-ray absorption fine structure and X-ray excited optical luminescence studies of II-VI semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Murphy, Michael Wayne

    2010-06-01

    Various II-VI semiconducting nanomaterials such as ZnO-ZnS nanoribbons (NRs), CdSxSe1-x nanostructures, ZnS:Mn NRs, ZnS:Mn,Eu nanoprsims (NPs), ZnO:Mn nanopowders, and ZnO:Co nanopowders were synthesized for study. These materials were characterized by techniques such as scanning electron microscopy, transmission electron microscopy, element dispersive X-ray spectroscopy, selected area electron diffraction, and X-ray diffraction. The electronic and optical properties of these nanomaterials were studied by X-ray absorption fine structure (XAFS) spectroscopy and X-ray excited optical luminescence (XEOL) techniques, using tuneable soft X-rays from a synchrotron light source. The complementary nature ofthe XAFS and XEOL techniques give site, element and chemical specific measurements which allow a better understanding of the interplay and role of each element in the system. Chemical vapour deposition (CVD) of ZnS powder in a limited oxygen environment resulted in side-by-side biaxial ZnO-ZnS NR heterostructures. The resulting NRs contained distinct wurtzite ZnS and wurtzite ZnO components with widths of 10--100 nm and 20 --500 nm, respectively and a uniform interface region of 5-15 nm. XAFS and XEOL measurements revealed the luminescence of ZnO-ZnS NRs is from the ZnO component. The luminescence of CdSxSe1-x nanostructures is shown to be dependent on the S to Se ratio, with the band-gap emission being tunable between that of pure CdS and CdSe. Excitation of the CdSxSe 1-x nanostructures by X-ray in XEOL has revealed new de-excitation channels which show a defect emission band not seen by laser excitation. CVD of Mn2+ doped ZnS results in nanostructures with luminescence dominated by the yellow Mn2+ emission due to energy transfer from the ZnS host to the Mn dopant sites. The addition of EuCl3 to the reactants in the CVD process results in a change in morphology from NR to NP. Zn1-xMnxO and Zn1-xCOxO nanopowders were prepared by sol-gel methods at dopant concentrations

  1. Studying the local structures of novel materials using the Extended X-ray Absorption Fine Structure technique

    NASA Astrophysics Data System (ADS)

    Jiang, Yu

    2009-12-01

    In this dissertation, investigations on the local lattice structures for a variety of novel materials using Extended X-ray Absorption Fine Structure (EXAFS) technique are presented. Different experiment schemes were applied to obtain EXAFS data with high quality, and some interesting results were obtained by careful analysis. The power of the EXAFS technique was once again proved. In Chapter 1, I first briefly introduce the EXAFS theory and experiments, then give readers who are not familiar with this technique a short introduction on data reduction and analysis, and finally discuss some problems that are easily ignored in the interpretation of the experiment results. In Chapter 2, a temperature-dependent EXAFS investigation of La 1-xCaxMnO 3 is presented for the concentration range that spans the ferromagnetic-insulator (FMI) to ferromagnetic-metal (FMM) transition region, x = 0.16, 0.18, 0.20, and 0.22; the titrated hole concentrations are slightly higher y = 0.2, 0.22, 0.24, and 0.25 respectively. In Chapter 3, I report EXAFS studies of n- and p-type Ba8Ga 16Ge30 samples (type I clathrate) at the Ga, Ge, and Ba K-edges, to probe the local structure, particularly around the Ba atoms located inside 20- and 24-atom cages (Ba1 and Ba2 sites respectively) formed of Ga/Ge atoms. In agreement with diffraction analysis we find Ba2 is off-center, with a component in the bc plane (0.15 A) comparable to that found in diffraction; however, under the assumption of a stiff cage we also require a significant a component. This suggests a coupling or attraction between the Ba2 atoms and the hexagonal rings at the top or bottom of the cage that encloses the Ba2 site. In Chapter 4, I report detailed degradation and rejuvenation studies for AC electro-luminescence (EL) devices made using the phosphor ZnS:Cu,CI. We find that the AC EL emission spectra vary considerably with AC driving frequency but all spectra can be fit to a sum of four Gaussians. The combined experiments place

  2. Near-edge x-ray absorption fine structure measurements using a laboratory-scale XUV source

    NASA Astrophysics Data System (ADS)

    Peth, Christian; Barkusky, Frank; Mann, Klaus

    2008-05-01

    We present a compact setup for near-edge x-ray absorption spectroscopy at the carbon K-edge based on a laser-driven plasma source. To generate the required broad-band emission in the spectral range of the 'water window' (λ = 2.2-4.4 nm) a krypton gas puff target was used. The table-top setup consisting basically of the laser-plasma source and a flat-field spectrometer can be used for near-edge x-ray absorption fine structure experiments in transmission as well as reflection under grazing incidence conditions (ReflEXAFS). The latter method offers the advantage that thin film preparation is not necessary and that the surface sensitivity is strongly enhanced. The results obtained for thin polymer films show good agreement with synchrotron data. Furthermore, we use the ReflEXAFS method to investigate changes in the chemical composition of PMMA induced by extreme ultraviolet (EUV) radiation. The spectra indicate a loss of the carbonyl functional group upon irradiation as well as crosslinking effects at high EUV radiation doses.

  3. Pd-Pt Catalysts on Fluorinated Alumina Support Studied by X-Ray Absorption Fine Structure

    NASA Astrophysics Data System (ADS)

    Yan, Wensheng; Li, Zhongrui; Wei, Zheng; Wei, Shiqiang

    2007-02-01

    A series of bi-metallic Pd-Pt catalysts supported on both pristine and fluorinated alumina supports were investigated with x-ray absorption spectroscopy. It was found that Pd and Pt form small alloy particles on the pristine alumina support; the composition and the cluster size of the PdPt bimetallic alloys, and the electronic properties of the metals were significantly altered on the fluorinated support. The remarkable increase in sulfur tolerance of the PdPt metallic clusters supported on the fluorine pretreated alumina can be attributed to an electronic depletion of the metals, large particle size and direct participation of the acid sites in the reaction.

  4. Extended x-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser

    SciTech Connect

    Yaakobi, B.; Boehly, T. R.; Sangster, T. C.; Meyerhofer, D. D.; Remington, B. A.; Allen, P. G.; Pollaine, S. M.; Lorenzana, H. E.; Lorenz, K. T.; Hawreliak, J. A.

    2008-06-15

    The use of in situ extended x-ray absorption fine structure (EXAFS) for characterizing nanosecond laser-shocked vanadium, titanium, and iron has recently been demonstrated. These measurements are extended to laser-driven, quasi-isentropic compression experiments (ICE). The radiation source (backlighter) for EXAFS in all of these experiments is obtained by imploding a spherical target on the OMEGA laser [T. R. Boehly et al., Rev. Sci. Instrum. 66, 508 (1995)]. Isentropic compression (where the entropy is kept constant) enables to reach high compressions at relatively low temperatures. The absorption spectra are used to determine the temperature and compression in a vanadium sample quasi-isentropically compressed to pressures of up to {approx}0.75 Mbar. The ability to measure the temperature and compression directly is unique to EXAFS. The drive pressure is calibrated by substituting aluminum for the vanadium and interferometrically measuring the velocity of the back target surface by the velocity interferometer system for any reflector (VISAR). The experimental results obtained by EXAFS and VISAR agree with each other and with the simulations of a hydrodynamic code. The role of a shield to protect the sample from impact heating is studied. It is shown that the shield produces an initial weak shock that is followed by a quasi-isentropic compression at a relatively low temperature. The role of radiation heating from the imploding target as well as from the laser-absorption region is studied. The results show that in laser-driven ICE, as compared with laser-driven shocks, comparable compressions can be achieved at lower temperatures. The EXAFS results show important details not seen in the VISAR results.

  5. Non-patchy strategy for inter-atomic distances from Extended X-ray Absorption Fine Structure

    PubMed Central

    Xu, Gu; Li, Guifang; LI, Xianya; Liang, Yi; Feng, Zhechuan

    2017-01-01

    Extended X-ray Absorption Fine Structure (EXAFS) has been one of the few structural probes available for crystalline, non-crystalline and even highly disordered specimens. However, the data analysis involves a patchy and tinkering process, including back-and-forth fitting and filtering, leading to ambiguous answers sometimes. Here we try to resolve this long standing problem, to extract the inter-atomic distances from the experimental data by a single step minimization, in order to replace the tedious and tinkering process. The new strategy is built firmly by the mathematical logic, and made straightforward and undeniable. The finding demonstrates that it is possible to break off from the traditional patchy model fitting, and to remove the logical confusion of a priori prediction of the structure to be matched with experimental data, making it a much more powerful technique than the existing methods. The new method is expected to benefit EXAFS users covering all disciplines. Also, it is anticipated that the current work to be the motivation and inspiration to the further efforts. PMID:28181529

  6. Non-patchy strategy for inter-atomic distances from Extended X-ray Absorption Fine Structure

    NASA Astrophysics Data System (ADS)

    Xu, Gu; Li, Guifang; Li, Xianya; Liang, Yi; Feng, Zhechuan

    2017-02-01

    Extended X-ray Absorption Fine Structure (EXAFS) has been one of the few structural probes available for crystalline, non-crystalline and even highly disordered specimens. However, the data analysis involves a patchy and tinkering process, including back-and-forth fitting and filtering, leading to ambiguous answers sometimes. Here we try to resolve this long standing problem, to extract the inter-atomic distances from the experimental data by a single step minimization, in order to replace the tedious and tinkering process. The new strategy is built firmly by the mathematical logic, and made straightforward and undeniable. The finding demonstrates that it is possible to break off from the traditional patchy model fitting, and to remove the logical confusion of a priori prediction of the structure to be matched with experimental data, making it a much more powerful technique than the existing methods. The new method is expected to benefit EXAFS users covering all disciplines. Also, it is anticipated that the current work to be the motivation and inspiration to the further efforts.

  7. Near-edge X-ray absorption fine-structure spectroscopy of naphthalene diimide-thiophene co-polymers

    SciTech Connect

    Gann, Eliot; McNeill, Christopher R.; Szumilo, Monika; Sirringhaus, Henning; Sommer, Michael; Maniam, Subashani; Langford, Steven J.; Thomsen, Lars

    2014-04-28

    Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy is an important tool for probing the structure of conjugated polymer films used in organic electronic devices. High-performance conjugated polymers are often donor-acceptor co-polymers which feature a repeat unit with multiple functional groups. To facilitate better application of NEXAFS spectroscopy to the study of such materials, improved understanding of the observed NEXAFS spectral features is required. In order to examine how the NEXAFS spectrum of a donor-acceptor co-polymer relates to the properties of the sub-units, a series of naphthalene diimide-thiophene-based co-polymers have been studied where the nature and length of the donor co-monomer has been systematically varied. The spectra of these materials are compared with that of a thiophene homopolymer and naphthalene diimide monomer enabling peak assignment and the influence of inter-unit electronic coupling to be assessed. We find that while it is possible to attribute peaks within the π* manifold as arising primarily due to the naphthalene diimide or thiophene sub-units, very similar dichroism of these peaks is observed indicating that it may not be possible to separately probe the molecular orientation of the separate sub-units with carbon K-edge NEXAFS spectroscopy.

  8. Interaction of Isophorone with Pd(111): A Combination of Infrared Reflection-Absorption Spectroscopy, Near-Edge X-ray Absorption Fine Structure, and Density Functional Theory Studies.

    PubMed

    Dostert, Karl-Heinz; O'Brien, Casey P; Riedel, Wiebke; Savara, Aditya; Liu, Wei; Oehzelt, Martin; Tkatchenko, Alexandre; Schauermann, Swetlana

    2014-12-04

    Atomistic level understanding of interaction of α,β-unsaturated carbonyls with late transition metals is a key prerequisite for rational design of new catalytic materials with the desired selectivity toward C=C or C=O bond hydrogenation. The interaction of this class of compounds with transition metals was investigated on α,β-unsaturated ketone isophorone on Pd(111) as a prototypical system. In this study, infrared reflection-absorption spectroscopy (IRAS), near-edge X-ray absorption fine structure (NEXAFS) experiments, and density functional theory calculations including van der Waals interactions (DFT+vdW) were combined to obtain detailed information on the binding of isophorone to palladium at different coverages and on the effect of preadsorbed hydrogen on the binding and adsorption geometry. According to these experimental observations and the results of theoretical calculations, isophorone adsorbs on Pd(111) in a flat-lying geometry at low coverages. With increasing coverage, both C=C and C=O bonds of isophorone tilt with respect to the surface plane. The tilting is considerably more pronounced for the C=C bond on the pristine Pd(111) surface, indicating a prominent perturbation and structural distortion of the conjugated π system upon interaction with Pd. Preadsorbed hydrogen leads to higher tilting angles of both π bonds, which points to much weaker interaction of isophorone with hydrogen-precovered Pd and suggests the conservation of the in-plane geometry of the conjugated π system. The results of the DFT+vdW calculations provide further insights into the perturbation of the molecular structure of isophorone on Pd(111).

  9. Interaction of Isophorone with Pd(111): A Combination of Infrared Reflection–Absorption Spectroscopy, Near-Edge X-ray Absorption Fine Structure, and Density Functional Theory Studies

    PubMed Central

    2014-01-01

    Atomistic level understanding of interaction of α,β-unsaturated carbonyls with late transition metals is a key prerequisite for rational design of new catalytic materials with the desired selectivity toward C=C or C=O bond hydrogenation. The interaction of this class of compounds with transition metals was investigated on α,β-unsaturated ketone isophorone on Pd(111) as a prototypical system. In this study, infrared reflection–absorption spectroscopy (IRAS), near-edge X-ray absorption fine structure (NEXAFS) experiments, and density functional theory calculations including van der Waals interactions (DFT+vdW) were combined to obtain detailed information on the binding of isophorone to palladium at different coverages and on the effect of preadsorbed hydrogen on the binding and adsorption geometry. According to these experimental observations and the results of theoretical calculations, isophorone adsorbs on Pd(111) in a flat-lying geometry at low coverages. With increasing coverage, both C=C and C=O bonds of isophorone tilt with respect to the surface plane. The tilting is considerably more pronounced for the C=C bond on the pristine Pd(111) surface, indicating a prominent perturbation and structural distortion of the conjugated π system upon interaction with Pd. Preadsorbed hydrogen leads to higher tilting angles of both π bonds, which points to much weaker interaction of isophorone with hydrogen-precovered Pd and suggests the conservation of the in-plane geometry of the conjugated π system. The results of the DFT+vdW calculations provide further insights into the perturbation of the molecular structure of isophorone on Pd(111). PMID:26089998

  10. Adsorption sites and bond lengths of iodine on Cu)111) and Cu)100) from surface extended x-ray-absorption fine structure

    SciTech Connect

    Citrin, P.H.; Eisenberger, P.; Hewitt, R.C.

    1980-12-15

    The unambiguous identification of adsorption sites is demonstrated using absolute and relative polarization-dependent surface extended-x-ray-absorption fine-structure amplitude functions. This empirical procedure is generally applicable to all oriented adsorbates on single-crystal substrates.

  11. The use of C-near edge X-ray absorption fine structure spectroscopy for the elaboration of chemistry in lignocellulosics

    Treesearch

    Lucian A. Lucia; Hiroki Nanko; Alan W. Rudie; Doug G. Mancosky; Sue Wirick

    2006-01-01

    The research presented elucidates the oxidation chemistry occurring in hydrogen peroxide bleached kraft pulp fibers by employing carbon near edge x-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft x-ray technique that selectively interrogates atomic moieties using photoelectrons (Xrays) of variable energies. The X1A beam line at the National...

  12. Novel visualization studies of lignocellulosic oxidation chemistry by application of C-near edge X-ray absorption fine structure spectroscopy

    Treesearch

    Douglas G. Mancosky; Lucian A. Lucia; Hiroki Nanko; Sue Wirick; Alan W. Rudie; Robert Braun

    2005-01-01

    The research presented herein is the first attempt to probe the chemical nature of lignocellulosic samples by the application of carbon near edge X-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft X-ray technique that principally provides selective interrogation of discrete atomic moieties using photoelectrons of variable energies. The X1A beam...

  13. High-precision limit on variation in the fine-structure constant from a single quasar absorption system

    NASA Astrophysics Data System (ADS)

    Kotuš, S. M.; Murphy, M. T.; Carswell, R. F.

    2017-01-01

    The brightest southern quasar above redshift z = 1, HE 0515-4414, with its strong intervening metal absorption line system at zabs = 1.1508, provides a unique opportunity to precisely measure or limit relative variations in the fine-structure constant (Δα/α). A variation of just ˜3 parts per million (ppm) would produce detectable velocity shifts between its many strong metal transitions. Using new and archival observations from the Ultraviolet and Visual Echelle Spectrograph (UVES), we obtain an extremely high signal-to-noise ratio spectrum (peaking at S/N ≈ 250 pix-1). This provides the most precise measurement of Δα/α from a single absorption system to date, Δα/α = -1.42 ± 0.55stat ± 0.65sys ppm, comparable with the precision from previous, large samples of ˜150 absorbers. The largest systematic error in all (but one) previous similar measurements, including the large samples, was long-range distortions in the wavelength calibration. These would add an ˜2 ppm systematic error to our measurement and up to ˜10 ppm to other measurements using Mg and Fe transitions. However, we corrected the UVES spectra using well-calibrated spectra of the same quasar from the High Accuracy Radial velocity Planet Searcher, leaving a residual 0.59 ppm systematic uncertainty, the largest contribution to our total systematic error. A similar approach, using short observations on future well-calibrated spectrographs to correct existing high S/N spectra, would efficiently enable a large sample of reliable Δα/α measurements. The high-S/N UVES spectrum also provides insights into analysis difficulties, detector artefacts and systematic errors likely to arise from 25-40-m telescopes.

  14. Studies of vibrational properties in Ga stabilized delta-Pu by extended X-ray absorption fine structure

    SciTech Connect

    Allen, P.G.; Henderson, A.L.; Sylwester, E.R.; Turchi, P.E.A.; Shen, T.H.; Gallegos, G.F.; Booth, C.H.

    2002-02-14

    Temperature dependent extended x-ray absorption fine structure (EXAFS) spectra were measured for a 3.3 at. % Ga stabilized Pu alloy over the range T= 20 - 300 K. EXAFS data were acquired at both the Ga K-edge and the Pu L{sub III} edge. Curve-fits were performed to the first shell interactions to obtain pair-distance distribution widths, {sigma}, as a function of temperature. The temperature dependence of {sigma}(T) was accurately modeled using a correlated-Debye model for the lattice vibrational properties, suggesting Debye-like behavior in this material. Using this formalism, we obtain pair-specific correlated-Debye temperatures, {Theta}{sub cD}, of 110.7 {+-} 1.7 K and 202.6 {+-} 3.7 K, for the Pu-Pu and Ga-Pu pairs, respectively. The result for the Pu-{Theta}{sub cD} value compares well with previous vibrational studies on {delta}-Pu. In addition, our results represent the first unambiguous determination of Ga-specific vibrational properties in Pu-Ga alloys, i.e, {Theta}{sub cD} for the Ga-Pu pair. Because the Debye temperature can be related to a measure of the lattice stiffness, these results indicate the Ga-Pu bonds are significantly stronger than the Pu-Pu bonds. This effect has important implications for lattice stabilization mechanisms in these alloys.

  15. Curium analysis in plutonium uranium mixed oxide by x-ray fluorescence and absorption fine structure spectroscopy.

    PubMed

    Degueldre, C; Borca, C; Cozzo, C

    2013-10-15

    Plutonium uranium mixed oxide (MOX) fuels are being used in commercial nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regards to their environment and the coolant. In this work the study of the local occurrence, speciation and next-neighbour environment of curium (Cm) in the (Pu,U)O2 lattice within an irradiated (60 MW d kg(-1) average burn-up) MOX sample was performed employing micro-x-ray fluorescence (µ-XRF) and micro-x-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Cm (≈ 0.7 wt% in the rim and ≈ 0.03 wt% in the centre) are determined from the experimental data gained for the irradiated fuel material examined in its centre and peripheral (rim) zones of the fuel. Curium occurrence is also reduced from the centre (hot) to the periphery (colder) because of the condensation of these volatile oxides. In the irradiated sample Cm builds up as Cm(3+) species (>90%) within a [CmO8](13-) or [CmO7](11-) coordination environment and no (<10%) Cm(IV) can be detected in the rim zone. Curium dioxide is reduced because of the redox buffering activity of the uranium dioxide matrix and of its thermodynamic instability.

  16. Mechanism of Pb Adsorption to Fatty Acid Langmuir Monolayers Studied by X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Boyanov, M.I.; Kmetko, J.; Shibata, T.; Datta, A.; Dutta, P.; Bunker, B.A.

    2010-09-30

    The local atomic environment of lead (Pb) adsorbed to a CH{sub 3}(CH{sub 2}){sub 19}COOH Langmuir monolayer was investigated in situ using grazing-incidence X-ray absorption fine structure (GI-XAFS) spectroscopy at the Pb L{sub III} edge. Measurements were performed at pH 6.5 of the 10{sup -5} M PbCl{sub 2} solution subphase, a condition under which grazing incidence diffraction (GID) revealed a large-area commensurate superstructure underneath the close-packed organic monolayer. The XAFS results indicate covalent binding of the Pb cations to the carboxyl headgroups, and the observed Pb-Pb coordination suggests that the metal is adsorbed as a hydrolysis polymer, rather than as individual Pb{sup 2+} ions. The data are consistent with a bidentate chelating mechanism and a one Pb atom to one carboxyl headgroup binding stoichiometry. We discuss how this adsorption model can explain the peculiarities observed with Pb in previous metal-Langmuir monolayer studies. A systematic study of lead perchlorate and lead acetate aqueous solutions is presented and used in the analysis. XAFS multiple scattering effects from alignment of the Pb-C-C atoms in the lead acetate solutions are reported.

  17. X-ray Absorption Fine Structure Studies of Mn Coordination in Doped Perovskite SrTiO3

    SciTech Connect

    Levin, I.; Krayzman, V; Woicik, J; Tkach, A; Vilarinho, P

    2010-01-01

    The coordination of Mn in doped SrTiO{sub 3} ceramics having nominal compositions SrTi{sub 0.98}Mn{sub 0.02}O{sub 3} and Sr{sub 0.98}Mn{sub 0.02}TiO{sub 3} was analyzed using x-ray absorption fine structure (XAFS) measurements. As expected, Mn{sup 4+} substitution for Ti{sup 4+} leads to Mn occupancy of the octahedral B-sites of ABO{sub 3} perovskite lattice with a Mn-O bond distance of 1.902 {angstrom} (compared to 1.953 {angstrom} for Ti-O) and no significant local distortions around the Mn atoms. In contrast, for the composition Sr{sub 0.98}Mn{sup 0.02}TiO{sub 3}, Mn segregates to both the A-sites (as Mn{sup 2+}) and the B-sites (predominantly as Mn{sup 4+}). Extended XAFS confirms strong ({approx} 0.77 {angstrom}) displacements of Mn{sup 2+} cations off the ideal A-site positions along <001> directions with a significant distortion of several coordination shells around the dopant atoms.

  18. The forms of trace metals in an Illinois basin coal by x-ray absorption fine structure spectroscopy

    USGS Publications Warehouse

    Chou, I.-Ming; Bruinius, J.A.; Lytle, J.M.; Ruch, R.R.; Huggins, Frank E.; Huffman, G.P.; Ho, K.K.

    1997-01-01

    Utilities burning Illinois coals currently do not consider trace elements in their flue gas emissions. After the US EPA completes an investigation on trace elements, however, this may change and flue gas emission standards may be established. The mode of occurrence of a trace element may determine its cleanability and Hue gas emission potential. X-ray Absorption Fine Structure (XAFS) is a spectroscopic technique that can differentiate the mode of occurrence of an element, even at the low concentrations that trace elements are found in coal. This is principally accomplished by comparing the XAFS spectra of a coal to a database of reference sample spectra. This study evaluated the technique as a potential tool to examine six trace elements in an Illinois #6 coal. For the elements As and Zn, the present database provides a definitive interpretation on their mode of occurrence. For the elements Ti, V, Cr, and Mn the database of XAFS spectra of trace elements in coal was still too limited to allow a definitive interpretation. The data obtained on these elements, however, was sufficient to rule out several of the mineralogical possibilities that have been suggested previously. The results indicate that XAFS is a promising technique for the study of trace elements in coal.

  19. Characteristics of a tapered undulator for the X-ray absorption fine-structure technique at PLS-II.

    PubMed

    Sung, Nark-Eon; Lee, Ik-Jae; Jeong, Sung-hoon; Kang, Seen-Woong

    2014-11-01

    An in-vacuum undulator (IVU) with a tapered configuration was installed in the 8C nanoprobe/XAFS beamlime (BL8C) of the Pohang Light Source in Korea for hard X-ray nanoprobe and X-ray absorption fine-structure (XAFS) experiments. It has been operated in planar mode for the nanoprobe experiments, while gap-scan and tapered modes have been used alternatively for XAFS experiments. To examine the features of the BL8C IVU for XAFS experiments, spectral distributions were obtained theoretically and experimentally as functions of the gap and gap taper. Beam profiles at a cross section of the X-ray beam were acquired using a slit to visualize the intensity distributions which depend on the gap, degree of tapering and harmonic energies. To demonstrate the effect of tapering around the lower limit of the third-harmonic energy, V K-edge XAFS spectra were obtained in each mode. Owing to the large X-ray intensity variation around this energy, XAFS spectra of the planar and gap-scan modes show considerable spectral distortions in comparison with the tapered mode. This indicates that the tapered mode, owing to the smooth X-ray intensity profile at the expense of the highest and most stable intensity, can be an alternative for XAFS experiments where the gap-scan mode gives a considerable intensity variation; it is also suitable for quick-XAFS scanning.

  20. Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Singh, S. D.; Poswal, A. K.; Kamal, C.; Rajput, Parasmani; Chakrabarti, Aparna; Jha, S. N.; Ganguli, Tapas

    2017-06-01

    Bond length behavior for Zn substituted NiO is determined through extended x-ray absorption fine structure (EXAFS) measurements performed at ambient conditions. We report bond length value of 2.11±0.01 Å for Zn-O of rock salt (RS) symmetry, when Zn is doped in RS NiO. Bond length for Zn substituted NiO RS ternary solid solutions shows relaxed behavior for Zn-O bond, while it shows un-relaxed behavior for Ni-O bond. These observations are further supported by first-principles calculations. It is also inferred that Zn sublattice remains nearly unchanged with increase in lattice parameter. On the other hand, Ni sublattice dilates for Zn compositions up to 20% to accommodate increase in the lattice parameter. However, for Zn compositions more than 20%, it does not further dilate. It has been attributed to the large disorder that is incorporated in the system at and beyond 20% of Zn incorporation in the cubic RS lattice of ternary solid solutions. For these large percentages of Zn incorporation, the Ni and the Zn atoms re-arrange themselves microscopically about the same nominal bond length rather than systematically increase in magnitude to minimize the energy of the system. This results in an increase in the Debye-Waller factor with increase in the Zn concentration rather than a systematic increase in the bond lengths.

  1. Mercury Speciation by X-ray Absorption Fine Structure Spectroscopy and Sequential Chemical Extractions: A Comparison of Speciation Methods

    USGS Publications Warehouse

    Kim, C.S.; Bloom, N.S.; Rytuba, J.J.; Brown, Gordon E.

    2003-01-01

    Determining the chemical speciation of mercury in contaminated mining and industrial environments is essential for predicting its solubility, transport behavior, and potential bioavailability as well as for designing effective remediation strategies. In this study, two techniques for determining Hg speciation-X-ray absorption fine structure (XAFS) spectroscopy and sequential chemical extractions (SCE)-are independently applied to a set of samples with Hg concentrations ranging from 132 to 7539 mg/kg to determine if the two techniques provide comparable Hg speciation results. Generally, the proportions of insoluble HgS (cinnabar, metacinnabar) and HgSe identified by XAFS correlate well with the proportion of Hg removed in the aqua regia extraction demonstrated to remove HgS and HgSe. Statistically significant (> 10%) differences are observed however in samples containing more soluble Hg-containing phases (HgCl2, HgO, Hg3S2O 4). Such differences may be related to matrix, particle size, or crystallinity effects, which could affect the apparent solubility of Hg phases present. In more highly concentrated samples, microscopy techniques can help characterize the Hg-bearing species in complex multiphase natural samples.

  2. Chromium oxide as a metal diffusion barrier layer: An x-ray absorption fine structure spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.

    2014-01-01

    The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.

  3. The structure of Mn-doped tris(8-hydroxyquinoline)gallium by extended x-ray absorption fine structure spectroscopy and first principles calculations

    NASA Astrophysics Data System (ADS)

    Fang, Shaojie; Pang, Zhiyong; Du, Yonghua; Zheng, Lirong; Zhang, Xijian; Wang, Fenggong; Yuan, Huimin; Han, Shenghao

    2012-12-01

    Metal-Mqx (M = Al, Ga, Zn, Be, and Ca, x = 2 or 3) complexes play a key role in organic spintronics and organic optoelectronics. However, the accurate structure determination of these complexes has been a challenge for a long time. Here, we report the structure of Mn-Gaq3 investigated by using first-principle density functional theory (DFT) calculations and extended X-ray absorption fine structure (EXAFS) spectroscopy. First, the structures of Mn-Gaq3 were predicted by first-principle DFT calculations. Then, all reasonable structures achieved from the calculations were used to fit the EXAFS spectra. By this method, the structure of Mn-Gaq3 is well obtained. We believe this method is also applicable to other metal-Mqx films.

  4. Structural properties of rutile TiO2 nanoparticles accumulated in a model of gastrointestinal epithelium elucidated by micro-beam x-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Veronesi, G.; Brun, E.; Fayard, B.; Cotte, M.; Carrière, M.

    2012-05-01

    Micro-beam x-ray absorption fine structure spectroscopy was used to investigate rutile TiO2 nanoparticles internalized into gastrointestinal cells during their crossing of a gut model barrier. Nanoparticles diluted in culture medium tend to accumulate in cells after 48 h exposure; however, no spectral differences arise between particles in cellular and in acellular environments, as corroborated by quantitative analysis. This finding establishes that no modification of the lattice properties of the nanoparticles occurs upon interaction with the barrier. These measurements demonstrate the possibility of interrogating nanoparticles in situ within cells, suggesting a way to investigate their fate when incorporated in biological hosts.

  5. Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant

    NASA Astrophysics Data System (ADS)

    Bainbridge, Matthew B.; Webb, John K.

    2017-06-01

    A new and automated method is presented for the analysis of high-resolution absorption spectra. Three established numerical methods are unified into one `artificial intelligence' process: a genetic algorithm (Genetic Voigt Profile FIT, gvpfit); non-linear least-squares with parameter constraints (vpfit); and Bayesian model averaging (BMA). The method has broad application but here we apply it specifically to the problem of measuring the fine structure constant at high redshift. For this we need objectivity and reproducibility. gvpfit is also motivated by the importance of obtaining a large statistical sample of measurements of Δα/α. Interactive analyses are both time consuming and complex and automation makes obtaining a large sample feasible. In contrast to previous methodologies, we use BMA to derive results using a large set of models and show that this procedure is more robust than a human picking a single preferred model since BMA avoids the systematic uncertainties associated with model choice. Numerical simulations provide stringent tests of the whole process and we show using both real and simulated spectra that the unified automated fitting procedure out-performs a human interactive analysis. The method should be invaluable in the context of future instrumentation like ESPRESSO on the VLT and indeed future ELTs. We apply the method to the zabs = 1.8389 absorber towards the zem = 2.145 quasar J110325-264515. The derived constraint of Δα/α = 3.3 ± 2.9 × 10-6 is consistent with no variation and also consistent with the tentative spatial variation reported in Webb et al. and King et al.

  6. Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant.

    NASA Astrophysics Data System (ADS)

    Bainbridge, Matthew B.; Webb, John K.

    2017-01-01

    A new and automated method is presented for the analysis of high-resolution absorption spectra. Three established numerical methods are unified into one "artificial intelligence" process: a genetic algorithm (GVPFIT); non-linear least-squares with parameter constraints (VPFIT); and Bayesian Model Averaging (BMA). The method has broad application but here we apply it specifically to the problem of measuring the fine structure constant at high redshift. For this we need objectivity and reproducibility. GVPFIT is also motivated by the importance of obtaining a large statistical sample of measurements of Δα/α. Interactive analyses are both time consuming and complex and automation makes obtaining a large sample feasible. In contrast to previous methodologies, we use BMA to derive results using a large set of models and show that this procedure is more robust than a human picking a single preferred model since BMA avoids the systematic uncertainties associated with model choice. Numerical simulations provide stringent tests of the whole process and we show using both real and simulated spectra that the unified automated fitting procedure out-performs a human interactive analysis. The method should be invaluable in the context of future instrumentation like ESPRESSO on the VLT and indeed future ELTs. We apply the method to the zabs = 1.8389 absorber towards the zem = 2.145 quasar J110325-264515. The derived constraint of Δα/α = 3.3 ± 2.9 × 10-6 is consistent with no variation and also consistent with the tentative spatial variation reported in Webb et al. (2011) and King et al. (2012).

  7. Applications of x ray absorption fine structure to the in situ study of the effect of cobalt in nickel hydrous oxide electrodes for fuel cells and rechargeable batteries

    NASA Technical Reports Server (NTRS)

    Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.

    1993-01-01

    Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.

  8. Fine structure in krypton excimer

    SciTech Connect

    Hemici, M.; Saoudi, R.; Descroix, E.; Audouard, E.; Laporte, P. ); Spiegelmann, F. )

    1995-04-01

    By using laser reduced fluorescence techniques, molecular absorption from the first relaxed excited excimer states of krypton is obtained in the 960--990-nm wavelength range. Five bands are observed and analyzed by comparison with an [ital ab] [ital initio] calculated spectrum. The fine structure is thus evidenced.

  9. Structural study on Ni nanowires in an anodic alumina membrane by using in situ heating extended x-ray absorption fine structure and x-ray diffraction techniques.

    PubMed

    Cai, Quan; Zhang, Junxi; Chen, Xing; Chen, Zhongjun; Wang, Wei; Mo, Guang; Wu, Zhonghua; Zhang, Lide; Pan, Wei

    2008-03-19

    Polycrystalline Ni nanowires have been prepared by electrochemical deposition in an anodic alumina membrane template with a nanopore size of about 60 nm. In situ heating extended x-ray absorption fine structure and x-ray diffraction techniques are used to probe the atomic structures. The nanowires are identified as being mixtures of nanocrystallites and amorphous phase. The nanocrystallites have the same thermal expansion coefficient, of 1.7 × 10(-5) K(-1), as Ni bulk; however, the amorphous phase has a much larger thermal expansion coefficient of 3.5 × 10(-5) K(-1). Details of the Ni nanowire structures are discussed in this paper.

  10. High resolution spectrometer for extended x-ray absorption fine structure measurements in the 6 keV to 15 keV energy range

    NASA Astrophysics Data System (ADS)

    Seely, J. F.; Hudson, L. T.; Henins, Albert; Feldman, U.

    2016-11-01

    A Cauchois transmission-crystal spectrometer has been developed with high crystal resolving power in the 6 keV-15 keV energy range and sufficient sensitivity to record single-shot spectra from the Lawrence Livermore National Laboratory (LLNL) Titan laser and other comparable or more energetic lasers. The spectrometer capabilities were tested by recording the W L transitions from a laboratory source and the extended x-ray absorption fine structure (EXAFS) spectrum through a Cu foil.

  11. Extended X-ray absorption fine structure analysis of voltage-induced effects in the interfacial atomic structure of Fe/Pt/MgO

    NASA Astrophysics Data System (ADS)

    Suzuki, Motohiro; Tsukahara, Takuya; Miyakaze, Risa; Furuta, Taishi; Shimose, Koki; Goto, Minori; Nozaki, Takayuki; Yuasa, Shinji; Suzuki, Yoshishige; Miwa, Shinji

    2017-06-01

    The voltage-controlled magnetic anisotropy of ferromagnetic metals may offer potential applications of nonvolatile memories with ultralow power consumption. For achieving ultrafast recording and long-time endurance, voltage-induced effects without undesirable lattice distortions should be ensured. In this study, in-situ extended X-ray absorption fine structure analysis of an Fe/Pt/MgO junction demonstrated the unaltered interfacial atomic structure, in which the radial distances between the Pt and the neighboring Fe, Pt, O, and Mg atoms changed by less than ±0.01 Å under electric fields of ±0.18 V/nm. Therefore, the anisotropy change is driven by a purely electronic mechanism without lattice deformation or atomic relaxation.

  12. Calculation of near-edge x-ray-absorption fine structure at finite temperatures: spectral signatures of hydrogen bond breaking in liquid water.

    PubMed

    Hetényi, Balázs; De Angelis, Filippo; Giannozzi, Paolo; Car, Roberto

    2004-05-08

    We calculate the near-edge x-ray-absorption fine structure of H(2)O in the gas, hexagonal ice, and liquid phases using heuristic density-functional based methods. We present a detailed comparison of our results with experiment. The differences between the ice and water spectra can be rationalized in terms of the breaking of hydrogen bonds around the absorbing molecule. In particular the increase in the pre-edge absorption feature from ice to water is shown to be due to the breaking of a donor hydrogen bond. We also find that in water approximately 19% of hydrogen bonds are broken. (c) 2004 American Institute of Physics.

  13. Cyclic voltammetry and near edge X-ray absorption fine structure spectroscopy at the Ag L3-edge on electrochemical halogenation of Ag layers on Au(111)

    NASA Astrophysics Data System (ADS)

    Endo, Osamu; Nakamura, Masashi

    2011-05-01

    One to three layers of Ag grown on a Au(111) electrode were studied by cyclic voltammetry in chloride and bromide solutions and by ex-situ near-edge X-ray absorption fine structure spectroscopy at the Ag L3-edge (Ag L3-NEXAFS). The one and two layers obtained by underpotential deposition exhibited reduced intensity at the absorption edge in the Ag L3-NEXAFS spectra, which suggests the gain of d-electrons in these layers. The cyclic voltammograms and the Ag L3-NEXAFS spectra indicate that the second and third layers of Ag halogenated at positive potentials, whereas the first layer remained in metallic form.

  14. Electronic structure of individual hybrid colloid particles studied by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in the X-ray microscope.

    PubMed

    Henzler, Katja; Guttmann, Peter; Lu, Yan; Polzer, Frank; Schneider, Gerd; Ballauff, Matthias

    2013-02-13

    The electronic structure of individual hybrid particles was studied by nanoscale near-edge X-ray absorption spectromicroscopy. The colloidal particles consist of a solid polystyrene core and a cross-linked poly-N-(isopropylacrylamide) shell with embedded crystalline titanium dioxide (TiO(2)) nanoparticles (d = 6 ± 3 nm). The TiO(2) particles are generated in the carrier network by a sol-gel process at room temperature. The hybrid particles were imaged with photon energy steps of 0.1 eV in their hydrated environment with a cryo transmission X-ray microscope (TXM) at the Ti L(2,3)-edge. By analyzing the image stacks, the obtained near-edge X-ray absorption fine structure (NEXAFS) spectra of our individual hybrid particles show clearly that our synthesis generates TiO(2) in the anastase phase. Additionally, our spectromicroscopy method permits the determination of the density distribution of TiO(2) in single carrier particles. Therefore, NEXAFS spectroscopy combined with TXM presents a unique method to get in-depth insight into the electronic structure of hybrid materials.

  15. Extended x-ray absorption fine structure spectroscopy and x-ray absorption near edge spectroscopy study of aliovalent doped ceria to correlate local structural changes with oxygen vacancies clustering

    SciTech Connect

    Shirbhate, S. C.; Acharya, S. A.; Yadav, A. K.

    2016-04-04

    This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It is a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.

  16. A combined fit of total scattering and extended x-ray absorption fine structure data for local-structure determination in crystalline materials

    SciTech Connect

    Proffen, Thomas E; Krayzman, Victor; Levin, Igor; Tucker, Matt

    2009-01-01

    Reverse Monte Carlo (RMC) refinements of local structure using a simultaneous fit of X-ray/neutron total scattering and extended X-ray absorption fine structure (EXAFS) data were developed to incorporate an explicit treatment of both single- and multiple-scattering contributions to EXAFS. The refinement algorithm, implemented as an extension to the public domain computer software RMCProfile, enables accurate modeling of EXAFS over distances encompassing several coordination shells around the absorbing species. The approach was first tested on Ni, which exhibits extensive multiple scattering in EXAFS, and then applied to perovskite-like SrAl{sub 1/2}Nb{sub 1/2}O{sub 3}. This compound crystal1izes with a cubic double-perovskite structure but presents a challenge for local-structure determination using a total pair-distribution function (PDF) alone because of overlapping peaks of the constituent partial PDFs (e.g. Al-O and Nb-O or Sr-O and O-O). The results obtained here suggest that the combined use of the total scattering and EXAFS data provides sufficient constraints for RMC refinements to recover fine details of local structure in complex perovskites. Among other results, it was found that the probability density distribution for Sr in SrAl{sub 1/2}Nb{sub 1/2}O{sub 3} adopts T{sub d} point-group symmetry for the Sr sites, determined by the ordered arrangement of Al and Nb, as opposed to a spherical distribution commonly assumed in traditional Rietveld refinements.

  17. Near-edge x-ray absorption fine structure spectroscopy at atmospheric pressure with a table-top laser-induced soft x-ray source

    SciTech Connect

    Kühl, Frank-Christian Müller, Matthias Schellhorn, Meike; Mann, Klaus; Wieneke, Stefan; Eusterhues, Karin

    2016-07-15

    The authors present a table-top soft x-ray absorption spectrometer, accomplishing investigations of the near-edge x-ray absorption fine structure (NEXAFS) in a laboratory environment. The system is based on a low debris plasma ignited by a picosecond laser in a pulsed krypton gas jet, emitting soft x-ray radiation in the range from 1 to 5 nm. For absorption spectroscopy in and around the “water window” (2.3–4.4 nm), a compact helium purged sample compartment for experiments at atmospheric pressure has been constructed and tested. NEXAFS measurements on CaCl{sub 2} and KMnO{sub 4} samples were conducted at the calcium and manganese L-edges, as well as at the oxygen K-edge in air, atmospheric helium, and under vacuum, respectively. The results indicate the importance of atmospheric conditions for an investigation of sample hydration processes.

  18. High-Performance Cathode Based on Microporous Mo-V-Bi Oxide for Li Battery and Investigation by Operando X-ray Absorption Fine Structure.

    PubMed

    Zhang, Zhenxin; Ishikawa, Satoshi; Kikuchi, Masaki; Yoshikawa, Hirofumi; Lian, Qi; Wang, Heng; Ina, Toshiaki; Yoshida, Akihiro; Sadakane, Masahiro; Matsumoto, Futoshi; Ueda, Wataru

    2017-08-09

    The development of cathode-active material of Li battery is important for the current emerging energy transferring and saving problems. A stable crystalline microporous complex metal oxide based on Mo, V, and Bi is an active and suitable material for Li battery. High capacity (380 Ah/kg) and stable cycle performance are achieved. X-ray absorption near-edge structure analyses demonstrate that the original Mo(6+) and V(4+) ions are reduced to Mo(4+) and V(3+) in the discharging process, respectively, which results in a 70-electron reduction per formula. The reduced metal ions can be reoxidized reversibly in the next charging process. Furthermore, extended X-ray absorption fine structure analyses reveal that the Mo-O bonds in the material are lengthened in the discharging process probably due to interaction with Li(+) without change of the basic structure.

  19. Characterization of pentavalent and hexavalent americium complexes in nitric acid using X-ray absorption fine structure spectroscopy and first-principles modeling

    SciTech Connect

    Riddle, Catherine; Czerwinski, Kenneth; Kim, Eunja; Paviet, Patricia; Weck, Philippe; Poineau, Frederic; Conradson, Steven

    2016-01-18

    We studied the speciation of pentavalent and hexavalent americium (Am) complexes in nitric acidicby X-ray absorption fine structure spectroscopy (XAFS), UV-visible spectroscopy, and density functional theory (DFT). Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) results were consistent with the presence of a mixture of AmO2+ and AmO22+ with only a small amount AmO2 present. The resulting average bond distances we found were 1.71 Å for Am=O and 2.44 Å for Am-O. All-electron scalar relativistic calculations were also carried out using DFT to predict the equilibrium geometries and properties of the AmO2+ and AmO22+ aquo complexes. Calculated bond distances for the Am(VI) complex are in reasonable agreement with EXAFS data and the computed energy gaps between frontier molecular orbitals suggest a slightly higher kinetic stability and chemical hardness of Am(VI) compared to Am(V).

  20. Characterization of pentavalent and hexavalent americium complexes in nitric acid using X-ray absorption fine structure spectroscopy and first-principles modeling

    DOE PAGES

    Riddle, Catherine; Czerwinski, Kenneth; Kim, Eunja; ...

    2016-01-18

    We studied the speciation of pentavalent and hexavalent americium (Am) complexes in nitric acidicby X-ray absorption fine structure spectroscopy (XAFS), UV-visible spectroscopy, and density functional theory (DFT). Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) results were consistent with the presence of a mixture of AmO2+ and AmO22+ with only a small amount AmO2 present. The resulting average bond distances we found were 1.71 Å for Am=O and 2.44 Å for Am-O. All-electron scalar relativistic calculations were also carried out using DFT to predict the equilibrium geometries and properties of the AmO2+ and AmO22+ aquomore » complexes. Calculated bond distances for the Am(VI) complex are in reasonable agreement with EXAFS data and the computed energy gaps between frontier molecular orbitals suggest a slightly higher kinetic stability and chemical hardness of Am(VI) compared to Am(V).« less

  1. Full-potential theoretical investigations of electron inelastic mean free paths and extended x-ray absorption fine structure in molybdenum.

    PubMed

    Chantler, C T; Bourke, J D

    2014-04-09

    X-ray absorption fine structure (XAFS) spectroscopy is one of the most robust, adaptable, and widely used structural analysis tools available for a range of material classes from bulk solids to aqueous solutions and active catalytic structures. Recent developments in XAFS theory have enabled high-accuracy calculations of spectra over an extended energy range using full-potential cluster modelling, and have demonstrated particular sensitivity in XAFS to a fundamental electron transport property-the electron inelastic mean free path (IMFP). We develop electron IMFP theory using a unique hybrid model that simultaneously incorporates second-order excitation losses, while precisely accounting for optical transitions dictated by the complex band structure of the solid. These advances are coupled with improved XAFS modelling to determine wide energy-range absorption spectra for molybdenum. This represents a critical test case of the theory, as measurements of molybdenum K-edge XAFS represent the most accurate determinations of XAFS spectra for any material. We find that we are able to reproduce an extended range of oscillatory structure in the absorption spectrum, and demonstrate a first-time theoretical determination of the absorption coefficient of molybdenum over the entire extended XAFS range utilizing a full-potential cluster model.

  2. Temperature dependent evolution of the local electronic structure of atmospheric plasma treated carbon nanotubes: Near edge x-ray absorption fine structure study

    SciTech Connect

    Roy, S. S.; Papakonstantinou, P.; Okpalugo, T. I. T.; Murphy, H.

    2006-09-01

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy has been employed to obtain the temperature dependent evolution of the electronic structure of acid treated carbon nanotubes, which were further modified by dielectric barrier discharge plasma processing in an ammonia atmosphere. The NEXAFS studies were performed from room temperature up to 900 deg. C. The presence of oxygen and nitrogen containing functional groups was observed in C K edge, N K edge, and O K edge NEXAFS spectra of the multiwalled carbon nanotubes. The N K edge spectra revealed three types of {pi}* features, the source of which was decisively identified by their temperature dependent evolution. It was established that these features are attributed to pyridinelike, NO, and graphitelike structures, respectively. The O K edge indicated that both carbonyl (C=O), {pi}*(CO), and ether C-O-C, {sigma}*(CO), functionalities were present. Upon heating in a vacuum to 900 deg. C the {pi}*(CO) resonances disappeared while the {sigma}*(CO) resonances were still present confirming their higher thermal stability. Heating did not produce a significant change in the {pi}* feature of the C K edge spectrum indicating that the tabular structure of the nanotubes is essentially preserved following the thermal decomposition of the functional groups on the nanotube surface.

  3. Analysis of the near-edge X-ray-absorption fine-structure of anthracene: A combined theoretical and experimental study

    SciTech Connect

    Klues, Michael; Witte, Gregor; Hermann, Klaus

    2014-01-07

    The near-edge fine structure of the carbon K-edge absorption spectrum of anthracene was measured and theoretically analyzed by density functional theory calculations implemented in the StoBe code. It is demonstrated that the consideration of electronic relaxation of excited states around localized core holes yields a significant improvement of the calculated excitation energies and reproduces the experimentally observed fine structure well. The detailed analysis of excitation spectra calculated for each symmetry inequivalent excitation center allows in particular to examine the influence of chemical shifts and core hole effects on the excitation energies. Moreover, the visualization of final states explains the large variations in the oscillator strength of various transitions as well as the nature of Rydberg-states that exhibit a notable density of states below the ionization potentials.

  4. Extended x-ray absorption fine structure spectroscopy and first-principles study of SnWO4

    NASA Astrophysics Data System (ADS)

    Kuzmin, A.; Anspoks, A.; Kalinko, A.; Timoshenko, J.; Kalendarev, R.

    2014-04-01

    The local atomic structure in α- and β-SnWO4 was studied by synchrotron radiation W L3-edge x-ray absorption spectroscopy at 10 and 300 K. Strongly distorted WO6 octahedra were found in α-SnWO4, whereas nearly regular WO4 tetrahedra were observed in β-SnWO4, confirming previous results. The structural results obtained were supported by the first-principles calculations, suggesting that the second-order Jahn-Teller effect is responsible for octahedral distortion.

  5. X-ray-absorption fine-structure studies of superconducting Tl2CaBa2Cu2Ox thin films

    NASA Astrophysics Data System (ADS)

    Dimarzio, D.; Wiesmann, H.; Chen, D. H.; Heald, S. M.

    1990-07-01

    Superconducting Tl-Ca-Ba-Cu-O thin films have been prepared by the technique of reactive magnetron sputtering using targets of Tl, Ca-Ba, and Cu. Three films with different quality superconducting transitions were fabricated and analyzed. X-ray-absorption fine-structure measurements were performed on the Cu K edge in order to determine orientation, bond lengths, number of nearest neighbors, and relative disorder as a function of the quality of their superconducting transition. Magnetically oriented powder samples of the appropriate superconducting phase were used for comparison. X-ray-absorption near-edge results reveal increasing CuO2 plane orientation parallel to the substrate as the quality of the superconducting transition improved, consistent with x-ray-diffraction data. Extended x-ray-absorption fine-structure (EXAFS) measurements also show this trend. EXAFS gives a Cu-O(1) bond length of 1.92+/-0.01 Å for all three films, and all three samples exhibit an increasing Debye-Waller disorder factor consistent with the deterioration in the quality of their superconducting transitions.

  6. Extended x-ray-absorption and electron-energy-loss fine-structure studies of the local atomic structure of amorphous unhydrogenated and hydrogenated silicon carbide

    SciTech Connect

    Kaloyeros, A.E.; Rizk, R.B.; Woodhouse, J.B.

    1988-12-15

    Extended x-ray-absorption (EXAFS) and electron-energy-loss fine-structure (EXELFS) measurements have been performed on amorphous unhydrogenated silicon carbide, a-SiC, and amorphous hydrogenated silicon carbide, a-SiC:H. Two hydrogenated samples with hydrogen concentrations corresponding, respectively, to H flows of 4 sccm (20% of argon flow) and 8 sccm (40% of argon flow) during the reactive sputtering process, were analyzed (sccm denotes standard cubic centimeters per minute at STP). It is found that short-range order (SRO), consisting of the same tetrahedrally coordinated units present in cubic crystalline c-SiC (zinc-blende structure), where a Si atom is surrounded by nearly four C atoms and vice versa, does exist in all the amorphous samples. This SRO, however, is detected only at a level of the first C and Si coordination shells in a-SiC and a-SiC:H. The structural disorder of the first Si and C coordination shells in all forms of amorphous SiC is somewhat greater than c-SiC, and it decreases appreciably as hydrogen is added. The a-SiC sample exhibits large Si and C coordination numbers, almost identical to c-SiC, a low atomic density, and virtually the same Si-C bond length as c-SiC. These results indicate that a relatively small concentration of large voids exist in a highly disordered a-SiC matrix.

  7. Separable-spherical-wave approximation: Application to x-ray-absorption fine-structure multiple scattering in ReO3

    NASA Astrophysics Data System (ADS)

    Houser, B.; Ingalls, R.; Rehr, J. J.

    1992-04-01

    Rehr and Albers have shown that the exact x-ray-absorption fine-structure (XAFS) propagator may be expanded in a separable matrix form, and that the lowest-order term in the expansion yields XAFS formulas that contain spherical-wave corrections, yet retain the simplicity of the plane-wave approximation. This separable-spherical-wave approximation was used to model the multiple-scattering contributions to the XAFS spectrum of rhenium trioxide. We report a modest improvement over the plane-wave approximation.

  8. C 1s Near Edge X-ray Absorption Fine Structure (NEXAFS) of substituted benzoic acids: a theoretical and experimental study

    SciTech Connect

    Baldea,I.; Schimmelpfennig, B.; Plaschke, M.; Rothe, J.; Schirmer, J.; Trofimov, A.; Fanghaenel, T.

    2007-01-01

    Ab initio calculations are performed to explain the discrete transitions in experimental C 1s-NEXAFS (near edge X-ray absorption fine structure) spectra of various benzoic acid derivates. Transition energies and oscillator strengths of the contributing C 1s-{pi}* excitations are computed using the ADC(2) (second-order algebraic-diagrammatic construction) method. This method is demonstrated to be well suited for the finite electronic systems represented by these simple organic acids. There is good agreement between experiment and theory reproducing all the relevant spectral features. Some transitions can only be assigned based on a theoretical foundation. Remaining discrepancies between experimental and computed spectra are discussed.

  9. Combination of extended X-ray absorption fine structure spectroscopy with lipidic cubic phases for the study of cation binding in bacteriorhodopsin.

    PubMed

    Perálvarez-Marín, Alex; Sepulcre, Francesc; Márquez, Mercedes; Proietti, Maria Grazia; Padrós, Esteve

    2011-08-01

    We have performed a quantitative X-ray absorption fine structure analysis of bacteriorhodopsin in purple membrane patches and in lipidic cubic phases regenerated with Mn(2+). Lipidic cubic phases and purple membrane results have been compared, demonstrating that the lipidic cubic phase process does not introduce relevant distortions in the local geometry of the cation binding sites. For both samples, we have observed similarities for Mn(2+) coordination in terms of type, number, and average distances of surrounding atoms, indicating a first coordination shell composed by 6 O atoms, and 3/4 C atoms located in the second coordination shell.

  10. State of manganese in the photosynthetic apparatus. 1. Extended x-ray absorption fine structure studies on chloroplasts and di-.mu.-oxo-bridged dimanganese model compounds

    SciTech Connect

    Kirby, J. A.; Robertson, A. S.; Smith, J. P.; Thompson, A. C.; Cooper, S. R.; Klein, M. P.

    1981-09-01

    In this paper, extended X-ray absorption fine structure studies on the manganese contained in spinach chloroplasts and on certain di-p-oxo-bridged manganese dimers of the form (X2Mn)O2(MnX2) (X = 2,2'-bipyridine and 1 ,10-phenanthroline) are reported. From these studies, the manganese associated with photosynthetic oxygen evolution is suggested to occur as a bridged transition-metal dimer with most likely another manganese. Finally, extensive details on the analysis are included.

  11. New clues to the local atomic structure of short-range ordered ferric arsenate from extended X-ray absorption fine structure spectroscopy.

    PubMed

    Mikutta, Christian; Mandaliev, Petar N; Kretzschmar, Ruben

    2013-04-02

    Short-range ordered ferric arsenate (FeAsO4 · xH2O) is a secondary As precipitate frequently encountered in acid mine waste environments. Two distinct structural models have recently been proposed for this phase. The first model is based on the structure of scorodite (FeAsO4 · 2H2O) where isolated FeO6 octahedra share corners with four adjacent arsenate (AsO4) tetrahedra in a three-dimensional framework (framework model). The second model consists of single chains of corner-sharing FeO6 octahedra being bridged by AsO4 bound in a monodentate binuclear (2)C complex (chain model). In order to rigorously test the accuracy of both structural models, we synthesized ferric arsenates and analyzed their local (<6 Å) structure by As and Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. We found that both As and Fe K-edge EXAFS spectra were most compatible with isolated FeO6 octahedra being bridged by AsO4 tetrahedra (RFe-As = 3.33 ± 0.01 Å). Our shell-fit results further indicated a lack of evidence for single corner-sharing FeO6 linkages in ferric arsenate. Wavelet-transform analyses of the Fe K-edge EXAFS spectra of ferric arsenates complemented by shell fitting confirmed Fe atoms at an average distance of ∼5.3 Å, consistent with crystallographic data of scorodite and in disagreement with the chain model. A scorodite-type local structure of short-range ordered ferric arsenates provides a plausible explanation for their rapid transformation into scorodite in acid mining environments.

  12. A new limit on the variation of the fine-structure constant using absorption line multiplets in the early universe

    NASA Astrophysics Data System (ADS)

    Thong, Le Duc

    2015-08-01

    One of the key questions of modern physics concerns the possibility that physical constants vary over space and time during the history of the universe. The Standard Model of physics is built on these constants, but it does not provide any explanation for their values, nor requires their constancy over space and time. Here we set a new limit on possible spatial and temporal variations of the fine-structure constant , by comparing transitions line multiplets in an ensemble of Fe II 1608, 2344, 2374, 2383, 2587 and 2600 observed in the early universe with those measured in the laboratory. Based on the optical spectra observations of QSO HE 0515-4414, we deduced a constraint of at redshift z = 1.15. This is at present the tightest limit on at early cosmological epochs compared to the published results in the literature.

  13. Application of x-ray absorption fine structure (XAFS) to local-order analysis in Fe-Cr maghemite-like materials

    SciTech Connect

    Montero-Cabrera, M. E. Fuentes-Cobas, L. E.; Macías-Ríos, E.; Fuentes-Montero, M. E.

    2015-07-23

    The maghemite-like oxide system γ-Fe{sub 2-x}Cr{sub x}O{sub 3} (x=0.75, 1 and 1.25) was studied by X-ray absorption fine structure (XAFS) and by synchrotron radiation X-ray diffraction (XRD). Measurements were performed at the Stanford Synchrotron Radiation Lightsource at room temperature, at beamlines 2-1, 2-3 and 4-3. High-resolution XRD patterns were processed by means of the Rietveld method. In cases of atoms being neighbors in the Periodic Table, the order/disorder degree of the considered solutions is indiscernible by “normal” (absence of “anomalous scattering”) diffraction experiments. Thus, maghemite-like materials were investigated by XAFS in both Fe and Cr K-edges to clarify, via short-range structure characterization, the local ordering of the investigated system. Athena and Artemis graphic user interfaces for IFEFFIT and FEFF8.4 codes were employed for XAFS spectra interpretation. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure (XANES) transitions were performed. By analysis of the Cr K-edge XANES, it has been confirmed that Cr is located in an octahedral environment. Fitting of the extended X-ray absorption fine structure (EXAFS) spectra was performed under the consideration that the central atom of Fe is allowed to occupy octa- and tetrahedral positions, while Cr occupies only octahedral ones. Coordination number of neighboring atoms, interatomic distances and their quadratic deviation average were determined for x=1, by fitting simultaneously the EXAFS spectra of both Fe and Cr K-edges. The results of fitting the experimental spectra with theoretical standards showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO{sub 3})

  14. Application of x-ray absorption fine structure (XAFS) to local-order analysis in Fe-Cr maghemite-like materials

    NASA Astrophysics Data System (ADS)

    Montero-Cabrera, M. E.; Fuentes-Cobas, L. E.; Macías-Ríos, E.; Fuentes-Montero, M. E.

    2015-07-01

    The maghemite-like oxide system γ-Fe2-xCrxO3 (x=0.75, 1 and 1.25) was studied by X-ray absorption fine structure (XAFS) and by synchrotron radiation X-ray diffraction (XRD). Measurements were performed at the Stanford Synchrotron Radiation Lightsource at room temperature, at beamlines 2-1, 2-3 and 4-3. High-resolution XRD patterns were processed by means of the Rietveld method. In cases of atoms being neighbors in the Periodic Table, the order/disorder degree of the considered solutions is indiscernible by "normal" (absence of "anomalous scattering") diffraction experiments. Thus, maghemite-like materials were investigated by XAFS in both Fe and Cr K-edges to clarify, via short-range structure characterization, the local ordering of the investigated system. Athena and Artemis graphic user interfaces for IFEFFIT and FEFF8.4 codes were employed for XAFS spectra interpretation. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure (XANES) transitions were performed. By analysis of the Cr K-edge XANES, it has been confirmed that Cr is located in an octahedral environment. Fitting of the extended X-ray absorption fine structure (EXAFS) spectra was performed under the consideration that the central atom of Fe is allowed to occupy octa- and tetrahedral positions, while Cr occupies only octahedral ones. Coordination number of neighboring atoms, interatomic distances and their quadratic deviation average were determined for x=1, by fitting simultaneously the EXAFS spectra of both Fe and Cr K-edges. The results of fitting the experimental spectra with theoretical standards showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO3).

  15. Photoconductivity measurements of x-ray absorption fine structures in liquids in the soft x-ray region: Si and Cl K-edge

    SciTech Connect

    Sham, T.K.; Xiong, J.Z.; Feng, X.H.; Holroyd, R.A.; Yang, B.X.

    1992-12-31

    Photoconductivity measurements of X-ray absorption fine structures (XAFS) at the Si and Cl K-edge have been carried out in a liquid cell for (CH{sub 3}){sub 4},Si [(CH{sub 3}){sub 3}Si]{sub 4}Si and eitheras a pure liquid or 2,2,4-trimethylpentane solution. It is found that for the pure liquids and their concentrated hydrocarbon solutions, all K-edge XAFS spectra are inverted as expected under the condition of total absorption. A sharp conductivity dip is also observed in CCl{sub 4} at the Cl K-edge. The concentration dependence of the XAFS spectrum of CCl{sub 4} is reported. These results are discussed in terms of soft X-ray induced ion yields of the solute and solvent molecules in liquids.

  16. Photoconductivity measurements of x-ray absorption fine structures in liquids in the soft x-ray region: Si and Cl K-edge

    SciTech Connect

    Sham, T.K.; Xiong, J.Z.; Feng, X.H. . Dept. of Chemistry); Holroyd, R.A. ); Yang, B.X. )

    1992-01-01

    Photoconductivity measurements of X-ray absorption fine structures (XAFS) at the Si and Cl K-edge have been carried out in a liquid cell for (CH[sub 3])[sub 4],Si [(CH[sub 3])[sub 3]Si][sub 4]Si and eitheras a pure liquid or 2,2,4-trimethylpentane solution. It is found that for the pure liquids and their concentrated hydrocarbon solutions, all K-edge XAFS spectra are inverted as expected under the condition of total absorption. A sharp conductivity dip is also observed in CCl[sub 4] at the Cl K-edge. The concentration dependence of the XAFS spectrum of CCl[sub 4] is reported. These results are discussed in terms of soft X-ray induced ion yields of the solute and solvent molecules in liquids.

