Science.gov

Sample records for absorption fluorescence emission

  1. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  2. Donor-acceptor substituted phenylethynyltriphenylenes – excited state intramolecular charge transfer, solvatochromic absorption and fluorescence emission

    PubMed Central

    Nandy, Ritesh

    2010-01-01

    Summary Several 2-(phenylethynyl)triphenylene derivatives bearing electron donor and acceptor substituents on the phenyl rings have been synthesized. The absorption and fluorescence emission properties of these molecules have been studied in solvents of different polarity. For a given derivative, solvent polarity had minimal effect on the absorption maxima. However, for a given solvent the absorption maxima red shifted with increasing conjugation of the substituent. The fluorescence emission of these derivatives was very sensitive to solvent polarity. In the presence of strongly electron withdrawing (–CN) and strongly electron donating (–NMe2) substituents large Stokes shifts (up to 130 nm, 7828 cm−1) were observed in DMSO. In the presence of carbonyl substituents (–COMe and –COPh), the largest Stokes shift (140 nm, 8163 cm−1) was observed in ethanol. Linear correlation was observed for the Stokes shifts in a Lippert–Mataga plot. Linear correlation of Stokes shift was also observed with E T(30) scale for protic and aprotic solvents but with different slopes. These results indicate that the fluorescence emission arises from excited state intramolecular charge transfer in these molecules where the triphenylene chromophore acts either as a donor or as an acceptor depending upon the nature of the substituent on the phenyl ring. HOMO–LUMO energy gaps have been estimated from the electrochemical and spectral data for these derivatives. The HOMO and LUMO surfaces were obtained from DFT calculations. PMID:21085512

  3. Observation of upconversion fluorescence and stimulated emission based on three-photon absorption

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Lin, S.; Xu, L.; Yang, F.; Yang, Y.; Pan, L.; Sun, C.; Li, Y.; Sun, G.; Jiang, Z.

    2005-06-01

    The observations of three-photon-induced frequency-upconversion fluorescence and the highly directional stimulated visible emission in two dyes, 4-[p-(dicyanoethylamino) styryl]-N-methylpyridinium iodide (abbreviated as CEASP) and the complex of CEASP and Ce(NO3) (abbreviated as CEASP-Ce), are reported. The photographs of the forward amplified spontaneous emissions spots, pumped by an optical parametric oscillator idler with a pulse width of 8 ns and a wavelength of 1.3 μ m, are shown. The upconversion fluorescence produced both in dimethyl formamide solution and 2-hydroxyethyl methacrylate (HEMA) polymer spans from green to red, with a cubic dependence on the pump light intensity. The experimental results imply that the existence of the lanthanide ion Ce3 + sensitizes the nonlinear absorption and emission.

  4. Application of the Kubelka-Munk correction for self-absorption of fluorescence emission in carmine lake paint layers.

    PubMed

    Clementi, Catia; Miliani, Costanza; Verri, Giovanni; Sotiropoulou, Sophia; Romani, Aldo; Brunetti, Brunetto G; Sgamellotti, A

    2009-12-01

    The variations of the fluorescence emission of carmine lake travelling through an absorbing and scattering medium, such as a paint layer, were investigated by ultraviolet (UV)-visible absorption, fluorescence spectroscopy, and imaging techniques. Samples of the lake were studied in dilute and saturated solutions, on a reference test panel and a real case study. Relevant spectral modifications have been observed as a function of the lake concentration mainly consisting of a fluorescence quenching, red shift of emission maxima, and deformation of emission band. The application of a correction factor based on the Kubelka-Munk model allowed fluorescence spectra obtained in solution and on painted samples of known composition to be compared and correlated, highlighting that the fluorescence of the lake within paint layers is affected by both self-absorption and aggregation phenomena. This approach has been successfully applied on a painting by G. Vasari for the noninvasive identification of carmine lake. The results reported here emphasize the necessity of taking physical phenomena into account in the interpretation of the fluorescence spectra for a proper and reliable characterization and identification of painting materials in works of art.

  5. Depth-Resolved X-ray Absorption Spectroscopy by Means of Grazing Emission X-ray Fluorescence.

    PubMed

    Kayser, Yves; Sá, Jacinto; Szlachetko, Jakub

    2015-11-03

    Grazing emission X-ray fluorescence (GEXRF) is well suited for nondestructive elemental-sensitive depth-profiling measurements on samples with nanometer-sized features. By varying the grazing emission angle under which the X-ray fluorescence signal is detected, the probed depth range can be tuned from a few to several hundred nanometers. The dependence of the XRF intensity on the grazing emission angle can be assessed in a sequence of measurements or in a scanning-free approach using a position-sensitive area detector. Hereafter, we will show that the combination of scanning-free GEXRF and fluorescence detected X-ray absorption spectroscopy (XAS) allows for depth-resolved chemical speciation measurements with nanometer-scale accuracy. While the conventional grazing emission geometry is advantageous to minimize self-absorption effects, the use of a scanning-free setup makes the sequential scanning of the grazing emission angles obsolete and paves the way toward time-resolved depth-sensitive XAS measurements. The presented experimental approach was applied to study the surface oxidation of an Fe layer on the top of bulk Si and of a Ge bulk sample. Thanks to the penetrating properties and the insensitivity toward the electric conduction properties of the incident and emitted X-rays, the presented experimental approach is well suited for in situ sample surface studies in the nanometer regime.

  6. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance

    NASA Technical Reports Server (NTRS)

    Roesler, Collin S.; Pery, Mary Jane

    1995-01-01

    An inverse model was developed to extract the absortion and scattering (elastic and inelastic) properties of oceanic constituents from surface spectral reflectance measurements. In particular, phytoplankton spectral absorption coefficients, solar-stimulated chlorophyll a fluorescence spectra, and particle backscattering spectra were modeled. The model was tested on 35 reflectance spectra obtained from irradiance measurements in optically diverse ocean waters (0.07 to 25.35 mg/cu m range in surface chlorophyll a concentrations). The universality of the model was demonstrated by the accurate estimation of the spectral phytoplankton absorption coefficents over a range of 3 orders of magnitude (rho = 0.94 at 500 nm). Under most oceanic conditions (chlorophyll a less than 3 mg/cu m) the percent difference between measured and modeled phytoplankton absorption coefficents was less than 35%. Spectral variations in measured phytoplankton absorption spectra were well predicted by the inverse model. Modeled volume fluorescence was weakly correlated with measured chl a; fluorescence quantum yield varied from 0.008 to 0.09 as a function of environment and incident irradiance. Modeled particle backscattering coefficients were linearly related to total particle cross section over a twentyfold range in backscattering coefficents (rho = 0.996, n = 12).

  7. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    PubMed

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-08

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  8. Absorption, Fluorescence and Emission Anisotropy Spectra of 4-Cyano-N,N-dimethylaniline in Different Media and at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Piszczek, G.

    1997-05-01

    The effect of temperature on fluorescence and emission anisotropy spectra of 4-cyano-N,N-dimethylaniline (CDMA) was investigated in viscous (glycerol and paraffin oil) and rigid (polyvinyl alcohol) PVA and polyvinyl chloride) PVC) media. A strong effect of temperature on the intensity of a and b emission bands was observed. It was also found that the emission anisotropy, r, does not vary in the longwave emission band a at a fixed temperature but decreases in the emission band b together with the decreasing wavelength. The latter effect is due to the fact that the transition moment in this band is perpendicular to the long axis of the CDMA molecule. For CDMA in paraffin oil, a normal b band with negative emission anisotropy only occurs. In all other media used, the emission anisotropy has lower values, approaching zero, which results from the considerable covering of band b with a broad emission band a.

  9. Atomic Emission, Absorption and Fluorescence in the Laser-induced Plasma

    SciTech Connect

    Winefordner, J. D.

    2009-01-22

    The main result of our efforts is the development and successful application of the theoretical model of laser induced plasma (LIP) that allows a back-calculation of the composition of the plasma (and the condensed phase) based on the observable plasma spectrum. The model has an immediate experimental input in the form of LIP spectra and a few other experimentally determined parameters. The model is also sufficiently simple and, therefore, practical. It is conveniently interfaced in a graphical user-friendly form for using by students and any laboratory personnel with only minimal training. In our view, the model opens up the possibility for absolute analysis, i.e. the analysis which requires no standards and tedious calibration. The other parts of this proposal (including plasma diagnostics) were somewhat subordinate to this main goal. Plasma diagnostics provided the model with the necessary experimental input and led to better understanding of plasma processes. Another fruitful direction we pursued was the use of the correlation analysis for material identification and plasma diagnostics. Through a number of computer simulations we achieved a clear understanding of how, where and why this approach works being applied to emission spectra from a laser plasma. This understanding will certainly improve the quality of forensic and industrial analyses where fast and reliable material identification and sorting are required.

  10. Charge transfer optical absorption and fluorescence emission of 4-(9-acridyl)julolidine from long-range-corrected time dependent density functional theory in polarizable continuum approach

    NASA Astrophysics Data System (ADS)

    Kityk, A. V.

    2014-07-01

    A long-range-corrected time-dependent density functional theory (LC-TDDFT) in combination with polarizable continuum model (PCM) have been applied to study charge transfer (CT) optical absorption and fluorescence emission energies basing on parameterized LC-BLYP xc-potential. The molecule of 4-(9-acridyl)julolidine selected for this study represents typical CT donor-acceptor dye with strongly solvent dependent optical absorption and fluorescence emission spectra. The result of calculations are compared with experimental spectra reported in the literature to derive an optimal value of the model screening parameter ω. The first absorption band appears to be quite well predictable within DFT/TDDFT/PCM with the screening parameter ω to be solvent independent (ω≈0.245 Bohr-1) whereas the fluorescence emission exhibits a strong dependence on the range separation with ω-value varying on a rising solvent polarity from about 0.225 to 0.151 Bohr-1. Dipolar properties of the initial state participating in the electronic transition have crucial impact on the effective screening.

  11. Prediction of BOD, COD, and total nitrogen concentrations in a typical urban river using a fluorescence excitation-emission matrix with PARAFAC and UV absorption indices.

    PubMed

    Hur, Jin; Cho, Jinwoo

    2012-01-01

    The development of a real-time monitoring tool for the estimation of water quality is essential for efficient management of river pollution in urban areas. The Gap River in Korea is a typical urban river, which is affected by the effluent of a wastewater treatment plant (WWTP) and various anthropogenic activities. In this study, fluorescence excitation-emission matrices (EEM) with parallel factor analysis (PARAFAC) and UV absorption values at 220 nm and 254 nm were applied to evaluate the estimation capabilities for biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total nitrogen (TN) concentrations of the river samples. Three components were successfully identified by the PARAFAC modeling from the fluorescence EEM data, in which each fluorophore group represents microbial humic-like (C1), terrestrial humic-like organic substances (C2), and protein-like organic substances (C3), and UV absorption indices (UV(220) and UV(254)), and the score values of the three PARAFAC components were selected as the estimation parameters for the nitrogen and the organic pollution of the river samples. Among the selected indices, UV(220), C3 and C1 exhibited the highest correlation coefficients with BOD, COD, and TN concentrations, respectively. Multiple regression analysis using UV(220) and C3 demonstrated the enhancement of the prediction capability for TN.

  12. Acid-Responsive Absorption and Emission of 5-N-Arylaminothiazoles: Emission of White Light from a Single Fluorescent Dye and a Lewis Acid.

    PubMed

    Yamaguchi, Kirara; Murai, Toshiaki; Guo, Jing-Dong; Sasamori, Takahiro; Tokitoh, Norihiro

    2016-10-01

    The front cover artwork is provided by the group of Toshiaki Murai at Gifu University (Japan). The image shows structures of the key compounds and the change of the fluorescence. Although electron-donating and -accepting groups are not in the same plane, they show relatively strong fluorescence from blue to orange. For more details, read the full text of the Communication at 10.1002/open.201600059.

  13. Absorption-emission optrode and methods of use thereof

    DOEpatents

    Hirschfeld, T.B.

    1990-05-29

    A method and apparatus are described for monitoring the physical and chemical properties of a sample fluid by measuring an optical signal generated by a fluorescent substance and modulated by an absorber substance. The emission band of the fluorescent substance overlaps the absorption band of the absorber substance, and the degree of overlap is dependent on the physical and chemical properties of the sample fluid. The fluorescent substance and absorber substance are immobilized on a substrate so that an effective number of molecules thereof are sufficiently close for resonant energy transfer to occur, thereby providing highly efficient modulation of the fluorescent emissions of the fluorescent substance by the absorber substance. 4 figs.

  14. Absorption-emission optrode and methods of use thereof

    DOEpatents

    Hirschfeld, Tomas B.

    1990-01-01

    A method and apparatus for monitoring the physical and chemical properties of a sample fluid by measuring an optical signal generated by a fluorescent substance and modulated by an absorber substance. The emission band of the fluorescent substance overlaps the absorption band of the absorber substance, and the degree of overlap is dependent on the physical and chemical properties of the sample fluid. The fluorescent substance and absorber substance are immobilized on a substrate so that an effective number of molecules thereof are sufficiently close for resonant energy transfer to occur, thereby providing highly efficient modulation of the fluorescent emissions of the fluorescent substance by the absorber substance.

  15. Anorganic fluorescence reference materials for decay time of fluorescence emission

    NASA Astrophysics Data System (ADS)

    Engel, A.; Ottermann, C.; Klahn, J.; Korb, T.; Resch-Genger, U.; Hoffmann, K.; Kynast, U.; Rupertus, V.

    2008-02-01

    Fluorescence techniques are known for their high sensitivity and are widely used as analytical tools, detection methods and imaging applications for product and process control, material sciences, environmental and bio-technical analysis, molecular genetics, cell biology, medical diagnostics, and drug screening. According to DIN/ISO 17025 certified standards are used for steady state fluorescence diagnostics, a method having the drawback of giving relative values for fluorescence intensities only. Therefore reference materials for a quantitative characterization have to be related directly to the materials under investigation. In order to evaluate these figures it is necessary to calculate absolute numbers such as absorption/excitation cross sections and quantum yield. This has been done for different types of dopands in different materials such as glass, glass ceramics, crystals or nano crystalline material embedded in polymer matrices. Samples doped with several fluophores of different emission wavelengths and decay times are required for fluorescent multiplexing applications. Decay times shorter than 100 ns are of special interest. In addition, a proper knowledge is necessary of quantum efficiency in highly scattering media. Recently, quantum efficiency in YAG:Ce glass ceramics has been successfully investigated. Glass and glass ceramics doped with threefold charged rare earth elements are available. However, these samples have the disadvantage of emission decay times much longer than 1 microsecond, due to the excitation and emission of their optical forbidden electronic transitions. Therefore first attempts have been made to produce decay-time standards based on organic and inorganic fluophores. Stable LUMOGEN RED pigments and YAG:Ce phosphors are diluted simultaneously in silicone matrices using a wide range of concentrations between 0.0001 and 2 wt%. Organic LUMOGEN RED has decay times in the lower nanosecond range with a slight dependency on concentration

  16. A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu(2+) with a remarkable red shift in absorption and emission spectra based on internal charge transfer.

    PubMed

    Goswami, Shyamaprosad; Sen, Debabrata; Das, Nirmal Kumar

    2010-02-19

    A new 1,8-diaminonaphthalene based ratiometric and highly selective colorimetric "off-on" type of fluorescent probe, receptor 2 has been designed and synthesized that senses only Cu(2+) among the other heavy and transition metal ions examined on the basis of internal charge transfer (ICT). The visual sensitivity of the receptor 2 is remarkable, showing dual color changes from colorless (receptor) to purple followed by blue and a large red shift in emission upon Cu(2+) complexation.

  17. Application of excitation-emission fluorescence matrices and UV/Vis absorption to monitoring the photocatalytic degradation of commercial humic acid.

    PubMed

    Valencia, Sergio; Marín, Juan M; Restrepo, Gloria; Frimmel, Fritz H

    2013-01-01

    This study reports the use of excitation-emission matrix (EEM) fluorescence and UV/Vis spectroscopy to monitor the changes in the composition and reactivity of Aldrich humic acids (Aldrich HA) as a model compound for natural organic matter (NOM) during photocatalytic degradation. Degussa P-25 titanium dioxide (TiO(2)) and a solar UV-light simulator (a batch reactor) were used. The photocatalysis shifted the fluorescence maxima of EEMs of Aldrich HA toward shorter wavelengths, which implied that the photocatalytic degradation of commercial Aldrich HA caused the breakdown of high molecular weight components and the formation of lower molecular weight fractions. In addition, the fluorescence intensity of fulvic- and humic-like Aldrich HA presented a strong correlation with dissolved organic carbon (DOC), specific UV absorbance (SUVA) parameters, trihalomethane formation potential (THMFP), and organically bound halogens absorbable on activated carbon formation potential (AOXFP). Fluorescence spectroscopy was shown to be a powerful tool for monitoring of the photocatalytic degradation of HA.

  18. Simultaneous acquisition of absorption and fluorescence spectra of strong absorbers utilizing an evanescent supercontinuum.

    PubMed

    Kiefer, Johannes

    2016-12-15

    The determination of the absorption and emission spectra of strongly absorbing molecules is challenging, and the data can be biased by self-absorption of the fluorescence signal. To overcome this problem, a total internal reflection approach is proposed. The strongly absorbing sample is placed in an evanescent field of the radiation of a supercontinuum source. The collimated reflected light encodes the absorption spectrum, and the isotropic fluorescence emission is collected in a direction perpendicular to the surface at the same time. This ensures that the emitted light has a minimum possibility of self-absorption inside the sample.

  19. Application of excitation and emission matrix fluorescence (EEM) and UV-vis absorption to monitor the characteristics of Alizarin Red S (ARS) during electro-Fenton degradation process.

    PubMed

    Lai, Bo; Zhou, Yuexi; Wang, Juling; Yang, Zhishan; Chen, Zhiqiang

    2013-11-01

    Oxidative degradation of Alizarin Red S (ARS) in aqueous solutions by using electro-Fenton was studied. At first, effect of operating parameters such as current density, aeration rate and initial pH on the degradation of ARS were studied by using UV-vis spectrum, respectively. Then, under the optimal operating conditions (current density: 10.0mAcm(-2), aeration rate: 1000mLmin(-1), initial pH: 2.8), the identification of degradation products of ARS was carried out by using GC-MS and HPLC, meanwhile its degradation pathway was proposed according to the intermediates. Considering the location, intensity and intensity ratio of fluorescence center peak of the ARS in aqueous solution, a convenient and quick monitoring method by using excitation-emission matrix fluorescence spectrum technology was developed to monitor the degradation degree of ARS through electro-Fenton process. Furthermore, it is suggested that the developed method would be promising for the quick analysis and evaluation of the degradation degree of the pollutants with π-conjugated system.

  20. Theoretical study on absorption and emission spectra of adenine analogues.

    PubMed

    Liu, Hongxia; Song, Qixia; Yang, Yan; Li, Yan; Wang, Haijun

    2014-04-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we use theoretical calculations to investigate the structural and optical properties of four adenine analogues (termed as A1, A2, A3, and A4), and also consider the effects of aqueous solution and base pairing. The results show that the fluorescent adenine analogues can pair with thymine to form stable H-bonded WC base pairs. The excited geometries of both adenine analogues and WC base pairs are similar to the ground geometries. The absorption and emission maxima of adenine analogues are greatly red shifted compared with nature adenine, the oscillator strengths of A1 and A2 are stronger than A3 and A4 in both absorption and emission spectra. The calculated low-energy peaks in the absorption spectra are in good agreement with the experimental data. In general, the aqueous solution and base pairing can slightly red-shift both the absorption and emission maxima, and can increase the oscillator strengths of absorption spectra, but significantly decrease the oscillator strengths of A3 in emission spectra.

  1. Potassium emission absorption system. Topical report 12

    SciTech Connect

    Bauman, L.E.

    1995-04-01

    The Potassium Emission Absorption System is one of the advanced optical diagnostics developed at Mississippi State University to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the upstream of an MHD flow, the system directly measures gas temperature and neutral potassium atom number density through spectroscopic emission absorption techniques. From these measurements the electron density can be inferred from a statistical equilibrium calculation and the electron conductivity in the MHD channel found by use of an electron mobility model. The instrument has been utilized for field test measurements on MHD facilities for almost a decade and has been proven to provide useful measurements as designed for MHD nozzle, channel, and diffuser test sections. The theory of the measurements, a system description, its capabilities, and field test measurement results are reported here. During the development and application of the instrument several technical issues arose which when addressed advanced the state of the art in emission absorption measurement. Studies of these issues are also reported here and include: two-wavelength measurements for particle-laden flows, potassium D-line far wing absorption coefficient, bias in emission absorption measurements arising from dirty windows and misalignments, non-coincident multiwavelength emission absorption sampling errors, and lineshape fitting for boundary layer flow profile information. Although developed for NLHD application, the instrument could be applied to any high temperature flow with a resonance line in the 300 to 800 nm range, for instance other types of flames, rocket plumes or low temperature plasmas.

  2. Implantable CMOS imaging device with absorption filters for green fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Sunaga, Yoshinori; Haruta, Makito; Takehara, Hironari; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2014-03-01

    Green fluorescent materials such as Green Fluorescence Protein (GFP) and fluorescein are often used for observing neural activities. Thus, it is important to observe the fluorescence in a freely moving state in order to understand neural activities corresponding to behaviors. In this work, we developed an implantable CMOS imaging device for in-vivo green fluorescence imaging with efficient excitation light rejection using a combination of absorption filters. An interference filter is usually used for a fluorescence microscope in order to achieve high fluorescence imaging sensitivity. However, in the case of the implantable device, interference filters are not suitable because their transmission spectra depend on incident angle. To solve this problem we used two kinds of absorption filters that do not have angle dependence. An absorption filter consisting of yellow dye (VARYFAST YELLOW 3150) was coated on the pixel array of an image sensor. The rejection ratio of ideal excitation light (490 nm) against green fluorescence (510 nm) was 99.66%. However, the blue LED as an excitation light source has a broad emission spectrum and its intensity at 510 nm is 2.2 x 10-2 times the emission peak intensity. By coating LEDs with the emission absorption filters, the intensity of the unwanted component of the excitation light was reduced to 1.4 x 10-4. Using the combination of absorption filters, we achieved excitation light transmittance of 10-5 onto the image sensor. It is expected that high-sensitivity green fluorescence imaging of neural activities in a freely moving mouse will be possible by using this technology.

  3. Fluorescence excitation-emission matrix (EEM) spectroscopy and cavity ring-down (CRD) absorption spectroscopy of oil-contaminated jet fuel using fiber-optic probes.

    PubMed

    Omrani, Hengameh; Barnes, Jack A; Dudelzak, Alexander E; Loock, Hans-Peter; Waechter, Helen

    2012-06-21

    Excitation emission matrix (EEM) and cavity ring-down (CRD) spectral signatures have been used to detect and quantitatively assess contamination of jet fuels with aero-turbine lubricating oil. The EEM spectrometer has been fiber-coupled to permit in situ measurements of jet turbine oil contamination of jet fuel. Parallel Factor (PARAFAC) analysis as well as Principal Component Analysis and Regression (PCA/PCR) were used to quantify oil contamination in a range from the limit of detection (10 ppm) to 1000 ppm. Fiber-loop cavity ring-down spectroscopy using a pulsed 355 nm laser was used to quantify the oil contamination in the range of 400 ppm to 100,000 ppm. Both methods in combination therefore permit the detection of oil contamination with a linear dynamic range of about 10,000.

  4. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    NASA Astrophysics Data System (ADS)

    Elliott, Drew; Scime, Earl; Short, Zachary

    2016-11-01

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  5. Breaking temporal symmetries for emission and absorption

    PubMed Central

    Hadad, Yakir; Soric, Jason C.; Alu, Andrea

    2016-01-01

    Time-reversal symmetries impose stringent constraints on emission and absorption. Antennas, from radiofrequencies to optics, are bound to transmit and receive signals equally well from the same direction, making a directive antenna prone to receive echoes and reflections. Similarly, in thermodynamics Kirchhoff’s law dictates that the absorptivity and emissivity are bound to be equal in reciprocal systems at equilibrium, e(ω,θ)=a(ω,θ), with important consequences for thermal management and energy applications. This bound requires that a good absorber emits a portion of the absorbed energy back to the source, limiting its overall efficiency. Recent works have shown that weak time modulation or mechanical motion in suitably designed structures may largely break reciprocity and time-reversal symmetry. Here we show theoretically and experimentally that a spatiotemporally modulated device can be designed to have drastically different emission and absorption properties. The proposed concept may provide significant advances for compact and efficient radiofrequency communication systems, as well as for energy harvesting and thermal management when translated to infrared frequencies. PMID:26984502

  6. Breaking temporal symmetries for emission and absorption

    NASA Astrophysics Data System (ADS)

    Hadad, Yakir; Soric, Jason C.; Alu, Andrea

    2016-03-01

    Time-reversal symmetries impose stringent constraints on emission and absorption. Antennas, from radiofrequencies to optics, are bound to transmit and receive signals equally well from the same direction, making a directive antenna prone to receive echoes and reflections. Similarly, in thermodynamics Kirchhoff's law dictates that the absorptivity and emissivity are bound to be equal in reciprocal systems at equilibrium, e(ω,θ)=a(ω,θ), with important consequences for thermal management and energy applications. This bound requires that a good absorber emits a portion of the absorbed energy back to the source, limiting its overall efficiency. Recent works have shown that weak time modulation or mechanical motion in suitably designed structures may largely break reciprocity and time-reversal symmetry. Here we show theoretically and experimentally that a spatiotemporally modulated device can be designed to have drastically different emission and absorption properties. The proposed concept may provide significant advances for compact and efficient radiofrequency communication systems, as well as for energy harvesting and thermal management when translated to infrared frequencies.

  7. Absorption Reconstruction Improves Biodistribution Assessment of Fluorescent Nanoprobes Using Hybrid Fluorescence-mediated Tomography

    PubMed Central

    Gremse, Felix; Theek, Benjamin; Kunjachan, Sijumon; Lederle, Wiltrud; Pardo, Alessa; Barth, Stefan; Lammers, Twan; Naumann, Uwe; Kiessling, Fabian

    2014-01-01

    Aim: Fluorescence-mediated tomography (FMT) holds potential for accelerating diagnostic and theranostic drug development. However, for proper quantitative fluorescence reconstruction, knowledge on optical scattering and absorption, which are highly heterogeneous in different (mouse) tissues, is required. We here describe methods to assess these parameters using co-registered micro Computed Tomography (µCT) data and nonlinear whole-animal absorption reconstruction, and evaluate their importance for assessment of the biodistribution and target site accumulation of fluorophore-labeled drug delivery systems. Methods: Besides phantoms with varying degrees of absorption, mice bearing A431 tumors were imaged 15 min and 48 h after i.v. injection of a fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) using µCT-FMT. The outer shape of mice and a scattering map were derived using automated segmentation of the µCT data. Furthermore, a 3D absorption map was reconstructed from the trans-illumination data. We determined the absorption of five interactively segmented regions (heart, liver, kidney, muscle, tumor). Since blood is the main near-infrared absorber in vivo, the absorption was also estimated from the relative blood volume (rBV), determined by contrast-enhanced µCT. We compared the reconstructed absorption with the rBV-based values and analyzed the effect of using the absorption map on the fluorescence reconstruction. Results: Phantom experiments demonstrated that absorption reconstruction is possible and necessary for quantitative fluorescence reconstruction. In vivo, the reconstructed absorption showed high values in strongly blood-perfused organs such as the heart, liver and kidney. The absorption values correlated strongly with the rBV-based absorption values, confirming the accuracy of the absorption reconstruction. Usage of homogenous absorption instead of the reconstructed absorption map resulted in reduced values in the heart, liver and kidney, by

  8. Infrared absorption and emission characteristics of interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Barker, J. R.; Allamandola, Louis J.; Tielens, Alexander G. G. M.; Barker, J. R.; Barker, J. R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3.28, 6.2, 7.7, 8.7 and 11.3 microns is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis, which is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the IR and Raman properties are discussed. Interstellar IR band emission is due to relaxation from highly vibrationally excited PAHs excited by ultraviolet photons. The excitation/emission process is described and the IR fluorescence from one PAH, chrysene, is traced. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs contain between 20 and 30 carbon atoms are responsible for the emission.

  9. Do fluorescence and transient absorption probe the same intramolecular charge transfer state of 4-(dimethylamino)benzonitrile?

    SciTech Connect

    Gustavsson, Thomas; Fujiwara, Takashige; Lim, Edward C.

    2009-07-21

    We present here the results of time-resolved absorption and emission experiments for 4-(dimethylamino)benzonitrile in solution, which suggest that the fluorescent intramolecular charge transfer (ICT) state may differ from the twisted ICT (TICT) state observed in transient absorption.

  10. Fluorescence emission of pyrene in surfactant solutions.

    PubMed

    Piñeiro, Lucas; Novo, Mercedes; Al-Soufi, Wajih

    2015-01-01

    The systematic description of the complex photophysical behaviour of pyrene in surfactant solutions in combination with a quantitative model for the surfactant concentrations reproduces with high accuracy the steady-state and the time resolved fluorescence intensity of pyrene in surfactant solutions near the cmc, both in the monomer and in the excimer emission bands. We present concise model equations that can be used for the analysis of the pyrene fluorescence intensity in order to estimate fundamental parameters of the pyrene-surfactant system, such as the binding equilibrium constant K of pyrene to a given surfactant micelle, the rate constant of excimer formation in micelles, and the equilibrium constant of pyrene-surfactant quenching. The values of the binding equilibrium constant K(TX100)=3300·10³ M⁻¹ and K(SDS)=190·10³ M⁻¹ for Triton X-100 (TX100) and SDS micelles, respectively, show that the partition of pyrene between bulk water and micelles cannot be ignored, even at relatively high surfactant concentrations above the cmc. We apply the model to the determination of the cmc from the pyrene fluorescence intensity, especially from the intensity ratio at two vibronic bands in the monomer emission or from the ratio of excimer to monomer emission intensity. We relate the finite width of the transition region below and above the cmc with the observed changes in the pyrene fluorescence in this region.

  11. Two-photon absorption properties of fluorescent proteins

    PubMed Central

    Drobizhev, Mikhail; Makarov, Nikolay S.; Tillo, Shane E.; Hughes, Thomas E.; Rebane, Aleksander

    2016-01-01

    Two-photon excitation of fluorescent proteins is an attractive approach for imaging living systems. Today researchers are eager to know which proteins are the brightest, and what the best excitation wavelengths are. Here we review the two-photon absorption properties of a wide variety of fluorescent proteins, including new far-red variants, to produce a comprehensive guide to choosing the right FP and excitation wavelength for two-photon applications. PMID:21527931

  12. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    SciTech Connect

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  13. A fluorescent benzothiazole probe with efficient two-photon absorption

    NASA Astrophysics Data System (ADS)

    Echevarria, Lorenzo; Moreno, Iván; Camacho, José; Salazar, Mary Carmen; Hernández, Antonio

    2012-11-01

    In this work, we report the two-photon absorption of 2-[4-(dimethylamino)phenyl]-1,3-benzothiazole-6-carbonitrile (DBC) in DMSO solution pumping at 779 nm with a 10 ns pulse laser-Nd:YAG system. The obtained two-photon absorption cross-section in DBC (407 ± 18 GM) is considerably high. Because DBC is a novel compound and have high values of fluorescence quantum yield, this result is expected to have an impact in biomolecules detection, diagnosis and treatment of cancer. Similar structures have previously been reported to show remarkable antitumour effects.

  14. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols.

    PubMed

    Lee, Hyun Ji Julie; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A

    2013-06-04

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines, and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of water-soluble SOA generated from two monoterpenes, limonene and α-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ∼100 ppb ammonia in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (∼0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for λexcitation = 420 ± 50 nm and λemission = 475 ± 38 nm. The window of the strongest fluorescence shifted to λexcitation = 320 ± 25 nm and λemission = 425 ± 38 nm for the α-pinene-derived SOA. Both regions overlap with the EEM spectra of some of the fluorophores found in primary biological aerosols. Despite the low quantum yield, the aged SOA particles may have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  15. Absorption and fluorescent spectral studies of imidazophenazine derivatives

    NASA Astrophysics Data System (ADS)

    Ryazanova, O. A.; Zozulya, V. N.; Voloshin, I. M.; Karachevtsev, V. A.; Makitruk, V. L.; Stepanian, S. G.