  17. Surface Structure and Chemical Switching of Thioctic Acid Adsorbed on Au(111) as Observed Using Near-Edge X-ray Absorption Fine Structure

    SciTech Connect

    Meulenberg, R W; van Buuren, T; Vance, A L; Terminello, L J; Willey, T M; Bostedt, C; Fadley, C S

    2004-01-06

    Thioctic acid (alpha-lipoic acid) is a molecule with a large disulfide-containing base, a short alkyl-chain with four CH{sub 2} units, and a carboxyl termination. Self-assembled monolayer (SAM) films of thioctic acid adsorbed on Au(111) have been investigated with near-edge x-ray absorption fine structure (NEXAFS) spectroscopy and x-ray photoelectron spectroscopy (XPS) to determine film quality, bonding and morphology. Using standard preparation protocols for SAMs, that is, dissolving thioctic acid in ethanol and exposing gold to the solution, results in poor films. These films are highly disordered, contain a mixture of carboxyl and carboxylate terminations, have more than monolayer coverage, and exhibit unbound disulfide. Conversely, forming films by dissolving 1 mmol thioctic acid into 5% acetic acid in ethanol (as previously reported with carboxyl-terminated alkyl-thiols) forms ordered monolayers with small amounts of unbound sulfur. NEXAFS indicates tilted over endgroups with the carboxyl group normal on average 38{sup o} from the surface normal. Slight dichroism in other features indicates alkyl chains statistically more upright than prostrate on the surface. Reflection-absorption Fourier transform infrared (RA-FTIR) spectra indicate hydrogen bonding between neighboring molecules. In such well-formed monolayers, a stark reorientation occurs upon deprotonation of the endgroup by rinsing in a KOH solution. The carboxylate plane normal is now about 66{sup o} from sample normal, a much more upright orientation. Data indicate this reorientation may also cause a more upright orientation to the alkyl portion of the molecules.

  18. Low-temperature adsorption of H2S on Ni(001) studied by near-edge- and surface-extended-x-ray-absorption fine structure

    NASA Astrophysics Data System (ADS)

    McGrath, R.; MacDowell, A. A.; Hashizume, T.; Sette, F.; Citrin, P. H.

    1989-11-01

    The adsorption of H2S on Ni(001) has been studied with surface-extended x-ray-absorption fine structure and near-edge x-ray-absorption fine structure (NEXAFS) using the AT&T Bell Laboratories X15B beamline at the National Synchrotron Light Source. At 95 K and full saturation coverage, ~0.45 monolayer (ML) of S atoms in fourfold-hollow sites are produced, characteristic of room-temperature adsorption, accompanied by ~0.05 ML of oriented molecular H2S. Both these atomic and molecular chemisorbed species are buried under ~0.9 ML of disordered physisorbed H2S. No evidence for HS is found. Above 190 K the two molecular H2S phases desorb, leaving only dissociated S. These findings differ from previously reported interpretations of data obtained with high-resolution electron-energy-loss spectroscopy. They also exemplify the utility of NEXAFS for identifying and quantifying atomic and molecular surface species even when their difference involves only H and the two species coexist.

  19. Low-temperature adsorption of H sub 2 S on Ni(001) studied by near-edge-- and surface-extended--x-ray-absorption fine structure

    SciTech Connect

    McGrath, R.; MacDowell, A.A.; Hashizume, T.; Sette, F.; Citrin, P.H. )

    1989-11-15

    The adsorption of H{sub 2}S on Ni(001) has been studied with surface-extended x-ray-absorption fine structure and near-edge x-ray-absorption fine structure (NEXAFS) using the AT T Bell Laboratories X15B beamline at the National Synchrotron Light Source. At 95 K and full saturation coverage, {similar to}0.45 monolayer (ML) of S atoms in fourfold-hollow sites are produced, characteristic of room-temperature adsorption, accompanied by {similar to}0.05 ML of oriented molecular H{sub 2}S. Both these atomic and molecular chemisorbed species are buried under {similar to}0.9 ML of disordered physisorbed H{sub 2}S. No evidence for HS is found. Above 190 K the two molecular H{sub 2}S phases desorb, leaving only dissociated S. These findings differ from previously reported interpretations of data obtained with high-resolution electron-energy-loss spectroscopy. They also exemplify the utility of NEXAFS for identifying and quantifying atomic and molecular surface species even when their difference involves only H and the two species coexist.

  20. In-situ extended X-ray absorption fine structure study of electrostriction in Gd doped ceria

    NASA Astrophysics Data System (ADS)

    Korobko, Roman; Lerner, Alyssa; Li, Yuanyuan; Wachtel, Ellen; Frenkel, Anatoly I.; Lubomirsky, Igor

    2015-01-01

    Studying electric field-induced structural changes in ceramics is challenging due to the very small magnitude of the atomic displacements. We used differential X-ray absorption spectroscopy, an elementally specific and spatially sensitive method, to detect such changes in Gd-doped ceria, recently shown to exhibit giant electrostriction. We found that the large electrostrictive stress generation can be associated with a few percent of unusually short Ce-O chemical bonds that change their length and degree of order under an external electric field. The remainder of the lattice is reduced to the role of passive spectator. This mechanism is fundamentally different from that in electromechanically active materials currently in use.

  1. In-situ extended X-ray absorption fine structure study of electrostriction in Gd doped ceria

    SciTech Connect

    Korobko, Roman; Wachtel, Ellen; Lubomirsky, Igor; Lerner, Alyssa; Li, Yuanyuan; Frenkel, Anatoly I.

    2015-01-26

    Studying electric field-induced structural changes in ceramics is challenging due to the very small magnitude of the atomic displacements. We used differential X-ray absorption spectroscopy, an elementally specific and spatially sensitive method, to detect such changes in Gd-doped ceria, recently shown to exhibit giant electrostriction. We found that the large electrostrictive stress generation can be associated with a few percent of unusually short Ce-O chemical bonds that change their length and degree of order under an external electric field. The remainder of the lattice is reduced to the role of passive spectator. This mechanism is fundamentally different from that in electromechanically active materials currently in use.

  2. In situ X-ray absorption fine structure studies of a manganese dioxide electrode in a rechargeable MnO{sub 2}/Zn alkaline battery environment

    SciTech Connect

    Mo, Y.; Hu, Y.; Bae, I.T.; Miller, B.; Scherson, D.A.; Antonio, M.R.

    1996-12-31

    Electronic and structural aspects of a MnO{sub 2} electrode in a rechargeable MnO{sub 2}/Zn battery environment have been investigated by in situ Mn K-edge X-ray absorption fine structure (XAFS). The relative amplitudes of the three major Fourier transform shells of the EXAFS (extended XAFS) function of the rechargeable MnO{sub 2} electrode in the undischarged state were found to be similar to those found for ramsdellite, a MnO{sub 2} polymorph with substantial corner-sharing linkages among the basic MnO{sub 6} octahedral units. The analyses of the background-subtracted pre-edge peaks and absorption edge regions for the nominally 1-e{sup {minus}} discharged electrode were consistent with Mn{sup 3+} as being the predominant constituent species, rather than a mixture of Mn{sup 4+} and Mn{sup 2+} sites. Furthermore, careful inspection of both the XANES (X-ray absorption near edge structure) and EXAFS indicated that the full recharge of MnO, which had been previously discharged either by a 1- or 2-equivalent corner-sharing linkages compared to the original undischarged MnO{sub 2}.

  3. Thermal and magnetic anomalies of α-iron: an exploration by extended x-ray absorption fine structure spectroscopy and synchrotron x-ray diffraction.

    PubMed

    Boccato, Silvia; Sanson, Andrea; Kantor, Innokenty; Mathon, Olivier; Dyadkin, Vadim; Chernyshov, Dmitry; Carnera, Alberto; Pascarelli, Sakura

    2016-09-07

    The local structure and dynamics of α-iron have been investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy and x-ray diffraction (XRD) in order to shed light on some thermal and magnetic anomalies observed in the last decades. The quantitative EXAFS analysis of the first two coordination shells reveals a peculiar local vibrational dynamics of α-iron: the second neighbor distance exhibits anharmonicity and vibrational anisotropy larger than the first neighbor distance. We search for possible distortions of the bcc structure to justify the unexplained magnetostriction anomalies of α-iron and provide a value for the maximum dislocation of the central Fe atom. No thermal anomalies have been detected from the current XRD data. On the contrary, an intriguing thermal anomaly at about 150 K, ascribed to a stiffening of the Fe-Fe bonds, was found by EXAFS.

  4. Absolute determination of charge-coupled device quantum detection efficiency using Si K-edge x-ray absorption fine structure

    SciTech Connect

    Dunn, J; Steel, A B

    2012-05-06

    We report a method to determine the quantum detection efficiency and the absorbing layers on a front-illuminated charge-coupled device (CCD). The CCD under study, as part of a crystal spectrometer, measures intense continuum x-ray emission from a picosecond laser-produced plasma and spectrally resolves the Si K-edge x-ray absorption fine structure features due to the electrode gate structure of the device. The CCD response across the Si K-edge shows a large discontinuity as well as a number of oscillations that are identified individually and uniquely from Si, SiO{sub 2}, and Si{sub 3}N{sub 4} layers. From the spectral analysis of the structure and K-edge discontinuity, the active layer thickness and the different absorbing layers thickness can be determined precisely. A precise CCD detection model from 0.2-10 keV can be deduced from this highly sensitive technique.

  5. Extended x-ray absorption fine structure studies of a retrovirus: equine infectious anemia virus cysteine arrays are coordinated to zinc.

    PubMed

    Chance, M R; Sagi, I; Wirt, M D; Frisbie, S M; Scheuring, E; Chen, E; Bess, J W; Henderson, L E; Arthur, L O; South, T L

    1992-11-01

    Zinc finger arrays have been established as a critical structural feature of proteins involved in DNA recognition. Retroviral nucleocapsid proteins, which are involved in the binding of viral RNA, contain conserved cysteine-rich arrays that have been suggested to coordinate zinc. We provide metalloprotein structural data from an intact virus preparation that validate this hypothesis. Extended x-ray absorption fine structure (EXAFS) spectroscopy of well-characterized and active preparations of equine infectious anemia virus, compared with a peptide with known coordination and in combination with available biochemical and genetic data, defines a Cys3His1 coordination environment for zinc. The average of the Zn-S distances is 2.30(1) A and that of the Zn-N distance (to histidine) is 2.01(3) A.

  6. Thermal and magnetic anomalies of α-iron: an exploration by extended x-ray absorption fine structure spectroscopy and synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Boccato, Silvia; Sanson, Andrea; Kantor, Innokenty; Mathon, Olivier; Dyadkin, Vadim; Chernyshov, Dmitry; Carnera, Alberto; Pascarelli, Sakura

    2016-09-01

    The local structure and dynamics of α-iron have been investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy and x-ray diffraction (XRD) in order to shed light on some thermal and magnetic anomalies observed in the last decades. The quantitative EXAFS analysis of the first two coordination shells reveals a peculiar local vibrational dynamics of α-iron: the second neighbor distance exhibits anharmonicity and vibrational anisotropy larger than the first neighbor distance. We search for possible distortions of the bcc structure to justify the unexplained magnetostriction anomalies of α-iron and provide a value for the maximum dislocation of the central Fe atom. No thermal anomalies have been detected from the current XRD data. On the contrary, an intriguing thermal anomaly at about 150 K, ascribed to a stiffening of the Fe-Fe bonds, was found by EXAFS.

  7. An X-ray Absorption Fine Structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species

    SciTech Connect

    Song, Zhen; Kenney, Janice P.L.; Fein, Jeremy B.; Bunker, Bruce A.

    2015-02-09

    Gram-positive and Gram-negative bacterial cells can remove Au from Au(III)-chloride solutions, and the extent of removal is strongly pH dependent. In order to determine the removal mechanisms, X-ray Absorption Fine Structure (XAFS) spectroscopy experiments were conducted on non-metabolizing biomass of Bacillus subtilis and Pseudomonas putida with fixed Au(III) concentrations over a range of bacterial concentrations and pH values. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) data on both bacterial species indicate that more than 90% of the Au atoms on the bacterial cell walls were reduced to Au(I). In contrast to what has been observed for Au(III) interaction with metabolizing bacterial cells, no Au(0) or Au-Au nearest neighbors were observed in our experimental systems. All of the removed Au was present as adsorbed bacterial surface complexes. For both species, the XAFS data suggest that although Au-chloride-hydroxide aqueous complexes dominate the speciation of Au in solution, Au on the bacterial cell wall is characterized predominantly by binding of Au atoms to sulfhydryl functional groups and amine and/or carboxyl functional groups, and the relative importance of the sulfhydryl groups increases with increasing pH and with decreasing Au loading. The XAFS data for both microorganism species suggest that adsorption is the first step in the formation of Au nanoparticles by bacteria, and the results enhance our ability to account for the behavior of Au in bacteria-bearing geologic systems.

  8. A Stringent Limit on Variation of the Fine-Structure Constant Using Absorption Line Multiplets in the Early Universe

    NASA Astrophysics Data System (ADS)

    Le, T. D.

    2016-06-01

    One of the key questions of modern physics concerns the possibility that physical constants have varied throughout the history of the Universe. The standard model of physics is built on these constants, but it does not provide any explanation for their values, nor does it require their constancy over space and time. Here, we set a new limit on possible spatial and temporal variations of the fine-structure constant α = e 2/4πɛ0 ħc by comparing transitions and line multiplets in an ensemble of Fe II λ 1608, λ 2344, λ 2374, λ 2383, λ 2587, and λ 2600 observed in the early Universe with those measured in the laboratory. Based on the optical spectrum observations of QSO HE 0515-4414, we deduce a constraint of Δα/α = (-0.157± 0.300)×10-6 at redshift z = 1.15. At present, this represents the tightest limit on Δα/α in early cosmological epochs compared to the published results in the literature.

  9. Refinement of DNA structures through near-edge X-ray absorption fine structure analysis: applications on guanine and cytosine nucleobases, nucleosides, and nucleotides.

    PubMed

    Hua, Weijie; Gao, Bin; Li, Shuhua; Agren, Hans; Luo, Yi

    2010-10-21

    In this work we highlight the potential of NEXAFS—near-edge X-ray absorption fine structure—analysis to perform refinements of hydrogen-bond structure in DNA. For this purpose we have carried out first-principle calculations of the N1s NEXAFS spectra of the guanine and cytosine nucleobases and their tautomers, nucleosides, and nucleotides in the gas phase, as well as for five crystal structures of guanine, cytosine, or guanosine. The spectra all clearly show imine (π1*) and amine (π2*) nitrogen absorption bands with a characteristic energy difference (Δ). Among all of the intramolecule covalent connections, the tautomerism of hydrogens makes the largest influence, around ±0.4−0.5 eV change of Δ, to the spectra due to a switch of single−double bonds. Deoxyribose and ribose sugars can cause at most 0.2 eV narrowing of Δ, while the phosphate groups have nearly negligible effects on the spectra. Two kinds of intermolecule interactions are analyzed, the hydrogen bonds and the stacking effect, by comparing “compressed” and “expanded” models or by comparing models including or excluding the nearest stacking molecules. The shortening of hydrogen-bond length by 0.2−0.3 Å can result in the reduction of Δ by 0.2−0.8 eV. This is because the hydrogen bonds make the electrons more delocalized, and the amine and imine nitrogens become less distinguishable. Moreover, the hydrogen bond has a different ability to influence the spectra of different crystals, with guanine crystals as the largest (change by 0.8 eV) and the guanosine crystal as the smallest (change by 0.2 eV). The stacking has negligible effects on the spectra in all studied systems. A comparison of guanosine to guanine crystals shows that the sugars in the crystal could create “blocks” in the π-and hydrogen bonds network of bases and thus makes the imine and amine nitrogens more distinguishable with a larger Δ. Our theoretical calculations offer a good match with experimental findings

  10. Structural characterization of poorly-crystalline scorodite, iron(III)-arsenate co-precipitates and uranium mill neutralized raffinate solids using X-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, N.; Jiang, D. T.; Cutler, J.; Kotzer, T.; Jia, Y. F.; Demopoulos, G. P.; Rowson, J. W.

    2009-06-01

    X-ray absorption fine structure (XAFS) is used to characterize the mineralogy of the iron(III)-arsenate(V) precipitates produced during the raffinate (aqueous effluent) neutralization process at the McClean Lake uranium mill in northern Saskatchewan, Canada. To facilitate the structural characterization of the precipitated solids derived from the neutralized raffinate, a set of reference compounds were synthesized and analyzed. The reference compounds include crystalline scorodite, poorly-crystalline scorodite, iron(III)-arsenate co-precipitates obtained under different pH conditions, and arsenate-adsorbed on goethite. The poorly-crystalline scorodite (prepared at pH 4 with Fe/As = 1) has similar As local structure as that of crystalline scorodite. Both As and Fe K-edge XAFS of poorly-crystalline scorodite yield consistent results on As-Fe (or Fe-As) shell. From As K-edge analysis the As-Fe shell has an inter-atomic distance of 3.33 ± 0.02 Å and coordination number of 3.2; while from Fe K-edge analysis the Fe-As distance and coordination number are 3.31 ± 0.02 Å and 3.8, respectively. These are in contrast with the typical arsenate adsorption on bidentate binuclear sites on goethite surfaces, where the As-Fe distance is 3.26 ± 0.03 Å and coordination number is close to 2. A similar local structure identified in the poorly-crystalline scorodite is also found in co-precipitation solids (Fe(III)/As(V) = 3) when precipitated at the same pH (pH = 4): As-Fe distance 3.30 ± 0.03 Å and coordination number 3.9; while at pH = 8 the co-precipitate has As-Fe distance of 3.27 ± 0.03 Å and coordination number about 2, resembling more closely the adsorption case. The As local structure in the two neutralized raffinate solid series (precipitated at pH values up to 7) closely resembles that in the poorly-crystalline scorodite. All of the raffinate solids have the same As-Fe inter-atomic distance as that in the poorly-crystalline scorodite, and a systematic decrease in the

  11. Structural Characterization of Poorly-Crystalline Scorodite, Iron (III)-arsenate Co-precipitates and Uranium Millneutralized Raffinate Solids using X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Chen, N.; Jiang, D; Cutler, J; Kotzer, T; Jia, Y; Demopoulos, G; Rowson, J

    2009-01-01

    X-ray absorption fine structure (XAFS) is used to characterize the mineralogy of the iron(III)-arsenate(V) precipitates produced during the raffinate (aqueous effluent) neutralization process at the McClean Lake uranium mill in northern Saskatchewan, Canada. To facilitate the structural characterization of the precipitated solids derived from the neutralized raffinate, a set of reference compounds were synthesized and analyzed. The reference compounds include crystalline scorodite, poorly-crystalline scorodite, iron(III)-arsenate co-precipitates obtained under different pH conditions, and arsenate-adsorbed on goethite. The poorly-crystalline scorodite (prepared at pH 4 with Fe/As = 1) has similar As local structure as that of crystalline scorodite. Both As and Fe K-edge XAFS of poorly-crystalline scorodite yield consistent results on As-Fe (or Fe-As) shell. From As K-edge analysis the As-Fe shell has an inter-atomic distance of 3.33 {+-} 0.02 A and coordination number of 3.2; while from Fe K-edge analysis the Fe-As distance and coordination number are 3.31 {+-} 0.02 A and 3.8, respectively. These are in contrast with the typical arsenate adsorption on bidentate binuclear sites on goethite surfaces, where the As-Fe distance is 3.26 {+-} 0.03 A and coordination number is close to 2. A similar local structure identified in the poorly-crystalline scorodite is also found in co-precipitation solids (Fe(III)/As(V) = 3) when precipitated at the same pH (pH = 4): As-Fe distance 3.30 {+-} 0.03 A and coordination number 3.9; while at pH = 8 the co-precipitate has As-Fe distance of 3.27 {+-} 0.03 A and coordination number about 2, resembling more closely the adsorption case. The As local structure in the two neutralized raffinate solid series (precipitated at pH values up to 7) closely resembles that in the poorly-crystalline scorodite. All of the raffinate solids have the same As-Fe inter-atomic distance as that in the poorly-crystalline scorodite, and a systematic decrease

  12. Structural characterization of poorly-crystalline scorodite, iron(III)-arsenate co-precipitates and uranium mill neutralized raffinate solids using X-ray absorption fine structure spectroscopy

    SciTech Connect

    Chen, N; Jiang, D T; Cutler, J; Kotzer, T; Jia, Y F; Demopoulos, G P; Rowson, J W

    2009-12-01

    X-ray absorption fine structure (XAFS) is used to characterize the mineralogy of the iron(III)-arsenate(V) precipitates produced during the raffinate (aqueous effluent) neutralization process at the McClean Lake uranium mill in northern Saskatchewan, Canada. To facilitate the structural characterization of the precipitated solids derived from the neutralized raffinate, a set of reference compounds were synthesized and analyzed. The reference compounds include crystalline scorodite, poorly-crystalline scorodite, iron(III)-arsenate co-precipitates obtained under different pH conditions, and arsenate-adsorbed on goethite. The poorly-crystalline scorodite (prepared at pH 4 with Fe/As = 1) has similar As local structure as that of crystalline scorodite. Both As and Fe K-edge XAFS of poorly-crystalline scorodite yield consistent results on As-Fe (or Fe-As) shell. From As K-edge analysis the As-Fe shell has an inter-atomic distance of 3.33 ± 0.02 Å and coordination number of 3.2; while from Fe K-edge analysis the Fe-As distance and coordination number are 3.31 ± 0.02 Å and 3.8, respectively. These are in contrast with the typical arsenate adsorption on bidentate binuclear sites on goethite surfaces, where the As-Fe distance is 3.26 ± 0.03 Å and coordination number is close to 2. A similar local structure identified in the poorly-crystalline scorodite is also found in co-precipitation solids (Fe(III)/As(V) = 3) when precipitated at the same pH (pH = 4): As-Fe distance 3.30 ± 0.03 Å and coordination number 3.9; while at pH = 8 the co-precipitate has As-Fe distance of 3.27 ± 0.03 Å and coordination number about 2, resembling more closely the adsorption case. The As local structure in the two neutralized raffinate solid series (precipitated at pH values up to 7) closely resembles that in the poorly-crystalline scorodite. All of the raffinate solids have the same As-Fe inter-atomic distance as that in the poorly-crystalline scorodite, and a systematic decrease in the

  13. Portable ultrahigh-vacuum sample storage system for polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy

    SciTech Connect

    Watanabe, Yoshihide Nishimura, Yusaku F.; Suzuki, Ryo; Beniya, Atsushi; Isomura, Noritake; Uehara, Hiromitsu; Asakura, Kiyotaka; Takakusagi, Satoru; Nimura, Tomoyuki

    2016-03-15

    A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstrated by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.

  14. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory.

    PubMed

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-Ichi; Bowler, David R; Miki, Kazushi

    2017-04-20

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi-Si bond length from [Formula: see text] to [Formula: see text] Å. We infer that following epitaxial growth the Bi-Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi-Si bond lengths.

  15. Pyrimidine and halogenated pyrimidines near edge x-ray absorption fine structure spectra at C and N K-edges: experiment and theory

    SciTech Connect

    Bolognesi, P.; O'Keeffe, P.; Ovcharenko, Y.; Coreno, M.; Avaldi, L.; Feyer, V.; Plekan, O.; Prince, K. C.; Zhang, W.; Carravetta, V.

    2010-07-21

    The inner shell excitation of pyrimidine and some halogenated pyrimidines near the C and N K-edges has been investigated experimentally by near edge x-ray absorption fine structure spectroscopy and theoretically by density functional theory calculations. The selected targets, 5-Br-pyrimidine, 2-Br-pyrimidine, 2-Cl-pyrimidine, and 5-Br-2-Cl-pyrimidine, allow the effects of the functionalization of the pyrimidine ring to be studied either as a function of different halogen atoms bound to the same molecular site or as a function of the same halogen atom bound to different molecular sites. The results show that the individual characteristics of the different spectra of the substituted pyrimidines can be rationalized in terms of variations in electronic and geometrical structures of the molecule depending on the localization and the electronegativity of the substituent.

  16. Pyrimidine and halogenated pyrimidines near edge x-ray absorption fine structure spectra at C and N K-edges: experiment and theory.

    PubMed

    Bolognesi, P; O'Keeffe, P; Ovcharenko, Y; Coreno, M; Avaldi, L; Feyer, V; Plekan, O; Prince, K C; Zhang, W; Carravetta, V

    2010-07-21

    The inner shell excitation of pyrimidine and some halogenated pyrimidines near the C and N K-edges has been investigated experimentally by near edge x-ray absorption fine structure spectroscopy and theoretically by density functional theory calculations. The selected targets, 5-Br-pyrimidine, 2-Br-pyrimidine, 2-Cl-pyrimidine, and 5-Br-2-Cl-pyrimidine, allow the effects of the functionalization of the pyrimidine ring to be studied either as a function of different halogen atoms bound to the same molecular site or as a function of the same halogen atom bound to different molecular sites. The results show that the individual characteristics of the different spectra of the substituted pyrimidines can be rationalized in terms of variations in electronic and geometrical structures of the molecule depending on the localization and the electronegativity of the substituent.

  17. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory

    NASA Astrophysics Data System (ADS)

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-ichi; Bowler, David R.; Miki, Kazushi

    2017-04-01

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi–Si bond length from 2.79+/- 0.01~{\\mathring{\\text{A}}} to 2.63+/- 0.02 Å. We infer that following epitaxial growth the Bi–Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi–Si bond lengths.

  18. Structural Studies of Clean Semiconductor Surfaces and Metal-Semiconductor Interfaces by Photoemission Extended X-Ray Absorption Fine Structure Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Mangat, Pawitterjit Singh

    We determined the atomic geometries for clean InP(110)-(1 x 1) and Si(111)-(2 x 1) surfaces and Al/InP(110), Ag/InP(110), Bi/InP(110), Na/InP(110) and Al/Si(111) interfaces by photoemission extended x-ray absorption fine structure (PEXAFS) spectroscopy to understand the correlation between electrical Schottky barrier heights and interfacial structure. P 2p PEXAFS for the InP(110) surface and Si 2p PEXAFS for the Si(111) surface were acquired which yielded information on the short range order of substrate atoms on the surface or at the interface. For Al/Si(111) interfaces, we also obtained Al 2p PEXAFS. The data analyzed by Fourier analysis and curve-fitting procedures. The theoretical backscattering phase function of McKale et al. (J. Am. Chem. Soc. 110, 3763 (1988)) and absorber phase function of Teo and Lee (J. Am. Chem. Soc. 101, 2815 (1979)) were used for phase analysis to determine the interatomic bond lengths. For the clean InP(110) surface, we observed surface relaxation. For the Si(111)-(2 x 1) surface, we found 10% contraction in the second near neighborhood Si-Si distance which is not reported in any model. For low coverage reactive metal (Al, Na)/InP(110) interfaces, we observed metal induced surface structural changes which involve removal of relaxation and change in the basis of the surface unit mesh of the substrate. For Ag/InP(110) interfaces, the noble metal atoms were found to remove the relaxation of the first P-In bond length at the interface. These changes in the substrate might bring in interface states within the semiconductor band gap and, consequently, influencing Fermi-level pinning during the Schottky barrier formation. For the Bi/InP(110) interfaces, the relaxation of the clean InP(110) surface is not removed by the deposited Bi atoms. Hence, the Bi/InP(110) interface might not have Fermi-level pinning by interface states due to the interfacial structure of InP. For Al/Si(111) interfaces, the Al atoms do not induce drastic surface

  19. X-ray absorption fine structure measurement with a 9 V electric battery x-ray emitter

    SciTech Connect

    Mitsuya, Shota; Ishii, Hideshi; Kawai, Jun; Tanaka, Keiichi

    2006-09-25

    X-ray absorption spectral analysis is a well known technique for analyzing the chemical environment of an element in a specimen. It has been believed that high intensity and monochromatized x rays such as the synchrotron radiation are required for an x-ray absorption experiment. In the present study, however, we demonstrate that the x-ray absorption spectral measurement of transition metal foils with an energy resolution of 10 eV is possible with a combination of a 9 V dry electric battery pyroelectric x-ray generator and a superconducting microcalorimeter.

  20. X-ray absorption fine structure and magnetization characterization of the metallic Co component in Co-doped ZnO thin films

    SciTech Connect

    Heald, Steve M.; Kaspar, Tiffany C.; Droubay, Timothy C.; Shutthanandan, V.; Chambers, Scott A.; Mokhtari, Abbas; Behan, Anthony J.; Blythe, Harry J.; Neal, James R.; Fox, Mark; Gehring, Gillian

    2009-02-01

    X-ray absorption fine structure (XAFS) measurements have been used to characterize a series of Co doped ZnO films grown on sapphire substrates by pulsed laser deposition. The emphasis is on characterization of the fate of the Co dopant: metallic particles or substitutional Co2+. It is shown that analysis of both the near edge and extended fine structure can provide a measurement of the fraction of metallic Co. Any quantitative understanding of magnetism in this system needs to take account of both types of Co. Results are reported for two types of films from two different groups that show distinctly different behavior. Films grown with high concentrations of Co show varying amounts of metallic Co that could be identified as hcp or fcc Co. Another set of films were annealed in Zn vapor to induce magnetism. These also showed significant metallic Co, but of a different type similar to the CoZn intermetallic. The bulk forms of both metals are magnetic and should contribute to the magnetism. Using bulk magnetic values, there are some discrepancies with room temperature magnetic measurements. The 2 magnetic properties of the small metal particles are likely changed by their surroundings and by superparamagnetism. Low temperature magnetic measurements for one of the samples confirmed this with an estimated blocking temperature of 50K.

  1. The fate of silver ions in the photochemical synthesis of gold nanorods: an extended X-ray absorption fine structure analysis.

    PubMed

    Giannici, Francesco; Placido, Tiziana; Curri, Maria Lucia; Striccoli, Marinella; Agostiano, Angela; Comparelli, Roberto

    2009-12-14

    Water-soluble gold nanorods (Au NRs) were synthesized using a silver-ion mediated photochemical route under UV irradiation. Extended X-ray Absorption Fine Structure (EXAFS) measurements on the Ag K-edge were performed on samples obtained at different Ag/Au ratios and at increasing irradiation times in order to investigate the fate of silver ions during the growth of Au NRs. EXAFS measurements allowed to probe the chemical state and the local environment of silver in the final product. Experimental data suggest that Ag atoms are placed on top of the Au particles as metallic Ag(0), while no significant contribution to the EXAFS spectra comes from AgBr or other Ag(+) based species. The reported results strongly support the deposition of Ag(0) islands on the (110) surfaces of the Au particles, thus driving the anisotropic growth via the (111) surfaces.

  2. Extended x-ray-absorption fine-structure study of the position of Zr within the unit cell of Sm sub 2 Co sub 17

    SciTech Connect

    Rabenberg, L. ); Barrera, E.V. ); Maury, C.E.; Allibert, C.H. , ENSEEG, B. P. 75, 38402 St. Martin-d'Heres, ); Heald, S.M. )

    1991-04-15

    Extended x-ray-absorption fine-structure spectroscopy (EXAFS) has been used to determine the position of Zr within the unit cell of Sm{sub 2}Co{sub 17}. Induction-melted Sm{sub 2}Co{sub 17}:Zr ternary alloys, aged at 1180 {degree}C, then quenched, consisted of intimately mixed H2:17 and R2:17 having Zr in solid solution as well some regions of R2:17 that were poor in Zr. EXAFS spectroscopy of these specimens indicates that the most probable position for Zr is a site having 2 Sm near-neighbor atoms and 11 Co atoms distributed over three different interatomic distances. This is consistent with a direct substitution of Zr for Co in the Co site in the mixed planes (12{ital j} in {ital P}6{sub 3}/{ital mmc} or 18{ital f} in {ital R}3{ital m}).

  3. Application of X-ray absorption fine structure method for the quantitative analysis of hexavalent chromium in chromate conversion coating and plastic.

    PubMed

    Oki, Mitsuhiro; Morimoto, Sayaka; Muramatsu, Miho; Yoshiki, Masahiko; Takenaka, Miyuki

    2014-01-01

    The X-ray absorption fine structure method was applied for the quantitative analysis of hexavalent Cr in electronic products. The pre-edge peak intensity of the Cr K-edge increased according to the hexavalent Cr amount, and the hexavalent Cr ratio was calculated quantitatively by using the intensity. By combining with inductively coupled plasma atomic emission spectroscopy measurement results that gave the total Cr amount, the absolute amount of hexavalent Cr in chromate conversion coating and plastic samples could be evaluated. The results obtained by this method were in good agreement with those obtained by the chemical analysis method. This method can be successfully applied for the determination of hexavalent Cr amount in electronic products such as chromate conversion coating and plastic.

  4. Time-resolved near-edge x-ray absorption fine structure spectroscopy on photo-induced phase transitions using a tabletop soft-x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grossmann, P.; Rajkovic, I.; Moré, R.; Norpoth, J.; Techert, S.; Jooss, C.; Mann, Klaus

    2012-05-01

    We present a table-top soft-x-ray spectrometer for the wavelength range λ = 1-5 nm based on a stable laser-driven x-ray source, making use of a gas-puff target. With this setup, optical light-pump/soft-x-ray probe near-edge x-ray absorption fine structure (NEXAFS) experiments with a temporal resolution of about 230 ps are feasible. Pump-probe NEXAFS measurements were carried out in the "water-window" region (2.28 nm-4.36 nm) on the manganite Pr0.7Ca0.3MnO3, investigating diminutive changes of the oxygen K edge that derive from an optically induced phase transition. The results show the practicability of the table-top soft-x-ray spectrometer on demanding investigations so far exclusively conducted at synchrotron radiation sources.

  5. Particle Formation from Pulsed Laser Irradiation of SootAggregates studied with scanning mobility particle sizer, transmissionelectron microscope and near-edge x-ray absorption fine structure.

    SciTech Connect

    Michelsen, Hope A.; Tivanski, Alexei V.; Gilles, Mary K.; vanPoppel, Laura H.; Dansson, Mark A.; Buseck, Peter R.; Buseck, Peter R.

    2007-02-20

    We investigated the physical and chemical changes induced in soot aggregates exposed to laser radiation using a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope to perform near-edge x-ray absorption fine structure spectroscopy. Laser-induced nanoparticle production was observed at fluences above 0.12 J/cm(2) at 532 nm and 0.22 J/cm(2) at 1064 nm. Our results indicate that new particle formation proceeds via (1) vaporization of small carbon clusters by thermal or photolytic mechanisms, followed by homogeneous nucleation, (2) heterogeneous nucleation of vaporized carbon clusters onto material ablated from primary particles, or (3) both processes.

  6. X-ray absorption fine structure analysis of molybdenum added to BaTiO3-based ceramics used for multilayer ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Ogata, Yoichiro; Shimura, Tetsuo; Ryu, Minoru; Iwazaki, Yoshiki

    2017-04-01

    The effect of slight molybdenum doping of perovskite-type BaTiO3-based ceramics on the reliability of a multilayer ceramic capacitor (MLCC) and on the valence state of molybdenum in the BaTiO3-based ceramics has been investigated by highly accelerated lifetime tests and X-ray absorption fine structure analysis. The molybdenum added to the BaTiO3-based ceramics is located at Ti sites and improves the highly accelerated lifetime and lowers the initial dielectric resistivity in MLCCs. Through sintering in a reducing atmosphere, which is an important process in the fabrication of BaTiO3-based MLCCs, the oxidation state of the molybdenum added could be adjusted from +6 to a value close to +4.

  7. Time dependent density functional theory study of the near-edge x-ray absorption fine structure of benzene in gas phase and on metal surfaces.

    PubMed

    Asmuruf, Frans A; Besley, Nicholas A

    2008-08-14

    The near-edge x-ray absorption fine structure of benzene in the gas phase and adsorbed on the Au(111) and Pt(111) surfaces is studied with time dependent density functional theory. Excitation energies computed with hybrid exchange-correlation functionals are too low compared to experiment. However, after applying a constant shift the spectra are in good agreement with experiment. For benzene on the Au(111) surface, two bands arising from excitation to the e(2u)(pi(*)) and b(2g)(pi(*)) orbitals of benzene are observed for photon incidence parallel to the surface. On Pt(111) surface, a broader band arises from excitation to benzene orbitals that are mixed with the surface and have both sigma(*)(Pt-C) and pi(*) characters.

  8. Communication: Near edge x-ray absorption fine structure spectroscopy of aqueous adenosine triphosphate at the carbon and nitrogen K-edges.

    PubMed

    Kelly, Daniel N; Schwartz, Craig P; Uejio, Janel S; Duffin, Andrew M; England, Alice H; Saykally, Richard J

    2010-09-14

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the nitrogen and carbon K-edges was used to study the hydration of adenosine triphosphate in liquid microjets. The total electron yield spectra were recorded as a function of concentration, pH, and the presence of sodium, magnesium, and copper ions (Na(+)/Mg(2+)/Cu(2+)). Significant spectral changes were observed upon protonation of the adenine ring, but not under conditions that promote π-stacking, such as high concentration or presence of Mg(2+), indicating that NEXAFS is insensitive to the phenomenon. Intramolecular inner-sphere association of Cu(2+) did create observable broadening of the nitrogen spectrum, whereas outer-sphere association with Mg(2+) did not.

  9. Time-resolved near-edge x-ray absorption fine structure spectroscopy on photo-induced phase transitions using a tabletop soft-x-ray spectrometer.

    PubMed

    Grossmann, P; Rajkovic, I; Moré, R; Norpoth, J; Techert, S; Jooss, C; Mann, Klaus

    2012-05-01

    We present a table-top soft-x-ray spectrometer for the wavelength range λ = 1-5 nm based on a stable laser-driven x-ray source, making use of a gas-puff target. With this setup, optical light-pump/soft-x-ray probe near-edge x-ray absorption fine structure (NEXAFS) experiments with a temporal resolution of about 230 ps are feasible. Pump-probe NEXAFS measurements were carried out in the "water-window" region (2.28 nm-4.36 nm) on the manganite Pr(0.7)Ca(0.3)MnO(3), investigating diminutive changes of the oxygen K edge that derive from an optically induced phase transition. The results show the practicability of the table-top soft-x-ray spectrometer on demanding investigations so far exclusively conducted at synchrotron radiation sources.

  10. Electron and x-ray fluorescence yield measurements of the Cu L2,3-edge x-ray absorption fine structures: A comparative study

    NASA Astrophysics Data System (ADS)

    Hiraya, A.; Watanabe, M.; Sham, T. K.

    1995-02-01

    The Cu L2,3-edge x-ray absorption fine structures (XAFS) of a series of Cu samples have been recorded at the BL1A beamline of UVSOR using both electron yield and x-ray fluorescence yield techniques. XAFS measurements were simultaneously recorded in three modes: total electron yield (TEY) with specimen current, total electron yield with a channeltron electron multiplier and x-ray fluorescence yield (FLY) with an Ar/CH4 gas proportional counter. While both TEY measurements produce essentially identical spectra, a comparison between TEY and FLY results shows a drastic difference in the sensitivity of the techniques towards sampling depth. These results and their implications are discussed.

  11. Study of atomic clusters in neutron irradiated reactor pressure vessel surveillance samples by extended X-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Cammelli, S.; Degueldre, C.; Kuri, G.; Bertsch, J.; Lützenkirchen-Hecht, D.; Frahm, R.

    2009-03-01

    Copper and nickel impurities in nuclear reactor pressure vessel (RPV) steel can form nano-clusters, which have a strong impact on the ductile-brittle transition temperature of the material. Thus, for control purposes and simulation of long irradiation times, surveillance samples are submitted to enhanced neutron irradiation. In this work, surveillance samples from a Swiss nuclear power plant were investigated by extended X-ray absorption fine structure spectroscopy (EXAFS). The density of Cu and Ni atoms determined in the first and second shells around the absorber is affected by the irradiation and temperature. The comparison of the EXAFS data at Cu and Ni K-edges shows that these elements reside in arrangements similar to bcc Fe. However, the EXAFS analysis reveals local irradiation damage in the form of vacancy fractions, which can be determined with a precision of ∼5%. There are indications that the formation of Cu and Ni clusters differs significantly.

  12. Extended x-ray-absorption and electron-energy-loss fine-structure studies of the local atomic structure of amorphous unhydrogenated and hydrogenated silicon carbide

    NASA Astrophysics Data System (ADS)

    Kaloyeros, Alain E.; Rizk, Richard B.; Woodhouse, John B.

    1988-12-01

    Extended x-ray-absorption (EXAFS) and electron-energy-loss fine-structure (EXELFS) measurements have been performed on amorphous unhydrogenated silicon carbide, a-SiC, and amorphous hydrogenated silicon carbide, a-SiC:H. Two hydrogenated samples with hydrogen concentrations corresponding, respectively, to H flows of 4 sccm (20% of argon flow) and 8 sccm (40% of argon flow) during the reactive sputtering process, were analyzed (sccm denotes standard cubic centimeters per minute at STP). It is found that short-range order (SRO), consisting of the same tetrahedrally coordinated units present in cubic crystalline c-SiC (zinc-blende structure), where a Si atom is surrounded by nearly four C atoms and vice versa, does exist in all the amorphous samples. This SRO, however, is detected only at a level of the first C and Si coordination shells in a-SiC and a-SiC:H. The structural disorder of the first Si and C coordination shells in all forms of amorphous SiC is somewhat greater than c-SiC, and it decreases appreciably as hydrogen is added. The a-SiC sample exhibits large Si and C coordination numbers, almost identical to c-SiC, a low atomic density, and virtually the same Si-C bond length as c-SiC. These results indicate that a relatively small concentration of large voids exist in a highly disordered a-SiC matrix. The a-SiC:H samples, on the other hand, exhibit a decrease in the C coordination number relative to a-SiC, which is independent of H concentration, low Si and C atomic densities, comparable to a-SiC, and virtually the same Si coordination number as a-SiC. These EXAFS-EXELFS results are consistent with a model where part of the H is substituting for Si in the local tetrahedra surrounding C atoms, while the rest is located inside internal voids in the a-SiC:H samples. The surface of the voids is composed of C atoms which have at least one bond to H, and of Si atoms. Finally, a straightforward computational procedure is applied to estimate the size of these voids

  13. Behavior of redox-sensitive elements during weathering of granite in subtropical area using X-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuo-Jun; Liu, Cong-Qiang; Zhao, Zhi-Qi; Cui, Li-Feng; Liu, Wen-Jing; Liu, Tao-Ze; Liu, Bao-Jian; Fan, Bai-Ling

    2015-06-01

    The variation in chemical compositions of regolith along a weathering profile developed on a granite substrate in Jiangxi province, in southern China, was investigated in this paper, with the aim to characterize the speciation of redox-sensitive elements and to evaluate their mobility and redistribution during chemical weathering. Mass balance calculations indicate titanium (Ti) is the most immobile element in this weathering profile. A new method, X-ray absorption fine structure (XAFS) spectroscopy, was used to determine the speciation of Fe and Mn along the profile. Fe K-edge X-ray absorption near edge structure (XANES) spectra show Fe in saprolith is stabilized mainly in the state of Fe(III), suggesting Fe is as immobile as conservative elements during granite weathering. Mn K-edge XANES spectra show Mn (III/IV) oxides are reduced to Mn(II) in surface soil, where soil organic matter (SOM) acts as an important reductant. Although Ce, Co and V were unable to be analysed by XAFS, their concentrations have significant correlations with that of Mn, indicating that the mobilization and redistribution of Ce, Co and V may also be governed by redox condition. All in all, the results suggest that redox process impacts significantly on the redistribution of Mn, Ce, Co and V along the profile. The successful application of XAFS in the study on migration of redox-sensitive elements during granite chemical weathering has provided valuable information for the understanding and evaluating the geochemical behavior of elements in the environment.

  14. Extended x-ray absorption fine structure in Ga1-xMnxN/SiC films with high Mn content

    NASA Astrophysics Data System (ADS)

    Sancho-Juan, O.; Martínez-Criado, O.; Cantarero, A.; Garro, N.; Salomé, M.; Susini, J.; Olguín, D.; Dhar, S.; Ploog, K.

    2011-05-01

    In this study, the local atomic structure of highly homogeneous Ga1-xMnxN alloy films (0.03absorption fine structure measurements. From the curve fitting, the structural parameters corresponding to the first two atomic shells surrounding both Ga and Mn atoms are reported. In the Ga1-xMnxN films, grown by molecular beam epitaxy, the Mn atoms are in tetrahedral configuration, independent of the Mn concentration; that is, they are in a substitutional site, MnGa, in the wurtzite structure. A small increase in the interatomic distances has been found with increasing Mn content. The Debye-Waller factor does not show a significant trend as Mn content increases, which suggests the presence of short-range disorder in the GaN lattice. Ab initio calculations of the structural parameter for two different Mn concentrations are consistent with the experimental results.

  15. Effect of site occupancy disorder on martensitic properties of Mn2NiIn type alloys: X-ray absorption fine structure study

    NASA Astrophysics Data System (ADS)

    Lobo, D. N.; Priolkar, K. R.; Koide, A.; Emura, S.

    2017-02-01

    We have carried out ab-initio calculations of the local structure of Mn and Ni in the Mn2Ni1.5In0.5 alloy with different site occupancies in order to understand the similarities in martensitic and magnetic properties of Mn2Ni1+xIn1-x and Ni2Mn1+xIn1-x alloys. Our results show that in Mn2Ni1+xIn1-x alloys, there is a strong possibility of Mn atoms occupying all the three X, Y, and Z sites of the X2YZ Heusler structure, while Ni atoms preferentially occupy the X sites. Such a site occupancy disorder of Mn atoms is in addition to a local structural disorder due to size differences between Mn and In atoms, which is also present in Ni2Mn1+xIn1-x alloys. Further, a comparison of the calculations with experimental x-ray absorption fine structure at the Mn and Ni K edges in Mn2-yNi1.6+yIn0.4 (-0.08 ≤ y ≤ 0.08) indicates a strong connection between martensitic transformation and occupancy of Z sites by Mn atoms.

  16. Versatile plug flow catalytic cell for in situ transmission/fluorescence x-ray absorption fine structure measurements

    NASA Astrophysics Data System (ADS)

    Centomo, P.; Meneghini, C.; Zecca, M.

    2013-05-01

    A novel flow-through catalytic cell has been developed for in situ x-ray absorption spectroscopy (XAS) experiments on heterogeneous catalysts under working conditions and in the presence of a liquid and a gas phase. The apparatus allows to carry out XAS measurements in both the transmission and fluorescence modes, at moderate temperature (from RT to 50-80 °C) and low-medium gas pressure (up to 7-8 bars). The materials employed are compatible with several chemicals such as those involved in the direct synthesis of hydrogen peroxide (O2, H2, H2O2, methanol). The versatile design of the cell allows to fit it to different experimental setups in synchrotron radiation beamlines. It was used successfully for the first time to test nanostructured Pd catalysts during the direct synthesis of hydrogen peroxide (H2O2) in methanol solution from dihydrogen and dioxygen.

  17. Extended X-ray absorption fine structure data analysis of copper (II) hydroxamic acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Parsai, N.; Mishra, A.; Shrivastava, B. D.

    2014-09-01

    The X-ray absorption spectra of copper mixed ligand complexes, having hydroxamic acid as one of the ligands, have been recorded at the K-edge of copper at BL-8 Dispersive EXAFS beamline at the 2.5 GeV INDUS-2 Synchrotron, RRCAT, Indore, India. For the analysis of EXAFS data, crystallographic data of the complex or of its analog is required, which is not available. Hence, for the analysis of EXAFS data, theoretical EXAFS data of the studied complexes have been generated using the EXAFS equation employing computer software program Mathcad. Firstly, the experimental data has been processed using the computer program Athena to obtain the normalized absorption versus energy data. From the experimental EXAFS data, the phase shift parameter (an energy independent constant 5) has been computed using Lytle, Sayers and Stern's (LSS) method. The backscattering amplitude has been taken from the available theoretical tabulations and other parameters have been taken from crystallographic data of the copper metal. Fourier transforms of both the experimental and theoretical data have been computed, and the two Fourier transforms are found to agree with each other for all the complexes. The position of the first peak in the Fourier transform gives the value of the first shell bond length, which is shorter than the actual bond length as a result of energy dependence of the phase factor (5(k)) in the sine function of the EXAFS equation. Since, the Fourier transform method and LSS method both are uncorrected for phase and other parameters of the EXAFS equation, the present method gives phase uncorrected bond length of the first coordination shell.

  18. Extended X-ray absorption fine structure data analysis of copper (II) hydroxamic acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Parsai, N.; Mishra, A.; Shrivastava, B. D.

    2014-09-01

    The X-ray absorption spectra of copper mixed ligand complexes, having hydroxamic acid as one of the ligands, have been recorded at the K-edge of copper at BL-8 Dispersive EXAFS beamline at the 2.5 GeV INDUS-2 Synchrotron, RRCAT, Indore, India. For the analysis of EXAFS data, crystallographic data of the complex or of its analog is required, which is not available. Hence, for the analysis of EXAFS data, theoretical EXAFS data of the studied complexes have been generated using the EXAFS equation employing computer software program Mathcad. Firstly, the experimental data has been processed using the computer program Athena to obtain the normalized absorption versus energy data. From the experimental EXAFS data, the phase shift parameter (an energy independent constant 5) has been computed using Lytle, Sayers and Stern's (LSS) method. The backscattering amplitude has been taken from the available theoretical tabulations and other parameters have been taken from crystallographic data of the copper metal. Fourier transforms of both the experimental and theoretical data have been computed, and the two Fourier transforms are found to agree with each other for all the complexes. The position of the first peak in the Fourier transform gives the value of the first shell bond length, which is shorter than the actual bond length as a result of energy dependence of the phase factor (δ(k)) in the sine function of the EXAFS equation. Since, the Fourier transform method and LSS method both are uncorrected for phase and other parameters of the EXAFS equation, the present method gives phase uncorrected bond length of the first coordination shell.

  19. Fluorescence x-ray absorption fine structure studies of Fe-Ni-S and Fe-Ni-Si melts to 1600 K

    SciTech Connect

    Manghnani, M.H.; Hong, X.; Balogh, J.; Amulele, G.; Sekar, M.; Newville, M.

    2008-04-29

    We report Ni K-edge fluorescence x-ray absorption fine structure spectra (XAFS) for Fe{sub 0.75}Ni{sub 0.05}S{sub 0.20} and Fe{sub 0.75}Ni{sub 0.05}Si{sub 0.20} ternary alloys from room temperature up to 1600 K. A high-temperature furnace designed for these studies incorporates two x-ray transparent windows and enables both a vertical orientation of the molten sample and a wide opening angle, so that XAFS can be measured in the fluorescence mode with a detector at 90{sup o} with respect to the incident x-ray beam. An analysis of the Ni XAFS data for these two alloys indicates different local structural environments for Ni in Fe{sub 0.75}Ni{sub 0.05}S{sub 0.20} and Fe{sub 0.75}Ni{sub 0.05}Si{sub 0.20} melts, with more Ni-Si coordination than Ni-S coordination persisting from room temperature through melting. These results suggest that light elements such as S and Si may impact the structural and chemical properties of Fe-Ni alloys with a composition similar to the earth's core.

  20. Enhanced transformation of lead speciation in rhizosphere soils using phosphorus amendments and phytostabilization: an x-ray absorption fine structure spectroscopy investigation.

    PubMed

    Hashimoto, Yohey; Takaoka, Masaki; Shiota, Kenji

    2011-01-01

    To formulate successful phytostabilization strategies in a shooting range soil, understanding how heavy metals are immobilized at the molecular level in the rhizosphere soil is critical. Lead (Pb) speciation and solubility in rhizosphere soils of five different plant species were investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy and chemical extraction. The EXAFS analysis indicated that Pb occurred as PbCO (37%), Pb sorbed to organic matter (Pb-org: 15%), and Pb sorbed to pedogenic birnessite and/or ferrihydrite (Pb-ox: 36%) in the bulk soil. Comparison of the EXAFS spectra between bulk and rhizosphere soils demonstrated notable differences in fine structure, indicating that Pb species had been modified by rhizosphere processes. The estimated proportion of PbCO (25%) in the buckwheat soil was smaller than the other rhizosphere soils (35-39%). The addition of P significantly reduced Pb solubility in the bulk and rhizosphere soil except in the rhizosphere of buckwheat, for which the Pb solubility was 10-fold greater than in the other P-amended soils. This larger solubility in the buckwheat rhizosphere could not be explained by the total Pb speciation in the soil but was presumably related to the acidifying effect of buckwheat, resulting in a decrease of the soil pH by 0.4 units. The reduced Pb solubility by P amendment resulted from the transformation of preexisting PbCO (37%) into Pb(PO)Cl (26-32%) in the bulk and rhizosphere soils. In the P-amended rhizosphere soils, Pb-org species were no longer detected, and the Pb-ox pool increased (51-57%). The present study demonstrated that rhizosphere processes modify Pb solubility and speciation in P-amended soils and that some plant species, like buckwheat, may impair the efficiency of Pb immobilization by P amendments. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  1. Versatile plug flow catalytic cell for in situ transmission/fluorescence x-ray absorption fine structure measurements

    SciTech Connect

    Centomo, P.; Zecca, M.; Meneghini, C.

    2013-05-15

    A novel flow-through catalytic cell has been developed for in situ x-ray absorption spectroscopy (XAS) experiments on heterogeneous catalysts under working conditions and in the presence of a liquid and a gas phase. The apparatus allows to carry out XAS measurements in both the transmission and fluorescence modes, at moderate temperature (from RT to 50-80 Degree-Sign C) and low-medium gas pressure (up to 7-8 bars). The materials employed are compatible with several chemicals such as those involved in the direct synthesis of hydrogen peroxide (O{sub 2}, H{sub 2}, H{sub 2}O{sub 2}, methanol). The versatile design of the cell allows to fit it to different experimental setups in synchrotron radiation beamlines. It was used successfully for the first time to test nanostructured Pd catalysts during the direct synthesis of hydrogen peroxide (H{sub 2}O{sub 2}) in methanol solution from dihydrogen and dioxygen.

  2. Near-Edge X-ray Absorption Fine Structure Studies of Electrospun Poly(dimethylsiloxane)/Poly (methyl methacrylate)/Multiwall Carbon Nanotube Composites

    PubMed Central

    Winter, A. Douglas; Larios, Eduardo; Alamgir, Faisal M.; Jaye, Cherno; Fischer, Daniel; Campo, Eva M.

    2014-01-01

    This work describes the near conduction band edge structure of electrospun mats of MWCNT-PDMS-PMMA by near edge X-Ray absorption fine structure (NEXAFS) spectroscopy. Effects of adding nanofillers of different sizes were addressed. Despite observed morphological variations and inhomogeneous carbon nanotube distribution, spun mats appeared homogeneous under NEXAFS analysis. Spectra revealed differences in emissions from glancing and normal spectra; which may evidence phase separation within the bulk of the micron-size fibers. Further, dichroic ratios show polymer chains did not align, even in the presence of nanofillers. Addition of nanofillers affected emissions in the C-H, C=O and C-C regimes, suggesting their involvement in interfacial matrix-carbon nanotube bonding. Spectral differences at glancing angles between pristine and composite mats suggest that geometric conformational configurations are taking place between polymeric chains and carbon nanotubes. These differences appear to be carbon nanotube-dimension dependent, and are promoted upon room temperature mixing and shear flow during electrospinning. CH-π bonding between polymer chains and graphitic walls, as well as H-bonds between impurities in the as-grown CNTs and polymer pendant groups are proposed bonding mechanisms promoting matrix conformation. PMID:24308286

  3. Extended x-ray absorption fine structure and micro-Raman spectra of Bridgman grown Cd1-xZnxTe ternary alloys

    NASA Astrophysics Data System (ADS)

    Talwar, Devki N.; Feng, Zhe Chuan; Lee, Jyh-Fu; Becla, P.

    2014-03-01

    We have performed low-temperature micro-Raman scattering and extended x-ray absorption fine-structure (EXAFS) measurements on the Bridgman-grown bulk zinc-blende Cd1-x Zn x Te (1.0 ≧̸ x ≧̸ 0.03) ternary alloys to comprehend their structural and lattice dynamical properties. The micro-Raman results are carefully appraised to authenticate the classical two-phonon mode behavior insinuated by far-infrared (FIR) reflectivity study. The composition-dependent EXAFS experiments have revealed a bimodal distribution of the nearest-neighbor bond lengths—its analysis by first-principles bond-orbital model enabled us to estimate the lattice relaxations around Zn/Cd atoms in CdTe/ZnTe to help evaluate the necessary force constant variations for constructing the impurity-perturbation matrices. The simulated results of impurity vibrational modes by average-t-matrix Green’s function (ATM-GF) theory has put our experimental findings of the gap mode ˜153 cm-1 near x ≈ 1 on a much firmer ground.

  4. Strain in epitaxial MnSi films on Si(111) in the thick film limit studied by polarization-dependent extended x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; Zhang, S. L.; Baker, A. A.; Chalasani, R.; Kohn, A.; Speller, S. C.; Gianolio, D.; Pfleiderer, C.; van der Laan, G.; Hesjedal, T.

    2016-11-01

    We report a study of the strain state of epitaxial MnSi films on Si(111) substrates in the thick film limit (100-500 Å) as a function of film thickness using polarization-dependent extended x-ray absorption fine structure (EXAFS). All films investigated are phase-pure and of high quality with a sharp interface between MnSi and Si. The investigated MnSi films are in a thickness regime where the magnetic transition temperature Tc assumes a thickness-independent enhanced value of ≥43 K as compared with that of bulk MnSi, where Tc≈29 K . A detailed refinement of the EXAFS data reveals that the Mn positions are unchanged, whereas the Si positions vary along the out-of-plane [111] direction, alternating in orientation from unit cell to unit cell. Thus, for thick MnSi films, the unit cell volume is essentially that of bulk MnSi—except in the vicinity of the interface with the Si substrate (thin film limit). In view of the enhanced magnetic transition temperature we conclude that the mere presence of the interface, and its specific characteristics, strongly affects the magnetic properties of the entire MnSi film, even far from the interface. Our analysis provides invaluable information about the local strain at the MnSi/Si(111) interface. The presented methodology of polarization dependent EXAFS can also be employed to investigate the local structure of other interesting interfaces.

  5. Insights from arsenate adsorption on rutile (110): grazing-incidence X-ray absorption fine structure spectroscopy and DFT+U study.

    PubMed

    Yan, Li; Hu, Shan; Duan, Jinming; Jing, Chuanyong

    2014-07-03

    Insights into the bonding of As(V) at the metal oxide/aqueous interface can further our understanding of its fate and transport in the environment. The motivation of this work is to explore the interfacial configuration of As(V) on single crystal rutile (110) using grazing-incidence X-ray absorption fine structure spectroscopy (GI-XAFS) and planewave density functional calculations with on-site repulsion (DFT+U). In contrast to the commonly considered corner-sharing bidentate binuclear structure, tetrahedral As(V) binds as an edge/corner-sharing tridentate binuclear complex on rutile (110), as evidenced by observation of three As-Ti distances at 2.83, 3.36, and 4.05 Å. In agreement with the GI-XAFS analysis, our DFT+U calculations for this configuration resulted in the lowest adsorption energy among five possible alternatives. In addition, the electron density difference further demonstrated the transfer of charge between surface Ti atoms and O atoms in AsO4. This charge transfer consequently induced the formation of a chemical bond, which is also confirmed by the partial density of states analysis. Our results may shed new light on coupling the GI-XAFS and DFT approaches to explore molecular-scale adsorption mechanisms on single crystal surfaces.

  6. Near-edge X-ray absorption fine structure studies of electrospun poly(dimethylsiloxane)/poly(methyl methacrylate)/multiwall carbon nanotube composites.

    PubMed

    Winter, A Douglas; Larios, Eduardo; Alamgir, Faisal M; Jaye, Cherno; Fischer, Daniel; Campo, Eva M

    2013-12-23

    This work describes the near conduction band edge structure of electrospun mats of multiwalled carbon nanotube (MWCNT)-polydimethylsiloxane-poly(methyl methacrylate) by near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Effects of adding nanofillers of different sizes were addressed. Despite observed morphological variations and inhomogeneous carbon nanotube distribution, spun mats appeared homogeneous under NEXAFS analysis. Spectra revealed differences in emissions from glancing and normal spectra, which may evidence phase separation within the bulk of the micrometer-size fibers. Further, dichroic ratios show polymer chains did not align, even in the presence of nanofillers. Addition of nanofillers affected emissions in the C-H, C═O, and C-C regimes, suggesting their involvement in interfacial matrix-carbon nanotube bonding. Spectral differences at glancing angles between pristine and composite mats suggest that geometric conformational configurations are taking place between polymeric chains and carbon nanotubes. These differences appear to be carbon nanotube-dimension dependent and are promoted upon room temperature mixing and shear flow during electrospinning. CH-π bonding between polymer chains and graphitic walls, as well as H-bonds between impurities in the as-grown MWCNTs and polymer pendant groups are proposed bonding mechanisms promoting matrix conformation.

  7. LETTER TO THE EDITOR: Extended x-ray absorption fine structure and photoluminescence study of Er-implanted GaN films

    NASA Astrophysics Data System (ADS)

    Wruck, D.; Lorenz, K.; Vianden, R.; Reinhold, B.; Mahnke, H.-E.; Baranowski, J. M.; Pakula, K.; Parthier, L.; Henneberger, F.

    2001-11-01

    Extended x-ray absorption fine structure and photoluminescence studies were performed on epitaxial GaN films implanted with 1×1016 cm-2 Er ions at 80 and 160 keV and, for a part of the samples, co-implanted with oxygen ions at 23 keV, followed by an anneal for 60 min at 900°C. It was shown for the samples both with, as well as without, oxygen co-implantation that Er is incorporated in a six-fold coordination with respect to oxygen, as in the cubic bixbyite structure Er2O3. The oxygen contamination of the non-oxygen-implanted samples is assumed to be due to nitrogen-vacancy-assisted oxygen diffusion from the sapphire substrate during annealing. The Stark level splitting of the 4I15/2 ground state of Er3+ observed in the 1.54 µm photoluminescence at low temperature in both types of samples is consistent with the low symmetry of the Er sites expected in cubic bixbyite Er2O3.

  8. Probing the Ordering of Semiconducting Fluorene-Thiophene Copolymer Surfaces on Rubbed Polyimide Substrates by Near-Edge X-ray Absorption Fine Structure

    SciTech Connect

    Pattison,L.; Hexemer, A.; Kramer, E.; Krishnan, S.; Petroff, P.; Fischer, D.

    2006-01-01

    The temperature-dependent alignment of semiconducting liquid crystalline fluorene-thiophene copolymer (F8T2) thin film surfaces was investigated using the near-edge X-ray absorption fine structure (NEXAFS) technique. Partial electron yield spectra were recorded over a range of temperatures in order to observe directly the surface orientation as the polymer is heated and cooled through glass, crystal, and liquid crystal phases. In addition, samples annealed under varying processing conditions and quenched to room temperature were analyzed. The NEXAFS data show that (a) in thin F8T2 films at all temperatures the polymer backbone lies in the plane of the substrate, (b) the fluorene and thiophene rings are rotated randomly about the molecular axis, (c) orientation of the polymer backbone can be controlled using a rubbed polyimide alignment layer as a template for liquid crystal orientation, and (d) under proper annealing conditions there is strong temperature-dependent alignment of the copolymer main-chain axis to the rubbing direction which extends from the polyimide/F8T2 interface all the way to the F8T2 surface. The surface alignment does not disappear after annealing at temperatures {approx}30 K above the bulk nematic to isotropic transition.

  9. Unrelaxation of the semiconductor surface at low-coverage Ag/InP(110) interfaces as determined by photoemission extended x-ray-absorption fine structure

    NASA Astrophysics Data System (ADS)

    Choudhary, K. M.; Mangat, P. S.; Kilday, D.; Margaritondo, G.

    1990-04-01

    The atomic geometries of Ag/InP(110) interfaces for metal coverages in the cluster regime have been determined by photoemission extended x-ray-absorption fine structure (PEXAFS). P 2p PEXAFS for InP(110)+0.5 Å Ag and InP(110)+1 Å Ag (at room temperature) were acquired. The data were analyzed by conventional Fourier-transform methods using the theoretical backscattering phase function of McKale et al. plus the absorber phase function of Teo and Lee. For both noble-metal coverages on the semiconductor surface, our measurements show that the relaxation (about 4% contraction) in the P-In bond length of the clean InP(110) surface is mostly removed. This is in contrast to our recent PEXAFS results, reported in the literature, for reactive-metal Al/InP(110) or Na/InP(110) interfaces, where low-coverage metal-induced reconstruction of the P-In bond length has been observed. The low-coverage noble-metal-induced unrelaxation of the P-In bond length might contribute to Fermi-level movements during Schottky-barrier formation.

  10. Local vibrational dynamics of hematite (α-Fe₂O₃) studied by extended x-ray absorption fine structure and molecular dynamics.

    PubMed

    Sanson, A; Mathon, O; Pascarelli, S

    2014-06-14

    The local vibrational dynamics of hematite (α-Fe2O3) has been investigated by temperature-dependent extended x-ray absorption fine structure spectroscopy and molecular dynamics simulations. The local dynamics of both the short and long nearest-neighbor Fe-O distances has been singled out, i.e., their local thermal expansion and the parallel and perpendicular mean-square relative atomic displacements have been determined, obtaining a partial agreement with molecular dynamics. No evidence of the Morin transition has been observed. More importantly, the strong anisotropy of relative thermal vibrations found for the short Fe-O distance has been related to its negative thermal expansion. The differences between the local dynamics of short and long Fe-O distances are discussed in terms of projection and correlation of atomic motion. As a result, we can conclude that the short Fe-O bond is stiffer to stretching and softer to bending than the long Fe-O bond.

  11. Arsenate sorption on two Chinese red soils evaluated with macroscopic measurements and extended X-ray absorption fine-structure spectroscopy.

    PubMed

    Luo, Lei; Zhang, Shuzhen; Shan, Xiao-Quan; Jiang, Wei; Zhu, Yong-Guan; Liu, Tao; Xie, Ya-Ning; McLaren, Ronald G

    2006-12-01

    Arsenic sorption is the primary factor that affects the bioavailability and mobility of arsenic in soils. To elucidate the characteristics and mechanisms of arsenate, As(V), sorption on soils, a combination of sorption isotherms, zeta potential measurements, and extended X-ray absorption fine-structure (EXAFS) spectroscopy was used to investigate As(V) sorption on two Chinese red soils. Arsenate sorption increased with increasing As(V) concentration and was insensitive to ionic strength changes at pH 6.0. Arsenate, mainly as H2AsO4- in soil solution at pH 6.0, was strongly sorbed mainly through ligand exchange by the two soils. The sorption capacity was affected by the iron and aluminum mineral contents in the soils. The zeta potential measurements showed that As(V) sorption lowered the zeta potential and the points of zero charge of the soils. The EXAFS data indicate that adsorbed As(V) forms inner-sphere complexes with bidentate-binuclear configurations, as evidenced by an As-Fe bond distance of 3.28 +/- 0.04 A and an As-Al bond distance of 3.17 +/- 0.03 A. The two As(V) complexes were stable at different As(V) loadings, whereas the proportions were related to the aluminum and iron mineral contents in the soils. This study illuminated the importance of inclusion of microscopic and macroscopic experiments to elucidate sorption behavior and mechanisms.

  12. EXAFS (Extended X-ray Absorption Fine-Structure Spectroscopy) study of the position of Zr within the unit cell of Sm sub 2 Co sub 17

    SciTech Connect

    Rabenberg, L. . Center for Materials Science and Engineering); Barrera, E.V. . Dept. of Mechanical Engineering and Materials Science); Maury, C.E.; Allibert, C.H. . Lab. de Thermodynamique et PhysicoChimie Metallurgiques); Heald, S.M. (Brookhaven National Lab

    1990-01-01

    Extended X-ray Absorption Fine-Structure Spectroscopy (EXAFS) has been used to determine the position of Zr within the unit cell of Sm{sub 2}Co{sub 17}. Zr is routinely added to Sm{sub 2}Co{sub 17} permanent magnet alloys because of its effects on their metallurgical development, but the details of its behavior remain controversial. Induction melted Sm{sub 2}Co{sub 17}:Zr ternary alloys, aged at 1180{degrees}C, then quenched, consisted of intimately mixed H2:17 and R2:17 having Zr in solid solution as well some regions of R2:17 that were poor in Zr. EXAFS spectroscopy of these specimens indicates that the most probable position for Zr is a site having two Sm near neighbor atoms and 11 Co atoms distributed over three different interatomic distances. This is consistent with a direct substitution of Zr for Co in the Co site in the mixed planes (12j in P6{sub 3}/mmc, or 18f in R3m). These results are discussed in terms of the metallurgy of 2:17 magnet alloys. 20 refs., 2 figs.

  13. PRELIMINARY IN-SITU X-RAY ABSORPTION FINE STRUCTURE EXAMINATION OF PT/C AND PTCO/C CATHODE CATALYSTS IN AN OPERATIONAL POLYMER ELECTROLYTE FUEL CELL

    SciTech Connect

    Phelan, B.T.; Myers, D.J.; Smith, M.C.

    2009-01-01

    State-of-the-art polymer electrolyte fuel cells require a conditioning period to reach optimized cell performance. There is insuffi cient understanding about the behavior of catalysts during this period, especially with regard to the changing environment of the cathode electrocatalyst, which is typically Pt nanoparticles supported on high surface area Vulcan XC-72 carbon (Pt/C). The purpose of this research was to record preliminary observations of the changing environment during the conditioning phase using X-Ray Absorption Fine Structure (XAFS) spectroscopy. XAFS was recorded for a Pt/C cathode at the Pt L3-edge and a PtCo/C cathode at both the Pt L3-edge and Co K-edge. Using precision machined graphite cell-blocks, both transmission and fl uorescence data were recorded at Sector 12-BM-B of Argonne National Laboratory’s Advanced Photon Source. The fl uorescence and transmission edge steps allow for a working description of the changing electrocatalyst environment, especially water concentration, at the anode and cathode as functions of operating parameters. These features are discussed in the context of how future analysis may correlate with potential, current and changing apparent thickness of the membrane electrode assembly through loss of catalyst materials (anode, cathode, carbon support). Such direct knowledge of the effect of the conditioning protocol on the electrocatalyst may lead to better catalyst design. In turn, this may lead to minimizing, or even eliminating, the conditioning period.

  14. Lead is not off center in PbTe: the importance of r-space phase information in extended x-ray absorption fine structure spectroscopy.

    PubMed

    Keiber, T; Bridges, F; Sales, B C

    2013-08-30

    PbTe is a well-known thermoelectric material. Recent x-ray total scattering studies suggest that Pb moves off center along 100 in PbTe, by ∼0.2  Å at 300 K, producing a split Pb-Te pair distribution. We present an extended x-ray absorption fine structure spectroscopy (EXAFS) study of PbTe (and Tl doped PbTe) to determine if Pb or Te is off center. EXAFS provides sensitive r- or k-space phase information which can differentiate between a split peak for the Pb-Te distribution (indicative of off-center Pb) and a thermally broadened peak. We find no evidence for a split peak for Pb-Te or Te-Pb. At 300 K, the vibration amplitude for Pb-Te (or Te-Pb) is large; this thermally induced disorder is indicative of weak bonds, and the large disorder is consistent with the low thermal conductivity at 300 K. We also find evidence of an anharmonic potential for the nearest Pb-Te bonds, consistent with the overall anharmonicity found for the phonon modes. This effect is modeled by a "skew" factor (C3) which significantly improves the fit of the Pb-Te and Te-Pb peaks for the high temperature EXAFS data; C3 becomes significant above approximately 150-200 K. The consequences of these results will be discussed.

  15. Local vibrational dynamics of hematite (α-Fe{sub 2}O{sub 3}) studied by extended x-ray absorption fine structure and molecular dynamics

    SciTech Connect

    Sanson, A.; Mathon, O.; Pascarelli, S.

    2014-06-14

    The local vibrational dynamics of hematite (α-Fe{sub 2}O{sub 3}) has been investigated by temperature-dependent extended x-ray absorption fine structure spectroscopy and molecular dynamics simulations. The local dynamics of both the short and long nearest-neighbor Fe–O distances has been singled out, i.e., their local thermal expansion and the parallel and perpendicular mean-square relative atomic displacements have been determined, obtaining a partial agreement with molecular dynamics. No evidence of the Morin transition has been observed. More importantly, the strong anisotropy of relative thermal vibrations found for the short Fe–O distance has been related to its negative thermal expansion. The differences between the local dynamics of short and long Fe–O distances are discussed in terms of projection and correlation of atomic motion. As a result, we can conclude that the short Fe–O bond is stiffer to stretching and softer to bending than the long Fe–O bond.

  16. Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study

    NASA Astrophysics Data System (ADS)

    Boyanov, M. I.; Kelly, S. D.; Kemner, K. M.; Bunker, B. A.; Fein, J. B.; Fowle, D. A.

    2003-09-01

    The local atomic environment of Cd bound to the cell wall of the gram-positive bacterium Bacillus subtilis was determined by X-ray absorption fine structure (XAFS) spectroscopy. Samples were prepared at six pH values in the range 3.4 to 7.8, and the bacterial functional groups responsible for the adsorption were identified under each condition. Under the experimental Cd and bacterial concentrations, the spectroscopy results indicate that Cd binds predominantly to phosphoryl ligands below pH 4.4, whereas at higher pH, adsorption to carboxyl groups becomes increasingly important. At pH 7.8, we observe the activation of an additional binding site, which we tentatively ascribe to a phosphoryl site with smaller Cd-P distance than the one that is active at lower pH conditions. XAFS spectra of several cadmium acetate, phosphate, and perchlorate solutions were measured and used as standards for fingerprinting, as well as to assess the ability of FEFF8 and FEFFIT to model carboxyl, phosphoryl, and hydration environments, respectively. The results of this XAFS study in general corroborate existing surface complexation models; however, some binding mechanism details could only be detected with the XAFS technique.

  17. Nearest-neighbor nitrogen and oxygen distances in the iron(II)-DNA complex studied by extended X-ray absorption fine structure.

    PubMed

    Bertoncini, Clelia R A; Meneghini, Rogerio; Tolentino, Helio

    2010-11-01

    In mammalian cells, DNA-bound Fe(II) reacts with H₂O₂ producing the highly reactive hydroxyl radical (OH) in situ. Since ·OH attacks nearby DNA residue generating oxidative DNA damage, many questions have arisen regarding iron-DNA complex formations and their implication in pre-malignant mutations and aging. In this work, a solid sample of Fe(II)-DNA complex containing one Fe(II) per 10 nucleotides was analyzed from extended X-ray absorption fine structure (EXAFS) spectra collected in a synchrotron radiation light source. Best fitting parameters of the EXAFS signal for the first two shells provide evidence of five oxygen atoms at 1.99 ± 0.02 Å and one nitrogen atom at 2.20 ± 0.02 Å in the inner coordination sphere of the Fe(II)-DNA complex. Considering that both purine base moieties bearing nitrogen atoms are prone to chelate iron, these results are consistent with the previously observed lower levels of DNA damage in cytosine nucleotides relative to adenine and guanine sites in cells under more physiological conditions of Fe(II) Fenton reaction.

  18. Extended X- ray absorption fine structure study at the K-edge of copper in mixed ligand complexes having benzimidazole as one of the ligands

    NASA Astrophysics Data System (ADS)

    Hinge, V. K.; Joshi, S. K.; Nitin Nair, N.; Singh Verma, Vikram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    Extended X-ray absorption fine structure (EXAFS) spectra have been studied at the K-edge of copper in some of its biologically important complexes, viz., [Cu(BzImH)4X2] and [Cu(BzIm)2], where X= Cl, Br, 1/2SO4, ClO4, NO3, and BzIm = Benzimidazolato anion. The spectra have been recorded using a bent crystal 0.4 m Cauchois-type transmission spectrograph. The positions of EXAFS maxima and minima have been used to determine the bond lengths in the complexes with the help of three different methods, namely, Levy's, Lytle's and Lytle, Sayers and Stern's (L.S.S.) methods. The phase uncorrected bond lengths have also been determined from Fourier transforms of the experimental spectra. The results obtained from these methods have been discussed and it has been found that the results obtained by L.S.S. method are comparable with the results obtained by Fourier transformation method and that these two methods give phase uncorrected bond lengths.

  19. X-ray absorption fine structure (XAFS) studies of copper (II) mixed ligand complexes having tetramethylethylenediamine as one of the ligands

    NASA Astrophysics Data System (ADS)

    Sharma, Sharad; Joshi, S. K.; Shrivastava, B. D.; Hinge, V. K.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption fine structure (XAFS) has been studied at the K-edge of copper in copper(II) mixed ligand complexes, having tetramethylethylenediamine (tmen) as one of the ligands, viz., Cu(tmen)(gly)ClO4, Cu(tmen)(bipy)(ClO4)2 and Cu(tmen)(phen)(ClO4)2. The spectra have been recorded at the dispersive XAFS beamline (BL-8) at the 2.5 GeV INDUS-2 synchrotron, RRCAT, Indore, India. The data obtained has been processed and analyzed using the computer program Athena. It has been observed that K-edge has been found to split in two edges, K and K', in each of the complex. The chemical shift has been utilized to determine the oxidation state of copper in the complexes and also the effective nuclear charge (ENC). The EXAFS data has been analyzed to obtain the bond lengths in the complexes using Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The first peak in the Fourier transform of the spectra gives the value of first shell phase uncorrected bond length. The results obtained from the Fourier transformation and LSS methods are in good agreement.

  20. Determination of bond lengths from extended X-ray absorption fine structure in cobalt(III)-oxo cubane-like clusters

    NASA Astrophysics Data System (ADS)

    Nitin Nair, N.; Shrivastava, B. D.; Das, Birinchi Kumar

    2016-10-01

    The extended X-ray absorption fine structure (EXAFS) at the K-edge of cobalt has been studied in two cobalt complexes having Co(III)-oxo cubane-like clusters of the type Co4O4(O2CR)4L4 where R is CH3 and L is pyridine (py) in one of the complex and ammonia (NH3) in the other complex. The spectra have been recorded at BL-9 scanning EXAFS beamline at the 2.5-GeV INDUS-2 Synchrotron, RRCAT, Indore, India. The positions of EXAFS maxima and minima have been reported. Using this data, the bond length has been determined by simple bond determination methods, viz., Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The normalized EXAFS spectra have been Fourier transformed and the value of the bond length has also been determined from the position of the first peak in the Fourier transform. This distance is the phase-uncorrected bond length. LSS method also gives such bond length. The results obtained from Fourier transform and LSS methods have been found to be comparable to each other. For the pyridine complex, the value obtained from Levy's method has been found to be in agreement with the available crystallographic value.

  1. Nearest-neighbor nitrogen and oxygen distances in the iron(II)-DNA complex studied by extended X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Bertoncini, Clelia R. A.; Meneghini, Rogerio; Tolentino, Helio

    2010-11-01

    In mammalian cells, DNA-bound Fe(II) reacts with H 2O 2 producing the highly reactive hydroxyl radical ( rad OH) in situ. Since rad OH attacks nearby DNA residue generating oxidative DNA damage, many questions have arisen regarding iron-DNA complex formations and their implication in pre-malignant mutations and aging. In this work, a solid sample of Fe(II)-DNA complex containing one Fe(II) per 10 nucleotides was analyzed from extended X-ray absorption fine structure (EXAFS) spectra collected in a synchrotron radiation light source. Best fitting parameters of the EXAFS signal for the first two shells provide evidence of five oxygen atoms at 1.99 ± 0.02 Å and one nitrogen atom at 2.20 ± 0.02 Å in the inner coordination sphere of the Fe(II)-DNA complex. Considering that both purine base moieties bearing nitrogen atoms are prone to chelate iron, these results are consistent with the previously observed lower levels of DNA damage in cytosine nucleotides relative to adenine and guanine sites in cells under more physiological conditions of Fe(II) Fenton reaction.

  2. Near-edge X-ray Absorption Fine Structure (NEXAFS) Spectroscopy study on Chlorinated Graphene through Plasma-based Surface Functionalization

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Schiros, Theanne; Nordlund, Dennis; Shin, Yong Cheol; Kong, Jing; Dresselhaus, Mildred; Palacios, Tomas; MIT/Columbia University/SLAC Collaboration

    2015-03-01

    Plasma-based chlorination is a promising technique to realize controllable doping in graphene, while maintaining its high mobility. Meanwhile, synchrotron-based X-ray spectroscopy provides us a sensitive probe to investigate the surface states of functionalizing dopants in graphene. Here, we systematically studied the electronic states of chlorinated graphene on different substrates, including surface binding energy, dopant concentration and work function shift by use of Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, XPS and photoemission threshold measurements. The concentration of absorbed chlorine is high enough to generate a distinct NEXAFS resonance at 286.2 eV (1s -> π* transition for C-Cl bonds). It is remarkable that the sp2 carbon core-hole exciton (291.85eV) retained its sharpness even after treatment, indicating the long-range periodicity in graphene is largely preserved. This distinguishes our approach as a noninvasive and effective doping method. The interaction between Cl and graphene also exhibits strong substrate effects: for Cu, graphene's Fermi level is shifted downwards by 0.35eV, while for graphene on SiO2, the much (4-5 times) higher chlorine concentration causes EF to shift by 0.9eV.

  3. Nearest-neighbor oxygen distances in liquid water and ice observed by x-ray Raman based extended x-ray absorption fine structure.

    PubMed

    Bergmann, Uwe; Di Cicco, Andrea; Wernet, Philippe; Principi, Emiliano; Glatzel, Pieter; Nilsson, Anders

    2007-11-07

    We report the nearest-neighbor oxygen-oxygen radial distribution function (NN O-O RDF) of room temperature liquid water and polycrystalline ice Ih (-16.8 degrees C) obtained by x-ray Raman based extended x-ray absorption fine structure (EXAFS) spectroscopy. The spectra of the two systems were taken under identical experimental conditions using the same procedures to obtain the NN O-O RDFs. This protocol ensured a measurement of the relative distance distribution with very small systematic errors. The NN O-O RDF of water is found to be more asymmetric (tail extending to longer distances) with longer average distance (2.81 A for water and 2.76 A for ice) but a slightly shorter peak position (2.70 A for water and 2.71 A for ice). The refinement also showed a small but significant contribution from the linear O-H-O multiple scattering signal. The high sensitivity to short range distances of the EXAFS probe will set further restrictions to the range of possible models of liquid water.

  4. Th uptake on montmorillonite: a powder and polarized extended X-ray absorption fine structure (EXAFS) study.

    PubMed

    Dähn, Rainer; Scheidegger, André M; Manceau, Alain; Curti, Enzo; Baeyens, Bart; Bradbury, Michael H; Chateigner, Daniel

    2002-05-01

    The uptake process of Th(IV) onto montmorillonite was studied using powder and polarized-EXAFS (P-EXAFS) spectroscopy. Sorption samples were prepared in 0.1 M NaClO(4) solutions either undersaturated (pH 2 and 3, [Th](initial): 2.7x10(-6) to 4x10(-4) M) or supersatured (pH 5, [Th](initial): 4.3x10(-5) to 4x10(-4) M) with respect to amorphous ThO(2). Th loading varied between 1-157 micromol/g at pH 3 and 14-166 micromol/g at pH 5 and equaled 41 micromol/g at pH 2. At pH 5 and high surface loading the EXAFS spectrum resembled that of amorphous Th(OH)(4), suggesting the precipitation of a Th hydrous hydroxide. At low and intermediate surface coverage two O coordination shells at approximately 2.24 and approximately 2.48 A, and one Si shell at 3.81-3.88 A, were systematically observed regardless of pH. The formation of Th nucleation products and Th-Si solution complexes and the sorption of Th on a silica precipitate were excluded from the EXAFS spectra analysis and solution chemistry. In these conditions, Th was shown to bond the montmorillonite surface by sharing double corners with Si tetrahedra. This structural interpretation is consistent with surface coverage calculations which showed that the edge sites were saturated in the two highest concentrated samples (34 and 157 micromol/g) at pH 3.

  5. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles

    NASA Astrophysics Data System (ADS)

    Lehmann, Johannes; Liang, Biqing; Solomon, Dawit; Lerotic, Mirna; LuizãO, Flavio; Kinyangi, James; SchäFer, Thorsten; Wirick, Sue; Jacobsen, Chris

    2005-03-01

    Small-scale heterogeneity of organic carbon (C) forms in soils is poorly quantified since appropriate analytical techniques were not available up to now. Specifically, tools for the identification of functional groups on the surface of micrometer-sized black C particles were not available up to now. Scanning Transmission X-ray Microscopy (STXM) using synchrotron radiation was used in conjunction with Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy to investigate nano-scale distribution (50-nm resolution) of C forms in black C particles and compared to synchrotron-based FTIR spectroscopy. A new embedding technique was developed that did not build on a C-based embedding medium and did not pose the risk of heat damage to the sample. Elemental sulfur (S) was melted to 220°C until it polymerized and quenched with liquid N2 to obtain a very viscous plastic S in which the black C could be embedded until it hardened to a noncrystalline state and was ultrasectioned. Principal component and cluster analysis followed by singular value decomposition was able to resolve distinct areas in a black carbon particle. The core of the studied biomass-derived black C particles was highly aromatic even after thousands of years of exposure in soil and resembled the spectral characteristics of fresh charcoal. Surrounding this core and on the surface of the black C particle, however, much larger proportions of carboxylic and phenolic C forms were identified that were spatially and structurally distinct from the core of the particle. Cluster analysis provided evidence for both oxidation of the black C particle itself as well as adsorption of non-black C. NEXAFS spectroscopy has great potential to allow new insight into black C properties with important implications for biogeochemical cycles such as mineralization of black C in soils and sediments, and adsorption of C, nutrients, and pollutants as well as transport in the geosphere, hydrosphere, and atmosphere.

  6. X-ray absorption fine structure spectroscopic studies of Octakis(DMSO)lanthanoid(III) complexes in solution and in the solid iodides.

    PubMed

    Persson, Ingmar; Risberg, Emiliana Damian; D'Angelo, Paola; De Panfilis, Simone; Sandström, Magnus; Abbasi, Alireza

    2007-09-17

    Octakis(DMSO)lanthanoid(III) iodides (DMSO = dimethylsulfoxide), [Ln(OS(CH3)2)8]I3, of most lanthanoid(III) ions in the series from La to Lu have been studied in the solid state and in DMSO solution by extended X-ray absorption fine structure (EXAFS) spectroscopy. L3-edge and also some K-edge spectra were recorded, which provided mean Ln-O bond distances for the octakis(DMSO)lanthanoid(III) complexes. The agreement with the average of the Ln-O bond distances obtained in a separate study by X-ray crystallography was quite satisfactory. The crystalline octakis(DMSO)lanthanoid(III) iodide salts have a fairly broad distribution of Ln-O bond distances, ca. 0.1 A, with a few disordered DMSO ligands. Their EXAFS spectra are in excellent agreement with those obtained for the solvated lanthanoid(III) ions in DMSO solution, both of which show slightly asymmetric distributions of the Ln-O bond distances. Hence, all lanthanoid(III) ions are present as octakis(DMSO)lanthanoid(III) complexes in DMSO solution, with the mean Ln-O distances centered at 2.50 (La), 2.45 (Pr), 2.43 (Nd), 2.41 (Sm), 2.40 (Eu), 2.39 (Gd), 2.37 (Tb), 2.36 (Dy), 2.34 (Ho), 2.33 (Er), 2.31 (Tm), and 2.29 A (Lu). This decrease in the Ln-O bond distances is larger than expected from the previously established ionic radii for octa-coordination. This indicates increasing polarization of the LnIII-O(DMSO) bonds with increasing atomic number. However, the S(1s) electron transition energies in the sulfur K-edge X-ray absorption near-edge structure (XANES) spectra, probing the unoccupied molecular orbitals of lowest energy of the DMSO ligands for the [Ln(OS(CH3)2)8](3+) complexes, change only insignificantly from Ln = La to Lu. This indicates that there is no appreciable change in the sigma-contribution to the S-O bond, probably due to a corresponding increase in the contribution from the sulfur lone pair to the bonding.

  7. X-Ray Absorption Fine Structure Spectroscopic Studies of Octakis(DMSO)Lanthanoid(III) Complexes in Solution And in the Solid Iodides

    SciTech Connect

    Persson, I.; Risberg, E.Damian; D'Angelo, P.; Panfilis, S.De; Sandstrom, M.; Abbasi, A.

    2009-06-04

    Octakis(DMSO)lanthanoid(III) iodides (DMSO = dimethylsulfoxide), [Ln(OS(CH{sub 3}){sub 2}){sub 8}]I{sub 3}, of most lanthanoid(III) ions in the series from La to Lu have been studied in the solid state and in DMSO solution by extended X-ray absorption fine structure (EXAFS) spectroscopy. L{sub 3}-edge and also some K-edge spectra were recorded, which provided mean Ln-O bond distances for the octakis(DMSO)lanthanoid(III) complexes. The agreement with the average of the Ln-O bond distances obtained in a separate study by X-ray crystallography was quite satisfactory. The crystalline octakis(DMSO)lanthanoid(III) iodide salts have a fairly broad distribution of Ln-O bond distances, ca. 0.1 {angstrom}, with a few disordered DMSO ligands. Their EXAFS spectra are in excellent agreement with those obtained for the solvated lanthanoid(III) ions in DMSO solution, both of which show slightly asymmetric distributions of the Ln-O bond distances. Hence, all lanthanoid(III) ions are present as octakis(DMSO)lanthanoid(III) complexes in DMSO solution, with the mean Ln-O distances centered at 2.50 (La), 2.45 (Pr), 2.43 (Nd), 2.41 (Sm), 2.40 (Eu), 2.39 (Gd), 2.37 (Tb), 2.36 (Dy), 2.34 (Ho), 2.33 (Er), 2.31 (Tm), and 2.29 {angstrom} (Lu). This decrease in the Ln-O bond distances is larger than expected from the previously established ionic radii for octa-coordination. This indicates increasing polarization of the Ln{sup III}-O(DMSO) bonds with increasing atomic number. However, the S(1s) electron transition energies in the sulfur K-edge X-ray absorption near-edge structure (XANES) spectra, probing the unoccupied molecular orbitals of lowest energy of the DMSO ligands for the [Ln(OS(CH{sub 3}){sub 2}){sub 8}]{sup 3+} complexes, change only insignificantly from Ln = La to Lu. This indicates that there is no appreciable change in the ?-contribution to the S-O bond, probably due to a corresponding increase in the contribution from the sulfur lone pair to the bonding.

  8. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.

    PubMed

    Li, Wei; Joshi, Sunendra R; Hou, Guangjin; Burdige, David J; Sparks, Donald L; Jaisi, Deb P

    2015-01-06

    Nutrient contamination has been one of the lingering issues in the Chesapeake Bay because the bay restoration is complicated by temporally and seasonally variable nutrient sources and complex interaction between imported and regenerated nutrients. Differential reactivity of sedimentary phosphorus (P) pools in response to imposed biogeochemical conditions can record past sediment history and therefore a detailed sediment P speciation may provide information on P cycling particularly the stability of a P pool and the formation of one pool at the expense of another. This study examined sediment P speciation from three sites in the Chesapeake Bay: (i) a North site in the upstream bay, (ii) a middle site in the central bay dominated by seasonally hypoxic bottom water, and (iii) a South site at the bay-ocean boundary using a combination of sequential P extraction (SEDEX) and spectroscopic techniques, including (31)P NMR, P X-ray absorption near edge structure spectroscopy (XANES), and Fe extended X-ray absorption fine structure (EXAFS). Results from sequential P extraction reveal that sediment P is composed predominantly of ferric Fe-bound P and authigenic P, which was further confirmed by solid-state (31)P NMR, XANES, and EXAFS analyses. Additionally, solution (31)P NMR results show that the sediments from the middle site contain high amounts of organic P such as monoesters and diesters, compared to the other two sites, but that these compounds rapidly decrease with sediment depth indicating remineralized P could have precipitated as authigenic P. Fe EXAFS enabled to identify the changes in Fe mineral composition and P sinks in response to imposed redox condition in the middle site sediments. The presence of lepidocrocite, vermiculite, and Fe smectite in the middle site sediments indicates that some ferric Fe minerals can still be present along with pyrite and vivianite, and that ferric Fe-bound P pool can be a major P sink in anoxic sediments. These results provide

  9. Speciation and localization of Zn in the hyperaccumulator Sedum alfredii by extended X-ray absorption fine structure and micro-X-ray fluorescence.

    PubMed

    Lu, Lingli; Liao, Xingcheng; Labavitch, John; Yang, Xiaoe; Nelson, Erik; Du, Yonghua; Brown, Patrick H; Tian, Shengke

    2014-11-01

    Differences in metal homeostasis among related plant species can give important information of metal hyperaccumulation mechanisms. Speciation and distribution of Zn were investigated in a hyperaccumulating population of Sedum alfredii by using extended X-ray absorption fine structure and micro-synchrotron X-ray fluorescence (μ-XRF), respectively. The hyperaccumulator uses complexation with oxygen donor ligands for Zn storage in leaves and stems, and variations in the Zn speciation was noted in different tissues. The dominant chemical form of Zn in leaves was most probably a complex with malate, the most prevalent organic acid in S. alfredii leaves. In stems, Zn was mainly associated with malate and cell walls, while Zn-citrate and Zn-cell wall complexes dominated in the roots. Two-dimensional μ-XRF images revealed age-dependent differences in Zn localization in S. alfredii stems and leaves. In old leaves of S. alfredii, Zn was high in the midrib, margin regions and the petiole, whereas distribution of Zn was essentially uniform in young leaves. Zinc was preferentially sequestered by cells near vascular bundles in young stems, but was highly localized to vascular bundles and the outer cortex layer of old stems. The results suggest that tissue- and age-dependent variations of Zn speciation and distribution occurred in the hyperaccumulator S. alfredii, with most of the Zn complexed with malate in the leaves, but a shift to cell wall- and citric acid-Zn complexes during transportation and storage in stems and roots. This implies that biotransformation in Zn complexation occurred during transportation and storage processes in the plants of S. alfredii.

  10. The C 1s and N 1s near edge x-ray absorption fine structure spectra of five azabenzenes in the gas phase

    SciTech Connect

    Vall-llosera, G.; Gao, B.; Kivimaeki, A.; Coreno, M.; Alvarez Ruiz, J.; Simone, M. de; Aagren, H.; Rachlew, E.

    2008-01-28

    Near edge x-ray absorption fine structure spectra have been measured and interpreted by means of density functional theory for five different azabenzenes (pyridine, pyridazine, pyrimidine, pyrazine, and s-triazine) in the gas phase. The experimental and theoretical spectra at the N 1s and C 1s edges show a strong resonance assigned to the transition of the 1s electron in the respective N or C atoms to the lowest unoccupied molecular orbital with {pi}* symmetry. As opposed to the N 1s edge, at the C 1s edge this resonance is split due to the different environments of the core hole atom in the molecule. The shift in atomic core-level energy due to a specific chemical environment is explained with the higher electronegativity of the N atom compared to the C atom. The remaining resonances below the ionization potential (IP) are associated to {sigma} or {pi} orbitals with mixed valence/Rydberg character. Upon N addition, a reduction of intensity is observed in the Rydberg region at both edges as compared to the intensity in the continuum. Above the IP one or more resonances are seen and ascribed here to transitions to {sigma}* orbitals. Calculating the experimental and theoretical {delta}{sub {pi}} term values at both edges, we observe that they are almost the same within {+-}1 eV as expected for isoelectronic bonded pairs. The term values of the {pi}* and {sigma}* resonances are discussed in terms of the total Z number of the atoms participating in the bond.

  11. Optimizing the crystal environment through extended x-ray absorption fine structure to increase the luminescent lifetimes of Er3+ doped Y2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Dorman, James A.; Choi, Ju H.; Kuzmanich, Gregory; Bargar, John R.; Chang, Jane P.

    2012-04-01

    To predict and optimize luminescence efficiency of rare-earth ion doped (RE) nanophosphors, a relationship between the RE-concentration and the luminescent parameters is often obtained by Judd-Ofelt analysis, where the quality factor (χ =Ω4/Ω6) depends on the Er interactions with other RE elements in the second nearest neighboring shell. In this work, a detailed analysis of the local bonding environment by extended x-ray absorption fine structure (EXAFS) analyses is shown as effective as the Judd-Ofelt analysis to quantify the Er↔RE interaction in the second nearest neighboring shell (ρN=IREr↔RE2/IREr↔RE1). As the physical basis of ρN is consistent to that of χ, the EXAFS analysis becomes a viable alternative to replace Judd-Ofelt analysis to predict the optimum dopant concentration. This approach was corroborated based on analysis of Er3+:Y2O3 and core-shell Er3+:Y2O3|Y2O3 (5 nm shell) nanoparticles (NPs), with Er3+ concentrations up to 20 mol %. The ρN ratio from EXAFS analysis was shown to strongly correlate to the lifetimes extracted from the Judd-Ofelt analysis, both predicting the optimal dopant concentrations to be at 5 mol % and 2 mol % for the Er3+:Y2O3 and core-shell NPs, respectively. This confirms that EXAFS analysis can be used as a more time efficient method to achieve the same outcome typically obtained by Judd-Ofelt analysis, enabling the optimization of the luminescent lifetimes of RE doped nano-phosphors.

  12. Systematic Oxidation of Polystyrene by Ultraviolet-Ozone, Characterized by Near-Edge X-ray Absorption Fine Structure and Contact Angle

    SciTech Connect

    Klein,R.; Fischer, D.; Lenhart, J.

    2008-01-01

    The process of implanting oxygen in polystyrene (PS) via exposure to ultraviolet-ozone (UV-O) was systematically investigated using the characterization technique of near-edge X-ray absorption fine structure (NEXAFS). Samples of PS exposed to UV-O for 10-300 s and washed with isopropanol were analyzed using the carbon and oxygen K-edge NEXAFS partial electron yields, using various retarding bias voltages to depth-profile the oxygen penetration into the surface. Evaluation of reference polymers provided a scale to quantify the oxygen concentration implanted by UV-O treatment. We find that ozone initially reacts with the double bonds on the phenyl rings, forming carbonyl groups, but within 1 min of exposure, the ratio of double to single oxygen bonds stabilizes at a lower value. Oxygen penetrates the film with relative ease, creating a fairly uniform distribution of oxygen within at least the first 4 nm (the effective depth probed by NEXAFS here). Before oxygen accumulates in large concentrations, however, it preferentially degrades the uppermost layer of the film by removing oxygenated low-molecular-weight oligomers. The failure to accumulate high concentrations of oxygen is seen in the nearly constant carbon edge jump, the low concentration of oxygen even at 5 min exposure (58% of that in poly(4-acetoxystyrene), the polymer with the most similarities to UV-O-treated PS), and the relatively high contact angles. At 5 min exposure the oxygen concentration contains ca. 7 atomic % oxygen. The oxygen species that are implanted consist predominantly of single O-C bonds and double OC bonds but also include a small fraction of O-H. UV-O treatment leads a plateau after 2 min exposure in the water contact angle hysteresis, at a value of 67 {+-} 2, due primarily to chemical heterogeneity. Annealing above Tg allows oxygenated species to move short distances away from the surface but not diffuse further than 1-2 nm.

  13. Extended X-ray absorption fine structure investigation of Sn local environment in strained and relaxed epitaxial Ge{sub 1−x}Sn{sub x} films

    SciTech Connect

    Gencarelli, F. Heyns, M.; Grandjean, D.; Shimura, Y.; Vandervorst, W.; Vincent, B.; Loo, R.; Banerjee, D.; Vantomme, A.; Temst, K.

    2015-03-07

    We present an extended X-ray absorption fine structure investigation of the local environment of Sn atoms in strained and relaxed Ge{sub 1−x}Sn{sub x} layers with different compositions. We show that the preferred configuration for the incorporation of Sn atoms in these Ge{sub 1−x}Sn{sub x} layers is that of a α-Sn defect, with each Sn atom covalently bonded to four Ge atoms in a classic tetrahedral configuration. Sn interstitials, Sn-split vacancy complexes, or Sn dimers, if present at all, are not expected to involve more than 2.5% of the total Sn atoms. This finding, along with a relative increase of Sn atoms in the second atomic shell around a central Sn atom in Ge{sub 1−x}Sn{sub x} layers with increasing Sn concentrations, suggests that the investigated materials are homogeneous random substitutional alloys. Within the accuracy of the measurements, the degree of strain relaxation of the Ge{sub 1−x}Sn{sub x} layers does not have a significant impact on the local atomic surrounding of the Sn atoms. Finally, the calculated topological rigidity parameter a** = 0.69 ± 0.29 indicates that the strain due to alloying in Ge{sub 1−x}Sn{sub x} is accommodated via bond stretching and bond bending, with a slight predominance of the latter, in agreement with ab initio calculations reported in literature.

  14. Spectroscopic analysis of small organic molecules: A comprehensive near-edge x-ray-absorption fine-structure study of C{sub 6}-ring-containing molecules

    SciTech Connect

    Kolczewski, C.; Puettner, R.; Martins, M.; Schlachter, A.S.; Snell, G.; Sant'Anna, M.M.; Hermann, K.; Kaindl, G.

    2006-01-21

    We report high-resolution C 1s near-edge x-ray-absorption fine-structure (NEXAFS) spectra of the C{sub 6}-ring-containing molecules benzene (C{sub 6}H{sub 6}), 1,3- and 1,4-cyclohexadiene (C{sub 6}H{sub 8}), cyclohexene (C{sub 6}H{sub 10}), cyclohexane (C{sub 6}H{sub 12}), styrene (C{sub 8}H{sub 8}), and ethylbenzene (C{sub 8}H{sub 10}) which allow us to examine the gradual development of delocalization of the corresponding {pi} electron systems. Due to the high experimental resolution, vibrational progressions can be partly resolved in the spectra. The experimental spectra are compared with theoretical NEXAFS spectra obtained from density-functional theory calculations where electronic final-state relaxation is accounted for. The comparison yields very good agreement between theoretical spectra and experimental results. In all cases, the spectra can be described by excitations to {pi}*- and {sigma}*-type final-state orbitals with valence character, while final-state orbitals of Rydberg character make only minor contributions. The lowest C 1s{yields}1{pi}* excitation energy is found to agree in the (experimental and theoretical) spectra of all molecules except for 1,3-cyclohexadiene (C{sub 6}H{sub 8}) where an energy smaller by about 0.6 eV is obtained. The theoretical analysis can explain this result by different binding properties of this molecule compared to the others.

  15. Near-Edge X-ray Absorption Fine Structure Imaging of Spherical and Flat Counterfaces of Ultrananocrystalline Diamond Tribological Contacts: A Correlation of Surface Chemistry and Friction

    SciTech Connect

    A Konicek; C Jaye; M Hamilton; W Sawyer; D Fischer; R Carpick

    2011-12-31

    A recently installed synchrotron radiation near-edge X-ray absorption fine structure (NEXAFS) full field imaging electron spectrometer was used to spatially resolve the chemical changes of both counterfaces from an ultra-nanocrystalline diamond (UNCD) tribological contact. A silicon flat and Si{sub 3}N{sub 4} sphere were both coated with UNCD, and employed to form two wear tracks on the flat in a linear reciprocating tribometer. The first wear track was produced using a new, unconditioned sphere whose surface was thus conditioned during this first experiment. This led to faster run-in and lower friction when producing a second wear track using the conditioned sphere. The large depth of field of the magnetically guided NEXAFS imaging detector enabled rapid, large area spectromicroscopic imaging of both the spherical and flat surfaces. Laterally resolved NEXAFS data from the tribological contact area revealed that both substrates had an as-grown surface layer that contained a higher fraction of sp{sup 2}-bonded carbon and oxygen which was mechanically removed. Unlike the flat, the film on the sphere showed evidence of having graphitic character, both before and after sliding. These results show that the graphitic character of the sphere is not solely responsible for low friction and short run-in. Rather, conditioning the sphere, likely by removing asperities and passivating dangling bonds, leads to lower friction with less chemical modification of the substrate in subsequent tests. The new NEXAFS imaging spectroscopy detector enabled a more complete understanding of the tribological phenomena by imaging, for the first time, the surface chemistry of the spherical counterface which had been in continual contact during wear track formation.

  16. Characterization of Functionalized Self-Assembled Monolayers and Surface-Attached Interlocking Molecules Using Near-Edge X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Willey, Trevor M.

    2004-04-01

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a ''molecular riveting'' step to hold the mechanically attached

  17. New fine structure cooling rate

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.

    1976-01-01

    One of the dominant electron cooling processes in the ionosphere is caused by electron impact induced fine structure transitions among the ground state levels of atomic oxygen. This fine structure cooling rate is based on theoretical cross sections. Recent advances in the numerical cross section determinations to include polarization effects and more accurate representations of the atomic target result in new lower values. These cross sections are employed in this paper to derive a new fine structure cooling rate which is between 40% and 60% of the currently used rate. A new generalized formula is presented for the cooling rate (from which the fine structure cooling rate is derived), valid for arbitrary mass and temperature difference of the colliding particles and arbitrary inelastic energy difference.

  18. Surface complexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite I: X-ray absorption extended fine structure spectroscopy analysis

    USGS Publications Warehouse

    Waychunas, G.A.; Fuller, C.C.; Davis, J.A.

    2002-01-01

    "Two-line" ferrihydrite samples precipitated and then exposed to a range of aqueous Zn solutions (10-5 to 10-3 M), and also coprecipitated in similar Zn solutions (pH 6.5), have been examined by Zn and Fe K-edge X-ray absorption spectroscopy. Typical Zn complexes on the surface have Zn-O distances of 1.97(0.2) A?? and coordination numbers of about 4.0(0.5), consistent with tetrahedral oxygen coordination. This contrasts with Zn-O distances of 2.11(.02) A?? and coordination numbers of 6 to 7 in the aqueous Zn solutions used in sample preparation. X-ray absorption extended fine structure spectroscopy (EXAFS) fits to the second shell of cation neighbors indicate as many as 4 Zn-Fe neighbors at 3.44(.04) A?? in coprecipitated samples, and about two Zn-Fe neighbors at the same distance in adsorption samples. In both sets of samples, the fitted coordination number of second shell cations decreases as sorption density increases, indicating changes in the number and type of available complexing sites or the onset of competitive precipitation processes. Comparison of our results with the possible geometries for surface complexes and precipitates suggests that the Zn sorption complexes are inner sphere and at lowest adsorption densities are bidentate, sharing apical oxygens with adjacent edge-sharing Fe(O,OH)6 octahedra. Coprecipitation samples have complexes with similar geometry, but these are polydentate, sharing apices with more than two adjacent edge-sharing Fe(O,OH)6 polyhedra. The results are inconsistent with Zn entering the ferrihydrite structure (i.e., solid solution formation) or formation of other Zn-Fe precipitates. The fitted Zn-Fe coordination numbers drop with increasing Zn density with a minimum of about 0.8(.2) at Zn/(Zn + Fe) of 0.08 or more. This change appears to be attributable to the onset of precipitation of zinc hydroxide polymers with mainly tetrahedral Zn coordination. At the highest loadings studied, the nature of the complexes changes further

  19. In situ Fe K-edge X-ray absorption fine structure of a pyrite electrode in a Li/polyethylene oxide (LiClO{sub 4})/FeS{sub 2} battery environment

    SciTech Connect

    Totir, D.; Bae, I.T.; Hu, Y.; Scherson, D.A.; Antonio, M.R.

    1996-12-31

    Electronic and structural properties of materials generated by the reduction and subsequent oxidation of pyrite in a lithium-based solid polymer electrolyte have been examined by in situ fluorescence Fe K-edge X-ray absorption fine structure (XAFS) in a FeS{sub 2}/Li battery environment. The XAFS results obtained are consistent with the formation of metallic iron as one of the products of the full (4-electron) discharge, in agreement with information reported in other laboratories. Extended X-ray absorption fine structure (EXAFS) data reveal that a subsequent 2-electron or 4-electron recharge generates a species with a Fe-S bond distance identical to that of pyrite, d(Fe-S) = 2.259 {angstrom}, with no other clearly detectable interactions due to more distant atoms. Based on the similarities between the metrical parameters and other features in the X-ray absorption near edge structure (XANES), the ferrous sites in these species appear to be tetrahedrally coordinated, as in chalcopyrite (CuFeS{sub 2}), for which d(Fe-S) is 2.257 {angstrom}, and, thus, different than in Li{sub 2} FeS{sub 2}, a material that exhibits longer Fe-S distances.

  20. Antimony(III) complexing with O-bearing organic ligands in aqueous solution: An X-ray absorption fine structure spectroscopy and solubility study

    NASA Astrophysics Data System (ADS)

    Tella, Marie; Pokrovski, Gleb S.

    2009-01-01

    The stability and structure of aqueous complexes formed by trivalent antimony (Sb III) with carboxylic acids (acetic, adipic, malonic, lactic, oxalic, tartaric, and citric acid), phenols (catechol), and amino acids (glycine) having O- and N-functional groups (carboxyl, alcoholic hydroxyl, phenolic hydroxyl and amine) typical of natural organic matter, were determined at 20 and 60 °C from solubility and X-ray absorption fine structure (XAFS) spectroscopy measurements. In organic-free aqueous solutions and in the presence of acetic, adipic, malonic acids and glycine, both spectroscopic and solubility data are consistent with the dominant formation of Sb III hydroxide species, Sb(OH)3-nn+,Sb(OH)30andSb(OH)4-, at strongly acid, acid-to-neutral and basic pH, respectively, demonstrating negligible complexing with mono-functional organic ligands (acetic) or those having non adjacent carboxylic groups (adipic, malonic). In contrast, in the presence of poly-functional carboxylic and hydroxy-carboxylic acids and catechol, Sb III forms stable 1:1 and 1:2 complexes with the studied organic ligands over a wide pH range typical of natural waters (3 < pH < 9). XAFS spectroscopy measurements show that in these species the central Sb III atom has a distorted pseudo-trigonal pyramidal geometry composed of the lone pair of 5s 2 electrons of Sb and four oxygen atoms from two adjacent functional groups of the ligand (O dbnd C-OH and/or C sbnd OH), forming a five-membered bidendate chelate cycle. Stability constants for these species, generated from Sb 2O 3 (rhomb.) solubility experiments, were used to model Sb complexing with natural humic acids possessing the same functional groups as those investigated in this study. Our predictions show that in an aqueous solution of pH between 2 and 10, containing 1 μg/L of Sb and 5 mg/L of dissolved organic carbon (DOC), up to 35% of total dissolved Sb binds to aqueous organic matter via carboxylic and hydroxy-carboxylic groups. This amount of

  1. Modeling sulfur dioxide absorption by fine water spray

    SciTech Connect

    Cheng-Hsiung Huang

    2005-07-01

    A novel theoretical model was developed to determine the removal efficiency of sulfur dioxide using fine water spray. The droplet pH, diameter, S(IV) concentration, sulfur dioxide concentration, and liquid-to-gas ratio are found to influence the absorption of sulfur dioxide by the fine water spray. The results demonstrate that the absorption of sulfur dioxide by the fine water spray increases as the droplet diameter falls. The concentration gradient between the interface of the gaseous and liquid phases causes the absorption of sulfur dioxide by the droplets to increase as the initial S(IV) concentration decreases or the sulfur dioxide concentration increases. The results indicate that the performance of the fine water spray in removing sulfur dioxide is generally improved by reducing the droplet diameter or the initial S(IV) concentration, or by increasing the sulfur dioxide concentration, the droplet pH or the liquid-to-gas ratio. The proposed model reveals the parameters that should be controlled in using a fine water spray device and a method for improving its performance in removing sulfur dioxide.

  2. Nondestructive Speciation Depth Profiling of Complex TiOx Nanolayer Structures by Grazing Incidence X-ray Fluorescence Analysis and Near Edge X-ray Absorption Fine Structure Spectroscopy.

    PubMed

    Pollakowski, Beatrix; Beckhoff, Burkhard

    2015-08-04

    An important challenge of modern material science is the depth-sensitive and nondestructive analysis of the chemical binding state of complex structures consisting of multiple thin layers. In general, the correlation of the material functionality and underlying chemical and physical properties is the key question in view of directed device development, performance, and quality control. It has been shown that the combined method grazing incidence X-ray fluorescence analysis (GIXRF) and near edge X-ray absorption fine structure spectroscopy (NEXAFS) can significantly contribute to the nondestructive chemical analysis of buried thin films and interface structures regarding chemical speciation. Recently, we have enhanced the method to allow for a depth-resolved analysis of multilayered nanoscaled thin film structures. By means of appropriate model systems, the methodology has been developed and successfully validated. The model systems basically consist of a carbon cap layer, two titanium layers differing in their oxidation states and separated by a thin carbon layer, and a silicon substrate covered with molybdenum and a carbon layer. A differential approach has been developed to derive the chemical species of each of the titanium layers.

  3. In-Plane Structure of Underpotentially Deposited Copper on Gold (111) Determined by Surface EXAFS (Extended X-Ray Absorption Fine Structure).

    DTIC Science & Technology

    1988-01-28

    D-Al 263 INN-PLANE STRUCTURE OF UNDERPOTENTIALLY DEPOSITED COPPER /. ON GOLD (Iii) DET (U) PUERTO RICO UNIV RIO PIEDRAS DEPT OF PHVS I CS 0 R...051-0776 TECHNICAL REPORT #33 In-Plane Structure of Underpotentially Deposited Copper on Gold (111) Determined by Surface EXAFS by O.R. Melroy*, M.G...Strueture of Underpotentially Deposited Copper on Gold ( 11) determincd hv Surface EXAFS 0. R. Melroy*, N1. G. Samant, G. L. Borges. and J. G. Gordon

  4. Structure and nucleation mechanism of nickel silicide on Si(111) derived from surface extended-x-ray-absorption fine structure p

    SciTech Connect

    Comin, F.; Rowe, J.E.; Citrin, P.H.

    1983-12-26

    Based on the direct structure determination of the silicide formed at room temperature from <1 monolayer of Ni deposited on Si(111) and from Ni coverages up to five monolayers, a model for silicide growth and interface formation is presented. The model forms a basis for understanding many of the photoemission, ion scattering, and microscopy results from this system.

  5. Adsorption and stability of malonic acid on rutile TiO2 (110), studied by near edge X-ray absorption fine structure and photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Syres, Karen L.; Thomas, Andrew G.; Graham, Darren M.; Spencer, Ben F.; Flavell, Wendy R.; Jackman, Mark J.; Dhanak, Vinod R.

    2014-08-01

    The adsorption of malonic acid on rutile TiO2 (110) has been studied using photoelectron spectroscopy and C K-edge, near edge X-ray fine structure spectroscopy (NEXAFS). Analysis of the O 1s and Ti 2p spectra suggest that the molecule adsorbs dissociatively in a doubly-bidentate adsorption geometry as malonate. The data are unable to distinguish between a chelating bonding mode with the backbone of the molecule lying along the [001] azimuth or a bridging geometry along the direction. Work carried out on a wiggler beamline suggests that the molecule is unstable under irradiation by high-flux synchrotron radiation from this type of insertion device.

  6. X-ray-excited optical luminescence and X-ray absorption fine-structures studies of CdWO4 scintillator.

    PubMed

    Novais, S M V; Valerio, M E G; Macedo, Z S

    2012-07-01

    X-ray-excited optical luminescence (XEOL) emission and excitation spectra as well as the EXAFS signal of CdWO(4) were measured in the energy region of the Cd and W absorption edges. From EXAFS refinement, structural parameters such as number of atoms, distance from the absorbing atom and width of coordination shells in the W neighborhood were determined. The role of W-O interactions on the intrinsic luminescence of CdWO(4) is discussed. The efficiencies of conversion, transfer and emission processes involved in the scintillation mechanism showed to be high when self-trapped excitons are formed locally by direct excitation of W ions. Annihilation of these excitons provides the characteristic scintillation of CdWO(4), a broad band emission with maximum at 500 nm. The presence of two energetically different O positions in the lattice gives rise to the composite structure of the luminescence band, and no influence of extrinsic defects was noticed. A mismatch between the X-ray absorption coefficient and the zero-order luminescence curves corroborates that the direct excitation of Cd ions induces secondary electronic excitations not very effective in transferring energy to the luminescent group, WO(6).

  7. Structural Analysis of the Mn(IV)/Fe(III) Cofactor of Chlamydia Trachomatis Ribonucleotide Reductase By Extended X-Ray Absorption Fine Structure Spectroscopy And Density Functional Theory Calculations

    SciTech Connect

    Younker, J.M.; Krest, C.M.; Jiang, W.; Krebs, C.; Bollinger, J.M.Jr.; Green, M.T.

    2009-05-28

    The class Ic ribonucleotide reductase from Chlamydia trachomatis (C{bar A}) uses a stable Mn(lV)/ Fe(lll) cofactor to initiate nucleotide reduction by a free-radical mechanism. Extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are used to postulate a structure for this cofactor. Fe and Mn K-edge EXAFS data yield an intermetallic distance of -2.92 {angstrom}. The Mn data also suggest the presence of a short 1.74 {angstrom} Mn-O bond. These metrics are compared to the results of DFT calculations on 12 cofactor models derived from the crystal structure of the inactive Fe2(lll/ III) form of the protein. Models are differentiated by the protonation states of their bridging and terminal OH{sub x} ligands as well as the location of the Mn(lV) ion (site 1 or 2). The models that agree best with experimental observation feature a{mu}-1, 3-carboxylate bridge (E120), terminal solvent (H{sub 2}O/OH) to site 1, one {mu}-O bridge, and one {mu}-OH bridge. The site-placement of the metal ions cannot be discerned from the available data.

  8. Probing the influence of the center atom coordination structure in iron phthalocyanine multi-walled carbon nanotube-based oxygen reduction reaction catalysts by X-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Peng, Yingxiang; Li, Zhipan; Xia, Dingguo; Zheng, Lirong; Liao, Yi; Li, Kai; Zuo, Xia

    2015-09-01

    Three different pentacoordinate iron phthalocyanine (FePc) electrocatalysts with an axial ligand (pyridyl group, Py) anchored to multi-walled carbon nanotubes (MWCNTs) are prepared by a microwave method as high performance composite electrocatalysts (FePc-Py/MWCNTs) for the oxygen reduction reaction (ORR). For comparison, tetracoordinate FePc electrocatalysts without an axial ligand anchored to MWCNTs (FePc/MWCNTs) are assembled in the same way. Ultraviolet-visible spectrophotometry (UV-Vis), Raman spectroscopy (RS), and high-resolution transmission electron microscopy (HRTEM) are used to characterize the obtained electrocatalysts. The electrocatalytic activity of the samples is measured by linear sweep voltammetry (LSV), and the onset potential of all of the FePc-Py/MWCNTs electrocatalysts is found to be more positive than that of their FePc/MWCNTs counterparts. X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) spectroscopy are employed to elucidate the relationship between molecular structure and electrocatalytic activity. XPS indicates that higher concentrations of Fe3+ and pyridine-type nitrogen play critical roles in determining the electrocatalytic ORR activity of the samples. XAFS spectroscopy reveals that the FePc-Py/MWCNTs electrocatalysts have a coordination geometry around Fe that is closer to the square pyramidal structure, a higher concentration of Fe3+, and a smaller phthalocyanine ring radius compared with those of FePc/MWCNTs.

  9. Evolution of fcc Cu clusters and their structure changes in the soft magnetic Fe85.2Si1B9P4Cu0.8 (NANOMET) and FINEMET alloys observed by X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Matsuura, M.; Nishijima, M.; Takenaka, K.; Takeuchi, A.; Ofuchi, H.; Makino, A.

    2015-05-01

    It is known that Cu plays an essential role in reducing the grain size of precipitated bcc Fe(Si) nanocrystallites in a nanocrystalline soft-magnetic Fe85.2Si1B9P4Cu0.8 (NANOMET®) alloys like as an Fe73.5Si13.5B9Nb3Cu1 (FINEMET®). However, significant differences are there between two alloys; NANOMET has much higher iron content (˜85%) than FINEMET (73.5%) and the former contains P instead of Nb for the latter. In the present work, the local structure around Cu in FINEMET was measured by X-ray absorption fine structure (XAFS) at 20 K and compared with those of NANOMET during nanocrystallization. Definite differences between NANOMET and FINEMET are found in the way of the evolution of Cu clusters during nanocrystallization. In FINEMET, an fcc structure of Cu is recognized in an as-quenched ribbon indicating existence of a small number of Cu clusters or a very small size of Cu clusters which is stable up to 450 °C, while the fcc Cu clusters are developed rapidly above 450 °C. An fcc structure of the Cu clusters in FINEMET is retained all the way to the end of the nanocrystallization. On the contrary, for NANOMET the local structure around Cu changes in a sequence as "amorphous → fcc → bcc → fcc" by annealing. The reasons of such different behaviors of the local structure around Cu during nanocrystallization are discussed in terms of different contributions of Cu clusters in bcc Fe precipitation between FINEMET and NANOMET. A significantly fast crystallization process with an extraordinary large heat release can be another reason for the transition of the local structure around Cu from fcc to bcc for NANOMET.

  10. The Fe-heme structure of met-indoleamine 2,3-dioxygenase-2 determined by X-ray absorption fine structure

    SciTech Connect

    Aitken, Jade B.; Austin, Christopher J.D.; Hunt, Nicholas H.; Ball, Helen J.; Lay, Peter A.

    2014-07-18

    Highlights: • IDO2 is a newly discovered tryptophan metabolising enzyme with a role in immunity. • IDO2’s active site contains a heme moiety for tryptophan binding and catabolism. • EXAFS/XANES analysis provides the first data of an IDO2 Fe-heme environment. • IDO2 Fe-heme exists as a low spin bis(His) form at 10 K; mixed spin-state at RT. - Abstract: Multiple-scattering (MS) analysis of EXAFS data on met-indoleamine 2,3-dioxygenase-2 (IDO2) and analysis of XANES have provided the first direct structural information about the axial donor ligands of the iron center for this recently discovered protein. At 10 K, it exists in a low-spin bis(His) form with Fe–N{sub p}(av) = 1.97 Å, the Fe–N{sub Im} bond lengths of 2.11 Å and 2.05 Å, which is in equilibrium with a high-spin form at room temperature. The bond distances in the low-spin form are consistent with other low-spin hemeproteins, as is the XANES spectrum, which is closer to that of the low-spin met-Lb than that of the high-spin met-Mb. The potential physiological role of this spin equilibrium is discussed.

  11. In Situ X-ray Absorption Fine Structure Studies on the Effect of pH on Pt Electronic Density during Aqueous Phase Reforming of Glycerol

    SciTech Connect

    Karim, Ayman M.; Howard, Christopher J.; Roberts, Benjamin Q.; Kovarik, Libor; Zhang, Liang; King, David L.; Wang, Yong

    2012-10-30

    In situ x-ray absorption spectroscopy (XAS) results on correlating the Pt local coordination and electronic structure with the Pt/C catalyst activity and selectivity during aqueous reforming of glycerol at different pH are reported. The results show that both low and high pH favor C-O cleavage over that of C-C. However, the selectivity towards C-O bond cleavage was higher under the acidic conditions. XANES measurements under reaction conditions showed that low pH increased the Pt electron density while the effect of basic conditions was minimal. ΔXANES was used to estimate the coverage of adsorbates under reaction conditions and the results suggest a change in the adsorbates coverage by the acidic conditions, resulting in higher electron density on Pt

  12. Structure of AsxTe100-x (20<=x<=60) glasses investigated with x-ray absorption fine structure, x-ray and neutron diffraction, and reverse Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Jóvári, P.; Yannopoulos, S. N.; Kaban, I.; Kalampounias, A.; Lishchynskyy, I.; Beuneu, B.; Kostadinova, O.; Welter, E.; Schöps, A.

    2008-12-01

    A systematic and detailed investigation of the structure of AsxTe100-x glasses (20⩽x⩽60) has been undertaken using a combination of structure-probing techniques including high energy x-ray diffraction, neutron diffraction, and x-ray absorption fine structure measurements at the As and TeK edges. The experimental datasets were modeled simultaneously with the reverse Monte Carlo simulation technique. The results revealed that homonuclear bonding for both As and Te atoms is important over the whole glass concentration region studied. At the stoichiometric composition (As40Te60) the average As-As and Te-Te coordination numbers are as high as 1.7±0.2 and 1.3±0.1, respectively. The number of As-As and Te-Te bonds, as well as the average number of bonds/atom, evolves monotonically with composition. Arsenic atoms are threefold coordinated for all compositions investigated. It has also been shown that, in contrast to the results of previous studies, Te is predominantly twofold coordinated for x ⩽50. Our results suggest that (i) chemical ordering does not play a decisive role in the formation of short-range order and (ii) similar to some other amorphous tellurides (e.g., Ge2Sb2Te5, GeSb2Te4, and As25Si40Te35) binary AsxTe100-x (x ⩽50) alloys obey the "8-N" rule. A detailed comparison has been advanced between the structural details obtained from the present study and several physicochemical properties of As-Te. The comparison revealed striking similarities between the concentration dependence of structural and physicochemical properties.

  13. Fine Structure in Solar Flares.

    PubMed

    Warren

    2000-06-20

    We present observations of several large two-ribbon flares observed with both the Transition Region and Coronal Explorer (TRACE) and the soft X-ray telescope on Yohkoh. The high spatial resolution TRACE observations show that solar flare plasma is generally not confined to a single loop or even a few isolated loops but to a multitude of fine coronal structures. These observations also suggest that the high-temperature flare plasma generally appears diffuse while the cooler ( less, similar2 MK) postflare plasma is looplike. We conjecture that the diffuse appearance of the high-temperature flare emission seen with TRACE is due to a combination of the emission measure structure of these flares and the instrumental temperature response and does not reflect fundamental differences in plasma morphology at the different temperatures.