    2004-07-01

    Absorption and fluorescent spectra as well as fluorescence polarization degree of imidazo-[4,5-d]-phenazine (F1) and its two modified derivatives, 2-trifluoridemethylimidazo-[4,5-d]-phenazine (F2) and 1,2,3-triazole-[4,5-d]-phenazine (F3), were investigated in organic solvents of various polarities and hydrogen bonding abilities. Extinction coefficients of F2 and F3 are increased, their fluorescence Stokes shifts are reduced in comparison with those for unmodified imidazophenazine. For F3 a red shift of the longwave absorption band is observed by 15-20 nm. Modifications of imidazophenazine have led to a sufficient increase of fluorescence polarization degrees that enables to use F2 and F3 as promising fluorescent probes with polarization method application. The configuration, atomic charge distribution and dipole moments of the isolated dye molecules in the ground state were calculated by the DFT method. The computation has revealed that ground state dipole moments of F1, F2, and F3 differ slightly and are equal to 3.5, 3.2, and 3.7 D, respectively. The changes in dipole moments upon the optical excitation for all derivatives estimated using Lippert equation were found to be Δ μ=9 D. The energies of the electronic S 1←S 0 transition in solvents of different proton donor abilities were determined, and energetic diagram illustrating the substituent effect was plotted. For nucleoside analogs of these compounds, covalently incorporated into a nucleotide chain, we have considered a possibility to use them as fluorescent reporters of hybridization of antisense oligonucleotides, as well as molecular anchors for its stabilization.

  16. Optimal fluorescence waveband determination for detecting defect cherry tomatoes using fluorescence excitation-emission matrix

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-spectral fluorescence imaging technique was used to detect defect cherry tomatoes. The fluorescence excitation and emission matrix was used to measure for defects, sound surface, and stem areas to determine the optimal fluorescence excitation and emission wavelengths for discrimination. Two-...

  17. Theoretical studies on the vibrationally-resolved absorption and fluorescence spectra of H-Pyrene+ and H-Coronene+

    NASA Astrophysics Data System (ADS)

    Li, JunFeng; Tian, GuanJun; Luo, Yi; Cao, ZeXing

    2015-11-01

    H-Pyrene+ and H-Coronene+ are important carrier candidates for the diffuse interstellar band. In order to understand the observed absorption and fluorescence emission spectra of H-Pyrene+ and H-Coronene+, time-dependent density functional theory (TD-DFT) method and Franck-Condon approximation have been employed to simulate the corresponding vibrationally-resolved optical spectra. For H-Pyrene+, the calculated absorption, emission and 0-0 band energies are in good agreement with the experimental values. The strong absorption and emission vibrational peaks near the 0-0 band match well with the experiment peaks. A noticeable deviation for several weak peaks far away from the origin band is observed, as a result of the vibronic coupling with other excited states. For H-Coronene+, the predicted vibrationally resolved electronic absorption and emission spectra resemble very well their experimental counterparts spectra, allowing to fully assign the observed vibronic peaks.

  18. Magnetic fluorescent lamp having reduced ultraviolet self-absorption

    DOEpatents

    Berman, Samuel M.; Richardson, Robert W.

    1985-01-01

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  19. Coherent fluorescence emission by using hybrid photonic-plasmonic crystals.

    PubMed

    Shi, Lei; Yuan, Xiaowen; Zhang, Yafeng; Hakala, Tommi; Yin, Shaoyu; Han, Dezhuan; Zhu, Xiaolong; Zhang, Bo; Liu, Xiaohan; Törmä, Päivi; Lu, Wei; Zi, Jian

    2014-09-01

    The spatial and temporal coherence of the fluorescence emission controlled by a quasi-two-dimensional hybrid photonic-plasmonic crystal structure covered with a thin fluorescent-molecular-doped dielectric film is investigated experimentally. A simple theoretical model to describe how a confined quasi-two-dimensional optical mode may induce coherent fluorescence emission is also presented. Concerning the spatial coherence, it is experimentally observed that the coherence area in the plane of the light source is in excess of 49 μm(2), which results in enhanced directional fluorescence emission. Concerning temporal coherence, the obtained coherence time is 4 times longer than that of the normal fluorescence emission in vacuum. Moreover, a Young's double-slit interference experiment is performed to directly confirm the spatially coherent emission. This smoking gun proof of spatial coherence is reported here for the first time for the optical-mode-modified emission.

  20. The emission/absorption FE 2 spectrum of HD 45677

    NASA Technical Reports Server (NTRS)

    Stalio, R.; Selvelli, P. L.

    1981-01-01

    The complex behavior of the emission/absorption spectrum of Fe II is analyzed. The far UV spectrum is characterized almost solely by absorption lines, while, in the near UV, strong emissions are predominant. Radiative excitation from the ground to the highest levels (chi is approximately 10 eV) with re-emission in the near UV, visible and I.R. seems to be the main mechanism capable of explaining the observed spectral features.

  1. Multiple stimulated emission fluorescence photoacoustic sensing and spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Gaoming; Gao, Fei; Qiu, Yishen; Feng, Xiaohua; Zheng, Yuanjin

    2016-07-01

    Multiple stimulated emission fluorescence photoacoustic (MSEF-PA) phenomenon is demonstrated in this letter. Under simultaneous illumination of pumping light and stimulated emission light, the fluorescence emission process is speeded up by the stimulated emission effect. This leads to nonlinear enhancement of photoacoustic signal while the quantity of absorbed photons is more than that of fluorescent molecules illuminated by pumping light. The electronic states' specificity of fluorescent molecular can also be labelled by the MSEF-PA signals, which can potentially be used to obtain fluorescence excitation spectrum in deep scattering tissue with nonlinearly enhanced photoacoustic detection. In this preliminary study, the fluorescence excitation spectrum is reconstructed by MSEF-PA signals through sweeping the wavelength of exciting light, which confirms the theoretical derivation well.

  2. Absorption and emission properties of photonic crystals and metamaterials

    SciTech Connect

    Peng, Lili

    2007-01-01

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  3. Undistorted X-ray Absorption Spectroscopy Using s-Core-Orbital Emissions.

    PubMed

    Golnak, Ronny; Xiao, Jie; Atak, Kaan; Unger, Isaak; Seidel, Robert; Winter, Bernd; Aziz, Emad F

    2016-05-12

    Detection of secondary emissions, fluorescence yield (FY), or electron yield (EY), originating from the relaxation processes upon X-ray resonant absorption has been widely adopted for X-ray absorption spectroscopy (XAS) measurements when the primary absorption process cannot be probed directly in transmission mode. Various spectral distortion effects inherent in the relaxation processes and in the subsequent transportation of emitted particles (electron or photon) through the sample, however, undermine the proportionality of the emission signals to the X-ray absorption coefficient. In the present study, multiple radiative (FY) and nonradiative (EY) decay channels have been experimentally investigated on a model system, FeCl3 aqueous solution, at the excitation energy of the Fe L-edge. The systematic comparisons between the experimental spectra taken from various decay channels, as well as the comparison with the theoretically simulated Fe L-edge XA spectrum that involves only the absorption process, indicate that the detection of the Fe 3s → 2p partial fluorescence yield (PFY) gives rise to the true Fe L-edge XA spectrum. The two key characteristics generalized from this particular decay channel-zero orbital angular momentum (i.e., s orbital) and core-level emission-set a guideline for obtaining undistorted X-ray absorption spectra in the future.

  4. Study of absorption and re-emission processes in a ternary liquid scintillation system

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Lin; Li, Xiao-Bo; Zheng, Dong; Cao, Jun; Wen, Liang-Jian; Wang, Nai-Yan

    2010-11-01

    Liquid scintillators are widely used as the neutrino target in neutrino experiments. The absorption and emission of different components of a ternary liquid scintillator (Linear Alkyl Benzene (LAB) as the solvent, 2,5-diphenyloxazole (PPO) as the fluor and p-bis-(o-methylstyryl)-benzene (bis-MSB) as wavelength shifter) are studied. It is shown that the absorption of this liquid scintillator is dominant by LAB and PPO at wavelengths less than 349 nm, and the absorption by bis-MSB becomes prevalent at the wavelength larger than 349 nm. The fluorescence quantum yields, which are the key parameters to model the absorption and re-emission processes in large liquid scintillation detectors, are measured.

  5. Fluorescence excitation-emission matrix spectroscopy of vitiligo skin in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Richer, Vincent; Al Jasser, Mohammed; Zandi, Soodabeh; Kollias, Nikiforos; Kalia, Sunil; Zeng, Haishan; Lui, Harvey

    2016-02-01

    Fluorescence signals depend on the intensity of the exciting light, the absorption properties of the constituent molecules, and the efficiency with which the absorbed photons are converted to fluorescence emission. The optical features and appearance of vitiligo have been explained primarily on the basis of reduced epidermal pigmentation, which results in abnormal white patches on the skin. The objective of this study is to explore the fluorescence properties of vitiligo and its adjacent normal skin using fluorescence excitation-emission matrix (EEM) spectroscopy. Thirty five (35) volunteers with vitiligo were acquired using a double-grating spectrofluorometer with excitation and emission wavelengths of 260-450 nm and 300-700 nm respectively. As expected, the most pronounced difference between the spectra obtained from vitiligo lesions compared to normally pigmented skin was that the overall fluorescence was much higher in vitiligo; these differences increased at shorter wavelengths, thus matching the characteristic spectral absorption of epidermal melanin. When comparing the fluorescence spectra from vitiligo to normal skin we detected three distinct spectral bands centered at 280nm, 310nm, and 335nm. The 280nm band may possibly be related to inflammation, whereas the 335 nm band may arise from collagen or keratin cross links. The source of the 310 nm band is uncertain; it is interesting to note its proximity to the 311 nm UV lamps used for vitiligo phototherapy. These differences are accounted for not only by changes in epidermal pigment content, but also by other optically active cutaneous biomolecules.

  6. NUMERICAL CALCULATION OF MAGNETOBREMSSTRAHLUNG EMISSION AND ABSORPTION COEFFICIENTS

    SciTech Connect

    Leung, Po Kin; Gammie, Charles F.; Noble, Scott C. E-mail: gammie@illinois.edu

    2011-08-10

    Magnetobremsstrahlung (MBS) emission and absorption play a role in many astronomical systems. We describe a general numerical scheme for evaluating MBS emission and absorption coefficients for both polarized and unpolarized light in a plasma with a general distribution function. Along the way we provide an accurate scheme for evaluating Bessel functions of high order. We use our scheme to evaluate the accuracy of earlier fitting formulae and approximations. We also provide an accurate fitting formula for mildly relativistic (kT/(m{sub e}c{sup 2}) {approx}> 0.5) thermal electron emission (and therefore absorption). Our scheme is too slow, at present, for direct use in radiative transfer calculations but will be useful for anyone seeking to fit emission or absorption coefficients in a particular regime.

  7. Fluorescence emission spectral shift measurements of membrane potential in single cells.

    PubMed

    Kao, W Y; Davis, C E; Kim, Y I; Beach, J M

    2001-08-01

    Previous measurements of transmembrane potential using the electrochromic probe di-8-ANEPPS have used the excitation spectral shift response by alternating excitation between two wavelengths centered at voltage-sensitive portions of the excitation spectrum and recording at a single wavelength near the peak of the emission spectrum. Recently, the emission spectral shift associated with the change in transmembrane potential has been used for continuous membrane potential monitoring. To characterize this form of the electrochromic response from di-8-ANEPPS, we have obtained fluorescence signals from single cells in response to step changes in transmembrane potentials set with a patch electrode, using single wavelength excitation near the peak of the dye absorption spectrum. Fluorescence changes at two wavelengths near voltage-sensitive portions of the emission spectrum and shifts in the complete emission spectrum were determined for emission from plasma membrane and internal membrane. We found that the fluorescence ratio from either dual-wavelength recordings, or from opposite sides of the emission spectrum, varied linearly with the amplitude of the transmembrane potential step between -80 and +60 mV. Voltage dependence of difference spectra exhibit a crossover point near the peak of the emission spectra with approximately equal gain and loss of fluorescence intensity on each side of the spectrum and equal response amplitude for depolarization and hyperpolarization. These results are consistent with an electrochromic mechanism of action and demonstrate how the emission spectral shift response can be used to measure the transmembrane potential in single cells.

  8. Revealing the underlying absorption and emission mechanism of nitrogen doped graphene quantum dots.

    PubMed

    Niu, Xianghong; Li, Yunhai; Shu, Huabing; Wang, Jinlan

    2016-11-24

    Nitrogen-doped graphene quantum dots (N-GQDs) hold promising application in electronics and optoelectronics because of their excellent photo-stability, tunable photoluminescence and high quantum yield. However, the absorption and emission mechanisms have been debated for years. Here, by employing time-dependent density functional theory, we demonstrate that the different N-doping types and positions give rise to different absorption and emission behaviors, which successfully addresses the inconsistency observed in different experiments. Specifically, center doping creates mid-states, rendering non-fluorescence, while edge N-doping modulates the energy levels of excited states and increases the radiation transition probability, thus enhancing fluorescence strength. More importantly, the even hybridization of frontier orbitals between edge N atoms and GQDs leads to a blue-shift of both absorption and emission spectra, while the uneven hybridization of frontier orbitals induces a red-shift. Solvent effects on N-GQDs are further explored by the conductor-like screening model and it is found that strong polarity of the solvent can cause a red-shift and enhance the intensity of both absorption and emission spectra.

  9. Decoupling absorption and emission processes in super-resolution localization of emitters in a plasmonic hotspot

    PubMed Central

    Mack, David L.; Cortés, Emiliano; Giannini, Vincenzo; Török, Peter; Roschuk, Tyler; Maier, Stefan A.

    2017-01-01

    The absorption process of an emitter close to a plasmonic antenna is enhanced due to strong local electromagnetic (EM) fields. The emission, if resonant with the plasmonic system, re-radiates to the far-field by coupling with the antenna via plasmonic states, whose presence increases the local density of states. Far-field collection of the emission of single molecules close to plasmonic antennas, therefore, provides mixed information of both the local EM field strength and the local density of states. Moreover, super-resolution localizations from these emission-coupled events do not report the real position of the molecules. Here we propose using a fluorescent molecule with a large Stokes shift in order to spectrally decouple the emission from the plasmonic system, leaving the absorption strongly resonant with the antenna's enhanced EM fields. We demonstrate that this technique provides an effective way of mapping the EM field or the local density of states with nanometre spatial resolution. PMID:28211479

  10. Decoupling absorption and emission processes in super-resolution localization of emitters in a plasmonic hotspot

    NASA Astrophysics Data System (ADS)

    Mack, David L.; Cortés, Emiliano; Giannini, Vincenzo; Török, Peter; Roschuk, Tyler; Maier, Stefan A.

    2017-02-01

    The absorption process of an emitter close to a plasmonic antenna is enhanced due to strong local electromagnetic (EM) fields. The emission, if resonant with the plasmonic system, re-radiates to the far-field by coupling with the antenna via plasmonic states, whose presence increases the local density of states. Far-field collection of the emission of single molecules close to plasmonic antennas, therefore, provides mixed information of both the local EM field strength and the local density of states. Moreover, super-resolution localizations from these emission-coupled events do not report the real position of the molecules. Here we propose using a fluorescent molecule with a large Stokes shift in order to spectrally decouple the emission from the plasmonic system, leaving the absorption strongly resonant with the antenna's enhanced EM fields. We demonstrate that this technique provides an effective way of mapping the EM field or the local density of states with nanometre spatial resolution.

  11. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles.

    PubMed

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D; Chang, Huan-Cheng; Ye, Jing Yong

    2012-07-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs).

  12. Selective two-photon fluorescence suppression by ultrafast pulse-pair excitation: control by selective one-color stimulated emission.

    PubMed

    Kumar De, Arijit; Roy, Debjit; Goswami, Debabrata

    2011-10-01

    Controlling two-photon molecular fluorescence leading to selective fluorophore excitation has been a long sought after goal in fluorescence microscopy. In this letter, we thoroughly explore selective fluorescence suppression through simultaneous two-photon absorption by two different fluorophores followed by selective one-photon stimulated emission for one particular fluorophore. We achieve this by precisely controlling the time delay between two identical ultrafast near infrared laser pulses.

  13. Absorption and Fluorescence Lineshape Theory for Polynomial Potentials.

    PubMed

    Anda, André; De Vico, Luca; Hansen, Thorsten; Abramavičius, Darius

    2016-12-13

    The modeling of vibrations in optical spectra relies heavily on the simplifications brought about by using harmonic oscillators. However, realistic molecular systems can deviate substantially from this description. We develop two methods which show that the extension to arbitrarily shaped potential energy surfaces is not only straightforward, but also efficient. These methods are applied to an electronic two-level system with potential energy surfaces of polynomial form and used to study anharmonic features such as the zero-phonon line shape and mirror-symmetry breaking between absorption and fluorescence spectra. The first method, which constructs vibrational wave functions as linear combinations of the harmonic oscillator wave functions, is shown to be extremely robust and can handle large anharmonicities. The second method uses the cumulant expansion, which is readily solved, even at high orders, thanks to an ideally suited matrix theorem.

  14. The role of reabsorption in the spectral distribution of phytoplankton fluorescence emission

    NASA Technical Reports Server (NTRS)

    Collins, D. J.; Mcdermid, I. S.; Kiefer, D. A.; Soohoo, J. B.

    1985-01-01

    A theoretical model has been developed to describe an experimentally observed spectral shift in the fluorescence emission from phytoplankton as a result of the internal reabsorption of that emission. This model accounts for both the absorption of the primary excitation and the modification of the fluorescence through the reabsorption of the emitted light by the chloroplast and by the surrounding medium. Comparisons are made between the results of the theoretical model and data derived from experiments using a number of different phytoplankton species, each adapted to varying light conditions. The details of the model are discussed, and the consequences of its interpretation on the spectral distribution of the fluorescence emission from phytoplankton are examined.

  15. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Obukhova, Elena N.; Mchedlov-Petrossyan, Nikolay O.; Vodolazkaya, Natalya A.; Patsenker, Leonid D.; Doroshenko, Andrey O.; Marynin, Andriy I.; Krasovitskii, Boris M.

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR+ ⇄ R + H+) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R±. The indices of apparent ionization constants of fifteen rhodamine cations HR+ with different substituents in the xanthene moiety vary within the range of pKaapp = 5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators.

  16. Synchronous fluorescence and excitation emission characteristics of transformer oil ageing.

    PubMed

    Deepa, Subbiah; Sarathi, R; Mishra, Ashok K

    2006-11-15

    This paper describes the evaluation of synchronous fluorescence spectroscopy (SFS) and excitation emission matrix fluorescence (EEMF) spectroscopy as means of monitoring transformer oil degradation. When accelerated thermal ageing method is used, the onset of degradation of transformer oil on 17th day and transformer oil with polypropylene and cellulosic paper on 23rd and 27th days is sensitively reflected in the SFS and EEMF fluorescence spectral characteristics.

  17. Black-body radiation, emissivity, and absorptivity

    NASA Astrophysics Data System (ADS)

    Strojnik, M.; Scholl, M. K.; Garcia-Torales, G.

    2016-09-01

    We review theoretical considerations that give rise to the blackbody radiation inside a cavity with completely absorbing walls at a specific temperature. We examine the applicability of this model to the experimentally observed properties of radiation sources. We assess relevance of emissivity and its far-reaching implications. We examine its changing nature and measurement challenges

  18. Synthesis and fluorescence studies of nine 1,5-benzodiazepine-2,4-dione derivatives: Dual emission and excimer fluorescence

    NASA Astrophysics Data System (ADS)

    Qomi, Hamid Reza; Habibi, Azizollah; Shahcheragh, Seyyed Mohammad

    2017-03-01

    The photophysical properties of nine 1,5-benzodiazepine-2,4-dione (BZD) derivatives were investigated using absorption and fluorescence spectral techniques in dimethyl sulfoxide. The trend of red shifts caused by the substitutions had full compliance with the trend of decreasing the calculated band gap (ΔELUMO-HOMO) by semi-empirical AM1 and DFT/B3LYP/6-311 + G* computational methods. The positive solvatochromism of BZD a demonstrated the π-π* nature of the singlet excited state. Dual fluorescence was observed in the emission spectra of BZD f and g, while their spectrum in different concentration showed only one peak short wavelength (SW) in dilute solutions. The main peak in SW around 370 nm was attributed to the monomer of BZD (f* or g*) and the broader emission shifted to the visible region around 400 nm in middle wavelength (MW) to the intermolecular excimer emission of BZD ([f/f]*or [g/g]*). The observed phenomena, such as solvatochromism, dual fluorescence, some red shifts caused by substitution, and larger Stokes shift indicated the existence of intramolecular charge transfer (ICT) in the BZDs series. The phosphorescence emission of the BZDs demonstrated their intersystem crossing (ISC) process.

  19. Absorption and fluorescence of PRODAN in phospholipid bilayers: a combined quantum mechanics and classical molecular dynamics study.

    PubMed

    Cwiklik, Lukasz; Aquino, Adelia J A; Vazdar, Mario; Jurkiewicz, Piotr; Pittner, Jiří; Hof, Martin; Lischka, Hans

    2011-10-20

    Absorption and fluorescence spectra of PRODAN (6-propionyl-2-dimethylaminonaphthalene) were studied by means of the time-dependent density functional theory and the algebraic diagrammatic construction method. The influence of environment, a phosphatidylcholine lipid bilayer and water, was taken into account employing a combination of quantum chemical calculations with empirical force-field molecular dynamics simulations. Additionally, experimental absorption and emission spectra of PRODAN were measured in cyclohexane, water, and lipid vesicles. Both planar and twisted configurations of the first excited state of PRODAN were taken into account. The twisted structure is stabilized in both water and a lipid bilayer, and should be considered as an emitting state in polar environments. Orientation of the excited dye in the lipid bilayer significantly depends on configuration. In the bilayer, the fluorescence spectrum can be regarded as a combination of emission from both planar and twisted structures.

  20. Comparison of absorption, fluorescence, and polarization spectroscopy of atomic rubidium

    NASA Astrophysics Data System (ADS)

    Ashman, Seth; Stifler, Cayla; Romero, Joaquin

    2015-05-01

    An ongoing spectroscopic investigation of atomic rubidium utilizes a two-photon, single-laser excitation process. Transitions accessible with our tunable laser include 5P1 / 2F' <-- 5S1 / 2 F and 5P3 / 2F' <-- 5S1 / 2 F . The laser is split into a pump and probe beam to allow for Doppler-free measurements of transitions between hyperfine levels. The pump and probe beams are overlapped in a counter-propagating geometry and the laser frequency scans over a transition. Absorption, fluorescence and polarization spectroscopy techniques are applied to this basic experimental setup. The temperature of the vapor cell and the power of the pump and probe beams have been varied to explore line broadening effects and signal-to-noise of each technique. This humble setup will hopefully grow into a more robust experimental arrangement in which double resonance, two-laser excitations are used to explore hyperfine state changing collisions between rubidium atoms and noble gas atoms. Rb-noble gas collisions can transfer population between hyperfine levels, such as 5P3 / 2 (F' = 3) <-- Collision 5P3 / 2 (F ' = 2) , and the probe beam couples 7S1 / 2 (F'' = 2) <-- 5P3 / 2 (F' = 3) . Polarization spectroscopy signal depends on the rate of population transfer due to the collision as well as maintaining the orientation created by the pump laser. Fluorescence spectroscopy relies only on transfer of population due to the collision. Comparison of these techniques yields information regarding the change of the magnetic sublevels, mF, during hyperfine state changing collisions.

  1. New insights in the interpretation of tryptophan fluorescence : origin of the fluorescence lifetime and characterization of a new fluorescence parameter in proteins: the emission to excitation ratio.

    PubMed

    Albani, J R

    2007-07-01

    Origin of tryptophan fluorescence is still up to these days a quiz which is not completely solved. Fluorescence emission properties of tryptophan within proteins are in general considered as the result of fluorophore interaction within its environment. For example, a low fluorescence quantum yield is supposed to be the consequence of an important fluorophore-environment interaction. However, are we sure that the fluorophore has been excited upon light absorption? What if fluorophore excitation did not occur as the result of internal conformation specific to the fluorophore environment? Are we sure that all absorbed energy is used for the excitation process? Fluorescence lifetimes of Trp residues are considered to originate from rotamers or conformers resulting from the rotation of the indole ring within the peptide bonds. However, how can we explain the fact that in most of the proteins, the two lifetimes 0.5 and 3 ns, attributed to the conformers, are also observed for free tryptophan in solution? The present work, performed on free tryptophan and tyrosine in solution and on different proteins, shows that absorption and excitation spectra overlap but their intensities at the different excitation wavelengths are not necessarily equal. Also, we found that fluorescence emission intensities recorded at different excitation wavelengths depend on the intensities at these excitation wavelengths and not on the optical densities. Thus, excitation is not equal to absorption. In our interpretation of the data, we consider that absorbed photons are not necessary used only for the excitation, part of them are used to reorganize fluorophore molecules in a new state (excited structure) and another part is used for the excitation process. A new parameter that characterizes the ratio of the number of emitted photons over the real number of photons used to excite the fluorophore can be defined. We call this parameter, the emission to excitation ratio. Since our results were

  2. Electric-field-induced changes in absorption and fluorescence of the green fluorescent protein chromophore in a PMMA film.

    PubMed

    Nakabayashi, Takakazu; Hino, Kazuyuki; Ohta, Yuka; Ito, Sayuri; Nakano, Hirofumi; Ohta, Nobuhiro

    2011-07-07

    External electric field effects on absorption, fluorescence, and fluorescence decay of p-HBDI that is a model compound of the chromophore of GFP have been examined in a poly(methyl methacrylate) film. The electroabsorption spectrum is similar in shape to the first derivative of the absorption spectrum, which results from the difference in molecular polarizability between the ground state and the Franck-Condon excited state. The electrophotoluminescence spectrum is dominated by the corresponding fluorescence spectrum, indicating the enhancement of the fluorescence intensity in the presence of external electric fields. The direct measurements of the electric field effect on the fluorescence decay profile suggest that the field-induced deceleration of the nonradiative process contributes to the increase in the fluorescence intensity in the presence of electric fields.

  3. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  4. Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe.

    PubMed

    Yan, Xu; Li, Hongxia; Zheng, Weishi; Su, Xingguang

    2015-09-01

    In this work, we designed a dual-emission ratiometric fluorescence probe by hybridizing two differently colored quantum dots (QDs), which possess a built-in correction that eliminates the environmental effects and increases sensor accuracy. Red emissive QDs were embedded in the silica nanoparticle as reference while the green emissive QDs were covalently linked to the silica nanoparticle surface to form ratiometric fluorescence probes (RF-QDs). Dopamine (DA) was then conjugated to the surface of RF-QDs via covalent bonding. The ratiometric fluorescence probe functionalized with dopamine (DA) was highly reactive toward tyrosinase (TYR), which can catalyze the oxidization of DA to dopamine quinine and therefore quenched the fluorescence of the green QDs on the surface of ratiometric fluorescence probe. With the addition of different amounts of TYR, the ratiometric fluorescence intensity of the probe continually varied, leading to color changes from yellow-green to red. So the ratiometric fluorescence probe could be utilized for sensitive and selective detection of TYR activity. There was a good linear relationship between the ratiometric fluorescence intensity and TYR concentration in the range of 0.05-5.0 μg mL(-1), with the detection limit of 0.02 μg mL(-1). Significantly, the ratiometric fluorescence probe has been used to fabricate paper-based test strips for visual detection of TYR activity, which validates the potential on-site application.

  5. Background suppression in fluorescence nanoscopy with stimulated emission double depletion

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Prunsche, Benedikt; Zhou, Lu; Nienhaus, Karin; Nienhaus, G. Ulrich

    2017-01-01

    Stimulated emission depletion (STED) fluorescence nanoscopy is a powerful super-resolution imaging technique based on the confinement of fluorescence emission to the central subregion of an observation volume through de-excitation of fluorophores in the periphery via stimulated emission. Here, we introduce stimulated emission double depletion (STEDD) as a method to selectively remove artificial background intensity. In this approach, a first, conventional STED pulse is followed by a second, delayed Gaussian STED pulse that specifically depletes the central region, thus leaving only background. Thanks to time-resolved detection we can remove this background intensity voxel by voxel by taking the weighted difference of photons collected before and after the second STED pulse. STEDD thus yields background-suppressed super-resolved images as well as STED-based fluorescence correlation spectroscopy data. Furthermore, the proposed method is also beneficial when considering lower-power, less redshifted depletion pulses.

  6. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission

    PubMed Central

    Lakowicz, Joseph R.

    2009-01-01

    Metallic particles and surfaces display diverse and complex optical properties. Examples include the intense colors of noble metal colloids, surface plasmon resonance absorption by thin metal films, and quenching of excited fluorophores near the metal surfaces. Recently, the interactions of fluorophores with metallic particles and surfaces (metals) have been used to obtain increased fluorescence intensities, to develop assays based on fluorescence quenching by gold colloids, and to obtain directional radiation from fluorophores near thin metal films. For metal-enhanced fluorescence it is difficult to predict whether a particular metal structure, such as a colloid, fractal, or continuous surface, will quench or enhance fluorescence. In the present report we suggest how the effects of metals on fluorescence can be explained using a simple concept, based on radiating plasmons (RPs). The underlying physics may be complex but the concept is simple to understand. According to the RP model, the emission or quenching of a fluorophore near the metal can be predicted from the optical properties of the metal structures as calculated from electrodynamics, Mie theory, and/or Maxwell’s equations. For example, according to Mie theory and the size and shape of the particle, the extinction of metal colloids can be due to either absorption or scattering. Incident energy is dissipated by absorption. Far-field radiation is created by scattering. Based on our model small colloids are expected to quench fluorescence because absorption is dominant over scattering. Larger colloids are expected to enhance fluorescence because the scattering component is dominant over absorption. The ability of a metal’s surface to absorb or reflect light is due to wavenumber matching requirements at the metal–sample interface. Wavenumber matching considerations can also be used to predict whether fluorophores at a given distance from a continuous planar surface will be emitted or quenched. These

  7. Absorption and fluorescence characteristics of photo-activated adenylate cyclase nano-clusters from the amoeboflagellate Naegleria gruberi NEG-M strain

    NASA Astrophysics Data System (ADS)

    Penzkofer, A.; Stierl, M.; Hegemann, P.; Kateriya, S.

    2012-01-01

    The spectroscopic characteristics of BLUF (BLUF = sensor of blue light using flavin) domain containing soluble adenylate cyclase (nPAC = Naegleria photo-activated cyclase) samples from the amoeboflagellate Naegleria gruberi NEG-M strain is studied at room temperature. The absorption and fluorescence spectroscopic development in the dark was investigated over two weeks. Attenuation coefficient spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation distributions were measured. Thawing of frozen nPAC samples gave solutions with varying protein nano-cluster size and varying flavin, tyrosine, tryptophan, and protein color-center emission. Protein color-center emission was observed in the wavelength range of 360-900 nm with narrow emission bands of small Stokes shift and broad emission bands of large Stokes shift. The emission spectra evolved in time with protein nano-cluster aging.

  8. Fluorescence Emission and Excitation Spectra of Photo-Fragmented Nitrobenzene.

    NASA Astrophysics Data System (ADS)

    Lue, Christopher J.; Tanjaroon, Chakree; Johnson, J. Bruce; Allen, Susan D.; Reeve, Scott W.

    2012-06-01

    Upon absorption of a UV photon, nitrobenzene readily dissociates into C_6H_5, NO_2, C_6H_5NO, O, C_6H_5O, and NO through three different channels. We have recorded high resolution emission and excitation spectra of the NO resulting from photo-fragmented nitrobenzene using a pulsed picosecond tunable laser and a nanosecond dye laser. Specifically, the lasers probed the A^2Σ^+→ X^2π(1/2,3/2) NO band system between 225-260 nm using an one or two color process. In a one color process, the same energy (wavelength) photon is used to dissociate nitrobenzene and excite NO. In a two color process, photons of a particular energy are used to dissociate the nitrobenzene while photons of a different energy are used to probe the resultant NO. We have determined the rotational and vibrational temperatures of the nascent NO. And, we have examined the effect of the relative timing of the two photons on the fluorescence spectra to extract information about the photodissociation dynamics. Lin, M.-F.; Lee, Y. T.; Ni, C.-K.; Xu, S. and Lin, M. C. J. Chem. Phys., AIP, 2007, 126.