  14. Fine structures at pore boundary

    NASA Astrophysics Data System (ADS)

    Bharti, L.; Quintero Noda, C.; Joshi, C.; Rakesh, S.; Pandya, A.

    2016-10-01

    We present high resolution observations of fine structures at pore boundaries. The inner part of granules towards umbra show dark striations which evolve into a filamentary structure with dark core and `Y' shape at the head of the filaments. These filaments migrate into the umbra similar to penumbral filaments. These filaments show higher temperature, lower magnetic field strength and more inclined field compared to the background umbra. The optical depth stratification of physical quantities suggests their similarity with penumbral filaments. However, line-of-sight velocity pattern is different from penumbral filaments where they show downflows in the deeper layers of the atmosphere while the higher layers show upflows. These observations show filamentation in a simple magnetic configuration.

  15. Complex polarization propagator approach in the restricted open-shell, self-consistent field approximation: the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine.

    PubMed

    Linares, Mathieu; Stafström, Sven; Rinkevicius, Zilvinas; Ågren, Hans; Norman, Patrick

    2011-05-12

    A presentation of the complex polarization propagator in the restricted open-shell self-consistent field approximation is given. It rests on a formulation of a resonant-convergent, first-order polarization propagator approach that makes it possible to directly calculate the X-ray absorption cross section at a particular frequency without explicitly addressing the excited states. The quality of the predicted X-ray spectra relates only to the type of density functional applied without any separate treatment of dynamical relaxation effects. The method is applied to the calculation of the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine. Comparison is made between the spectra of the radicals and those of the corresponding cations and anions to assess the effect of the increase of electron charge in the frontier orbital. The method offers the possibility for unique assignment of symmetry-independent atoms. The overall excellent spectral agreement motivates the application of the method as a routine precise tool for analyzing X-ray absorption of large systems of technological interest.

  16. Confocal micrometer-scale X-ray fluorescence and X-ray absorption fine structure studies of uranium speciation in a tertiary sediment from a waste disposal natural analogue site.

    PubMed

    Denecke, Melissa A; Janssens, Koen; Proost, Kristof; Rothe, Jörg; Noseck, Ulrich

    2005-04-01

    Investigations by micrometer-scale X-ray fluorescence and X-ray absorption fine structure (micro-XRF and micro-XAFS) recorded in a confocal geometry on a bore core section of a uranium-rich tertiary sediment are performed in order to assess mechanisms leading to immobilization of the uranium during diagenesis. Results show uranium to be present as a tetravalent phosphate and that U(IV) is associated with As(V). Arsenic present is either As(V) or As(O); we found no evidence for As(III). The As(O) is observed to be intimately associated with the surface of Fe(II) nodules and likely arsenopyrite. A hypothesis for the mechanism of uranium immobilization is proposed, where arsenopyrite acted as reductant of groundwater-dissolved U(VI), leading to precipitation of less soluble U(IV) and thereby forming As(V).

  17. Structural characterization of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature using neutron powder diffraction and extended X-ray absorption fine structure techniques

    SciTech Connect

    Mansour, A. N.; Wong-Ng, W.; Huang, Q.; Tang, W.; Thompson, A.; Sharp, J.

    2014-08-28

    The structure of Bi{sub 2}Te{sub 3} (Seebeck coefficient Standard Reference Material (SRM™ 3451)) and the related phase Sb{sub 2}Te{sub 3} have been characterized as a function of temperature using the neutron powder diffraction (NPD) and the extended X-ray absorption fine structure (EXAFS) techniques. The neutron structural studies were carried out from 20 K to 300 K for Bi{sub 2}Te{sub 3} and from 10 K to 298 K for Sb{sub 2}Te{sub 3}. The EXAFS technique for studying the local structure of the two compounds was conducted from 19 K to 298 K. Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} are isostructural, with a space group of R3{sup ¯}m. The structure consists of repeated quintuple layers of atoms, Te2-M-Te1-M-Te2 (where M = Bi or Sb) stacking along the c-axis of the unit cell. EXAFS was used to examine the bond distances and static and thermal disorders for the first three shells of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature. The temperature dependencies of thermal disorders were analyzed using the Debye and Einstein models for lattice vibrations. The Debye and Einstein temperatures for the first two shells of Bi{sub 2}Te{sub 3} are similar to those of Sb{sub 2}Te{sub 3} within the uncertainty in the data. However, the Debye and Einstein temperatures for the third shell of Bi-Bi are significantly lower than those of the third shell of Sb-Sb. The Einstein temperature for the third shell is consistent with a soft phonon mode in both Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3}. The lower Einstein temperature of Bi-Bi relative to Sb-Sb is consistent with the lower value of thermal conductivity of Bi{sub 2}Te{sub 3} relative to Sb{sub 2}Te{sub 3}.

  18. Fine Structure of Plasmaspheric Hiss

    NASA Astrophysics Data System (ADS)

    Summers, D.; Omura, Y.; Nakamura, S.; Kletzing, C.

    2014-12-01

    Plasmaspheric hiss plays a key role in controlling the structure and dynamics of Earth's radiation belts.The quiet time slot region between the inner and outer belts can be explained as a steady-state balance between earthward radial diffusion and pitch-angle scattering loss of energetic electrons to the atmosphere induced by plasmaspheric hiss. Plasmaspheric hiss can also induce gradual precipitation loss of MeV electrons from the outer radiation belt. Plasmaspheric hiss has been widely regarded as a broadband,structureless,incoherent emission. Here, by examining burst-mode vector waveform data from the EMFISIS instrument on the Van Allen Probes mission,we show that plasmaspheric hiss is a coherent emission with complex fine structure. Specifically, plasmaspheric hiss appears as discrete rising tone and falling tone elements. By means of waveform analysis we identify typical amplitudes,phase profiles,and sweep rates of the rising and falling tone elements. The new observations reported here can be expected to fuel a re-examination of the properties of plasmaspheric hiss, including a further re-analysis of the generation mechanism for hiss.

  19. Fine Structure of Thiobacillus thiooxidans.

    PubMed

    Mahoney, R P; Edwards, M R

    1966-08-01

    Mahoney, Robert P. (Skidmore College, Saratoga Springs, N.Y.), and Mercedes R. Edwards. Fine structure of Thiobacillus thiooxidans. J. Bacteriol. 92: 487-495. 1966.-Thin section analysis of the chemosynthetic autotroph Thiobacillus thiooxidans revealed structures comparable to gram-negative heterotrophic bacteria. Although this species is unique in that it oxidizes elemental sulfur for energy, uses carbon dioxide as its sole source of carbon, and can withstand a pH of less than 1, thin sections revealed a profile of the cell envelope (cell wall and plasmalemma) similar to other gram-negative species which have more common physiological traits. The cell wall is composed of five layers with an overall width of approximately 200 A, and the plasmalemma appears as a conventional "unit membrane" with a width of about 85 A. Volutin granules and less-dense bodies of similar shape and size were frequently observed in close association with the nucleoplasm. The nature and function of these bodies are unknown at this time.

  20. X-ray diffraction and extended X-ray absorption fine structure study of epitaxial mixed ternary bixbyite Pr{sub x}Y{sub 2-x}O{sub 3} (x = 0-2) films on Si (111)

    SciTech Connect

    Niu, G.; Zoellner, M. H.; Zaumseil, P.; Pouliopoulos, A.; Boscherini, F.

    2013-01-28

    Ternary single crystalline bixbyite Pr{sub x}Y{sub 2-x}O{sub 3} films over the full stoichiometry range (x = 0-2) have been epitaxially grown on Si (111) with tailored electronic and crystallographic structure. In this work, we present a detailed study of their local atomic environment by extended X-ray absorption fine structure at both Y K and Pr L{sub III} edges, in combination with complementary high resolution x-ray diffraction measurements. The local structure exhibits systematic variations as a function of the film composition. The cation coordination in the second and third coordination shells changes with composition and is equal to the average concentration, implying that the Pr{sub x}Y{sub 2-x}O{sub 3} films are indeed fully mixed and have a local bixbyite structure with random atomic-scale ordering. A clear deviation from the virtual crystal approximation for the cation-oxygen bond lengths is detected. This demonstrates that the observed Vegard's law for the lattice variation as a function of composition is based microscopically on a more complex scheme related to local structural distortions which accommodate the different cation-oxygen bond lengths.

  1. Study of the Local Structure of GALLIUM(X)INDIUM(1 -X)ARSENIDE(Y)ANTIMONY(1-Y), a Quaternary Iii-V Semiconductor Alloy, Using the Extended X-Ray Absorption Fine Structure (exafs) Technique.

    NASA Astrophysics Data System (ADS)

    Islam, Shaheen Momtaz

    The technological importance of quaternary semiconductor alloys has stimulated considerable interest in the basic physics of these materials. Understanding of the local structure of these alloys is of fundamental importance. In this work, the extended x-ray absorption fine structure (EXAFS) technique has been used to investigate the atomic-scale structure of the III-V quaternary alloy series Ga_{rm x}In _{rm 1-x}As _{rm y}Sb_ {rm 1-y}, where Ga and In atoms occupy one sublattice and As and Sb atoms are distributed over the other sublattice. Two series of these alloys were studied with varying x (from 0.05 to 0.95) and keeping y constant (y = 0.05 or y = 0.10). The samples were polycrystalline powders of various compositions. EXAFS data were obtained at the As K-edge at room temperature for all these alloys. Our measurements reveal the number and types of atoms and the nearest neighbor distances about the average As atom. Our results show a consistent deviation from random site occupation in all these alloys, with Ga-As (and therefore In-Sb) pairs being clearly preferred over In-As and Ga -Sb pairs. This result is consistent with a theoretical model based on the pair approximation. From EXAFS measurements we also observe that the variation of Ga-As and In-As near-neighbor distances with composition is linear and that the bond-lengths remain nearly constant, closer to those in the pure binary compounds and varying only by 0.03 to 0.05A. On the other hand, the x-ray diffraction results show that the average cation -anion distance in the alloys changes by as much as 0.165A in accordance with Vegard's law. This linear variation of lattice constant with composition between the end members suggests that the atomic volume is conserved regardless of the details of the local distortions of lattice.

  2. Two-channel opto-acoustic diode laser spectrometer and fine structure of methane absorption spectra in 6070-6180 cm-1 region.

    PubMed

    Kapitanov, V A; Ponomarev, Yu N; Tyryshkin, I S; Rostov, A P

    2007-04-01

    We describe the hardware and software of the high-sensitive two-channel opto-acoustic spectrometer with a near infrared diode laser. A semiconductor TEC-100 laser with outer resonator generates a continuous single-frequency radiation in the range of 6040-6300 cm-1 with spectral resolution better that 10 MHz. The newly designed model of photo-acoustic cells in the form of a ring type resonator was used in the spectrometer, and the system allows the measurement of a weak absorption coefficient equal to 1.4x10(-7) cm-1 Hz-1/2 with a laser radiation power of 0.003 W. The methane absorption spectra within a range of 6080-6180 cm-1 were measured with a spectral resolution of 10 MHz and the signal to noise ratio more than 10(3). Six hundred absorption lines were recorded, which is twice as many as in HITRAN-2004. The accurate measurements of the half-width and shift of methane unresolved triplet R3 of 2nu3 band permit us to determine values of the broadening and shift coefficients for CH4-air, CH4-N2, and CH4-SF6 mixtures.

  3. Origin of the magnetic transition at 100 K in ε-Fe2O3 nanoparticles studied by X-ray absorption fine structure spectroscopy.

    PubMed

    Sanchez, Jesus Lopez; Muñoz-Noval, Alvaro; Castellano, Carlo; Serrano, Aida; Del Campo, Adolfo; Cabero, Mariona; Varela, Maria; Abuín, Manuel; de la Figuera, Juan; Marco, José F; Castro, German R; Rodriguez de la Fuente, Oscar; Carmona, Noemi

    2017-10-02

    We present a study of the correlation between the magnetic phase transition and the structural distortion observed at 100 K in ε-Fe2O3. For this purpose, we have designed a novel one-pot sol-gel method assisted by glycerol, which reproducibly provides samples with a nominal 100% concentration of ε-Fe2O3 nanoparticles embedded in a SiO2 matrix. The high crystallinity of the samples and the absence of other iron oxide polymorphs has allowed us to perform, for the first time, temperature-dependent X-ray absorption fine structure spectroscopy experiments, with the aim of investigating the origin of the magnetic quenching anomaly observed at 100 K. The deformation of the structure at a local scale, where the tetrahedral and octahedral Fe sites undergo distortions of different intensities, has been simulated to fulfill the long-range order. Our results point to a local structure distortion accompanied by the magnetism quenching through a magneto-elastic coupling. © 2017 IOP Publishing Ltd.

  4. X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure study of water adsorption on pyridine-terminated thiolate self-assembled monolayers.

    PubMed

    Zubavichus, Yan; Zharnikov, Michael; Yang, Yongjie; Fuchs, Oliver; Umbach, Eberhard; Heske, Clemens; Ulman, Abraham; Grunze, Michael

    2004-12-07

    Adsorption of water on self-assembled monolayers (SAMs) of 4-(4-mercaptophenyl)pyridine on gold at low temperatures under ultrahigh vacuum conditions is studied by synchrotron radiation X-ray photoelectron and absorption spectroscopy. Water adsorption induces a strong modification of the chemical state of the pyridine N atoms at the SAM/ice interface, indicative for strong H bonding and partial proton transfer between water molecules and pyridine moieties. Additionally, the initial molecular orientation within the SAM is changed upon formation of an adsorbed water multilayer.

  5. Surface metallization on Si(001) at elevated temperatures studied by angle-resolved photoemission spectroscopy and near-edge x-ray absorption fine structure: Effect of thermal adatoms

    NASA Astrophysics Data System (ADS)

    Jeon, C.; Hwang, C. C.; Kang, T.-H.; Kim, K.-J.; Kim, B.; Kim, Y.; Noh, D. Y.; Park, C.-Y.

    2009-10-01

    We report the metallization of the Si(001)2×1 surface at elevated temperatures using angle-resolved photoemission spectroscopy (ARPES) and near-edge x-ray absorption fine structure (NEXAFS). A metallic state (Sm) over the EF , which corresponds to the empty (π∗) state of the 2×1 asymmetric dimer model, increases in the ARPES spectra, while the π∗ state decreases in the NEXAFS spectra with increasing temperature. Since Sm is observed even at 400 K, the structural phase transition at ˜900K [Phys. Rev. Lett. 91, 126103 (2003); Phys. Rev. Lett. 77, 3869 (1996)] is not related to the metallization. Thermal excitation seems to be too small to detect in ARPES in initial stage of the metallization and cannot account for the different behavior of Sm and the filled surface state of the up-dimer upon oxidation. We suggest, based on the existence of Sm even at 400 K and the oxidation behavior, that the metallization is attributed to thermal adatoms.

  6. A high-resolution near-edge x-ray absorption fine structure investigation of the molecular orientation in the pentacene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) pentacene/system.

    PubMed

    Casu, M B; Cosseddu, P; Batchelor, D; Bonfiglio, A; Umbach, E

    2008-01-07

    We present x-ray photoemission spectroscopy and highly resolved near-edge x-ray absorption fine structure spectroscopy measurements taken on pentacene thin films of different thicknesses deposited on a spin coated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) substrate. Thin films of pentacene were prepared by using organic molecular beam deposition in situ using strictly controlled evaporation conditions. Our investigations show that pentacene thin films on PEDOT:PSS are characterized by upright standing molecules. Due to the strong dichroic behavior, the calculated values of the molecular orientation give a clear indication not only of the real molecular arrangement in the films but also of a high orientational order. This high degree of molecular orientation order is a characteristic already of the first layer. The films show the tendency to grow on the PEDOT:PSS substrate following an island-fashion mode, with a relatively narrow intermixing zone at the interface between the pentacene and the polymer blend. The peculiarity of the growth of pentacene on PEDOT:PSS is due to the fact that the substrate does not offer any template for the nucleated films and thus exerts a lateral order toward the crystal structure arrangement. Under these conditions, the upright orientation of the molecules in the films minimizes the energy required for the system stability.

  7. Iron environment in ferritin with large amounts of phosphate, from Azotobacter vinelandii and horse spleen, analyzed using Extended X-ray Absorption fine Structure (EXAFS)

    SciTech Connect

    Rohrer, J.S.; Islam, Q.T.; Sayes, D.E.; Theil, E.C. ); Watt, G.D. )

    1990-01-09

    The iron core of proteins in the ferritin family displays structural variations that includes phosphate content was well as the number and the degree of ordering of the iron atoms. Earlier studies had shown that ferritin iron cores naturally high in phosphate, e.g., Azotobacter vinelandii (AV) ferritin had decreased long-range order. Here, the influence of phosphate on the local structure around iron in ferritin cores is reported, comparing the EXAFS of AV ferritin, reconstituted ferritin and native horse spleen ferritin. In contrast, when the phosphate content was high in AV ferritin and horse spleen ferritin reconstituted with phosphate, the average iron atom had five to six phosphorus neighbors at 3.17 {angstrom}. Moreover, the number of detectable iron neighbors was lower when phosphate was high or present during reconstitution and the interatomic distance was longer indicating that some phosphate bridges neighboring iron atoms. However, the decrease in the number of detectable iron-iron neighbors compared to HSF and the higher number of Fe-P interactions relative to Fe-Fe interactions suggest that some phosphate ligands were chain termini, or blocked crystal growth, and/or introduced defects which contributed both to the long-range disorder and to altered redox properties previously observed in AV ferritin.

  8. Colorful Structure at Fine Scales

    NASA Image and Video Library

    2017-09-07

    These are the highest-resolution color images of any part of Saturn's rings, to date, showing a portion of the inner-central part of the planet's B Ring. The view is a mosaic of two images that show a region that lies between 61,300 and 65,600 miles (98,600 and 105,500 kilometers) from Saturn's center. This image is a natural color composite, created using images taken with red, green and blue spectral filters. The pale tan color is generally not perceptible with the naked eye in telescope views, especially given that Saturn has a similar hue. The material responsible for bestowing this color on the rings -- which are mostly water ice and would otherwise appear white -- is a matter of intense debate among ring scientists that will hopefully be settled by new in-situ observations before the end of Cassini's mission. The different ringlets seen here are part of what is called the "irregular structure" of the B ring. Cassini radio occultations of the rings have shown that these features have extremely sharp boundaries on even smaller scales (radially, or along the direction outward from Saturn) than the camera can resolve here. Closer to Saturn, the irregular structures become fuzzier and more rounded, less opaque, and their color contrast diminishes. The narrow ringlets in the middle of this scene are each about 25 miles (40 kilometers) wide, and the broader bands at right are about 200 to 300 miles (300 to 500 kilometers) across. It remains unclear exactly what causes the variable brightness of these ringlets and bands -- the basic brightness of the ring particles themselves, shadowing on their surfaces, their absolute abundance, and how densely the particles are packed, may all play a role. The second image (Figure 1) is a color-enhanced version. Blue colors represent areas where the spectrum at visible wavelengths is less reddish (meaning the spectrum is flatter toward red wavelengths), while red colors represent areas that are spectrally redder (meaning the

  9. Interrogation of Surface, Skin, and Core Orientation in Thermotropic Liquid-Crystalline Copolyester Moldings by Near-Edge X-ray Absorption Fine Structure and Wide-Angle X-ray Scattering

    SciTech Connect

    Rendon,S.; Bubeck, R.; Thomas, L.; Burghardt, W.; Hexemer, A.; Fischer, D.

    2007-01-01

    Injection molding thermotropic liquid-crystalline polymers (TLCPs) usually results in the fabrication of molded articles that possess complex states of orientation that vary greatly as a function of thickness. 'Skin-core' morphologies are often observed in TLCP moldings. Given that both 'core' and 'skin' orientation states may often differ both in magnitude and direction, deconvolution of these complex orientation states requires a method to separately characterize molecular orientation in the surface region. A combination of two-dimensional wide-angle X-ray scattering (WAXS) in transmission and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is used to probe the molecular orientation in injection molded plaques fabricated from a 4,4'-dihydroxy-{alpha}-methylstilbene (DH{alpha}MS)-based thermotropic liquid crystalline copolyester. Partial electron yield (PEY) mode NEXAFS is a noninvasive ex situ characterization tool with exquisite surface sensitivity that samples to a depth of 2 nm. The effects of plaque geometry and injection molding processing conditions on surface orientation in the regions on- and off- axis to the centerline of injection molded plaques are presented and discussed. Quantitative comparisons are made between orientation parameters obtained by NEXAFS and those from 2D WAXS in transmission, which are dominated by the microstructure in the skin and core regions. Some qualitative comparisons are also made with 2D WAXS results from the literature.

  10. Extended x-ray-absorption fine-structure observation of collinear ordering of Fe-Sn-Fe atoms in the Chevrel-phase superconductor SnFe/sub 0. 05/Mo/sub 6/S/sub 8/

    SciTech Connect

    Vaishnava, P.P.; Kimball, C.W.; Matykiewicz, J.L.; Fradin, F.Y.; Shenoy, G.K.; Montano, P.A.

    1986-10-01

    Extended x-ray-absorption fine-structure (EXAFS) and x-ray-diffraction studies have been conducted on the Chevrel-phase superconductor SnFe/sub 0.05/Mo/sub 6/S/sub 8/. The site symmetry of the iron is found to be similar to that of copper in the high-temperature phase of Cu/sub 1.8/Mo/sub 6/S/sub 8/. EXAFS analysis yielded interatomic distances, e.g., Fe-Sn and Fe-S, in this compound. The Fe-S distances are found to be characteristic of iron sulfides (e.g., FeS and Fe/sub 7/S/sub 8/). Through the observation of focused multiple scattering, a distance corresponding to a linear array of Fe-Sn-Fe atoms was measured. Iron atoms were found to be situated in two different configurations, one where iron has only a tin neighbor and the other where a linear-chain-like configuration of Fe-Sn-Fe atoms occurs.

  11. Chemical kinetics of Cs species in an alkali-activated municipal solid waste incineration fly ash and pyrophyllite-based system using Cs K-edge in situ X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    Shiota, Kenji; Nakamura, Takafumi; Takaoka, Masaki; Nitta, Kiyofumi; Oshita, Kazuyuki; Fujimori, Takashi; Ina, Toshiaki

    2017-05-01

    We conducted in situ X-ray absorption fine structure (in situ XAFS) analysis at the Cs K-edge to investigate the chemical kinetics of Cs species during reaction in an alkali-activated municipal solid waste incineration fly ash (MSWIFA) and pyrophyllite-based system. Understanding the kinetics of Cs is essential to the design of appropriate conditions for Cs stabilization. In situ XAFS analysis of four pastes, prepared from NaOHaq, sodium silicate solution, pyrophyllite, and MSWIFA with the addition of CsCl, was conducted in custom-built reaction cells at four curing temperatures (room temperature, 60 °C, 80 °C, 105 °C) for approximately 34 h. The results indicated that the change in Cs species during reaction at room temperature was small, while changes at higher temperatures were faster and more extreme, with the fastest conversion to pollucite occurring at 105 °C. Further analysis using a leaching test and a simple reaction model for Cs species during reaction showed that the pollucite formation rate was dependent on the curing temperature and had a significant negative correlation with Cs leaching. The activation energy of pollucite formation was estimated to be 31.5 kJ/mol. These results revealed that an important change in the chemical state of Cs occurs during reaction in the system.

  12. Experimental study of germanium adsorption on goethite and germanium coprecipitation with iron hydroxide: X-ray absorption fine structure and macroscopic characterization

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Pokrovski, G. S.; Schott, J.; Galy, A.

    2006-07-01

    Adsorption of germanium on goethite was studied at 25 °C in batch reactors as a function of pH (1-12), germanium concentration in solution (10 -7 to 0.002 M) and solid/solution ratio (1.8-17 g/L). The maximal surface site density determined via Ge adsorption experiments at pH from 6 to 10 is equal to 2.5 ± 0.1 μmol/m 2. The percentage of adsorbed Ge increases with pH at pH < 9, reaches a maximum at pH ˜ 9 and slightly decreases when pH is further increased to 11. These results allowed generation of a 2-p K Surface Complexation Model (SCM) which implies a constant capacitance of the electric double layer and postulates the presence of two Ge complexes, >FeO-Ge(OH)30 and >FeO-GeO(OH)2-, at the goethite-solution interface. Coprecipitation of Ge with iron oxy(hydr)oxides formed during Fe(II) oxidation by atmospheric oxygen or by Fe(III) hydrolysis in neutral solutions led to high Ge incorporations in solid with maximal Ge/Fe molar ratio close to 0.5. The molar Ge/Fe ratio in precipitated solid is proportional to that in the initial solution according to the equation (Ge/Fe) solid = k × (Ge/Fe) solution with 0.7 ⩽ k ⩽ 1.0. The structure of adsorbed and coprecipitated Ge complexes was further characterized using XAFS spectroscopy. In agreement with previous data on oxyanions adsorption on goethite, bi-dentate bi-nuclear surface complexes composed of tetrahedrally coordinated Ge attached to the corners of two adjacent Fe octahedra represent the dominant contribution to the EXAFS signal. Coprecipitated samples with Ge/Fe molar ratios >0.1, and samples not aged in solution (<1 day) having intermediate Ge/Fe ratios (0.01-0.1) show 4 ± 0.3 oxygen atoms at 1.76 ± 0.01 Å around Ge. Samples less concentrated in Ge (0.001 < Ge/Fe < 0.10) and aged longer times in solution (up to 280 days) exhibit a splitting of the first atomic shell with Ge in both tetrahedral ( R = 1.77 ± 0.02 Å) and octahedral ( R = 1.92 ± 0.03 Å) coordination with oxygen. In these samples

  13. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING

    SciTech Connect

    Gunár, Stanislav; Mackay, Duncan H.

    2015-04-20

    We present the first 3D whole-prominence fine structure model. The model combines a 3D magnetic field configuration of an entire prominence obtained from nonlinear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Through the use of a novel radiative transfer visualization technique for the Hα line such plasma-loaded magnetic field model produces synthetic images of the modeled prominence comparable with high-resolution observations. This allows us for the first time to use a single technique to consistently study, in both emission on the limb and absorption against the solar disk, the fine structures of prominences/filaments produced by a magnetic field model.

  14. Effect of different thickness crystalline SiC buffer layers on the ordering of MgB{sub 2} films probed by extended x-ray absorption fine structure

    SciTech Connect

    Putri, W. B. K.; Tran, D. H.; Kang, B.; Lee, O. Y.; Kang, W. N.; Miyanaga, T.; Yang, D. S.

    2014-03-07

    Extended X-ray absorption fine structure (EXAFS) spectroscopy is a powerful method to investigate the local structure of thin films. Here, we have studied EXAFS of MgB{sub 2} films grown on SiC buffer layers. Crystalline SiC buffer layers with different thickness of 70, 100, and 130 nm were deposited on the Al{sub 2}O{sub 3} (0001) substrates by using a pulsed laser deposition method, and then MgB{sub 2} films were grown on the SiC buffer layer by using a hybrid physical-chemical vapor deposition technique. Transition temperature of MgB{sub 2} film decreased with increasing thickness of SiC buffer layer. However, the T{sub c} dropping went no farther than 100 nm-thick-SiC. This uncommon behavior of transition temperature is likely to be created from electron-phonon interaction in MgB{sub 2} films, which is believed to be related to the ordering of MgB{sub 2} atomic bonds, especially in the ordering of Mg–Mg bonds. Analysis from Mg K-edge EXAFS measurements showed interesting ordering behavior of MgB{sub 2} films. It is noticeable that the ordering of Mg–B bonds is found to decrease monotonically with the increase in SiC thickness of the MgB{sub 2} films, while the opposite happens with the ordering in Mg–Mg bonds. Based on these results, crystalline SiC buffer layers in MgB{sub 2} films seemingly have evident effects on the alteration of the local structure of the MgB{sub 2} film.

  15. Cosmological constant, fine structure constant and beyond

    NASA Astrophysics Data System (ADS)

    Wei, Hao; Zou, Xiao-Bo; Li, Hong-Yu; Xue, Dong-Ze

    2017-01-01

    In the present work, we consider the cosmological constant model Λ ∝ α ^{-6}, which is well motivated from three independent approaches. As is well known, the hint of varying fine structure constant α was found in 1998. If Λ ∝ α ^{-6} is right, it means that the cosmological constant Λ should also be varying. Here, we try to develop a suitable framework to model this varying cosmological constant Λ ∝ α ^{-6}, in which we view it from an interacting vacuum energy perspective. Then we consider the observational constraints on these models by using the 293 Δ α /α data from the absorption systems in the spectra of distant quasars. We find that the model parameters can be tightly constrained to the very narrow ranges of O(10^{-5}) typically. On the other hand, we can also view the varying cosmological constant model Λ ∝ α ^{-6} from another perspective, namely it can be equivalent to a model containing "dark energy" and "warm dark matter", but there is no interaction between them. We find that this is also fully consistent with the observational constraints on warm dark matter.

  16. Spectropolarimetry of fine magnetized structures in the upper solar atmosphere

    NASA Astrophysics Data System (ADS)

    Schad, Thomas Anthony

    2013-12-01

    One of the earliest indications of magnetic fields acting in the solar atmosphere came at the beginning of the 20th century when George Hale noted a "decided definiteness of structure" in photographs within the Hydrogen Balmer-alpha line core. Fine structure both in the chromosphere and in the corona result from processes that are not well understood but accepted as a consequence of the solar magnetic field. Our knowledge of this field is lacking, and until recently, the assumed relationship between fine thermal structure and the magnetic field remained untested. Here, spectropolarimetric diagnostics of fine structures in the solar chromosphere and cool corona are advanced using the infrared He I triplet at 1083 nm. Precise calibration procedures are developed for the Facility Infrared Spectropolarimeter (FIRS), recently commissioned at the Dunn Solar Telescope. Together with high-order adaptive optics, we simultaneously map fine structures while obtaining a polarimetric sensitivity of up to 2 x 10--4 of the incoming intensity. These instrument improvements result in the first maps of the He I polarized signatures within an active region superpenumbra, where Hale first recognized fine-structuring. Selective absorption and emission processes due to non-equilibrium optical pumping are recognized. Our interpretation, using advanced inversions of the He I triplet, provides confirmation of Hale's initial suspicion---the fine structures of the solar chromosphere are visual markers for the magnetic field. Yet, the fine chromospheric thermal structure is not matched by an equivalently fine magnetic structure. Our ability to measure this field suggests the utility of the He I triplet as an inner boundary condition for the inner heliospheric magnetic field. In the corona itself, we infer the vector properties of a catastrophically-cooled coronal loop, uniting space-based and ground-based instrumentation. We determine how fine loops are anchored in the photosphere via a

  17. X-ray absorption fine structure evidence for amorphous zinc sulfide as a major zinc species in suspended matter from the Seine River downstream of Paris, Ile-de-France, France.

    PubMed

    Priadi, Cindy; Le Pape, Pierre; Morin, Guillaume; Ayrault, Sophie; Maillot, Fabien; Juillot, Farid; Hochreutener, Rebecca; Llorens, Isabelle; Testemale, Denis; Proux, Olivier; Brown, Gordon E

    2012-04-03

    Zinc is one of the most widespread trace metals (TMs) in Earth surface environments and is the most concentrated TM in the downstream section of the Seine River (France) due to significant anthropogenic input from the Paris conurbation. In order to better identify the sources and cycling processes of Zn in this River basin, we investigated seasonal and spatial variations of Zn speciation in suspended particulate matter (SPM) in the oxic water column of the Seine River from upstream to downstream of Paris using synchrotron-based extend X-ray absorption fine structure (EXAFS) spectroscopy at the Zn K-edge. First-neighbor contributions to the EXAFS were analyzed in SPM samples, dried and stored under a dry nitrogen atmosphere or under an ambient oxygenated atmosphere. We found a sulfur first coordination environment around Zn (in the form of amorphous zinc sulfide) in the raw SPM samples stored under dry nitrogen vs an oxygen first coordination environment around Zn in the samples stored in an oxygenated atmosphere. These findings are supported by scanning electron microscopy and energy dispersive X-ray spectrometry observations. Linear combination fitting of the EXAFS data for SPM samples, using a large set of EXAFS spectra of Zn model compounds, indicates dramatic changes in the Zn speciation from upstream to downstream of Paris, with amorphous ZnS particles becoming dominant dowstream. In contrast, Zn species associated with calcite (either adsorbed or incorporated in the structure) are dominant upstream. Other Zn species representing about half of the Zn pool in the SPM consist of Zn-sorbed on iron oxyhydroxides (ferrihydrite and goethite) and, to a lesser extent, Zn-Al layered double hydroxides, Zn incorporated in dioctahedral layers of clay minerals and Zn sorbed to amorphous silica. Our results highlight the importance of preserving the oxidation state in TM speciation studies when sampling suspended matter, even in an oxic water column.

  18. Experimental and Theoretical Analysis of Sound Absorption Properties of Finely Perforated Wooden Panels

    PubMed Central

    Song, Boqi; Peng, Limin; Fu, Feng; Liu, Meihong; Zhang, Houjiang

    2016-01-01

    Perforated wooden panels are typically utilized as a resonant sound absorbing material in indoor noise control. In this paper, the absorption properties of wooden panels perforated with tiny holes of 1–3 mm diameter were studied both experimentally and theoretically. The Maa-MPP (micro perforated panels) model and the Maa-Flex model were applied to predict the absorption regularities of finely perforated wooden panels. A relative impedance comparison and full-factorial experiments were carried out to verify the feasibility of the theoretical models. The results showed that the Maa-Flex model obtained good agreement with measured results. Control experiments and measurements of dynamic mechanical properties were carried out to investigate the influence of the wood characteristics. In this study, absorption properties were enhanced by sound-induced vibration. The relationship between the dynamic mechanical properties and the panel mass-spring vibration absorption was revealed. While the absorption effects of wood porous structure were not found, they were demonstrated theoretically by using acoustic wave propagation in a simplified circular pipe with a suddenly changed cross-section model. This work provides experimental and theoretical guidance for perforation parameter design. PMID:28774063

  19. Extended X-Ray Absorption Fine Structure And Nuclear Resonance Vibrational Spectroscopy Reveal That NifB-Co, a FeMo-Co Precursor, Comprises a 6Fe Core With An Interstitial Light Atom

    SciTech Connect

    George, S.J.; Igarashi, R.Y.; Xiao, Y.; Hernandez, J.A.; Demuez, M.; Zhao, D.; Yoda, Y.; Ludden, P.W.; Rubio, L.M.; Cramer, S.P.

    2009-05-18

    NifB-co, an Fe-S cluster produced by the enzyme NifB, is an intermediate on the biosynthetic pathway to the iron molybdenum cofactor (FeMo-co) of nitrogenase. We have used Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy together with {sup 57}Fe nuclear resonance vibrational spectroscopy (NRVS) to probe the structure of NifB-co while bound to the NifX protein from Azotobacter vinelandii. The spectra have been interpreted in part by comparison with data for the completed FeMo-co attached to the NafY carrier protein: the NafY:FeMo-co complex. EXAFS analysis of the NifX:NifB-co complex yields an average Fe-S distance of 2.26 {angstrom} and average Fe-Fe distances of 2.66 and 3.74 {angstrom}. Search profile analyses reveal the presence of a single Fe-X (X = C, N, or O) interaction at 2.04 {angstrom}, compared to a 2.00 {angstrom} Fe-X interaction found in the NafY:FeMo-co EXAFS. This suggests that the interstitial light atom (X) proposed to be present in FeMo-co has already inserted at the NifB-co stage of biosynthesis. The NRVS exhibits strong bands from Fe-S stretching modes peaking around 270, 315, 385, and 408 cm{sup -1}. Additional intensity at {approx} 185-200 cm{sup -1} is interpreted as a set of cluster 'breathing' modes similar to those seen for the FeMo-cofactor. The strength and location of these modes also suggest that the FeMo-co interstitial light atom seen in the crystal structure is already in place in NifB-co. Both the EXAFS and NRVS data for NifX:NifB-co are best simulated using a Fe{sub 6}S{sub 9}X trigonal prism structure analogous to the 6Fe core of FeMo-co, although a 7Fe structure made by capping one trigonal 3S terminus with Fe cannot be ruled out. The results are consistent with the conclusion that the interstitial light atom is already present at an early stage in FeMo-co biosynthesis prior to the incorporation of Mo and R-homocitrate.

  20. Spectroscopic studies of zinc(II)- and cobalt(II)-associated Escherichia coli formamidopyrimidine-DNA glycosylase: extended X-ray absorption fine structure evidence for a metal-binding domain.

    PubMed

    Buchko, G W; Hess, N J; Bandaru, V; Wallace, S S; Kennedy, M A

    2000-10-10

    Formamidopyrimidine-DNA glycosylase (Fpg) is a 30.2 kDa protein that plays an important role in the base excision repair of oxidatively damaged DNA in Escherichia coli. Sequence analysis and genetic evidence suggest that zinc is associated with a C4-type motif, C(244)-X(2)-C(247)-X(16)-C(264)-X(2)-C(267), located at the C-terminus of the protein. The zinc-associated motif has been shown to be essential for damaged DNA recognition. Extended X-ray absorption fine structure (EXAFS) spectra collected on the zinc-associated protein (ZnFpg) in the lyophilized state and in 10% frozen aqueous glycerol solution show directly that the metal is coordinated to the sulfur atom of four cysteine residues. The average Zn-S bond length is 2.33 +/- 0.01 and 2.34 +/- 0.01 A, respectively, in the lyophilized state and in 10% frozen aqueous glycerol solution. Fpg was also expressed in minimal medium supplemented with cobalt nitrate to yield a blue-colored protein that was primarily cobalt-associated (CoFpg). The profiles of the circular dichroism spectra for CoFpg and ZnFpg are identical, suggesting that the substitution of Co(2+) for Zn(2+) does not alter the structure of Fpg. A similar conclusion is reached upon the analysis of two-dimensional (15)N/(1)H HSQC spectra of uniformly (15)N-labeled samples of ZnFpg and CoFpg; the spectra are similar and display features characteristic of a structured protein. Biochemical assays with a 54 nt DNA oligomer containing 7, 8-dihydro-8-oxoguanine at a specific location show that CoFpg and ZnFpg are equally active at cleaving the DNA at the site of the oxidized guanine. EXAFS spectra of CoFpg indicate that the cobalt is coordinated to the sulfur atom of four cysteine residues with an average Co-S bond length of 2.28 +/- 0.01 and 2.29 +/- 0.01 A, respectively, in the lyophilized state and in 10% frozen aqueous glycerol solution. The structural similarity between CoFpg and ZnFpg suggests that it is biologically relevant to use the paramagnetic

  1. Effect of Iron(II) on Arsenic Sequestration by δ-MnO2: Desorption Studies Using Stirred-Flow Experiments and X-Ray Absorption Fine-Structure Spectroscopy.

    PubMed

    Wu, Yun; Li, Wei; Sparks, Donald L

    2015-11-17

    Arsenic (As) mobility in the environment is greatly affected by its oxidation state and the degree to which it is sorbed on metal oxide surfaces. Manganese (Mn) and iron (Fe) oxides are ubiquitous solids in terrestrial systems and have high sorptive capacities for many trace metals, including As. Although numerous studies have studied the effects of As adsorption and desorption onto Fe and Mn oxides individually, the fate of As within mixed systems representative of natural environments has not been resolved. In this research, As(III) was initially reacted with a poorly crystalline phyllomanganate (δ-MnO2) in the presence of Fe(II) prior to desorption. This initial reaction resulted in the sorption of both As(III) and As(V) on mixed Fe/Mn-oxides surfaces. A desorption study was carried out using two environmentally significant ions, phosphate (PO4(3-)) and calcium (Ca(2+)). Both a stirred-flow technique and X-ray absorption fine-structure spectroscopy (XAFS) analysis were used to investigate As desorption behavior. Results showed that when As(III)/Fe(II) = 1:1 in the initial reaction, only As(V) was desorbed, agreeing with a previous study showing that As(III) is not associated with the Fe/Mn-oxides. When As(III)/Fe(II) = 1:10 in the initial reaction, both As(III) and As(V) can be desorbed from the Fe/Mn-oxide surface, and more As(III) is desorbed than As(V). Neither of the desorbents used in this study completely removed As(III) or As(V) from the Fe/Mn-oxides surface. However, the As desorption fraction decreases with increasing Fe(II) concentration in the initial reactions.

  2. Quantitative chemical imaging of element diffusion into heterogeneous media using laser ablation inductively coupled plasma mass spectrometry, synchrotron micro-X-ray fluorescence, and extended X-ray absorption fine structure spectroscopy.

    PubMed

    Wang, H A O; Grolimund, D; Van Loon, L R; Barmettler, K; Borca, C N; Aeschlimann, B; Günther, D

    2011-08-15

    Quantitative chemical imaging of trace elements in heterogeneous media is important for the fundamental understanding of a broad range of chemical and physical processes. The primary aim of this study was to develop an analytical methodology for quantitative high spatial resolution chemical imaging based on the complementary use of independent microanalytical techniques. The selected scientific case study is focused on high spatially resolved quantitative imaging of major elements, minor elements, and a trace element (Cs) in Opalinus clay, which has been proposed as the host rock for high-level radioactive waste repositories. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), providing quantitative chemical information, and synchrotron radiation based micro-X-ray fluorescence (SR-microXRF), providing high spatial resolution images, were applied to study Cs migration into Opalinus clay rock. The results indicate that combining the outputs achievable by the two independent techniques enhances the imaging capabilities significantly. The qualitative high resolution image of SR-microXRF is in good agreement with the quantitative image recorded with lower spatial resolution by LA-ICPMS. Combining both techniques, it was possible to determine that the Opalinus clay sample contains two distinct domains: (i) a clay mineral rich domain and (ii) a calcium carbonate dominated domain. The two domains are separated by sharp boundaries. The spatial Cs distribution is highly correlated to the distribution of the clay. Furthermore, extended X-ray absorption fine structure analysis indicates that the trace element Cs preferentially migrates into clay interlayers rather than into the calcite domain, which complements the results acquired by LA-ICPMS and SR-microXRF. By using complementary techniques, the quantification robustness was improved to quantitative micrometer spatial resolution. Such quantitative, microscale chemical images allow a more detailed

  3. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    NASA Astrophysics Data System (ADS)

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-09-01

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an "area" detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors.

  4. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    SciTech Connect

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-09-15

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an 'area' detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors.

  5. THE FINE STRUCTURE OF DIPLOCOCCUS PNEUMONIAE

    PubMed Central

    Tomasz, Alexander; Jamieson, James D.; Ottolenghi, Elena

    1964-01-01

    The fine structure of an unencapsulated strain of Diplococcus pneumoniae is described. A striking feature of these bacteria is an intracytoplasmic membrane system which appears to be an extension of septa of dividing bacteria. The possible function of these structures and their relationship to the plasma membrane and other types of intracytoplasmic membranes found in pneumococcus is discussed. PMID:14203390

  6. Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals.

    PubMed

    Johnson, Justin C; Gerth, Kathrine A; Song, Qing; Murphy, James E; Nozik, Arthur J; Scholes, Gregory D

    2008-05-01

    The rates of fine structure relaxation in PbS, PbSe, and PbTe nanocrystals were measured on a femtosecond time scale as a function of temperature with no applied magnetic field by cross-polarized transient grating spectroscopy (CPTG) and circularly polarized pump-probe spectroscopy. The relaxation rates among exciton fine structure states follow trends with nanocrystal composition and size that are consistent with the expected influence of material dependent spin-orbit coupling, confinement enhanced electron-hole exchange interaction, and splitting between L valleys that are degenerate in the bulk. The size dependence of the fine structure relaxation rate is considerably different from what is observed for small CdSe nanocrystals, which appears to result from the unique material properties of the highly confined lead chalcogenide quantum dots. Modeling and qualitative considerations lead to conclusions about the fine structure of the lowest exciton absorption band, which has a potentially significant bearing on photophysical processes that make these materials attractive for practical purposes.

  7. Fine structure of the exciton electroabsorption in semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Monozon, B. S.; Schmelcher, P.

    2017-02-01

    Wannier-Mott excitons in a semiconductor layered superlattice (SL) are investigated analytically for the case that the period of the superlattice is much smaller than the 2D exciton Bohr radius. Additionally we assume the presence of a longitudinal external static electric field directed parallel to the SL axis. The exciton states and the optical absorption coefficient are derived in the tight-binding and adiabatic approximations. Strong and weak electric fields providing spatially localized and extended electron and hole states, respectively, are studied. The dependencies of the exciton states and the exciton absorption spectrum on the SL parameters and the electric field strength are presented in an explicit form. We focus on the fine structure of the ground quasi-2D exciton level formed by the series of closely spaced energy levels adjacent from the high frequencies. These levels are related to the adiabatically slow relative exciton longitudinal motion governed by the potential formed by the in-plane exciton state. It is shown that the external electric fields compress the fine structure energy levels, decrease the intensities of the corresponding optical peaks and increase the exciton binding energy. A possible experimental study of the fine structure of the exciton electroabsorption is discussed.

  8. Fine-Grained Auditory Discrimination: Factor Structures.

    ERIC Educational Resources Information Center

    Elliott, Lois L.; Hammer, Michael A.

    1993-01-01

    This study, with 161 children with and without language learning problems, tested the hypothesis that as children's language development matures, factor-analytic structural changes occur that are associated with measurements of fine-grained auditory discrimination, receptive vocabulary, receptive language, speech production, and 3 performance…

  9. THE FINE STRUCTURE OF THE RAT CEREBELLUM

    PubMed Central

    Herndon, Robert M.

    1964-01-01

    This paper describes the fine structure of the granule cells, stellate neurons, astrocytes, Bergmann glia, oligodendrocytes, and microglia of the rat cerebellum after fixation by perfusion with buffered 1 per cent osmium tetroxide. Criteria are given for differentiating the various cell types, and the findings are correlated with previous light microscope and electron microscope studies of the cerebellum. PMID:14222815

  10. The O2-Evolving Complex of Photosystem II: Recent Insights from Quantum Mechanics/Molecular Mechanics (QM/MM), Extended X-ray Absorption Fine Structure (EXAFS), and Femtosecond X-ray Crystallography Data.

    PubMed

    Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S

    2017-01-17

    Efficient photoelectrochemical water oxidation may open a way to produce energy from renewable solar power. In biology, generation of fuel due to water oxidation happens efficiently on an immense scale during the light reactions of photosynthesis. To oxidize water, photosynthetic organisms have evolved a highly conserved protein complex, Photosystem II. Within that complex, water oxidation happens at the CaMn4O5 inorganic catalytic cluster, the so-called oxygen-evolving complex (OEC), which cycles through storage "S" states as it accumulates oxidizing equivalents and produces molecular oxygen. In recent years, there has been significant progress in understanding the OEC as it evolves through the catalytic cycle. Studies have combined conventional and femtosecond X-ray crystallography with extended X-ray absorption fine structure (EXAFS) and quantum mechanics/molecular mechanics (QM/MM) methods and have addressed changes in protonation states of μ-oxo bridges and the coordination of substrate water through the analysis of ammonia binding as a chemical analog of water. These advances are thought to be critical to understanding the catalytic cycle since protonation states regulate the relative stability of different redox states and the geometry of the OEC. Therefore, establishing the mechanism for substrate water binding and the nature of protonation/redox state transitions in the OEC is essential for understanding the catalytic cycle of O2 evolution. The structure of the dark-stable S1 state has been a target for X-ray crystallography for the past 15 years. However, traditional X-ray crystallography has been hampered by radiation-induced reduction of the OEC. Very recently, a revolutionary X-ray free electron laser (XFEL) technique was applied to PSII to reveal atomic positions at 1.95 Å without radiation damage, which brought us closer than ever to establishing the ultimate structure of the OEC in the S1 state. However, the atom positions in this crystal

  11. THE FINE STRUCTURE OF THE PURKINJE CELL

    PubMed Central

    Herndon, Robert M.

    1963-01-01

    This paper describes the fine structure of the Purkinje cell of the rat cerebellum after fixation by perfusion with 1 per cent buffered osmium tetroxide. Structures described include a large Golgi apparatus, abundant Nissl substance, mitochondria, multivesicular bodies, osmiophilic granules, axodendritic and axosomatic synapses, the nucleus, the nucleolus, and the nucleolar body. A new and possibly unique relationship between mitochondria and subsurface cisterns is described. Possible functional correlations are discussed. PMID:13953993

  12. Fine structure constant and quantized optical transparency of plasmonic nanoarrays.

    PubMed

    Kravets, V G; Schedin, F; Grigorenko, A N

    2012-01-24

    Optics is renowned for displaying quantum phenomena. Indeed, studies of emission and absorption lines, the photoelectric effect and blackbody radiation helped to build the foundations of quantum mechanics. Nevertheless, it came as a surprise that the visible transparency of suspended graphene is determined solely by the fine structure constant, as this kind of universality had been previously reserved only for quantized resistance and flux quanta in superconductors. Here we describe a plasmonic system in which relative optical transparency is determined solely by the fine structure constant. The system consists of a regular array of gold nanoparticles fabricated on a thin metallic sublayer. We show that its relative transparency can be quantized in the near-infrared, which we attribute to the quantized contact resistance between the nanoparticles and the metallic sublayer. Our results open new possibilities in the exploration of universal dynamic conductance in plasmonic nanooptics.

  13. Extended X-ray absorption fine structure studies of Zn/sub 2/Fe/sub 2/ hybrid hemoglobins: absence of heme bond length changes in half-ligated species

    SciTech Connect

    Simolo, K.; Korszun, Z.R.; Stucky, G.; Moffat, K.; McLendon, G.

    1986-07-01

    Metal hybrid hemoglobins, in which Zn(II) replaces Fe(II), have been structurally characterized by extended X-ray absorption structure (EAFS) studies. Since Zn and Fe have very different K absorption edge energies, the structures of the ligated (Fe) and unligated (Zn) sites could be examined independently within a single molecule that mimics an intermediate ligation state. The observed EXAFS spectra and associated structural parameters are compared among the ligand free (..cap alpha..Zn)/sub 2/(..beta..Zn)/sub 2/, half-ligated (..cap alpha..FeCO)/sub 2/(..beta..Zn)/sub 2/ and (..cap alpha..Zn)/sub 2/(..beta..FeCO)/sub 2/, and fully ligated (..cap alpha..FeCO)/sub 2/(..beta..FeCO)/sub 2/ systems.

  14. Universal fine structure of nematic hedgehogs

    NASA Astrophysics Data System (ADS)

    Kralj, Samo; Virga, Epifanio G.

    2001-02-01

    We study in a Landau-de Gennes approach the biaxial structure of a nematic point defect with topological charge M = + 1. We aim to illuminate the role of the confining boundaries in determining the fine structure of the defect. We show that there are different regimes associated with different values of the ratio between the typical size R of the region in space occupied by the material and the biaxial correlation length ξb. For R/ξb>20 the core structure is already qualitatively universal, that is, independent of the confining geometry, while also for R/ξb>200 any quantitative difference is unlikely to be detected.

  15. Cosmic concordance and the fine structure constant

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Crittenden, Robert; Weller, Jochen

    2001-02-01

    Recent measurements of a peak in the angular power spectrum of the cosmic microwave background suggest that the geometry of the universe is close to flat. But if other accepted indicators of cosmological parameters are also correct then the best fit model is marginally closed, with the peak in the spectrum at slightly larger scales than in a flat universe. If these observations persevere, one way they might be reconciled with a flat universe is if the fine structure constant had a lower value at earlier times, which would delay the recombination of electrons and protons and also act to suppress secondary oscillations as observed. We discuss evidence for a few percent increase in the fine structure constant between the time of recombination and the present.

  16. Ultraviolet observations of solar fine structure.

    PubMed

    Dere, K P; Bartoe, J D; Brueckner, G E; Cook, J W; Socker, D G

    1987-11-27

    The High Resolution Telescope and Spectrograph was flown on the Spacelab-2 shuttle mission to perform extended observations of the solar chromosphere and transition zone at high spatial and temporal resolution. Ultraviolet spectroheliograms show the temporal development of macrospicules at the solar limb. The C IV transition zone emission is produced in discrete emission elements that must be composed of exceedingly fine (less than 70 kilometers) subresolution structures.

  17. Recovering the fine structures in solar images

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita; Habbal, S. R.; Golub, L.; Deluca, E.; Hudson, Hugh S.

    1994-01-01

    Several examples of the capability of the blind iterative deconvolution (BID) technique to recover the real point spread function, when limited a priori information is available about its characteristics. To demonstrate the potential of image post-processing for probing the fine scale and temporal variability of the solar atmosphere, the BID technique is applied to different samples of solar observations from space. The BID technique was originally proposed for correction of the effects of atmospheric turbulence on optical images. The processed images provide a detailed view of the spatial structure of the solar atmosphere at different heights in regions with different large-scale magnetic field structures.

  18. THE FINE STRUCTURE OF ACANTHAMOEBA CASTELLANII

    PubMed Central

    Bowers, Blair; Korn, Edward D.

    1968-01-01

    The fine structure of the trophozoite of Acanthamoeba castellanii (Neff strain) has been studied. Locomotor pseudopods, spikelike "acanthopodia," and microprojections from the cell surface are all formed by hyaline cytoplasm, which excludes formed elements of the cell and contains a fine fibrillar material. Golgi complex, smooth and rough forms of endoplasmic reticulum, digestive vacuoles, mitochondria, and the water-expulsion vesicle (contractile vacuole) are described. A canicular system opening into the water-expulsion vesicle contains tubules about 600 A in diameter that are lined with a filamentous material. The tubules are continuous with unlined vesicles or ampullae of larger diameter. Centrioles were not observed, but cytoplasmic microtubules radiate from a dense material similar to centriolar satellites and are frequently centered in the Golgi complex. Cytoplasmic reserve materials include both lipid and glycogen, each of which amounts to about 10% of the dry weight. PMID:5678452

  19. Identifying barriers to charge-carriers in the bulk and surface regions of Cu2ZnSnS4 nanocrystal films by x-ray absorption fine structures (XAFSs).

    PubMed

    Turnbull, Matthew J; Vaccarello, Daniel; Yiu, Yun Mui; Sham, Tsun-Kong; Ding, Zhifeng

    2016-11-28

    Solar cell performance is most affected by the quality of the light absorber layer. For thin-film devices, this becomes a two-fold problem of maintaining a low-cost design with well-ordered nanocrystal (NC) structure. The use of Cu2ZnSnS4 (CZTS) NCs as the light absorber films forms an ideal low-cost design, but the quaternary structure makes it difficult to maintain a well-ordered layer without the use of high-temperature treatments. There is little understanding of how CZTS NC structures affect the photoconversion efficiency, the charge-carriers, and therefore the performance of the device manufactured from it. To examine these relationships, the measured photoresponse from the photo-generation of charge-carrier electron-hole pairs was compared against the crystal structure, as short-range and long-range crystal orders for the films. The photoresponse simplifies the electronic properties into three basic steps that can be associated with changes in energy levels within the band structure. These changes result in the formation of barriers to charge-carrier flow. The extent of these barriers was determined using synchrotron-based X-ray absorbance fine structure to probe the individual metal centers in the film, and comparing these to molecular simulations of the ideal extended x-ray absorbance fine structure scattering. This allowed for the quantification of bond lengths, and thus an interpretation of the distortions in the crystal lattice. The various characteristics of the photoresponse were then correlated to the crystallographic order and used to gain physical insight into barriers to charge-carriers in the bulk and surface regions of CZTS films.

  20. Identifying barriers to charge-carriers in the bulk and surface regions of Cu2ZnSnS4 nanocrystal films by x-ray absorption fine structures (XAFSs)

    NASA Astrophysics Data System (ADS)

    Turnbull, Matthew J.; Vaccarello, Daniel; Yiu, Yun Mui; Sham, Tsun-Kong; Ding, Zhifeng

    2016-11-01

    Solar cell performance is most affected by the quality of the light absorber layer. For thin-film devices, this becomes a two-fold problem of maintaining a low-cost design with well-ordered nanocrystal (NC) structure. The use of Cu2ZnSnS4 (CZTS) NCs as the light absorber films forms an ideal low-cost design, but the quaternary structure makes it difficult to maintain a well-ordered layer without the use of high-temperature treatments. There is little understanding of how CZTS NC structures affect the photoconversion efficiency, the charge-carriers, and therefore the performance of the device manufactured from it. To examine these relationships, the measured photoresponse from the photo-generation of charge-carrier electron-hole pairs was compared against the crystal structure, as short-range and long-range crystal orders for the films. The photoresponse simplifies the electronic properties into three basic steps that can be associated with changes in energy levels within the band structure. These changes result in the formation of barriers to charge-carrier flow. The extent of these barriers was determined using synchrotron-based X-ray absorbance fine structure to probe the individual metal centers in the film, and comparing these to molecular simulations of the ideal extended x-ray absorbance fine structure scattering. This allowed for the quantification of bond lengths, and thus an interpretation of the distortions in the crystal lattice. The various characteristics of the photoresponse were then correlated to the crystallographic order and used to gain physical insight into barriers to charge-carriers in the bulk and surface regions of CZTS films.

  1. Internal Fine Structure of Ellerman Bombs

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yuki; Kitai, Reizaburo; Ichimoto, Kiyoshi; Ueno, Satoru; Nagata, Shin'ichi; Ishii, Takako T.; Hagino, Masaoki; Komori, Hiroyuki; Nishida, Keisuke; Matsumoto, Takuma; Otsuji, Kenichi; Nakamura, Tahei; Kawate, Tomoko; Watanabe, Hiroko; Shibata, Kazunari

    2010-08-01

    We conducted coordinated observations of Ellerman bombs (EBs) between Hinode Satellite and Hida Observatory (HOP12). CaII H broad-band filter images of NOAA 10966 on 2007 August 9 and 10 were obtained with the Solar Optical Telescope (SOT) aboard the Hinode Satellite, and many bright points were observed. We identified a total of 4 bright points as EBs, and studied the temporal variation of their morphological fine structures and spectroscopic characteristics. With high-resolution CaII H images of SOT, we found that the EBs, thus far thought of as single bright features, are composed of a few of fine subcomponents. Also, by using Stokes I/V filtergrams with Hinode/SOT, and CaII H spectroheliograms with Hida/Domeless Solar Telescope (DST), our observation showed: (1) The mean duration, the mean width, the mean length, and the mean aspect ratio of the subcomponents were 390 s, 170 km, 450 km, and 2.7, respectively. (2) Subcomponents started to appear on the magnetic neutral lines, and extended their lengths from the original locations. (3) When the CaII H line of EBs showed the characteristic blue asymmetry, they are associated with the appearance or re-brightening of subcomponents. Summarizing our results, we obtained an observational view that elementary magnetic reconnections take place one by one successively and intermittently in EBs, and that their manifestation is the fine subcomponents of the EB phenomena.

  2. DIAZOPHTHALOCYANINS AS REAGENTS FOR FINE STRUCTURAL CYTOCHEMISTRY

    PubMed Central

    Tice, Lois Withrow; Barrnett, Russell J.

    1965-01-01

    This paper reports the synthesis of 14 diazophthalocyanins containing Mg, Cu, or Pb as the chelated metal. To assess the usefulness of these compounds for fine structural cytochemistry, the relative coupling rates with naphthols were tested as well as the solubility of the resulting azo dyes. Three of the diazotates were reacted with tissue proteins in aldehyde-fixed material, and the density increases thus produced were compared in the electron microscope with those produced by staining similarly fixed material with the phthalocyanin dye, Alcian Blue. Finally, one of the diazotates was used as a capture reagent for the demonstration of the sites of acid phosphatase activity with the electron microscope. PMID:14283629

  3. Molecular Eigensolution Symmetry Analysis and Fine Structure

    PubMed Central

    Harter, William G.; Mitchell, Justin C.

    2013-01-01

    Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES). Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES) used in Born–Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v), then applied to families of Oh clusters in SF6 spectra and to extreme clusters. PMID:23344041

  4. A Geometric and Electrostatic Study of the [4Fe-4S] Cluster of Adenosine-5´-Phosphosulfate Reductase from Broken Symmetry Density Functional Calculations and Extended X-ray Absorption Fine Structure Spectroscopy

    PubMed Central

    Bhave, Devayani P.; Han, Wen-Ge; Pazicni, Samuel; Penner-Hahn, James E.; Carroll, Kate S.; Noodleman, Louis

    2011-01-01

    Adenosine-5’-phosphosulfate reductase (APSR) is an iron-sulfur protein that catalyses the reduction of adenosine-5’-phosphosulfate (APS) to sulfite. APSR coordinates to a [4Fe-4S] cluster via a conserved CC-X~80-CXXC motif and the cluster is essential for catalysis. Despite extensive functional, structural and spectroscopic studies, the exact role of the iron-sulfur cluster in APS reduction remains unknown. To gain an understanding into the role of the cluster, density functional theory (DFT) analysis and extended X-ray fine structure spectroscopy (EXAFS) have been performed to reveal insights into the coordination, geometry and electrostatics of the [4Fe-4S] cluster. XANES data confirms that the cluster is in the [4Fe-4S]2+ state in both native and substrate-bound APSR while EXAFS data recorded at ~0.1 Å resolution indicates that there is no significant change in the structure of the [4Fe-4S] cluster between the native and substrate-bound forms of the protein. On the other hand, DFT calculations provide an insight into the subtle differences between the geometry of the cluster in the native and APS-bound forms of APSR. A comparison between models with and without the tandem cysteine pair coordination of the cluster suggests a role for the unique coordination in facilitating a compact geometric structure and ‘fine-tuning’ the electronic structure to prevent reduction of the cluster. Further, calculations using models in which residue Lys144 is mutated to Ala confirm the finding that Lys144 serves as a crucial link in the interactions involving the [4Fe-4S] cluster and APS. PMID:21678934

  5. Angle-resolved photoemission extended fine structure

    SciTech Connect

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs.

  6. Revisit to diffraction anomalous fine structure

    PubMed Central

    Kawaguchi, T.; Fukuda, K.; Tokuda, K.; Shimada, K.; Ichitsubo, T.; Oishi, M.; Mizuki, J.; Matsubara, E.

    2014-01-01

    The diffraction anomalous fine structure (DAFS) method that is a spectroscopic analysis combined with resonant X-ray diffraction enables the determination of the valence state and local structure of a selected element at a specific crystalline site and/or phase. This method has been improved by using a polycrystalline sample, channel-cut monochromator optics with an undulator synchrotron radiation source, an area detector and direct determination of resonant terms with a logarithmic dispersion relation. This study makes the DAFS method more convenient and saves a large amount of measurement time in comparison with the conventional DAFS method with a single crystal. The improved DAFS method has been applied to some model samples, Ni foil and Fe3O4 powder, to demonstrate the validity of the measurement and the analysis of the present DAFS method. PMID:25343791

  7. Fine-grained auditory discrimination: factor structures.

    PubMed

    Elliott, L L; Hammer, M A

    1993-04-01

    This research tested the hypothesis that as children's language development matures, factor-analytic structural changes occur that are associated with measurements of fine-grained auditory discrimination, receptive vocabulary, receptive language, speech production, and three performance subtests of the WISC-R. Among 6- to 7-year-old children, the percent of total variance attributed to the factor defined by fine-grained auditory discrimination measures was approximately 43% for children who were intellectually impaired (Experiment 2), 27% for youngsters who had language-learning problems, and 16% for regularly progressing children (Experiment 1). The WISC-R subtest scores, generally, did not load on the auditory discrimination factor. The difference in variance explained by the auditory discrimination factor was interpreted as representing greater relative importance of auditory discrimination among children with less-well-developed language competencies than among children with more mature language skills. This interpretation was strengthened by the finding of no distinct auditory discrimination factor for 8- to 11-year-old children who were either regularly progressing or language-disabled even though the language/speech factor at this age closely resembled that found among younger children. Results were consonant with Ackerman's (1987) model, suggesting that task-specific variance associated with tasks that remain resource-dependent may diminish after practice and experience.

  8. Theoretical analysis of x-ray-absorption near-edge fine structure at the O and metal K edges of LaFeO{sub 3} and LaCoO{sub 3}

    SciTech Connect

    Wu, Z.Y.; Pedio, M.; Cimino, R.; Mobilio, S. |; Barman, S.R. |; Maiti, K.; Sarma, D.D. |

    1997-07-01

    We present experimental x-ray-absorption spectra at the oxygen and 3d transition-metal K edges of LaFeO{sub 3} and LaCoO{sub 3}. We interpret the experimental results in terms of detailed theoretical calculations based on multiple-scattering theory. Along with providing an understanding of the origin of various experimental features, we investigate the effects of structural distortions and the core-hole potential in determining the experimental spectral shape. The results indicate that the core-hole potential as well as many-body effects within the valence electrons do not have any strong effect on the spectra suggesting that the spectral features can be directly interpreted in terms of the electronic structure of such compounds. {copyright} {ital 1997} {ital The American Physical Society}

  9. Solar Prominence Fine Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    2014-01-01

    We review recent observational and theoretical results on the fine structure and dynamics of solar prominences, beginning with an overview of prominence classifications, the proposal of possible new ``funnel prominence'' classification, and a discussion of the recent ``solar tornado'' findings. We then focus on quiescent prominences to review formation, down-flow dynamics, and the ``prominence bubble'' phenomena. We show new observations of the prominence bubble Rayleigh-Taylor instability triggered by a Kelvin-Helmholtz shear flow instability occurring along the bubble boundary. Finally we review recent studies on plasma composition of bubbles, emphasizing that differential emission measure (DEM) analysis offers a more quantitative analysis than photometric comparisons. In conclusion, we discuss the relation of prominences to coronal magnetic flux ropes, proposing that prominences can be understood as partially ionized condensations of plasma forming the return flow of a general magneto-thermal convection in the corona.

  10. THE FINE STRUCTURE OF GIARDIA MURIS

    PubMed Central

    Friend, Daniel S.

    1966-01-01

    Giardia is a noninvasive intestinal zooflagellate. This electron microscope study demonstrates the fine structure of the trophozoite of Giardia muris in the lumen of the duodenum of the mouse as it appears after combined glutaraldehyde and acrolein fixation and osmium tetroxide postfixation. Giardia muris is of teardrop shape, rounded anteriorly, with a convex dorsal surface and a concave ventral one. The anterior two-thirds of the ventral surface is modified to form an adhesive disc. The adhesive disc is divided into 2 lobes whose medial surfaces form the median groove. The marginal grooves are the spaces between the lateral crests of the adhesive disc and a protruding portion of the peripheral cytoplasm. The organism has 2 nuclei, 1 dorsal to each lobe of the adhesive disc. Between the anterior poles of the nuclei, basal bodies give rise to 8 paired flagella. The median body, unique to Giardia, is situated between the posterior poles of the nuclei. The cytoplasm contains 300-A granules that resemble particulate glycogen, 150- to 200-A granules that resemble ribosomes, and fusiform clefts. The dorsal portion of the cell periphery is occupied by a linear array of flattened vacuoles, some of which contain clusters of dense particles. The ventrolateral cytoplasm is composed of regularly packed coarse and fine filaments which extend as a striated flange around the adhesive disc. The adhesive disc is composed of a layer of microtubules which are joined to the cytoplasm by regularly spaced fibrous ribbons. The plasma membrane covers the ventral and lateral surfaces of the disc. The median body consists of an oval aggregate of curved microtubules. Microtubules extend ventrally from the median body to lie alongside the caudal flagella. The intracytoplasmic portions of the caudal, lateral, and anterior flagella course considerable distances, accompanied by hollow filaments adjacent to their outer doublets. The intracytoplasmic portions of the anterior flagella are

  11. Beta environmental fine structure characterization of defects

    NASA Astrophysics Data System (ADS)

    Benedek, G.; Fiorini, E.; Giuliani, A.; Milani, P.; Monfardini, A.; Nucciotti, A.; Prandoni, M. L.; Sancrotti, M.

    1999-04-01

    The fine structure of beta emission (BEFS) due to the interference with the scattered waves from neighboring atoms, analogous to EXAFS, is known to produce oscillations in the Kurie plot. Here we suggest the use of BEFS for characterizing the lattice environment of β-emitting defects located at a distance from the crystal surface not exceeding the mean free path of β-electrons. Examples of defective structures in semiconductors whose atomic arrangement could be conveniently studied with BEFS are tritium-passivated dangling bonds, β-radioactive ions implanted in the crystal lattice or segregated at extended defects such as dislocations, grain boundaries or radiation damage. Also 14C-doped diamond-like materials and other exotic carbon forms, as well as the atomic environment of ions in metal alloys could be good candidate for BEFS. In this work we have calculated the fractional BEFS modulation for 187Re in its ordinary hcp crystal lattice for which experimental data by Cosulich et al. are available. The good correspondence between theory and experiment permits to conclude that BEFS experiments at low temperature are accessible to the present bolometric detection techniques and can provide an expedient method, as compared to EXAFS, for an accurate structural assessment of extended defects in solids.

  12. Characterization of the Cu(Π) and Zn(Π) binding to the Amyloid-β short peptides by both the Extended X-ray Absorption Fine Structure and the Synchrotron Radiation Circular Dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyin; Sun, Shuaishuai; Xu, Jianhua; Zhang, Jing; Huang, Yan; Zhang, Bingbing; Tao, Ye

    2013-04-01

    Alzheimer's disease (AD) is a progressive and devastating neurodegenerative pathology, clinically characterized by dementia, cognitive impairment, personality disorders and memory loss. It is generally accepted that, misfolding of Aβ peptides is the key element in pathogenesis and the secondary structure of Aβ can be changed to major β-strand with reasons unknown yet. Many studies have shown that the misfolding may be linked with some biometals, mainly copper and zinc ions. To characterize interactions of Aβ and metal ions, we utilized both the extended X-ray fine structure spectroscopy (EXAFS) and the synchrotron radiation circular dichroism spectroscopy (SRCD). Aβ (13-22), Aβ (13-21), Aβ (E22G) and Aβ(HH-AA) were selected to study the mechanism of copper and zinc binding to Aβ. We found that Cu interaction with H13 and H14 residues led to the disappearance of the PPΠ, while the Cu binding E22 residue caused a remarkable conformation change to β-sheet enrichment. The Zn ion, in contrast, made little effect on the conformation and it coordinated to only one histidine (H residue) or not.

  13. The fine structure of developing elastic cartilage.

    PubMed Central

    Cox, R W; Peacock, M A

    1977-01-01

    The fine structure of the elastic cartilage of the pinna has been examined in young rabbits aged from 1 day to 1108 days. Changes associated with growth and development are related not only to age but also to the actual situation in the pinna. In the midline, progressive changes are seen from the tip to the base. The changes in the chondroblasts with time are compared with those described in hyaline cartilage. Structures occur that, except for the presence of crystals, are apparently morphologically identical with the matrix vesicles of calcifying cartilage. These matrix vesicles, however, become very prominent with age, and aggregations of them appear to be released into the intercellular tissue from vacuoles at the periphery of the chondroblasts. There is no obvious association with calcification. Occasional single cilia, desmosomes and giant mitochondria are seen. Elastica is present at birth, and eventually every cell is separated from its neighbours by a partial investment of elastica. The quantity of matrix seems to increase with time, and with distance from the tip of the ear. This is accompanied by a marked increase in cell size with time. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:870470

  14. The Fine Structure of the Parathyroid Gland

    PubMed Central

    Trier, Jerry Steven

    1958-01-01

    The fine structure of the parathyroid of the macaque is described, and is correlated with classical parathyroid cytology as seen in the light microscope. The two parenchymal cell types, the chief cells and the oxyphil cells, have been recognized in electron micrographs. The chief cells contain within their cytoplasm mitochondria, endoplasmic reticulum, and Golgi bodies similar to those found in other endocrine tissues as well as frequent PAS-positive granules. The juxtanuclear body of the light microscopists is identified with stacks of parallel lamellar elements of the endoplasmic reticulum of the ergastoplasmic or granular type. Oxyphil cells are characterized by juxtanuclear bodies and by numerous mitochondria found throughout their cytoplasm. Puzzling lamellar whorls are described in the cytoplasm of some oxyphil cells. The endothelium of parathyroid capillaries is extremely thin in some areas and contains numerous fenestrations as well as an extensive system of vesicles. The possible significance of these structures is discussed. The connective tissue elements found in the perivascular spaces of macaque parathyroid are described. PMID:13502423

  15. Fine Structure and Function in Stentor polymorphus

    PubMed Central

    Randall, J. T.; Jackson, Sylvia Fitton

    1958-01-01

    The fine structure of the ciliate Stentor has been studied by means of the electron microscope and the results have been correlated with observations made on the living organism by means of light microscopy; special reference has been made to structural features which may be responsible for contraction and extension in Stentor. Descriptions have been given of the structure of the macronucleus, the vacuolated cytoplasm, mitochondria and the pellicle; a detailed study has also been made of the adoral membranelles. About 250 membranelles encircle the peristomal cap and each is composed of 3 rows of cilia, with 20 to 25 cilia in each row; a fibrillar root system connected with the membranelles depends into the endoplasm for about 20 µ and each is essentially in the shape of a fan, the terminal ends of each root bifurcating to connect to neighbouring roots. The membranelles thus form a cohesive unit and this morphological arrangement may have a bearing on the motion and coordination of the whole system. Two structural features extending throughout the length of the animal have been identified per cortical stripe in the body wall of Stentor; first, km fibres lying just beneath the pellicle are composed of stacks of fibrillar sheets and are identical with the birefringent fibres observed in the living animal. The individual fibrils of the sheets are in turn connected to the kinetosomes of the body cilia; thus the km fibres are homologous to kinetodesmata. Secondly, M bands lie beneath the km fibres and form an interconnected system in contact with the surrounding vacuolated cytoplasm; the thickness of the M bands is greatest at the base of a contracted animal. The contractile and extensile properties of these organelles have been discussed in the light of experimental results and theoretical considerations. PMID:13610947

  16. Cell fine structure and function - Past and present

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.

    1970-01-01

    Electron microscopic studies of nerve membrane fine structure, discussing cell membrane multienzyme and macromolecular energy and information transduction, protein synthesis and nucleic acids interrelations

  17. Analysis of Diffraction Anomalous Fine Structure

    NASA Astrophysics Data System (ADS)

    Cross, Julie Olmsted

    This thesis presents a systematic study of the application of DAFS to determine site-specific local structural and chemical information in complex materials, and the first application of state-of-the-art theoretical XAFS calculations using the computer program scFEFF to model DAFS data. In addition, the iterative dispersion analysis method, first suggested by Pickering, et al., has been generalized to accommodate the off-resonance anomalous scattering from heavy atoms in the unit cell. The generalized algorithm scKKFIT was applied to DAFS data from eight (00 l) reflections of the high-T _{c} superconductor YBa _2Cu_3O_ {6.8} to obtain the weighted complex resonant scattering amplitudes Delta f_{ rm w}(Q, E). The fine-structure functions chi_{rm w}(Q, E) isolated from the Delta f_{ rm w}(Q, E) are linear combinations of the individual site fine structure functions chi _{rm w}(Q, E) = Sigma_{i}W_{i,{ bf Q}}chi_{i}(E) from the two inequivalent Cu sites, added together according to the structure factor for the Cu sublattice. The chi_{rm w}(Q, E) were fit en masse using the XAFS analysis program scFEFFIT under a set of constraints on the coefficients W _{i,{bf Q}} based on the structure factor for kinematic scattering. The W_{i,{bf Q}} determined by scFEFFIT were used to obtain the fully separated complex resonant scattering amplitudes Delta f(E) for the two Cu sites. The theoretical connection between DAFS and XAFS is used to justify the application of state-of-the-art theoretical XAFS calculations to DAFS analysis. The polarization dependence of DAFS is described in terms of individual virtual photoelectron scattering paths in the Rehr-Albers separable curved-wave formalism. Polarization is shown to be an important factor in all DAFS experiments. Three experimental constraints are found necessary for obtaining site-separated Delta f(E) from DAFS data by linear inversion of the W_{i, {bf Q}} matrix and scKKFIT isolated Delta f_{rm w }(Q, E): (1) The diffraction must be

  18. Fine Collimator Grids Using Silicon Metering Structure

    NASA Technical Reports Server (NTRS)

    Eberhard, Carol

    1998-01-01

    The project Fine Collimator Grids Using Silicon Metering Structure was managed by Dr. Carol Eberhard of the Electromagnetic Systems & Technology Department (Space & Technology Division) of TRW who also wrote this final report. The KOH chemical etching of the silicon wafers was primarily done by Dr. Simon Prussin of the Electrical Engineering Department of UCLA at the laboratory on campus. Moshe Sergant of the Superconductor Electronics Technology Department (Electronics Systems & Technology Division) of TRW and Dr. Prussin were instrumental in developing the low temperature silicon etching processes. Moshe Sergant and George G. Pinneo of the Microelectronics Production Department (Electronics Systems & Technology Division) of TRW were instrumental in developing the processes for filling the slots etched in the silicon wafers with metal-filled materials. Their work was carried out in the laboratories at the Space Park facility. Moshe Sergant is also responsible for the impressive array of Scanning Electron Microscope images with which the various processes were monitored. Many others also contributed their time and expertise to the project. I wish to thank them all.

  19. Fine velocity structures collisional dissipation in plasmas

    NASA Astrophysics Data System (ADS)

    Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi

    2016-04-01

    In a weakly collisional plasma, such as the solar wind, collisions are usually considered far too weak to produce any significant effect on the plasma dynamics [1]. However, the estimation of collisionality is often based on the restrictive assumption that the particle velocity distribution function (VDF) shape is close to Maxwellian [2]. On the other hand, in situ spacecraft measurements in the solar wind [3], as well as kinetic numerical experiments [4], indicate that marked non-Maxwellian features develop in the three-dimensional VDFs, (temperature anisotropies, generation of particle beams, ring-like modulations etc.) as a result of the kinetic turbulent cascade of energy towards short spatial scales. Therefore, since collisional effects are proportional to the velocity gradients of the VDF, the collisionless hypothesis may fail locally in velocity space. Here, the existence of several characteristic times during the collisional relaxation of fine velocity structures is investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities, such as temperature and entropy, is discussed, suggesting that plasma collisionality can increase locally due to the velocity space deformation of the particle velocity distribution. In particular, by means of Eulerian simulations of collisional relaxation of a spatially homogeneous force-free plasma, in which collisions among particles of the same species are modeled through the complete Landau operator, we show that the system entropy growth occurs over several time scales, inversely proportional to the steepness of the velocity gradients in the VDF. We report clear evidences that fine velocity structures are dissipated by collisions in a time much shorter than global non-Maxwellian features, like, for example, temperature anisotropies. Moreover we indicate that, if small-scale structures

  20. Substitution behavior of x(Na0.5K0.5)NbO3-(1 - x)BaTiO3 ceramics for multilayer ceramic capacitors by a near edge x-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    Ha, Jooyeon; Ryu, Jiseung; Lee, Heesoo

    2014-06-01

    The doping effect of (Na0.5K0.5)NbO3 (NKN) as alternatives for rare-earth elements on the electrical properties of BaTiO3 has been investigated, in terms of their substitution behavior. The dielectric constant of a specimen with x = 0.05 was about 79% higher than that of pure BaTiO3, and the temperature coefficient of capacitance was satisfied by the X7R specification. The specimen with x = 0.05 showed the lowest tetragonality among the four compositions and had a fine grain size of <2 μm. Although the addition of NKN decreased the specimen's tetragonality, the electrical properties were enhanced by the formation of defect dipoles and conduction electrons, which resulted from an acceptor and donor substitution behavior. Through O K-edge near edge x-ray absorption fine structure spectroscopy, the practical substitution behavior was defined by the change in Ti 3d orbital states. The energy separation of the Ti 3d orbitals was more apparent with the specimen of x = 0.05, which is related to the donor level from the donor substitution of Nb5+ ion for Ti-sites. Therefore, the simultaneous substitution of Na+/K+ and Nb5+ ions into BaTiO3 can improve dielectric properties, based on the charge-transfer process.

  1. Damping of Magnetohydrodynamic Waves in Solar Prominence Fine Structures

    NASA Astrophysics Data System (ADS)

    Soler, Roberto

    2010-05-01

    High-resolution observations of solar filaments and prominences reveal that these large-scale coronal structures are formed by a myriad of long and thin ribbons, here called threads, which are piled up to form the prominence body. Evidences suggest that these fine structures are magnetic flux tubes anchored in the solar photosphere, which are partially filled with the cool and dense prominence material. Individual and collective oscillations of prominence and filament fine structures are frequently reported by means of oscillatory variations in Doppler signals and spectral line intensity. Common features of these observations are that the reported oscillatory periods are usually in a narrow range between 2 and 10 minutes, that the velocity amplitudes are smaller than ˜3 km/s, and that the oscillations seem to be strongly damped after a few periods. Typically, the ratio of the damping time, tD, to the period, P, is tD/P < 10. While the oscillations have been interpreted in the context of the magnetohydrodynamic (MHD) theory, i.e., in terms of the MHD normal modes supported by the filament thread body and/or propagating MHD waves, the mechanism or mechanisms responsible for the damping are not well-known and a comparative study between different damping mechanisms is needed. In this Thesis, we study the efficiency of several physical mechanisms for the damping of MHD oscillations in prominence fine structures. Both individual and collective oscillations of threads are analyzed. We model a filament thread as a straight cylindrical magnetic flux tube with prominence conditions, embedded in a magnetized environment representing the solar coronal medium. The basic MHD equations are applied to the model and contain non-ideal terms accounting for effects as, e.g., non-adiabatic mechanisms, magnetic diffusion, ion-neutral collisions, etc., that may be of relevance in prominence plasmas and whose role on the damping of the oscillations is assessed. Our method combines

  2. Fine Structure of Solar Acoustic Oscillations Due to Rotation

    NASA Technical Reports Server (NTRS)

    Goode, P. R.; Dziembowski, W.

    1984-01-01

    The nature of the fine structure of high order, low degree five minute period solar oscillations following from various postulated forms of spherical rotation is predicted. The first and second order effects of rotation are included.

  3. Fine Structure of Solar Acoustic Oscillations Due to Rotation

    NASA Technical Reports Server (NTRS)

    Goode, P. R.; Dziembowski, W.

    1984-01-01

    The nature of the fine structure of high order, low degree five minute period solar oscillations following from various postulated forms of spherical rotation is predicted. The first and second order effects of rotation are included.

  4. Structural Characterization of CO-Inhibited Mo-Nitrogenase by Combined Application of Nuclear Resonance Vibrational Spectroscopy, Extended X-ray Absorption Fine Structure, and Density Functional Theory: New Insights into the Effects of CO Binding and the Role of the Interstitial Atom

    DOE PAGES

    Scott, Aubrey D.; Pelmenschikov, Vladimir; Guo, Yisong; ...

    2014-10-02

    The properties of CO-inhibited Azotobacter vinelandii (Av) Mo-nitrogenase (N2ase) have been examined by the combined application of nuclear resonance vibrational spectroscopy (NRVS), extended X-ray absorption fine structure (EXAFS), and density functional theory (DFT). Dramatic changes in the NRVS are seen under high-CO conditions, especially in a 188 cm–1 mode associated with symmetric breathing of the central cage of the FeMo-cofactor. Similar changes are reproduced with the α-H195Q N2ase variant. In the frequency region above 450 cm–1, additional features are seen that are assigned to Fe-CO bending and stretching modes (confirmed by 13CO isotope shifts). The EXAFS for wild-type N2ase showsmore » evidence for a significant cluster distortion under high-CO conditions, most dramatically in the splitting of the interaction between Mo and the shell of Fe atoms originally at 5.08 Å in the resting enzyme. A DFT model with both a terminal ₋CO and a partially reduced ₋CHO ligand bound to adjacent Fe sites is consistent with both earlier FT-IR experiments, and the present EXAFS and NRVS observations for the wild-type enzyme. Another DFT model with two terminal CO ligands on the adjacent Fe atoms yields Fe-CO bands consistent with the α-H195Q variant NRVS. The calculations also shed light on the vibrational “shake” modes of the interstitial atom inside the central cage, and their interaction with the Fe-CO modes. We discuss implications for the CO and N2 reactivity of N2ase.« less

  5. Structural characterization of CO-inhibited Mo-nitrogenase by combined application of nuclear resonance vibrational spectroscopy, extended X-ray absorption fine structure, and density functional theory: new insights into the effects of CO binding and the role of the interstitial atom.

    PubMed

    Scott, Aubrey D; Pelmenschikov, Vladimir; Guo, Yisong; Yan, Lifen; Wang, Hongxin; George, Simon J; Dapper, Christie H; Newton, William E; Yoda, Yoshitaka; Tanaka, Yoshihito; Cramer, Stephen P

    2014-11-12

    The properties of CO-inhibited Azotobacter vinelandii (Av) Mo-nitrogenase (N2ase) have been examined by the combined application of nuclear resonance vibrational spectroscopy (NRVS), extended X-ray absorption fine structure (EXAFS), and density functional theory (DFT). Dramatic changes in the NRVS are seen under high-CO conditions, especially in a 188 cm(-1) mode associated with symmetric breathing of the central cage of the FeMo-cofactor. Similar changes are reproduced with the α-H195Q N2ase variant. In the frequency region above 450 cm(-1), additional features are seen that are assigned to Fe-CO bending and stretching modes (confirmed by (13)CO isotope shifts). The EXAFS for wild-type N2ase shows evidence for a significant cluster distortion under high-CO conditions, most dramatically in the splitting of the interaction between Mo and the shell of Fe atoms originally at 5.08 Å in the resting enzyme. A DFT model with both a terminal -CO and a partially reduced -CHO ligand bound to adjacent Fe sites is consistent with both earlier FT-IR experiments, and the present EXAFS and NRVS observations for the wild-type enzyme. Another DFT model with two terminal CO ligands on the adjacent Fe atoms yields Fe-CO bands consistent with the α-H195Q variant NRVS. The calculations also shed light on the vibrational "shake" modes of the interstitial atom inside the central cage, and their interaction with the Fe-CO modes. Implications for the CO and N2 reactivity of N2ase are discussed.

  6. SEISMOLOGY OF STANDING KINK OSCILLATIONS OF SOLAR PROMINENCE FINE STRUCTURES

    SciTech Connect

    Soler, R.; Arregui, I.; Oliver, R.; Ballester, J. L.

    2010-10-20

    We investigate standing kink magnetohydrodynamic (MHD) oscillations in a prominence fine structure modeled as a straight and cylindrical magnetic tube only partially filled with the prominence material and with its ends fixed at two rigid walls representing the solar photosphere. The prominence plasma is partially ionized and a transverse inhomogeneous transitional layer is included between the prominence thread and the coronal medium. Thus, ion-neutral collisions and resonant absorption are the damping mechanisms considered. Approximate analytical expressions of the period, the damping time, and their ratio are derived for the fundamental mode in the thin tube and thin boundary approximations. We find that the dominant damping mechanism is resonant absorption, which provides damping ratios in agreement with the observations, whereas ion-neutral collisions are irrelevant for damping. The values of the damping ratio are independent of both the prominence thread length and its position within the magnetic tube, and coincide with the values for a tube fully filled with the prominence plasma. The implications of our results in the context of the MHD seismology technique are discussed, pointing out that the reported short-period (2-10 minutes) and short-wavelength (700-8000 km) thread oscillations may not be consistent with a standing mode interpretation and could be related to propagating waves. Finally, we show that the inversion of some prominence physical parameters, e.g., Alfven speed, magnetic field strength, transverse inhomogeneity length scale, etc., is possible using observationally determined values of the period and damping time of the oscillations along with the analytical approximations of these quantities.

  7. The fine-structure constant before quantum mechanics

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    2003-03-01

    This paper focuses on the early history of the fine-structure constant, largely the period until 1925. Contrary to what is generally assumed, speculations concerning the interdependence of the elementary electric charge and Planck's constant predated Arnold Sommerfeld's 1916 discussion of the dimensionless constant. This paper pays particular attention to a little known work from 1914 in which G N Lewis and E Q Adams derived what is effectively a numerical expression for the fine-structure constant.

  8. Thin structured rigid body for acoustic absorption

    NASA Astrophysics Data System (ADS)

    Starkey, T. A.; Smith, J. D.; Hibbins, A. P.; Sambles, J. R.; Rance, H. J.

    2017-01-01

    We present a thin acoustic metamaterial absorber, comprised of only rigid metal and air, that gives rise to near unity absorption of airborne sound on resonance. This simple, easily fabricated, robust structure comprising a perforated metal plate separated from a rigid wall by a deeply subwavelength channel of air is an ideal candidate for a sound absorbing panel. The strong absorption in the system is attributed to the thermo-viscous losses arising from a sound wave guided between the plate and the wall, defining the subwavelength channel.

  9. Preliminary optical design of a varied line-space spectrograph for the multi-channel detection of near-edge X-ray absorption fine structure (NEXAFS) spectra in the 280-550 eV energy range

    SciTech Connect

    Wheeler, B.S.; McKinney, W.R.; Hussain, Z.; Padmore, H.

    1996-07-01

    The optical design of a varied line-space spectrograph for the multi-channel recording of NEXAFS spectra in a single {open_quotes}snapshot{close_quotes} is proposed. The spectrograph is to be used with a bending magnet source on beamline 7.3.2 at the Advanced Light Source (ALS). Approximately 20 volts of spectra are simultaneously imaged across a small square of material sample at each respective K absorption edge of carbon, nitrogen, and oxygen. Photoelectrons emitted from the material sample will be collected by an electron imaging microscope, the view field of which determines the sampling size. The sample also forms the exit slit of the optical system. This dispersive method of NEXAFS data acquisition is three to four orders of magnitude faster than the conventional method of taking data point-to-point using scanning of the grating. The proposed design is presented along with the design method and supporting SHADOW raytrace analysis.

  10. Enhanced absorption in silicon metamaterials waveguide structure

    NASA Astrophysics Data System (ADS)

    Hamouche, Houria; Shabat, Mohammed M.

    2016-07-01

    Metamaterial waveguide structures for silicon solar cells are a novel approach to antireflection coating structures that can be used for the achievement of high absorption in silicon solar cells. This paper investigates numerically the possibility of improving the performance of a planar waveguide silicon solar cell by incorporating a pair of silicon nitride/metamaterial layer between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The optimized layer thicknesses of the pair are determined under the solar spectrum AM1.5 by the effective average reflectance method. The transmission and reflection coefficients are derived by the transfer matrix method for values of metamaterial's refractive index in visible and near-infrared radiation. In addition, the absorption coefficient is examined for several angles of incidence of the transverse electric polarized (TE), transverse magnetic polarized (TM) and the total (TE&TM) guided waves. Numerical results provide an extremely high absorption. The absorptivity of the structure achieves greater than 98 %.

  11. Mercury transformations in chemical agent simulant as characterized by X-ray absorption fine spectroscopy.

    PubMed

    Skubal, Laura R; Biedron, Sandra G; Newville, Matthew; Schneider, John F; Milton, Stephen V; Pianetta, Piero; O'Neill, H Jack

    2005-10-15

    Chemical analyses of U.S. stockpiled mustard chemical warfare agent show some agent destined for destruction contains mercury [L. Ember, Chem. Eng. News 82 (2004) 8]. Because of its toxicity, mercury must be removed from agent prior to incineration or be scrubbed from incineration exhaust to prevent release into the atmosphere. Understanding mercury/agent interactions is critical if either atmospheric or aqueous treatment processes are used. We investigate and compare the state of mercury in water to that in thiodiglycol, a mustard simulant, as co-contaminants are introduced. The effects of sodium hypochlorite and sodium hydroxide, common neutralization chemicals, on mercury in water and simulant with and without co-contaminants present are examined using X-ray absorption fine spectroscopy (XAFS).

  12. Adding diffuse reflectance infrared Fourier transform spectroscopy capability to extended x-ray-absorption fine structure in a new cell to study solid catalysts in combination with a modulation approach

    NASA Astrophysics Data System (ADS)

    Chiarello, Gian Luca; Nachtegaal, Maarten; Marchionni, Valentina; Quaroni, Luca; Ferri, Davide

    2014-07-01

    We describe a novel cell used to combine in situ transmission X-ray absorption spectroscopy (XAS) with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) in a single experiment. The novelty of the cell design compared to current examples is that both radiations are passed through an X-ray and IR transparent window in direct contact with the sample. This innovative geometry also offers a wide surface for IR collection. In order to avoid interference from the crystalline IR transparent materials (e.g., CaF2, MgF2, diamond) a 500 μm carbon filled hole is laser drilled in the center of a CaF2 window. The cell is designed to represent a plug flow reactor, has reduced dead volume in order to allow for fast exchange of gases and is therefore suitable for experiments under fast transients, e.g., according to the concentration modulation approach. High quality time-resolved XAS and DRIFTS data of a 2 wt.% Pt/Al2O3 catalyst are obtained in concentration modulation experiments where CO (or H2) pulses are alternated to O2 pulses at 150 °C. We show that additional information can be obtained on the Pt redox dynamic under working conditions thanks to the improved sensitivity given by the modulation approach followed by Phase Sensitive Detection (PSD) analysis. It is anticipated that the design of the novel cell is likely suitable for a number of other in situ spectroscopic and diffraction methods.

  13. Acoustic Agglomeration Process of Fine Particles in a Resonance Structure

    NASA Astrophysics Data System (ADS)

    Shi, Chen-hao; Zhang, Jian; Zhao, Yun; Liang, Jie

    2017-07-01

    It was proved that the acoustic agglomeration technology has a good application prospect in the removal of fine particles. In this paper, a removal system of acoustic agglomeration is constructed by the acoustic resonance structure. With the finite element simulation model, the effect and condition of sound pressure level (SPL) increment of high intensity sound in the resonance structure are defined. In the experiment, the contrast of the sampling weight and particle size distribution changes of fine particles was compared under different operating conditions to examine the effect of acoustic agglomeration on the removal efficiency of fine particles. The results show the SPL increment of 10dB is obtained with SPL 145-165 dB when the working frequency is changed from 400 to 2000 Hz. Under the action of acoustic agglomeration, fine particles in the aerosol were significantly reduced, and the removal effect is markedly improved with the increase of SPL.

  14. Determination of lead in fine particulates by slurry sampling electrothermal atomic absorption spectrometry.

    PubMed

    Yu, J C; Ho, K F; Lee, S C

    2001-01-02

    A simple method for determining lead in fine particulates (PM2.5) by using electrothermal atomic absorption spectrometry (ETAAS) has been developed. Particulates collected on Nuclepore filter by using a dichotomous sampler were suspended in diluted nitric acid after ultrasonic agitation. The dislodging efficiency is nearly 100% after agitation for 5 min. In order to study the suspension behavior of PM2.5 in solvents, a Brookhaven ZetaPlus Particle Size Analyzer was used to determine the particle size distribution and suspension behavior of air particulates in the solvent. The pre-digestion and modification effect of nitric acid would be discussed. Palladium was added as a chemical modifier and the temperature program of ETAAS was changed in order to improve the recovery. The slurry was introduced directly into a graphite tube for atomization. The metal content in the sample was determined by the standard addition method. In addition, a conventional acid digestion procedure was applied to verify the efficiency of the slurry sampling method. It offers a quick and efficient alternative method for heavy metal characterization in fine particulates.

  15. In-situ Grazing-Incidence EXAFS Study of Pb(II) Chemisorption on Hematite (0001) and (1-102) Surfaces (titled changed by journal: IN SITU GRAZING INCIDENCE EXTENDED X-RAY ABSORPTION FINE STRUCTURE STUDY OF PB(II) CHEMISORPTION ON HEMATITE (0001) AND (1-102) SURFACES)

    SciTech Connect

    Bargar, J

    2004-03-19

    The dominant mode of binding of aqueous Pb(II) to single crystal (0001) (C-cut) and (1-102) (R-cut) surfaces of {alpha}-Fe{sub 2}O{sub 3} has been determined using grazing-incidence x-ray absorption fine structure (GI-XAFS) spectroscopy. Oligomeric Pb(II) complexes were found to bind in inner-sphere modes on both surfaces, which is in contrast with the binding of aqueous Pb(II) on {alpha}-Al{sub 2}O{sub 3} (0001) surfaces, where Pb(II) was found in past GI-XAFS studies to bind in a dominantly outer-sphere mode, indicating a significant difference in reactivity of these two surfaces to Pb(II). This difference in reactivity to Pb(II) is explained on the basis of recent crystal truncation rod diffraction studies of the {alpha}-Fe{sub 2}O{sub 3} and {alpha}-Al{sub 2}O{sub 3} C-cut surfaces in contact with bulk water, which found major structural differences between the surfaces of these two metal oxides.

  16. Probing the Li Insertion Mechanism of ZnFe2O4 in Li-Ion Batteries: A Combined X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Density Functional Theory Study [Probing the Li insertion mechanism of ZnFe2O4 in Li ion batteries: A combined XRD, EXAFS, and DFT study

    DOE PAGES

    Zhang, Yiman; Pelliccione, Christopher J.; Brady, Alexander B.; ...

    2017-04-24

    Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe2O4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Li+ ions insert intomore » 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe2O3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe2O4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.« less

  17. Solving the Structure of Reaction Intermediates by Time-Resolved Synchrotron X-ray Absorption Spectroscopy

    SciTech Connect

    Wang, Q.; Hanson, J; Frenkel, A

    2008-01-01

    We present a robust data analysis method of time-resolved x-ray absorption spectroscopy experiments suitable for chemical speciation and structure determination of reaction intermediates. Chemical speciation is done by principal component analysis (PCA) of the time-resolved x-ray absorption near-edge structure data. Structural analysis of intermediate phases is done by theoretical modeling of their extended x-ray absorption fine-structure data isolated by PCA. The method is demonstrated using reduction and reoxidation of Cu-doped ceria catalysts where we detected reaction intermediates and measured fine details of the reaction kinetics. This approach can be directly adapted to many time-resolved x-ray spectroscopy experiments where new rapid throughput data collection and analysis methods are needed.

  18. Examination of the local structure in composite and lowdimensional semiconductor by X-ray Absorption Spectroscopy

    SciTech Connect

    Lawniczak-Jablonska, K.; Demchenko, I.N.; Piskorska, E.; Wolska,A.; Talik, E.; Zakharov, D.N.; Liliental-Weber, Z.

    2006-09-25

    X-ray absorption methods have been successfully used to obtain quantitative information about local atomic composition of two different materials. X-ray Absorption Near Edge Structure analysis and X-Ray Photoelectron Spectroscopy allowed us to determine seven chemical compounds and their concentrations in c-BN composite. Use of Extended X-ray Absorption Fine Structure in combination with Transmission Electron Microscopy enabled us to determine the composition and size of buried Ge quantum dots. It was found that the quantum dots consisted out of pure Ge core covered by 1-2 monolayers of a layer rich in Si.

  19. Fine Structure of APLYSIA Statocyst Receptor Cells

    DTIC Science & Technology

    1974-08-01

    receptors. Cold Spring Harbor Symp. Quant. Biol. 30:133-145, 1965. 5. Flock, A. Sensory transduction in hair cells. In: Handbook of Sensory...and Lundquist, P.-G. Structural basis for directional sen- sitivity in cochlear and vestibular sensory receptors. Cold Spring Harbor Symp

  20. The Fine Structure of YCuO

    SciTech Connect

    Van Tendeloo, G.; Garlea, O.; Darie, C.; Bougerol-Chaillout, C.; Bordet, P.

    2001-02-01

    YCuO{sub 2} delafossite crystallizes into two stacking variants; hexagonal 2H or rhombohedral 3R, depending on the preparation conditions. The structure of the fully oxygenated material YCuO{sub 2.50} has been determined as orthorhombic (a{sub o}=6.1961 {angstrom}; b{sub o}=11.2158 {angstrom}; c{sub o}=7.1505 {angstrom}; space group Pnma). The structure is based on the hexagonal 2H structure (a{sub o}=a{sub H}{radical}3; b{sub o}=c{sub H}; c{sub o}=2a{sub H}). Upon incomplete oxidation, a different YCuO{sub Z} phase with ideal composition YCuO{sub 2.33} and lattice parameters a{sub H}{radical}3, a{sub H}{radical}3, c{sub H} is also formed. Diffraction patterns are often very complex because of the presence of planar defects and intergrowth of both phases. Under electron beam irradiation, oxygen is released from the structure and one phase gradually transforms into the other.

  1. A Newtonian Explanation of the Hydrogen Fine Structure

    NASA Astrophysics Data System (ADS)

    Fisher, Paul; Espinosa, James; Woodyard, James

    2010-10-01

    The Hydrogen spectrum as seen by low dispersion spectrometers is correctly described by a classical theory founded on Ritz's magnetic model. With increasingly powerful instruments, individual lines are split into smaller groupings that are three orders of magnitude smaller. Arnold Sommerfeld was the first to develop a theory based on the mass variation of the electron to correctly describe this ``fine'' structure. A few years later, Vannevar Bush pointed out that Weber's force law could be used instead of Einstein's theory of relativity. We will utilize this line of approach to present a purely classical theory of the fine structure of the Hydrogen atom. Ritz's theory of electromagnetism replaces Weber's law; we will summarize all the other atomic physics experiments that our classical theory already describes correctly. Finally we will show how this fine structure theory logically paves the way for an explanation of the linear Stark effect.

  2. Advances in Nanocarbon Metals: Fine Structure

    DTIC Science & Technology

    2015-03-01

    SUPPLEMENTARY NOTES 14. ABSTRACT This study is an investigation of the structure and some properties of silver, copper, and aluminum alloy covetics...Covetics can incorporate large amounts of carbon (C) in a nanoscale form to alter physical and mechanical properties of the base metal or alloy ...and properties can be obtained. 15. SUBJECT TERMS covetic, nanocarbon silver, aluminum , copper 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  3. Farber's disease: a fine structural study.

    PubMed

    Abenoza, P; Sibley, R K

    1987-01-01

    A 1-week-old baby boy presented with hepatosplenomegaly, coarse facial features, and cloudy corneas. A metabolic storage disease was considered and he underwent cutaneous and liver biopsy. By light microscopy the skin was normal. Kupffer cells were enlarged and had foamy cytoplasm. Ultrastructural examination of skin and liver demonstrated features compatible with Farber's disease: curvilinear and "banana" bodies, zebra-like structures, and concentric lamellar bodies. A deficiency of lysosomal acid ceramidase was subsequently demonstrated in cultured fibroblasts and in liver tissue corroborating the ultrastructural findings.

  4. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    SciTech Connect

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Zanoni, R.; Stranges, S.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-04-07

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the {sigma}/{pi} hyperconjugation in EtFC and the {pi}-conjugation in VFC and EFC.

  5. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    NASA Astrophysics Data System (ADS)

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Stranges, S.; Zanoni, R.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-04-01

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the σ/π hyperconjugation in EtFC and the π-conjugation in VFC and EFC.

  6. Fine Structure of Ectothiorhodospira mobilis Pelsh1

    PubMed Central

    Remsen, C. C.; Watson, S. W.; Waterbury, J. B.; Trüper, H. G.

    1968-01-01

    The cell wall structure, arrangement of photosynthetic membranes, and the attachment of flagella of Ectothiorhodospira mobilis strain 8112 were examined by using freeze-etching and conventional electron microscopic techniques. The outer coat of the multilayered cell wall is comprised of 50 A repeating subunits, arranged in a regular array. The photosynthetic membranes, which originate from and are attached to the plasma membrane, are arranged in a more complex pattern than previously seen in other bacteria. The tuft of flagella in E. mobilis is inserted into a polar organelle. The relationship of this organelle to the polar membrane and the mechanism of attachment of the flagella to the polar organelle is discussed. Images PMID:5669908

  7. Fine structure of the FMR-1 locus

    SciTech Connect

    Nelson, D.L.; Eichler, E.E.; Richards, S.; Gibbs, R.A.

    1994-07-15

    The fragile X syndrome is due to a CGG triplet expansion in the first exon of FMR-1, resulting in hypermethylation and extinction of gene expression. To further understanding of the gene`s involvement in the syndrome, we have determined the physical structure of this locus. A high resolution restriction map of cosmids from the region has been prepared encompassing approximately 50 kb. Using exon-exon PCR and restriction analysis, the FMR-1 gene has been determined to consist of 17 exons spanning 38 kb of Xq27.3. Each intron-exon boundary has been sequenced. In general, the splice donors and acceptors located in the 5{prime} portion of the gene demonstrate greater adherence to consensus than those in the 3{prime} end, providing a possible explanation for the finding of alternative splicing in FMR-1. Sequence analysis of the region immediately flanking the CGG triplet repeat demonstrated both tetranucleotide and dinucleotide repeats. Additional sequence is being obtained from the overlapping cosmids spanning the gene, and extending 20 kb proximal and approximately 30 kb distal as part of a larger project to determine sequence on the megabase scale in the Xq27.3-q28 region. These sequences are being characterized from normal and affected individuals to assess polymorphisms and the role (if any) of peculiar sequences in the generation of fragile X CGG instability. The elucidation of the structure and composition of the FMR-1 gene as well as its flanking region will enhance detection of other mutations possible in fragile X phenocopy individuals.

  8. Characterization of Fine Structure in Sprites

    NASA Astrophysics Data System (ADS)

    Gerken, E. A.; Inan, U. S.

    2001-12-01

    During the summer months of 1998-2000, Stanford University fielded campaigns to telescopically image sprites. The campaigns were conducted at Langmuir Laboratory (operated by New Mexico Institute of Mining and Technology) in Socorro NM and Yucca Ridge Observatory in Fort Collins CO. The experiment consisted of two intensified CCD cameras, two photometers, and crossed magnetic loop VLF antennas. One camera was mounted on a 16in diameter, 72in focal length Newtonian telescope with a field of view of 0.72x0.9 degrees and the other had a 50mm lens with a field of view of 9x12 degrees. Similarly one photometer was mounted on an 8in diameter, 1200mm focal length Newtonian telescope with a circular field of view of 1 degree and the second was red-filtered and had a wider field of view of 3x6 degrees. All four instruments were mounted on the same platform and were aligned. Video data was stored on VHS tapes with the photometer signals recorded on the audio channels. GPS video time-stamping and IRIG-B code were used for timing. Data from these campaigns reveal streamer structures within sprites ranging from 25m to 200m in width. Streamer morphologies are diverse ranging from single columns to multiply-forked structures to chains of beads. Faint downward branching is observed prior to some large sprite events. Streamers are seen to develop on time scales from less than 17ms to over 100ms. Streamer sizes and velocities are compared to existing models and charge moments for associated sferics are presented.

  9. Fine structure of triplet exciton polarons in polydiacetylene molecules

    NASA Astrophysics Data System (ADS)

    Kollmar, C.; Rühle, W.; Frick, J.; Sixl, H.; Schütz, J. U. v.

    1988-07-01

    Triplet states on conjugated polydiacetylene chains which are created by UV excitation are examined experimentally using ODMR spectroscopy. The observed fine structure shows that the triplet state can be ascribed to the conjugated chain rather than to the side groups and that it is localized. This leads to the suggestion of an exciton polaron. In the theoretical part the wave function of the exciton polaron is calculated using the configuration model in analogy to the description of pz radical electrons on carbene chain ends of reactive short-chain intermediates. The total fine structure tensor is obtained by summing up the fine structure tensors of the individual configurations weighted by their probability densities. The transfer integral t of the configuration model is fitted with respect to good agreement between experimentally observed and calculated fine structure parameters. Finally, comparison between the experimentally observed ESR linewidth and the calculated hyperfine structure splitting shows that the linewidth is motionally narrowed leading to the conclusion that the exciton polaron is mobile.

  10. THE FINE STRUCTURE OF COCKROACH CAMPANIFORM SENSILLA

    PubMed Central

    Moran, David T.; Chapman, Kent M.; Ellis, Richard A.

    1971-01-01

    Campaniform sensilla on cockroach legs provide a good model system for the study of mechanoreceptive sensory transduction. This paper describes the structure of campaniform sensilla on the cockroach tibia as revealed by light- and electron-microscopy. Campaniform sensilla are proprioceptive mechanoreceptors associated with the exoskeleton. The function of each sensillum centers around a single primary sense cell, a large bipolar neuron whose 40 µ-wide cell body is available for electrophysiological investigation with intracellular microelectrodes. Its axon travels to the central nervous system; its dendrite gives rise to a modified cilium which is associated with the cuticle. The tip of the 20 µ-long dendrite contains a basal body, from which arises a 9 + 0 connecting cilium. This cilium passes through a canal in the cuticle, and expands in diameter to become the sensory process, a membrane-limited bundle of 350–1000 parallel microtubules. The tip of the sensory process is firmly attached to a thin cap of exocuticle; mechanical depression of this cap, which probably occurs during walking movements, effectively stimulates the sensillum. The hypothesis is presented that the microtubules of the sensory process play an important role in mechanoelectric transduction in cockroach campaniform sensilla. PMID:5545101

  11. Temporal Fine Structure and Applications to Cochlear Implants

    ERIC Educational Resources Information Center

    Li, Xing

    2013-01-01

    Complex broadband sounds are decomposed by the auditory filters into a series of relatively narrowband signals, each of which conveys information about the sound by time-varying features. The slow changes in the overall amplitude constitute envelope, while the more rapid events, such as zero crossings, constitute temporal fine structure (TFS).…

  12. Strained spiral vortex model for turbulent fine structure

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    1982-01-01

    A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.

  13. Temporal Fine Structure and Applications to Cochlear Implants

    ERIC Educational Resources Information Center

    Li, Xing

    2013-01-01

    Complex broadband sounds are decomposed by the auditory filters into a series of relatively narrowband signals, each of which conveys information about the sound by time-varying features. The slow changes in the overall amplitude constitute envelope, while the more rapid events, such as zero crossings, constitute temporal fine structure (TFS).…

  14. Electromagnetic wave absorption properties of Fe73Si16B7Nb3Cu1-based composites mixed with fine charcoal powder

    NASA Astrophysics Data System (ADS)

    Kim, Sun-I.; Kim, Mi Rae; Sohn, Keun Yong; Park, Won-Wook

    2010-05-01

    Fe73Si16B7Nb3Cu1 soft magnetic powder was crystallized to obtain a nano grain structure and mixed with a fine charcoal powder. The mixtures were tape-cast with polymer-based organic binders to form a sheet-type electromagnetic (EM) wave absorption composite. The EM wave absorption properties of the sheets were investigated using a network analyzer. The results showed that addition of charcoal powder improved the EM-absorbing properties of the composite. The power loss of the EM wave was directly related to the imaginary part of the permeability and permittivity, and it was reviewed in detail. Excellent absorption properties were achieved by adding 5 wt % charcoal powder (-500 mesh) to the Fe-based sheets.

  15. The origin of the distortion product otoacoustic emission fine structure

    NASA Astrophysics Data System (ADS)

    Piskorski, Pawel

    Distortion-product otoacoustic emissions (DPOAEs) are sounds detected in the ear canal which are generated by the nonlinear processes in the inner ear (cochlea) in response to the external stimulation of two or more tones (primaries). Their generation region in the cochlea can be systematically changed by varying the primary frequencies, and they are currently being evaluated for possible clinical use in screening for hearing defects. The phase and amplitude of various orders of DPOAEs of frequencies, f/sb [dp]=f1-n(f2-f1),/ (n=1,2,/...), were measured in human subjects for two- tone stimuli of frequencies f1 and f2 (>f1). A number of experimental paradigms (fixed primary ratio f2/f1, fixed f1, fixed f2, and fixed f/sb [dp]) were used to investigate the nature of peaks and valleys (fine structure) of DPOAEs in their phase and amplitude dependence on the primary frequencies. This fine structure must be taken into account in any potential clinical applications of DPOAEs. The experimental results largely support a model in which the fine structure stems from interference at the base of the cochlea between distortion product (DP) components coming from the primary DPOAE source region (around the f2 tonotopic place) and components coming from the DP tonotopic place (via reflection of an apically moving DP wave). The spectral periodicity of the fine structures for several orders of apical DPOAEs corresponds to a tonotopic displacement of about 0.4 mm along the basilar membrane (BM) (0.4 bark). In agreement with the reaction model, this spectral spacing is also characteristic of synchronous evoked and spontaneous otoacoustic emission spectra as well as the microstructure of the hearing threshold. Approximate analytic expressions for the mechanisms which are responsible for the fine structure are used to interpret the data.

  16. Fine structures in the light diffraction pattern of striated muscle.

    PubMed

    Leung, A F

    1984-10-01

    Single skeletal muscle fibres of frog were illuminated with a He-Ne, argon-ion or rhodamine 6G dye laser. The fine structures lying within the diffraction columns moved parallel to the fibre axis without changing their pattern when either the wavelength or the incident angle of the laser beam was varied, or when the fibre was stretched slightly. However, their pattern remained nearly constant when the fibre was submerged in hypotonic or hypertonic solution. As the illumination of about 1 mm or 0.1 mm width scanned along the length of the fibre, new structures emerged while others faded away giving rise to the notion that the diffraction columns were moving in the direction of the scan. A decrease in the illumination width caused the structures lying on the periphery of the diffraction column to disappear and the width of the remaining structures to increase. Measurements rule out the existence of large diffraction planes in these muscles. In addition, they indicate that the fine structures come from the diffraction of the whole rather than independent components of the illuminated volume. The origin of the fine structures is explained by two diffraction models.

  17. Assigning {gamma} deformation from fine structure in exotic nuclei

    SciTech Connect

    Ferreira, L. S.; Maglione, E.; Arumugam, P.

    2011-10-28

    The nonadiabatic quasiparticle model for triaxial shapes is used to perform calculations for decay of {sup 141}Ho, the only known odd-Z even-N deformed nucleus for which fine structure in proton emission from both ground and isomeric states has been observed. All experimental data corresponding to this unique case namely, the rotational spectra of parent and daughter nuclei, decay widths and branching ratios for ground and isomeric states, could be well explained with a strong triaxial deformation {gamma}{approx}20. The recent experimental observation of fine structure decay from the isomeric state, can be explained only with an assignment of I{sup {pi}} = 3/2{sup +} as the decaying state, in contradiction with the previous assignment, of I{sup {pi}} 1/2{sup +}, based on adiabatic calculations. This study reveals that proton emission measurements could be a precise tool to probe triaxial deformations and other structural properties of exotic nuclei beyond the proton dripline.

  18. Classification of surface structures on fine metallic wires

    NASA Astrophysics Data System (ADS)

    Bernabeu, E.; Sanchez-Brea, L. M.; Siegmann, P.; Martinez-Antón, J. C.; Gomez-Pedrero, J. A.; Wilkening, G.; Koenders, L.; Müller, F.; Hildebrand, M.; Hermann, H.

    2001-08-01

    In this report a classification of the main surface structures found on fine metallic wires is carried out (between ˜20 and 500 μm in diameter). For this, we have analyzed a series of wires of different metallic materials, diameters and production environments by scanning electron microscopy, atomic force microscopy, and confocal microscopy. A description and the images of the structures is given and, in addition, a nomenclature to be used by manufacturers, customers and researches is proposed. With this information the surface quality of fine metallic wires may be improved in a fabrication level. One of the objectives of this catalogue of defects is to serve as a basis for measuring the quality of the surface of the wires during the production process and the development of a measuring device for that purpose.

  19. Variations in the fine-structure constant constraining gravity theories

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Cunha, M. S.; Muniz, C. R.; Tahim, M. O.; Vieira, H. S.

    2016-08-01

    In this paper, we investigate how the fine-structure constant, α, locally varies in the presence of a static and spherically symmetric gravitational source. The procedure consists in calculating the solution and the energy eigenvalues of a massive scalar field around that source, considering the weak-field regime. From this result, we obtain expressions for a spatially variable fine-structure constant by considering suitable modifications in the involved parameters admitting some scenarios of semi-classical and quantum gravities. Constraints on free parameters of the approached theories are calculated from astrophysical observations of the emission spectra of a white dwarf. Such constraints are finally compared with those obtained in the literature.

  20. Analysis of fine structure in the nuclear continuum

    SciTech Connect

    Shevchenko, A.; Kalmykov, Y.; Neumann-Cosel, P. von; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Carter, J.; Usman, I.; Cooper, G. R. J.; Fearick, R. W.

    2008-02-15

    Fine structure has been shown to be a general phenomenon of nuclear giant resonances of different multipolarities over a wide mass range. In this article we assess various techniques that have been proposed to extract quantitative information from the fine structure in terms of characteristic scales. These include the so-called local scaling dimension, the entropy index method, Fourier analysis, and continuous and discrete wavelet transforms. As an example, results on the isoscalar giant quadrupole resonance in {sup 208}Pb from high-energy-resolution inelastic proton scattering and calculations with the quasiparticle-phonon model are analyzed. Wavelet analysis, both continuous and discrete, of the spectra is shown to be a powerful tool to extract the magnitude and localization of characteristic scales.

  1. Fine Structure of Dark Energy and New Physics

    DOE PAGES

    Jejjala, Vishnu; Kavic, Michael; Minic, Djordje

    2007-01-01

    Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of darkmore » energy and constrain the distribution function.« less

  2. Fine-scale human genetic structure in Western France.

    PubMed

    Karakachoff, Matilde; Duforet-Frebourg, Nicolas; Simonet, Floriane; Le Scouarnec, Solena; Pellen, Nadine; Lecointe, Simon; Charpentier, Eric; Gros, Françoise; Cauchi, Stéphane; Froguel, Philippe; Copin, Nane; Le Tourneau, Thierry; Probst, Vincent; Le Marec, Hervé; Molinaro, Sabrina; Balkau, Beverley; Redon, Richard; Schott, Jean-Jacques; Blum, Michael Gb; Dina, Christian

    2015-06-01

    The difficulties arising from association analysis with rare variants underline the importance of suitable reference population cohorts, which integrate detailed spatial information. We analyzed a sample of 1684 individuals from Western France, who were genotyped at genome-wide level, from two cohorts D.E.S.I.R and CavsGen. We found that fine-scale population structure occurs at the scale of Western France, with distinct admixture proportions for individuals originating from the Brittany Region and the Vendée Department. Genetic differentiation increases with distance at a high rate in these two parts of Northwestern France and linkage disequilibrium is higher in Brittany suggesting a lower effective population size. When looking for genomic regions informative about Breton origin, we found two prominent associated regions that include the lactase region and the HLA complex. For both the lactase and the HLA regions, there is a low differentiation between Bretons and Irish, and this is also found at the genome-wide level. At a more refined scale, and within the Pays de la Loire Region, we also found evidence of fine-scale population structure, although principal component analysis showed that individuals from different departments cannot be confidently discriminated. Because of the evidence for fine-scale genetic structure in Western France, we anticipate that rare and geographically localized variants will be identified in future full-sequence analyses.

  3. Fine-scale human genetic structure in Western France

    PubMed Central

    Karakachoff, Matilde; Duforet-Frebourg, Nicolas; Simonet, Floriane; Le Scouarnec, Solena; Pellen, Nadine; Lecointe, Simon; Charpentier, Eric; Gros, Françoise; Cauchi, Stéphane; Froguel, Philippe; Copin, Nane; Balkau, B; Ducimetière, P; Eschwège;, E; Alhenc-Gelas, F; Girault, A; Fumeron, F; Marre, M; Roussel, R; Bonnet, F; Cauchi, S; Froguel, P; Cogneau, J; Born, C; Caces, E; Cailleau, M; Lantieri, O; Moreau, J G; Rakotozafy, F; Tichet, J; Le Tourneau, Thierry; Probst, Vincent; Le Marec, Hervé; Molinaro, Sabrina; Balkau, Beverley; Redon, Richard; Schott, Jean-Jacques; Blum, Michael GB; Dina, Christian

    2015-01-01

    The difficulties arising from association analysis with rare variants underline the importance of suitable reference population cohorts, which integrate detailed spatial information. We analyzed a sample of 1684 individuals from Western France, who were genotyped at genome-wide level, from two cohorts D.E.S.I.R and CavsGen. We found that fine-scale population structure occurs at the scale of Western France, with distinct admixture proportions for individuals originating from the Brittany Region and the Vendée Department. Genetic differentiation increases with distance at a high rate in these two parts of Northwestern France and linkage disequilibrium is higher in Brittany suggesting a lower effective population size. When looking for genomic regions informative about Breton origin, we found two prominent associated regions that include the lactase region and the HLA complex. For both the lactase and the HLA regions, there is a low differentiation between Bretons and Irish, and this is also found at the genome-wide level. At a more refined scale, and within the Pays de la Loire Region, we also found evidence of fine-scale population structure, although principal component analysis showed that individuals from different departments cannot be confidently discriminated. Because of the evidence for fine-scale genetic structure in Western France, we anticipate that rare and geographically localized variants will be identified in future full-sequence analyses. PMID:25182131

  4. Deeper Probing of the Fine-structure Constant

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2008-10-01

    In our earlier attempt in [1] to derive fine-structure constant, one subtle reason why the natural logarithm of the age of the universe in Planck times comes out to be slightly greater than the reciprocal of the fine structure constant is that the variable W in Boltzmann's expression should be the age of the universe in Planck times divided by the bit depth for our specific application. Since we cannot decode the nature's bit depth, we cannot come up with the expected value of ALPHA. For an assumed bit depth of 10, the reciprocal of ALPHA goes down by ln10 (2.3) without having a significant impact on the order of magnitude of the baud rate (baud rate = bits per second/bit depth = 10^43 (Planck time/second)/10 = 10^42). Use of terms and equations from informatics in both of author's interrelated abstracts this meeting is meant to engage a wider audience simply. [1] Goradia, Shantilal ``What is Fine-structure Constant?'' http://www.arXiv.org/pdf/physics/0210040v3.

  5. Solar chromospheric fine scale structures: dynamics and energetics

    NASA Astrophysics Data System (ADS)

    Tziotziou, K.

    2012-01-01

    The solar chromosphere is a very inhomogeneous and dynamic layer of the solar atmosphere that exhibits several phenomena on a wide range of spatial and temporal scales. High-resolution and long-duration observations, employing mostly lines, such as Halpha, the Ca II infrared lines and the Ca II H and K lines, obtained both from ground-based telescope facilities (e.g. DST, VTT, THEMIS, SST, DOT), as well as state-of-the-art satellites (e.g. SOHO, TRACE, HINODE) reveal an incredibly rich, dynamic and highly structured chromospheric environment. What is known in literature as the chromospheric fine-scale structure mainly consists of small fibrilar-like features that connect various parts of quiet/active regions or span across the chromospheric network cell interiors, showing a large diversity of both physical and dynamic characteristics. The highly dynamic, fine-scale chromospheric structures are mostly governed by flows which reflect the complex geometry and dynamics of the local magnetic field and play an important role in the propagation and dissipation of waves. A comprehensive study of these structures requires deep understanding of the physical processes involved and investigation of their intricate link with structures/processes at lower photospheric levels. Furthermore, due to their large number present on the solar surface, it is essential to investigate their impact on the mass and energy transport to higher atmospheric layers through processes such as magnetic reconnection and propagation of waves. The in-depth study of all aforementioned characteristics and processes, with the further addition of non-LTE physics, as well as the use of three-dimensional numerical simulations poses a fascinating challenge for both theory and numerical modeling of chromospheric fine-scale structures.

  6. Exploring the fine structure at the limb in coronal holes

    NASA Technical Reports Server (NTRS)

    Karovska, Magarita; Blundell, Solon F.; Habbal, Shadia Rifai

    1994-01-01

    The fine structure of the solar limb in coronal holes is explored at temperatures ranging from 10(exp 4) to 10(exp 6) K. An image enhancement algorithm orignally developed for solar eclipse observations is applied to a number of simultaneous multiwavelength observations made with the Harvard Extreme Ultraviolet Spectrometer experiment on Skylab. The enhanced images reveal the presence of filamentary structures above the limb with a characteristic separation of approximately 10 to 15 sec . Some of the structures extend from the solar limb into the corona to at least 4 min above the solar limb. The brightness of these structures changes as a function of height above the limb. The brightest emission is associated with spiculelike structures in the proximity of the limb. The emission characteristic of high-temperature plasma is not cospatial with the emission at lower temperatures, indicating the presence of different temperature plasmas in the field of view.

  7. [Spectrum characterization and fine structure of copper phthalocyanine-doped TiO2 microcavities].

    PubMed

    Liu, Cheng-lin; Zhang, Xin-yi; Zhong, Ju-hua; Zhu, Yi-hua; He, Bo; Wei, Shi-qiang

    2007-10-01

    Copper phthalocyanine-doped TiO2 microcavities were fabricated by chemistry method. Their spectrum characterization was studied by Fourier transform infrared (FTIR) and Raman spectroscopy, and their fine structure was analyzed by X-ray absorption fine structure (XAFS). The results show that there is interaction of copper phthalocyanine (CuPc) and TiO2 microcavities after TiO2 microcavities was doped with CuPc. For example, there is absorption at 900.76 cm(-1) in FTIR spectra, and the "red shift" of both OH vibration at 3392.75 cm(-1) and CH vibration at 2848.83 cm(-1). There exist definite peak shifts and intensity changes in infrared absorption in the C-C or C-N vibration in the planar phthalocyanine ring, the winding vibration of C-H inside and C-N outside plane of benzene ring. In Raman spectrum, there are 403.4, 592.1 and 679.1 cm(-1) characterized peaks of TiO2 in CuPc-doped TiO2 microcavities, but their wave-numbers show shifts to anatase TiO2. The vibration peaks at 1586.8 and 1525.6 cm(-1) show that there exists the composite material of CuPc and TiO2. These changes are related to the plane tropism of the molecule structure of copper phthalocyanine. XAFS showed tetrahedron TiO4 structure of Ti in TiO2 microcavities doped with copper phthalocyanine, and the changes of inner "medial distances" and the surface structure of TiO2 microcavities.