  9. Airborne interferometer for atmospheric emission and solar absorption.

    PubMed

    Keith, D W; Dykema, J A; Hu, H; Lapson, L; Anderson, J G

    2001-10-20

    The interferometer for emission and solar absorption (INTESA) is an infrared spectrometer designed to study radiative transfer in the troposphere and lower stratosphere from a NASA ER-2 aircraft. The Fourier-transform spectrometer (FTS) operates from 0.7 to 50 mum with a resolution of 0.7 cm(-1). The FTS observes atmospheric thermal emission from multiple angles above and below the aircraft. A heliostat permits measurement of solar absorption spectra. INTESA's calibration system includes three blackbodies to permit in-flight assessment of radiometric error. Results suggest that the in-flight radiometric accuracy is ~0.5 K in the mid-infrared.

  10. TDDFT prediction of UV-vis absorption and emission spectra of tocopherols in different media.

    PubMed

    Bakhouche, Kahina; Dhaouadi, Zoubeida; Lahmar, Souad; Hammoutène, Dalila

    2015-06-01

    We use the TDDFT/PBE0/6-31+G* method to determine the electronic absorption and emission energies, in different media, of the four forms of tocopherol, which differ by the number and the position of methyl groups on the chromanol. Geometries of the ground state S0 and the first singlet excited state S1 were optimized in the gas phase, and various solvents. The solvent effect is evaluated using an implicit solvation model (IEF-PCM). Our results are compared to the experimental ones obtained for the vitamin E content in several vegetable oils. For all forms of tocopherols, the HOMO-LUMO first vertical excitation is a π-π* transition. Gas phase and non-polar solvents (benzene and toluene) give higher absorption wavelengths than polar solvents (acetone, ethanol, methanol, DMSO, and water); this can be interpreted by a coplanarity between the O-H group and the chroman, allowing a better electronic resonance of the oxygen lone pairs and the aromatic ring, and therefore giving an important absorption wavelength, whereas the polar solvents give high emission wavelengths comparatively to gas phase and non-polar solvents. Fluorescence spectra permit the determination, the separation, and the identification of the four forms of tocopherols by a large difference in emission wavelength values. Graphical Abstract Scheme from process methodological to obtain the absorption and emission spectra for tocopherols.

  11. Two-photon excited fluorescence emission from hemoglobin

    NASA Astrophysics Data System (ADS)

    Sun, Qiqi; Zeng, Yan; Zhang, Wei; Zheng, Wei; Luo, Yi; Qu, Jianan Y.

    2015-03-01

    Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.

  12. Remotely sensed blue and red fluorescence emission for monitoring vegetation

    NASA Astrophysics Data System (ADS)

    Moya, I.; Guyot, G.; Goulas, Y.

    For monitoring plant canopies, fluorescence signals emitted by plants underlaser or daylight excitation appear to be a promising tool among the various remote sensing techniques available. Chlorophyll fluorenscece is a nature emission exhibiting a broad inverse relation with the photosynthetic carbon assimilation of green plants. Besides this specific red fluorescence, a second emission with a comparable intensity is observed in the blue region of the spectrum, when the vegetation is excited by near-UV radiation. The origin of blue fluorescence is still under discussion, but increasing evidence is found to associate it with non-photosynthetic parts of the plant tissue including cellular wall components or precursors, skin waxes and vacuolar metabolites. Experimental results show that the blue fluorescence signal depends on the type of vegetation and is highly affected by stress. For a better characterization of vegetation, blue and red fluorescence should be considered simultaneously because they contain complementary information and are highly specific to vegetation. Two approaches, which are currently considered feasible for the remote detection of fluorescence signals, are analyzed and discussed: laser induced fluorescence (active remote sensing) and solar stimulated fluorescence (passive remote sensing).

  13. Absorption and fluorescence spectroscopic characterization of BLUF domain of AppA from Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Schiereis, T.; Hegemann, P.; Jung, A.; Schlichting, I.

    2005-08-01

    The BLUF domain of the transcriptional anti-repressor protein AppA from the non-sulfur anoxyphototrophic purple bacterium Rhodobacter sphaeroides was characterized by absorption and emission spectroscopy. The BLUF domain constructs AppA 148 (consisting of amino-acid residues 1-148) and AppA 126 (amino-acid residues 1-126) are investigated. The cofactor of the investigated domains is found to consist of a mixture of the flavins riboflavin, FMN, and FAD. The dark-adapted domains exist in two different active receptor conformations (receptor states) with different sub-nanosecond fluorescence lifetimes (BLUF r,f and BLUF r,sl) and a small non-interacting conformation (BLUF nc). The active receptor conformations are transformed to putative signalling states (BLUF s,f and BLUF s,sl) of low fluorescence efficiency and picosecond fluorescence lifetime by blue-light excitation (light-adapted domains). In the dark at room temperature both signalling states recover back to the initial receptor states with a time constant of about 17 min. A quantum yield of signalling state formation of about 25% was determined by intensity dependent transmission measurements. A photo-cycle scheme is presented including photo-induced charge transfer complex formation, charge recombination, and protein binding pocket reorganisation.

  14. Estimation of indocyanine green concentration in blood from fluorescence emission: application to hemodynamic assessment during hemodialysis

    NASA Astrophysics Data System (ADS)

    Maarek, Jean-Michel I.; Holschneider, Daniel P.

    2009-09-01

    There is considerable interest in assessing cardiovascular function noninvasively in patients receiving hemodialysis. A possible approach is to measure the blood concentration of bolus-injected indocyanine green dye and to apply the dye-dilution method for estimating cardiac output and blood volume. Blood ICG concentration can be derived from a measurement of the ICG fluorescence through the dialysis tubing if a simple and unique calibration relationship can be established between transmural fluorescence intensity and blood ICG concentration. We investigated this relationship using Monte Carlo simulations of light transport in blood with varying hematocrit and ICG concentrations and performed empiric measurements of optical absorption and ICG fluorescence emission to confirm our findings. The ICG fluorescence intensity measured at the blood surface, as well as the light intensity remitted by the blood, varied as hematocrit changes modified the absorption and scattering characteristics of the blood. Calibration relationships were developed between fluorescence intensity and ICG concentration that accounted for hematocrit changes. Combining the backreflected fluorescence and the reflected light measured near the point of illumination provided optimal signal intensity, linearity, and robustness to hematocrit changes. These results provide a basis for developing a noninvasive approach to derive optically circulating blood ICG concentration in hemodialysis circuits.

  15. Substituent Effects on the Absorption and Fluorescence Properties of Anthracene.

    PubMed

    Abou-Hatab, Salsabil; Spata, Vincent A; Matsika, Spiridoula

    2017-02-16

    Substitution can be used to efficiently tune the photophysical properties of chromophores. In this study, we examine the effect of substituents on the absorption and fluorescence properties of anthracene. The effects of mono-, di-, and tetrasubstitution of electron-donating and -withdrawing functional groups were explored. In addition, the influence of a donor-acceptor substituent pair and the position of substitution were investigated. Eleven functional groups were varied on positions 1, 2, and 9 of anthracene, and on position 6 of 2-methoxyanthracene and 2-carboxyanthracene. Moreover, the donor-acceptor pair NH2/CO2H was added on different positions of anthracene for additional studies of doubly substituted anthracenes. Finally, we looked into quadruple substitutions on positions 1,4,5,8 and 2,3,6,7. Vertical excitation energies and oscillator strengths were computed using density functional theory with the hybrid CAM-B3LYP functional and 6-311G(d) basis set. Correlations between the excitation energies or oscillator strengths of the low-lying bright La state and the Hammett sigma parameter, σp(+), of the substituents were examined. The energy is red-shifted for all cases of substitution. Oscillator strengths increase when substituents are placed along the direction of the transition dipole moment of the bright La excited state. Substitution of long chain conjugated groups significantly increases the oscillator strength in comparison to the cases for other substituents. In addition, the results of quadruply substituted geometries reveal symmetric substitution at the 1,4,5,8 positions significantly increases the oscillator strength and can lower the band gap compared to that of the unsubstituted anthracene molecule by up to 0.5 eV.

  16. Absorption and Emission Spectroscopy of a Lasing Material: Ruby

    ERIC Educational Resources Information Center

    Esposti, C. Degli; Bizzocchi, L.

    2007-01-01

    Ruby is a crystalline material, which comes very expensive and is of great significance, as it helped in the creation of first laser. An experiment to determine the absorption and emission spectroscopy, in addition to the determination of the room-temperature lifetime of the substance is being described.

  17. Light emission from compound eye with conformal fluorescent coating

    NASA Astrophysics Data System (ADS)

    Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh

    2015-03-01

    Compound eyes of insects are attractive biological systems for engineered biomimicry as artificial sources of light, given their characteristic wide angular field of view. A blowfly eye was coated with a thin conformal fluorescent film, with the aim of achieving wide field-of-view emission. Experimental results showed that the coated eye emitted visible light and that the intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.

  18. Plasmonic antennas for directional sorting of fluorescence emission.

    PubMed

    Aouani, Heykel; Mahboub, Oussama; Devaux, Eloïse; Rigneault, Hervé; Ebbesen, Thomas W; Wenger, Jérôme

    2011-06-08

    Spontaneous emission of fluorescent molecules or quantum dots is radiated along all directions when emitters are diluted in a liquid solution, which severely limits the amount of collected light. Besides, the emission direction does not carry any useful information and cannot be used to sort different molecules. To go beyond these limits, optical antennas have been recently introduced as conceptual tools to control the radiation properties for nanoemitters fixed on a substrate. Despite intense recent research, controlling the luminescence directivity remains a challenge for emitters with random positions and orientations, which is a key for several biomolecular screening applications. Here, we present full directional control of the fluorescence emission from molecules in water solution by an optical antenna made of a nanoaperture surrounded by a periodic set of shallow grooves in a gold film. For each emission wavelength, the fluorescence beam can be directed along a specific direction with a given angular width, hereby realizing a micrometer-size dispersive antenna. We demonstrate the fluorescence beaming results from an interference phenomenon and provide physical optics guidelines to control the fluorescence directivity by tuning the groove-nanoaperture distance. This photon-sorting capability provides a new approach for high-sensitivity screening of molecular species in solution.

  19. Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy

    PubMed Central

    Kuang, Cuifang; Li, Shuai; Liu, Wei; Hao, Xiang; Gu, Zhaotai; Wang, Yifan; Ge, Jianhong; Li, Haifeng; Liu, Xu

    2013-01-01

    We propose a novel physical mechanism for breaking the diffraction barrier in the far field. Termed fluorescence emission difference microscopy (FED), our approach is based on the intensity difference between two differently acquired images. When fluorescence saturation is applied, the resolving ability of FED can be further enhanced. A detailed theoretical analysis and a series of simulation tests are performed. The validity of FED in practical use is demonstrated by experiments on fluorescent nanoparticles and biological cells in which a spatial resolution of <λ/4 is achieved. Featuring the potential to realize a high imaging speed, this approach may be widely applied in nanoscale investigations. PMID:23486546

  20. Absorption and fluorescence properties of aryl substituted porphyrins in different media

    NASA Astrophysics Data System (ADS)

    Bozkurt, Serap Seyhan; Merdivan, Melek; Ayata, Sevda

    2010-02-01

    Absorption and fluorescence properties of aryl substituted porphyrins, 5,10,15,20-tetra-4-oxy(aceticacid)phenylporphyrin (TAPP), 5,10,15,20-tetra-(4-phenoxyphenyl) porphyrin (TPPP), 5,10,15,20-tetra-(3-bromo-4-hydroxyphenyl) porphyrin (TBHPP), and 5,10,15,20-tetra-p-chloromethylphenyl porphyrin (CMPP) were investigated. The UV/vis absorption, fluorescence and excited spectra as the fluorescence quantum yields and fluorescence lifetimes for the compounds were measured in organic solvents (chloroform (CHCl 3), tetrahydrofuran (THF)) and immobilized media (PVC film, sol-gel matrix). The fluorescence quantum yields of TAPP and TPPP were higher than the others. The fluorescence lifetimes of all studied porphyrin derivates were found to be fifty percent lower and their fluorescence intensities were increased fifty percent more in both of immobilized mediums, as compared to organic solvents.

  1. Optical investigation of gold shell enhanced 25 nm diameter upconverted fluorescence emission

    NASA Astrophysics Data System (ADS)

    Green, Kory; Wirth, Janina; Lim, Shuang Fang

    2016-04-01

    We enhance the efficiency of upconverting nanoparticles by investigating the plasmonic coupling of 25 nm diameter NaYF4:Yb, Er nanoparticles with a gold-shell coating, and study the physical mechanism of enhancement by single-particle, time-resolved spectroscopy. A three-fold overall increase in emission intensity, and five-fold increase of green emission for these plasmonically enhanced particles have been achieved. Using a combination of structural and fluorescent imaging, we demonstrate that fluorescence enhancement is based on the photonic properties of single, isolated particles. Time-resolved spectroscopy shows that the increase in fluorescence is coincident with decreased rise time, which we attribute to an enhanced absorption of infrared light and energy transfer from Yb3+ to Er3+ atoms. Time-resolved spectroscopy also shows that fluorescence life-times are decreased to different extents for red and green emission. This indicates that the rate of photon emission is not suppressed, as would be expected for a metallic cavity, but rather enhanced because the metal shell acts as an optical antenna, with differing efficiency at different wavelengths.

  2. Optical investigation of gold shell enhanced 25 nm diameter upconverted fluorescence emission.

    PubMed

    Green, Kory; Wirth, Janina; Lim, Shuang Fang

    2016-04-01

    We enhance the efficiency of upconverting nanoparticles by investigating the plasmonic coupling of 25 nm diameter NaYF4:Yb, Er nanoparticles with a gold-shell coating, and study the physical mechanism of enhancement by single-particle, time-resolved spectroscopy. A three-fold overall increase in emission intensity, and five-fold increase of green emission for these plasmonically enhanced particles have been achieved. Using a combination of structural and fluorescent imaging, we demonstrate that fluorescence enhancement is based on the photonic properties of single, isolated particles. Time-resolved spectroscopy shows that the increase in fluorescence is coincident with decreased rise time, which we attribute to an enhanced absorption of infrared light and energy transfer from Yb(3+) to Er(3+) atoms. Time-resolved spectroscopy also shows that fluorescence life-times are decreased to different extents for red and green emission. This indicates that the rate of photon emission is not suppressed, as would be expected for a metallic cavity, but rather enhanced because the metal shell acts as an optical antenna, with differing efficiency at different wavelengths.

  3. Color-switchable, emission-enhanced fluorescence realized by engineering C-dot@C-dot nanoparticles.

    PubMed

    Guo, Zhen; Zhang, Zhiqiang; Zhang, Wei; Zhou, Lianqun; Li, Haiwen; Wang, Hongmei; Andreazza-Vignolle, Caroline; Andreazza, Pascal; Zhao, Dongxu; Wu, Yihui; Wang, Quanlong; Zhang, Tao; Jiang, Keming

    2014-12-10

    This paper reports the preparation and properties of color-switchable fluorescent carbon nanodots (C-dots). C-dots that emit dark turquoise and green-yellow fluorescence under 365 nm UV illumination were obtained from the hydrothermal decomposition of citric acid. Dark green fluorescent C-dots were obtained by conjugating prepared C-dots to form C-dot@C-dot nanoparticles. After successful conjugation of the C-dots, the fluorescence emission undergoes a blue-shift of nearly 20 nm (∼0.15 eV) under UV excitation at 370 nm. The C-dots emit goldenrod, green-yellow, and gold light under excitation at 455 nm, which shows that the prepared C-dots are color-switchable. Furthermore, conjugation of the C-dots results in enhanced, red-shifted absorption of the π-π* transition of the aromatic sp(2) domains due to the conjugated π-electron system. N incorporation in the carbon structure leads to a degree of dipoles for all the aromatic sp(2) bonds. The enhanced absorption in a wide range from 226 to 601 nm indicates extended conjugation in the C-dot@C-dot structure. The time-resolved average lifetimes for the three different types of C-dots prepared in this study are 7.10, 7.65, and 4.07 ns. The radiative rate (reduced decay lifetime) increases when the C-dots are conjugated in the C-dot@C-dot nanoparticles, leading to the enhanced fluorescence emission. The fluorescence emission of the C-dot@C-dot nanoparticles can be used in applications such as flow cytometry and cell imaging.

  4. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    PubMed Central

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  5. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    NASA Astrophysics Data System (ADS)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  6. Potential benefits of triethylamine as n-electron donor in the estimation of forskolin by electronic absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Raju, Gajula; Ram Reddy, A.

    2016-02-01

    Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state.

  7. Potential benefits of triethylamine as n-electron donor in the estimation of forskolin by electronic absorption and emission spectroscopy.

    PubMed

    Raju, Gajula; Reddy, A Ram

    2016-02-05

    Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state.

  8. Dye-doped sol-gel materials for two-photon absorption induced fluorescence

    NASA Astrophysics Data System (ADS)

    Canva, Michael; Roger, Gisèle; Cassagne, Florence; Lévy, Yves; Brun, Alain; Chaput, Frédéric; Boilot, Jean-Pierre; Rapaport, Alexandra; Heerdt, Céline; Bass, Michael

    2002-01-01

    Two-photon absorption (TPA) and subsequent fluorescence properties of laser dyes are retained when doped into solid state sol-gel materials. These properties were demonstrated to be applicable in true 3D displays.

  9. Concerning spikes in emission and absorption in the microwave range

    NASA Astrophysics Data System (ADS)

    Chernov, Gennady P.; Sych, Robert A.; Huang, Guang-Li; Ji, Hai-Sheng; Yan, Yi-Hua; Tan, Cheng-Ming

    2013-01-01

    In some events, weak fast solar bursts (near the level of the quiet Sun) were observed in the background of numerous spikes in emission and absorption. In such a case, the background contains the noise signals of the receiver. In events on 2005 September 16 and 2002 April 14, the solar origin of fast bursts was confirmed by simultaneous recording of the bursts at several remote observatories. The noisy background pixels in emission and absorption can be excluded by subtracting a higher level of continuum when constructing the spectra. The wavelet spectrum, noisy profiles in different polarization channels and a spectrum with continuum level greater than zero demonstrates the noisy character of pixels with the lowest levels of emission and absorption. Thus, in each case, in order to judge the solar origin of all spikes, it is necessary to determine the level of continuum against the background of which the solar bursts are observed. Several models of microwave spikes are discussed. The electron cyclotron maser emission mechanism runs into serious problems with the interpretation of microwave millisecond spikes: the main obstacles are too high values of the magnetic field strength in the source (ωPe <= ωBe). The probable mechanism is the interaction of plasma Langmuir waves with ion-sound waves (l + s → t) in a source related to shock fronts in the reconnection region.

  10. ESTIMATING THE CHROMOSPHERIC ABSORPTION OF TRANSITION REGION MOSS EMISSION

    SciTech Connect

    De Pontieu, Bart; Hansteen, Viggo H.; McIntosh, Scott W.; Patsourakos, Spiros

    2009-09-10

    Many models for coronal loops have difficulty explaining the observed EUV brightness of the transition region, which is often significantly less than theoretical models predict. This discrepancy has been addressed by a variety of approaches including filling factors and time-dependent heating, with varying degrees of success. Here, we focus on an effect that has been ignored so far: the absorption of EUV light with wavelengths below 912 A by the resonance continua of neutral hydrogen and helium. Such absorption is expected to occur in the low-lying transition region of hot, active region loops that is colocated with cool chromospheric features and called 'moss' as a result of the reticulated appearance resulting from the absorption. We use cotemporal and cospatial spectroheliograms obtained with the Solar and Heliospheric Observatory/SUMER and Hinode/EIS of Fe XII 1242 A, 195 A, and 186.88 A, and compare the density determination from the 186/195 A line ratio to that resulting from the 195/1242 A line ratio. We find that while coronal loops have compatible density values from these two line pairs, upper transition region moss has conflicting density determinations. This discrepancy can be resolved by taking into account significant absorption of 195 A emission caused by the chromospheric inclusions in the moss. We find that the amount of absorption is generally of the order of a factor of 2. We compare to numerical models and show that the observed effect is well reproduced by three-dimensional radiative MHD models of the transition region and corona. We use STEREO A/B data of the same active region and find that increased angles between line of sight and local vertical cause additional absorption. Our determination of the amount of chromospheric absorption of TR emission can be used to better constrain coronal heating models.

  11. pH-Induced changes in electronic absorption and fluorescence spectra of phenazine derivatives

    NASA Astrophysics Data System (ADS)

    Ryazanova, O. A.; Voloshin, I. M.; Makitruk, V. L.; Zozulya, V. N.; Karachevtsev, V. A.

    2007-04-01

    The visible electronic absorption and fluorescence spectra as well as fluorescence polarization degrees of imidazo-[4,5-d]-phenazine (F1), 2-methylimidazo-[4,5-d]-phenazine (F2), 2-trifluoridemethylimidazo-[4,5-d]-phenazine (F3), 1,2,3-triazole-[4,5-d]-phenazine (F4) and their glycosides, imidazo-[4,5-d]-phenazine-N1-β- D-ribofuranoside (F1rib), 1,2,3-triazole-[4,5-d]-phenazine-N1-β- D-glucopyranoside (F4gl), were investigated in aqueous buffered solutions over the pH range of 0-12, where the spectral transformations were found to be reversible. The effects of protonation and deprotonation on spectral properties of these dyes were studied. We have determined the ranges of pH, where individual ionic species are predominant. In aqueous buffered solutions the fluorescence was found only for neutral species of F1, F1rib, F2, and F4gl dyes, whereas for the ionic forms of these dyes, as well as for F3 and F4 ones, the fluorescence has not been detected. The concentrational deprotonation p Ka values were evaluated from experimental data. It was shown that donor-acceptor properties of the substituent group in the second position of the pentagonal ring substantially affect the values of the deprotonation constants and the character of protonation for chromophore. The substitution of a hydrogen atom in the NH-group by the sugar residue blocks the formation of the anionic species, and results in enhancement of the dye emission intensity. The steep emission dependence for F1 and F1rib over pH range of 0-7 with intensities ratio of IpH 7/ IpH 1 = 60 allows us to propose them as possible indicator dyes in luminescence based pH sensors for investigation of processes accompanied by acidification, e.g. as gastric pH-sensors. A comparative analysis of the studied dyes has shown that F4gl is the most promising compound to be used as a fluorescent probe for investigation of molecular hybridization of nucleic acids.

  12. Non-coincident multi-wavelength emission absorption spectroscopy

    SciTech Connect

    Baumann, L.E.

    1995-02-01

    An analysis is presented of the effect of noncoincident sampling on the measurement of atomic number density and temperature by multiwavelength emission absorption. The assumption is made that the two signals, emission and transmitted lamp, are time resolved but not coincident. The analysis demonstrates the validity of averages of such measurements despite fluctuations in temperature and optical depth. At potassium-seeded MHD conditions, the fluctuations introduce additional uncertainty into measurements of potassium atom number density and temperature but do not significantly bias the average results. Experimental measurements in the CFFF aerodynamic duct with coincident and noncoincident sampling support the analysis.

  13. Numerical Modeling of Fluorescence Emission Energy Dispersion in Luminescent Solar Concentrator

    NASA Astrophysics Data System (ADS)

    Li, Lanfang; Sheng, Xing; Rogers, John; Nuzzo, Ralph

    2013-03-01

    We present a numerical modeling method and the corresponding experimental results, to address fluorescence emission dispersion for applications such as luminescent solar concentrator and light emitting diode color correction. Previously established modeling methods utilized a statistic-thermodynamic theory (Kenard-Stepnov etc.) that required a thorough understanding of the free energy landscape of the fluorophores. Some more recent work used an empirical approximation of the measured emission energy dispersion profile without considering anti-Stokes shifting during absorption and emission. In this work we present a technique for modeling fluorescence absorption and emission that utilizes the experimentally measured spectrum and approximates the observable Frank-Condon vibronic states as a continuum and takes into account thermodynamic energy relaxation by allowing thermal fluctuations. This new approximation method relaxes the requirement for knowledge of the fluorophore system and reduces demand on computing resources while still capturing the essence of physical process. We present simulation results of the energy distribution of emitted photons and compare them with experimental results with good agreement in terms of peak red-shift and intensity attenuation in a luminescent solar concentrator. This work is supported by the DOE `Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293.

  14. Infrared absorption and emission characteristics of interstellar PAHs (Polycyclic Aromatic Hydrocarbon)

    SciTech Connect

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3050, 1610, 1300, 1150, and 885 cm/sup -1/ (3.28, 6.2, 7.7, 8.7 and 11.3 microns) is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis. This hypothesis is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the ir and Raman properties are discussed. Interstellar ir band emission is due to relaxation from highly vibrationally excited PAHs which have been excited by ultraviolet photons. The excitation/emission process is described in general and the ir fluorescence from one PAH, chrysene, is traced in detail. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs containing between 20 and 30 carbon atoms are responsible for the emission. 43 refs., 11 figs.

  15. Infrared absorption and emission characteristics of interstellar PAHs. [Polycyclic Aromatic Hydrocarbon

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    The mid-infrared interstellar emission spectrum with features at 3.28, 6.2, 7.7, 8.7 and 11.3 microns is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis, which is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the IR and Raman properties are discussed. Interstellar IR band emission is due to relaxation from highly vibrationally excited PAHs excited by ultraviolet photons. The excitation/emission process is described and the IR fluorescence from one PAH, chrysene, is traced. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs contain between 20 and 30 carbon atoms and are responsible for the emission.

  16. Light absorption and emission in nanowire array solar cells.

    PubMed

    Kupec, Jan; Stoop, Ralph L; Witzigmann, Bernd

    2010-12-20

    Inorganic nanowires are under intense research for large scale solar power generation intended to ultimately contribute a substantial fraction to the overall power mix. Their unique feature is to allow different pathways for the light absorption and carrier transport. In this publication we investigate the properties of a nanowire array acting as a photonic device governed by wave-optical phenomena. We solve the Maxwell equations and calculate the light absorption efficiency for the AM1.5d spectrum and give recommendations on the design. Due to concentration of the incident sunlight at a microscopic level the absorptivity of nanowire solar cells can exceed the absorptivity of an equal amount of material used in thin-film devices. We compute the local density of photon states to assess the effect of emission enhancement, which influences the radiative lifetime of excess carriers. This allows us to compute the efficiency limit within the framework of detailed balance. The efficiency is highly sensitive with respect to the diameter and distance of the nanowires. Designs featuring nanowires below a certain diameter will intrinsically feature low short-circuit current that cannot be compensated even by increasing the nanowire density. Optimum efficiency is not achieved in densely packed arrays, in fact spacing the nanowires further apart (simultaneously decreasing the material use) can even improve efficiency in certain scenarios. We observe absorption enhancement reducing the material use. In terms of carrier generation per material use, nanowire devices can outperform thin-film devices by far.

  17. Generation of Thermospheric OI 845 nm Emission by Bowen Fluorescence

    NASA Astrophysics Data System (ADS)

    Huestis, D. L.; Sharpee, B. D.; Cosby, P. C.; Slanger, T. G.

    2006-12-01

    777 and 845 nm emissions from the 3p-3s multiplets of atomic oxygen are commonly observed at non-auroral latitudes in the terrestrial nightglow. By studying the relative strengths of these emissions we can learn something about the mechanisms that produce them and what they can teach us about the atmosphere. Recently [1] we have used intensity-calibrated sky spectra from the Keck telescopes to investigate the relative strengths of a wide range of O-atom Rydberg lines and have confirmed that electron-ion radiative recombination is a primary source of excitation for both the triplet and quintet systems. Following the intensity of the 777 and 845 nm lines during the night, we find that for most of the night the quintet 777 nm line is consistently stronger than the triplet 845 nm line, with a nearly constant intensity ratio I(777)/I(845) near 2.3, although both intensities fall rapidly as the night progresses. However, late in the night the 845 nm intensity levels off, while the 777 nm intensity continues to fall, and the I(777)/I(845) ratio plunges by a factor of 5-10. We interpret these observations as indicating that the O-atom quintet states are still being excited by the same mechanism as earlier in the night, i.e. radiative recombination, but some triplet states are also being excited by an additional mechanism. Such a mechanism has been proposed before [2-6] but not previously observed directly in the terrestrial nightglow. The oxygen triplet 3d-2p transition at 102.576 nm is in close coincidence with the solar hydrogen Lyman-β line at 102.572 nm. Radiative transport in the hydrogen geocorona will deliver Lyman-β intensity into the Earth's shadow and will produce triplet O(3d 3D) high in the atmosphere, even prior to direct solar illumination. The result is observable in a radiative cascade sequence 3d-3p(1129 nm) → 3p- 3s(845 nm) → 3s-2p(130 nm). A similar effect is observed in the H-α emission, which is also excited by Lyman-β absorption. This process

  18. A rare protein fluorescence behavior where the emission is dominated by tyrosine: case of the 33-kDa protein from spinach photosystem II.

    PubMed

    Ruan, Kangcheng; Li, Jiong; Liang, Ruqiang; Xu, Chunhe; Yu, Yong; Lange, Reinhard; Balny, Claude

    2002-04-26

    An abnormal fluorescence emission of protein was observed in the 33-kDa protein which is one component of the three extrinsic proteins in spinach photosystem II particle (PS II). This protein contains one tryptophan and eight tyrosine residues, belonging to a "B type protein". It was found that the 33-kDa protein fluorescence is very different from most B type proteins containing both tryptophan and tyrosine residues. For most B type proteins studied so far, the fluorescence emission is dominated by the tryptophan emission, with the tyrosine emission hardly being detected when excited at 280 nm. However, for the present 33-kDa protein, both tyrosine and tryptophan fluorescence emissions were observed, the fluorescence emission being dominated by the tyrosine residue emission upon a 280 nm excitation. The maximum emission wavelength of the 33-kDa protein tryptophan fluorescence was at 317 nm, indicating that the single tryptophan residue is buried in a very strong hydrophobic region. Such a strong hydrophobic environment is rarely observed in proteins when using tryptophan fluorescence experiments. All parameters of the protein tryptophan fluorescence such as quantum yield, fluorescence decay, and absorption spectrum including the fourth derivative spectrum were explored both in the native and pressure-denatured forms.

  19. Enhancement of 2.0 μm fluorescence emission in new Ho3+/Tm3+/Yb3+ tri-doped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Cheng, Pan; Yang, Feng-jing; Zhou, Zi-zhong; Huang, Bo; Wu, Li-bo; Zhou, Ya-xun

    2016-09-01

    For enhancing the 2.0 μm band fluorescence of Ho3+, a certain amount of WO3 oxide was introduced into Ho3+/Tm3+/Yb3+ tri-doped tellurite glass prepared using melt-quenching technique. The prepared tri-doped tellurite glass was characterized by the absorption spectra, fluorescence emission and Raman scattering spectra, together with the stimulated absorption, emission cross-sections and gain coefficient. The research results show that the introduction of WO3 oxide can further improve the 2.0 μm band fluorescence emission through the enhanced phonon-assisted energy transfers between Ho3+/Tm3+/Yb3+ ions under the excitation of 980 nm laser diode (LD). Meanwhile, the maximum gain coefficient of Ho3+ at 2.0 μm band reaches about 2.36 cm-1. An intense 2.0 μm fluorescence emission can be realized.

  20. Absorption and emission spectroscopic characterisation of combined wildtype LOV1-LOV2 domain of phot from Chlamydomonas reinhardtii.

    PubMed

    Song, S-H; Dick, B; Zirak, P; Penzkofer, A; Schiereis, T; Hegemann, P

    2005-10-03

    An absorption and emission spectroscopic characterisation of the combined wild-type LOV1-LOV2 domain string (abbreviated LOV1/2) of phot from the green alga Chlamydomonas reinhardtii is carried out at pH 8. A LOV1/2-MBP fusion protein (MBP=maltose binding protein) and LOV1/2 with a His-tag at the C-terminus (LOV1/2-His) expressed in an Escherichia coli strain are investigated. Blue-light photo-excitation generates a non-fluorescent intermediate photoproduct (flavin-C(4a)-cysteinyl adduct with absorption peak at 390 nm). The photo-cycle dynamics is studied by dark-state absorption and fluorescence measurement, by following the temporal absorption and emission changes under blue and violet light exposure, and by measuring the temporal absorption and fluorescence recovery after light exposure. The fluorescence quantum yield, phi(F), of the dark adapted samples is phi(F)(LOV1/2-His) approximately 0.15 and phi(F)(LOV1/2-MBP) approximately 0.17. A bi-exponential absorption recovery after light exposure with a fast (in the several 10-s range) and a slow component (in the near 10-min range) are resolved. The quantum yield of photo-adduct formation, phi(Ad), is extracted from excitation intensity dependent absorption measurements. It decreases somewhat with rising excitation intensity. The behaviour of the combined wildtype LOV1-LOV2 double domains is compared with the behaviour of the separate LOV1 and LOV2 domains.

  1. Biocompound detection through fluorescence excitation-emission matrix analysis

    NASA Astrophysics Data System (ADS)

    Twede, David R.; Sanders, Lee C.; Wagner, Michael L.

    2004-01-01

    The excitation-emission matrix (EEM) is the luminescence spectral emission intensity of fluorescent compounds as a function of the excitation wavelength. EEMs offer the promise of an additional degree of information for enhanced compound detection and identification. Veridian has collected pure-component EEMs of amino acids (Trp, Phe, Tyr), Bacillus globigii (bg), Bacillus thuringiensis (bt,), and selected backgrounds. Also collected were EEMs of mixtures of amino acids and of bg in solution with a few backgrounds. The EEMs of pure components and mixtures were analyzed for phenomenology and for potential methods of unmixing and identifying the constituents of EEMs having mixed components of a similar nature.

  2. Biocompound detection through fluorescence excitation-emission matrix analysis

    NASA Astrophysics Data System (ADS)

    Twede, David R.; Sanders, Lee C.; Wagner, Michael L.

    2003-12-01

    The excitation-emission matrix (EEM) is the luminescence spectral emission intensity of fluorescent compounds as a function of the excitation wavelength. EEMs offer the promise of an additional degree of information for enhanced compound detection and identification. Veridian has collected pure-component EEMs of amino acids (Trp, Phe, Tyr), Bacillus globigii (bg), Bacillus thuringiensis (bt,), and selected backgrounds. Also collected were EEMs of mixtures of amino acids and of bg in solution with a few backgrounds. The EEMs of pure components and mixtures were analyzed for phenomenology and for potential methods of unmixing and identifying the constituents of EEMs having mixed components of a similar nature.

  3. Quasars Probing Quasars. IV. Joint Constraints on the Circumgalactic Medium from Absorption and Emission

    NASA Astrophysics Data System (ADS)

    Hennawi, Joseph F.; Prochaska, J. Xavier

    2013-03-01

    We have constructed a sample of 29 close projected quasar pairs where the background quasar spectrum reveals absorption from optically thick H I gas associated with the foreground quasar. These unique sightlines allow us to study the quasar circumgalactic medium (CGM) in absorption and emission simultaneously, because the background quasar pinpoints large concentrations of gas where Lyα emission, resulting from quasar-powered fluorescence, resonant Lyα scattering, and/or cooling radiation, is expected. A sensitive search (1σ surface-brightness limits of SB_{Ly\\alpha } \\simeq 3{\\; \\times \\; 10^{-18}}\\,erg\\,s^{-1\\,cm^{-2}\\,arcsec^{-2}}) for diffuse Lyα emission in the environments of the foreground (predominantly radio-quiet) quasars is conducted using Gemini/GMOS and Keck/LRIS slit spectroscopy. We fail to detect large-scale ~100 kpc Lyα emission, either at the location of the optically thick absorbers or in the foreground quasar halos, in all cases except a single system. We interpret these non-detections as evidence that the gas detected in absorption is shadowed from the quasar UV radiation due to obscuration effects, which are frequently invoked in unified models of active galactic nuclei. Small-scale R <~ 50 kpc extended Lyα nebulosities are detected in 34% of our sample, which are likely the high-redshift analogs of the extended emission-line regions (EELRs) commonly observed around low-redshift (z < 0.5) quasars. This may be fluorescent recombination radiation from a population of very dense clouds with a low covering fraction illuminated by the quasar. We also detect a compact high rest-frame equivalent width (W Lyα > 50 Å) Lyα-emitter with luminosity L Lyα = 2.1 ± 0.32 × 1041 erg s-1 at small impact parameter R = 134 kpc from one foreground quasar, and argue that it is more likely to result from quasar-powered fluorescence, than simply be a star-forming galaxy clustered around the quasar. Our observations imply that much deeper

  4. QUASARS PROBING QUASARS. IV. JOINT CONSTRAINTS ON THE CIRCUMGALACTIC MEDIUM FROM ABSORPTION AND EMISSION

    SciTech Connect

    Hennawi, Joseph F.; Prochaska, J. Xavier

    2013-03-20

    We have constructed a sample of 29 close projected quasar pairs where the background quasar spectrum reveals absorption from optically thick H I gas associated with the foreground quasar. These unique sightlines allow us to study the quasar circumgalactic medium (CGM) in absorption and emission simultaneously, because the background quasar pinpoints large concentrations of gas where Ly{alpha} emission, resulting from quasar-powered fluorescence, resonant Ly{alpha} scattering, and/or cooling radiation, is expected. A sensitive search (1{sigma} surface-brightness limits of SB{sub Ly{alpha}}{approx_equal}3 Multiplication-Sign 10{sup -18} erg s{sup -1} cm{sup -2} arcsec{sup -2}) for diffuse Ly{alpha} emission in the environments of the foreground (predominantly radio-quiet) quasars is conducted using Gemini/GMOS and Keck/LRIS slit spectroscopy. We fail to detect large-scale {approx}100 kpc Ly{alpha} emission, either at the location of the optically thick absorbers or in the foreground quasar halos, in all cases except a single system. We interpret these non-detections as evidence that the gas detected in absorption is shadowed from the quasar UV radiation due to obscuration effects, which are frequently invoked in unified models of active galactic nuclei. Small-scale R {approx}< 50 kpc extended Ly{alpha} nebulosities are detected in 34% of our sample, which are likely the high-redshift analogs of the extended emission-line regions (EELRs) commonly observed around low-redshift (z < 0.5) quasars. This may be fluorescent recombination radiation from a population of very dense clouds with a low covering fraction illuminated by the quasar. We also detect a compact high rest-frame equivalent width (W{sub Ly{alpha}} > 50 A) Ly{alpha}-emitter with luminosity L{sub Ly{alpha}} = 2.1 {+-} 0.32 Multiplication-Sign 10{sup 41} erg s{sup -1} at small impact parameter R = 134 kpc from one foreground quasar, and argue that it is more likely to result from quasar-powered fluorescence

  5. Emission and Absorption Study of the Vela Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Raymond, John C.

    The combination of emission and absorption studies of the shocked gas in a supernova remnant can provide information not available from either study by itself, especially relating to the liberation of refractory elements from interstellar grains in the cooling zone behind the shock and the effects of departures from steady flow. No such combined studies have been attempted due to the need for a hot, bright background star behind supernova remnant nebulosity bright enough for emission line observations. Wallerstein and Balick have discovered a suitable patch of nebulosity in the Vela Supernova Remnant adjacent to the B3 III star HD 72088. IUE spectra of the star show a 94 km/s component in C IV and Si IV in absorption, and the optical spectra of Wallerstein and Balick show strong high excitation emission lines close to the star. We wish to obtain IUE spectra of the nebulosity as close to the star as possible and further high dispersion spectra of the star to improve the signal-tonoise.

  6. Absorption/emission spectroscopy and applications using shock tubes

    NASA Astrophysics Data System (ADS)

    Sulzmann, K. G. P.

    1988-09-01

    A historical overview is presented about the important contributions made by Penner, his co-workers, and his students to the application of shock-tube techniques for quantitative emission and absorption spectroscopy and its applications to chemical kinetics studies in high-temperature gases. The discussions address critical aspects related to valid determinations of quantitative spectroscopic data and chemical rate parameters and stress the requirements for uniformly heated gas samples, temperature determinations, gas-mixture preparations, selection of useful spectral intervals, verification of LTE conditions, time resolutions for concentration histories, uniqueness of kinetic measurements, as well as accuracies and reproducibilities of measurement results.The potential of absorption spectroscopy by molecule and/or radical resonance radiation and by laser transmission techniques is highlighted for kinetic studies in mixtures with very small reactant concentrations.Besides the work by the honoree and his school, the references include books, monographs and key articles related to the subjects discussed.

  7. A GAS TEMPERATURE PROFILE BY INFRARED EMISSION-ABSORPTION SPECTROSCOPY

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1994-01-01

    This computer program calculates the temperature profile of a flame or hot gas. Emphasis is on profiles found in jet engine or rocket engine exhaust streams containing water vapor or carbon dioxide as radiating gases. The temperature profile is assumed to be axisymmetric with a functional form controlled by two variable parameters. The parameters are calculated using measurements of gas radiation at two wavelengths in the infrared spectrum. Infrared emission and absorption measurements at two or more wavelengths provide a method of determining a gas temperature profile along a path through the gas by using a radiation source and receiver located outside the gas stream being measured. This permits simplified spectral scanning of a jet or rocket engine exhaust stream with the instrumentation outside the exhaust gas stream. This program provides an iterative-cyclic computation in which an initial assumed temperature profile is altered in shape until the computed emission and absorption agree, within specified limits, with the actual instrument measurements of emission and absorption. Temperature determination by experimental measurements of emission and absorption at two or more wavelengths is also provided by this program. Additionally, the program provides a technique for selecting the wavelengths to be used for determining the temperature profiles prior to the beginning of the experiment. By using this program feature, the experimenter has a higher probability of selecting wavelengths which will result in accurate temperature profile measurements. This program provides the user with a technique for determining whether this program will be sufficiently accurate for his particular application, as well as providing a means of finding the solution. The input to the program consists of four types of data: (1) computer program control constants, (2) measurements of gas radiance and transmittance at selected wavelengths, (3) tabulations from the literature of gas

  8. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance

    PubMed Central

    Moritake, Y.; Kanamori, Y.; Hane, K.

    2016-01-01

    We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy in the order of 10 nm, resonant wavelengths of Fano resonance were controlled from 1296 to 1416 nm. Fluorescence of QDs embedded in a polymer layer on ADB metamaterials were modified due to coupling to Fano resonance and fine tuning from 1350 to 1376 nm was observed. Wavelength tuning of modified fluorescence was reproduced by analysis using absorption peaks of Fano resonance. Tuning range of modified fluorescence became narrow, which was interpreted by a simple Gaussian model and resulted from comparable FWHM in QD fluorescence and Fano resonant peaks. The results will help the design and fabrication of metamaterial devices with fluorophores such as light sources and biomarkers. PMID:27622503

  9. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter

    USGS Publications Warehouse

    Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K.

    2003-01-01

    Excitation-emission matrix (EEM) fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in water and soil. However, interpreting the >10,000 wavelength-dependent fluorescence intensity data points represented in EEMs has posed a significant challenge. Fluorescence regional integration, a quantitative technique that integrates the volume beneath an EEM, was developed to analyze EEMs. EEMs were delineated into five excitation-emission regions based on fluorescence of model compounds, DOM fractions, and marine waters or freshwaters. Volumetric integration under the EEM within each region, normalized to the projected excitation-emission area within that region and dissolved organic carbon concentration, resulted in a normalized region-specific EEM volume (??i,n). Solid-state carbon nuclear magnetic resonance (13C NMR), Fourier transform infrared (FTIR) analysis, ultraviolet-visible absorption spectra, and EEMs were obtained for standard Suwannee River fulvic acid and 15 hydrophobic or hydrophilic acid, neutral, and base DOM fractions plus nonfractionated DOM from wastewater effluents and rivers in the southwestern United States. DOM fractions fluoresced in one or more EEM regions. The highest cumulative EEM volume (??T,n = ????i,n) was observed for hydrophobic neutral DOM fractions, followed by lower ??T,n values for hydrophobic acid, base, and hydrophilic acid DOM fractions, respectively. An extracted wastewater biomass DOM sample contained aromatic protein- and humic-like material and was characteristic of bacterial-soluble microbial products. Aromatic carbon and the presence of specific aromatic compounds (as indicated by solid-state 13C NMR and FTIR data) resulted in EEMs that aided in differentiating wastewater effluent DOM from drinking water DOM.

  10. Absorption and emission characteristics of Er3+ ions in alkali chloroborophosphate glasses.

    PubMed

    Moorthy, L R; Rao, T S; Janardhnam, K; Radhapathy, A

    2000-08-01

    Alkali chloroborophosphate glasses containing 1 mol% of Er3+ ions were studied experimentally using the absorption and emission spectroscopy. The energy level scheme for the 4f11 (Er3+) electronic configuration was deduced from the observed band energies of the absorption spectra in terms of a parametrized Hamiltonian using the various free-ion spectroscopic parameters. Oscillator strengths (f) measured from the absorption spectra have been analyzed using the Judd-Ofelt theory to evaluate the three intensity parameters omegalambda (lambda = 2, 4 and 6). Reasonable agreement between the measured and calculated f values has been found. Electric and magnetic dipole transition probabilities, fluorescence branching ratios, integrated emission cross sections and radiative lifetimes were calculated for all the excited states of Er3+ ions. The non-radiative (WNR) relaxation rates from the excited levels to the next lower levels have been calculated and the relationship between the energy gap and non-radiative relaxation rate has been established. These results were used to predict the possible potential laser transitions in Er-doped alkali chloroborophosphate glasses.

  11. Optical absorption and near infrared emission properties of Nd 3+ ions in alkali lead tellurofluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Saleem, S. A.; Jamalaiah, B. C.; Kumar, J. Suresh; Babu, A. Mohan; Moorthy, L. Rama; Jayasimhadri, M.; Jang, Kiwan; Lee, Ho Sueb; Yi, Soung Soo; Jeong, Jung Hyun

    2009-12-01

    Nd 3+ doped H 3BO 3-PbO-TeO 2-RF (R = Li, Na and K) glasses were prepared through melt quenching technique. Optical absorption and near infrared (NIR) fluorescence spectra were recorded at room temperature. The spectral intensities were analyzed in terms of the Judd-Ofelt (J-O) parameters ( Ω λ = 2, 4, 6). The covalency effect of Nd-O bond on the J-O parameters was estimated from the relative absorbance ratio (R) between 4I 9/2 → 4F 7/2 and 4I 9/2 → 4S 3/2 transitions. The effect of Nd-O covalency on the Ω4 and Ω6 intensity parameters as well as on the spontaneous emission probabilities ( AR) was discussed. Lomheim and Shazer hybrid method was applied to determine the fluorescence branching ratios ( βR) of each emission transition from the 4F 3/2 metastable level to its lower lying levels. The evaluated total radiative transition probabilities ( AT), stimulated emission cross-sections ( σe) and gain bandwidth parameters ( σe × Δ λP) were compared with the earlier reports.

  12. Plasmonic beaming and active control over fluorescent emission.

    PubMed

    Jun, Young Chul; Huang, Kevin C Y; Brongersma, Mark L

    2011-01-01

    Nanometallic optical antennas are rapidly gaining popularity in applications that require exquisite control over light concentration and emission processes. The search is on for high-performance antennas that offer facile integration on chips. Here we demonstrate a new, easily fabricated optical antenna design that achieves an unprecedented level of control over fluorescent emission by combining concepts from plasmonics, radiative decay engineering and optical beaming. The antenna consists of a nanoscale plasmonic cavity filled with quantum dots coupled to a miniature grating structure that can be engineered to produce one or more highly collimated beams. Electromagnetic simulations and confocal microscopy were used to visualize the beaming process. The metals defining the plasmonic cavity can be utilized to electrically control the emission intensity and wavelength. These findings facilitate the realization of a new class of active optical antennas for use in new optical sources and a wide range of nanoscale optical spectroscopy applications.

  13. Absorption and Emission of the Apigenin and Luteolin Flavonoids: A TDDFT Investigation

    NASA Astrophysics Data System (ADS)

    Amat, Anna; Clementi, Catia; de Angelis, Filippo; Sgamellotti, Antonio; Fantacci, Simona

    2009-09-01

    The absorption and emission properties of the two components of the yellow color extracted from weld (Reseda luteola L.), apigenin and luteolin, have been extensively investigated by means of DFT and TDDFT calculations. Our calculations reproduce the absorption spectra of both flavonoids in good agreement with the experimental data and allow us to assign the transitions giving rise to the main spectral features. For apigenin, we have also computed the electronic spectrum of the monodeprotonated species, providing a rationale for the red-shift of the experimental spectrum with increasing pH. The fluorescence emission of both apigenin and luteolin has then been investigated. Excited-state TDDFT geometry optimizations have highlighted an excited-state intramolecular proton transfer (ESIPT) from the 5-hydroxyl to the 4-carbonyl oxygen of the substituted benzopyrone moiety. By computing the potential energy curves at the ground and excited states as a function of an approximate proton transfer coordinate for apigenin, we have been able to trace an ESIPT pathway and thus explain the double emission observed experimentally.

  14. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    SciTech Connect

    Lee, Geon Joon Sim, Geon Bo; Choi, Eun Ha; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  15. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  16. An experimental study of the electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles and their electrosynthesized polymers.

    PubMed

    Diaw, A K D; Gningue-Sall, D; Yassar, A; Brochon, J-C; Henry, E; Aaron, J-J

    2015-01-25

    Electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles (N-PhPys), including HOPhPy, MeOPhPy, ThPhPy, PhDPy, DPhDPy, PyPhThThPhPy, and their available, electrosynthesized polymers were investigated. Electronic absorption spectra, fluorescence excitation and emission spectra, fluorescence quantum yields (ΦF) and lifetimes (τF), and other photophysical parameters of these N-PhPy derivatives and their polymers were measured in DMF, DMSO diluted solutions and/or solid state at room temperature. The electronic absorption spectra of N-PhPy derivatives and their polymers included one to several bands, located in the 270-395 nm region, according to the p-phenyl substituent electron-donating effect and conjugated heteroaromatic system length. The fluorescence excitation spectra were characterized by one broad main peak, with, in most cases, one (or more) poorly resolved shoulder (s), appearing in the 270-405 nm region, and their emission spectra were generally constituted of several bands located in the 330-480 nm region. No significant shift of the absorption, fluorescence excitation and emission spectra wavelengths was found upon going from the monomers to the corresponding polymers. ΦF values were high, varying between 0.11 and 0.63, according to the nature of substituents(s) and to the conjugated system extension. Fluorescence decays were mono-exponential for the monomers and poly-exponential for PyPhThThPhPy and for polymers. τF values were relatively short (0.35-5.17 ns), and markedly decreased with the electron-donor character of the phenyl group p-substituent and the conjugated system extension.

  17. Quantitation of DNA and RNA with Absorption and Fluorescence Spectroscopy.

    PubMed

    Gallagher, Sean R

    2017-02-02

    Quantitation of nucleic acids is a fundamental tool in molecular biology that requires accuracy, reliability, and the use of increasingly smaller sample volumes. This unit describes the traditional absorbance measurement at 260 nm and three more sensitive fluorescence techniques employing Hoechst 33258, ethidium bromide, and PicoGreen. The range of the assays covers 25 pg/ml to 50 µg/ml. Absorbance at 260 nm has an effective range from 1 to 50 µg/ml; Hoechst 33258 from 0.01 to 15 µg/ml; ethidium bromide from 0.1 to 10 µg/ml; and PicoGreen from 25 to 1000 pg/ml. © 2017 by John Wiley & Sons, Inc.

  18. Note: Measurement of saturable absorption by intense vacuum ultraviolet free electron laser using fluorescent material.

    PubMed

    Inubushi, Y; Yoneda, H; Higashiya, A; Ishikawa, T; Kimura, H; Kumagai, T; Morimoto, S; Nagasono, M; Ohashi, H; Sato, F; Tanaka, T; Togashi, T; Tono, K; Yabashi, M; Yamaguchi, Y; Kodama, R

    2010-03-01

    Advances in free electron lasers (FELs) which generate high energy photons are expected to open novel nonlinear optics in the x-ray and vacuum ultraviolet (VUV) regions. In this paper, we report a new method for performing VUV-FEL focusing experiments. A VUV-FEL was focused with Kirkpatrick-Baez optics on a multilayer target, which contains fused silica as a fluorescent material. By measuring the fluorescence, a 5.6x4.9 microm(2) focal spot was observed in situ. Fluorescence was used to measure the saturable absorption of VUV pulses in the tin layer. The transmission increases nonlinearly higher with increasing laser intensity.

  19. Outflow and hot dust emission in broad absorption line quasars

    SciTech Connect

    Zhang, Shaohua; Zhou, Hongyan; Wang, Huiyuan; Wang, Tinggui; Xing, Feijun; Jiang, Peng; Zhang, Kai E-mail: whywang@mail.ustc.edu.cn

    2014-05-01

    We have investigated a sample of 2099 broad absorption line (BAL) quasars with z = 1.7-2.2 built from the Sloan Digital Sky Survey Data Release Seven and the Wide-field Infrared Survey. This sample is collected from two BAL quasar samples in the literature and is refined by our new algorithm. Correlations of outflow velocity and strength with a hot dust indicator (β{sub NIR}) and other quasar physical parameters—such as an Eddington ratio, luminosity, and a UV continuum slope—are explored in order to figure out which parameters drive outflows. Here β{sub NIR} is the near-infrared continuum slope, which is a good indicator of the amount of hot dust emission relative to the accretion disk emission. We confirm previous findings that outflow properties moderately or weakly depend on the Eddington ratio, UV slope, and luminosity. For the first time, we report moderate and significant correlations of outflow strength and velocity with β{sub NIR} in BAL quasars. It is consistent with the behavior of blueshifted broad emission lines in non-BAL quasars. The statistical analysis and composite spectra study both reveal that outflow strength and velocity are more strongly correlated with β{sub NIR} than the Eddington ratio, luminosity, and UV slope. In particular, the composites show that the entire C IV absorption profile shifts blueward and broadens as β{sub NIR} increases, while the Eddington ratio and UV slope only affect the high and low velocity part of outflows, respectively. We discuss several potential processes and suggest that the dusty outflow scenario, i.e., that dust is intrinsic to outflows and may contribute to the outflow acceleration, is most likely.

  20. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo

    PubMed Central

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M.; Specht, Christian G.; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-01

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling. PMID:26711992

  1. Self-absorption Effects on Alpha-Induced Atmospheric Nitrogen Fluorescence Yield

    SciTech Connect

    Bachelor, Paula P.; Jordan, David V.; Harper, Warren W.; Cannon, Bret D.; Finn, Erin C.

    2009-12-01

    Nitrogen fluorescence induced by alpha, beta and gamma radiation can be used to detect the presence of radioactive contamination in the environment. Successful measurement of fluorescence yield involves a number of factors, including: known fluorescence signal rate during the measurement; the effective alpha spectrum of the radioactive sources used in the measurement; optical attenuation length of the fluorescence signal in air during the measurement; the absolute throughput of the instrumentation; calibration of the instrumentation; and radiation transport modeling of the "effective" array exposure rate given the spectrum of the alpha particles. Field testing of optical instrumentation was conducted to measure the nitrogen fluorescence yield from the alpha radiation generated from americium-241 (241Am) decay. The 241Am test sources were prepared by direct evaporation of ~1 mCi in nitric acid solution, and some solids were visible on the surface of the sources. A laboratory study was conducted with lower activities of 241Am to determine whether the presence of solids on the surface of the sources prepared both by direct evaporation and by electrodeposition onto stainless steel disks produced sufficient self-absorption to cause a decrease in expected fluorescence. Alpha spectroscopy was used to determine the apparent activity of the sources versus the known activity deposited on the surface. Results from the self-absorption laboratory studies were used to correct the activity values in the model and calculate the nitrogen fluorescence generated by the 241Am during the field experiments.

  2. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo.

    PubMed

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M; Specht, Christian G; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-19

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling.

  3. Revisiting the mechanism of nitrogen fluorescence emission induced by femtosecond filament in air

    NASA Astrophysics Data System (ADS)

    Li, Suyu; Jiang, Yuanfei; Chen, Anmin; He, Lanhai; Liu, Dunli; Jin, Mingxing

    2017-03-01

    The backward propagating and side emitted fluorescence during the femtosecond filamentation in air is experimentally investigated in this paper. By comparing the fluorescence emission in the circular and linear polarization states, we find that in the shorter focal length case, the direct ionization of N 2 greatly affects the fluorescence emission behaviors: the fluorescence from N2 + and N 2 is always stronger in the linear and circular polarization cases, respectively. Based on the observation, the emission mechanism of nitrogen fluorescence emission induced by a femtosecond filament is discussed.

  4. Absorption Spectrum of the Green Fluorescent Protein Chromophore Anion In Vacuo

    NASA Astrophysics Data System (ADS)

    Nielsen, S. B.; Lapierre, A.; Andersen, J. U.; Pedersen, U. V.; Tomita, S.; Andersen, L. H.

    2001-11-01

    A sensitive photoabsorption technique for studies of gas-phase biomolecules has been used at the ELISA electrostatic heavy-ion storage ring. We show that the anion form of the chromophore of the green fluorescent protein in vacuo has an absorption maximum at 479 nm, which coincides with one of the two absorption peaks of the protein. Its absorption characteristics are therefore ascribed to intrinsic chemical properties of the chromophore. Evidently, the special β-can structure of the protein provides shielding of the chromophore from the surroundings without significantly changing the electronic structure of the chromophore through interactions with amino acid side chains.

  5. Study of the Many Fluorescent Lines and the Absorption Variability in GX 301-2 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Fuerst, F.; Suchy, S.; Kreykenbohm, I.; Barragan, L.; Wilms, J.; Pottschmidt, K.; Caballero, I.; Kretschmar, P.; Ferrigno, C.; Rothschild, R. E.

    2011-01-01

    We present an in-depth study of the High Mass X-ray Binary (HMXB) GX 301-2 during its pre-periastron flare using data from the XMM-Newton satellite. The energy spectrum shows a power law continuum absorbed by a large equivalent hydrogen column on the order of 10(exp 24)/ sq cm and a prominent Fe K-alpha fluorescent emission line. Besides the Fe K-alpha line, evidence for Fe K-Beta, Ni K-alpha, Ni K-Beta, S K-alpha, Ar K-alpha, Ca K-alpha, and Cr K-alpha fluorescent lines is found. The observed line strengths are consistent with fluorescence in a cold absorber. This is the first time that Cr K-alpha is seen in emission in the X-ray spectrum of a HMXB. In addition to the modulation by the strong pulse period of approx 685 sec the source is highly variable and shows different states of activity. We perform time-resolved as well as pulse-to-pulse resolved spectroscopy to investigate differences between these states of activity. We find that fluorescent line fluxes are strongly variable and generally follow the overall flux. The N-H value is variable by a factor of 2, but not correlated to continuum normalization. We find an interval of low flux in the light curve in which the pulsations cease almost completely, without any indication of an increasing absorption column. We investigate this dip in detail and argue that it is most likely that during the dip the accretion ceased and the afterglow of the fluorescent iron accounted for the main portion of the X-ray flux. A similar dip was found earlier in RXTE data, and we compare our findings to these results.

  6. Absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers: an ab initio simulation.

    PubMed

    Cardozo, Thiago M; Aquino, Adélia J A; Barbatti, Mario; Borges, Itamar; Lischka, Hans

    2015-03-05

    The absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers with up to seven repeat units were theoretically investigated using the algebraic diagrammatic construction method to second order, ADC(2), combined with the resolution-of-the-identity (RI) approach. The ground and first excited state geometries of the oligomers were fully optimized. Vertical excitation energies and oscillator strengths of the first four transitions were computed. The vibrational broadening of the absorption and fluorescence spectra was studied using a semiclassical nuclear ensemble method. After correcting for basis set and solvent effects, we achieved a balanced description of the absorption and fluorescence spectra by means of the ADC(2) approach. This fact is documented by the computed Stokes shift along the PPV series, which is in good agreement with the experimental values. The experimentally observed band width of the UV absorption and fluorescence spectra is well reproduced by the present simulations showing that the nuclear ensemble generated should be well suitable for consecutive surface hopping dynamics simulations.

  7. Fluorescence, Absorption, and Excitation Spectra of Polycyclic Aromatic Hydrocarbons as a Tool for Quantitative Analysis

    ERIC Educational Resources Information Center

    Rivera-Figueroa, A. M.; Ramazan, K. A.; Finlayson-Pitts, B. J.

    2004-01-01

    A quantitative and qualitative study of the interplay between absorption, fluorescence, and excitation spectra of pollutants called polycyclic aromatic hydrocarbons (PAHs) is conducted. The study of five PAH displays the correlation of the above-mentioned properties along with the associated molecular changes.

  8. Galactic Soft X-ray Emission Revealed with Spectroscopic Study of Absorption and Emission Spectra

    NASA Astrophysics Data System (ADS)

    Yamasaki, Noriko Y.; Mitsuda, K.; Takei, Y.; Hagihara, T.; Yoshino, T.; Wang, Q. D.; Yao, Y.; McCammon, D.

    2010-03-01

    Spectroscopic study of Oxygen emission/absorption lines is a new tool to investigate the nature of the soft X-ray background. We investigated the emission spectra of 14 fields obtained by Suzaku, and detected OVII and OVIII lines separately. There is an almost isotropic OVII line emission with 2 LU intensity. As the attenuation length in the Galactic plane for that energy is short, that OVII emission should arise within 300 pc of our neighborhood. In comparison with the estimated emission measure for the local bubble, the most plausible origin of this component is the solar wind charge exchange with local interstellar materials. Another component presented from the correlation between the OVII and OVIII line intensity is a thermal emission with an apparent temperature of 0.2 keV with a field-to-field fluctuation of 10% in temperature, while the intensity varies about a factor of 4. By the combination analysis of the emission and the absorption spectra, we can investigate the density and the scale length of intervening plasma separately. We analyzed the Chanrdra grating spectra of LMC X-3 and PKS 2155-304, and emission spectra toward the line of sight by Suzaku. In both cases, the combined analysis showed that the hot plasma is not iso-thermal nor uniform. Assuming an exponential disk distribution, the thickness of the disk is as large as a few kpc. It suggests that there is a thick hot disk or hot halo surrounding our Galaxy, which is similar to X-ray hot haloes around several spiral galaxies.

  9. Plasmon-enhanced emission from single fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Donehue, Jessica E.; Haas, Beth L.; Wertz, Esther; Talicska, Courtney N.; Biteen, Julie S.

    2013-02-01

    In this work, we use evaporated gold nanoparticle films (GNPFs) as substrates for plasmon-enhanced imaging of two fluorescent proteins (FPs): mCherry and YFP. Through single-molecule epifluorescence microscopy, we show enhancement of single FP emission in the presence of GNPFs. The gold-coupled FPs demonstrate emission up to four times brighter and seven times longer lived, yielding order-of-magnitude enhancements in total photons detected. Ultimately, this results in increased localization accuracies for single-molecule imaging. Furthermore, we introduce preliminary results for enhancement of mCherry-labeled TcpP membrane proteins inside live Vibrio cholerae cells coupled to GNPFs. Our work indicates that plasmonic substrates are uniquely advantageous for super-resolution imaging and that plasmon-enhanced imaging is a promising technique for improving live cell single-molecule microscopy.