  8. Fine structures of type III radio bursts observed by LOFAR

    NASA Astrophysics Data System (ADS)

    Magdalenic, Jasmina; Marque, Christophe; Fallows, Richard; Mann, Gottfried; Vocks, Christian

    2017-04-01

    On August 25, 2014, NOAA AR 2146 produced the M2.0 class flare (peaked at 15:11 UT). The flare was associated with a coronal dimming, a EUV wave, a halo CME and a radio event observed by LOFAR (the LOw-Frequency Array). The radio event consisted of a type II, type III and type IV radio emissions. In this study, we focus on LOFAR observations of the type III bursts, generally considered to be radio signatures of fast electron beams propagating along open or quasi open field lines. The group of type III bursts was, as usually, observed during the impulsive phase of the flare. At first hand, type III bursts show no peculiarity, but the high frequency/time resolution LOFAR observations reveal that only few of these type III bursts have a smooth emission profile. The majority of bursts is strongly fragmented. Some show a structuring similar to type IIIb bursts, but on a smaller frequency scale, and others show a non-organized patchy structure which gives indication on the possibly related turbulence processes. Although fine structures of type III bursts were already reported, the wealth of fine structures, and the fragmentation of the radio emission observed in this August 25 event is unprecedented. We show that these LOFAR observations bring completely new insight and pose a new challenge for the physics of the acceleration of electron beams and associated emission processes.

  9. Fine-Scale Filamentary Structure in Coronal Streamers

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Armstrong, John W.; Bird, Michael K.; Paetzold, Martin

    1995-01-01

    Doppler scintillation measurements of a coronal streamer lasting several solar rotations have been conducted by Ulysses in 1991 over a heliocentric distance range of 14-77 R(sub 0). By showing that the solar corona is filamentary, and that Doppler frequency is the radio counterpart of white-light eclipse pictures processed to enhance spatial gradients, it is demonstrated that Doppler scintillation measurements provide the high spatial resolution that has long eluded white-light coronagraph measurements. The region of enhanced scintillation, spanning an angular extent of 1.8 deg in heliographic longitude, coincides with the radially expanding streamer stalk and represents filamentary structure with scale sizes at least as small as 340 km (0.5 sec) when extrapolated to the Sun. Within the stalk of the streamer, the fine-scale structure corresponding to scale sizes in the range of 20-340 km at the Sun and associated with closed magnetic fields amounts to a few percent of the mean density, while outside the stalk, the fine-scale structure associated with open fields is an order of magnitude lower. Clustering of filamentary structure that takes place within the stalk of the streamer is suggestive of multiple current sheets. Comparison with ISEE 3 in situ plasma measurements shows that significant evolution resulting from dynamic interaction with increasing heliocentric distance takes place by the time streamers reach Earth orbit.

  10. Effect of heat treatment on the far-infrared emission spectra and fine structures of black tourmaline.

    PubMed

    Meng, Junping; Liang, Jinsheng; Liu, Jie; Ding, Yan; Gan, Kun

    2014-05-01

    Mineral black tourmaline powders were heat-treated at different temperatures. Their crystal structure was studied by X-ray diffractometer. Their infrared absorption and emission spectra before and after the heat treatment were analyzed by the Fourier transform infrared spectrometer. The corresponding fine structures were discussed in detail. The results showed that the powders possessed higher infrared emissivity at the band where they showed stronger infrared absorption. However, there is no certain correlation between the peak intensity of infrared absorption and emissivity values at the same frequency. Because of the crystal shrinkage of c-axis, the electronic transitions were stimulated between different energy levels, and the abilities of infrared absorption and emission were enhanced with increasing the temperature of heat treatment.

  11. ISO observation of molecular hydrogen and fine-structure lines in the photodissociation region IC63

    NASA Astrophysics Data System (ADS)

    Thi, W.-F.; van Dishoeck, E. F.; Bell, T.; Viti, S.; Black, J.

    2009-12-01

    We wish to constrain the main physical properties of the photodissociation region (PDR) IC63. We present the results of a survey for the lowest pure-rotational lines of H2 with the Short Wavelength Spectrometer and for the major fine-structure cooling lines of OI at 63 and 145μm and CII at 157.7μm with the Long Wavelength Spectrometer on board the Infrared Space Observatory (ISO) in the high-density PDR IC63. The observations are compared with available photochemical models based on optical absorption and/or millimetre emission line data with and without enhanced H2 formation rate on grain surfaces. The cloud density nH is constrained by the fine-structure lines. The models include both collisional excitation and ultraviolet (UV) pumping of the H2 ro-vibrational levels. Molecular pure-rotational lines up to S(5) are detected. The inferred column density of warm H2 at 106 +/- 11K is (5.9 +/- 1.8)+0.9-0.7 × 1021cm-2, while that of the hot component at 685 +/- 68K is (1.2 +/- 0.4) × 1019cm-2. Fine-structure lines are also detected in the far-infrared spectrum of IC63. The fine-structure lines constrain the density of the PDR to be (1-5) × 103cm-3. The impinging UV field on the PDR is enhanced by a factor of 103 compared to the mean interstellar field and is consistent with direct measurements in the UV. PDR models that include an enhanced H2 formation at high dust temperature give higher H2 intensities than models without enhancement. However, the predicted intensities are still lower than the observed intensities.

  12. Photodissociation Structural Dynamics of TrirutheniumDodecacarbonyl Investigated by X-ray Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harpham, Michael R.; Stickrath, Andrew, B.; Zhang, Xiaoyi,; Huang, Jier; Mara, Michael W.; Chen, Lin X.; Liu, Di-Jia

    2013-10-01

    The molecular and electronic structures of the transient intermediates generated from the photolysis of trirutheniumdodecacarbonyl, Ru3(CO)12, by ultrafast UV (351 nm) laser excitation were investigated using X-ray transient absorption (XTA) spectroscopy. The electronic configuration change and nuclear rearrangement after the dissociation of carbonyls were observed at ruthenium K-edge X-ray absorption near edge structure and X-ray absorption fine structure spectra. Analysis of XTA data, acquired after 100, 200, and 400 ps and 300 ns time delay following the photoexcitation, identified the presence of three intermediate species with Ru3(CO)10 being the most dominating one. The results set an example of applying XTA in capturing both transient electronic and nuclear configurations in metal clusters simulating catalysts in chemical reactions.

  13. Doublet structure of bands of low-frequency IR absorption spectra of some aromatic compounds

    NASA Astrophysics Data System (ADS)

    Demchuk, Yu. S.; Vandyukov, A. E.; Vandyukov, E. A.

    2000-12-01

    To increase the efficiency of identifying the complex aromatic compounds, the present paper gives the results of investigating the low-frequency region of the IR absorption and recorded doublet structure of absorption bands of the deformation(al) vibrations of naphtalene-, anthracene-, phenantrene-, pyrene- and coronene molecules in a fine- disperse state in matrices of KBr, polyethylene and in a vaseline oil. Parameters of changing the position of the centers of doublet components and the relationship of their intensities in changing the temperature are determined. Parameters of doublet components in dependence on the concentration of aromatic molecules in KBr tablets are investigated.

  14. Topological Quantization in Units of the Fine Structure Constant

    SciTech Connect

    Maciejko, Joseph; Qi, Xiao-Liang; Drew, H.Dennis; Zhang, Shou-Cheng; /Stanford U., Phys. Dept. /Stanford U., Materials Sci. Dept. /SLAC

    2011-11-11

    Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant {alpha} = e{sup 2}/{h_bar}c. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.

  15. New Tests for Variations of the Fine Structure Constant

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    1995-01-01

    We describe a new test for possible variations of the fine structure constant, by comparisons of rates between clocks based on hyperfine transitions in alkali atomos with different atomic number Z. H- maser, Cs and Hg+ clocks have a different dependence on ia relativistic contributions of order (Z. Recent H-maser vs Hg+ clock comparison data improves laboratory limits on a time variation by 100-fold to giveFuture laser cooled clocks (Be+, Rb, Cs, Hg+, etc.), when compared, will yield the most senstive of all tests for.

  16. Urban, Forest, and Agricultural AIS Data: Fine Spectral Structure

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.

    1985-01-01

    Spectra acquired by the Airborne Imaging Spectrometer (AIS) near Lafayette, IN, Ely, MN, and over the Stanford University campus, CA were analyzed for fine spectral structure using two techniques: the ratio of radiance of a ground target to the radiance of a standard and also the correlation coefficient of radiances at adjacent wavelengths. The results show ramp like features in the ratios. These features are due to the biochemical composition of the leaf and to the optical scattering properties of its cuticle. The size and shape of the ramps vary with ground cover.

  17. Taxonomic Implications of Spore Fine Structure in Clostridium bifermentans

    PubMed Central

    Rode, L. J.; Smith, Louis Ds

    1971-01-01

    Thirty-five strains of Clostridium bifermentans were, in most part, culturally homogeneous by conventional taxonomic criteria but were heterogeneous with respect to spore fine structure. Fourteen of the strains produced spores with appendages, distributed among four distinct ultrastructural types. No consistent correlation existed between spore type and other variable properties of these strains. It is proposed, therefore, that these spore appendage-type strains be considered as “varieties” of C. bifermentans and that they should not be designated as new species. Images PMID:5541019

  18. A simple cosmology with a varying fine structure constant.

    PubMed

    Sandvik, Håvard Bunes; Barrow, John D; Magueijo, João

    2002-01-21

    We investigate the cosmological consequences of a theory in which the electric charge e can vary. In this theory the fine structure "constant," alpha, remains almost constant in the radiation era, undergoes a small increase in the matter era, but approaches a constant value when the universe starts accelerating because of a positive cosmological constant. This model satisfies geonuclear, nucleosynthesis, and cosmic microwave background constraints on time variation in alpha, while fitting the observed accelerating Universe and evidence for small alpha variations in quasar spectra. It also places specific restrictions on the nature of the dark matter. Further tests, involving stellar spectra and Eötvös experiments, are proposed.

  19. Morphological relationships in the chromospheric H-alpha fine structure

    NASA Technical Reports Server (NTRS)

    Foukal, P.

    1971-01-01

    A continuous relationship is proposed between the basic elements of the dark fine structure of the quiet and active chromosphere. A progression from chromospheric bushes to fibrils, then to chromospheric threads and active region filaments, and finally to diffuse quiescent filaments, is described. It is shown that the horizontal component of the field on opposite sides of an active region quiescent filament can be in the same direction and closely parallel to the filament axis. Consequently, it is unnecessary to postulate twisted or otherwise complex field configurations to reconcile the support mechanism of filaments with the observed motion along their axis.

  20. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance.

    PubMed

    Moritake, Y; Kanamori, Y; Hane, K

    2016-09-13

    We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy in the order of 10 nm, resonant wavelengths of Fano resonance were controlled from 1296 to 1416 nm. Fluorescence of QDs embedded in a polymer layer on ADB metamaterials were modified due to coupling to Fano resonance and fine tuning from 1350 to 1376 nm was observed. Wavelength tuning of modified fluorescence was reproduced by analysis using absorption peaks of Fano resonance. Tuning range of modified fluorescence became narrow, which was interpreted by a simple Gaussian model and resulted from comparable FWHM in QD fluorescence and Fano resonant peaks. The results will help the design and fabrication of metamaterial devices with fluorophores such as light sources and biomarkers.

  1. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance

    NASA Astrophysics Data System (ADS)

    Moritake, Y.; Kanamori, Y.; Hane, K.

    2016-09-01

    We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy in the order of 10 nm, resonant wavelengths of Fano resonance were controlled from 1296 to 1416 nm. Fluorescence of QDs embedded in a polymer layer on ADB metamaterials were modified due to coupling to Fano resonance and fine tuning from 1350 to 1376 nm was observed. Wavelength tuning of modified fluorescence was reproduced by analysis using absorption peaks of Fano resonance. Tuning range of modified fluorescence became narrow, which was interpreted by a simple Gaussian model and resulted from comparable FWHM in QD fluorescence and Fano resonant peaks. The results will help the design and fabrication of metamaterial devices with fluorophores such as light sources and biomarkers.

  2. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance

    PubMed Central

    Moritake, Y.; Kanamori, Y.; Hane, K.

    2016-01-01

    We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy in the order of 10 nm, resonant wavelengths of Fano resonance were controlled from 1296 to 1416 nm. Fluorescence of QDs embedded in a polymer layer on ADB metamaterials were modified due to coupling to Fano resonance and fine tuning from 1350 to 1376 nm was observed. Wavelength tuning of modified fluorescence was reproduced by analysis using absorption peaks of Fano resonance. Tuning range of modified fluorescence became narrow, which was interpreted by a simple Gaussian model and resulted from comparable FWHM in QD fluorescence and Fano resonant peaks. The results will help the design and fabrication of metamaterial devices with fluorophores such as light sources and biomarkers. PMID:27622503

  3. Atomic structure of Mn-rich nanocolumns probed by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rovezzi, M.; Devillers, T.; Arras, E.; d'Acapito, F.; Barski, A.; Jamet, M.; Pochet, P.

    2008-06-01

    In this letter, we have used the extended x-ray-absorption fine-structure (EXAFS) technique to investigate the structure of Mn-rich self-organized nanocolumns grown by low temperature molecular beam epitaxy. The EXAFS analysis has shown that Mn-rich nanocolumns exhibit a complex local structure that cannot be described by a simple substitutional model. Additional interatomic distances had to be considered in the EXAFS model which are in excellent agreement with the structure of a Ge-3Mn building block tetrahedron of Ge3Mn5.

  4. Small-angle electron scattering of magnetic fine structures.

    PubMed

    Togawa, Yoshihiko

    2013-06-01

    Magnetic structures in magnetic artificial lattices and chiral magnetic orders in chiral magnets have been quantitatively analyzed in the reciprocal space by means of small-angle electron scattering (SAES) method. Lorentz deflection due to magnetic moments and Bragg diffraction due to periodicity are simultaneously recorded at an angle of the order of or less than 1 × 10(-6) rad, using a camera length of more than 100 m. The present SAES method, together with TEM real-space imaging methods such as in-situ Lorentz microscopy, is very powerful in analyzing magnetic fine structures in magnetic materials. Indeed, the existence of both a chiral helimagnetic structure and a chiral magnetic soliton lattice in a chiral magnet CrNb3S6 has been successfully verified for the first time using the present complementary methods.

  5. Thermal stability analysis of the fine structure of solar prominences

    NASA Technical Reports Server (NTRS)

    Demoulin, Pascal; Malherbe, Jean-Marie; Schmieder, Brigitte; Raadu, Mickael A.

    1986-01-01

    The linear thermal stability of a 2D periodic structure (alternatively hot and cold) in a uniform magnetic field is analyzed. The energy equation includes wave heating (assumed proportional to density), radiative cooling and both conduction parallel and orthogonal to magnetic lines. The equilibrium is perturbed at constant gas pressure. With parallel conduction only, it is found to be unstable when the length scale 1// is greater than 45 Mn. In that case, orthogonal conduction becomes important and stabilizes the structure when the length scale is smaller than 5 km. On the other hand, when the length scale is greater than 5 km, the thermal equilibrium is unstable, and the corresponding time scale is about 10,000 s: this result may be compared to observations showing that the lifetime of the fine structure of solar prominences is about one hour; consequently, our computations suggest that the size of the unresolved threads could be of the order of 10 km only.

  6. `Fingerprint' Fine Structure in the Solar Decametric Radio Spectrum Solar Physics

    NASA Astrophysics Data System (ADS)

    Zlotnik, E. Y.; Zaitsev, V. V.; Melnik, V. N.; Konovalenko, A. A.; Dorovskyy, V. V.

    2015-07-01

    We study a unique fine structure in the dynamic spectrum of the solar radio emission discovered by the UTR-2 radio telescope (Kharkiv, Ukraine) in the frequency band of 20 - 30 MHz. The structure was observed against the background of a broadband type IV radio burst and consisted of parallel drifting narrow bands of enhanced emission and absorption on the background emission. The observed structure differs from the widely known zebra pattern at meter and decimeter wavelengths by the opposite directions of the frequency drift within a single stripe at a given time. We show that the observed properties can be understood in the framework of the radiation mechanism by virtue of the double plasma resonance effect in a nonuniform coronal magnetic trap. We propose a source model providing the observed frequency drift of the stripes.

  7. Search for fine scale structures in high latitude solar wind

    NASA Astrophysics Data System (ADS)

    Livi, S.; Parenti, S.; Poletto, G.

    1995-06-01

    About 25 years ago, E. Parker suggested that, as a consequence of the inhomogeneous structure of the corona, the solar wind might consist of adjacent structures with different physical conditions. Since that suggestion was made, the solar wind plasma characteristics have been measured in situ through many experiments, but little has been done to check whether the solar wind shows any evidence for fine scale structures, and, in the affirmative, how far from the Sun these structures persist. A previous work on this subject, by Thieme, Marsch and Schwenn (1990), based on Helios data, lead these authors to claim that the solar wind, between 0.3 and 1 AU, is inhomogeneous on a scale consistent with the hypothesis that the plume-interplume plasmas, at those distances, still retain their identity. In this work we present preliminary results from an investigation of the solar wind fine structure from Ulysses high latitude observations. To this end, we have analyzed data over several months, during 1994, at times well after Ulysses's last encounter with the Heliospheric Current Sheet, when the spacecraft was at latitudes above 50 degrees. These data refer to high speed wind coming from southern polar coronal holes and are best suited for plume-interplume identification. We have performed a power spectra analysis of typical plasma parameters, to test whether the wind plasma consist of two distinct plasma populations. We also examined data to check whether there is any evidence for an horizontal pressure balance over the hypothesized distinct structures. Our results are discussed and compared with previous findings.

  8. Search for fine scale structures in high latitude solar wind

    NASA Technical Reports Server (NTRS)

    Livi, S.; Parenti, S.; Poletto, G.

    1995-01-01

    About 25 years ago, E. Parker suggested that, as a consequence of the inhomogeneous structure of the corona, the solar wind might consist of adjacent structures with different physical conditions. Since that suggestion was made, the solar wind plasma characteristics have been measured in situ through many experiments, but little has been done to check whether the solar wind shows any evidence for fine scale structures, and, in the affirmative, how far from the Sun these structures persist. A previous work on this subject, by Thieme, Marsch and Schwenn (1990), based on Helios data, lead these authors to claim that the solar wind, between 0.3 and 1 AU, is inhomogeneous on a scale consistent with the hypothesis that the plume-interplume plasmas, at those distances, still retain their identity. In this work we present preliminary results from an investigation of the solar wind fine structure from Ulysses high latitude observations. To this end, we have analyzed data over several months, during 1994, at times well after Ulysses's last encounter with the Heliospheric Current Sheet, when the spacecraft was at latitudes above 50 degrees. These data refer to high speed wind coming from southern polar coronal holes and are best suited for plume-interplume identification. We have performed a power spectra analysis of typical plasma parameters, to test whether the wind plasma consist of two distinct plasma populations. We also examined data to check whether there is any evidence for an horizontal pressure balance over the hypothesized distinct structures. Our results are discussed and compared with previous findings.

  9. Vertical fine structure observations in the eastern equatorial Pacific

    SciTech Connect

    Hayes, S.P.

    1981-11-20

    Measurements of vertical displacement and horizontal velocity finestructure near the equator at 110/sup 0/W in the eastern Pacific Ocean are reported. Profiles were scaled to a constant Bruent-Vaeisaelae frequency ocean (N/sub 0/ = 1 cph) in accordance with a WKBJ approximation. A total of 57 CTD casts between 3/sup 0/N and 3/sup 0/S taken during five cruises in 1979 were analyzed. Results show an equatorial enhancement of vertical displacement is similar variance for vertical wavelengths longer than 50 sdbar (stretched decibars). This enhancement is similar to that which has been reported at 125/sup 0/W and 179/sup 0/E. Difference between locations can be accounted for by the observed temporal variability at 110/sup 0/W. Coherence between vertical displacement profiles separated in time by dealys of 2 hours to 120 hour indicate that the high wave number structures were largely associated with time scales of 4 days and less. Meridionally, vertical structures longer than 300 sdbar were coherent within 50 km of the equator. We interpret this vertical displacement fine structure enhancement as high wave number equatorially trapped inertial-gravity waves. The velocity fine structure measurements in July 1979 also indicate equatorially enhanced horizontal kinetic energy for vertical wave lengths longer than 100 sdbar. The velocity structures persisted over the 56 hour of measurement and appeared to have longer time scales than the vertical displacements. Meridional energy measurement and appeared to have longer time scales than the vertical displacements. Meridional energy exceeded zonal energy; however, the two components were coherent. We interpret these velocity structures as inertial-gravity waves which were produced off the equator and are propagating through the equatorial region.

  10. Search for fine scale structures in high latitude solar wind

    NASA Technical Reports Server (NTRS)

    Livi, S.; Parenti, S.; Poletto, G.

    1995-01-01

    About 25 years ago, E. Parker suggested that, as a consequence of the inhomogeneous structure of the corona, the solar wind might consist of adjacent structures with different physical conditions. Since that suggestion was made, the solar wind plasma characteristics have been measured in situ through many experiments, but little has been done to check whether the solar wind shows any evidence for fine scale structures, and, in the affirmative, how far from the Sun these structures persist. A previous work on this subject, by Thieme, Marsch and Schwenn (1990), based on Helios data, lead these authors to claim that the solar wind, between 0.3 and 1 AU, is inhomogeneous on a scale consistent with the hypothesis that the plume-interplume plasmas, at those distances, still retain their identity. In this work we present preliminary results from an investigation of the solar wind fine structure from Ulysses high latitude observations. To this end, we have analyzed data over several months, during 1994, at times well after Ulysses's last encounter with the Heliospheric Current Sheet, when the spacecraft was at latitudes above 50 degrees. These data refer to high speed wind coming from southern polar coronal holes and are best suited for plume-interplume identification. We have performed a power spectra analysis of typical plasma parameters, to test whether the wind plasma consist of two distinct plasma populations. We also examined data to check whether there is any evidence for an horizontal pressure balance over the hypothesized distinct structures. Our results are discussed and compared with previous findings.

  11. SOLAR RADIO BURSTS WITH SPECTRAL FINE STRUCTURES IN PREFLARES

    SciTech Connect

    Zhang, Yin; Tan, Baolin; Huang, Jing; Tan, Chengming; Karlický, Marian; Mészárosová, Hana; Simões, Paulo J.A.

    2015-01-20

    Good observations of preflare activities are important for us to understand the origin and triggering mechanism of solar flares, and to predict the occurrence of solar flares. This work presents the characteristics of microwave spectral fine structures as preflare activities of four solar flares observed by the Ondřejov radio spectrograph in the frequency range of 0.8-2.0 GHz. We found that these microwave bursts which occurred 1-4 minutes before the onset of flares have spectral fine structures with relatively weak intensities and very short timescales. They include microwave quasi-periodic pulsations with very short periods of 0.1-0.3 s and dot bursts with millisecond timescales and narrow frequency bandwidths. Accompanying these microwave bursts are filament motions, plasma ejection or loop brightening in the EUV imaging observations, and non-thermal hard X-ray emission enhancements observed by RHESSI. These facts may reveal certain independent, non-thermal energy releasing processes and particle acceleration before the onset of solar flares. They may help us to understand the nature of solar flares and to predict their occurrence.

  12. QED Based Calculation of the Fine Structure Constant

    SciTech Connect

    Lestone, John Paul

    2016-10-13

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. Here, semi-classical approaches are used to obtain a more intuitive feel for what causes electrostatics, and the anomalous magnetic moment of the electron. These intuitive arguments lead to a possible answer to the question of the nature of charge. Virtual photons, with a reduced wavelength of λ, are assumed to interact with isolated electrons with a cross section of πλ2. This interaction is assumed to generate time-reversed virtual photons that are capable of seeking out and interacting with other electrons. This exchange of virtual photons between particles is assumed to generate and define the strength of electromagnetism. With the inclusion of near-field effects the model presented here gives a fine structure constant of ~1/137 and an anomalous magnetic moment of the electron of ~0.00116. These calculations support the possibility that near-field corrections are the key to understanding the numerical value of the dimensionless fine structure constant.

  13. Fine structure in the cluster decays of the translead nuclei

    SciTech Connect

    Dumitrescu, O. |; Cioaca, C.

    1995-06-01

    Within the one level {ital R}-matrix approach several hindrance factors for the radioactive decays in which are emitted {sup 4}He, {sup 14}C, and {sup 20}O atomic nuclei are calculated. The interior wave functions are supposed to be given by the recently proposed enlarged superfluid model, an extension of the JINR-Dubna`s quasiparticle phonon nuclear model. The spectroscopic factors are expanded in terms of products of cluster overlaps and intrinsic overlap integrals. The cluster overlaps are equivalents of the generalized coefficients of fractional parentage, while for the intrinsic overlap integrals we construct a model, which is an extension of the usual models for simple particle decay such as deuteron, triton, and {alpha} decay. The exterior wave functions are calculated from a cluster-nucleus double-folding model potential obtained with the {ital M}3{ital Y} interaction. As examples of the cluster decay fine structure we analyzed the particular cases of {alpha} decay of {sup 255}Fm, {sup 14}C decay of {sup 223}Ra and {sup 20}O decay of {sup 229}Th and {sup 255}Fm. A relatively good agreement with the experimental data is obtained especially in the case of the {alpha}-decay fine structure.

  14. THE FINE STRUCTURE OF INHIBITORY SYNAPSES IN THE CRAYFISH

    PubMed Central

    Peterson, R. Price; Pepe, Frank A.

    1961-01-01

    Physiological investigations have shown that the synaptic input to the sensory neuron of the stretch receptor in the abdominal muscles of the crayfish is purely inhibitory. This neuron was chosen, therefore, as a site in which to study the fine structure of inhibitory synaptic endings. It was hoped that this fine structure might (a) provide a morphological prototype for the study of more complex synaptic systems and (b) reflect the inhibitory mechanisms. Stretch receptors were fixed in situ in buffered OsO4, dehydrated, and embedded in Araldite. Both cross and longitudinal sections were examined after staining with phosphotungstic acid. The inhibitory endings were easily identified by their great similarity to previously described excitatory endings. Small circular profiles (synaptic vesicles) about 460 A in diameter and an accumulation of mitochondria were consistently observed within the presynaptic endings. An increased osmiophilia of pre- and postsynaptic membranes, where they were in apposition, was also seen. The only observed difference between these inhibitory endings and excitatory endings, described by other authors, was the variable presence of a latticework of 230 A tubules in the connective tissue immediately adjacent to the inhibitory endings. Inhibitory endings were observed on all parts of the sensory neuron except the axon. PMID:14485811

  15. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.

    PubMed

    Butun, Serkan; Aydin, Koray

    2014-08-11

    Light absorption is a fundamental optical process playing significantly important role in wide variety of applications ranging from photovoltaics to photothermal therapy. Semiconductors have well-defined absorption bands with low-energy edge dictated by the band gap energy, therefore it is rather challenging to tune the absorption bandwidth of semiconductors. However, resonant absorbers based on plasmonic nanostructures and optical metamaterials emerged as alternative light absorbers due to spectrally selective absorption bands resulting from optical resonances. Recently, a broadband plasmonic absorber design was introduced by Aydin et al. with a reasonably high broadband absorption. Based on that design, here, structurally tunable, broadband absorbers with improved performance are demonstrated. This broadband absorber has a total thickness of 190 nm with 80% average measured absorption (90% simulated absorption) over the entire visible spectrum (400 - 700 nm). Moreover, the effect of the metal and the oxide thicknesses on the absorption spectra are investigated and results indicate that the shorter and the longer band-edge of broadband absorption can be structurally tuned with the metal and the oxide thicknesses, as well as with the resonator size. Detailed numerical simulations shed light on the type of optical resonances that contribute to the broadband absorption response and provide a design guideline for realizing plasmonic absorbers with structurally tunable bandwidths.

  16. [Morphogenesis and the fine structure of Stibiobacter senarmontii].

    PubMed

    Pivovarova, T A; Lialikova, N N

    1980-01-01

    The morphogenesis and fine structure of Stibiobacter senarmontii were studied during its cultivation in the autotrophic conditions of growth in a mineral medium as well as in a medium containing yeast extract. The morphology of the organism was shown to be variable. A young culture was represented mainly by rods with three flagella. Coccoid, club-shaped and branching forms were observed during aging of the culture. The cells multiplied by irregular division and by breaking along the partition of the parent cell. The latter process yielded cell aggregates looking like rings and hieroglyphs. Electronograms revealed a complex membrane apparatus, polyribosomes, large electron-transparent inclusions, and unknown electron-dense inclusions in the nuclear zone. The cell wall looked on cross-sections as a three-layer structure. The assignment of St. senarmontii to Gram-positive bacteria is discussed. The morphogenesis of this organism suggests that it is related to the coryneform group of bacteria.

  17. Surface structure of CdSe Nanorods revealed by combined X-rayabsorption fine structure measurements and ab-initio calculations

    SciTech Connect

    Aruguete, Deborah A.; Marcus, Matthew A.; Li, Liang-shi; Williamson, Andrew; Fakra, Sirine; Gygi, Francois; Galli, Giulia; Alivisatos, A. Paul

    2006-01-27

    We report orientation-specific, surface-sensitive structural characterization of colloidal CdSe nanorods with extended X-ray absorption fine structure spectroscopy and ab-initio density functional theory calculations. Our measurements of crystallographically-aligned CdSe nanorods show that they have reconstructed Cd-rich surfaces. They exhibit orientation-dependent changes in interatomic distances which are qualitatively reproduced by our calculations. These calculations reveal that the measured interatomic distance anisotropy originates from the nanorod surface.

  18. Local structure and dynamics of hemeproteins by X-ray absorption near edge structure spectroscopy.

    PubMed

    Arcovito, Alessandro; della Longa, Stefano

    2012-07-01

    X-ray absorption near edge structure (XANES) spectroscopy is a synchrotron radiation technique sensitive to the local structure and dynamics around the metal site of a heme containing protein. Advances in detection techniques and theoretical/computational platforms in the last 15 years allowed the use of XANES as a quantitative probe of the key structural determinants driving functional changes, both in a concerted way with protein crystallography and EXAFS (extended X-ray absorption fine structure), or as a stand-alone method to apply in the crystal state as well as in solution. Moreover, the local dynamics of the heme site has been deeply investigated, on one hand, coupling XANES to classical photolysis experiments at cryogenic temperatures; on the other hand, the intrinsic property of the synchrotron radiation to induce radiolysis events, has been exploited to investigate specific cryotrapped intermediates, using X-rays both as a pump and a probe. Insights on the XANES method and some specific examples are presented to illustrate these topics. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Optimal design of porous structures for the fastest liquid absorption.

    PubMed

    Shou, Dahua; Ye, Lin; Fan, Jintu; Fu, Kunkun

    2014-01-14

    Porous materials engineered for rapid liquid absorption are useful in many applications, including oil recovery, spacecraft life-support systems, moisture management fabrics, medical wound dressings, and microfluidic devices. Dynamic absorption in capillary tubes and porous media is driven by the capillary pressure, which is inversely proportional to the pore size. On the other hand, the permeability of porous materials scales with the square of the pore size. The dynamic competition between these two superimposed mechanisms for liquid absorption through a heterogeneous porous structure may lead to an overall minimum absorption time. In this work, we explore liquid absorption in two different heterogeneous porous structures [three-dimensional (3D) circular tubes and porous layers], which are composed of two sections with variations in radius/porosity and height. The absorption time to fill the voids of porous constructs is expressed as a function of radius/porosity and height of local sections, and the absorption process does not follow the classic Washburn's law. Under given height and void volume, these two-section structures with a negative gradient of radius/porosity against the absorption direction are shown to have faster absorption rates than control samples with uniform radius/porosity. In particular, optimal structural parameters, including radius/porosity and height, are found that account for the minimum absorption time. The liquid absorption in the optimized porous structure is up to 38% faster than in a control sample. The results obtained can be used a priori for the design of porous structures with excellent liquid management property in various fields.

  20. Rotational structure in the near-infrared absorption spectrum of ozone

    NASA Technical Reports Server (NTRS)

    Anderson, Stuart M.; Hupalo, Peter; Mauersberger, Konrad

    1993-01-01

    The lowest energy members of the near-IR absorption bands of ozone possess fine structure which is probably due to the rotation of the molecule in the upper vibronic state, suggesting that this state is metastable. A preliminary analysis of the structures as rotational subbands supports a recent theoretical assignment of the near-IR vibronic features to the 3A2 - 1A1 electronic transition. A binding energy of about 0.1 eV is inferred from the breakoff in the observed structure.

  1. Rotational structure in the near-infrared absorption spectrum of ozone

    NASA Technical Reports Server (NTRS)

    Anderson, Stuart M.; Hupalo, Peter; Mauersberger, Konrad

    1993-01-01

    The lowest energy members of the near-IR absorption bands of ozone possess fine structure which is probably due to the rotation of the molecule in the upper vibronic state, suggesting that this state is metastable. A preliminary analysis of the structures as rotational subbands supports a recent theoretical assignment of the near-IR vibronic features to the 3A2 - 1A1 electronic transition. A binding energy of about 0.1 eV is inferred from the breakoff in the observed structure.

  2. Splittings, Satellites and Fine Structure in the Soft X-ray Spectroscopy of the Actinides

    SciTech Connect

    Tobin, J. G.; Yu, S. -W.; Chung, B. W.

    2013-06-14

    Perhaps the most demanding and powerful actinide spectroscopy is that using soft X-ray and VUV photons. Because of the relatively low energy and fairly small sampling depths of these photons and the corresponding electrons, it is necessary to use un-encapsulated samples with highly cleaned and well-prepared surfaces. This causes a myriad of sample containment problems for these radioactive materials. Despite these hindrances and difficulties, the soft-X-ray and ultra-violet spectroscopy of the actinides can provide an amazing level of detailed information, particularly having to do with 5f electronic structure. In this paper, the splittings, satellites and fine structure of the following actinide soft X-ray spectroscopies will be discussed: X-ray photoelectron spectroscopy; X-ray absorption spectroscopy; and inverse photoelectron spectroscopy, including Bremstrahlung isochromat spectroscopy and resonant inverse photoelectron spectroscopy.

  3. Absorption enhancement and total absorption in a graphene-waveguide hybrid structure

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Wu, Leiming; Dai, Xiaoyu; Xiang, Yuanjiang; Fan, Dianyuan

    2017-02-01

    We propose a graphene/planar waveguide hybrid structure, and demonstrate total absorption in the visible wavelength range by means of attenuated total reflectance. The excitation of planar waveguide mode, which has strong near field enhancement and increased light interaction length with graphene, plays a vital role in total absorption. We analyze the origin and physical insight of total absorption theoretically by using an approximated reflectance, and show how to design such hybrid structure numerically. Utilizing the tunability of doped graphene, we discuss the possible application in optical modulators. We also achieve broadband absorption enhancement in near-IR range by cascading multiple graphene-waveguide hybrid structures. We believe our results will be useful not only for potential applications in optical devices, but also for studying other two-dimension materials.

  4. Heterogeneous porous structures for the fastest liquid absorption

    NASA Astrophysics Data System (ADS)

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2013-08-01

    Engineered porous materials, which have fast absorption of liquids under global constraints (e.g. volume, surface area, or cost of the materials), are useful in many applications including moisture management fabrics, medical wound dressings, paper-based analytical devices, liquid molding composites, etc.. The absorption in capillary tubes and porous media is driven by the surface tension of liquid, which is inversely proportional to the pore size. On the contrary, the ability of conduction (or permeability) of liquid in porous materials is linear with the square of pore size. Both mechanisms superimpose with each other leading to a possibility of the fastest absorption for a porous structure. In this work, we explore the flow behaviors for the fastest absorption using heterogeneous porous architectures, from two-portion tubes to two-layer porous media. The absorption time for filling up the voids in these porous materials is expressed in terms of pore size, height and porosity. It is shown that under the given height and void volume, these two-component porous structures with a negative gradient of pore size/porosity against the imbibition direction, have a faster absorption rate than controlled samples with uniform pore size/porosity. Particularly, optimal structural parameters including pore size, height and porosity are found for the minimum absorption time. The obtained results will be used as a priori for the design of porous structures with excellent water absorption and moisture management property in various fields.

  5. Investigation of internal structure of fine granules by microtomography using synchrotron X-ray radiation.

    PubMed

    Noguchi, Shuji; Kajihara, Ryusuke; Iwao, Yasunori; Fujinami, Yukari; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Miura, Keiko; Itai, Shigeru

    2013-03-10

    Computed tomography (CT) using synchrotron X-ray radiation was evaluated as a non-destructive structural analysis method for fine granules. Two kinds of granules have been investigated: a bromhexine hydrochloride (BHX)-layered Celphere CP-102 granule coated with pH-sensitive polymer Kollicoat Smartseal 30-D, and a wax-matrix granule constructed from acetaminophen (APAP), dibasic calcium phosphate dehydrate, and aminoalkyl methacrylate copolymer E (AMCE) manufactured by melt granulation. The diameters of both granules were 200-300 μm. CT analysis of CP-102 granule could visualize the laminar structures of BHX and Kollicoat layers, and also visualize the high talc-content regions in the Kollicoat layer that could not be detected by scanning electron microscopy. Moreover, CT analysis using X-ray energies above the absorption edge of Br specifically enhanced the contrast in the BHX layer. As for granules manufactured by melt granulation, CT analysis revealed that they had a small inner void space due to a uniform distribution of APAP and other excipients. The distribution of AMCE revealed by CT analysis was also found to involve in the differences of drug dissolution from the granules as described previously. These observations demonstrate that CT analysis using synchrotron X-ray radiation is a powerful method for the detailed internal structure analysis of fine granules. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. FOURIER ANALYSIS OF EXTENDED FINE STRUCTURE WITH AUTOREGRESSIVE PREDICTION

    SciTech Connect

    Barton, J.; Shirley, D.A.

    1985-01-01

    Autoregressive prediction is adapted to double the resolution of Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) Fourier transforms. Even with the optimal taper (weighting function), the commonly used taper-and-transform Fourier method has limited resolution: it assumes the signal is zero beyond the limits of the measurement. By seeking the Fourier spectrum of an infinite extent oscillation consistent with the measurements but otherwise having maximum entropy, the errors caused by finite data range can be reduced. Our procedure developed to implement this concept applies autoregressive prediction to extrapolate the signal to an extent controlled by a taper width. Difficulties encountered when processing actual ARPEFS data are discussed. A key feature of this approach is the ability to convert improved measurements (signal-to-noise or point density) into improved Fourier resolution.

  7. Atomic Clocks and Variations of the FIne Structure Constant

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    1995-01-01

    We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.

  8. The fine scale structures of airflow over Bergen

    NASA Astrophysics Data System (ADS)

    Ólafsson, Haraldur; Rugaard Furevik, Birgitte; Asle Olseth, Jan; Edvard Grov, Ole

    2015-04-01

    A large network of automatic weather stations is operated in the the complex terrain of Bergen City and its surroundings. This so-called Bergen School of Meteorology network is used to explore the fine scale structures of the atmosphere in a föhn case and evaluate how numerical simulations perform in reproducing the details of the flow. In general, the vertical profile is well reproduced, as well as many details in the wind field, as long as the resolution permits adequate representation of the topography. The intermittent nature of the flow remains however a problem. A step towards better local forecasts may lie in predicting not only the fundamental parameters such as wind and temperature, but their local temporal variability as well.

  9. Ship Wake Distortion as Indicator of Spatial Current Fine Structure

    NASA Astrophysics Data System (ADS)

    Lavrova, Olga Yu.; Sabinin, Konstantin D.

    2013-03-01

    Parameter determination of current fine structure is attempted for a case of ship wake distortion. In high resolution radar and optical images, one can clearly detect long narrow slick bands formed on the sea surface as a result of discharges of waters containing surfactants. During intense algae bloom, ship wakes are manifested in radar images as bright contrast bands hundreds of kilometers long observed on the sea surface for several hours. Comparing the true route of a vessel with its wake one can obtain more detailed information about the current component. The impact of various hydrological processes on ship wake patterns are discussed, in particular, ship wake distortions caused by meso- and submesoscale eddies and internal waves that allowed to determine orbital current velocities in the processes from the distortion characteristics.

  10. Atomic Clocks and Variations of the FIne Structure Constant

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    1995-01-01

    We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.

  11. Fine structure generation in a double-diffusive system.

    PubMed

    Kozitskiy, S B

    2005-11-01

    Double-diffusive convection in a horizontally infinite layer of a unit height in a large-Rayleigh-number limit is considered. From linear stability analysis it is shown that the convection tends to have a form of traveling tall thin rolls with width about 30 times less than height. Amplitude equations of type for vertical variations of the amplitude of these rolls and mean values of diffusive components are derived. As a result of its numerical simulation it is shown that for a wide variety of parameters considered system have solutions, known as diffusive chaos, which can be useful for the explanation of fine structure generation in some important oceanographical systems like thermohaline staircases.

  12. X-ray absorption spectroscopy using synchrotron radiation for structural investigation of organometallic molecules of biological interest.

    PubMed Central

    Kincaid, B M; Eisenberger, P; Hodgson, K O; Doniach, S

    1975-01-01

    The technique of x-ray absorption spectroscopy using tuneable, very intense x-rays from a high energy electron storage ring has been applied to study of the estended x-ray absorption fine structure for Cu and Ni tetraphenylporphyrin and methemoglobin. Preliminary analysis shows that the spectra may be interpreted as a super-position of modulations arising from the nearest neighbor nitrogen and pyrrole alpha-carbon coordination sheels of the metal atoms. We estimate that with the observed magnitude of noise to modulation amplitude, relative shifts of 0,5% in the metal-nitrogen to metal-carbon bond distances in the prophyrins should be observable using extended x-ray absorption fine structure and that this technique may provide a method of observing these types of structural changes in solution. PMID:1056033

  13. [Study on the fine structure of K-feldspar of Qichun granite].

    PubMed

    Du, Deng-Wen; Hong, Han-Lie; Fan, Kan; Wang, Chao-Wen; Yin, Ke

    2013-03-01

    Fine structure of K-feldspar from the Qichun granite was investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR), and inductively coupled plasma mass spectrometry methods to understand the evolution of the granitic magmatism and its correlation to molybdenite mineralization. The XRD results showed that K-feldspar of the potassic alteration veins has higher ordering index and triclinicity and is namely microcline with triclinic symmetry. K-feldspar of the early cretaceous granite has relatively lower ordering index and has widening [131] peak and is locally triclinic ordering. K-feldspar of the late cretaceous granite has lowest ordering index and sharp [131] peak and is honiogeneously monoclinic. The FTIR results showed that the IR spectra of the Qichun K-feldspar are similar to that of orthoclase reported by Farmer (1974). The 640 cm-1 absorption band increases while the 540 cm-' absorption band decreases with increase in K-feldspar ordering index, also, the 1,010 cm-1 absorption band separates into 1,010 and 1,046 cm-1 absorption bands, with a change in the band shape from widening to sharp outline. The ICP-MS results suggested that K-feldspar of the early cretaceous granite has relatively higher metal elements and rare earth elements, and the granite exhibits better mineralization background, K-feldspar of the potassic alteration veins has markedly lower Sr and Ba, indicating that the alteration fluid originated from the granitic magmatism, and hence, potassic alteration is a good indicator for molybdenite exploration.

  14. A heterogeneity test for fine-scale genetic structure.

    PubMed

    Smouse, Peter E; Peakall, Rod; Gonzales, Eva

    2008-07-01

    For organisms with limited vagility and/or occupying patchy habitats, we often encounter nonrandom patterns of genetic affinity over relatively small spatial scales, labelled fine-scale genetic structure. Both the extent and decay rate of that pattern can be expected to depend on numerous interesting demographic, ecological, historical, and mating system factors, and it would be useful to be able to compare different situations. There is, however, no heterogeneity test currently available for fine-scale genetic structure that would provide us with any guidance on whether the differences we encounter are statistically credible. Here, we develop a general nonparametric heterogeneity test, elaborating on standard autocorrelation methods for pairs of individuals. We first develop a 'pooled within-population' correlogram, where the distance classes (lags) can be defined as functions of distance. Using that pooled correlogram as our null-hypothesis reference frame, we then develop a heterogeneity test of the autocorrelations among different populations, lag-by-lag. From these single-lag tests, we construct an analogous test of heterogeneity for multilag correlograms. We illustrate with a pair of biological examples, one involving the Australian bush rat, the other involving toadshade trillium. The Australian bush rat has limited vagility, and sometimes occupies patchy habitat. We show that the autocorrelation pattern diverges somewhat between continuous and patchy habitat types. For toadshade trillium, clonal replication in Piedmont populations substantially increases autocorrelation for short lags, but clonal replication is less pronounced in mountain populations. Removal of clonal replicates reduces the autocorrelation for short lags and reverses the sign of the difference between mountain and Piedmont correlograms.

  15. HERSCHEL GALACTIC PLANE SURVEY OF [N ii] FINE STRUCTURE EMISSION

    SciTech Connect

    Goldsmith, Paul F.; Yıldız, Umut A.; Langer, William D.; Pineda, Jorge L.

    2015-12-01

    We present the first large-scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([N ii]) at 122 and 205 μm. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines of sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10{sup −8}–10{sup −7} Wm{sup −2} sr{sup −1} level over the range –60° ≤ l ≤ 60°. The rms of the intensity among the 25 PACS spaxels of a given pointing is typically less than one third of the mean intensity, showing that the emission is extended. [N ii] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding n(e) largely in the range 10–50 cm{sup −3} with an average value of 29 cm{sup −3} and N{sup +} column densities 10{sup 16}–10{sup 17} cm{sup −2}. [N ii] emission is highly correlated with that of [C ii], and we calculate that between 1/3 and 1/2 of the [C ii] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [N ii] emission is not the warm ionized medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [N ii] include the ionized surfaces of dense atomic and molecular clouds, the extended low-density envelopes of H ii regions, and low-filling factor high-density fluctuations of the WIM.

  16. Herschel Galactic Plane Survey of [NII] Fine Structure Emission

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul F.; Yıldız, Umut A.; Langer, William D.; Pineda, Jorge L.

    2015-12-01

    We present the first large-scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([N ii]) at 122 and 205 μm. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines of sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10-8-10-7 Wm-2 sr-1 level over the range -60° ≤ l ≤ 60°. The rms of the intensity among the 25 PACS spaxels of a given pointing is typically less than one third of the mean intensity, showing that the emission is extended. [N ii] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding n(e) largely in the range 10-50 cm-3 with an average value of 29 cm-3 and N+ column densities 1016-1017 cm-2. [N ii] emission is highly correlated with that of [C ii], and we calculate that between 1/3 and 1/2 of the [C ii] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [N ii] emission is not the warm ionized medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [N ii] include the ionized surfaces of dense atomic and molecular clouds, the extended low-density envelopes of H ii regions, and low-filling factor high-density fluctuations of the WIM.

  17. Investigation Of Boundary Layers Fine Structure In Arid Regions

    NASA Astrophysics Data System (ADS)

    Golitsyn, G. S.; Granberg, I. G.; Andronova, A. V.; Zilitinkevich, S. S.; Smirnov, V. V.; Ponomarev, V. M.

    In connection with insufficiency of the quantitative items of information about the structure of surface and boundary layers structure of the atmosphere in the periods previous dusty ejection, and also absence of the description of an arid atmospheres micrometeorological mode, when the dry spreading surface thermally is non-uniform, that is characteristic for midday hours, the forwarding researches of fine structure of boundary layers in deserted regions of Kalmykia (1995-1997) and on dried bottom of the Aral sea (1991-1992 and in 1998) were carried out. Is was established that in dry hot weather above sandy "saucers" at heights of 1-2 meters there are micro- inversions of temperature and humidity. On our supervisions, this process occurs at temperatures of air above 25 deg.C and relative humidity less than 40%. Thus the gra- dient of temperature in bottom (5 cm) layer in absence of an external wind reaches 200-500 , i.e., arises strongly unstable subsurface boundary layer. Thus during dehydration of aggregate particles consisting, as has shown the soil anal- ysis, from particles of size 80-150 microns, the organic-mineral compositions (OMC) are allocated, and the thin-dispersion aerosol is formed. These thin-dispersion par- ticles (0.01-0.1 microns) first accumulate in this layer, and then at the expense of strong temperature (vertical and horizontal) gradient pass through viscous sub-layer and rise above, as whirlwinds - standing motionless thermics, or dust-devils, or as sim- ple convective of flows. During investigations, is was established, that in a hot season in absence of dusty storms convective processes lift into air from sandy landscapes of Kalmykia and Sub-Aral regions, consisting from aggregate particles, significant amounts of long-living aerosol of size less than 5 microns (including thin-dispersion (0.01-0.1 microns) aerosol), which renders essential influence on formation of aerosol pollution of an atmosphere and, thus, on a climate. Is was

  18. THE FINE STRUCTURE OF STREPTOMYCES VIOLACEORUBER (S. COELICOLOR)

    PubMed Central

    Glauert, Audrey M.; Hopwood, David A.

    1961-01-01

    A study of thin sections of hyphae of Streptomyces violaceoruber in the electron microscope showed that the structure of the walls and the mode of formation of cross-walls are similar to those of Gram-positive bacteria. A beaded structure was seen in some regions of the wall, and the significance of this observation is discussed in relation to previous studies of the fine structure of bacterial cell walls. Elements of the intracytoplasmic membrane system appear to be involved in the process of cross-wall formation. The walls of the hyphae of the aerial mycelium divide into two layers before the spores are formed, and only the inner component of the wall grows inwards to form the cross-walls and so delimit the spores. The outer component remains intact for a time and acts as a sheath around the developing spores. Finally the sheath breaks and the spores are liberated. This process is contrasted with the formation of endospores in eubacteria. When the spores germinate, the walls of the germ tubes are continuous with those of the spores. PMID:13705984

  19. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING. II. PROMINENCE EVOLUTION

    SciTech Connect

    Gunár, Stanislav; Mackay, Duncan H.

    2015-10-20

    We use the new three-dimensional (3D) whole-prominence fine structure model to study the evolution of prominences and their fine structures in response to changes in the underlying photospheric magnetic flux distribution. The applied model combines a detailed 3D prominence magnetic field configuration with a realistic description of the prominence plasma distributed along multiple fine structures. In addition, we utilize an approximate Hα visualization technique to study the evolution of the visible cool prominence plasma both in emission (prominence) and absorption (filament). We show that the initial magnetic field configuration of the modeled prominence is significantly disturbed by the changing position of a single polarity of a magnetic bipole as the bipole is advected toward the main body of the filament. This leads to the creation of a barb, which becomes the dominant feature visible in the synthetic Hα images of both the prominence and filament views. The evolution of the bipole also creates conditions that lead to the disappearance and reappearance of large portions of the main body. We also show that an arch-like region containing a dark void (a bubble) can be naturally produced in the synthetic prominence Hα images. While not visible in terms of the magnetic field lines, it is due to a lack of Hα emission from low-pressure, low-density plasma located in shallow magnetic dips lying along the lines of sight intersecting the dark void. In addition, a quasi-vertical small-scale feature consisting of short and deep dips, piled one above the other, is produced.

  20. Fine structure of a resonantly excited p -shell exciton in a CdTe quantum dot

    NASA Astrophysics Data System (ADS)

    Smoleński, T.; Kazimierczuk, T.; Goryca, M.; Wojnar, P.; Kossacki, P.

    2016-05-01

    We present a polarization-resolved photoluminescence excitation study of the absorption spectrum of a p -shell neutral exciton in a single CdTe/ZnTe quantum dot. We find that the fine structure of the p -shell exciton is completely analogous to the fine structure of the s -shell exciton, including the selection rules and the effects of a magnetic field applied in Faraday and Voigt configurations. The energy spectrum of the p -shell exciton is found to be well described by introducing respective isotropic and anisotropic constants of the exchange interaction between a p -shell electron and a p -shell hole. The typical values of these exchange constants averaged over several randomly selected quantum dots yield δ0p p=(0.92 ±0.16 ) meV and δ1p p=(0.58 ±0.25 ) meV. Additionally, we demonstrate that the nonresonant relaxation of the p -shell exciton conserves the exciton spin to a very high degree for both bright and dark exciton configurations.

  1. Probing the Gravitational Dependence of the Fine-Structure Constant from Observations of White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Bainbridge, Matthew; Barstow, Martin; Reindl, Nicole; Tchang-Brillet, W.-Ü.; Ayres, Thomas; Webb, John; Barrow, John; Hu, Jiting; Holberg, Jay; Preval, Simon; Ubachs, Wim; Dzuba, Vladimir; Flambaum, Victor; Dumont, Vincent; Berengut, Julian

    2017-03-01

    Hot white dwarf stars are the ideal probe for a relationship between the fine-structure constant and strong gravitational fields, providing us with an opportunity for a direct observational test. We study a sample of hot white dwarf stars, combining far-UV spectroscopic observations, atomic physics, atmospheric modelling and fundamental physics, in the search for variation in the fine structure constant. This variation manifests as shifts in the observed wavelengths of absorption lines, such as quadruply ionized iron (FeV) and quadruply ionized nickel (NiV), when compared to laboratory wavelengths. Berengut et al. (Phys. Rev. Lett. 2013, 111, 010801) demonstrated the validity of such an analysis using high-resolution Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) spectra of G191-B2B. We have made three important improvements by: (a) using three new independent sets of laboratory wavelengths, (b) analysing a sample of objects, and (c) improving the methodology by incorporating robust techniques from previous studies towards quasars (the Many Multiplet method). A successful detection would be the first direct measurement of a gravitational field effect on a bare constant of nature. Here we describe our approach and present preliminary results from nine objects using both FeV and NiV.

  2. Astronomical constraints on the cosmic evolution of the fine structure constant and possible quantum dimensions.

    PubMed

    Carilli, C L; Menten, K M; Stocke, J T; Perlman, E; Vermeulen, R; Briggs, F; de Bruyn, A G; Conway, J; Moore, C P

    2000-12-25

    We present measurements of absorption by the 21 cm hyperfine transition of neutral hydrogen toward radio sources at substantial look-back times. These data are used in combination with observations of rotational transitions of common interstellar molecules to set limits on the evolution of the fine structure constant: alpha/ alpha<3.5x10(-15) yr(-1), to a look-back time of 4.8 Gyr. In the context of string theory, the limit on the secular evolution of the scale factor of the compact dimensions, R, is &Rdot/ R<10(-15) yr(-1). Including terrestrial and other astronomical measurements places 2sigma limits on slow oscillations of R from the present to the epoch of cosmic nucleosynthesis, just seconds after the big bang, of DeltaR /R<10(-5).

  3. Fine structure of the nucleus of the galaxy NGC 1275

    NASA Astrophysics Data System (ADS)

    Matveyenko, L. I.; Seleznev, S. V.

    2016-04-01

    The fine structure of the nucleus of the Seyfert galaxy NGC 1275 was investigated in 2005-2010 at a wavelength of 2 cm with a resolution as high as 50 μas. The structure consists of two parallel identical systems, eastern and western, spaced 0.5 pc apart in the plane of the sky. Each of them contains an ejector and a bipolar outflow. There are extended regions, lobes, at the extension of the bipolar outflows in the -10° and 170° directions at distances of 5 pc northward and 6.5 pc southward of the active zone. The observed difference between the jet and counterjet sizes by a factor of ~3 and between the distances to the lobes by a factor of 0.8 is determined by the difference between their velocities and by the change of sign of the outflow acceleration in the period of silence. The high-velocity bipolar outflows are surrounded by three pairs of low-velocity components. The diameters of the low-velocity coaxial outflows and the third component are Ø1 ≈ 0.3 pc, Ø2 ≈ 0.8 pc, and Ø3 ≈ 1.4 pc at the detection limit. The outer low-velocity components of the outflows encompass both high-velocity outflows. The velocities of the outflows and their brightness temperatures increase exponentially as the center of the high-velocity outflows is approached. The brightness temperatures of the high-velocity outflows at the ejector exit are T b > 1012 K. The spectral line velocities in the nuclear region differ by ~600 km s-1 due to the velocity difference between the two systems. In the case of Keplerian motion, the revolution period is ~5 × 103 yr, and the mass of the central massive bodies, black holes, is M ≈ 107M⊙. The fine structure suggests a vortical nature of the formation. In the case under consideration, two parallel vortices spaced ~0.5 pc apart and shifted by ~0.5 pc relative to each other were formed. The surrounding material inflows onto the disk of each system, is transferred in a spiral to the center, and is ejected in the -10° and 170

  4. Waves and Fine Structure in Expanding Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Collette, Andrew; Gekelman, Walter

    2009-11-01

    The behavior of expanding dense plasmas has long been a topic of interest in space plasma research, particularly in the case of expansion within a magnetized background. Previous laser-plasma experiments at the UCLA Large Plasma Device have observed the creation of strong (δBB > 50%) diamagnetic cavities, along with large-scale wave activity and hints of fine-scale structure. A new series of experiments conducted recently at the LaPD performs direct measurement of the fields inside the expanding plasma via a novel 2D probe drive system. This system combines small-scale (0.5mm-1mm) magnetic and electric field probes with high-accuracy vacuum ceramic motors, to allow measurement of the plasma volume over a 2000-point grid at 1mm resolution. The data reveal both coherent high-amplitude waves associated with the formation of these magnetic features, and complicated small-scale structure in both the magnetic field and floating potential. In addition, we will present correlation techniques using multiple independent B and E field probes. This reveals behavior of turbulent, non-phase-locked phenomena. Both the case of a single expanding plasma and two colliding plasmas were studied.

  5. Observations on the Fine Structure of the Turtle Atrium

    PubMed Central

    Fawcett, Don W.; Selby, Cecily C.

    1958-01-01

    The general fine structure of the atrial musculature of the turtle heart is described, including; the nature of the sarcolemma; the cross-banded structure of the myofibrils; the character of the sarcoplasm, and the form and disposition of its organelles. An abundant granular component of the sarcoplasm in this species is tentatively identified as a particulate form of glycogen. The myocardium is composed of individual cells joined end to end at primitive intercalated discs, and side to side at sites of cohesion that resemble the desmosomes of epithelia. Transitional forms are found between desmosomes and intercalated discs. Both consist of a thickened area of the cell membrane with an accumulation of dense material in the subjacent cytoplasm. This dense amorphous component is often continuous with the Z substance of the myofibrils and may be of the same composition. The observations reported reemphasize the basic similarity between desmosomes and terminal bars of epithelia and intercalated discs of cardiac muscle. Numerous unmyelinated nerves are found beneath the endocardium. Some of these occupy recesses in the surface of Schwann cells; others are naked axons. No specialized nerve endings are found. Axons passing near the sarcolemma contain synaptic vesicles, and it is believed that this degree of proximity is sufficient to constitute a functioning myoneural junction. PMID:13502430

  6. Fine structure behaviour of VVER-1000 RPV materials under irradiation

    NASA Astrophysics Data System (ADS)

    Gurovich, B. A.; Kuleshova, E. A.; Shtrombakh, Ya. I.; Erak, D. Yu.; Chernobaeva, A. A.; Zabusov, O. O.

    2009-06-01

    Changes in the fine structure and mechanical properties of the base metal (BM) and weld metal (WM) of VVER-1000 pressure vessels during accumulation of neutron dose in the range of fluences ˜(3.2-15) × 10 23 m -2 ( E > 0.5 MeV) at 290 °C are studied using methods of transmission electron microscopy, fractographic analysis, and Auger electron spectroscopy. A correlation was found between the changes of mechanical properties and the micro- and nano-structures of the studied steels. Accumulation of neutron dose considerably raises the strength characteristics and transition temperature of VVER-1000 pressure vessel steels. The rate of changes in the mechanical properties of the weld metal is significantly higher than that of the base metal. The slower growth of strength characteristics and transition temperature shift of the base metal under irradiation as compared with the weld metal is due to the slower growth of the density of radiation defects and radiation-induced precipitates. The level of intergranular embrittlement under irradiation in the weld metal is not higher then in the base metal in spite of the higher content of nickel.

  7. FINE STRUCTURES AND OVERLYING LOOPS OF CONFINED SOLAR FLARES

    SciTech Connect

    Yang, Shuhong; Zhang, Jun; Xiang, Yongyuan

    2014-10-01

    Using the Hα observations from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we focus on the fine structures of three confined flares and the issue why all the three flares are confined instead of eruptive. All the three confined flares take place successively at the same location and have similar morphologies, so can be termed homologous confined flares. In the simultaneous images obtained by the Solar Dynamics Observatory, many large-scale coronal loops above the confined flares are clearly observed in multi-wavelengths. At the pre-flare stage, two dipoles emerge near the negative sunspot, and the dipolar patches are connected by small loops appearing as arch-shaped Hα fibrils. There exists a reconnection between the small loops, and thus the Hα fibrils change their configuration. The reconnection also occurs between a set of emerging Hα fibrils and a set of pre-existing large loops, which are rooted in the negative sunspot, a nearby positive patch, and some remote positive faculae, forming a typical three-legged structure. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive.

  8. Fine-scale genetic structuring on Manacus manacus leks.

    PubMed

    Shorey, L; Piertney, S; Stone, J; Höglund, J

    2000-11-16

    Leks have traditionally been considered as arenas where males compete to attract females and secure matings. Thus, direct fitness benefits mediated through competition between males to fertilize females have been considered to be the primary force driving the evolution of lekking behaviour. Inclusive fitness benefits mediated through kin selection may also be involved in lek formation and evolution, but to date this theory has been largely ignored. According to kin-selection theory, both reproducing and non-reproducing males may gain indirect inclusive fitness benefits. If females are attracted to larger leks, non-reproducing males add attractiveness to a lek, and therefore, in a genetically structured population, boost the reproductive success of kin. Theory predicts that the attractiveness of leks is plastic, and that males establish themselves on a lek in which the top male, in terms of reproductive success, is a close relative. Here we show that in white-bearded manakins (Manacus manacus), for which larger leks are more attractive to females and so secure the maximum number of matings, there is extraordinary fine-scale genetic structure, with leks being composed of clusters of related kin. We propose that males establish themselves where they find relatives to such an extent that they form groups within leks, and that such behaviour is consistent with kin-selection theory to maximize reproductive success of the group.

  9. Varying fine structure 'constant' and charged black holes

    SciTech Connect

    Bekenstein, Jacob D.; Schiffer, Marcelo

    2009-12-15

    Speculation that the fine-structure constant {alpha} varies in spacetime has a long history. We derive, in 4-D general relativity and in isotropic coordinates, the solution for a charged spherical black hole according to the framework for dynamical {alpha} J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982).. This solution coincides with a previously known one-parameter extension of the dilatonic black hole family. Among the notable properties of varying-{alpha} charged black holes are adherence to a 'no hair' principle, the absence of the inner (Cauchy) horizon of the Reissner-Nordstroem black holes, the nonexistence of precisely extremal black holes, and the appearance of naked singularities in an analytic extension of the relevant metric. The exteriors of almost extremal electrically (magnetically) charged black holes have simple structures which makes their influence on applied magnetic (electric) fields transparent. We rederive the thermodynamic functions of the modified black holes; the otherwise difficult calculation of the electric potential is done by a shortcut. We confirm that variability of {alpha} in the wake of expansion of the universe does not threaten the generalized second law.