  10. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing

    NASA Astrophysics Data System (ADS)

    Li, Kai; Qin, Wei; Ding, Dan; Tomczak, Nikodem; Geng, Junlong; Liu, Rongrong; Liu, Jianzhao; Zhang, Xinhai; Liu, Hongwei; Liu, Bin; Tang, Ben Zhong

    2013-01-01

    Long-term noninvasive cell tracing by fluorescent probes is of great importance to life science and biomedical engineering. For example, understanding genesis, development, invasion and metastasis of cancerous cells and monitoring tissue regeneration after stem cell transplantation require continual tracing of the biological processes by cytocompatible fluorescent probes over a long period of time. In this work, we successfully developed organic far-red/near-infrared dots with aggregation-induced emission (AIE dots) and demonstrated their utilities as long-term cell trackers. The high emission efficiency, large absorptivity, excellent biocompatibility, and strong photobleaching resistance of the AIE dots functionalized by cell penetrating peptides derived from transactivator of transcription proteins ensured outstanding long-term noninvasive in vitro and in vivo cell tracing. The organic AIE dots outperform their counterparts of inorganic quantum dots, opening a new avenue in the development of fluorescent probes for following biological processes such as carcinogenesis.

  11. Absorption and emission spectroscopy in natural and synthetic corundum

    NASA Astrophysics Data System (ADS)

    Spinolo, G.; Palanza, V.; Ledonne, A.; Paleari, A.

    2009-04-01

    In the frame of an extensive project on the optical characterization of the many varieties of corundum (see:www.gemdata.mater.unimib.it ) we reconsidered the current interpretation of the absorption spectra with particular attention to the bands attributed to the IVCT mechanism Fe2+→ Fe3+ and Fe2+→Ti4+. A detailed study was devoted to natural metamorphic and Verneuil synthetic pale blue sapphires . In that paper (I.Fontana et al 2008) we gave experimental evidence that the band at 17500 cm-1 often attributed to Fe2+→Ti4+ IVCT transitions is in reality due to the 4T2 crystal field transition of Cr3+ partially overlapped by the 2E of Ti3+. The results of radio and photoluminescence excitation experiments obtained there, led us to propose that the color of these sapphires is mainly due to Cr in its two valence states ; Ti 3+ and Fe3+ have a minor role. After those encouraging results, we decided to apply the same approach to the study of deep blue and yellow sapphires of magmatic origin. Evaluation of impurity ion concentration by EDXRF revealed that in all these samples the concentration of Fe is quite high (around 1%) while Cr and Ti are barely detectable. Characteristic of the absorption spectra of deep blue samples is the dominant presence of the 5E spin allowed transition of Fe2+; Fe3+ has a minor role due to the fact that all d5 transitions are spin forbidden and ,consequently, very weak. In yellow sapphires Fe is totally in its 3+ valence state. In these cases, the color from yellow to blue, sometimes even within the same sample, depends. on oxidizing or reducing growth conditions. Even if the concentrations of Cr and Ti are very low, their characteristic emissions are the only ones observable down to 10000 cm-1 in radio and photoluminescence spectra. This piece of evidence suggested us to propose for the absorption bands present in the 14000 to 21000 cm-1 range, often attributed to IVCT, the same attribution given to the analogous bands in metamorphic

  12. Low Light CMOS Contact Imager with an Integrated Poly-Acrylic Emission Filter for Fluorescence Detection

    PubMed Central

    Dattner, Yonathan; Yadid-Pecht, Orly

    2010-01-01

    This study presents the fabrication of a low cost poly-acrylic acid (PAA) based emission filter integrated with a low light CMOS contact imager for fluorescence detection. The process involves the use of PAA as an adhesive for the emission filter. The poly-acrylic solution was chosen due its optical transparent properties, adhesive properties, miscibility with polar protic solvents and most importantly its bio-compatibility with a biological environment. The emission filter, also known as an absorption filter, involves dissolving an absorbing specimen in a polar protic solvent and mixing it with the PAA to uniformly bond the absorbing specimen and harden the filter. The PAA is optically transparent in solid form and therefore does not contribute to the absorbance of light in the visible spectrum. Many combinations of absorbing specimen and polar protic solvents can be derived, yielding different filter characteristics in different parts of the spectrum. We report a specific combination as a first example of implementation of our technology. The filter reported has excitation in the green spectrum and emission in the red spectrum, utilizing the increased quantum efficiency of the photo sensitive sensor array. The thickness of the filter (20 μm) was chosen by calculating the desired SNR using Beer-Lambert’s law for liquids, Quantum Yield of the fluorophore and the Quantum Efficiency of the sensor array. The filters promising characteristics make it suitable for low light fluorescence detection. The filter was integrated with a fully functional low noise, low light CMOS contact imager and experimental results using fluorescence polystyrene micro-spheres are presented. PMID:22399920

  13. Experimental recovery of intrinsic fluorescence and fluorophore concentration in the presence of hemoglobin: spectral effect of scattering and absorption on fluorescence

    NASA Astrophysics Data System (ADS)

    Du Le, Vinh Nguyen; Patterson, Michael S.; Farrell, Thomas J.; Hayward, Joseph E.; Fang, Qiyin

    2015-12-01

    The ability to recover the intrinsic fluorescence of biological fluorophores is crucial to accurately identify the fluorophores and quantify their concentrations in the media. Although some studies have successfully retrieved the fluorescence spectral shape of known fluorophores, the techniques usually came with heavy computation costs and did not apply for strongly absorptive media, and the intrinsic fluorescence intensity and fluorophore concentration were not recovered. In this communication, an experimental approach was presented to recover intrinsic fluorescence and concentration of fluorescein in the presence of hemoglobin (Hb). The results indicated that the method was efficient in recovering the intrinsic fluorescence peak and fluorophore concentration with an error of 3% and 10%, respectively. The results also suggested that chromophores with irregular absorption spectra (e.g., Hb) have more profound effects on fluorescence spectral shape than chromophores with monotonic absorption and scattering spectra (e.g., black India ink and polystyrene microspheres).

  14. Experimental recovery of intrinsic fluorescence and fluorophore concentration in the presence of hemoglobin: spectral effect of scattering and absorption on fluorescence.

    PubMed

    Du Le, Vinh Nguyen; Patterson, Michael S; Farrell, Thomas J; Hayward, Joseph E; Fang, Qiyin

    2015-01-01

    The ability to recover the intrinsic fluorescence of biological fluorophores is crucial to accurately identify the fluorophores and quantify their concentrations in the media. Although some studies have successfully retrieved the fluorescence spectral shape of known fluorophores, the techniques usually came with heavy computation costs and did not apply for strongly absorptive media, and the intrinsic fluorescence intensity and fluorophore concentration were not recovered. In this communication, an experimental approach was presented to recover intrinsic fluorescence and concentration of fluorescein in the presence of hemoglobin (Hb). The results indicated that the method was efficient in recovering the intrinsic fluorescence peak and fluorophore concentration with an error of 3% and 10%, respectively. The results also suggested that chromophores with irregular absorption spectra (e.g., Hb) have more profound effects on fluorescence spectral shape than chromophores with monotonic absorption and scattering spectra (e.g., black India ink and polystyrene microspheres).

  15. A new near-infrared absorption and fluorescent probe based on bombesin for molecular imaging

    NASA Astrophysics Data System (ADS)

    Kujala, Naresh; Zhai, Huifang; Smith, Charles; Prasanphanich, Adam; Sieckman, Gary; Hoffman, Timothy; Volkert, Wynn; Ma, Lixin; Yu, Ping

    2009-02-01

    We have developed a series of new dye bombesin conjugates for site-specific absorption and fluorescence imaging of human prostate and breast cancers. Bombesin (BBN), an amphibian analog to the endogenous ligand, binds to the gastrin releasing peptide (GRP) receptors with high specificity and affinity. Previously, we developed an Alexa Fluor 680-GGG-BBN peptide conjugate which demonstrated high binding affinity and specificity for breast cancer cells in the in vitro and in vivo tests (Ref: Ma et al., Molecular Imaging, vol. 6, no. 3, 2007: 171-180). This probe can not be used as an absorption probe in near-infrared imaging because its absorption peak is in the visible wavelength range. In addition, site specific longer wavelength fluorescent probe is desired for in vivo molecular imaging because long wavelength photons penetrate deeper into tissue. The new absorption and fluorescent probe we developed is based on the last eight-residues of BBN, -Q-W-A-V-G-H-L-M-(NH2), and labeled with AlexaFluor750 through a chemical linker, beta-alanine. The new probe, Alexa Fluor 750-BetaAla-BBN(7-14)NH2, exhibits optimal pharmacokinetics for specific targeting and optical imaging of the GRP receptor over-expressing cancer cells. Absorption spectrum has been measured and showed absorption peaks at 690nm, 720nm and 735nm. Fluorescent band is located at 755nm. In vitro and in vivo investigations have demonstrated the effectiveness of the new conjugates to specifically target human cancer cells overexpressing GRP receptors and tumor xenografts in severely compromised immunodeficient mouse model.

  16. Non-emissive plastic colour filters for fluorescence detection.

    PubMed

    Yamazaki, M; Krishnadasan, S; deMello, A J; deMello, J C

    2012-11-07

    We report the fabrication of non-emissive short- and long-pass filters on plastic for high sensitivity fluorescence detection. The filters were prepared by overnight immersion of titania-coated polyethylene terephthalate (PET) in an appropriate dye solution - xylene cyanol for short-pass filtering and fluorescein disodium salt for long-pass filtering - followed by repeated washing to remove excess dye. The interface between the titania and the dye molecule induces efficient quenching of photo-generated excitons in the dye molecule, reducing auto-fluorescence to negligible values and so overcoming the principal weakness of conventional colour filters. Using the filters in conjunction with a 505 nm cyan light-emitting diode and a Si photodiode, dose-response measurements were made for T8661 Transfluosphere beads in the concentration range 1 × 10(9) to 1 × 10(5) beads μL(-1), yielding a limit of detection of 3 × 10(4) beads μL(-1). The LED/short-pass filter/T8661/long-pass filter/Si-photodiode combination reported here offers an attractive solution for sensitive, low cost fluorescence detection that is readily applicable to a wide range of bead-based immunodiagnostic assays.

  17. Ultrahigh magnetically responsive microplatelets with tunable fluorescence emission.

    PubMed

    Libanori, Rafael; Reusch, Frieder B; Erb, Randall M; Studart, André R

    2013-11-26

    Tuning the optical properties of suspensions by controlling the orientation and spatial distribution of suspended particles with magnetic fields is an interesting approach to creating magnetically controlled displays, microrheology sensors, and materials with tunable light emission. However, the relatively high concentration of magnetic material required to manipulate these particles very often reduces the optical transmittance of the system. In this study, we describe a simple method of generating particles with magnetically tunable optical properties via sol-gel deposition and functionalization of a continuous layer of silica on ultrahigh magnetically responsive (UHMR) alumina microplatelets. UHMR microplatelets with tunable magnetic response in the range of 15-36 G are obtained by the electrostatic adsorption of 2 to 13% of superparamagnetic iron oxide nanoparticles (SPIONs) on the alumina surface. The magnetized platelets are coated with a 20-50 nm layer of SiO2 through the controlled hydrolysis and condensation reactions of tetraethylorthosilicate (TEOS) in an NH3/ethanol mixture. Finally, the silica surface is covalently modified with an organic fluorescent dye by conventional silane chemistry. Because of the anisotropic shape of the particles, control of their orientation and distribution using magnetic fields and field gradients enables easy tuning of the optical properties of the suspension. This strategy allows us to gain both spatial and temporal control over the fluorescence emission from the particle surface, making the multifunctional platelets interesting building blocks for the manipulation of light in colloid-based smart optical devices and sensors.

  18. Photometric and fluorometric continuous kinetic assay of acid phosphatases with new substrates possessing longwave absorption and emission maxima.

    PubMed

    Koller, E; Wolfbeis, O S

    1984-11-15

    A direct and continuous kinetic method for the photometric and fluorometric determination of various acid phosphatases is described. It is based on new coumarin-derived phosphates, which after enzymatic hydrolysis undergo dissociation to form intensely colored and strongly fluorescent phenolate anions. The latter have absorption maxima ranging from 385 to 505 nm, and fluorescence maxima between 470 and 595 nm. The new substrates were compared with respect to their rate of enzymatic hydrolysis, optimum pH, and detection limits of acid phosphatase from potato and wheat germ. Detection limits of 0.001 unit/ml were found by photometry, and as low as 0.00006 unit/ml by fluorometry. The principal advantages of the new substrates over existing ones are longwave absorptions and emissions, large Stokes shifts, and the low pKa values of the corresponding phenols, thus allowing a direct and continuous assay of acid phosphatase even in weakly acidic solutions.

  19. TD-DFT Study of Absorption and Emission Spectra of 2-(2'-Aminophenyl)benzothiazole Derivatives in Water.

    PubMed

    Manojai, Natthaporn; Daengngern, Rathawat; Kerdpol, Khanittha; Kungwan, Nawee; Ngaojampa, Chanisorn

    2017-03-01

    Reduction of aromatic azides to amines is an important property of hydrogen sulphide (H2S) which is useful in fluorescence microscopy and H2S probing in cells. The aim of this work is to study the substituent effect on the absorption and emission spectra of 2-(2'-aminophenyl)benzothiazole (APBT) in order to design APBT derivatives for the use of H2S detection. Absorption and emission spectra of APBT derivatives in aqueous environment were calculated using density functional theory (DFT) and time-dependent DFT (TD-DFT) at B3LYP/6-311+G(d,p) level. The computed results favoured the substitution of strong electron-donating group on the phenyl ring opposite to the amino group for their large Stokes' shifts and emission wavelengths of over 600 nm. Also, three designed compounds were suggested as potential candidates for the fluorescent probes. Such generalised guideline learnt from this work can also be useful in further designs of other fluorescent probes of H2S in water.

  20. UV absorption and fluorescence properties of gas-phase p-difluorobenzene

    NASA Astrophysics Data System (ADS)

    Benzler, Thorsten; Dreier, Thomas; Schulz, Christof

    2017-01-01

    1,4-Difluorobenzene ( p-DFB) is a promising aromatic tracer for determining concentration, temperature, and O2 partial pressure in mixing gas flows based on laser-induced fluorescence (LIF). Signal quantification requires the knowledge of absorption and fluorescence properties as a function of environmental conditions. We report absorption and fluorescence spectra as well as fluorescence lifetimes of p-DFB in the temperature, pressure, and oxygen partial pressure range that is relevant for many applications including internal combustion engines. The UV absorption cross section, investigated between 296 and 675 K, has a peak value close to 266 nm and decreases with temperature, while still exceeding other single-ring aromatics. Time-resolved fluorescence spectra were recorded after picosecond laser excitation at 266 nm as a function of temperature (296-1180 K), pressure (1-10 bar), and O2 partial pressure (0-210 mbar) using a streak camera (temporal resolution 50 ps) coupled to a spectrometer. The fluorescence spectra red-shift ( 2 nm/100 K) and broaden (increase in full width at half maximum by 58% in the investigated temperature range) with temperature. In N2 as bath gas (1 bar), the fluorescence lifetime τ eff decreases with temperature by a factor of about 20 (from 7 ns at 298 K down to 0.32 ns at 1180 K), while at 8 bar the shortest lifetime at 975 K is 0.4 ns. A noticeable pressure dependence (i.e., reduced τ eff) is only visible at 675 K and above. Quenching of p-DFB LIF by O2 (for partial pressures up to 210 mbar) shortens the fluorescence lifetime significantly at room temperature (by a factor of 8), but much less at higher temperatures (by a factor of 1.8 at 970 K). For fixed O2 partial pressures (52 mbar and above), τ eff shows a plateau region with temperature which shifts toward higher temperatures at the higher O2 partial pressures. O2 quenching is less prominent for p-DFB compared to other aromatic compounds investigated so far. The temperature

  1. Quantitative fluorescence spectroscopy in turbid media: a practical solution to the problem of scattering and absorption.

    PubMed

    Chen, Yao; Chen, Zeng-Ping; Yang, Jing; Jin, Jing-Wen; Zhang, Juan; Yu, Ru-Qin

    2013-02-19

    The presence of practically unavoidable scatterers and background absorbers in turbid media such as biological tissue or cell suspensions can significantly distort the shape and intensity of fluorescence spectra of fluorophores and, hence, greatly hinder the in situ quantitative determination of fluorophores in turbid media. In this contribution, a quantitative fluorescence model (QFM) was proposed to explicitly model the effects of the scattering and absorption on fluorescence measurements. On the basis of the proposed model, a calibration strategy was developed to remove the detrimental effects of scattering and absorption and, hence, realize accurate quantitative analysis of fluorophores in turbid media. A proof-of-concept model system, the determination of free Ca(2+) in turbid media using Fura-2, was utilized to evaluate the performance of the proposed method. Experimental results showed that QFM can provide quite precise concentration predictions for free Ca(2+) in turbid media with an average relative error of about 7%, probably the best results ever achieved for turbid media without the use of advanced optical technologies. QFM has not only good performance but also simplicity of implementation. It does not require characterization of the light scattering properties of turbid media, provided that the light scattering and absorption properties of the test samples are reasonably close to those of the calibration samples. QFM can be developed and extended in many application areas such as ratiometric fluorescent sensors for quantitative live cell imaging.

  2. Study of the Photodegradation Process of Vitamin E Acetate by Optical Absorption, Fluorescence, and Thermal Lens Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tiburcio-Moreno, J. A.; Marcelín-Jiménez, G.; Leanos-Castaneda, O. L.; Yanez-Limon, J. M.; Alvarado-Gil, J. J.

    2012-11-01

    The stability of vitamin E acetate exposed to ultraviolet (UV) light was studied using three spectroscopic methods. An ethanol solution of vitamin E acetate was treated with either UVC light (254 nm) or UVA light (366 nm) during a period of 10 min followed by a study of UV-Vis optical absorption, then by fluorescence spectroscopy excitation by UV radiation at either 290 nm or 368 nm and, finally the solution was studied by thermal lens spectroscopy. Immediately, the same solution of vitamin E acetate was subjected to the UV irradiation process until completion of six periods of irradiation and measurements. UVC light treatment induced the appearance of a broad absorption band in the range of 310 nm to 440 nm with maximum absorbance at 368 nm, which progressively grew as the time of the exposure to UVC light increases. In contrast, UVA light treatment did not affect the absorption spectra of vitamin E acetate. Fluorescence spectra of the vitamin E acetate (without UV light treatment) showed no fluorescence when excited with 368 nm while exciting with 290 nm, an intense and broad emission band (300 nm to 440 nm) with a maximum at 340 nm appeared. When vitamin E acetate was treated with UVC light, this emission band progressively decreased as the time of the UVC light irradiation grew. No signal from UV-untreated vitamin E acetate could be detected by the thermal lens method. Interestingly, as the time of the UVC light treatment increased, the thermal lens signal progressively grew. Additional experiments performed to monitor the time evolution of the process during continuous UVC treatment of the vitamin E acetate using thermal lens spectroscopy exhibited a progressive increase of the thermal lens signal reaching a plateau at about 8000 s. This study shows that the vitamin E acetate is stable when it is irradiated with UVA light, while the irradiation with UVC light induces the formation of photodegradation products. Interestingly, this photodegradation process using

  3. Optical sensor instrumentation using absorption- and fluorescence-based capillary waveguide optrodes

    NASA Astrophysics Data System (ADS)

    Weigl, Bernhard H.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, H.; Trettnak, Wolfgang; Wolfbeis, Otto S.; Lippitsch, Max E.

    1995-09-01

    An analytical instrument comprising absorption- and fluorescence-based capillary waveguide optrodes (CWOs) is described. Glass capillaries with a chemically sensitive coating on the inner surface are used for optical chemical sensing in gaseous and liquid samples. In case of absorption-based CWOs, light from a LED is coupled into and out of the capillary under a defined angle via a rigid waveguide and an immersion coupler. The coated glass capillary forms an inhomogeneous waveguide, in which the light is guided in both the glass and the coating. The portion of the light which is absorbed in the chemically sensitive coating is proportional to a chemcial concentration or activity. This principle is demonstrated with a pCO2-sensitive inner coating. Typical relative light intensity signal changes with this type of optical interrogation are 98%, with an active capillary length of 10 mm. For fluorescence- based CWOs, the excitation light from an LED is coupled diffusely into the glass capillary and the optical sensor layer. A major portion of the excited fluorescence light is then collected within the coated capillary, and guided to the photodiode, which is located on the distal end of the capillary waveguide. Hereby, the excitation light is separated very efficiently from the fluorescent light. As an example, a CWO for pO2 is described. By applying this optical geometry, it was possible to utilize fluorescence decay time of the sensor layer as the transducer signal even when using solid state components (LEDs and photodiodes).

  4. Emission lifetimes of a fluorescent dye under shock compression

    SciTech Connect

    Liu, Wei-long; Bassett, Will P.; Christensen, James M.; Dlott, Dana D.

    2015-10-15

    The emission lifetimes of rhodamine 6G (R6G), were measured under shock compression to 9.1 GPa, with the dual intent of better understanding molecular photophysics in extreme environments and assessing the usefulness of fluorescence lifetime microscopy to measure spatially-dependent pressure distributions in shocked microstructured media. R6G was studied as free dye dissolved in poly-methyl methacrylate (PMMA), or dye encapsulated in silica microparticles suspended in PMMA. Thin layers of these materials in impedance-matched geometries were subjected to planar single-stage shocks created by laser-driven flyer plates. A synchronized femtosecond laser excited the dye at selected times relative to flyer plate arrival and the emission lifetimes were measured with a streak camera. Lifetimes decreased when shocks arrived. The lifetime decrease was attributed to a shock-induced enhancement of R6G nonradiative relaxation. At least part of the relaxation involved shock-enhanced intersystem crossing. For free dye in PMMA, the lifetime decrease during the shock was shown to be a linear function of shock pressure from 0-9 GPa, with a slope of -0.22 ns·GPa-1. Furthermore, the linear relationship makes it simple to convert lifetimes into pressures. Lifetime measurements in shocked microenvironments may be better than emission intensity measurements, since lifetimes are sensitive to the surrounding environment, but insensitive to intensity variations associated with the motion and optical properties of a dynamically changing structure.

  5. Emission lifetimes of a fluorescent dye under shock compression

    DOE PAGES

    Liu, Wei-long; Bassett, Will P.; Christensen, James M.; ...

    2015-10-15

    The emission lifetimes of rhodamine 6G (R6G), were measured under shock compression to 9.1 GPa, with the dual intent of better understanding molecular photophysics in extreme environments and assessing the usefulness of fluorescence lifetime microscopy to measure spatially-dependent pressure distributions in shocked microstructured media. R6G was studied as free dye dissolved in poly-methyl methacrylate (PMMA), or dye encapsulated in silica microparticles suspended in PMMA. Thin layers of these materials in impedance-matched geometries were subjected to planar single-stage shocks created by laser-driven flyer plates. A synchronized femtosecond laser excited the dye at selected times relative to flyer plate arrival and themore » emission lifetimes were measured with a streak camera. Lifetimes decreased when shocks arrived. The lifetime decrease was attributed to a shock-induced enhancement of R6G nonradiative relaxation. At least part of the relaxation involved shock-enhanced intersystem crossing. For free dye in PMMA, the lifetime decrease during the shock was shown to be a linear function of shock pressure from 0-9 GPa, with a slope of -0.22 ns·GPa-1. Furthermore, the linear relationship makes it simple to convert lifetimes into pressures. Lifetime measurements in shocked microenvironments may be better than emission intensity measurements, since lifetimes are sensitive to the surrounding environment, but insensitive to intensity variations associated with the motion and optical properties of a dynamically changing structure.« less

  6. Near-infrared fluorescence amplified organic nanoparticles with aggregation-induced emission characteristics for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Geng, Junlong; Zhu, Zhenshu; Qin, Wei; Ma, Lin; Hu, Yong; Gurzadyan, Gagik G.; Tang, Ben Zhong; Liu, Bin

    2013-12-01

    Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] as the encapsulation matrix. The good spectral overlap between the emission of TPETPAFN and the absorption of NIR775 leads to efficient energy transfer, resulting in a 47-fold enhancement of the NIR775 emission intensity upon excitation of TPETPAFN at 510 nm as compared to that upon direct excitation of NIR775 at 760 nm. The obtained fluorescent NPs show sharp NIR emission with a band width of 20 nm, a large Stokes shift of 275 nm, good photostability and low cytotoxicity. In vivo imaging study reveals that the synthesized NPs are able to provide high fluorescence contrast in live animals. The Förster resonance energy transfer strategy overcomes the intrinsic limitation of broad emission spectra for AIE NPs, which opens new opportunities to synthesize organic NPs with high brightness and narrow emission for potential applications in multiplex sensing and imaging.Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000

  7. Interactions of hypericin with a model mutagen - Acridine orange analyzed by light absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Pietrzak, Monika; Szabelski, Mariusz; Kasparek, Adam; Wieczorek, Zbigniew

    2017-02-01

    The present study was designed to estimate the ability of hypericin to interact with a model mutagen - acridine orange. The hetero-association of hypericin and acridine orange was investigated with absorption and fluorescence spectroscopy methods in aqueous solution of DMSO. The data indicate that hypericin forms complexes with acridine orange and that the association constants are relatively high and depend on DMSO concentration. The absorption spectra of the hypericin - acridine orange complexes were examined as well. Owing to its ability to interact with flat aromatic compounds, hypericin may potentially be used as an interceptor molecule.

  8. Fluorescence and absorption spectroscopy of the weakly fluorescent chlorophyll a in cytochrome b6f of Synechocystis PCC6803.

    PubMed Central

    Peterman, E J; Wenk, S O; Pullerits, T; Pâlsson, L O; van Grondelle, R; Dekker, J P; Rögner, M; van Amerongen, H

    1998-01-01

    A spectroscopic characterization of the chlorophyll a (Chl) molecule in the monomeric cytochrome b6f complex (Cytb6f) isolated from the cyanobacterium Synechocystis PCC6803 is presented. The fluorescence lifetime and quantum yield have been determined, and it is shown that Chl in Cytb6f has an excited-state lifetime that is 20 times smaller than that of Chl in methanol. This shortening of the Chl excited state lifetime is not caused by an increased rate of intersystem crossing. Most probably it is due to quenching by a nearby amino acid. It is suggested that this quenching is a mechanism for preventing the formation of Chl triplets, which can lead to the formation of harmful singlet oxygen. Using site-selected fluorescence spectroscopy, detailed information on vibrational frequencies in both the ground and Qy excited states has been obtained. The vibrational frequencies indicate that the Chl molecule has one axial ligand bound to its central magnesium and accepts a hydrogen bond to its 13(1)-keto carbonyl. The results show that the Chl binds to a well-defined pocket of the protein and experiences several close contacts with nearby amino acids. From the site-selected fluorescence spectra, it is further concluded that the electron-phonon coupling is moderately strong. Simulations of both the site-selected fluorescence spectra and the temperature dependence of absorption and fluorescence spectra are presented. These simulations indicate that the Huang-Rhys factor characterizing the electron-phonon coupling strength is between 0.6 and 0.9. The width of the Gaussian inhomogeneous distribution function is 210 +/- 10 cm-1. PMID:9649396

  9. Absorption and emission spectroscopy of individual semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    McDonald, Matthew P.

    The advent of controllable synthetic methods for the production of semiconductor nanostructures has led to their use in a host of applications, including light-emitting diodes, field effect transistors, sensors, and even television displays. This is, in part, due to the size, shape, and morphologically dependent optical and electrical properties that make this class of materials extremely customizable; wire-, rod- and sphere-shaped nanocrystals are readily synthesized through common wet chemical methods. Most notably, confining the physical dimension of the nanostructure to a size below its Bohr radius (aB) results in quantum confinement effects that increase its optical energy gap. Not only the size, but the shape of a particle can be exploited to tailor its optical and electrical properties. For example, confined CdSe quantum dots (QDs) and nanowires (NWs) of equivalent diameter possess significantly different optical gaps. This phenomenon has been ascribed to electrostatic contributions arising from dielectric screening effects that are more pronounced in an elongated (wire-like) morphology. Semiconducting nanostructures have thus received significant attention over the past two decades. However, surprisingly little work has been done to elucidate their basic photophysics on a single particle basis. What has been done has generally been accomplished through emission-based measurements, and thus does not fully capture the full breadth of these intriguing systems. What is therefore needed then are absorption-based studies that probe the size and shape dependent evolution of nanostructure photophysics. This thesis summarizes the single particle absorption spectroscopy that we have carried out to fill this knowledge gap. Specifically, the diameter-dependent progression of one-dimensional (1D) excitonic states in CdSe NWs has been revealed. This is followed by a study that focuses on the polarization selection rules of 1D excitons within single CdSe NWs. Finally

  10. Fluorescence-excitation and Emission Spectroscopy on Single FMO Complexes

    PubMed Central

    Löhner, Alexander; Ashraf , Khuram; Cogdell, Richard J.; Köhler, Jürgen

    2016-01-01

    In green-sulfur bacteria sunlight is absorbed by antenna structures termed chlorosomes, and transferred to the RC via the Fenna-Matthews-Olson (FMO) complex. FMO consists of three monomers arranged in C3 symmetry where each monomer accommodates eight Bacteriochlorophyll a (BChl a) molecules. It was the first pigment-protein complex for which the structure has been determined with high resolution and since then this complex has been the subject of numerous studies both experimentally and theoretically. Here we report about fluorescence-excitation spectroscopy as well as emission spectroscopy from individual FMO complexes at low temperatures. The individual FMO complexes are subjected to very fast spectral fluctuations smearing out any possible different information from the ensemble data that were recorded under the same experimental conditions. In other words, on the time scales that are experimentally accessible by single-molecule techniques, the FMO complex exhibits ergodic behaviour. PMID:27545197

  11. Solvatochromic Shifts on Absorption and Fluorescence Bands of N,N-Dimethylaniline.

    PubMed

    Fdez Galván, Ignacio; Elena Martín, M; Muñoz-Losa, Aurora; Aguilar, Manuel A

    2009-02-10

    A theoretical study of the absorption and fluorescence UV/vis spectra of N,N-dimethylaniline in different solvents has been performed, using a method combining quantum mechanics, molecular mechanics, and the mean field approximation. The transitions between the three lowest-lying states have been calculated in vacuum as well as in cyclohexane, tetrahydrofuran, and water. The apparent anomalies experimentally found in water (a blue shift in the absorption bands with respect to the trend in other solvents, and an abnormally high red shift for the fluorescence band) are well reproduced and explained in view of the electronic structure of the solute and the solvent distribution around it. Additional calculations were done with a mixture of cyclohexane and tetrahydrofuran as solvent, which displays a nonlinear solvatochromic shift. Results, although not conclusive, are consistent with experiment and provide a possible explanation for the nonlinear behavior in the solvent mixture.

  12. Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Lu, Feng; Streets, Aaron M.; Fei, Peng; Quan, Junmin; Huang, Yanyi

    2013-05-01

    We directly observe non-fluorescent nanodiamonds in living cells using transient absorption microscopy. This label-free technology provides a novel modality to study the dynamic behavior of nanodiamonds inside the cells with intrinsic three-dimensional imaging capability. We apply this method to capture the cellular uptake of nanodiamonds under various conditions, confirming the endocytosis mechanism.We directly observe non-fluorescent nanodiamonds in living cells using transient absorption microscopy. This label-free technology provides a novel modality to study the dynamic behavior of nanodiamonds inside the cells with intrinsic three-dimensional imaging capability. We apply this method to capture the cellular uptake of nanodiamonds under various conditions, confirming the endocytosis mechanism. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00308f

  13. Simultaneous control of emission localization and two-photon absorption efficiency in dissymmetrical chromophores

    SciTech Connect

    Tretiak, Sergei

    2009-01-01

    The aim of the present work is to demonstrate that combined spectral tuning of fluorescence and two-photon absorption (TPA) properties of multipolar chromophores can be achieved by introduction of slight electronic chemical dissymmetry. In that perspective, two novel series of structurally related chromophores have been designed and studied: a first series based on rod-like quadrupolar chromophores bearing different electron-donating (D) end groups and a second series based on three-branched octupolar chromophores built from a trigonal donating moiety and bearing various acceptor (A) peripheral groups. The influence of the electronic dissymmetry is investigated by combined experimental and theoretical studies of the linear and nonlinear optical properties of dissymmetric chromophores compared to their symmetrical counterparts. In both types of systems (i.e. quadrupoles and octupoles) experiments and theory reveal that excitation is essentially delocalized and that excitation involves synchronized charge redistribution between the different D and A moieties within the multipolar structure (i.e. concerted intramolecular charge transfer). In contrast, the emission stems only from a particular dipolar subunit bearing the strongest D or A moieties due to fast excitation localization after excitation prior to emission. Hence control of emission characteristics (polarization and emission spectrum) in addition to localization can be achieved by controlled introduction of electronic dissymmetry (i.e. replacement of one of the D or A end-groups by a slightly stronger D{prime} or A{prime} units). Interestingly dissymmetrical functionalization of both quadrupolar and octupolar compounds does not lead to significant loss in TPA responses and can even be beneficial due to the spectral broadening and peak position tuning that it allows. This study thus reveals an original molecular engineering route strategy allowing major TPA enhancement in multipolar structures due to concerted

  14. Study of preferential solvation of 2,6-diaminoanthraquinone in binary mixtures by absorption and fluorescence studies

    NASA Astrophysics Data System (ADS)

    Sasirekha, V.; Ramakrishnan, V.