  10. FINE STRUCTURE OF THE HUMAN OVUM IN THE PRONUCLEAR STAGE

    PubMed Central

    Zamboni, Luciano; Mishell, Daniel R.; Bell, James H.; Baca, Manuel

    1966-01-01

    A penetrated ovum was recovered from the oviduct of a 33 year old surgical patient who had had sexual intercourse 26 hr before the operation. The ovum was in the pronuclear stage. The ooplasmic organelles were mainly represented by mitochondria, endoplasmic reticulum components, and Golgi elements. Small vesicles were found in the space between the two sheets of the pronuclear envelope. These vesicles appeared to be morphologically similar to the ER vesicles in the ooplasm and were considered to be involved in pronuclear development. Numerous annulate lamellae were seen in the ooplasm as well as in the pronuclei. Ooplasmic crystalloids were also observed. These were thought to represent cytoplasmic yolk. Remnants of the penetrating spermatozoon were found in close relation to one of the pronuclei. The fine structure of the first and second polar body is also described. The nuclear complement of the first polar body consisted of isolated chromosomes, whereas the second polar body contained a membrane-bounded nucleus. In consideration of the possibility that polar body fertilization may take place, these differences in nuclear organization could be of importance. Other recognizable differences between the two polar bodies were presence of dense cortical granules and microvilli in the first polar body, and absence of these structures in the second. These dissimilarities were considered to be related to the organization of the egg cytoplasm at the time of polar body separation. PMID:6008199

  11. PDR modeling of the LWS fine-structure lines in ultraluminous galaxies

    NASA Technical Reports Server (NTRS)

    Luhman, M. L.; Satyapal, S.; Fischer, J.; Wolfire, M. G.

    1997-01-01

    The observations performed onboard the Infrared Space Observatory (ISO) long wavelength spectrometer (LWS) on the fine structure lines in ultraluminous galaxies are reported on. The C II 158 micrometer, the O I 63 and 146 micrometer fine structure lines were detected. These lines were compared to the results of the revised theoretical models of extragalactic photodissociation regions (PDRs). The PDR origin of the fine structure lines and the physical properties of the PDR component are discussed.

  12. Quasi-static energy absorption of hollow microlattice structures

    SciTech Connect

    Liu, YL; Schaedler, TA; Jacobsen, AJ; Chen, X

    2014-12-01

    We present a comprehensive modeling and numerical study focusing on the energy quasi-static crushing behavior and energy absorption characteristics of hollow tube microlattice structures. The peak stress and effective plateau stress of the hollow microlattice structures are deduced for different geometrical parameters which gives volume and mass densities of energy absorption, D-v and D-m, scale with the relative density, (rho) over bar, as D-v similar to (rho) over bar (1) (5) and D-m similar to (rho) over bar (0 5), respectively, fitting very well to the experimental results of both 60 degrees inclined and 90 degrees predominately microlattices. Then the strategies for energy absorption enhancement are proposed for the engineering design of microlattice structures. By introducing a gradient in the thickness or radius of the lattice members, the buckle propagation can be modulated resulting in an increase in energy absorption density that can exceed 40%. Liquid filler is another approach to improve energy absorption by strengthening the microtruss via circumference expansion, and the gain may be over 100% in terms of volume density. Insight into the correlations between microlattice architecture and energy absorption performance combined with the high degree of architecture control paves the way for designing high performance microlattice structures for a range of impact and impulse mitigation applications for vehicles and structures. (C) 2014 Elsevier Ltd. All rights reserved.

  13. Guided fine needle absorption biopsy in the diagnosis of cysts in maritime workers.

    PubMed

    Bartelik, W; Jaremin, B; Smolińska, D; Głombiowski, P

    Cysts in the organs of the abdominal cavity revealed in ultrasonographic examinations in patients with none or with unclear clinical symptoms cause diagnostic and fitness for work assessment problems. The aim of the study was to evaluate the usefulness of ultrasonography of cysts, combined with biochemical, bacteriological, cytological examinations and analysis of markers CEA and AFP of the fluid collected with fine needle aspiration biopsy (FAB). The study material examined were maritime workers who were submitted to these examinations for diagnostic purposes and/or previous to issue of certificate of health for work at sea. Examinations results provided support for usefulness of the method discussed in diagnosis and differentiation of inflammatory and neoplastic processes with simple cysts. This was crucial for final diagnosis, for decision about treatment and recognizing fitness for work at sea. It was concluded that the method FAB is safe both in hospital as well as in ambulatory conditions.

  14. THE FINE STRUCTURE OF THE TRANSITIONAL EPITHELIUM OF RAT URETER

    PubMed Central

    Hicks, R. M.

    1965-01-01

    The fine structure of the transitional epithelium of rat ureter has been studied in thin sections with the electron microscope, including some stained cytochemically to show nucleoside triphosphatase activity. The epithelium is three to four cells deep with cuboidal or columnar basal cells, intermediate cells, and superficial squamous cells. The basal cells are attached by half desmosomes, or attachment plates, on their basal membranes to a basement membrane which separates the epithelium from the lamina propria. Fine extracellular fibres, ca. 100 A in diameter, are to be found in the connective tissue layer immediately below the basement membrane of this epithelium. The plasma membranes of the basal and intermediate cells and the lateral and basal membranes of the squamous cells are deeply interdigitated, and nucleoside triphosphatase activity is associated with them. All the cells have a dense feltwork of tonofilaments which ramify throughout the cytoplasm. The existence of junctional complexes, comprising a zonula occludens, zonula adhaerens, and macula adhaerens or desmosome, between the lateral borders of the squamous cells is reported. It is suggested that this complex is the major obstacle to the free flow of water from the extracellular spaces into the hypertonic urine. The free luminal surface of the squamous cells and many cytoplasmic vesicles in these cells are bounded by an unusually thick plasma membrane. The three leaflets of this unit membrane are asymmetric, with the outer one about twice as thick as the innermost one. The vesicles and the plasma membrane maintain angular conformations which suggest the membrane to be unusually rigid. No nucleoside triphosphatase activity is associated with this membrane. Arguments are presented to support a suggestion that this thick plasma membrane is the morphological site of a passive permeability barrier to water flow across the cells, and that keratin may be included in the membrane structure. The possible

  15. Light absorption by water-soluble organic carbon in atmospheric fine particles in the central Tibetan Plateau.

    PubMed

    Zhang, YanGe; Xu, JianZhong; Shi, JinSen; Xie, CongHui; Ge, XinLei; Wang, JunFeng; Kang, ShiChang; Zhang, Qi

    2017-07-25

    Brown carbon (BrC) has recently received much attention because of its light absorption features. The chemical compositions, optical properties, and sources of fine aerosol at a high-elevation mountain observatory (4730 m a.s.l.) in the central Tibetan Plateau were measured between 31 May and 1 July 2015. A low flow-rate sampler was used to collect 24-h average fine particulate matter (PM2.5) filter samples. Water-soluble ions, organic carbon (OC), elemental carbon, water-soluble organic carbon (WSOC), and light absorption by water-soluble BrC were determined for 26 filter samples. The mean (± 1σ) OC and WSOC concentrations were 0.76 ± 0.43 and 0.39 ± 0.15 μgC/m(3), respectively, and the mean WSOC/OC mass ratio was 0.59 ± 0.22. The OC and WSOC concentrations were relatively higher (0.59-1.80 and 0.33-0.83 μgC/m(3), respectively) during the pre-monsoon period (2-13 June) and were relatively lower (0.27-0.77 and 0.12-0.50 μgC/m(3), respectively) during the monsoon period (14 June to 1 July), probably because of wet scavenging of aerosols during long-range transport and the presence of cleaner marine air masses during the monsoon period. The absorption spectra of PM2.5 water extracts smoothly increase from visible range to ultraviolet range. The absorption Ångström exponent, which describes the wavelength dependence of water-soluble BrC, was 2.74-10.61 (mean 6.19 ± 1.70), and its value was similar in the pre-monsoon period (6.57 ± 0.56) to that in the monsoon period (5.91 ± 2.14). The water-soluble BrC mass absorption efficiency, 0.38 ± 0.16 m(2)/(g C), was much lower than those observed in most urban areas but similar to those in other remote sites. Absorption coefficient at 365 nm, typically used as a proxy for water-soluble BrC, correlated well with the WSOC concentration (R (2)  = 0.57), K(+) concentration (R (2)  = 0.75), and organic aerosol biomass burning markers characterized by an Aerodyne aerosol mass spectrometer (C2H4

  16. Local structure and optical absorption characteristic investigation on Fe doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhao, Tian-Xing; Feng, Ya-Juan; Huang, Jun-Heng; He, Jin-Fu; Liu, Qing-Hua; Pan, Zhi-Yun; Wu, Zi-Yu

    2015-02-01

    The local structures and optical absorption characteristics of Fe doped TiO2 nanoparticles synthesized by the sol-gel method were characterized by X-ray diffraction (XRD), X-ray absorption fine structure spectroscopy (XAFS) and ultraviolet-visible absorption spectroscopy (UV-Vis). XRD patterns show that all Fe-doped TiO2 samples have the characteristic anatase structure. Accurate Fe and Ti K-edge EXAFS analysis further reveal that all Fe atoms replace Ti atoms in the anatase lattice. The analysis of UV-Vis data shows a red shift to the visible range. According to the above results, we claim that substitutional Fe atoms lead to the formation of structural defects and new intermediate energy levels appear, narrowing the band gap and extending the optical absorption edge towards the visible region. Supported by National Basic Research Program of China (2012CB825801), Science Fund for Creative Research Groups of NSFC (11321503), National Natural Science Foundation of China (11321503, 11179004) and Guangdong Natural Science Foundation (S2011040003985)

  17. Fine structure genetic analysis of a beta-globin promoter.

    PubMed

    Myers, R M; Tilly, K; Maniatis, T

    1986-05-02

    A novel procedure for saturation mutagenesis of cloned DNA was used to obtain more than 100 single base substitutions within the promoter of the mouse beta-major globin gene. The effects of these promoter substitutions on transcription were determined by transfecting the cloned mutant genes into HeLa cells on plasmids containing an SV40 transcription enhancer, and measuring the levels of correctly initiated beta-globin transcripts after 2 days. Mutations in three regions of the promoter resulted in a significant decrease in the level of transcription: (i) the CACCC box, located between -87 and -95, (ii) the CCAAT box, located between -72 and -77, and (iii) the TATA box, located between -26 and -30 relative to the start site of transcription. In contrast, two different mutations in nucleotides immediately upstream from the CCAAT box resulted in a 3- to 3.5-fold increase in transcription. With two minor exceptions, single base substitutions in all other regions of the promoter had no effect on transcription. These results precisely delineate the cis-acting sequences required for accurate and efficient initiation of beta-globin transcription, and they establish a general approach for the fine structure genetic analysis of eukaryotic regulatory sequences.

  18. Fine structure analysis of Salmonella typhimurium glutamate synthase genes.

    PubMed Central

    Madonna, M J; Fuchs, R L; Brenchley, J E

    1985-01-01

    Glutamate synthase activity is required for the growth of Salmonella typhimurium on media containing a growth-rate-limiting nitrogen source. Mutations that alter glutamate synthase activity had been identified in the gltB gene, but it was not known which of the two nonidentical subunits of the enzyme was altered. To examine the gene-protein relationship of the glt region, two nonsense mutations were identified and used to demonstrate that gltB encodes the large subunit of the enzyme. Six strains with independent Mu cts d1 (lac bla) insertions were isolated, from which a collection of deletion mutations was obtained. The deletions were transduced with the nonsense mutations and 38 other glt point mutations to construct a fine-structure genetic map. Chromosome mobilization studies, mediated by Hfr derivatives of Mu cts d1 lysogens, showed that gltB is transcribed in a clockwise direction, as shown in the S. typhimurium linkage map. Studies of the polar effects of three Mu cts d1 insertions indicated that the gene for the small subunit maps clockwise to gltB and that the two genes are cotranscribed to form a glt operon. Images PMID:3881392

  19. Hymenolepis nana: the fine structure of the embryonic envelopes.

    PubMed

    Fairweather, I; Threadgold, L T

    1981-06-01

    The fine structure of the envelopes surrounding hatched and unhatched oncospheres of Hymenolepis nana has been investigated by transmission and scanning electron microscopy (SEM), together with light microscope histochemical observations of JB-4 embedded material. The oncosphere is surrounded by 3 layers--the capsule, the outer envelope and the inner envelope, the latter giving rise to the embryophore and the 'oncospheral membrane'. An additional layer--the polar filament layer--lies between the 'oncospheral membrane' and the oncosphere. Shell material is deposited on the capsule as a thin layer. It is secreted by the outer envelope, which degenerates once shell formation is complete. The uterus may also contribute to shell formation. The embryophore forms a thin incomplete and peripheral layer within the inner envelope. In the basal region of this envelope, partial development of an 'oncospheral membrane' takes place, but it does not become detached as a separate layer. The polar filaments, which are characteristic of the oncosphere of H. nana, are derived from the epithelial covering of the oncosphere itself, which delaminates to form a separate polar filament layer. The filaments arise from knob-like projections at opposite poles of this layer. The design of the embryonic envelopes in H. nana show a number of modifications from the basic cyclophyllidean pattern, and these can be related to the demands of its 'direct' life-cycle.

  20. THE FINE STRUCTURE OF THE ELECTRIC ORGAN OF TORPEDO MARMORATA

    PubMed Central

    Sheridan, Michael N.

    1965-01-01

    The fine structure of the electric organ of the fish Torpedo marmorata has been examined after osmium tetroxide or potassium permanganate fixation, acetone dehydration, and Araldite embedment. This organ consists of stacks of electroplaques which possess a dorsal noninnervated and a ventral richly innervated surface. Both surfaces are covered with a thin basement membrane. A tubular membranous network whose lumen is continuous with the extracellular space occupies the dorsal third of the electroplaque. Nerve endings, separated from the ventral surface of the electroplaque by a thin basement membrane, contain synaptic vesicles (diameter 300 to 1200 A), mitochondria, and electron-opaque granules (diameter 300 A). Projections from the nerve endings occupy the lumina of the finger-like invaginations of the ventral surface. The cytoplasm of the electroplaques contains the usual organelles. A "cellular cuff" surrounds most of the nerve fibers in the intercellular space, and is separated from the nerve fibre and its Schwann cell by a space containing connective tissue fibrils. The connective tissue fibrils and fibroblasts in the intercellular space are primarily associated with the dorsal surface of the electroplaque. PMID:14286287

  1. Bumblebee Homing: The Fine Structure of Head Turning Movements.

    PubMed

    Boeddeker, Norbert; Mertes, Marcel; Dittmar, Laura; Egelhaaf, Martin

    2015-01-01

    Changes in flight direction in flying insects are largely due to roll, yaw and pitch rotations of their body. Head orientation is stabilized for most of the time by counter rotation. Here, we use high-speed video to analyse head- and body-movements of the bumblebee Bombus terrestris while approaching and departing from a food source located between three landmarks in an indoor flight-arena. The flight paths consist of almost straight flight segments that are interspersed with rapid turns. These short and fast yaw turns ("saccades") are usually accompanied by even faster head yaw turns that change gaze direction. Since a large part of image rotation is thereby reduced to brief instants of time, this behavioural pattern facilitates depth perception from visual motion parallax during the intersaccadic intervals. The detailed analysis of the fine structure of the bees' head turning movements shows that the time course of single head saccades is very stereotypical. We find a consistent relationship between the duration, peak velocity and amplitude of saccadic head movements, which in its main characteristics resembles the so-called "saccadic main sequence" in humans. The fact that bumblebee head saccades are highly stereotyped as in humans, may hint at a common principle, where fast and precise motor control is used to reliably reduce the time during which the retinal images moves.

  2. Bumblebee Homing: The Fine Structure of Head Turning Movements

    PubMed Central

    Boeddeker, Norbert; Mertes, Marcel; Dittmar, Laura; Egelhaaf, Martin

    2015-01-01

    Changes in flight direction in flying insects are largely due to roll, yaw and pitch rotations of their body. Head orientation is stabilized for most of the time by counter rotation. Here, we use high-speed video to analyse head- and body-movements of the bumblebee Bombus terrestris while approaching and departing from a food source located between three landmarks in an indoor flight-arena. The flight paths consist of almost straight flight segments that are interspersed with rapid turns. These short and fast yaw turns (“saccades”) are usually accompanied by even faster head yaw turns that change gaze direction. Since a large part of image rotation is thereby reduced to brief instants of time, this behavioural pattern facilitates depth perception from visual motion parallax during the intersaccadic intervals. The detailed analysis of the fine structure of the bees’ head turning movements shows that the time course of single head saccades is very stereotypical. We find a consistent relationship between the duration, peak velocity and amplitude of saccadic head movements, which in its main characteristics resembles the so-called "saccadic main sequence" in humans. The fact that bumblebee head saccades are highly stereotyped as in humans, may hint at a common principle, where fast and precise motor control is used to reliably reduce the time during which the retinal images moves. PMID:26352836

  3. THE FINE STRUCTURE OF VON EBNER'S GLAND OF THE RAT

    PubMed Central

    Hand, Arthur R.

    1970-01-01

    The fine structure of von Ebner's gland was studied in untreated rats and rats stimulated to secrete by fasting-refeeding or injection of pilocarpine. Cytological features were similar to those reported for pancreas and parotid gland. Abundant granular endoplasmic reticulum filled the basal portion of the cell, a well-developed Golgi complex was located in the vicinity of the nucleus, and the apical portion of the cell was filled with dense secretory granules. Dense heterogeneous bodies resembling lysosomes were closely associated with the Golgi complex. Coated vesicles were seen in the Golgi region and also in continuity with the cell membrane. Granule discharge occurred by fusion of the granule membrane with the cell membrane at the secretory surface. Successive fusion of adjacent granules to the previously fused granule formed a connected string of granules in the apical cytoplasm. Myoepithelial cells were present within the basement membrane, and nerve processes were seen adjacent to acinar and myoepithelial cells. Duct cells resembled the intercalated duct cells of the major salivary glands. PMID:5411078

  4. Benzene at 1 GHz. Magnetic field-induced fine structure

    NASA Astrophysics Data System (ADS)

    Heist, L. M.; Poon, C.-D.; Samulski, E. T.; Photinos, D. J.; Jokisaari, J.; Vaara, J.; Emsley, J. W.; Mamone, S.; Lelli, M.

    2015-09-01

    The deuterium NMR spectrum of benzene-d6 in a high field spectrometer (1 GHz protons) exhibits a magnetic field-induced deuterium quadrupolar splitting Δν. The magnitude of Δν observed for the central resonance is smaller than that observed for the 13C satellite doublets Δν‧. This difference, Δ(Δν) = Δν‧ - Δν, is due to unresolved fine structure contributions to the respective resonances. We determine the origins of and simulate this difference, and report pulse sequences that exploit the connectivity of the peaks in the 13C and 2H spectra to determine the relative signs of the indirect coupling, JCD, and Δν. The positive sign found for Δν is consonant with the magnetic field biasing of an isolated benzene molecule-the magnetic energy of the aromatic ring is lowest for configurations where the C6 axis is normal to the field. In the neat liquid the magnitude of Δν is decreased by the pair correlations in this prototypical molecular liquid.

  5. Fine-structure constant for gravitational and scalar interactions

    NASA Astrophysics Data System (ADS)

    Jentschura, U. D.

    2014-08-01

    Starting from the coupling of a relativistic quantum particle to the curved Schwarzschild space time, we show that the Dirac-Schwarzschild problem has bound states and calculate their energies including relativistic corrections. Relativistic effects are shown to be suppressed by the gravitational fine-structure constant αG=Gm1m2/(ℏc), where G is Newton's gravitational constant, c is the speed of light, and m1 and m2≫m1 are the masses of the two particles. The kinetic corrections due to space-time curvature are shown to lift the familiar (n,j) degeneracy of the energy levels of the hydrogen atom. We supplement the discussion by a consideration of an attractive scalar potential, which, in the fully relativistic Dirac formalism, modifies the mass of the particle according to the replacement m →m(1-λ/r), where r is the radial coordinate. We conclude with a few comments regarding the (n,j) degeneracy of the energy levels, where n is the principal quantum number, and j is the total angular momentum, and illustrate the calculations by way of a numerical example.

  6. FINE STRUCTURE OF THE EYE OF A CHAETOGNATH.

    PubMed

    EAKIN, R M; WESTFALL, J A

    1964-04-01

    Electron microscopy reveals a star-like pigment cell at the center of the eye of the arrow-worm, Sagitta scrippsae. Between the arms of the pigment cell are clusters of photoreceptor cell processes, each process consisting of: (1) a tubular segment containing longitudinally arranged microtubules about 500 A in diameter and 20 micro in length; (2) a remarkable conical body, composed of cords and large granules, situated at the base of the tubular segment; and (3) a connecting piece which, like that of rods and cones, connects the process with the sensory cell proper and through which runs a fibrillar apparatus consisting of nine peripheral double tubules. Beneath the connecting piece lies a typical centriole with a striated rootlet. The receptor cell process is deeply recessed into the sensory cell which may possess a corona of microvilli at its inner surface. A nerve fiber arises from the outer end of the cell and passes into the optic nerve. Additional features are some supporting cells, an external layer of flattened epithelial cells, and an over-all investment of basement membrane and thick fibrous capsule. The fine structure and function of these elements of the eye are discussed in relation to earlier studies with the light microscope. The ciliary nature of the photoreceptor cell process in S. scrippsae points to a probable evolutionary relationship of chaetognaths to echinoderms and chordates.

  7. Understanding the fine structure of intermediate materials of maize starches.

    PubMed

    Han, Wenfang; Zhang, Binjia; Li, Jiangtao; Zhao, Siming; Niu, Meng; Jia, Caihua; Xiong, Shanbai

    2017-10-15

    Here we concern the molecular fine structure of intermediate material (IM) fraction in regular maize starch (RMS) and Starpro 40 maize starch (S40). IM had a branching degree and a molar mass (Mw) somewhere between amylopectin (AP) and amylose (AM). Compared with AP, IM had more extra-long (Fr I) and long (Fr II) chains and fb3-chains (degree of polymerization (DP)>36), with a higher average chain length (CL). Also, IM contained less A-chains but more B-chains (both BS-chains with DP 3-25 and BL-chains with DP≥26), accompanied by longer B- and BL-chains, total internal chains (TICL) and average internal chains (ICL), and a similar average external chain length (ECL). Furthermore, relative to RMS-IM, the IM of S40 (with higher apparent amylose content than RMS) showed increases in relatively-long chains, e.g., Fr II, fb3-chains and BL-chains, but reductions in Mw, relatively-short chains (those with DP 6-12, etc.). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Fine structure of A and M antigens from Brucella biovars.

    PubMed

    Meikle, P J; Perry, M B; Cherwonogrodzky, J W; Bundle, D R

    1989-09-01

    Brucella A and M epitopes were found on single O-polysaccharide chains of all biotype strains of this species. Lipopolysaccharides from the type and reference strains of five of the six Brucella species, B. abortus, B. melitensis, B. suis, B. canis, and B. neotomae, were extracted and purified. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, in conjunction with silver staining and immunoblotting developed by monoclonal antibodies, showed bands characteristic of A, M, or mixed A and M antigens. The A antigen previously described as an exclusively alpha 1,2-linked homopolymer of 4,6-dideoxy-4-formamido-D-mannopyranose was shown by 1H and 13C nuclear magnetic resonance spectroscopy to possess a fine structure consistent with the low-frequency occurrence of alpha 1, 3-linked 4,6-dideoxy-4-formamido-D-mannopyranose residues. This feature was previously attributed only to the M antigen, which is also a homopolymer of the same sugar. B. melitensis biotype 3 and B. suis biotype 4 lipopolysaccharides showed characteristics of mixed A and M antigens. Immunoabsorption of these O polysaccharides on a column of immobilized A-antigen-specific monoclonal antibody enriched polymer chains with A-antigen characteristics but did not eliminate M epitopes. Composite A- and M-antigen characteristics resulted from O polysaccharides in which the frequency of alpha 1,3 linkages, and hence, M-antigen characteristics, varied. All biotypes assigned as A+ M- expressed one or two alpha 1,3-linked residues per polysaccharide O chain. M antigens (M+ A-) also possessed a unique M epitope as well as a tetrasaccharide determinant common to A-antigen structures. B. canis and B. abortus 45/20, both rough strains, expressed low-molecular-weight A antigen.

  9. Metallic subwavelength structures for a broadband infrared absorption control.

    PubMed

    Biener, Gabriel; Niv, Avi; Kleiner, Vladimir; Hasman, Erez

    2007-04-15

    We present a method to control the absorption of a resonator by using a subwavelength structure consisting of thin metallic plates that behaves as a metamaterial film. We demonstrate the ability to tailor the conductivity of such a metallic subwavelength structure to achieve a resonator with the desired impedance matching for the mid-infrared range. This approach provides for broadband, as well as broad-angle, enhanced absorption. Theoretical analyses, as well as experimental results of the optical properties of a metallic NiCr structure at 8-12 microm spectral range are introduced.

  10. Fine structure and optical properties of biological polarizers in crustaceans and cephalopods

    NASA Astrophysics Data System (ADS)

    Chiou, Tsyr-Huei; Caldwell, Roy L.; Hanlon, Roger T.; Cronin, Thomas W.

    2008-04-01

    The lighting of the underwater environment is constantly changing due to attenuation by water, scattering by suspended particles, as well as the refraction and reflection caused by the surface waves. These factors pose a great challenge for marine animals which communicate through visual signals, especially those based on color. To escape this problem, certain cephalopod mollusks and stomatopod crustaceans utilize the polarization properties of light. While the mechanisms behind the polarization vision of these two animal groups are similar, several distinctive types of polarizers (i.e. the structure producing the signal) have been found in these animals. To gain a better knowledge of how these polarizers function, we studied the relationships between fine structures and optical properties of four types of polarizers found in cephalopods and stomatopods. Although all the polarizers share a somewhat similar spectral range, around 450- 550 nm, the reflectance properties of the signals and the mechanisms used to produce them have dramatic differences. In cephalopods, stack-plates polarizers produce the polarization patterns found on the arms and around their eyes. In stomatopods, we have found one type of beam-splitting polarizer based on photonic structures and two absorptive polarizer types based on dichroic molecules. These stomatopod polarizers may be found on various appendages, and on the cuticle covering dorsal or lateral sides of the animal. Since the efficiencies of all these polarizer types are somewhat sensitive to the change of illumination and viewing angle, how these animals compensate with different behaviors or fine structural features of the polarizer also varies.

  11. Fine-tune optical absorption and light emitting behavior of the CdS/PVA hybridized film nanocomposite

    NASA Astrophysics Data System (ADS)

    Heiba, Z. K.; Mohamed, Mohamed Bakr; Imam, N. G.

    2017-05-01

    CdS nanoparticles (NPs) nucleated at different temperatures were composited with PVA to control and fine-tune optical absorption and emission of the nano-hybrid composite by varying the sizes of the CdS NPs which in turn depends on the nucleation temperature. The implanting of CdS NPs into PVA matrix was confirmed by XRD hand in hand with absorption and photoluminescence spectroscopic techniques. UV/VIS absorption spectra confirm the formation of hybridized film CdS/PVA nanocomposite with refractive index in the range of 2-4. UV/VIS measurements were also used in calculating different optical and dielectric parameters such as refractive index, extinction coefficient, dielectric constants, and optical conductivity. The optical parameters varied with the incorporation of CdS NPs within PVA matrix; accordingly, the optical constants of the nanocomposite films could be controlled by size of CdS content. Tauc's relation was used to determine the optical band gap and to determine the type of electronic transition. It is found that the direct allowed transition is more probable in CdS/PVA nanocomposite film of direct band gap around 3.8 eV. Blue and green light emissions from CdS/PVA nanocomposite film have been observed. Further, the PL studies indicated the emission peak observed at UV band represents band to band transition, while the blue and green emissions could be assigned to the optical transition of the first excitonic state of the CdS NPs and emission from interstitial sulfur respectively. The blue shift in the PL spectra was parallel to the shift observed in UV/VIS spectra. Because of its excellent fluorescence and highly transparent performance, the composite film of CdS nucleated at 200 °C was found to be suitable for bio-related applications such as bio-labeling, bio-imaging, drug delivery, and LEDs as well as a window layer in solar cell.

  12. Size-resolved measurements of brown carbon and estimates of their contribution to ambient fine particle light absorption based on water and methanol extracts

    NASA Astrophysics Data System (ADS)

    Liu, J.; Bergin, M.; Guo, H.; King, L.; Kotra, N.; Edgerton, E.; Weber, R. J.

    2013-07-01

    Light absorbing organic carbon, often termed brown carbon, has the potential to significantly contribute to the visible light absorption budget, particularly at shorter wavelengths. Currently, the relative contributions of particulate brown carbon to light absorption, as well as the sources of brown carbon are poorly understood. With this in mind field measurements were made at both urban (Atlanta), and rural (Yorkville) sites in Georgia. Measurements in Atlanta were made at both a central site and a road side site adjacent to a main highway near the city center. Fine particle brown carbon optical absorption is estimated based on Mie calculations using direct size resolved measurements of chromophores in filter extracts. Size-resolved atmospheric aerosol samples were collected using a cascade impactor and analyzed for water-soluble organic carbon (WSOC), organic and elemental carbon (OC and EC), and solution light absorption spectra of water and methanol extracts. Methanol extracts were more light-absorbing than water extracts for all size ranges and wavelengths. Absorption refractive indices of the organic extracts were calculated from solution measurements for a range of wavelengths and used with Mie theory to predict the light absorption by fine particles comprised of these components, under the assumption that brown carbon and other aerosol components were externally mixed. For all three sites, chromophores were predominately in the accumulation mode with an aerodynamic mean diameter of 0.5 μm, an optically effective size range resulting in predicted particle light absorption being a factor of 2 higher than bulk solution absorption. Fine particle absorption was also measured with a Multi-Angle Absorption Photometer (MAAP) and seven-wavelength Aethalometer. Scattering-corrected aethalometer and MAAP absorption were in good agreement at 670 nm and Mie-estimated absorption based on size-resolved EC data were within 30% of these optical instruments. When applied

  13. Fine structure of the 2003 geomagnetic jerk near China

    NASA Astrophysics Data System (ADS)

    Ou, J.; Du, A.

    2015-12-01

    The 2003 jerk has an abrupt change in the geomagnetic secular variation (SV), and was recognized as a local phenomenon of internal origin from the satellite observations (Olsen and Mandea, 2007). Notable strength of the 2003 jerk is located near China. The temporal and spatial features at this area are important to resolve the Earth's core fluid flow dynamics at local scale (e.g. Wardinski et al., 2008). We investigate the temporal-spatial development of the 2003 jerk in more detail near China with the ground-based observations and CHAOS-3 core field model. We select the data in the international geomagnetic quiet days to calculate the monthly means. In order to reduce the influence of the external field, we adopt a function comprising the terms associated with the indices of the geomagnetic activity, and the terms of the periodic signals on the observatory monthly means data (Stewart and Whaler, 1992). We then use an empirical AR-2 model to represent the internal field signals in the observatory data. The extreme detection is applied to identify the jerk in the SV time series. The onset time and the strength of the 2003 jerk are obtained through the detection for geomagnetic field component, X, Y and Z. The maximum of the strength of the 2003 jerk is located under the Indian mainland. The onset time of this jerk propagates approximately southeastward. Two jerks in 2001 and 2003 for the Z component are further compared and they are confirmed as independent processes. We suggest the jerk in 2001 identical to the well known 1999 jerk in Europe (Mandea et al., 2000). Our results reveal the fine structures of the 2003 jerk that corroborate the conclusions in previous studies. The larger scale time-spatial structure given by the AR-2 model constructed from ground observatory data (monthly values) is consistent with the results from the CHAOS-3 model. This structure can be applied for further inversion of the local core surface fluid flow motions.

  14. A New Physical Meaning of Sommerfeld Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Sohrab, Siavash

    2015-04-01

    Identifying physical space or Casimir vacuum as a compressible tachyon fluid, Planck compressible ether, leads to stochastic definitions of Planck h = mk <λk > c and Boltzmann k = mk <νk > c constants, finite photon mass mk = (hk/c3)1/2 , amu = mk c2 = (hkc)1/2 , and modified Avogadro-Loschmidt number No = 1/(hkc)1/2 = 6.03766 x1023 mole-1 . Thus, Lorentz-FitzGerald contractions now result from compressibility of physical space and become causal (Pauli) in accordance with Poincaré-Lorentz dynamic theory of relativity as opposed to Einstein kinematic theory of relativity. At thermodynamic equilibrium he = me <λe > ve = hk = mk <λk > c = h, Compton wavelength can be expressed as λc = h/me c = (ve /c)h <λe > /(me <λe > ve) = αλe . Hence, Sommerfeld fine structure constant α is identified as the ratio of electron to photon speeds α = e2/(2ɛo hc) = ve/c = 1/137.036. The mean thermal speed of electron at equilibrium with photon gas is ve = 2.187640x106 m/s and its de Broglie wavelength is λe = 3.3250x10-10 m. Also, electron kinetic energy for oscillations in two directions < x + > and < x- > or ɛe = hνe = me ve2= kTe results in electron temperature Te = 3.15690x105 K.

  15. FINE STRUCTURE OF CHLORIDE CELLS FROM THREE SPECIES OF FUNDULUS

    PubMed Central

    Philpott, C. W.; Copeland, D. E.

    1963-01-01

    A morphological basis for osmoregulation in the teleosts was studied by comparing the fine structure of chloride cells found in epithelia of the gills of three species of fish: Fundulus heteroclitus which can survive in a wide range of salinities, and F. similis and F. chrysotus which are usually restricted to salt water and fresh water environments, respectively. Gills were removed from F. heteroclitus which had been laboratory adapted to either sea water or pond water. For a comparison, gills were also removed from the marine F. similis and the fresh water F. chrysotus which had been adapted to their natural environments. Gill-filaments were fixed in Millonig's phosphate buffered (pH 7.4), 1 per cent osmium tetroxide and were embedded in Epon. Thin sections of filaments were stained with lead hydroxide. The cytoplasm of chloride cells of all three species of Fundulus is heavily populated with mitochondria and is filled with tubules of the agranular endoplasmic reticulum (ER). An orderly secretory cycle was indicated for chloride cells of salt water adapted F. heteroclitus and the marine F. similis. An amorphous material is observed in the agranular ER. Its density increases towards the apical end of the cell. In the apical cytoplasm, tubules of the agranular ER appear to converge and to discharge the amorphous material into an apical cavity. Except for the actual opening of the apical cavity, the distal end of salt water adapted chloride cells is characteristically shielded from the hypertonic environment by thin cytoplasmic flanges projecting from the neighboring epithelial cells. Chloride cells of the fresh water F. chrysotus resemble chloride cells of pond water adapted F. heteroclitus, in that these cells do not have apical cavities with the functional appearance of those in the sea water adapted forms. The distal end of fresh water adapted chloride cells is typically exposed to the free surface of the gill-filament. The possible function of the cell type is

  16. Interstellar dust grain composition from high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, Lia

    2016-06-01

    X-ray light is sufficient to excite electrons from n=1 (K-shell) and n=2 (L-shell) energy levels of neutral interstellar metals, causing a sharp increase in the absorption cross-section. Near the ionization energy, the shape of the photoelectric absorption edge depends strongly on whether the atom is isolated or bound in molecules or minerals (dust). With high resolution X-ray spectroscopy, we can directly measure the state of metals and the mineral composition of dust in the interstellar medium. In addition, the scattering contribution to the X-ray extinction cross-section can be used to gauge grain size, shape, and filling factor. In order to fully take advantage of major advances in high resolution X-ray spectroscopy, lab measurements of X-ray absorption fine structure (XAFS) from suspected interstellar minerals are required. Optical constants derived from the absorption measurements can be used with Mie scattering or anomalous diffraction theory in order to model the full extinction cross-sections from the interstellar medium. Much like quasar spectra are used to probe other intergalactic gas, absorption spectroscopy of Galactic X-ray binaries and bright stars will yield key insights to the mineralogy and evolution of dust grains in the Milky Way.

  17. Fine structure of high-power microwave-induced resistance oscillations

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Zudov, M. A.; Dmitriev, I. A.; Baldwin, K. Â. W.; Pfeiffer, L. Â. N.; West, K. Â. W.

    2017-01-01

    We report on observation of a fine structure of microwave-induced resistance oscillations in an ultraclean two-dimensional electron gas. This fine structure is manifested by multiple secondary sharp extrema, residing beside the primary ones, which emerge at high radiation power. Theoretical considerations reveal that this fine structure originates from multiphoton-assisted scattering off short-range impurities. Unique properties of the fine structure allow us to access all experimental parameters, including microwave power, and to separate different contributions to photoresistance. Furthermore, we show that the fine structure offers a convenient means to quantitatively assess the correlation properties of the disorder potential in high-quality systems, allowing separation of short- and long-range disorder contributions to the electron mobility.

  18. X-ray absorption spectroscopic investigation of the electronic structure differences in solution and crystalline oxyhemoglobin.

    PubMed

    Wilson, Samuel A; Green, Evan; Mathews, Irimpan I; Benfatto, Maurizio; Hodgson, Keith O; Hedman, Britt; Sarangi, Ritimukta

    2013-10-08

    Hemoglobin (Hb) is the heme-containing O2 transport protein essential for life in all vertebrates. The resting high-spin (S = 2) ferrous form, deoxy-Hb, combines with triplet O2, forming diamagnetic (S = 0) oxy-Hb. Understanding this electronic structure is the key first step in understanding transition metal-O2 interaction. However, despite intense spectroscopic and theoretical studies, the electronic structure description of oxy-Hb remains elusive, with at least three different descriptions proposed by Pauling, Weiss, and McClure-Goddard, based on theory, spectroscopy, and crystallography. Here, a combination of X-ray absorption spectroscopy and extended X-ray absorption fine structure, supported by density functional theory calculations, help resolve this debate. X-ray absorption spectroscopy data on solution and crystalline oxy-Hb indicate both geometric and electronic structure differences suggesting that two of the previous descriptions are correct for the Fe-O2 center in oxy-Hb. These results support the multiconfigurational nature of the ground state developed by theoretical results. Additionally, it is shown here that small differences in hydrogen bonding and solvation effects can tune the ground state, tipping it into one of the two probable configurations. These data underscore the importance of solution spectroscopy and show that the electronic structure in the crystalline form may not always reflect the true ground-state description in solution.

  19. X-ray absorption spectroscopic investigation of the electronic structure differences in solution and crystalline oxyhemoglobin

    PubMed Central

    Wilson, Samuel A.; Green, Evan; Mathews, Irimpan I.; Benfatto, Maurizio; Hodgson, Keith O.; Hedman, Britt; Sarangi, Ritimukta

    2013-01-01

    Hemoglobin (Hb) is the heme-containing O2 transport protein essential for life in all vertebrates. The resting high-spin (S = 2) ferrous form, deoxy-Hb, combines with triplet O2, forming diamagnetic (S = 0) oxy-Hb. Understanding this electronic structure is the key first step in understanding transition metal–O2 interaction. However, despite intense spectroscopic and theoretical studies, the electronic structure description of oxy-Hb remains elusive, with at least three different descriptions proposed by Pauling, Weiss, and McClure-Goddard, based on theory, spectroscopy, and crystallography. Here, a combination of X-ray absorption spectroscopy and extended X-ray absorption fine structure, supported by density functional theory calculations, help resolve this debate. X-ray absorption spectroscopy data on solution and crystalline oxy-Hb indicate both geometric and electronic structure differences suggesting that two of the previous descriptions are correct for the Fe–O2 center in oxy-Hb. These results support the multiconfigurational nature of the ground state developed by theoretical results. Additionally, it is shown here that small differences in hydrogen bonding and solvation effects can tune the ground state, tipping it into one of the two probable configurations. These data underscore the importance of solution spectroscopy and show that the electronic structure in the crystalline form may not always reflect the true ground-state description in solution. PMID:24062465

  20. Dynamic energy absorption characteristics of hollow microlattice structures

    SciTech Connect

    Liu, YL; Schaedler, TA; Chen, X

    2014-10-01

    Hollow microlattice structures are promising candidates for advanced energy absorption and their characteristics under dynamic crushing are explored. The energy absorption can be significantly enhanced by inertial stabilization, shock wave effect and strain rate hardening effect. In this paper we combine theoretical analysis and comprehensive finite element method simulation to decouple the three effects, and then obtain a simple model to predict the overall dynamic effects of hollow microlattice structures. Inertial stabilization originates from the suppression of sudden crushing of the microlattice and its contribution scales with the crushing speed, v. Shock wave effect comes from the discontinuity across the plastic shock wave front during dynamic loading and its contribution scales with e. The strain rate effect increases the effective yield strength upon dynamic deformation and increases the energy absorption density. A mechanism map is established that illustrates the dominance of these three dynamic effects at a range of crushing speeds. Compared with quasi-static loading, the energy absorption capacity a dynamic loading of 250 m/s can be enhanced by an order of magnitude. The study may shed useful insight on designing and optimizing the energy absorption performance of hollow microlattice structures under various dynamic loads. (C) 2014 Elsevier Ltd. All rights reserved.

  1. Absorption-reduced waveguide structure for efficient terahertz generation

    SciTech Connect

    Pálfalvi, L.; Fülöp, J. A.; Hebling, J.

    2015-12-07

    An absorption-reduced planar waveguide structure is proposed for increasing the efficiency of terahertz (THz) pulse generation by optical rectification of femtosecond laser pulses with tilted-pulse-front in highly nonlinear materials with large absorption coefficient. The structure functions as waveguide both for the optical pump and the generated THz radiation. Most of the THz power propagates inside the cladding with low THz absorption, thereby reducing losses and leading to the enhancement of the THz generation efficiency by up to more than one order of magnitude, as compared with a bulk medium. Such a source can be suitable for highly efficient THz pulse generation pumped by low-energy (nJ-μJ) pulses at high (MHz) repetition rates delivered by compact fiber lasers.

  2. Band structure of absorptive two-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    van der Lem, Han; Tip, Adriaan; Moroz, Alexander

    2003-06-01

    The band structure for an absorptive two-dimensional photonic crystal made from cylinders consisting of a Drude material is calculated. Absorption causes the spectrum to become complex and form islands in the negative complex half-plane. The boundaries of these islands are not always formed by the eigenvalues calculated for Bloch vectors on the characteristic path, and we find a hole in the spectrum. For realistic parameter values, the real part of the spectrum is hardly influenced by absorption, typically less than 0.25%. The employed method uses a Korringa-Kohn-Rostoker procedure together with analytical continuation. This results in an efficient approach that allows these band-structure calculations to be done on a Pentium III personal computer.

  3. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    SciTech Connect

    Zheng, Y. |; Shirley, D.A.

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  4. Fine Resolution Termohaline Structure Of The Yuctatan Coastal Sea

    NASA Astrophysics Data System (ADS)

    Marino-Tapia, I.; Enriquez-Ortiz, C.; Capurro, L.; Euan-Avila, J.

    2007-05-01

    In the Yucatan peninsula there are a variety processes that drastically affect the thermohaline structure of the coastal seas. Some of these include hyperhaline lagoons that export salt to the ocean, upwelling events that propagate to the coast, persistent submarine groundwater discharges, and very high evaporation rates caused by the intense solar radiation. On July 2006 a fine resolution oceanographic campaign was performed on the Yucatan coast to study the detailed structure of thermohaline processes and currents from the shore to the 10 m isobath. A total of sixty nine transects that cover the entire northern stretch of the Yucatan coast were made. The transects extend seven kilometers in the offshore direction and have an alongshore spacing of 5 km. The temperature and salinity characteristics of the water column were monitored with a SEABIRD SBE 19 CTD performing profiles every 500 m along each transect. Ocean currents were measures along the same transect using a 1.5 MHz Acoustic Doppler Profiler (Sontek). The results clearly show the effects of coastal lagoons on the adjoining sea, with net salt export associated with hyperhaline lagoons (e.g. Ria Lagartos) or more estuarine influence of lagoons such as Celestun, where groundwater discharges play the role of rivers on the estuary. An assessment of this influence on the coastal ocean will be presented. It is well known the meteor impact at the end of the Cretacic era at Chicxulub, Yucatan, generated a crater with multiple rings which is evident from horizontal gravity gradients of the Yucatan mainland, and that associated with the outer ring there is a high concentration of cenotes (sinkholes) (Pope et al. 1991; Hildebrand, et al. 1995). It has also been shown that groundwater flows along this cenote ring towards the ocean, and the zones where the ring intersects the coast (Celestun and Dzilam Bravo) have impressive geologic features known as `submarine water springs' where freshwater springs as a fountain

  5. THE FINE STRUCTURE OF CORTICAL COMPONENTS OF PARAMECIUM MULTIMICRONUCLEATUM

    PubMed Central

    Sedar, Albert W.; Porter, Keith R.

    1955-01-01

    additional fiber system, the infraciliary lattice system, which is separate and distinct from the kinetodesmal system. This system consists of a fibrous network of irregular polygons and runs roughly parallel to the surface of the animal. Mitochondria have a fine structure similar in general features to that described for a number of mammalian cell types, but different in certain details. The structures corresponding to cristae mitochondriales appear as finger-like projections or microvilli extending into the matrix of the organelle from the inner membrane of the paired mitochondrial membrane. The cortical cytoplasm contains also a particulate component and a system of vesicles respectively comparable to the nucleoprotein particles and to the endoplasmic reticulum described in various metazoan cell types. An accessory kinetosome has been observed in oblique sections of a number of non-dividing specimens slightly removed from the ciliary kinetosome and on the same meridional line as the cilia and trichocysts. Its position corresponds to the location of the kinetosome of the newly formed cilium in animals selected as being in the approaching fission stage of the life cycle. PMID:13278368

  6. Relative importance of temporal envelope and fine structure in lexical-tone perception (L)

    NASA Astrophysics Data System (ADS)

    Xu, Li; Pfingst, Bryan E.

    2003-12-01

    The relative importance of temporal envelope and fine structure in speech and music perception was investigated by Smith et al. [Nature (London) 416, 87-90 (2002)] using ``auditory chimera'' in which the envelope from one sound was paired with the fine structure of another. Smith et al. found that, when 4 to 16 frequency bands were used, recognition of English speech was dominated by the envelope, whereas recognition of melody was dominated by the fine structure. In the present study, Mandarin Chinese monosyllables were divided into 4, 8, or 16 frequency bands and the fine structure and envelope of one tone pattern were exchanged with those of another tone pattern of the same monosyllable. Five normal-hearing native Mandarin Chinese speakers completed a four-alternative forced-choice tone-identification task. In the vast majority of trials, subjects based their identification of the monosyllables on the fine structure rather than the envelope. Thus, the relative importance of envelope and fine structure for lexical-tone perception resembled that for melody recognition rather than that for English speech recognition. Delivering fine-structure information in cochlear implant stimulation could be particularly beneficial for lexical-tone perception.

  7. Synthesis, fine structural characterization, and CO2 adsorption capacity of metal organic frameworks-74.

    PubMed

    Adhikari, Abhijit Krishna; Lin, Kuen-Song

    2014-04-01

    Two metal organic frameworks of MOF-74 group (zinc and copper-based) were successfully synthesized, characterized, and evaluated for CO2 adsorption. The both samples such as MOF-74(Zn) and MOF-74(Cu) were characterized with FE-SEM for morphology and particle size, XRD patterns for phase structure, FTIR for organic functional groups, nitrogen adsorption for pore textural properties, and X-ray absorption spectroscopy for fine structural parameters and oxidation states of central metal atoms. CO2 adsorption isotherms of MOF-74 samples were measured in a volumetric adsorption unit at 273 K and pressure up to 1.1 bar. The MOF-74(Zn) and MOF-74(Cu) adsorbents have the pore widths of 8.58 and 8.04 angstroms with the BET specific surface areas of 1,474 and 1,345 m2 g(-1), respectively. CO2 adsorption capacities of MOF-74(Zn) and MOF-74(Cu) were 4.10 and 3.38 mmol x g(-1), respectively measured at 273 K and 1.1 bar. The oxidation state of central atoms in MOF-74(Zn) was Zn(II) confirmed by XANES spectra while MOF-74(Cu) was composed of Cu(I) and Cu(II) central atoms. The bond distances of Zn--O and Cu--O were 1.98 and 1.94 angstroms, respectively.

  8. Fine-scale structure in the far-infrared Milky-Way

    NASA Technical Reports Server (NTRS)

    Waller, William H.; Wall, William F.; Reach, William T.; Varosi, Frank; Ebert, Rick; Laughlin, Gaylin; Boulanger, Francois

    1995-01-01

    This final report summarizes the work performed and which falls into five broad categories: (1) generation of a new data product (mosaics of the far-infrared emission in the Milky Way); (2) acquisition of associated data products at other wavelengths; (3) spatial filtering of the far-infrared mosaics and resulting images of the FIR fine-scale structure; (4) evaluation of the spatially filtered data; (5) characterization of the FIR fine-scale structure in terms of its spatial statistics; and (6) identification of interstellar counterparts to the FIR fine-scale structure.

  9. On the 1s24d Fine Structures of B III and Ne VIII

    NASA Astrophysics Data System (ADS)

    Wang, Zhiwen; Z, W. Wang; Kwong, T. Chung; Zhu, Xiaowei

    1995-01-01

    The fine structure of lithium-like 1s24d states in the literature behaves irregularly as a function of Z. The fine structures of the B III and Ne VIII fall well below the isoelectronic curve. The term energies of these two systems in the data tables also give worse agreement with the theoretical prediction. In this work, we show that the reason for this unusual situation is caused by a misidentification in the original spectra. When the correct identifications are made, the fine structures of both systems fall on the isoelectronic curve and the agreement between theory and experiment is excellent.

  10. ODS steel raw material local structure analysis using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cintins, A.; Anspoks, A.; Purans, J.; Kuzmin, A.; Timoshenko, J.; Vladimirov, P.; Gräning, T.; Hoffmann, J.

    2015-03-01

    Oxide dispersion strengthened (ODS) steels are promising materials for fusion power reactors, concentrated solar power plants, jet engines, chemical reactors as well as for hydrogen production from thermolysis of water. In this study we used X-ray absorption spectroscopy at the Fe and Cr K-edges as a tool to get insight into the local structure of ferritic and austenitic ODS steels around Fe and Cr atoms and its transformation during mechanical alloying process. Using the analysis of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) we found that for austenitic samples a transformation of ferritic steel to austenitic steel is detectable after 10 hours of milling and proceeds till 40 hours of milling; only small amount of a-phase remains after 80 hours of milling. We found that the Cr K-edge EXAFS can be used to observe distortions inside the material and to get an impression on the formation of chromium clusters. In-situ EXAFS experiments offer a reliable method to investigate the ferritic to austenitic transformation.

  11. On the origin of fine structure in the photoluminescence spectra of the β-sialon:Eu2+ green phosphor

    PubMed Central

    Takahashi, Kohsei; Yoshimura, Ken-ichi; Harada, Masamichi; Tomomura, Yoshitaka; Takeda, Takashi; Xie, Rong-Jun; Hirosaki, Naoto

    2012-01-01

    The photoluminescence (PL) and PL excitation (PLE) spectra of Si6−zAlzOzN8−z (β-sialon):Eu2+ phosphors with small z values (z=0.025–0.24) were studied at room temperature and 6 K. The PL and PLE spectra exhibit fine structure with the PL lines being as sharp as 45–55 nm even at room temperature; this fine structure was enhanced by decreasing the z value. These results can be used for expanding the color gamut of liquid crystal displays, particularly in the blue–green region. From low-temperature measurements, the fine PLE structure was ascribed to discrete energy levels of 7FJ states. The 4f65d excited states of Eu2+ are considered to be localized near the 4f orbital. This is because the bonding of Eu2+ with surrounding atoms is ionic rather than covalent. Lattice phonon absorptions were also observed in the PLE spectrum, revealing that the optically active Eu2+ ions are located in the β-sialon crystal. The PL spectrum of the sample with the smallest z value (0.025) consists of a sharp zero-phonon line and lattice phonon replicas, which results in a sharp and asymmetric spectral shape. PMID:27877471

  12. EFFECTS OF PUROMYCIN ON THE STRUCTURE OF RAT INTESTINAL EPITHELIAL CELLS DURING FAT ABSORPTION

    PubMed Central

    Friedman, Harold I.; Cardell, Robert R.

    1972-01-01

    This report provides information on the morphology of rat intestinal epithelial cells during fat absorption. In addition, the role of protein metabolism in this process has been evaluated by blocking its synthesis with puromycin and studying the fine structure of mucosal cells from rats at various times after fat intubation. The results indicate that SER-derived vesicles, containing fat droplets, migrate from the apical cytoplasm of the absorptive cell and fuse with saccules or vacuoles of the Golgi complex. Arguments are made that the Golgi complex is important in completing chylomicron formation and in providing appropriate enveloping membranes for the chylomicron. Such membranes may be necessary for Golgi vacuoles to fuse with the lateral cell membranes and release chylomicra. Puromycin treatment causes the absorptive cell to accumulate increased quantities of lipid that are devoid of membrane during fat absorption. In addition, puromycin-treated cells contain much less RER and Golgi membranes are strikingly decreased in number. In this paper we discuss the consequences of these abnormalities and suggest that continued protein synthesis by the RER is required in order to generate Golgi membranes. If such membranes are absent the cell's ability to discarge chylomicra is impaired and lipid accumulates. PMID:4331298

  13. Magnetic diffusion instability and the fine structures of soler active region

    NASA Astrophysics Data System (ADS)

    Zhou, Dao-qi; Qian, Jing-kui; Ai, Guo-xiang

    1990-03-01

    Continuous observations over five days with the magnetic field telescope at Huairou yielded some clear characteristics of the fine structures in sunspot active regions. Starting from magnetic diffusivity being a function of temperature and using the induction equation we investigated the cause of the fine structures. Using linear perturbation of the MHD equations we found the instability mode. This gives rise to inhomogeneous structures in the originally smooth magnetic field and is the cause of the fine structures. Our observed fibrilles are about 1.5″ to 3.0″, or 1000 to 2000km in size, whereas, with certain typical values of sunspot parameters the theoretical lower limit for the fine structures is about 220km, in agreement with some observational estimates.

  14. Fine Structure of Starch-Clay Composites as Biopolymers

    USDA-ARS?s Scientific Manuscript database

    Midsol 50 wheat starch and 5% Cloisite clay with or without the addition of glycerin were used to prepare biopolymers in a twin-screw extruder. Early trials of sectioning the unembedded biopolymer resulted in the immediate absorption of water and subsequent dissolution of the sample due to the the ...

  15. Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption

    NASA Astrophysics Data System (ADS)

    Liu, J.; Bergin, M.; Guo, H.; King, L.; Kotra, N.; Edgerton, E.; Weber, R. J.

    2013-12-01

    Light absorbing organic carbon, often called brown carbon, has the potential to significantly contribute to the visible light-absorption budget, particularly at shorter wavelengths. Currently, the relative contributions of particulate brown carbon to light absorption, as well as the sources of brown carbon, are poorly understood. With this in mind size-resolved direct measurements of brown carbon were made at both urban (Atlanta), and rural (Yorkville) sites in Georgia. Measurements in Atlanta were made at both a representative urban site and a road-side site adjacent to a main highway. Fine particle absorption was measured with a multi-angle absorption photometer (MAAP) and seven-wavelength Aethalometer, and brown carbon absorption was estimated based on Mie calculations using direct size-resolved measurements of chromophores in solvents. Size-resolved samples were collected using a cascade impactor and analyzed for water-soluble organic carbon (WSOC), organic and elemental carbon (OC and EC), and solution light-absorption spectra of water and methanol extracts. Methanol extracts were more light-absorbing than water extracts for all size ranges and wavelengths. Absorption refractive indices of the organic extracts were calculated from solution measurements for a range of wavelengths and used with Mie theory to predict the light absorption by fine particles comprised of these components, under the assumption that brown carbon and other aerosol components were externally mixed. For all three sites, chromophores were predominately in the accumulation mode with an aerodynamic mean diameter of 0.5 μm, an optically effective size range resulting in predicted particle light absorption being a factor of 2 higher than bulk solution absorption. Mie-predicted brown carbon absorption at 350 nm contributed a significant fraction (20 to 40%) relative to total light absorption, with the highest contributions at the rural site where organic to elemental carbon ratios were

  16. Fine structural characterization of microbodies and Woronin bodies in Trichophyton mentagrophytes.

    PubMed

    Vannini, G L; Mares, D

    1975-08-15

    Microbodies and Woronin bodies, organelles surrounded by a single unit membrane, were identified in the hyphal cells of Trichophyton mentagrophytes by employing a fixative containing TAPO. The fine structure of the organelles is described and their possible significance discussed.

  17. Fine structure of the amide i band in acetanilide

    NASA Astrophysics Data System (ADS)

    Careri, G.; Gratton, E.; Shyamsunder, E.

    1988-05-01

    Their absorption spectrum of both single crystals and powdered samples of acetanilide (a model system for proteins) has been studied in the amide i region, where a narrow band has been identified as a highly trapped soliton state. The powder-sample spectra have been decomposed using four Lorentzian bands. A strong temperature dependence has been found for the intensity of two of the subbands, which also show a complementary behavior. Polarization studies performed on thin crystals have shown that the subbands have the same polarization. Low-temperature spectra of partially deuterated samples show the presence of the subbands at the same absorption frequencies found using the fitting procedure in the spectra of nondeuterated samples. The soliton model currently proposed to explain the origin of the anomalous amide i component at 1650 cm-1 still holds, but some modification of the model is required to account for the new features revealed by this study.

  18. Near-edge X-ray refraction fine structure microscopy

    DOE PAGES

    Farmand, Maryam; Celestre, Richard; Denes, Peter; ...

    2017-02-06

    We demonstrate a method for obtaining increased spatial resolution and specificity in nanoscale chemical composition maps through the use of full refractive reference spectra in soft x-ray spectro-microscopy. Using soft x-ray ptychography, we measure both the absorption and refraction of x-rays through pristine reference materials as a function of photon energy and use these reference spectra as the basis for decomposing spatially resolved spectra from a heterogeneous sample, thereby quantifying the composition at high resolution. While conventional instruments are limited to absorption contrast, our novel refraction based method takes advantage of the strongly energy dependent scattering cross-section and can seemore » nearly five-fold improved spatial resolution on resonance.« less

  19. A Simple Model for Fine Structure Transitions in Alkali-Metal Noble-Gas Collisions

    DTIC Science & Technology

    2015-03-01

    A SIMPLE MODEL FOR FINE STRUCTURE TRANSITIONS IN ALKALI - METAL NOBLE-GAS COLLISIONS THESIS Joseph A. Cardoza, Captain, USAF AFIT-ENP-MS-15-M-079... ALKALI - METAL NOBLE-GAS COLLISIONS THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air...AFIT-ENP-MS-15-M-079 A SIMPLE MODEL FOR FINE STRUCTURE TRANSITIONS IN ALKALI - METAL NOBLE-GAS COLLISIONS Joseph A. Cardoza, BS Captain, USAF Committee

  20. Path integral formalism for the spectral line shape in plasmas: Lyman-{alpha} with fine structure

    SciTech Connect

    Bedida, N.; Meftah, M. T.; Boland, D.; Stamm, R.

    2008-10-22

    We examine in this work the expression of the dipolar autocorrelation function for an emitter in the plasma using the path integrals formalism. The results for Lyman alpha lines with fine structure are retrieved in a compact formula. The expression of the dipolar autocorrelation function takes into account the ions dynamics and the fine structure effects. The electron's effect is represented by the impact operator {phi}{sub e} in the final formula.

  1. Impaired perception of temporal fine structure and musical timbre in cochlear implant users.

    PubMed

    Heng, Joseph; Cantarero, Gabriela; Elhilali, Mounya; Limb, Charles J

    2011-10-01

    Cochlear implant (CI) users demonstrate severe limitations in perceiving musical timbre, a psychoacoustic feature of sound responsible for 'tone color' and one's ability to identify a musical instrument. The reasons for this limitation remain poorly understood. In this study, we sought to examine the relative contributions of temporal envelope and fine structure for timbre judgments, in light of the fact that speech processing strategies employed by CI systems typically employ envelope extraction algorithms. We synthesized "instrumental chimeras" that systematically combined variable amounts of envelope and fine structure in 25% increments from two different source instruments with either sustained or percussive envelopes. CI users and normal hearing (NH) subjects were presented with 150 chimeras and asked to determine which instrument the chimera more closely resembled in a single-interval two-alternative forced choice task. By combining instruments with similar and dissimilar envelopes, we controlled the valence of envelope for timbre identification and compensated for envelope reconstruction from fine structure information. Our results show that NH subjects utilize envelope and fine structure interchangeably, whereas CI subjects demonstrate overwhelming reliance on temporal envelope. When chimeras were created from dissimilar envelope instrument pairs, NH subjects utilized a combination of envelope (p = 0.008) and fine structure information (p = 0.009) to make timbre judgments. In contrast, CI users utilized envelope information almost exclusively to make timbre judgments (p < 0.001) and ignored fine structure information (p = 0.908). Interestingly, when the value of envelope as a cue was reduced, both NH subjects and CI users utilized fine structure information to make timbre judgments (p < 0.001), although the effect was quite weak in CI users. Our findings confirm that impairments in fine structure processing underlie poor perception of musical timbre in CI

  2. Structure of aqueous ZnBr2 solution probed by x-ray absorption spectroscopy in normal and hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Simonet, V.; Calzavara, Y.; Hazemann, J. L.; Argoud, R.; Geaymond, O.; Raoux, D.

    2002-02-01

    Local-order evolution around ions in aqueous solutions has been investigated between normal and hydrothermal conditions. The behavior of cations and anions in aqueous ZnBr2 solution were studied by performing x-ray absorption spectroscopy experiments at both Br and Zn edges. Extended x-ray absorption fine structure analyses are made on account of anharmonic treatment and multiple scattering contributions involving H atoms at the Br edge. The extended x-ray absorption fine structure results are coupled to x-ray absorption near-edge structure simulations in order to identify the complexes formed under normal and hydrothermal conditions. It appears that both Zn and Br ions are largely hydrated under normal conditions and that Zn-Br pairs are formed in hydrothermal conditions. This is related to an octahedral-to-tetrahedral evolution of the Zn local environment, the majority of Zn atoms being surrounded by water octahedra in normal conditions and by distorted tetrahedra involving Br and O atoms in hydrothermal conditions.

  3. Globular Clusters as Tracers of Fine Structure in the Dramatic Shell Galaxy NGC 474

    NASA Astrophysics Data System (ADS)

    Lim, Sungsoon; Peng, Eric W.; Duc, Pierre-Alain; Fensch, Jérémy; Durrell, Patrick R.; Harris, William E.; Cuillandre, Jean-Charles; Gwyn, Stephen; Lançon, Ariane; Sánchez-Janssen, Rúben

    2017-02-01

    Globular clusters (GCs) are some of the most visible tracers of the merging and accretion histories of galaxy halos. Metal-poor GCs, in particular, are thought to arrive in massive galaxies largely through dry, minor merging events, but it is rare to see a direct connection between GCs and visible stellar streams. NGC 474 is a post-merger early-type galaxy with dramatic fine structures made of concentric shells and radial streams that have been more clearly revealed by deep imaging. We present a study of GCs in NGC 474 to better establish the relationship between merger-induced fine structure and the GC system. We find that many GCs are superimposed on visible streams and shells, and about 35% of GCs outside 3{R}{{e},{galaxy}} are located in regions of fine structure. The spatial correlation between GCs and fine structure is significant at the 99.9% level, which shows that this correlation is not coincidental. The colors of GCs on fine structures are mostly blue, and we also find an intermediate-color population that is dominant in the central region and that will likely passively evolve to have colors consistent with a traditional metal-rich GC population. The association of the blue GCs with fine structures is direct confirmation that many metal-poor GCs are accreted onto massive galaxy halos through merging events and that the progenitors of these mergers are sub-{L}\\star galaxies.