    2008-08-01

    The role of solute-solvent and solvent-solvent interaction on the preferential solvation characteristics of 2,6-diaminoanthraquinone (DAAQ) has been analysed by monitoring the optical absorption and fluorescence emission spectra. Binary mixtures consist of dimethylformamide (DMF)-ethanol (EtOH), DMF-dimelthylsulfoxide (DMSO), benzene (BZ)-DMF and acetonitrile (ACN)-DMF. The optical absorption spectra maximum and emission spectra maximum of DAAQ show the changes with varying the solvents and change in the composition in the case of binary mixtures. Non-ideal solvation characteristics are observed in all binary mixtures. It is found that at certain concentrations two mixed solvents interact to form a common structure with a ν12 (wave number in cm -1) value not always intermediate ( ν1 and ν2) between the values of the solvents mixed. Synergistic effect is observed in the case of DMF-EtOH mixtures. The preferential solvation parameters local mole fraction X2L, solvation index δS2, exchange constant K12 are calculated in all binary mixtures expect in the case of DMF-BZ mixture and DMF-EtOH mixture in the ground state. We have also monitored excitation wavelength effect on the probe molecule in aprotic polar and protic polar solvents.

  15. Method for accurate quantitation of background tissue optical properties in the presence of emission from a strong fluorescence marker

    NASA Astrophysics Data System (ADS)

    Bravo, Jaime; Davis, Scott C.; Roberts, David W.; Paulsen, Keith D.; Kanick, Stephen C.

    2015-03-01

    Quantification of targeted fluorescence markers during neurosurgery has the potential to improve and standardize surgical distinction between normal and cancerous tissues. However, quantitative analysis of marker fluorescence is complicated by tissue background absorption and scattering properties. Correction algorithms that transform raw fluorescence intensity into quantitative units, independent of absorption and scattering, require a paired measurement of localized white light reflectance to provide estimates of the optical properties. This study focuses on the unique problem of developing a spectral analysis algorithm to extract tissue absorption and scattering properties from white light spectra that contain contributions from both elastically scattered photons and fluorescence emission from a strong fluorophore (i.e. fluorescein). A fiber-optic reflectance device was used to perform measurements in a small set of optical phantoms, constructed with Intralipid (1% lipid), whole blood (1% volume fraction) and fluorescein (0.16-10 μg/mL). Results show that the novel spectral analysis algorithm yields accurate estimates of tissue parameters independent of fluorescein concentration, with relative errors of blood volume fraction, blood oxygenation fraction (BOF), and the reduced scattering coefficient (at 521 nm) of <7%, <1%, and <22%, respectively. These data represent a first step towards quantification of fluorescein in tissue in vivo.

  16. Optical absorption and emission of nitrogen-doped silicon nanocrystals.

    PubMed

    Pi, Xiaodong; Chen, Xiaobo; Ma, Yeshi; Yang, Deren

    2011-11-01

    Silicon nanocrystals (Si NCs) may be both unintentionally and intentionally doped with nitrogen (N) during their synthesis and processing. Since the importance of Si NCs largely originates from their remarkable optical properties, it is critical to understand the effect of N doping on the optical behavior of Si NCs. On the basis of theoretical calculations, we show that the doping of Si NCs with N most likely leads to the formation of paired interstitial N at the NC surface, which causes both the optical absorption and emission of Si NCs to redshift. But these redshifts are smaller than those induced by doubly bonded O at the NC surface. It is found that high radiative recombination rates can be reliably obtained for Si NCs with paired interstitial N at the NC surface. The current results not only help to understand the optical behavior of Si NCs synthesized and processed in N-containing environments, but also inspire intentional N doping as an additional means to control the optical properties of Si NCs.

  17. Substituted benzoxadiazoles as fluorogenic probes: a computational study of absorption and fluorescence.

    PubMed

    Brown, Alex; Ngai, Tsz Yan; Barnes, Marie A; Key, Jessie A; Cairo, Christopher W

    2012-01-12

    General chemical strategies which provide controlled changes in the emission or absorption properties of biologically compatible fluorophores remain elusive. One strategy employed is the conversion of a fluorophore-attached alkyne (or azide) to a triazole through a copper-catalyzed azide-alkyne coupling (CuAAC) reaction. In this study, we have computationally examined a series of structurally related 2,1,3-benzoxadiazole (benzofurazan) fluorophores and evaluated changes in their photophysical properties upon conversion from alkyne (or azide) to triazole forms. We have also determined the photophysical properties for a known set of benzoxadiazole compounds. The absorption and emission energies have been determined computationally using time-dependent density functional theory (TD-DFT) with the Perdew, Burke, and Ernzerhof exchange-correlation density functional (PBE0) and the 6-31+G(d) basis set. The TD-DFT results consistently agreed with the experimentally determined absorption and emission wavelengths except for certain compounds where charge-transfer excited states occurred. In addition to determining the absorption and emission wavelengths, simple methods for predicting relative quantum yields previously derived from semiempirical calculations were reevaluated on the basis of the new TD-DFT results and shown to be deficient. These results provide a necessary framework for the design of new substituted benzoxadiazole fluorophores.

  18. X-ray absorption and soft x-ray fluorescence analysis of KDP optics

    SciTech Connect

    Nelson, A J; van Buuren, T; Miller, E; Land, T A; Bostedt, C; Franco, N; Whitman, P K; Baisden, P A; Terminello, L J; Callcott, T A

    2000-08-09

    Potassium Dihydrogen Phosphate (KDP) is a non-linear optical material used for laser frequency conversion and optical switches. Unfortunately, when KDP crystals are coated with a porous silica anti-reflection coating [1] and then exposed to ambient humidity, they develop dissolution pits [2,3]. Previous investigations [2] have shown that thermal annealing renders KDP optics less susceptible to pitting suggesting that a modification of surface chemistry has occurred. X-ray absorption and fluorescence were used to characterize changes in the composition and structure of KDP optics as a function of process parameters. KDP native crystals were also analyzed to provide a standard basis for interpretation. Surface sensitive total electron yield and bulk sensitive fluorescence yield from the K 2p, P 2p (L{sub 2,3}-edge) and O 1s (K-edge) absorption edges were measured at each process step. Soft X-ray fluorescence was also used to observe changes associated with spectral differences noted in the absorption measurements. Results indicate that annealing at 160 C dehydrates the surface of KDP resulting in a metaphosphate surface composition with K:P:O = 1:1:3.

  19. Fluorescence upconversion properties of a class of improved pyridinium dyes induced by two-photon absorption

    NASA Astrophysics Data System (ADS)

    Xu, Guibao; Hu, Dawei; Zhao, Xian; Shao, Zongshu; Liu, Huijun; Tian, Yupeng

    2007-06-01

    We report the fluorescence upconversion properties of a class of improved pyridinium toluene- p-sulfonates having donor- π-acceptor (D- π-A) structure under two-photon excitation at 1064 nm. The experimental results show that both the two-photon excited (TPE) fluorescence lifetime and the two-photon pumped (TPP) energy upconversion efficiency were increased with the enhancement of electron-donating capability of the donor in the molecule. It is also indicated that an overlong alkyl group tends to result in a weakened molecular conjugation, leading to a decreased two-photon absorption (TPA) cross section. By choosing the donor, we can obtain a longest fluorescence lifetime of 837 ps, a highest energy upconversion efficiency of ˜6.1%, and a maximum TPA cross-section of 8.74×10 -48 cm 4 s/photon in these dyes.

  20. Polarized fluorescence and absorption of macroscopically aligned Light Harvesting Complex II.

    PubMed

    van Amerongen, H; Kwa, S L; van Bolhuis, B M; van Grondelle, R

    1994-08-01

    Polarized absorption and fluorescence measurements have been performed at 77 K on isotropic and anisotropic preparations of trimeric Light Harvesting Complex II (LHC-II) from spinach. The results enable a decomposition of the absorption spectrum into components parallel and perpendicular to the trimeric plane. For the first time, it is shown quantitatively that the strong absorption band around 676 nm is polarized essentially parallel to the plane of the trimer, i.e., the average angle between the corresponding transition dipole moments and this plane is at most 12 degrees. The different absorption bands for LHC-II should not be considered as corresponding to individual pigments but to collective excitations of different pigments. Nevertheless, the average angle between the Qy transition dipole moments of all chlorophyll a pigments in LHC-II and the trimeric plane could be determined and was found to be 17.5 degrees +/- 2.5 degrees. For the chlorophyll b pigments, this angle is significantly larger (close to 35 degrees). At 77 K, most of the fluorescence stems from a weak band above 676 nm and the corresponding transition dipole moments are oriented further out of plane than the dipole moments corresponding to the 676-nm band. The results are shown to be of crucial significance for understanding the relation between the LHC-II structure and its spectroscopy.

  1. Determination of the Residual Anthracene Concentration in Cultures of Haloalkalitolerant Actinomycetes by Excitation Fluorescence, Emission Fluorescence, and Synchronous Fluorescence: Comparative Study.

    PubMed

    Lara-Severino, Reyna Del Carmen; Camacho-López, Miguel Ángel; García-Macedo, Jessica Marlene; Gómez-Oliván, Leobardo M; Sandoval-Trujillo, Ángel H; Isaac-Olive, Keila; Ramírez-Durán, Ninfa

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are compounds that can be quantified by fluorescence due to their high quantum yield. Haloalkalitolerant bacteria tolerate wide concentration ranges of NaCl and pH. They are potentially useful in the PAHs bioremediation of saline environments. However, it is known that salinity of the sample affects fluorescence signal regardless of the method. The objective of this work was to carry out a comparative study based on the sensitivity, linearity, and detection limits of the excitation, emission, and synchronous fluorescence methods, during the quantification of the residual anthracene concentration from the following haloalkalitolerant actinomycetes cultures Kocuria rosea, Kocuria palustris, Microbacterium testaceum, and 4 strains of Nocardia farcinica, in order to establish the proper fluorescence method to study the PAHs biodegrading capacity of haloalkalitolerant actinobacteria. The study demonstrated statistical differences among the strains and among the fluorescence methods regarding the anthracene residual concentration. The results showed that excitation and emission fluorescence methods performed very similarly but sensitivity in excitation fluorescence is slightly higher. Synchronous fluorescence using Δλ = 150 nm is not the most convenient method. Therefore we propose the excitation fluorescence as the fluorescence method to be used in the study of the PAHs biodegrading capacity of haloalkalitolerant actinomycetes.

  2. Determination of the Residual Anthracene Concentration in Cultures of Haloalkalitolerant Actinomycetes by Excitation Fluorescence, Emission Fluorescence, and Synchronous Fluorescence: Comparative Study

    PubMed Central

    Lara-Severino, Reyna del Carmen; Camacho-López, Miguel Ángel; García-Macedo, Jessica Marlene; Gómez-Oliván, Leobardo M.; Sandoval-Trujillo, Ángel H.; Isaac-Olive, Keila; Ramírez-Durán, Ninfa

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are compounds that can be quantified by fluorescence due to their high quantum yield. Haloalkalitolerant bacteria tolerate wide concentration ranges of NaCl and pH. They are potentially useful in the PAHs bioremediation of saline environments. However, it is known that salinity of the sample affects fluorescence signal regardless of the method. The objective of this work was to carry out a comparative study based on the sensitivity, linearity, and detection limits of the excitation, emission, and synchronous fluorescence methods, during the quantification of the residual anthracene concentration from the following haloalkalitolerant actinomycetes cultures Kocuria rosea, Kocuria palustris, Microbacterium testaceum, and 4 strains of Nocardia farcinica, in order to establish the proper fluorescence method to study the PAHs biodegrading capacity of haloalkalitolerant actinobacteria. The study demonstrated statistical differences among the strains and among the fluorescence methods regarding the anthracene residual concentration. The results showed that excitation and emission fluorescence methods performed very similarly but sensitivity in excitation fluorescence is slightly higher. Synchronous fluorescence using Δλ = 150 nm is not the most convenient method. Therefore we propose the excitation fluorescence as the fluorescence method to be used in the study of the PAHs biodegrading capacity of haloalkalitolerant actinomycetes. PMID:26925294

  3. Absorption into fluorescence. A method to sense biologically relevant gas molecules

    NASA Astrophysics Data System (ADS)

    Strianese, Maria; Varriale, Antonio; Staiano, Maria; Pellecchia, Claudio; D'Auria, Sabato

    2011-01-01

    In this work we present an innovative optical sensing methodology based on the use of biomolecules as molecular gating nano-systems. Here, as an example, we report on the detection ofanalytes related to climate change. In particular, we focused our attention on the detection ofnitric oxide (NO) and oxygen (O2). Our methodology builds on the possibility of modulating the excitation intensity of a fluorescent probe used as a transducer and a sensor molecule whose absorption is strongly affected by the binding of an analyte of interest used as a filter. The two simple conditions that have to be fulfilled for the method to work are: (a) the absorption spectrum of the sensor placed inside the cuvette, and acting as the recognition element for the analyte of interest, should strongly change upon the binding of the analyte and (b) the fluorescence dye transducer should exhibit an excitation band which overlaps with one or more absorption bands of the sensor. The absorption band of the sensor affected by the binding of the specific analyte should overlap with the excitation band of the transducer. The high sensitivity of fluorescence detection combined with the use of proteins as highly selective sensors makes this method a powerful basis for the development of a new generation of analytical assays. Proof-of-principle results showing that cytochrome c peroxidase (CcP) for NO detection and myoglobin (Mb) for O2 detection can be successfully used by exploiting our new methodology are reported. The proposed technology can be easily expanded to the determination of different target analytes.

  4. Absorption into fluorescence. A method to sense biologically relevant gas molecules.

    PubMed

    Strianese, Maria; Varriale, Antonio; Staiano, Maria; Pellecchia, Claudio; D'Auria, Sabato

    2011-01-01

    In this work we present an innovative optical sensing methodology based on the use of biomolecules as molecular gating nano-systems. Here, as an example, we report on the detection of analytes related to climate change. In particular, we focused our attention on the detection of nitric oxide (NO) and oxygen (O2). Our methodology builds on the possibility of modulating the excitation intensity of a fluorescent probe used as a transducer and a sensor molecule whose absorption is strongly affected by the binding of an analyte of interest used as a filter. The two simple conditions that have to be fulfilled for the method to work are: (a) the absorption spectrum of the sensor placed inside the cuvette, and acting as the recognition element for the analyte of interest, should strongly change upon the binding of the analyte and (b) the fluorescence dye transducer should exhibit an excitation band which overlaps with one or more absorption bands of the sensor. The absorption band of the sensor affected by the binding of the specific analyte should overlap with the excitation band of the transducer. The high sensitivity of fluorescence detection combined with the use of proteins as highly selective sensors makes this method a powerful basis for the development of a new generation of analytical assays. Proof-of-principle results showing that cytochrome c peroxidase (CcP) for NO detection and myoglobin (Mb) for O2 detection can be successfully used by exploiting our new methodology are reported. The proposed technology can be easily expanded to the determination of different target analytes.

  5. Absorption spectra and spectral-kinetic characteristics of the fluorescence of Sanguinarine in complexes with polyelectrolytes and DNA

    NASA Astrophysics Data System (ADS)

    Motevich, I. G.; Strekal, N. D.; Nowicky, J. W.; Maskevich, S. A.

    2010-07-01

    The absorption spectra and stationary and time resolved fluorescence spectra of the isoquinoline alkaloid sanguinarine are studied in aqueous media and during interactions with synthetic polyelectrolytes (polystyrene sulfonate and polyallylamine) and a natural polyelectrolyte (DNA).

  6. Biomolecule-to-fluorescent-color encoder: modulation of fluorescence emission via DNA structural changes.

    PubMed

    Nishimura, Takahiro; Ogura, Yusuke; Yamada, Kenji; Ohno, Yuko; Tanida, Jun

    2014-07-01

    A biomolecule-to-fluorescent-color (B/F) encoder for optical readout of biomolecular information is proposed. In the B/F encoder, a set of fluorescence wavelengths and their intensity levels are used for coding of a biomolecular signal. A hybridization chain reaction of hairpin DNAs labeled with fluorescent reporters was performed to generate the fluorescence color codes. The fluorescence is modulated via fluorescence resonance energy transfer, which is controlled by DNA structural changes. The results demonstrate that fluorescent color codes can be configured based on two wavelengths and five intensities using the B/F encoder, and the assigned codes can be retrieved via fluorescence measurements.

  7. Ultrafast relaxation dynamics of 5,10,15,20-meso-tetrakis pentafluorophenyl porphyrin studied by fluorescence up-conversion and transient absorption spectroscopy.

    PubMed

    Kumar, P Hemant; Venkatesh, Yeduru; Siva, Doddi; Ramakrishna, B; Bangal, Prakriti Ranjan

    2015-02-26

    thermally equilibrated S1 state population, and it could be attributed either to an excited state conformational relaxation/intramolecular charge transfer or a molecular cooling process by dissipation of excess energy within the solvent by inelastic collision. Finally, the decay of equilibrated S1(Qx state) occurs on 10 ns to S0 by fluorescence. Femtosecond resolved transient absorption studies on H2F20TPP in the spectral range 390-620 nm following both S2 (Soret band) and S1 (Qx) band excitation have been done and they complement the observations found in fluorescence up-conversion studies. The stimulated emission (SE) kinetics observed at 640 nm, S1 emission peak, in 2-10 ps time domain rebuilds a dynamic similar to that observed by fluorescence up-conversion study. The transient absorption kinetics upon S1 excitation were observed mainly to be biexponential with decay constants 105 ps and 10 ns, respectively. At a long time window (6 ns), a long-lived rise component could be predicted followed by two long-lived decay components for both the excitations in between 450 and 500 nm probe wavelengths. The lifetimes of these components were longer-lived than were possible to exactly measure using our existing femtosecond transient absorption system. However, this apparent rise component is assigned to be a Tn ← T1 transition, and the longest decay component is attributed to the lifetime of the T1 state.

  8. Life cycle analysis of greenhouse gas emissions for fluorescent lamps in mainland China.

    PubMed

    Chen, Sha; Zhang, Jiaxing; Kim, Junbeum

    2017-01-01

    China is the world's largest emitter of carbon dioxide, and it is also one of the largest fluorescent lamp consuming and producing country in the world. However, there are few studies evaluating greenhouse gas (GHG) emissions of fluorescent lamps in China. This analysis compared GHG emissions of compact fluorescent lamps with linear fluorescent lamps using life cycle assessment method in China's national conditions. The GHG emissions of fluorescent lamps from their manufacture to the final disposal phase on the national level of China were also quantified. The results indicate that the use phase dominates the GHG emissions for both lamps. Linear fluorescent lamp is a better source of light compared to compact fluorescent lamp with respect to GHG emissions. The analysis found that in 2011, China generated around 710.90milliontons CO2-eq associated with fluorescent lamps. The raw material production and use phases accounted for major GHG emissions. More than half of GHG emissions during the domestic production were embodied in the exported lamps in recent years. This urges the government to take necessary measures that lead to more environmental friendly production, consumption and trade patterns.

  9. Novel emissive bio-inspired non-proteinogenic coumarin-alanine amino acid: fluorescent probe for polyfunctional systems.

    PubMed

    Oliveira, Elisabete; Capelo, José Luis; Lima, João Carlos; Lodeiro, Carlos

    2012-10-01

    Two new bio-inspired non-proteinogenic compounds L1 and L2, containing coumarin and/or acridine chromophores and bearing as spacer an alanine amino acid were successfully synthesized and fully characterized by elemental analysis, (1)H and (13)C NMR, infrared spectroscopy (KBr discs), melting point, ESI-TOF (electrospray ionization-time of flight-mass), UV-vis absorption and emission spectroscopy, fluorescence quantum yields and lifetime measurements. A relative fluorescence quantum yield of 0.02 was determined for both compounds. In L2 the presence of an intramolecular energy transfer from the coumarin to the acridine unit was observed. L1 and L2 are quite sensitive to the basicity of the environment. At alkaline values both compounds show a strong quenching in the fluorescence emission, attributed to the photoinduced electron transfer (PET). However, both deprotonated forms recover the emission with the addition of Zn(2+), Cd(2+) and Al(3+) metal ions. As multifunctional emissive probes, the titration of L1 and L2 with lanthanides (III), Eu(3+) and Tb(3+) was also explored as new visible bio-probes in the absence and in the presence of liposomes. In a liposomal environment a lower energy transfer was observed.

  10. Absorption and fluorescence of alexandrite and of titanium in sapphire and glass

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Hess, R. V.; Buoncristiani, A. M.

    1985-01-01

    The fluorescence and absorption data for titanium in crystalline sapphire and titanium doped into two silicate and one phosphate glass structures are analyzed. It is observed that the Ti-doped silicate glass sample exhibits no absorption related to the Ti(III) ion, the Ti-doped phosphate glass is deep blue, the absorption line width of the glass samples are a factor of two larger than that of sapphire, and the absorption peak for the Ti in the glass shifted about 100 nm to the red from the Ti:sapphire absorption peak. This shift reveals that the Ti(III) ion is sensitive to the crystalline environment and not to the glass environment. The photoluminescence spectra for Ti-doped sapphire and alexandrite are compared. It is detected that the Ti:sapphire exhibits a broader spectrum than that for alexandrite with a peak at 750 nm. The three zero phonon transitions of Ti:Al2O3 at liquid nitrogen temperatures are studied.

  11. Truncated Newton's optimization scheme for absorption and fluorescence optical tomography: Part I theory and formulation.

    PubMed

    Roy, R; Sevick-Muraca, E

    1999-05-10

    The development of non-invasive, biomedical optical imaging from time-dependent measurements of near-infrared (NIR) light propagation in tissues depends upon two crucial advances: (i) the instrumental tools to enable photon "time-of-flight" measurement within rapid and clinically realistic times, and (ii) the computational tools enabling the reconstruction of interior tissue optical property maps from exterior measurements of photon "time-of-flight" or photon migration. In this contribution, the image reconstruction algorithm is formulated as an optimization problem in which an interior map of tissue optical properties of absorption and fluorescence lifetime is reconstructed from synthetically generated exterior measurements of frequency-domain photon migration (FDPM). The inverse solution is accomplished using a truncated Newtons method with trust region to match synthetic fluorescence FDPM measurements with that predicted by the finite element prediction. The computational overhead and error associated with computing the gradient numerically is minimized upon using modified techniques of reverse automatic differentiation.

  12. Spontaneous emission enhancement and saturable absorption of colloidal quantum dots coupled to photonic crystal cavity.

    PubMed

    Gupta, Shilpi; Waks, Edo

    2013-12-02

    We demonstrate spontaneous emission rate enhancement and saturable absorption of cadmium selenide colloidal quantum dots coupled to a nanobeam photonic crystal cavity. We perform time-resolved lifetime measurements and observe an average enhancement of 4.6 for the spontaneous emission rate of quantum dots located at the cavity as compared to those located on an unpatterned surface. We also demonstrate that the cavity linewidth narrows with increasing pump intensity due to quantum dot saturable absorption.

  13. UV absorption of the in-bore plasma emission from an EML using polycarbonate insulators

    SciTech Connect

    Clothiaux, E.J. . Dept. of Physics)

    1991-01-01

    This paper reports on the in-bore continuum emission spectrum, laced by absorption lines, observed to be completely cutoff for wavelengths shorter than about 3000 {Angstrom}. This cutoff wavelength is seen to occur at longer wavelengths as the plasma armature moves down the launcher bore. A mechanism for the absorption of shortwave radiation by ablated and evaporated bore materials is given.

  14. Deriving chlorophyll fluorescence emissions of vegetation canopies from high resolution field reflectance spectra

    NASA Astrophysics Data System (ADS)

    Middleton, Elizabeth M.; Corp, Lawrence A.; Daughtry, Craig S.; Entcheva Campbell, Petya K.; Butcher, L. Maryn

    2005-11-01

    Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll fluorescence (ChlF) peaks centered at 685 nm and 735 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SIF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops and small tree plots of three deciduous species (red maple, tulip poplar, sweet gum). Leaf level measurements were also made of foliage which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and nitrogen (N) contents). As part of ongoing experiments, measurements were made on N application plots within corn (280, 140, 70, and 0 kg N/ha) and tree (0, 37.5, 75, 112.5, 150 kg N /ha) sites at the USDA/Agriculture Research Service in Beltsville, MD. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrow- band regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red SIF ratio (SIFratio) derived from these field reflectance spectra successfully discriminated foliar pigment ratios altered by N application rates in both corn crops. This ratio was also positively correlated to the C/N ratio at leaf and canopy levels, for the available corn data (e.g., 2004). No consistent N treatment or species differences in SIF were detected in the tree foliage, but additional 2005 data are forthcoming. This study has relevance to future passive satellite remote sensing approaches to monitoring C dynamics from space.

  15. Ground state bromine atom density measurements by two-photon absorption laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Sirse, N.; Foucher, M.; Chabert, P.; Booth, J.-P.

    2014-12-01

    Ground state bromine atom detection by two-photon absorption laser-induced fluorescence (TALIF) is demonstrated. The (4p5) {^2Po3/2} bromine atoms are excited by two-photon absorption at 252.594 nm to the (5p) {^4So3/2} state and detected by 635.25 nm fluorescence to the (5s) 4P5/2 state. The atoms are generated in a radio-frequency inductively-coupled plasma in pure HBr. The excitation laser also causes some photodissociation of HBr molecules, but this can be minimized by not focussing the laser beam, still giving adequate signal levels. We determined the natural lifetime of the emitting (5p) {^4So3/2} state, τf^Br*=30.9 +/- 1.4 ns and the rate constant for quenching of this state by collision with HBr molecules, k_HBrQ = 1.02 +/- 0.07× 10-15 m3 s-1 .

  16. X-ray fluorescence and absorption analysis of krypton in irradiated nuclear fuel

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Mieszczynski, Cyprian; Borca, Camelia; Grolimund, Daniel; Martin, Matthias; Bertsch, Johannes

    2014-10-01

    The analysis of krypton in irradiated uranium dioxide fuel has been successfully achieved by X-ray fluorescence and X-ray absorption. The present study focuses on the analytical challenge of sample and sub-sample production to perform the analysis with the restricted conditions dictated by the radioprotection regulations. It deals also with all potential interferences that could affect the quality of the measurement in fluorescence as well as in absorption mode. The impacts of all dissolved gases in the fuel matrix are accounted for the analytical result quantification. The krypton atomic environment is ruled by the presence of xenon. Other gases such as residual argon and traces of helium or hydrogen are negligible. The results are given in term of density for krypton (∼3 nm-3) and xenon (∼20 nm-3). The presence of dissolved, interstitial and nano-phases are discussed together with other analytical techniques that could be applied to gain information on fission gas behaviour in nuclear fuels.

  17. Solvent effects on the absorption and fluorescence spectra of rhaponticin: Experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Liang, Xuhua; Zhao, Yingyong; Fan, Jun

    2013-02-01

    Rhaponticin (RH) possesses a variety of pharmacological activities including potent antitumor, antitumor-promoting, antithrombotic, antioxidant and vasorelaxant effects. The fundamental photophysics of RH is not well understood. In this work, solvent effect on the photoluminescence behavior of RH was studied by fluorescence and absorption spectra. The bathchromic shift was observed in absorption and fluorescence spectra with the increase of solvents polarity, which implied that transition involved was π → π*. A quantitative estimation of the contribution from different solvatochromic parameters, like normalized transition energy value (ETN), was made using the linear stokes shift (Δν) relationship based on the Lippert-Suppan equation. The ground state and excited state dipole moments were calculated by quantum-mechanical second-order perturbation method as a function of the dielectric constant (ɛ) and refractive index (n). The result was found to be 2.23 and 3.67 D in ground state and excited state respectively. The density functional theory (DFT) was used to obtain the most stable structure, electronic excitation energy, dipole moments and charge distribution. The analysis revealed that the RH exhibited strong photoinduced intramolecular charge transfer (ICT), and the intermolecular hydrogen bonding ability of the solvent was the most important parameter to characterize the photophysics behavior of RH. The hydrogen bonding effect occurred at the localized electron-acceptor oxygen at the glycoside bond. The experimental and theoretical results would help us better understand the photophysical properties of RH.

  18. Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures

    NASA Astrophysics Data System (ADS)

    Martín de la Cruz, M. C.; Gonzalez Vilas, L.; Yarovenko, N.; Spyrakos, E.; Torres Palenzuela, J. M.

    2013-08-01

    Biofuel production from microalgae can be both sustainable and economically viable. Particularly in the case of algal growth in wastewater an extra benefit is the removal or biotransformation of pollutants from these types of waters. A continuous monitoring system of the microalgae status and the concentration of different wastewater contaminants could be of great help in the biomass production and the water characterisation. In this study we present a system where spectral fluorescence signature (SFS) techniques are used along with absorption measurements to monitor microalgae cultures in wastewater and other mediums. This system aims to optimise the microalgae production for biofuel applications or other uses and was developed and tested in prototype indoor photo-bioreactors at the University of Vigo. SFS techniques were applied using the fluorescence analyser INSTAND-SCREENER developed by Laser Diagnostic Instruments AS. INSTAND-SCREENER permits wavelength scanning in two modes, one in UV and another in VIS. In parallel, it permits the on-line monitoring and rapid analysis of both water quality and phytoplankton status without prior treatment of the sample. Considering that different contaminants and microalgae features (density, status etc.) have different spectral signatures of fluorescence and absorption properties, it is possible to characterise them developing classification libraries. Several algorithms were used for the classification. The implementation of this system in an outdoor raceway reactor in a Spanish wastewater treatment plant is also discussed. This study was part of the Project EnerBioAlgae (http://www.enerbioalgae.com/), which was funded by the Interreg SUDOE and led by the University of Vigo.

  19. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.

    PubMed

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-05-01

    In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  20. Organic light-emitting device with a phosphor-sensitized fluorescent emission layer

    DOEpatents

    Forrest, Stephen; Kanno, Hiroshi

    2009-08-25

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).

  1. Capillary Electrophoresis and Fluorescence Excitation-Emission Matrix Characterization of Soil Mobile and Calcium Humates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capillary electrophoresis (CE) and Excitation-emission matrix (EEM) fluorescence spectroscopy have been used in natural organic matter (NOM) studies. The mutual relevance of data collected from each of the two methods provides novel insight into the correlation of complex NOM fluorescence spectra to...

  2. Characteristics of Fluorescence and Delayed Light Emission from Green Photosynthetic Bacteria and Algae

    PubMed Central

    Clayton, Roderick K.

    1965-01-01

    Green photosynthetic bacteria exhibit variations in the intensity of their fluorescence during illumination. The initial intensity of fluorescence, measured at the onset of illumination, has a spectrum in which the major pigment Chlorobium chlorophyll predominates. The minor pigment bacteriochlorophyll predominates in the spectrum of the time-varying part of the fluorescence. The spectrum of delayed light emission is identical to that of the time-varying fluorescence. The variations in fluorescence also resemble the delayed light in their kinetics and in their dependence on exciting light intensity. Similar results are obtained for the kinetics of prompt and delayed light emission in the algae Chlorella and Anacystis. These findings raise the possibility that the variations in fluorescence actually represent a fast component of delayed light emission, of intensity comparable to the intensity of fluorescence. In Anacystis there is an outburst of light emission that develops after the exciting light has been turned off, reaching a maximum intensity after 1 to 3 seconds. This emitted light has the spectrum of chlorophyll fluorescence. It appears to be a novel example of bioluminescence with singlet excited chlorophyll as the emitter. PMID:14324979

  3. Excitation emission and time-resolved fluorescence spectroscopy of selected varnishes used in historical musical instruments.

    PubMed

    Nevin, Austin; Echard, Jean-Philippe; Thoury, Mathieu; Comelli, Daniela; Valentini, Gianluca; Cubeddu, Rinaldo

    2009-11-15

    The analysis of various varnishes from different origins, which are commonly found on historical musical instruments was carried out for the first time with both fluorescence excitation emission spectroscopy and laser-induced time-resolved fluorescence spectroscopy. Samples studied include varnishes prepared using shellac, and selected diterpenoid and triterpenoid resins from plants, and mixtures of these materials. Fluorescence excitation emission spectra have been collected from films of naturally aged varnishes. In parallel, time-resolved fluorescence spectroscopy of varnishes provides means for discriminating between short- (less than 2.0 ns) and long-lived (greater than 7.5 ns) fluorescence emissions in each of these complex materials. Results suggest that complementary use of the two non destructive techniques allows a better understanding of the main fluorophores responsible for the emission in shellac, and further provides means for distinguishing the main classes of other varnishes based on differences in fluorescence lifetime behaviour. Spectrofluorimetric data and time resolved spectra presented here may form the basis for the interpretation of results from future in situ fluorescence examination and time resolved fluorescence imaging of varnished musical instruments.

  4. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Hennigan, C. J.; McMeeking, G. R.; Chuang, W. K.; Robinson, E. S.; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2013-05-01

    Experiments were conducted to investigate light absorption of organic aerosol (OA) in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak) and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry). Photo-chemical aging was performed in an environmental chamber. We constrained the light-absorption properties of the OA using conservative limiting assumptions, and found that both primary organic aerosol (POA) in the fresh emissions and secondary organic aerosol (SOA) produced by photo-chemical aging absorb light to a significant extent, and are categorized as brown carbon. This work presents the first direct evidence that SOA produced in aged biomass-burning emissions is absorptive. For the investigated fuels, SOA is less absorptive than POA in the long visible, but exhibits steeper wavelength-dependence (larger Absorption Ångström Exponent) and is more absorptive in the short visible and near-UV. Light absorption by SOA in biomass-burning emissions might be an important contributor to the global radiative forcing budget.

  5. Determination of optimal excitation and emission wavebands for detection of defect cherry tomato by using fluorescence emission and excitation matrix

    NASA Astrophysics Data System (ADS)

    Baek, In-Suck; Cho, Byoung-Kwan; Kim, Moon S.; Kim, Young-Sik

    2013-05-01

    Fluorescence imaging technique has been widely used for quality and safety measurements of agro-food materials. Fluorescence emission intensities of target materials are influenced by wavelengths of excitation sources. Hence, selection of a proper excitation wavelength is an important factor in differentiating target materials effectively. In this study, optimal fluorescence excitation wavelength was determined on the basis of fluorescence emission intensity of defect and sound areas of cherry tomatoes. The result showed that fluorescence responses of defect and sound surfaces of cherry tomatoes were most significantly separated with the excitation light wavelength range between 400 and 410 nm. Fluorescence images of defect cherry tomatoes were acquired with the LEDs with the central wavelength of 410 nm as the excitation source to verify the detection efficiency of cherry tomato defects. The resultant fluorescence images showed that the defects were discriminated from sound areas on cherry tomatoes with above 98% accuracy. This study shows that high power LEDs as the excitation source for fluorescence imaging are suitable for defect detection of cherry tomatoes.

  6. Regulation of red fluorescent light emission in a cryptic marine fish

    PubMed Central

    2014-01-01

    Introduction Animal colouration is a trade-off between being seen by intended, intra- or inter-specific receivers while not being seen by the unintended. Many fishes solve this problem by adaptive colouration. Here, we investigate whether this also holds for fluorescent pigments. In those aquatic environments in which the ambient light is dominated by bluish light, red fluorescence can generate high-contrast signals. The marine, cryptic fish Tripterygion delaisi inhabits such environments and has a bright red-fluorescent iris that can be rapidly up- and down-regulated. Here, we described the physiological and cellular mechanism of this phenomenon using a neurostimulation treatment with KCl and histology. Results KCl-treatment revealed that eye fluorescence regulation is achieved through dispersal and aggregation of black-pigmented melanosomes within melanophores. Histology showed that globular, fluorescent iridophores on the anterior side of the iris are grouped and each group is encased by finger-like extensions of a single posterior melanophore. Together they form a so-called chromatophore unit. By dispersal and aggregation of melanosomes into and out of the peripheral membranous extensions of the melanophore, the fluorescent iridophores are covered or revealed on the anterior (outside) of the iris. Conclusion T. delaisi possesses a well-developed mechanism to control the fluorescent emission from its eyes, which may be advantageous given its cryptic lifestyle. This is the first time chromatophore units are found to control fluorescent emission in marine teleost fishes. We expect other fluorescent fish species to use similar mechanisms in the iris or elsewhere in the body. In contrast to a previously described mechanism based on dendritic fluorescent chromatophores, chromatophore units control fluorescent emission through the cooperation between two chromatophore types: an emitting and an occluding type. The discovery of a second mechanism for fluorescence

  7. On the uncertainty in single molecule fluorescent lifetime and energy emission measurements

    NASA Technical Reports Server (NTRS)

    Brown, Emery N.; Zhang, Zhenhua; Mccollom, Alex D.

    1995-01-01

    Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least square methods agree and are optimal when the number of detected photons is large however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67% of those can be noise and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous poisson processes, we derive the exact joint arrival time probably density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. the ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background nose and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.

  8. On the Uncertainty in Single Molecule Fluorescent Lifetime and Energy Emission Measurements

    NASA Technical Reports Server (NTRS)

    Brown, Emery N.; Zhang, Zhenhua; McCollom, Alex D.

    1996-01-01

    Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least squares methods agree and are optimal when the number of detected photons is large, however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67 percent of those can be noise, and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous Poisson processes, we derive the exact joint arrival time probability density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. The ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background noise and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.

  9. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions

    PubMed Central

    Mishra, Anamika; Höermiller, Imke I; Heyer, Arnd G; Nedbal, Ladislav

    2011-01-01

    Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a collection of nine Arabidopsis thaliana accessions and compared their fluorescence features with cold tolerance quantified by the well established electrolyte leakage method on detached leaves. We found that, during progressive cooling, the minimal chlorophyll fluorescence emission rose strongly and that this rise was highly dependent on the cold tolerance of the accessions. Maximum quantum yield of PSII photochemistry and steady state fluorescence normalized to minimal fluorescence were also highly correlated to the cold tolerance measured by the electrolyte leakage method. In order to further increase the capacity of the fluorescence detection to reveal the low temperature tolerance, we applied combinatorial imaging that employs plant classification based on multiple fluorescence features. We found that this method, by including the resolving power of several fluorescence features, can be well employed to detect cold tolerance already at mild sub-zero temperatures. Therefore, there is no need to freeze the screened plants to the largely damaging temperatures of around −15°C. This, together with the method's easy applicability, represents a major advantage of the fluorescence technique over the conventional electrolyte leakage method. PMID:21427532

  10. Moving Towards a Technical Specification for Fluorescence Excitation-Emission Mapping and Absorbance Analysis of Colored Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2010-12-01

    Colored dissolved organic matter (CDOM) measurements with fluorescence and absorbance are important for evaluating a wide variety natural and industrial water sources. However, uncertainties and ambiguities continue to be propagated regarding interpretation of CDOM spectral data due to the variety of instruments, sampling chemistry conditions and types of analysis algorithms. Recent efforts have focused on standardization and interlaboratory comparisons of CDOM samples with respect to preparation, spectroscopic evaluation and mathematical analysis. This study deals with correlating absorbance and fluorescence data measured with the same sample to minimize interlaboratory variation. The theoretical significance of true simultaneous acquisition of the corrected (NIST Traceable) absorbance spectrum and fluorescence excitation spectral profile and excitation emission map is discussed as a means to provide the least ambiguous spectral data. Key issues considered are the variations introduced by ‘serial’ acquisitions of absorbance and fluorescence data. Variation can be caused by the different light-exposure history (especially UV) in the instruments, dissolved oxygen content associated with temperature changes and oxidation kinetics of the CDOM and in many cases concentration- and pH-related changes associated with diluting and pH buffering of the CDOM sample, respectively. Concentration changes in CDOM can be associated with optical anomalies including self-quenching and -absorption which systematically alter the fluorescence spectrum. Clearly, monitoring the absorbance and fluorescence simultaneously would deal with the above sampling variations and facilitate correcting the absorbance based fluorescence anomalies. The proposed method(s) described will be discussed in view of their potential to serve as the basis for an international technical specification in terms of the optical instrument and sampling conditions for CDOM analysis and reporting.

  11. Statistical analysis of excitation-emission matrices for laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Maslov, N. A.; Papaeva, E. O.

    2016-07-01

    An algorithm for statistical processing of the set of multicomponent excitation-emission matrices for laser-induced fluorescence spectroscopy is proposed that is based on principal component analysis. It is shown for the first time that the fluorescence emission and excitation spectra of unknown fluorophores in optically thin samples can be calculated. Using the proposed algorithm, it is possible to pass from principal components with alternating signs to positive quantities corresponding to the spectra of real substances. The method is applied to a mixture of three fluorescent dyes, and it is demonstrated that the obtained spectra of principal components well reproduce the spectra of initial dyes.

  12. Influence of transannular interaction over absorption and fluorescent properties of [2.2] paracyclophane and its phenyl derivatives

    NASA Astrophysics Data System (ADS)

    Nurmukhametov, R. N.; Shapovalov, A. V.; Antonov, D. Yu.

    2016-12-01

    A significant bathochromic shift of the fluorescent and long-wavelength absorption bands of [2.2] paracyclophane comparing to corresponding bands of alkyl-benzenes is due to a strong transannular interaction, resulting in formation of a principally new excited state of lower energy. It is concluded that the fluorescent levels for alkylbenzene excimers and for the macrocycle are of the same nature. Analysis of [2.2] paracyclophane mono- and diphenylderivatives spectra shows that their intensive absorption bands (230-310 nm) are originated from electron transitions of biphenyl groups and weak long wavelength absorption (310-340 nm) and fluorescent bands are governed by the same electron transitions between ground and excimer-like excited states as in the case of non-substituted macrocycle.

  13. Visualizing BPA by molecularly imprinted ratiometric fluorescence sensor based on dual emission nanoparticles.

    PubMed

    Lu, Hongzhi; Xu, Shoufang

    2017-06-15

    Construction of ratiometric fluorescent probe often involved in tedious multistep preparation or complicated coupling or chemical modification process. The emergence of dual emission fluorescent nanoparticles would simplify the construction process and avoids the tedious chemical coupling. Herein, we reported a facile strategy to prepare ratiometric fluorescence molecularly imprinted sensor based on dual emission nanoparticles (d-NPs) which comprised of carbon dots and gold nanoclusters for detection of Bisphenol A (BPA). D-NPs emission at 460nm and 580nm were first prepared by seed growth co-microwave method using gold nanoparticles as seeds and glucose as precursor for carbon dots. When they were applied to propose ratiometric fluorescence molecularly imprinted sensor, the preparation process was simplified, and the sensitivity of sensor was improved with detection limit of 29nM, and visualizing BPA was feasible based on the distinguish fluorescence color change. The feasibility of the developed method in real samples was successfully evaluated through the analysis of BPA in water samples with satisfactory recoveries of 95.9-98.9% and recoveries ranging from 92.6% to 98.6% in canned food samples. When detection BPA in positive feeding bottles, the results agree well with those obtained by accredited method. The developed method proposed in this work to prepare ratiometric fluorescence molecularly imprinted sensor based on dual emission nanoparticles proved to be a convenient, reliable and practical way to prepared high sensitive and selective fluorescence sensors.

  14. Nonlinear and nonmonotonic nature of the intensity of fluorescence emission on a surface of turbid fluorescing biotissues

    NASA Astrophysics Data System (ADS)

    Rogatkin, Dmitry; Lapaeva, Ludmila; Guseva, Irina

    2014-05-01

    Many researchers during past 20 years have used the laser fluorescence spectroscopy (LFS) for in vivo tissue diagnosis. But in the up-to-date medical in vivo LFS there is a problem of quantification of the fluorophores concentrations in optically-turbid biotissues basing on measurements of the laser induced fluorescence on a surface of the tissues. The purpose of our work is both experimental and theoretical study of the character of dependences of measured fluorescence intensities on tissues' optical properties and on fluorophores concentrations in tissues. In the experimental part of our study the measurements of the superficial fluorescence on phantoms at different known concentration of fluorophores in them were carried out. As a result experimental dependences of the registered intensities of the laser induced fluorescence emission on fluorophores concentration were plotted. In the theoretical part of our study the analytical solution for a fluorescence emission by Kokhanovsky's method based on the well-known two-flux Kubelka-Munk approach (KMA) was used. Besides, in the study the Kokhanovsky's method was modified by its association with our improved KMA, allowing us to receive exact solutions for boundary intensities collected by an optical probe. As a result a set of theoretical curves describing the influence of fluorophore concentration in tissues on the registered intensities was obtained as well. Both experimental and theoretical results show a good qualitative agreement between each other. Also these results show that the dependence of the fluorescence intensity from tissues' optical properties and from the concentration of fluorophores can be both nonlinear and non-monotonic.

  15. Chlorophyll Fluorescence Emissions of Vegetation Canopies From High Resolution Field Reflectance Spectra

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Corp, L. A.; Daughtry, C. S. T.; Campbell, P. K. Entcheva

    2006-01-01

    A two-year experiment was performed on corn (Zea mays L.) crops under nitrogen (N) fertilization regimes to examine the use of hyperspectral canopy reflectance information for estimating chlorophyll fluorescence (ChlF) and vegetation production. Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll ChlF peaks centered at 685V10 nm and 735V5 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops, as part of an ongoing multi-year experiment at the USDA/Agriculture Research Service in Beltsville, MD. A spectroradiometer (ASD-FR Fieldspec Pro, Analytical Spectral Devices, Inc., Boulder, CO) was used to measure canopy radiances 1 m above plant canopies with a 22deg field of view and a 0deg nadir view zenith angle. Canopy and plant measurements were made at the R3 grain fill reproductive stage on 3-4 replicate N application plots provided seasonal inputs of 280, 140, 70, and 28 kg N/ha. Leaf level measurements were also made which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and N contents). Crop yields were determined at harvest. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrowband regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red S F ratio derived from these field reflectance spectra successfully discriminated foliar pigment levels (e.g., total chlorophyll, Chl) associated with N application rates in both corn crops. This canopy-level spectral ratio was also

  16. On tuning the fluorescence emission of porphyrin free bases bonded to the pore walls of organo-modified silica.

    PubMed

    Quiroz-Segoviano, Rosa I Y; Serratos, Iris N; Rojas-González, Fernando; Tello-Solís, Salvador R; Sosa-Fonseca, Rebeca; Medina-Juárez, Obdulia; Menchaca-Campos, Carmina; García-Sánchez, Miguel A

    2014-02-21

    A sol-gel methodology has been duly developed in order to perform a controlled covalent coupling of tetrapyrrole macrocycles (e.g., porphyrins, phthalocyanines, naphthalocyanines, chlorophyll, etc.) to the pores of metal oxide networks. The resulting absorption and emission spectra intensities in the UV-VIS-NIR range have been found to depend on the polarity existing inside the pores of the network; in turn, this polarization can be tuned through the attachment of organic substituents to the tetrapyrrrole macrocycles before bonding them to the pore network. The paper shows clear evidence of the real possibility of maximizing fluorescence emissions from metal-free bases of substituted tetraphenylporphyrins, especially when these molecules are bonded to the walls of functionalized silica surfaces via the attachment of alkyl or aryl groups arising from the addition of organo-modified alkoxides.

  17. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Hennigan, C. J.; McMeeking, G. R.; Chuang, W. K.; Robinson, E. S.; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2013-08-01

    Experiments were conducted to investigate light absorption of organic aerosol (OA) in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak) and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry). Photo-chemical aging was performed in an environmental chamber. We constrained the effective light-absorption properties of the OA using conservative limiting assumptions, and found that both primary organic aerosol (POA) in the fresh emissions and secondary organic aerosol (SOA) produced by photo-chemical aging contain brown carbon, and absorb light to a significant extent. This work presents the first direct evidence that SOA produced in aged biomass-burning emissions is absorptive. For the investigated fuels, SOA is less absorptive than POA in the long visible, but exhibits stronger wavelength-dependence and is more absorptive in the short visible and near-UV. Light absorption by SOA in biomass-burning emissions might be an important contributor to the global radiative forcing budget.

  18. Optimization via specific fluorescence brightness of a receptor-targeted probe for optical imaging and positron emission tomography of sentinel lymph nodes.

    PubMed

    Qin, Zhengtao; Hall, David J; Liss, Michael A; Hoh, Carl K; Kane, Christopher J; Wallace, Anne M; Vera, David R

    2013-10-01

    The optical properties of a receptor-targeted probe designed for dual-modality mapping of the sentinel lymph node (SLN) was optimized. Specific fluorescence brightness was used as the design criterion, which was defined as the fluorescence brightness per mole of the contrast agent. Adjusting the molar ratio of the coupling reactants, IRDye 800CW-NHS-ester and tilmanocept, enabled us to control the number of fluorescent molecules attached to each tilmanocept, which was quantified by H1 nuclear magnetic resonance spectroscopy. Quantum yields and molar absorptivities were measured for unconjugated IRDye 800CW and IRDye 800CW-tilmanocept (800CW-tilmanocept) preparations at 0.7, 1.5, 2.3, 2.9, and 3.8 dyes per tilmanocept. Specific fluorescence brightness was calculated by multiplication of the quantum yield by the molar absorptivity and the number of dyes per tilmanocept. It predicted that the preparation with 2.3 dyes per tilmanocept would exhibit the brightest signal, which was confirmed by fluorescence intensity measurements using three optical imaging systems. When radiolabeled with Ga68 and injected into the footpads of mice, the probe identified SLNs by both fluorescence and positron emission tomography (PET) while maintaining high percent extraction by the SLN. These studies demonstrated the feasibility of 800CW-tilmanocept for multimodal SLN mapping via fluorescence and PET-computed tomography imaging.

  19. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  20. Advanced glycation end products in hemodialysates as fluorescent and optical absorption markers of patients mortality

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A.; Frorip, A.; Maiste, A.; Ots-Rosenberg, M.; Sünter, A.; Sablonin, J.; Vasil'chenko, J.

    2014-10-01

    Hemodialysate (HD) samples collected from the end stage renal disease patients (ESRD Pts) were used for search for possible correlation between the intensity of HD visible auto-fluorescence (VF) detected at 420 nm as well as their optical absorption at 320 nm and the mortality events among the Pts. Previous but strongly promising correlations has been found in both cases which deserve further supplementation and examination. Investigation of possible influence of quenchers onto the VF intensity has been carried out. Endogenous inorganic ions present in biological fluids (serum, urine and HD) (Na, K, Ca, Mg and ammonia) do not affect the VF intensity remarkably but exogenous Al ions do that indirectly and specifically. Carbon based entities (nanoparticles of graphene type, humins) quench the VF effectively according to the Stern-Volmer law. The quenching phenomena and influence of aluminium must be taken into account by the further investigations, medical care and nutrition.

  1. Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy.

    PubMed

    Carriles, Ramón; Schafer, Dawn N; Sheetz, Kraig E; Field, Jeffrey J; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W; Squier, Jeffrey A

    2009-08-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences.

  2. High resolution laser induced fluorescence Doppler velocimetry utilizing saturated absorption spectroscopy

    SciTech Connect

    Aramaki, Mitsutoshi; Ogiwara, Kohei; Etoh, Shuzo; Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2009-05-15

    A high resolution laser induced fluorescence (LIF) system has been developed to measure the flow velocity field of neutral particles in an electron-cyclotron-resonance argon plasma. The flow velocity has been determined by the Doppler shift of the LIF spectrum, which is proportional to the velocity distribution function. Very high accuracy in velocity determination has been achieved by installing a saturated absorption spectroscopy unit into the LIF system, where the absolute value and scale of laser wavelength are determined by using the Lamb dip and the fringes of a Fabry-Perot interferometer. The minimum detectable flow velocity of a newly developed LIF system is {+-}2 m/s, and this performance remains unchanged in a long-time experiment. From the radial measurements of LIF spectra of argon metastable atoms, it is found that there exists an inward flow of neutral particles associated with neutral depletion.

  3. Solvent effects on the steady-state absorption and fluorescence spectra of uracil, thymine and 5-fluorouracil.

    PubMed

    Gustavsson, Thomas; Sarkar, Nilmoni; Bányász, Akos; Markovitsi, Dimitra; Improta, Roberto

    2007-01-01

    We report a comparison of the steady-state absorption and fluorescence spectra of three representative uracil derivatives (uracil, thymine and 5-fluorouracil) in alcoholic solutions. The present results are compared with those from our previous experimental and computational studies of the same compounds in water and acetonitrile. The effects of solvent polarity and hydrogen bonding on the spectra are discussed in the light of theoretical predictions. This comparative analysis provides a more complete picture of the solvent effects on the absorption and fluorescence properties of pyrimidine nucleobases, with special emphasis on the mechanism of the excited state deactivation.

  4. Solvent dependence of two-photon absorption spectra of the enhanced green fluorescent protein (eGFP) chromophore

    NASA Astrophysics Data System (ADS)

    Hosoi, Haruko; Tayama, Ryo; Takeuchi, Satoshi; Tahara, Tahei

    2015-06-01

    Two-photon absorption spectra of 4‧-hydroxybenzylidene-2,3-dimethylimidazolinone, a model chromophore of enhanced green fluorescent protein (eGFP), were measured in various solvents. The two-photon absorption band of its anionic form is markedly blue-shifted from the corresponding one-photon absorption band in all solvents. Moreover, the magnitude of the blue shift varies largely depending on the solvent, which does not accord with the assignment of the two-photon absorption band to the transitions to the vibrationally excited S1 state. Our finding is readily rationalized by considering overlapping contributions of the S1 ← S0 and S2 ← S0 transitions, suggesting the involvement of the S2 state also in two-photon fluorescence of eGFP.

  5. Electronically excited dipole moment of 4-aminobenzonitrile from thermochromic absorption and fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2006-07-01

    The effect of temperature on absorption and fluorescence spectra of 4-aminobenzonitrile (ABN) in 1,2-dichloroethane is studied for temperature ranging from 296 K to 343 K. The analysis of absorption and fluorescence band shift on the basis of Bilot and Kawski theory [L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621], for the known dipole moment in the ground state μg = 5.92 D, and α/ a3 = 0.5 ( α is the polarizability and a is the Onsager interaction radius of the solute) yields for ABN: (1) the empirical Onsager interaction radius a = 3.3 Å, (2) the dipole moment in the excited S 1 state μe = 7.14 D which agrees very well with the value of μe = 7.20 D obtained by Borst et al. [D.R. Borst, T.M. Korter, D.W. Pratt, Chem. Phys. Lett. 350 (2001) 485] from Stark effect studies. Both values of μe concern free ABN molecule and differ significantly from the values of μg (8.0 D, 8.5 D and 8.3 D in cyclohexane, benzene and 1,4-dioxane, respectively) obtained by Schuddeboom et al. [W. Schuddeboom, S.A. Jonker, J.M. Warman, U. Leinhos, W. Kühnle, K.A. Zachariasse, J. Phys. Chem. 96 (1992) 10809] from the time-resolved microwave conductivity measurements which are solvent-dependent. The group moment additivity law in the case of ABN molecule is approximately applicable, both in the ground and in the excited electronic state.

  6. Heavy Metals Effect on Cyanobacteria Synechocystis aquatilis Study Using Absorption, Fluorescence, Flow Cytometry, and Photothermal Measurements

    NASA Astrophysics Data System (ADS)

    Dudkowiak, A.; Olejarz, B.; Łukasiewicz, J.; Banaszek, J.; Sikora, J.; Wiktorowicz, K.

    2011-04-01

    The toxic effect of six heavy metals on cyanobacteria Synechocystis aquatilis was studied by absorption, fluorescence, flow cytometry, and photothermal measurements. This study indicates that at the concentration used, the cyanobacteria are more sensitive to silver, copper, and mercury than to cadmium, lead, and zinc metals. Disregarding the decrease in the yields of the related radiative processes caused by photochemical processes and/or damage to phycobilisomes, no changes were detected in the efficiency of thermal deactivation processes within a few microseconds, which can indicate the lack of disturbances in the photosynthetic light reaction and the lack of damage to the photosystem caused by the heavy metal ions in the concentrations used. The results demonstrate that the relative values of fluorescence yield as well as promptly generated heat calculated for the metal-affected and unaffected (reference) bacteria are sensitive indicators of environmental pollution with heavy metal ions, whereas the complementary methods proposed could be used as a noninvasive and fast procedure for in vivo assessment of their toxicity.

  7. Excitation/Detection Strategies for OH Planar Laser-Induced Fluorescence Measurements in the Presence of Interfering Fuel Signal and Absorption Effects

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Anderson, Robert C.; Hicks, Yolanda R.

    2011-01-01

    Planar laser-induced fluorescence (PLIF) excitation/detection methods have been applied to obtain spatial distributions of the hydroxyl [OH] reacting intermediary and hydrocarbon [HC] primary species in laminar and turbulent combustion reactions. In this report, broadband and narrowband excitation/filtering techniques are explored to identify an optimal experimental configuration yielding significant fluorescent signal with low absorption losses. The combustion environments analyzed include 1) a laminar non-premixed methane/air flame and 2) a turbulent, non-premixed Jet-A/air fueled flame within a lean flame tube combustor. Hydrocarbon-based fuel and OH were excited via the R1 (1), R1(10) and R2(7) transitions of the A(sup 2)Epsilon(+) X(sup 2)pi(1,0) band using a broadband Nd:YAG pumped optical parametric oscillator (OPO) and narrowband Nd:YAG/dye laser with ultraviolet frequency extension (UVX) package. Variables tested for influence on fluorescent signal and absorption characteristics were excitation line, laser energy, exciting linewidth, combustion reactants, and test flow conditions. Results are intended to guide the transition from a dye/UVX laser to an OPO system for performing advanced diagnostics of low-emission combustion concepts.

  8. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    SciTech Connect

    Rey-Raap, Natalia

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  9. Biocompatible photoresistant far-red emitting, fluorescent polymer probes, with near-infrared two-photon absorption, for living cell and zebrafish embryo imaging.

    PubMed

    Adjili, Salim; Favier, Arnaud; Fargier, Guillaume; Thomas, Audrey; Massin, Julien; Monier, Karine; Favard, Cyril; Vanbelle, Christophe; Bruneau, Sylvia; Peyriéras, Nadine; Andraud, Chantal; Muriaux, Delphine; Charreyre, Marie-Thérèse

    2015-04-01

    Exogenous probes with far-red or near-infrared (NIR) two-photon absorption and fluorescence emission are highly desirable for deep tissue imaging while limiting autofluorescence. However, molecular probes exhibiting such properties are often hydrophobic. As an attractive alternative, we synthesized water-soluble polymer probes carrying multiple far-red fluorophores and demonstrated here their potential for live cell and zebrafish embryo imaging. First, at concentrations up to 10 μm, these polymer probes were not cytotoxic. They could efficiently label living HeLa cells, T lymphocytes and neurons at an optimal concentration of 0.5 μm. Moreover, they exhibited a high resistance to photobleaching in usual microscopy conditions. In addition, these polymer probes could be successfully used for in toto labeling and in vivo two-photon microscopy imaging of developing zebrafish embryos, with remarkable properties in terms of biocompatibility, internalization, diffusion, stability and wavelength emission range. The near-infrared two-photon absorption peak at 910 nm is particularly interesting since it does not excite the zebrafish endogenous fluorescence and is likely to enable long-term time-lapse imaging with limited photodamage.

  10. Photosensitizer fluorescence emission during photodynamic therapy applied to dermatological diseases

    NASA Astrophysics Data System (ADS)

    Salas-García, I.; Fanjul-Vélez, F.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2011-09-01

    Photodynamic Therapy (PDT) is an optical treatment modality that allows malignant tissue destruction. It is based on the administration of a photosensitizer and the posterior irradiation by an optical source. Photosensitizer molecules absorb the excitation light photons triggering a series of photochemical reactions in the presence of oxygen in the target tissue. During such interactions it is produced the de-excitation of the photosensitizer molecules in the singlet excited state which return to their minimum energy state by emitting fluorescence photons. These days, there are fixed clinical PDT protocols that make use of a particular optical dose and photosensitizer amount. However treatment response varies among patients and the type of pathology. In order to adjust an optimal dosimetry, the development of accurate predictive models plays an important role. The photosensitizer fluorescence can be used to estimate the degradation of the photoactive agent and as an implicit dosimetric measurement during treatment. However it is complex to know the fluorescence dependence with the depth in the tumor from observed fluorescence in the pathology surface. We present a first approach to predict the photosensitizer fluorescence dependence with depth during the PDT treatment applied to a skin disease commonly treated in the dermatological clinical practice. The obtained results permit us to know the photosensitizer temporal fluorescence evolution in different points of the tumor sample during the photochemical reactions involved in PDT with a predictive purpose related to the treatment evolution. The model presented also takes into account the distribution of a topical photosensitizer, the propagation of light in a biological media and the subsequent photochemical interactions between light and tissue. This implies that different parameters related with the photosensitizer distribution or the optical source characteristics could be adjusted to provide a specific treatment

  11. Photosensitizer fluorescence emission during photodynamic therapy applied to dermatological diseases

    NASA Astrophysics Data System (ADS)

    Salas-García, I.; Fanjul-Vélez, F.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2012-02-01

    Photodynamic Therapy (PDT) is an optical treatment modality that allows malignant tissue destruction. It is based on the administration of a photosensitizer and the posterior irradiation by an optical source. Photosensitizer molecules absorb the excitation light photons triggering a series of photochemical reactions in the presence of oxygen in the target tissue. During such interactions it is produced the de-excitation of the photosensitizer molecules in the singlet excited state which return to their minimum energy state by emitting fluorescence photons. These days, there are fixed clinical PDT protocols that make use of a particular optical dose and photosensitizer amount. However treatment response varies among patients and the type of pathology. In order to adjust an optimal dosimetry, the development of accurate predictive models plays an important role. The photosensitizer fluorescence can be used to estimate the degradation of the photoactive agent and as an implicit dosimetric measurement during treatment. However it is complex to know the fluorescence dependence with the depth in the tumor from observed fluorescence in the pathology surface. We present a first approach to predict the photosensitizer fluorescence dependence with depth during the PDT treatment applied to a skin disease commonly treated in the dermatological clinical practice. The obtained results permit us to know the photosensitizer temporal fluorescence evolution in different points of the tumor sample during the photochemical reactions involved in PDT with a predictive purpose related to the treatment evolution. The model presented also takes into account the distribution of a topical photosensitizer, the propagation of light in a biological media and the subsequent photochemical interactions between light and tissue. This implies that different parameters related with the photosensitizer distribution or the optical source characteristics could be adjusted to provide a specific treatment

  12. Excitation-emission matrices and synchronous fluorescence spectroscopy for the diagnosis of gastrointestinal cancers

    NASA Astrophysics Data System (ADS)

    Genova, Ts; Borisova, E.; Penkov, N.; Vladimirov, B.; Zhelyazkova, A.; Avramov, L.

    2016-06-01

    We report the development of an improved fluorescence technique for cancer diagnostics in the gastrointestinal tract. We investigate the fluorescence of ex vivo colorectal (cancerous and healthy) tissue samples using excitation-emission matrix (EEM) and synchronous fluorescence spectroscopy (SFS) steady-state approaches. The obtained results are processed for revealing characteristic fluorescence spectral features with a valuable diagnostic meaning. The main tissue fluorophores, contributing to the observed fluorescence, are tyrosine, tryptophan, NADH, FAD, collagen and elastin. Based on the results of the Mann-Whitney test as useful parameters for differentiation of gastrointestinal cancer from normal mucosa, we suggest using excitation wavelengths in the range 300 - 360 nm for fluorescence spectroscopy and wavelengths intervals of 60 nm and 90 nm for SFS.