  4. Impact of instrumental systematic errors on fine-structure constant measurements with quasar spectra

    NASA Astrophysics Data System (ADS)

    Whitmore, Jonathan B.; Murphy, Michael T.

    2015-02-01

    We present a new `supercalibration' technique for measuring systematic distortions in the wavelength scales of high-resolution spectrographs. By comparing spectra of `solar twin' stars or asteroids with a reference laboratory solar spectrum, distortions in the standard thorium-argon calibration can be tracked with ˜10 m s-1 precision over the entire optical wavelength range on scales of both echelle orders (˜50-100 Å) and entire spectrographs arms (˜1000-3000 Å). Using archival spectra from the past 20 yr, we have probed the supercalibration history of the Very Large Telescope-Ultraviolet and Visible Echelle Spectrograph (VLT-UVES) and Keck-High Resolution Echelle Spectrograph (HIRES) spectrographs. We find that systematic errors in their wavelength scales are ubiquitous and substantial, with long-range distortions varying between typically ±200 m s-1 per 1000 Å. We apply a simple model of these distortions to simulated spectra that characterize the large UVES and HIRES quasar samples which previously indicated possible evidence for cosmological variations in the fine-structure constant, α. The spurious deviations in α produced by the model closely match important aspects of the VLT-UVES quasar results at all redshifts and partially explain the HIRES results, though not self-consistently at all redshifts. That is, the apparent ubiquity, size and general characteristics of the distortions are capable of significantly weakening the evidence for variations in α from quasar absorption lines.

  5. Nonlinear Schrödinger-Poisson definition of fine-structure-constant's value ~1/137

    NASA Astrophysics Data System (ADS)

    Reinisch, G.

    2010-06-01

    By numerically investigating the nonlinear Schrödinger-Poisson eigenstates of a condensed Bose gas of charged particles that is confined in a two-dimensional axisymmetric parabolic potential ½meω2r2 (e.g. quantum-dot helium), it is shown that the probability amplitude between two nonlinear—and hence non-orthogonal—eigenstates displays an interference pattern scaled (within 0.03 %) by graphic equation Since α = e2/hbarc ~ 1/137 is the fine structure constant, this stunning result—indeed velocity of light c does not enter the present non-relativistic model—is tentatively explained by the existence of a "nonlinear" bound state of the trapped particle-particle interaction Coulomb field whose energy cal E = half pi hbar omega defines the induced emission or absorption equilibrium processes between two appropriate chemical potentials. Besides, a non-decoherence quantum-classical transition with increasing nonlinearity is pointed out. As a possible experimental test for the present theory, the 0s2 → 1s2 nonlinear transition in an hbarω = 1.66meV GaAs quantum-dot helium is emphasized.

  6. Infrared reflection-absorption spectroscope using thin film structures

    NASA Astrophysics Data System (ADS)

    Finke, S. J.; Schrader, G. L.

    Infrared reflection-absorption spectroscopy (IRRAS) has been used extensively in the study of adsorbates and thin layers on metal surfaces, but little work has been performed on non-metals due to the low sensitivity which results when these materials are used. In this work, thin film structures consisting of a thin layer of a semiconductor (silicon) on a metal (copper) surface are used to increase the sensitivity of the technique for examining layers of poly(methylmethacrylate).

  7. Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions and hearing threshold fine structure.

    PubMed

    Dewey, James B; Lee, Jungmee; Dhar, Sumitrajit

    2014-12-01

    Medial olivocochlear (MOC) influence on cochlear mechanics can be noninvasively, albeit indirectly, explored via the effects of contralateral acoustic stimulation (CAS) on otoacoustic emissions. CAS-mediated effects are particularly pronounced for spontaneous otoacoustic emissions (SOAEs), which are typically reduced in amplitude and shifted upward in frequency by CAS. We investigated whether similar frequency shifts and magnitude reductions were observed behaviorally in the fine structure of pure-tone hearing thresholds, a phenomenon thought to share a common underlying mechanism with SOAEs. In normal-hearing listeners, fine-resolution thresholds were obtained over a narrow frequency range centered on the frequency of an SOAE, both in the absence and presence of 60-dB SPL broadband CAS. While CAS shifted threshold fine structure patterns and SOAEs upward in frequency by a comparable amount, little reduction in the presence or depth of fine structure was observed at frequencies near those of SOAEs. In fact, CAS typically improved thresholds, particularly at threshold minima, and increased fine structure depth when reductions in the amplitude of the associated SOAE were less than 10 dB. Additional measurements made at frequencies distant from SOAEs, or near SOAEs that were more dramatically reduced in amplitude by the CAS, revealed that CAS tended to elevate thresholds and reduce threshold fine structure depth. The results suggest that threshold fine structure is sensitive to MOC-mediated changes in cochlear gain, but that SOAEs complicate the interpretation of threshold measurements at nearby frequencies, perhaps due to masking or other interference effects. Both threshold fine structure and SOAEs may be significant sources of intersubject and intrasubject variability in psychoacoustic investigations of MOC function.

  8. X-ray absorption studies of metalloprotein structure: cytochrome P-450, horseradish peroxidase, plastocyanin and laccase

    SciTech Connect

    Penner-Hahn, J.E.

    1984-03-01

    Extended x-ray absorption fine structure (EXAFS) has been developed to determine the structure of metalloproteins. EXAFS data have been collected and analysed for four states in the catalytic cycle of bacterial cytochrome P-450/sub CAM/. This data demonstrates that sulfur is retained as an axial ligand in the reduced forms of the enzyme. EXAFS and edge data have been analysed for the high-valent states of horseradish peroxidase (HRP), and for high-valent iron-porphyrin model compounds. These data provide the first direct confirmation of the presence of a ferryl Fe=O coordination in HRP and in some of the model compounds. The polarized single-crystal EXAFS spectra of plastocyanin have been measured as a function of both orientation and temperature. These data demonstrate that at room temperature the relative motions of the Cu and the S(Met) are essentially uncorrelated.

  9. Strain and Absorption Coefficient of Finite Ge Structures on Si

    NASA Astrophysics Data System (ADS)

    Park, Sungbong; Ishikawa, Yasuhiko; Wada, Kazumi; Tsusaka, Yoshiyuki; Matsui, Junji

    2009-06-01

    A finite structure of Ge under tensile stress was investigated theoretically and experimentally focusing on applications to near-infrared photodetectors on (001) Si. We calculated the direct band gap energy of strained Ge between the conduction band and the heavy/light-hole valence band via the k·p theory. Three types of in-plane stresses were considered, i.e., a biaxial stress and uniaxial stresses along the <100> and <110> directions. On the basis of the direct band gap change, absorption spectra due to the direct transitions were calculated. The calculated absorption spectra showed that the biaxial stress is more effective than the uniaxial stresses in terms of the absorption red-shift, which increases the detection wavelength range. Localized strain measurements revealed that a selectively grown Ge mesa on (001) Si maintains a biaxial strain caused by the thermal expansion mismatch when its width is larger than 1 µm. A uniaxial stress probably develops owing to the strain relaxation in a finite Ge structure smaller than 1 µm. The application of Ge finite structures to waveguide photodetectors is discussed.

  10. Sound absorption by subwavelength membrane structures: A geometric perspective

    NASA Astrophysics Data System (ADS)

    Yang, Min; Li, Yong; Meng, Chong; Fu, Caixing; Mei, Jun; Yang, Zhiyu; Sheng, Ping

    2015-12-01

    Decorated membranes comprising a thin layer of elastic film with small rigid platelets fixed on top have been found to be efficient absorbers of low-frequency sound. In this work we consider the problem of sound absorption from a perspective aimed at deriving upper bounds under different scenarios, i.e., whether the sound is incident from one side only or from both sides, and whether there is a reflecting surface on the back side of the membrane. By considering the negligible thickness of the membrane, usually on the order of a fraction of one millimeter, we derive a relation showing that the sum of the incoming sound waves' (complex) pressure amplitudes, averaged over the area of the membrane, must be equal to that of the outgoing waves. By using this relation, and without going to any details of the wave solutions, it is shown that the maximum absorption achievable from one-sided incidence is 50%, while the maximum absorption with a back-reflecting surface can reach 100%. The latter was attained by the hybridized resonances. All the results are shown to be in excellent agreement with the experiments. This generalized perspective, when used together with the Green function's formalism, can be useful in gaining insights into the constraints on what are achievable in scatterings and absorption by thin film structures and delineating them.

  11. Solvation structure of the halides from x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Antalek, Matthew; Pace, Elisabetta; Hedman, Britt; Hodgson, Keith O.; Chillemi, Giovanni; Benfatto, Maurizio; Sarangi, Ritimukta; Frank, Patrick

    2016-07-01

    Three-dimensional models for the aqueous solvation structures of chloride, bromide, and iodide are reported. K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near edge (MXAN) analyses found well-defined single shell solvation spheres for bromide and iodide. However, dissolved chloride proved structurally distinct, with two solvation shells needed to explain its strikingly different X-ray absorption near edge structure (XANES) spectrum. Final solvation models were as follows: iodide, 8 water molecules at 3.60 ± 0.13 Å and bromide, 8 water molecules at 3.40 ± 0.14 Å, while chloride solvation included 7 water molecules at 3.15 ± 0.10 Å, and a second shell of 7 water molecules at 4.14 ± 0.30 Å. Each of the three derived solvation shells is approximately uniformly disposed about the halides, with no global asymmetry. Time-dependent density functional theory calculations simulating the chloride XANES spectra following from alternative solvation spheres revealed surprising sensitivity of the electronic state to 6-, 7-, or 8-coordination, implying a strongly bounded phase space for the correct structure during an MXAN fit. MXAN analysis further showed that the asymmetric solvation predicted from molecular dynamics simulations using halide polarization can play no significant part in bulk solvation. Classical molecular dynamics used to explore chloride solvation found a 7-water solvation shell at 3.12 (-0.04/+0.3) Å, supporting the experimental result. These experiments provide the first fully three-dimensional structures presenting to atomic resolution the aqueous solvation spheres of the larger halide ions.

  12. Structure- and dose-absorption relationships of coffee polyphenols.

    PubMed

    Erk, Thomas; Hauser, Johanna; Williamson, Gary; Renouf, Mathieu; Steiling, Heike; Dionisi, Fabiola; Richling, Elke

    2014-01-01

    Chlorogenic acids (CGAs) from coffee have biological effects related to human health. Thus, specific data on their bioavailability in the upper gastrointestinal tract are of high interest, since some molecules are absorbed here and so are not metabolized by colonic microflora. Up to now, no data on structure-absorption relationships for CGAs have been published, despite this being the most consumed group of polyphenols in the western diet. To address this gap, we performed ex vivo absorption experiments with pig jejunal mucosa using the Ussing chamber model (a model simulating the mucosa and its luminal/apical side). The main coffee polyphenols, caffeoylquinic acid (CQA), feruloylquinic acid (FQA), caffeic acid (CA), dicaffeoylquinic acid (diCQA), and D-(-)-quinic acid (QA), were incubated in individual experiments equivalent to gut lumen physiologically achievable concentrations (0.2-3.5 mM). Identification and quantification were performed with HPLC-diode array detection and HPLC-MS/MS. Additionally, the presence of ABC-efflux transporters was determined by Western blot analysis. The percentages of initially applied CGAs that were absorbed through the jejunal pig mucosa were, in increasing order: diCQA, trace; CQA, ≈ 1%; CA, ≈ 1.5%; FQA, ≈ 2%; and QA, ≈ 4%. No differences were observed within the CGA subgroups. Dose-absorption experiments with 5-CQA suggested a passive diffusion (nonsaturable absorption and a linear dose-flux relationship) and its secretion was affected by NaN3 , indicating an active efflux. The ABC-efflux transporters MDR 1 and MRP 2 were identified in pig jejunal mucosa for the first time. We conclude that active efflux plays a significant role in CGA bioavailability and, further, that the mechanism of CGA absorption in the jejunum is governed by their physicochemical properties.

  13. Probing local structure of pyrochlore lead zinc niobate with synchrotron x-ray absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Kanchiang, Kanokwan; Pramchu, Sittichain; Yimnirun, Rattikorn; Pakawanit, Phakkhananan; Ananta, Supon; Laosiritaworn, Yongyut

    2013-08-01

    Local structure of lead zinc niobate (PZN) ceramic, synthesized via B-site oxide precursor route in atmospheric pressure, was investigated using synchrotron x-ray absorption spectroscopy (XAS) technique. The x-ray absorption near-edge structure (XANES) simulation was first carried out. The XANES simulation results indicate that the PZN ceramic is in pyrochlore phase having Zn2+ substituted on Nb5+ site. Afterwards, the extended x-ray absorption fine structure (EXAFS) analysis was performed to extract the bond length information between Zn2+ and its neighboring atoms. From the EXAFS fitting, the bond length between Zn2+ and Pb2+ in the pyrochlore phase was found to be longer than the previously reported bond length in the perovskite phase. Further, with the radial distribution information of Zn2+'s neighboring atoms, the formation energies along the precursor-to-pyrochlore and precursor-to-perovskite reaction paths were calculated using the density functional theory (DFT). The calculated results show that the formation energy of the perovskite phase is noticeably higher than that of the pyrochlore phase, which is influenced by the presence of energetic Pb2+ lone pair, as the perovskite phase has shorter Zn2+ to Pb2+ bonding. This therefore suggests the steric hindrance of Pb2+ lone pair and the mutual interactions between Pb2+ lone pair and Zn2+ are main causes of the instability of lead zinc niobate in the perovskite structure and confirm the efficacy of XAS and DFT analysis in revealing local structural details of complex pyrochlore materials.

  14. An Action-Based Fine-Grained Access Control Mechanism for Structured Documents and Its Application

    PubMed Central

    Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo

    2014-01-01

    This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical. PMID:25136651

  15. Quantifying envelope and fine-structure coding in auditory nerve responses to chimaeric speech.

    PubMed

    Heinz, Michael G; Swaminathan, Jayaganesh

    2009-09-01

    Any sound can be separated mathematically into a slowly varying envelope and rapidly varying fine-structure component. This property has motivated numerous perceptual studies to understand the relative importance of each component for speech and music perception. Specialized acoustic stimuli, such as auditory chimaeras with the envelope of one sound and fine structure of another have been used to separate the perceptual roles for envelope and fine structure. Cochlear narrowband filtering limits the ability to isolate fine structure from envelope; however, envelope recovery from fine structure has been difficult to evaluate physiologically. To evaluate envelope recovery at the output of the cochlea, neural cross-correlation coefficients were developed that quantify the similarity between two sets of spike-train responses. Shuffled auto- and cross-correlogram analyses were used to compute separate correlations for responses to envelope and fine structure based on both model and recorded spike trains from auditory nerve fibers. Previous correlogram analyses were extended to isolate envelope coding more effectively in auditory nerve fibers with low center frequencies, which are particularly important for speech coding. Recovered speech envelopes were present in both model and recorded responses to one- and 16-band speech fine-structure chimaeras and were significantly greater for the one-band case, consistent with perceptual studies. Model predictions suggest that cochlear recovered envelopes are reduced following sensorineural hearing loss due to broadened tuning associated with outer-hair cell dysfunction. In addition to the within-fiber cross-stimulus cases considered here, these neural cross-correlation coefficients can also be used to evaluate spatiotemporal coding by applying them to cross-fiber within-stimulus conditions. Thus, these neural metrics can be used to quantitatively evaluate a wide range of perceptually significant temporal coding issues relevant to

  16. The fine scale genetic structure of the British population

    PubMed Central

    Davison, Dan; Boumertit, Abdelhamid; Day, Tammy; Hutnik, Katarzyna; Royrvik, Ellen C; Cunliffe, Barry; Lawson, Daniel J; Falush, Daniel; Freeman, Colin; Pirinen, Matti; Myers, Simon; Robinson, Mark; Donnelly, Peter; Bodmer, Walter

    2015-01-01

    Summary Fine-scale genetic variation between human populations is interesting as a signature of historical demographic events and because of its potential for confounding disease studies. We use haplotype-based statistical methods to analyse genome-wide SNP data from a carefully chosen geographically diverse sample of 2,039 individuals from the United Kingdom (UK). This reveals a rich and detailed pattern of genetic differentiation with remarkable concordance between genetic clusters and geography. The regional genetic differentiation and differing patterns of shared ancestry with 6,209 individuals from across Europe carry clear signals of historical demographic events. We estimate the genetic contribution to SE England from Anglo-Saxon migrations to be under half, identify the regions not carrying genetic material from these migrations, suggest significant pre-Roman but post-Mesolithic movement into SE England from the Continent, and show that in non-Saxon parts of the UK there exist genetically differentiated subgroups rather than a general “Celtic” population. PMID:25788095

  17. Liquid marble: A novel liquid nanofoam structure for energy absorption

    NASA Astrophysics Data System (ADS)

    Li, Mingzhe; Lu, Weiyi

    2017-05-01

    The liquid nanofoam (LN), a system composed of liquid and hydrophobic nanoporous particles, is a promising energy absorbing material. Despite its excellent energy absorbing capabilities under quasi-static conditions, the LN's performance is limited under dynamic impacts due to its heterogeneity. We hypothesize that the energy absorption capacity of the LN can be increased by reconfiguration of the material into a liquid marble form. To test this hypothesis, we have prepared the LN sample in two different configurations, one with the heterogeneous layered structure and the other with a macroscopically homogeneous liquid marble structure. The mechanical behavior of these two types of LN was examined by quasi-static compression tests and dynamic impact tests. We demonstrated that although both types of LN exhibited comparable quasi-static energy absorption capacity, the liquid marble form of LN showed better performance under dynamic impacts. These findings suggest that the liquid marble form is the preferred LN structure under blunt impact and shed lights on the design of next-generation energy absorbing materials and structures.

  18. A note on chromospheric fine structure at active region polarity boundaries.

    NASA Technical Reports Server (NTRS)

    Prata, S. W.

    1971-01-01

    High resolution H-alpha filtergrams from Big Bear Solar Observatory reveal that some filamentary features in active regions have fine structure and hence magnetic field transverse to the gross structure and the zero longitudinal field line. These features are distinct from the usual active region filament, in which fine structure, magnetic field, and filament are all parallel to the zero longitudinal field line. The latter occur on boundaries between regions of weaker fields, while the former occur at boundaries between regions of stronger field.

  19. Modification of DPOAE Fine Structure Stemming from Changes in Outer and Middle Ear Function

    NASA Astrophysics Data System (ADS)

    Long, Glenis R.; Henin, Simon; Thompson, Suzanne

    2011-11-01

    High resolution DPOAE fine structure was evaluated when the output impedance of the cochlea was modified by: (1) Changes in outer ear volume, due to accumulation of cerumen, which does not modify input impedance. (2) Manipulation of middle ear pressure and scarring of the tympanic membrane (which modify both input and output impedance). At high primary levels a wider and deeper DPOAE structure combined with (and sometimes dominated) DPOAE level fine structure. The group delay was also modified, sometimes giving rise to negative group delay. The data can be modeled by assuming that the increased impedance at the oval widow produces reflections back into the cochlea which can be re-reflected.

  20. Comparative study of fine structure in samples of isolated and paired early-type galaxies

    NASA Astrophysics Data System (ADS)

    Reduzzi, L.; Longhetti, M.; Rampazzo, R.

    1996-09-01

    Fine structure in early-type galaxies is considered to be among the more robust indicators of a past merging or acquisition event, although growing evidence from numerical simulations suggests that fine structure may be also interpreted in a `weak interaction' framework. We present a morphological study of a sample composed of 61 `isolated' early-type galaxies addressed to the detection of fine structure. This sample has been selected in order to be statistically comparable to a set of 54 early-type galaxies, members of pairs analysed by Reduzzi & Rampazzo with a similar technique. The rate of occurrence of fine structure detected in the `isolated' galaxy sample is significantly higher than that found for the pairs. In particular, the fraction of isolated early-type galaxies exhibiting shells is 16.4 per cent, a percentage similar to that found by Malin & Carter for RC2 isolated objects in the southern sky, while the fraction of early-type galaxies in pairs is ~=4 per cent. We discuss the comparison between the two samples in the context of the merger versus the weak interaction origin of fine structures. Concerning the formation of shells, although the merger origin cannot be ruled out, the observed difference is more naturally explained within the weak interaction framework.

  1. Energy absorption characteristics of lightweight structural member by stacking conditions

    NASA Astrophysics Data System (ADS)

    Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung

    2012-04-01

    The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.

  2. Energy absorption characteristics of lightweight structural member by stacking conditions

    NASA Astrophysics Data System (ADS)

    Choi, Juho; Yang, Yongjun; Hwang, Woochae; Pyeon, Seokbeom; Min, Hanki; Yeo, Ingoo; Yang, Inyoung

    2011-11-01

    The recent trend in vehicle design is aimed at improving crash safety and environmental-friendliness. To solve these issues, the needs for lighter vehicle to limit exhaust gas and improve fuel economy has been requested for environmental-friendliness. Automobile design should be made for reduced weight once the safety of vehicle is maintained. In this study, composite structural members were manufactured using carbon fiber reinforced plastic (CFRP) which are representative lightweight structural materials. Carbon fiber has been researched as alternative to metals for lightweight vehicle and better fuel economy. CFRP is an anisotropic material which is the most widely adapted lightweight structural member because of their inherent design flexibility and high specific strength and stiffness. Also, variation of CFRP interface number is important to increase the energy absorption capacity. In this study, one type of circular shaped composite tube was used, combined with reinforcing foam. The stacking condition was selected to investigate the effect of the fiber orientation angle and interface number. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported. The axial static collapse tests were carried out for each section member. The collapse modes and the energy absorption capability of the members were analyzed.

  3. Accurate modeling of spectral fine-structure in Earth radiance spectra measured with the Global Ozone Monitoring Experiment.

    PubMed

    van Deelen, Rutger; Hasekamp, Otto P; Landgraf, Jochen

    2007-01-10

    We present what we believe to be a novel approach to simulating the spectral fine structure (<1 nm) in measurements of spectrometers such as the Global Ozone Monitoring Experiment (GOME). GOME measures the Earth's radiance spectra and daily solar irradiance spectra from which a reflectivity spectrum is commonly extracted. The high-frequency structures contained in such a spectrum are, apart from atmospheric absorption, caused by Raman scattering and by a shift between the solar irradiance and the Earth's radiance spectrum. Normally, an a priori high-resolution solar spectrum is used to simulate these structures. We present an alternative method in which all the required information on the solar spectrum is retrieved from the GOME measurements. We investigate two approaches for the spectral range of 390-400 nm. First, a solar spectrum is reconstructed on a fine spectral grid from the GOME solar measurement. This approach leads to undersampling errors of up to 0.5% in the modeling of the Earth's radiance spectra. Second, a combination of the solar measurement and one of the Earth's radiance measurement is used to retrieve a solar spectrum. This approach effectively removes the undersampling error and results in residuals close to the GOME measurement noise of 0.1%.

  4. Fine structure of bone in dinosaurs, birds and mammals.

    PubMed

    Rensberger, J M; Watabe, M

    2000-08-10

    After observation of detailed structural evidence for the origin of birds from dinosaurs, and in light of evidence that dinosaur bone tissue resembles the histology in mammals, the histology of bone has become one of the focal points in discussions of the physiology of dinosaurs and Mesozoic birds. Most of this microstructural information has focused on features related to the vascular organization and the amount of remodelled bone around vascular canals. However, the finer structures have received less attention, although differences in such structures have been observed among modern vertebrates. Here we present evidence that canaliculi--the submicrometre-sized channels that interconnect bone cells and vascular canals--and the collagen fibre bundles in bone are differently organized among certain dinosaur lineages. Ornithomimid dinosaurs are more like birds than mammals in these features. In canalicular structure, and to some extent in fibre bundle arrangement, ornithischian dinosaurs are more like mammals. These differences in both canalicular and lamellar structure are probably linked to differences in the process and rate of bone formation.

  5. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Treesearch

    Gretchen H. Roffler; Sandra L. Talbot; Gordon Luikart; George K. Sage; Kristy L. Pilgrim; Layne G. Adams; Michael K. Schwartz

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale...

  6. Fine-scale genetic structure of whitebark pine (Pinus albicaulis) associations with watershed and growth form

    Treesearch

    Deborah L. Rogers; Constance I. Millar; Robert D. Westfall

    1999-01-01

    The fine-scale genetic structure of a subalpine conifer, whitebark pine (Pinus albicaulis Engelm.), was studied at nested geographic levels from watershed to adjacent stems in the eastern Sierra Nevada Range of California. A combination of several characteristics contributed to unpredicted genetic structure in this species. This includes being one of...

  7. Coupling fine-scale root and canopy structure using ground-based remote sensing

    Treesearch

    Brady Hardiman; Christopher Gough; John Butnor; Gil Bohrer; Matteo Detto; Peter Curtis

    2017-01-01

    Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in...

  8. Laser structuring of ultra-fine circuit lines in printed circuit boards: Laser structuring, neodymium-doped yttrium aluminium garnet laser, fine circuit lines

    NASA Astrophysics Data System (ADS)

    Zhang, Bin

    Laser structuring technique emerged in recent years for the need of fabricating fine circuit lines and spaces in printed circuit board. Most of the previous work only introduced laser structuring as a new method in the fabrication of fine circuit lines and mentioned that the width of circuit line can be reduced under 50 pin or helox with this technique. Laser structuring technique will have a prosperous future only when the relationship between process parameters and fabrication results are deeply understood. This study focuses on the control, prediction and optimization of circuit geometry by studying relations between the process parameters and fabrication results in laser structuring technology. The effects of laser parameters (Frequency-tripled Nd:YAG laser) on the geometry of circuits were carried out by experiments and analyzed by mathematical method. The geometry of circuit space can efficiently be controlled by investigating the main factors that influence the characteristic parameters of circuit space with Taguchi methodology. ANN was firstly used in the study of laser structuring technique. With ANN models, the optimization of process parameters in laser writing step can be realized and the 2-D cross-sectional profile of circuit space can be calculated with the combination of ANN model and mathematical method. At last, the final circuit lines and circuit spaces fabricated were tested using the quality and reliability tests---electrical open/short test, peel test and surface insulation resistance test (SIR test). The minimum widths of circuit lines and circuit spaces with good quality and reliability fabricated by laser structuring were 25 mum and 45 mum respectively. The project is significant for both applied and academic fields. This study contributes to the understanding of the laser structuring technology and is of benefit in the fabrication of very fine line circuits in advanced printed circuit board industry.

  9. Fine structure of subauroral electric field and electron content

    NASA Astrophysics Data System (ADS)

    Makarevich, Roman A.; Bristow, W. A.

    2014-05-01

    Small-scale structure of the plasma convection and electron content within the subauroral polarization stream (SAPS) is investigated. We present ionospheric observations during the main phase of the geomagnetic storm on 17 March 2013, during which a sequence of intense, highly localized, and fast-moving electric field (EF) structures within SAPS was observed by the Super Dual Auroral Radar Network Christmas Valley West (CVW) radar. The CVW EF measurements at 60 s resolution are analyzed in context of coincident GPS measurements of the total electron content (TEC) at 30 s resolution. The strong and narrow feature of the subauroral ion drift (SAID) was observed poleward of the TEC trough, with a TEC enhancement (peak) seen in the SAPS (SAID) region. The SAPS wave activity commenced ~2 h (15 min) after first appearance of SAPS (SAID). The SAPS structures appeared near the poleward edge of the trough, propagated westward, and merged with SAID near TEC peak. The propagation velocity was comparable with convection velocity within each EF structure. The SAPS TEC exhibited a general decrease toward the end of the period. On a smaller time scale, TEC exhibited a small but appreciable decrease within EF structures. The wavelet spectra of EF and TEC showed similar variations, with wave period of ~5 min period near onset and increasing to 8-10 min toward the end of the period with significant wave activity. A scenario is discussed, in which the SAPS wave activity may modify the ionospheric conductance and TEC at small scales, with large-scale magnetosphere-ionosphere feedback acting to continuously deplete TEC where/when such activity does not occur.

  10. A simulation for gravity fine structure recovery from high-low GRAVSAT SST data

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Lancaster, E. R.

    1976-01-01

    Covariance error analysis techniques were applied to investigate estimation strategies for the high-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. Surface density blocks of 5 deg x 5 deg and 2 1/2 deg x 2 1/2 deg resolution were utilized to represent the high order geopotential with the drag-free GRAVSAT configured in a nearly circular polar orbit at 250 km. altitude. GEOPAUSE and geosynchronous satellites were considered as high relay spacecraft. It is demonstrated that knowledge of gravitational fine structure can be significantly improved at 5 deg x 5 deg resolution using SST data from a high-low configuration with reasonably accurate orbits for the low GRAVSAT. The gravity fine structure recoverability of the high-low SST mission is compared with the low-low configuration and shown to be superior.

  11. Excited-state energies and fine structure of highly charged lithiumlike ions

    NASA Astrophysics Data System (ADS)

    Li, Jin-ying; Ding, Da-jun; Wang, Zhi-wen

    2013-10-01

    The full-core-plus-correlation method (FCPC) is extended to calculate the energies and fine structures of 1s2nd and 1s2nf (n≤5) states for the lithiumlike systems with high nuclear charge from Z = 41 to 50. In calculating energy, the higher-order relativistic contribution is estimated under a hydrogenic approximation. The nonrelativistic energies and wave functions are calculated by the Rayleigh-Ritz method. The mass polarization and the relativistic corrections including the kinetic energy correction, the Darwin term, the electron-electron contact term, and the orbit-orbit interaction are calculated perturbatively as the first-order correction. The quantum-electrodynamics contributions to the energy and to the fine-structure splitting are estimated by using the effective nuclear charge formula. The excited energies, the fine structures, and other relevant term energies are given and compared with the data available in the literature.

  12. FINE STRUCTURE AND ORGANELLE ASSOCIATIONS IN BROWN ALGAE

    PubMed Central

    Bouck, G. Benjamin

    1965-01-01

    The structural interrelationships among several membrane systems in the cells of brown algae have been examined by electron microscopy. In the brown algae the chloroplasts are surrounded by two envelopes, the outer of which in some cases is continuous with the nuclear envelope. The pyrenoid, when present, protrudes from the chloroplast, is also surrounded by the two chloroplast envelopes, and, in addition, is capped by a third dilated envelope or "pyrenoid sac." The regular apposition of the membranes around the pyrenoid contrasts with their looser appearance over the remainder of the chloroplast. The Golgi apparatus is closely associated with the nuclear envelope in all brown algae examined, but in the Fucales this association may extend to portions of the cytoplasmic endoplasmic reticulum as well. Evidence is presented for the derivation of vesicles, characteristic of those found in the formative region of the Golgi apparatus, from portions of the underlying nuclear envelope. The possibility that a structural channeling system for carbohydrate reserves and secretory precursors may be present in brown algae is considered. Other features of the brown algal cell, such as crystal-containing bodies, the variety of darkly staining vacuoles, centrioles, and mitochondria, are examined briefly, and compared with similar structures in other plant cells. PMID:5865936

  13. ISO-LWS observations of Herbig Ae/Be stars. I. Fine structure lines

    NASA Astrophysics Data System (ADS)

    Lorenzetti, D.; Tommasi, E.; Giannini, T.; Nisini, B.; Benedettini, M.; Pezzuto, S.; Strafella, F.; Barlow, M.; Clegg, P. E.; Cohen, M.; di Giorgio, A. M.; Liseau, R.; Molinari, S.; Palla, F.; Saraceno, P.; Smith, H. A.; Spinoglio, L.; White, G. J.

    1999-06-01

    We present the results of the first spectrophotometric survey of a sample of eleven Herbig Ae/Be stars (HAEBE) obtained with the Long Wavelength Spectrometer (LWS) on board the Infrared Space Observatory (ISO). The [OI] 63mu m and the [CII] 158mu m lines are observed in all the investigated sources, while the [OI] 145mu m transition, due to its relative faintness, sometimes remains undetected. By comparing line intensity ratios with model predictions, photodissociation, due to the UV photons from the central star, results the dominating excitation mechanism although contributions of C-shocks to the [OI] emission cannot be ruled out. A clear example for the presence of a photodissociation region (PDR) illuminated by an HAEBE is shown by LWS spectroscopic mapping of NGC 7129. Some diagnostic probes of the radiation field and density are provided for the objects in our sample: these substantially agree with the known characteristics of both the star and its circumstellar environment, although the observed ratio [OI]63/[OI]145 tends to be smaller than predicted by PDR models. The most likely explanation for this behaviour is self-absorption at 63mu m by cold atomic oxygen. Fine structure lines of the ionised species [OIII], [NII] were detected whenever the star had a spectral type of B0 or earlier; in particular, around the star CoD-42(deg) 11721, besides a compact HII region, evidence is given for an extended low electron density ionised region. Finally, molecular line emission is associated with stars powering a CO outflow, and clumpy PDR models, better than C-shock models, predict for them relative cooling (CO vs OI and CO vs OH) similar to the observed ones. Based on observations with ISO, an ESA project with instruments funded by ESA Member States and with the participation of ISAS and NASA}

  14. Enhancement of speech intelligibility in reverberant rooms: role of amplitude envelope and temporal fine structure.

    PubMed

    Srinivasan, Nirmal Kumar; Zahorik, Pavel

    2014-06-01

    The temporal envelope and fine structure of speech make distinct contributions to the perception of speech in normal-hearing listeners, and are differentially affected by room reverberation. Previous work has demonstrated enhanced speech intelligibility in reverberant rooms when prior exposure to the room was provided. Here, the relative contributions of envelope and fine structure cues to this intelligibility enhancement were tested using an open-set speech corpus and virtual auditory space techniques to independently manipulate the speech cues within a simulated room. Intelligibility enhancement was observed only when the envelope was reverberant, indicating that the enhancement is envelope-based.

  15. Transition wavelengths and fine structure for the doublet states of Be/sup +/

    SciTech Connect

    Davis, B.F.; Chung, K.T.

    1984-05-01

    Seventeen bound and core-excited states of Be/sup +/ are calculated using configuration-interaction wave functions. Relativistic and mass-polarization correction are included. The relativistic corrections considered are correction to the kinetic energy, Darwin term, contact terms, and retardation effect. The fine structure is calculated by using spin-orbit and spin-other-orbit operators. The wavelengths computed for the transitions from the core-excited states improve the agreement between theory and experiment. The lifetimes for these states are also calculated. Our calculated transition wavelengths and fine structures for the bound states agree well in most cases with the experimental data tabulated by Bashkin and Stoner.

  16. Progress towards a precision measurement of the n=2 triplet P fine structure of atomic helium

    NASA Astrophysics Data System (ADS)

    Kato, K.; Fitzakerley, D. W.; George, M. C.; Vutha, A. C.; Storry, C. H.; Hessels, E. A.

    2016-05-01

    We report progress on the measurement of the J = 1 to J = 2 23 P fine-structure interval of atomic helium. The measurement uses a liquid-nitrogen-cooled DC discharge source of metastable helium and the atomic beam is laser cooled in the transverse directions. The atoms are excited to 23 P by a 1083-nm diode laser, and the fine-structure transition is driven by microwaves using the frequency-offset separated oscillatory fields technique. The transition is detected by further laser excitation to a Rydberg state, followed by Stark ionization. This work is supported by NSERC, CRC.

  17. Quantum and classical optics of dispersive and absorptive structured media

    NASA Astrophysics Data System (ADS)

    Bhat, Navin Andrew Rama

    This thesis presents a Hamiltonian formulation of the electromagnetic fields in structured (inhomogeneous) media of arbitrary dimensionality, with arbitrary material dispersion and absorption consistent with causality. The method is based on an identification of the photonic component of the polariton modes of the system. Although the medium degrees of freedom are introduced in an oscillator model, only the macroscopic response of the medium appears in the derived eigenvalue equation for the polaritons. For both the discrete transparent-regime spectrum and the continuous absorptive-regime spectrum, standard codes for photonic modes in nonabsorptive systems can easily be leveraged to calculate polariton modes. Two applications of the theory are presented: pulse propagation and spontaneous parametric down-conversion (SPDC). In the propagation study, the dynamics of the nonfluctuating part of a classical-like pulse are expressed in terms of a Schrodinger equation for a polariton effective field. The complex propagation parameters of that equation can be obtained from the same generalized dispersion surfaces typically used while neglecting absorption, without incurring additional computational complexity. As an example I characterize optical pulse propagation in an Au/MgF 2 metallodielectric stack, using the empirical response function, and elucidate the various roles of Bragg scattering, interband absorption and field expulsion. Further, I derive the Beer coefficient in causal structured media. The SPDC calculation is rigorous, captures the full 3D physics, and properly incorporates linear dispersion. I obtain an expression for the down-converted state, quantify pair-production properties, and characterize the scaling behavior of the SPDC energy. Dispersion affects the normalization of the polariton modes, and calculations of the down-conversion efficiency that neglect this can be off by 100% or more for common media regardless of geometry if the pump is near the band

  18. THE FINE STRUCTURE OF TWO UNUSUAL STALKED BACTERIA

    PubMed Central

    Pate, Jack L.; Ordal, Erling J.

    1965-01-01

    Two strains of bacteria that produce slender appendages (pseudostalks) from their lateral surfaces were studied using the electron microscope. The pseudostalks were shown to be extensions of the cytoplasm and peripheral membranes of the cell proper. Both strains of bacteria produce holdfasts at the poles of the cells by the means of which attachment can take place. The pseudostalks are not involved in the attachment of cells. No specialized intracytoplasmic structures are present at the point of juncture of pseudostalk and cell. A discussion of the possible functions of the pseudostalks, based on the electron microscope findings, is presented. PMID:5857250

  19. Design of Far-Red Sensitizing Squaraine Dyes Aiming Towards the Fine Tuning of Dye Molecular Structure.

    PubMed

    Morimoto, Takuya; Fujikawa, Naotaka; Ogomi, Yuhei; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi

    2016-04-01

    Model squaraine dyes having sharp and narrow absorptions mainly in the far-red wavelength region has been logically designed, synthesized and used for their application as sensitizer in the dyesensitized solar cells (DSSC). In order to have fine control on energetics, dyes having same mother core and alkyl chain length varying only in molecular symmetry and position of substituent were designed. It has been found that even keeping all other structural factor constant, only positional variation of substituent leads to not only in the variation of energetics by 0.1 eV but affects the photovoltaic characteristics also. Optimum concentration of dye de-aggregating agent was found to be 100 times with respect to the sensitizing dye concentration. Amongst dyes utilized in this work best performance was obtained for unsymmetrical dye SQ-40 giving a photoconversion efficiency of 4.01% under simulated solar irradiation at global AM 1.5.

  20. Temporal effects of enhanced fine sediment loading on macroinvertebrate community structure and functional traits.

    PubMed

    Mathers, Kate L; Rice, Stephen P; Wood, Paul J

    2017-12-01

    Deposition of fine sediment that fills interstitial spaces in streambed substrates is widely acknowledged to have significant negative effects on macroinvertebrate communities, but the temporal consistency of clogging effects is less well known. In this study the effects of experimentally enhanced fine sediment content on aquatic invertebrates were examined over 126days in two lowland UK streams. Taxonomic approaches indicated significant differences in macroinvertebrate community structure associated with sediment treatment (clean or sedimented substrates), although the effects were variable on some occasions. The degree of separation between clean and sedimented communities was strong within seven of the nine sampling periods with significant differences in community composition being evident. EPT taxa and taxon characterised as sensitive to fine sediment demonstrated strong responses to enhanced fine sediment loading. Faunal traits also detected the effects of enhanced fine sediment loading but the results were not as consistent or marked. More widely, the study highlights the temporal dynamics of sedimentation effects upon macroinvertebrate communities and the need to consider faunal life histories when examining the effects of fine sediment loading pressures on lotic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Fine structure of the vapor field in evaporating dense sprays

    NASA Astrophysics Data System (ADS)

    Villermaux, E.; Moutte, A.; Amielh, M.; Meunier, P.

    2017-07-01

    Making use of an original technique which permits the simultaneous measurement of both the displacement field of evaporating droplets in a spray, and of their vapor, we investigate the relevance of a scenario introduced earlier to describe the evaporation dynamics of dense sprays [Phys. Rev. Fluids 1, 014201 (2016), 10.1103/PhysRevFluids.1.014201]. A plume of dense acetone droplets evaporating in air is studied, for which the stirring field is measured by particle image velocimetry of the droplets, and the vapor field is imaged quantitatively by laser-induced fluorescence. We show, thanks to these unique in situ measurements, that the spray boundary with the diluting environment is slaved at the dynamics of its saturating vapor concentration field, whose structure is analyzed for different well defined local flow topologies.

  2. Development of Internal Fine Structure in Stretched Rubber Vulcanizates

    SciTech Connect

    M Tosaka; S Toki; J Che; L Rong; B Hsiao

    2011-12-31

    Small-angle X-ray scattering (SAXS) pattern and tensile stress during relaxation of stretched rubber vulcanizates (synthetic polyisoprene) were measured simultaneously at room temperature and at 0 C. The samples were quickly stretched to the prefixed strain and then allowed to relax for 1 h. In every SAXS pattern, the intensity distribution was elongated along the equator, indicating the formation of structures elongated in the stretching direction. The so-called two-spots pattern corresponding to the long period of stacked lamellar crystals did not appear even when the critical strain to induce crystallization was exceeded. On the other hand, even below the critical strain, additional development of equatorial streaks was detected in the differential SAXS patterns. This result suggests the growth of the density fluctuation elongated in the stretching direction, which is not directly related to strain-induced crystallization.

  3. FINE STRUCTURE AND PIGMENT CONVERSION IN ISOLATED ETIOLATED PROPLASTIDS

    PubMed Central

    Klein, Shimon; Poljakoff-Mayber, A.

    1961-01-01

    Proplastids containing a prolamellar body were isolated from leaves of etiolated bean plants. The isolation methods do not necessarily lead to destruction of their submicroscopic structure and most of the isolated proplastids show well preserved outer membranes, lamellar strands, and the prolamellar body. Morphological intactness of the proplastids varies; certain leaf fractions contain single prolamellar bodies as well as proplastids. Since pellets after centrifugation between 350 g and 1000 to 3000 g contain intact proplastids and, as was shown by quantitative experiments, the same fractions show photoconversion of protochlorophyll to chlorophyll, it is supposed that the isolated particles probably retain many of the properties which are characteristic of them in situ. Isolated proplastids may thus be a valuable tool in investigations on the development of the photosynthetic apparatus. PMID:14456780

  4. Local structure of molten 3d metals under extreme conditions by means of X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Morard, G.; Boccato, S.; Torchio, R.; Kantor, I.; Mathon, O.; Trapananti, A.; D'Angelo, P.; Anzellini, S.; Irifune, T.; Pascarelli, S.

    2016-12-01

    The study of local structure of liquid 3d metals such as iron, nickel and their alloys has both geophysical and fundamental interest. These metals are in fact major alloying constituents of the outer core of Earth in the liquid phase at pressures and temperatures we try to reach in our experiments. This session will be dedicated to the study of the melting curve of pure nickel by means of X-ray absorption spectroscopy. A validation of our melting criteria consisting in the visualization by scanning electron microscopy of the quenched samples cut with a focused ion beam will be presented as well as the comparison with the results obtained by other complementary techniques such as diffraction. We would also like to show a preliminary analysis of the nearest neighbor distance in liquid nickel as a function of pressure by means of Extended X-ray Absorption Fine Structure, whose short order sensitivity is ideal for the purpose.

  5. The structure of AuPd nanoalloys anchored on spherical polyelectrolyte brushes determined by X-ray absorption spectroscopy.

    PubMed

    Kaiser, Julian; Szczerba, Wojciech; Riesemeier, Heinrich; Reinholz, Uwe; Radtke, Martin; Albrecht, Martin; Lu, Yan; Ballauff, Matthias

    2013-01-01

    Well-defined and facetted bimetallic gold-palladium nanoalloys have been synthesized and anchored in spherical polyelectrolyte brushes (SPB) as composite particles (AuPd@SPB). These particles are better catalysts in aqueous phase than the pure metals. The atomistic arrangement of these nanoalloys has been analysed by extended X-ray absorption fine structure (EXAFS) spectroscopy at the Au-L3 and the Pd-K absorption edge. The samples with high amounts of gold appear as almost statistically mixed random alloys. Alloy compositions with less gold show slight enrichment of Pd at the surface of the particle. In addition, signals of non-metallic palladium appear at the Pd-K edge which indicate the presence of the Pd2+ species in addition to metallic palladium. The relation of these structural features to the catalytic activity is discussed.

  6. Fine structure of olfactory sensilla in myriapods and arachnids.

    PubMed

    Tichy, H; Barth, F G

    1992-09-01

    Structural features of various types of olfactory sensilla are reviewed. 1) Sensilla basiconica which differ in form and size are found on the antennae of centipedes and millipedes. Their walls show longitudinal slits or grooves that either open into the sensillum lumen or do not penetrate the cuticle. In other such sensilla the outer surface is pierced by pores and the inner surface grooved and pocketed. These sensilla are innervated by one to six sensory cells. Their unbranched outer dendritic segments extend to the tip of the sensillum. The sensory cells are surrounded by two or three sheath cells which terminate at the sensillum base or form a continuous tube around the entire length of the outer dendritic segments. 2) Temporal organs of centipedes are located between the insertion of the antenna and the ocelli. These sensilla consist of a shallow cuticular ring with a central sensory plate made up by a layer of unperforated cuticle or a capsule with a mushroom-shaped structure inside formed by fibrous-looking cuticle. A dozen sensory cells with unbranched outer dendritic segments innervate each sensillum. They extend toward the sensory cuticle and pass just below it. Numerous sheath cell processes run parallel to the outer dendritic segments up to the sensory cuticle. 3) Thread-like flagella of Pauropoda are found on the antennae. They possess a flexible unperforated cuticular wall. These sensilla contain nine sensory cells surrounded by several sheath cells which form a continuous cytoplasmic tube around the outer dendritic segments. 4) Single-walled sensilla with numerous plugged pores penetrating the cuticular wall occur on the tarsus of the first leg in ticks. Each sensillum is innervated by 4-15 sensory cells. Three sheath cells terminate in the base of the sensillum. 5) Double-walled sensilla with spoke canals are found on the first tarsus of ticks. Their shaft is longitudinally grooved. Pore canals lead inward from the bottom of the grooves and open

  7. Fine-scale structure of the Jovian magnetotail current sheet

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.

    1983-01-01

    During the outbound leg of its passage through the Jovian magnetosphere in the Voyager 2 spacecraft observed 50 traversals of the magnetotail current sheet during a 10 day period at distances between 30 and 130 R sub j. Analysis of these observations shown that the Jovian tail sheet tends to lie approximately parallel to the ecliptic plane and to oscillate about the tail axis with the 10 hour planetary rotation period. The magnetic structure near and within the current sheet was variable with time and distance from Jupiter, but generally corresponded to one of the following: (1) simple rotation of field across the sheet, with an approximately southward direction in the sheet (generally northward beyond a distance from Jupiter of approximately 84 R sub j; (2) field having a southward component in a broad region near the sheet, but northward in a restricted region at the sheet itself; or (3) a clear bipolar variation of the sheet normal field component as the sheet was crossed (i.e., the field became northward and then southward, or vice versa, in crossing the sheet).

  8. Fine-scaled human genetic structure revealed by SNP microarrays.

    PubMed

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  9. Fine structure of the sensilla of Peripatopsis moseleyi (Onychophora).

    PubMed

    Storch, V; Ruhberg, H

    1977-02-14

    Three types of sensilla occurring on the lips and on the antennae of Peripatopsis moseleyi have been investigated by scanning and transmission electron microscopy. On the lips sensory spines can be found which contain numerous cilia originating from bipolar receptor cells. They reach the tip of the spine where the cuticle is modified. The perikarya of the sensory cells, a large supporting cell with a complicated surface and a second type of receptor, form a bud-like structure and are surrounded by a layer of collagen fibrils. The second receptor cell bears apical stereocilia as well as a kinocilium which are directed towards the centre of the animal -- thus the cell appears to be turned upside down. The sensilla of the antennae are 1) sensory bristles containing two or three kinds of receptor cells, one of which bears an apical cilium and one kind of supportive cell and 2) sensory bulbs located within furrows consisting of receptor cells with branched cilia and two kinds of supportive cells which are covered by a modified thin cuticle. According to the electron microscopical findings the sensory spines on the lips are presumably chemoreceptors. The sensory bristles on the antennae can be regarded as mechanoreceptors and the sensory bulbs as chemoreceptors.

  10. FINE STRUCTURE OF FLARE RIBBONS AND EVOLUTION OF ELECTRIC CURRENTS

    SciTech Connect

    Sharykin, I. N.; Kosovichev, A. G.

    2014-06-10

    Emission of solar flares across the electromagnetic spectrum is often observed in the form of two expanding ribbons. The standard flare model explains flare ribbons as footpoints of magnetic arcades, emitting due to interaction of energetic particles with the chromospheric plasma. However, the physics of this interaction and properties of the accelerated particles are still unknown. We present results of multiwavelength observations of the C2.1 flare of 2013 August 15, observed with the New Solar Telescope of the Big Bear Solar Observatory, and the Solar Dynamics Observatory, GOES, and Fermi spacecraft. The observations reveal previously unresolved sub-arcsecond structure of flare ribbons in regions of strong magnetic field consisting from numerous small-scale bright knots. We observe a red-blue asymmetry of H{sub α} flare ribbons with a width as small as ∼100 km. We discuss the relationship between the ribbons and vertical electric currents estimated from vector magnetograms, and show that Joule heating can be responsible for energization of H{sub α} knots in the ribbons.

  11. Golgi, Cajal, and the Fine Structure of the Nervous System

    PubMed Central

    Peters, Alan

    2012-01-01

    Towards the middle of the twentieth century, neuroanatomy was on the decline. It was revived by the development of two new methods. One was the Nauta-Gygax method, which selectively stained nerve fibers that had been caused to degenerate by experimental lesions. This allowed connections between various parts of the nervous system to be better determined. The second was electron microscopy, which allowed the structure of neurons and the synapses between them to be examined in detail, and eventually this led to a revival of the Golgi impregnation methods. This occurred in the 1970s because of the desire of electron microscopists to determine the origins of the neuronal profiles they encountered in electron micrographs of various parts of the central nervous system. Eventually this led to the development of Golgi/EM techniques, whereby individual impregnated neurons could first be characterized by light microscopy and then thin sectioned for detailed analyses. Examining the axon terminals of such impregnated neurons, especially those in the cerebral cortex, for the first time revealed details of intercellular connections and allowed neuronal circuits to be postulated. However, Golgi/EM had only a brief, but fruitful existence. It was soon superceded by intracellular filling techniques, which allowed the added dimension that the physiological properties of identified neurons could also be determined. PMID:17270274

  12. The fine structure of endothelium of large arteries.

    PubMed

    BUCK, R C

    1958-03-25

    Endothelium of large arteries from several species was studied in thin sections with the electron microscope. Before sacrifice, some animals received an intravenous injection of colloidal thorium dioxide which was visualized in the sections. Surface replicas were prepared by carbon evaporation on either frozen-dried endothelium or on endothelium dried by sublimation of naphthalene with which the tissue had been impregnated. Cell boundaries, stained with silver, were observed in sections and also from the surface by stripping off the inner part of the endothelium. In addition to the usual cytoplasmic organelles, the endothelial cells showed certain characteristic features, namely, large invaginated pockets communicating with the arterial lumen, numerous much smaller vesicular structures immediately under the plasma membrane and apparently also communicating with the lumen, and inclusions, into which injected thorium particles were incorporated. Intercellular boundaries appeared as regular double membranes in thin sections, and they were outlined by a double row of silver granules after silver staining. No evidence was obtained of permeation of intracellular spaces by colloidal thorium.

  13. Application of X-ray Absorption Spectroscopy to the study of nuclear structural materials

    NASA Astrophysics Data System (ADS)

    Liu, Shanshan

    One of key technologies for the next generation nuclear systems are advanced materials, including high temperature structural materials, fast neutron resistance core materials and so on. Local structure determination in these systems, which often are crystallographically intractable, is critical to gaining an understanding of their properties. In this thesis, X-ray Absorption Spectroscopy (XAS), including Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES), is used to examine the geometric and electronic structure of nuclear structural materials under varying conditions. The thesis is divided into two main sections. The first examines the structural analysis of nanostructured ferritic alloys (NFA) which are dispersion strengthened by an ultra high density of Y-Ti-O enriched nano-features, resulting in remarkable high temperature creep strength and radiation damage resistance. Titanium and Yttrium K-edge XAS shows commercial alloys MA957 and J12YWT more closely resemble the as received Fe-14Cr-3W-0.4Ti (wt. %) powders, and mechanically alloyed (MA) powders with 0.25Y2O3 (wt. %). It shows that a significant fraction of substitutional Ti remains dissolved in the (BCC) ferrite matrix. In contrast, annealed powders and hot isostatic press (HIP) consolidated alloys show high temperature heat treatments shift the Y and Ti to more oxidized states that are consistent with combinations of Y2Ti2O7 and, especially, TiO. The second section describes corrosion studies of Pb with 316L stainless steel, molybdenum and spinet (MgAl2O4) at high temperature by XAS. The corrosion of fuel cladding and structural materials by liquid lead at elevated temperatures is an issue that must be considered when designing advanced nuclear systems and high-power spallation neutron targets. The results of ex-situ studies show that a Mo substrate retained a smooth and less corroded surface than 316L stainless steel sample at elevated temperature. In

  14. Resonant X-Ray Scattering and Absorption for the Global and Local Structures of Cu-modified Metallothioneins in Solution

    PubMed Central

    Li, Meiyi; Huang, Yu-Shan; Jeng, U-Ser; Hsu, I-Jui; Sermon Wu, YewChung; Lai, Ying-Huang; Su, Chiu-Hun; Lee, Jyh-Fu; Wang, Yu; Chang, Chia-Ching

    2009-01-01

    Abstract With Cd and Zn metal ions removed from the native rabbit-liver metallothionein upon unfolding, Cu-modified metallothioneins (Cu-MTs) were obtained during refolding in solutions containing CuI or CuII ions. X-ray absorption near-edge spectroscopic results confirm the respectively assigned oxidation states of the copper ions in CuI-MT and CuII-MT. Global and local structures of the Cu-MTs were subsequently characterized by anomalous small-angle x-ray scattering (ASAXS) and extended x-ray absorption fine structure. Energy-dependent ASAXS results indicate that the morphology of CuII-MT resembles that of the native MT, whereas CuI-MT forms oligomers with a higher copper content. Both dummy-residue simulation and model-shape fitting of the ASAXS data reveal consistently rodlike morphology for CuII-MT. Clearly identified Cu-S, Cu-O, and Cu-Cu contributions in the extended x-ray absorption fine structure analysis indicate that both CuI and CuII ions are bonded with O and S atoms of nearby amino acids in a four-coordination environment, forming metal clusters smaller than metal thiolate clusters in the native MT. It is demonstrated that a combination of resonant x-ray scattering and x-ray absorption can be particularly useful in revealing complementary global and local structures of metalloproteins due to the atom specific characteristics of the two techniques. PMID:19619476

  15. Fine structure of bat deep posterior lingual glands (von Ebner's)

    PubMed

    Azzali, G; Gatti, R; Bucci, G; Orlandini, G

    1989-10-01

    We studied the morphology and ultrastructure of the bat (Pipistrellus k.k. and Rhinolophus f.e.) deep posterior lingual glands (Ebner's glands) during hibernation, summer and after stimulation with pilocarpine. Ebner's glands are formed by serous tubulo-alveolar adenomeres and by an excretory system organized in intercalated ducts, long excretory ducts and a main excretory duct. The latter opens in the vallum which surrounds the circumvallate papillae and in the groove of the foliate papillae. The secretory cells, which lack basal folds, show abundant and dense granules (PAS+, Alcian blue -), microvilli (scarce during hibernation), a Golgi apparatus (well developed during summer and after stimulation with pilocarpine), a large nucleus and RER cisternae stacked at the basal pole. Centrioles, lipid droplets, heterogeneous bodies (in content and density, probably lipofuscin bodies), lysosomal multivesicular bodies and large, dense granules with a microcrystalline structure were also encountered. The lateral membranes of adjacent cells are joined by desmosomes; their interdigitations are neither numerous nor prominent during summer. Microfilaments, often gathered in small bundles, lie in the lateral, peripheral cytoplasm without any relation with desmosomes. In summer and particularly after stimulation with pilocarpine, the apical pole of the secretory cells is characterized by many long microvilli, pedunculated hyaloplasmic protrusions and secretory granules. During hibernation the lumen is filled with secretory material. Myoepithelial cells are arranged among secretory cells or between them and the basal lamina. The short intercalated ducts show similarities with the analogous ducts of the parotid gland. Striated ducts are absent. Excretory ducts are endowed with: a) an inner layer of cuboidal cells characterized by poorly developed cytoplasmic organelles, rare dense granules and a few small microvilli; b) an outer layer of basal cells lying on the basal lamina

  16. INTRINSIC FINE-SCALE STRUCTURE IN COMPLEX MATERIALS: BEYOND GLOBAL CRYSTALLOGRAPHIC ANALYSIS

    SciTech Connect

    A. MIGLIORI; ET AL

    2000-12-01

    Many important classes of materials owe their interesting properties to structures and patterns produced by local atomic deviations from ideal crystallographic positions. The pattern scale may vary from a few atomic spacings to many microns. In a macroscopic sample these deviations may still average to an ideal lattice while retaining the intrinsic fine-scale structures, or a phase transition may create a pattern of variants of a new crystallographic structure. We have carried out experiments on the formation of fine-scale structures in a range of materials, particularly those produced by phase transitions. We have used Resonant Ultrasound Spectroscopy for elastic properties and dissipation, neutron pair-distribution function, and electronic transport measurements to characterize samples. We have carried out extensive dynamical modeling based on Ginzberg-Landau formalisms to simulate the development and appearance of the structures. Our results highlight the importance of long-range strain fields and the intrinsic unstable equilibrium features of the materials studied.

  17. Leaf Chemical and Structural Traits Control Variation in Leaf Litter Water Absorption

    NASA Astrophysics Data System (ADS)

    Talhelm, A. F.; Smith, A. M.

    2016-12-01

    The ability of plant litter to absorb moisture from precipitation or atmospheric humidity is well known to vary among plant species and is an important trait for wildland fire science, hydrology, and litter decomposition. This variation among species is thought to be function of litter physical and chemical traits, but there has been little systematic investigation of these relationships. To test the influence of chemical and structural traits on water absorption, we collected recently senesced leaves of 23 temperate species that represented a range of habitats and plant functional types and then quantified a suite of biochemical (gross energy, lignin, lipid, and ash content), elemental (C, N, O, and H %, C oxidation state), and structural (specific leaf area) characteristics as well as the maximum water absorption capacity of whole leaves and the amount of water vapor absorbed by whole leaves and finely-ground leaves. Maximum water absorption of whole leaves was positively related to both average C oxidation state (r = 0.55) and specific leaf area (r = 0.58) and negatively related to lignin (r = -0.67) and energy content (r = -0.57). The amount water vapor absorbed over an hour after being removed from a drying oven for whole leaves and ground leaves was positively correlated with tissue C oxidation state (r = 0.63, r = 0.53, respectively) and energy content (r = 0.41, r = 0.48). Because moist fuels release less energy when burned, our observation that litter energy content is linked to moisture absorption represents a mechanism that widens the gap between comparatively flammable and non-flammable species. Also, because lignin and lipid content were each positively correlated with energy content (r > 0.66) and negatively correlated with C oxidation state (r < -0.61) and lipid and lignin concentrations generally increase during litter decomposition, these results imply to that partially decomposed litter is less water-absorbent and therefore more resistant to

  18. Site-specific ionisation edge fine-structure of Rutile in the electron microscope.

    PubMed

    Hetaba, Walid; Löffler, Stefan; Willinger, Marc-Georg; Schuster, Manfred Erwin; Schlögl, Robert; Schattschneider, Peter

    2014-08-01

    Combined Bloch-wave and density functional theory simulations are performed to investigate the effects of different channelling conditions on the fine-structure of electron energy-loss spectra. The simulated spectra compare well with experiments. Furthermore, we demonstrate that using this technique, the site-specific investigation of atomic orbitals is possible. This opens new possibilities for chemical analyses.

  19. Temperature-dependent fine structure splitting in InGaN quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Puchtler, Tim J.; Zhu, Tongtong; Jarman, John C.; Kocher, Claudius C.; Oliver, Rachel A.; Taylor, Robert A.

    2017-07-01

    We report the experimental observation of temperature-dependent fine structure splitting in semiconductor quantum dots using a non-polar (11-20) a-plane InGaN system, up to the on-chip Peltier cooling threshold of 200 K. At 5 K, a statistical average splitting of 443 ± 132 μeV has been found based on 81 quantum dots. The degree of fine structure splitting stays relatively constant for temperatures less than 100 K and only increases above that temperature. At 200 K, we find that the fine structure splitting ranges between 2 and 12 meV, which is an order of magnitude higher than that at low temperatures. Our investigations also show that phonon interactions at high temperatures might have a correlation with the degree of exchange interactions. The large fine structure splitting at 200 K makes it easier to isolate the individual components of the polarized emission spectrally, increasing the effective degree of polarization for potential on-chip applications of polarized single-photon sources.

  20. Fine-scale population structure, inbreeding risk and avoidance in a wild insect population.

    PubMed

    Bretman, Amanda; Rodríguez-Muñoz, Rolando; Walling, Craig; Slate, Jon; Tregenza, Tom

    2011-07-01

    The ecological and evolutionary importance of fine-scale genetic structure within populations is increasingly appreciated. However, available data are largely restricted to wild vertebrates and eusocial insects. In addition, there is the expectation that most insects tend to have such large- and high-density populations and are so mobile that they are unlikely to face inbreeding risks through fine-scale population structuring. This has made the growing body of evidence for inbreeding avoidance in insects and its implication in mating systems evolution somewhat enigmatic. We present a 4-year study of a natural population of field crickets. Using detailed video monitoring combined with genotyping, we track the movement of all adults within the population and investigate genetic structure at a fine scale. We find some evidence for relatives being found in closer proximity, both across generations and within a single breeding season. Whilst incestuous matings are not avoided, population inbreeding is low, suggesting that mating is close to random and the limited fine-scale structure does not create significant inbreeding risk. Hence, there is little evidence for selective pressures associated with the evolution of inbreeding avoidance mechanisms in a closely related species.