  13. Frequency-upconverted stimulated emission by simultaneous five-photon absorption

    NASA Astrophysics Data System (ADS)

    Zheng, Qingdong; Zhu, Haomiao; Chen, Shan-Ci; Tang, Changquan; Ma, En; Chen, Xueyuan

    2013-03-01

    Since the invention of the laser in 1960, multiphoton effects have become useful in techniques for real applications as well as conceptual predictions. Here, we report the first experimental observation of frequency-upconverted stimulated emission from a novel fluorophore through simultaneous five-photon absorption. Compared to lower-order nonlinear absorption, the fifth-order dependence on input light intensity of the five-photon absorption process will provide much stronger spatial confinement, allowing the achievement of a much higher contrast in imaging. Stimulated emission has also been achieved by the absorption of two to four photons under near-infrared laser excitation, making this gain medium a promising multiphoton imaging probe with attractive features, including the absence of autofluorescence from biological samples, large penetration depth, and improved sensitivity and resolution.

  14. Emission Properties of Fluorescent Nanoparticles Determined by Their Optical Environment

    PubMed Central

    Chung, Kelvin; Tomljenovic-Hanic, Snjezana

    2015-01-01

    The emission rate of a radiating dipole within a nanoparticle is crucially dependent on its surrounding refractive index environment. In this manuscript, we present numerical results on how the emission rates are affected for nanoparticles in a homogenous and substrate environment. These results are general, applicable to any refractive index distribution and emitter.

  15. The effects of pH and surfactants on the absorption and fluorescence properties of ochratoxin A and zearalenone.

    PubMed

    Li, Taihua; Kim, Bo Bae; Ha, Tae Hwan; Shin, Yong-Beom; Kim, Min-Gon

    2015-11-01

    The pH and surfactant dependencies of the absorption and fluorescence properties of ochratoxin A (OTA) and zearalenone (ZEN), the main mycotoxins found as contaminants in foods and feeds, were evaluated. Three surfactants with different ionic properties were investigated, namely sodium dodecyl sulfate (SDS, anionic), Tween 20 (nonionic) and hexadecyltrimethylammonium bromide (CTAB, cationic). The results show that the effects of pH on the absorption wavelength maxima and fluorescence efficiencies of the mycotoxins, which are a consequence of the presence of acidic phenol and/or carboxyl containing fluorophores, are dependent on the ionic nature of the added surfactants. Specifically, the fluorescence responses to pH changes of OTA and ZEN are similar in the presence or absence of Tween 20 and SDS. By contrast, the pH-dependent fluorescence properties of these mycotoxins are altered when CTAB is present in the solutions. Moreover, unlike OTA, ZEN in aqueous solution displays almost no fluorescence. However, fluorescence enhancement takes place when surfactants are present in aqueous solutions of this mycotoxin. The results of this study demonstrate that the different microenvironments, present in the organized micellar systems created by the individual surfactants, can be potentially employed to modulate the sensitivities and selectivities of the fluorescence detection of OTA or ZEN.

  16. Pathological changes in Alzheimer"s brain evaluated with fluorescence emission analysis (FEA)

    NASA Astrophysics Data System (ADS)

    Christov, Alexander; Ottman, Todd; Grammas, Paula

    2004-07-01

    Development of AD is associated with cerebrovascular deposition of amyloid beta (Aβ) as well as a progressive increase in vasular collagen content. Both AΒ and collagen are naturally fluorescent compounds when exposed to UV light. We analyzed autofluorescence emitted from brain tissue samples and isolated brain resistance vessels harvested postmortem from patients with Alzheimer's disease (AD) and age-matched controls. Fluorescence emission, excited at 355 nm with an Nd:YAG laser, was measured using a fiber-optic based fluorescence spectroscopic system for tissue analysis. Significantly higher values of fluorescence emission intensity (P<0.001) in the spectral region from 465 to 490 nm were detected in brain resistance vessel samples from AD patients compared to the normal individuals. Results from western blot analysis showed elevated levels of type I and type III collagen, and reduced levels of type IV collagen in resistance vessels from AD patients, compared to control samples. In addition, using direct scanning of the cortical suface for fluoresxcence emission by the laser-induced fluorescence spectroscopy system we detected a significantly (P<0.05) higher level of apoptosis in AD brain tissue compared to age-matched controls. Fluorescence emission analysis (FEA) appears to be a sensitive technique for detecting structural changes in AD brain tissue.

  17. Lanthanide based dual-emission fluorescent probe for detection of mercury (II) in milk.

    PubMed

    Tan, Hongliang; Li, Qian; Ma, Chanjiao; Song, Yonghai; Xu, Fugang; Chen, Shouhui; Wang, Li

    2015-01-15

    It is highly desirable to develop a simple and sensitive method for Hg(2+) detection because of the dangerous nature of Hg(2+). In this work, we prepared a dual-emission fluorescent probe for Hg(2+) detection by combining two lanthanide chelates with different emission wavelengths. Green-emitting terbium (Tb(3+)) chelates as reference signals were embedded into SiO2 nanoparticles and red-emitting europium (Eu(3+)) chelates as response units were covalently linked to the surface of silica shell. Upon the addition of Hg(2+), the fluorescence of Eu(3+) chelates can be selectively quenched, while the fluorescence of Tb(3+) chelates remained unchanged. As a kind of Hg(2+) nanosensor, the dual-emission fluorescent probe exhibited excellent selectivity to Hg(2+) and high sensitivity up to 7.07 nM detection limit. The Hg(2+) levels in drinking water and milk samples were determined by using the dual-emission fluorescent probe with satisfied recovery. Additionally, our probe has a long enough fluorescence lifetime, which can avoid the interference from autofluorescence of the biological samples. We envision that the proposed probe could find great potential applications for ultrasensitive time-resolved fluorometric assays and biomedical imaging in the future.

  18. Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China.

    PubMed

    Tan, Quanyin; Li, Jinhui

    2016-01-01

    The use of fluorescent lamps has expanded rapidly all over the world in recent years, because of their energy-saving capability. Consequently, however, mercury emissions from production, breakage, and discard of the lamps are drawing increasing concern from the public. This article focuses on evaluating the amount of mercury used for fluorescent lamp production, as well as the potential mercury emissions during production and breakage, in mainland China. It is expected to provide a comprehensive understanding about the risks present in the mercury from fluorescent lamps, and to know about the impacts of the policies on fluorescent lamps after their implementation. It is estimated that, in 2020, mercury consumption will be about 11.30-15.69 tonnes, a significant reduction of 34.9%-37.4% from that used in 2013, owing to improvement in mercury dosing dosage technology and tighter limitations on mercury content in fluorescent lamps. With these improvements, the amount of mercury remaining in fluorescent lamps and released during production is estimated to be 10.71-14.86 and 0.59-0.83 tonnes, respectively; the mercury released from waste fluorescent lamps is estimated to be about 5.37-7.59 tonnes. Also, a significant reduction to the mercury emission can be expected when a collection and treatment system is well established and conducted in the future.

  19. Measurements of trace constituents from atmospheric infrared emission and absorption spectra, a feasibility study

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Williams, W. J.; Murcray, D. G.

    1974-01-01

    The feasibility of detecting eight trace constituents (CH4, HCl, HF, HNO3, NH3, NO, NO2 and SO2) against the rest of the atmospheric background at various altitudes from infrared emission and absorption atmospheric spectra was studied. Line-by-line calculations and observational data were used to establish features that can be observed in the atmospheric spectrum due to each trace constituent. Model calculations were made for experimental conditions which approximately represent state of the art emission and absorption spectrometers.

  20. Test of spectral emission and absorption characteristics of active optical fibers by direct side pumping.

    PubMed

    Zhang, Jianzhong; Luo, Yanhua; Sathi, Zinat M; Azadpeyma, Nilram; Peng, Gang-Ding

    2012-08-27

    Emission and absorption are two main properties of active optical fibers that are important for fiber amplifiers and lasers. We propose a direct side pumping scheme for non-deconstructive evaluation of active optical fibers. This scheme enables a simple in situ test of both emission and absorption characteristics without cutting fiber and produces good accuracy with very low pumping background. A commercial Er-doped fiber and a home-made Bi/Er co-doped optical fiber have been tested to demonstrate that the scheme is a useful alternative technique for characterizing active optical fiber or waveguides.

  1. Microwave-assisted synthesis of water-soluble, fluorescent gold nanoclusters capped with small organic molecules and a revealing fluorescence and X-ray absorption study

    NASA Astrophysics Data System (ADS)

    Helmbrecht, C.; Lützenkirchen-Hecht, D.; Frank, W.

    2015-03-01

    Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES spectra in comparison to several gold references, optically transparent fluorescent AuNC are predicted to be ligand-stabilized Au5+ species. Additionally, their near edge structure compared with analogous results of polynuclear clusters known from the literature discloses an increasing intensity of the feature close to the absorption edge with decreasing cluster size. As a result, a linear relationship between the cluster size and the X-ray absorption coefficient can be established for the first time.Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES

  2. Sizeable red-shift of absorption and fluorescence of subporphyrazine induced by peripheral push and pull substitution.

    PubMed

    Liang, Xu; Shimizu, Soji; Kobayashi, Nagao

    2014-11-18

    Peripheral substitution with electron-donating (push) and electron-withdrawing (pull) substituents caused a sizeable red-shift of the Q band absorption and fluorescence of subporphyrazine, and the red-shift was controlled by the push substituents. Control of the chromophore symmetry and inherent molecular chirality arising from the pattern of substitution were also investigated.

  3. Radiation Force Caused by Scattering, Absorption, and Emission of Light by Nonspherical Particles

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2001-01-01

    General formulas for computing the radiation force exerted on arbitrarily oriented and arbitrarily shaped nonspherical particles due to scattering, absorption, and emission of electromagnetic radiation are derived. For randomly oriented particles with a plane of symmetry, the formula for the average radiation force caused by the particle response to external illumination reduces to the standard Debye formula derived from the Lorenz-Mie theory, whereas the average radiation force caused by emission vanishes.

  4. The Herbig AE star AB AUR - absorption along the line of sight and chromospheric emission

    NASA Astrophysics Data System (ADS)

    Felenbok, P.; Praderie, F.; Talavera, A.

    1983-11-01

    The H-alpha, He I 5876 A, Na I 5890 A, Ca II IR triplet, and P14-P16 Paschen lines of AB Aur are all brighter than the nearby continuum. The emission lines are examined with regard to their origin as either recombination or chromospheric emission. While He I and H-alpha could be formed simultaneously by recombination under certain circumstances, a deep chromosphere would account for He I 5876, for the Paschen lines in emission, and perhaps even for the Ca II IR triplet in emission. A deep chromosphere would also explain why higher Balmer lines are in absorption and why the Ca II resonance lines have only an autoreversed emission core, despite not being fully in emission.

  5. Photoacoustic-fluorescence in vitro flow cytometry for quantification of absorption, scattering and fluorescence properties of the cells

    NASA Astrophysics Data System (ADS)

    Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.

    2013-03-01

    Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.

  6. Solid-immersion fluorescence microscopy with increased emission and super resolution

    SciTech Connect

    Liau, Z. L.; Porter, J. M.; Liau, A. A.; Chen, J. J.; Salmon, W. C.; Sheu, S. S.

    2015-01-07

    We investigate solid-immersion fluorescence microscopy suitable for super-resolution nanotechnology and biological imaging, and have observed limit of resolution as small as 15 nm with microspheres, mitochondria, and chromatin fibers. We have further observed that fluorescence efficiency increases with excitation power density, implicating appreciable stimulated emission and increased resolution. We discuss potential advantages of the solid-immersion microscopy, including combined use with previously established super-resolution techniques for reaching deeper beyond the conventional diffraction limit.

  7. Microlensing Constraints on Broad Absorption and Emission Line Flows in the Quasar H1413+117

    NASA Astrophysics Data System (ADS)

    O'Dowd, Matthew J.; Bate, Nicholas F.; Webster, Rachel L.; Labrie, Kathleen; Rogers, Joshua

    2015-11-01

    We present new integral field spectroscopy of the gravitationally lensed broad absorption line (BAL) quasar H1413+117, covering the ultraviolet restframe spectral range. We observe strong microlensing signatures in lensed image D, and we use this microlensing to simultaneously constrain both the broad emission and broad absorption line gas. The wavelength independence of image D magnifications across the broad emission lines (BELs) indicates a lower limit on the broad emission line region (BELR) size equal to the Einstein radius (ER) of the system: ≳11 {(< M> /{M}⊙ )}0.5 lt-day for a lens redshift of 1.4 and ≳15 {(< M> /{M}⊙ )}0.5 lt-day for zL = 0.94. Lensing simulations verify that the observed wavelength independence is very unlikely for BELRs with significant velocity stratification at size scales below an ER. We perform spectral decomposition to derive the intrinsic BEL and continuum spectrum, subject to BAL absorption. We reconstruct the intrinsic BAL absorption profile, whose features allow us to constrain outflow kinematics in the context of a disk-wind model. We find a very sharp, blueshifted onset of absorption of 1500 km s-1 in both C iv and N v, which may correspond to an inner edge of a disk-wind’s radial outflow. The lower ionization Si iv and Al iii have higher-velocity absorption onsets, consistent with a decreasing ionization parameter with radius in an accelerating outflow. There is evidence of strong absorption in the BEL component, which indicates a high covering factor for absorption over two orders of magnitude in outflow radius.

  8. Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom.

    PubMed

    Ziegler, Ronny; Nielsen, Tim; Koehler, Thomas; Grosenick, Dirk; Steinkellner, Oliver; Hagen, Axel; Macdonald, Rainer; Rinneberg, Herbert

    2009-08-20

    We report on the nonlinear reconstruction of local absorption and fluorescence contrast in tissuelike scattering media from measured time-domain diffuse reflectance and transmittance of laser as well as laser-excited fluorescence radiation. Measurements were taken at selected source-detector offsets using slablike diffusely scattering and fluorescent phantoms containing fluorescent heterogeneities. Such measurements simulate in vivo data that would be obtained employing a scanning, time-domain fluorescence mammograph, where the breast is gently compressed between two parallel glass plates, and source and detector optical fibers scan synchronously at various source-detector offsets, allowing the recording of laser and fluorescence mammograms. The diffusion equations modeling the propagation of the laser and fluorescence radiation were solved in frequency domain by the finite element method simultaneously for several modulation frequencies using Fourier transformation and preprocessed experimental data. To reconstruct the concentration of the fluorescent contrast agent, the Born approximation including higher-order reconstructed photon densities at the excitation wavelength was used. Axial resolution was determined that can be achieved by various detection schemes. We show that remission measurements increase the depth resolution significantly.

  9. Two Photon Absorption Laser Induced Fluorescence for Neutral Hydrogen Profile Measurements

    SciTech Connect

    Scime, Earl E.

    2016-09-23

    The magnitude and spatial dependence of neutral density in magnetic confinement fusion experiments is a key physical parameter, particularly in the plasma edge. Modeling codes require precise measurements of the neutral density to calculate charge-exchange power losses and drag forces on rotating plasmas. However, direct measurements of the neutral density are problematic. In this work, we proposed to construct a laser-based diagnostic capable of providing spatially resolved measurements of the neutral density in the edge of plasma in the DIII-D tokamak. The diagnostic concept is based on two-photon absorption laser induced fluorescence (TALIF). By injecting two beams of 205 nm light (co or counter propagating), ground state hydrogen (or deuterium or tritium) can be excited from the n = 1 level to the n = 3 level at the location where the two beams intersect. Individually, the beams experience no absorption, and therefore have no difficulty penetrating even dense plasmas. After excitation, a fraction of the hydrogen atoms decay from the n = 3 level to the n = 2 level and emit photons at 656 nm (the Hα line). Calculations based on the results of previous TALIF experiments in magnetic fusion devices indicated that a laser pulse energy of approximately 3 mJ delivered in 5 ns would provide sufficient signal-to-noise for detection of the fluorescence. In collaboration with the DIII-D engineering staff and experts in plasma edge diagnostics for DIII-D from Oak Ridge National Laboratory (ORNL), WVU researchers designed a TALIF system capable of providing spatially resolved measurements of neutral deuterium densities in the DIII-D edge plasma. The laser systems were specified, purchased, and assembled at WVU. The TALIF system was tested on a low-power hydrogen discharge at WVU and the plan was to move the instrument to DIII-D for installation in collaboration with ORNL researchers. After budget cuts at DIII-D, the DIII-D facility declined to support

  10. Tricolor Emission of a Fluorescent Heteroditopic Ligand over a Concentration Gradient of Zinc(II) Ions

    PubMed Central

    Sreenath, Kesavapillai; Clark, Ronald J.

    2012-01-01

    The internal charge transfer (ICT) type fluoroionophore arylvinyl-bipy (bipy = 2,2′-bipyridyl) is covalently tethered to the spirolactam form of rhodamine to afford fluorescent heteroditopic ligand 4. Compound 4 can be excited in the visible region, the emission of which undergoes sequential bathochromic shifts over an increasing concentration gradient of Zn(ClO4)2 in acetonitrile. Coordination of Zn2+ stabilizes the ICT excited state of the arylvinyl-bipy component of 4, leading to the first emission color shift from blue to green. At sufficiently high concentrations of Zn(ClO4)2, the non-fluorescent spirolactam component of 4 is transformed to the fluorescent rhodamine, which turns the emission color from green to orange via intramolecular fluorescence resonance energy transfer (FRET) from the Zn2+-bound arylvinyl-bipy fluorophore to rhodamine. While this work offers a new design of ratiometric chemosensors, in which sequential analyte-induced emission band shifts result in the sampling of multiple colors at different concentration ranges (i.e. from blue to green to orange as [Zn2+] increases in the current case), it also reveals the nuances of rhodamine spirolactam chemistry that have not been sufficiently addressed in the published literature. These issues include the ability of rhodamine spirolactam as a fluorescence quencher via electron transfer, and the slow kinetics of spirolactam ring-opening effected by Zn2+ coordination. PMID:22924325

  11. Non-emissive colour filters for fluorescence detection.

    PubMed

    Yamazaki, Mikihide; Hofmann, Oliver; Ryu, Gihan; Xiaoe, Li; Lee, Tai Kyu; deMello, Andrew J; deMello, John C

    2011-04-07

    We describe a simple technique for fabricating non-emissive colour filters based on the sensitisation of a highly porous nanostructured metal-oxide film with a monolayer of dye molecules. Ultrafast electron transfer at the oxide/dye interface induces efficient quenching of photogenerated excitons in the dye, reducing the photoluminescence quantum yield by many orders of magnitude. The resultant filters exhibit much less autofluorescence than conventional colour filters (where the chromophore is dispersed in a glass or polymer host), and are a viable low cost alternative to interference filters for microfluidic devices and other applications requiring non-emissive filtering.

  12. Light absorption properties and radiative effects of primary organic aerosol emissions.

    PubMed

    Lu, Zifeng; Streets, David G; Winijkul, Ekbordin; Yan, Fang; Chen, Yanju; Bond, Tami C; Feng, Yan; Dubey, Manvendra K; Liu, Shang; Pinto, Joseph P; Carmichael, Gregory R

    2015-04-21

    Organic aerosols (OAs) in the atmosphere affect Earth's energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called "brown carbon" (BrC) component. However, the absorptivities of OAs are not represented or are poorly represented in current climate and chemical transport models. In this study, we provide a method to constrain the BrC absorptivity at the emission inventory level using recent laboratory and field observations. We review available measurements of the light-absorbing primary OA (POA), and quantify the wavelength-dependent imaginary refractive indices (kOA, the fundamental optical parameter determining the particle's absorptivity) and their uncertainties for the bulk POA emitted from biomass/biofuel, lignite, propane, and oil combustion sources. In particular, we parametrize the kOA of biomass/biofuel combustion sources as a function of the black carbon (BC)-to-OA ratio, indicating that the absorptive properties of POA depend strongly on burning conditions. The derived fuel-type-based kOA profiles are incorporated into a global carbonaceous aerosol emission inventory, and the integrated kOA values of sectoral and total POA emissions are presented. Results of a simple radiative transfer model show that the POA absorptivity warms the atmosphere significantly and leads to ∼27% reduction in the amount of the net global average POA cooling compared to results from the nonabsorbing assumption.

  13. Emission and absorption spectra of some bridged 1,5-benzodiazepines

    NASA Astrophysics Data System (ADS)

    Mellor, J. M.; Pathirana, R. N.; Stibbard, J. H. A.

    Absorption spectra in neutral and acidic media are reported for a series of bridged 1,5-benzodiazepines, which are unable to tautomerize. Comparison is made with non-bridged 1,5-benzodiazepines capable of tautomeric rearrangement. Both bridged and non-bridged 1,5-benzodiazepines are essentially non-fluorescent due to the "proximity effect" of interaction between singlet ηπ* and ππ* states of similar energy, a phenomenon previously recognised in six-membered nitrogen heterocycles.

  14. Modeling biological fluorescence emission spectra using Lorentz line shapes and nonlinear optimization

    NASA Astrophysics Data System (ADS)

    Nation, Paul D.; Howard, A. Q.; Webb, Lincoln J.

    2007-08-01

    Using the Levenberg-Marquardt nonlinear optimization algorithm and a series of Lorentzian line shapes, the fluorescence emission spectra from BG (Bacillus globigii) bacteria can be accurately modeled. This method allows data from both laboratory and field sources to model the return signal from biological aerosols using a typical LIF (lidar induced fluorescence) system. The variables found through this procedure match individual fluorescence components within the biological material and therefore have a physically meaningful interpretation. The use of this method also removes the need to calculate phase angles needed in autoregressive all-pole models.

  15. Tetraphenylethene-based aggregation-induced emission fluorescent organic nanoparticles: facile preparation and cell imaging application.

    PubMed

    Zhang, Xiqi; Liu, Meiying; Yang, Bin; Zhang, Xiaoyong; Wei, Yen

    2013-12-01

    Tetraphenylethene-based (TPE) aggregation-induced emission fluorescent organic nanoparticles (FONs) were facilely prepared via Schiff base condensation with ɛ-polylysine (Ply) and subsequent reduction to form stable CN covalent bond. Thus obtained TPE-Ply FONs were characterized by a series of techniques including fluorescent spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. Biocompatibility evaluation and cell uptake behavior of TPE-Ply FONs were further investigated to explore their potential biomedical application. We demonstrated that such FONs showed high water dispersibility, intense fluorescence, uniform morphology (100-200nm) and excellent biocompatibility, making them promising for cell imaging application.

  16. Switching of the fluorescence emission of single molecules between the locally excited and charge transfer states

    NASA Astrophysics Data System (ADS)

    Angeles Izquierdo, M.; Bell, Toby D. M.; Habuchi, Satoshi; Fron, Eduard; Pilot, Roberto; Vosch, Tom; De Feyter, Steven; Verhoeven, Jan; Jacob, Josemon; Müllen, Klaus; Hofkens, Johan; De Schryver, Frans C.

    2005-01-01

    A novel perylene imide and oligo-pentaphenyl bisfluorene containing molecule is shown to undergo electron transfer to form an emissive charge transfer state in di-benzyl ether and THF. At the single molecule level in a PMMA film, fluorescence spectra characteristic of both emissive states (locally excited and charge transfer) are observed with 44% of the molecules studied showing switching between the two states. These results demonstrate that charge transfer fluorescence from single molecules can be used to report on the properties and dynamics of a molecule's immediate surroundings or nano-environment.

  17. High resolution Fourier transform spectrometry in emission and absorption in the visible and UV ranges

    NASA Astrophysics Data System (ADS)

    Luc, Paul

    1995-07-01

    This paper gives the main results obtained at Laboratoire Aimé Cotton, using Fourier transform spectroscopy (FTS) in the visible and UV ranges. After a rapid historical survey, a description of the fourth generation interferometer, which is specially designed to record visible and UV light will be given. Typical results in emission and absorption spectroscopy, including the metrological applications, will follow.

  18. Cross section calculations of astrophysical interest. [for theories of absorption and emission lines

    NASA Technical Reports Server (NTRS)

    Gerjuoy, E.

    1974-01-01

    Cross sections are discussed for rotational excitation associated with theories of absorption and emission lines from molecules in space with emphasis on H2CO, CO, and OH by collisions with neutral particles such H, H2, and He. The sensitivity of the Thaddeus equation for the H2CO calculation is examined.

  19. Emission, absorption and polarization of gyrosynchrotron radiation of mildly relativistic particles

    NASA Technical Reports Server (NTRS)

    Petrosian, V.; Mctiernan, J. M.

    1983-01-01

    Approximate analytic expressions are presented for the emissivity and absorption coefficient of synchrotron radiation of mildly relativistic particles with an arbitrary energy spectrum and pitch angle distribution. From these, an expression for the degree of polarization is derived. The analytic results are compared with numerical results for both thermal and non-thermal (power law) distributions of particles.

  20. Optical absorption and fluorescence properties of Er3+/Yb3+ codoped lead bismuth alumina borate glasses

    NASA Astrophysics Data System (ADS)

    Goud, K. Krishna Murthy; Reddy, M. Chandra Shekhar; Rao, B. Appa

    2014-04-01

    Lead bismuth alumina borate glasses codoped with Er3+/Yb3+ were prepared by melt quenching technique. Optical absorption, FTIR and photoluminescence spectra of these glasses have been studied. Judd-Ofelt theory has been applied to to the f ↔ f transitions for evaluating Ω2, Ω4 and Ω6 parameters. Radiative properties like branching ratio βr and the radiative life time τR have been determined on the basis of Judd-Ofelt theory. Upconversion emissions have been observed under 980nm laser excitation at room temperature. Green and red up-conversion emissions are centered at 530, 550 and 656 nm corresponding to 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3+ respectively. The results obtained are discussed quantitatively based on the energy transfer between Yb3+ and Er3+.

  1. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O2 lattice in an irradiated (60 MW d kg-1) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (˜0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am3+ species within an [AmO8]13- coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix.

  2. Aromatic Fused [30] Heteroannulenes with NIR Absorption and NIR Emission: Synthesis, Characterization, and Excited-State Dynamics.

    PubMed

    Mallick, Abhijit; Oh, Juwon; Kim, Dongho; Rath, Harapriya

    2016-06-06

    Two hitherto unknown planar aromatic [30] fused heterocyclic macrocycles (1.1.0.1.1.0), with NIR absorption in free-base form and protonation-induced enhanced NIR emission, have been synthesized from easy to make precursors. The induced correspondence of fusion on the macrocyclic structure, electronic absorption, and emission spectra have been highlighted.

  3. Manipulation of the spontaneous emission in mesoporous synthetic opals impregnated with fluorescent guests.

    PubMed

    Yamada, Yuri; Yamada, Hisashi; Nakamura, Tadashi; Yano, Kazuhisa

    2009-12-01

    The spontaneous emission of light from light-emitting materials adsorbed within the ordered pores of monodispersed mesoporous silica spheres (MMSS) has been investigated. By taking advantage of the ordered starburst pores of MMSS, we can provide a simple strategy for fabricating synthetic opals consisting of homogeneous individual building blocks in which fluorescent guests are uniformly and stably impregnated. In this study, tris(8-hydroxyquinolinato)aluminum(III) (Alq(3)) and Rhodamine B (Rh B) are selected as the fluorescent guests. The former has a wider emission band than the reflection spectrum of MMSS synthetic opals, whereas the emission band of the latter is considerably narrower than the reflection spectrum of the opals. The spontaneous emissions of these functionalized synthetic opals are clearly influenced by the stop band governed by the Bragg equation. In the case of the Alq(3)-MMSS conjugate, the shape of the Alq(3) emission spectrum varies in accordance with the shift in the stop band. The emission of the Rh B-MMSS conjugate is noticeably narrowed, and its intensity is enhanced when the excitation intensity is increased. These results are well explained by an inhibition of spontaneous emission caused by a reduction in the density of optical states within the stop band. The results of this study indicate that MMSS synthetic opals are promising for use in novel optical applications in which the spontaneous emission can be manipulated.

  4. Nonlinear Absorption and Low-Threshold Multiphoton Pumped Stimulated Emission from All-Inorganic Perovskite Nanocrystals.

    PubMed

    Wang, Yue; Li, Xiaoming; Zhao, Xin; Xiao, Lian; Zeng, Haibo; Sun, Handong

    2016-01-13

    Halide perovskite materials have attracted intense research interest due to the striking performance in photoharvesting photovoltaics as well as photoemitting applications. Very recently, the emerging CsPbX3 (X = Cl, Br, I) perovskite nanocrystals have been demonstrated to be efficient emitters with photoluminescence quantum yield as high as ∼90%, room temperature single photon sources, and favorable lasing materials. Herein, the nonlinear optical properties, in particular, the multiphoton absorption and resultant photoluminescence of the CsPbBr3 nanocrystals, were investigated. Notably, a large two-photon absorption cross-section of up to ∼1.2 × 10(5) GM is determined for 9 nm sized CsPbBr3 nanocrystals. Moreover, low-threshold frequency-upconverted stimulated emission by two-photon absorption was observed from the thin film of close-packed CsPbBr3 nanocrystals. The stimulated emission is found to be photostable and wavelength-tunable. We further realize the three-photon pumped stimulated emission in green spectra range from colloidal nanocrystals for the first time. Our results reveal the strong nonlinear absorption in the emerging CsPbX3 perovskite nanocrystals and suggest these nanocrystals as attractive multiphoton pumped optical gain media, which would offer new opportunities in nonlinear photonics and revive the nonlinear optical devices.

  5. Improved And Quality Assessed Emission And Absorption Line Measurements In Sloan Digital Sky Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, M.; Schawinski, K.; Yi, S. K.

    2011-01-01

    We have established a new database of absorption and emission line measurements from the Sloan Digital Sky Survey 7th data release for the galaxies within a redshift of 0.2. This work used publicly available codes, pPXF(penalized pixel-fitting) and GANDALF(gas and absorption line fitting), to achieve robust spectral fits and reliable measurements. The absorption line strengths measured by SDSS pipeline are seriously contaminated by emission fill-in. We effectively separate emission lines from absorption lines. For instance, this work successfully extract [NI] doublet from Mgb and it leads to more realistic result of alpha enhancement on late-type galaxies compared to the previous database. Besides accurately measuring line strengths, the database will be provided with new parameters that are indicative of line strength measurement quality. Users can build a subset of database optimal for their studies using specific cuts in the fitting quality parameters as well as empirical signal-to-noise. Applying these parameters, we found galaxies with dramatically broad line regions among the galaxies with poor fitting quality parameters. We applied a new continuum finding prescriptions to newly identified BLRs and they turned out to be Seyfert I nuclei.

  6. Mercury re-emission in flue gas multipollutants simultaneous absorption system.

    PubMed

    Liu, Yue; Wang, Qingfeng; Mei, Rongjun; Wang, Haiqiang; Weng, Xiaole; Wu, Zhongbiao

    2014-12-02

    Recently, simultaneous removal of SO2, NOx and oxidized mercury in wet flue gas desulfurization (WFGD) scrubber has become a research focus. Mercury re-emission in traditional WFGD system has been widely reported due to the reduction of oxidized mercury by sulfite ions. However, in multipollutants simultaneous absorption system, the formation of a large quantity of nitrate and nitrite ions as NOx absorption might also affect the reduction of oxidized mercury in the aqueous absorbent. As such, this paper studied the effects of nitrate and nitrite ions on mercury re-emission and its related mechanism. Experimental results revealed that the nitrate ions had neglected effect on mercury re-emission while the nitrite ions could greatly change the mercury re-emission behaviors. The nitrite ions could initially improve the Hg(0)-emission through the decomposition of HgSO3NO2(-), but with a further increase in the concentration, they would then inhibit the reduction of bivalent mercury owing to the formation of Hg-nitrite complex [Hg(NO2)x(2-x)]. In addition, the subsequent addition of Cl(-) could further suppress the Hg(0) emission, where the formation of a stable Hg-SO3-NO2-Cl complex was assumed to be the main reason for such strong inhibition effect.

  7. Optimal optical filters of fluorescence excitation and emission for poultry fecal detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: An analytic method to design excitation and emission filters of a multispectral fluorescence imaging system is proposed and was demonstrated in an application to poultry fecal inspection. Methods: A mathematical model of a multispectral imaging system is proposed and its system parameters, ...

  8. Fluorescence excitation-emission matrix spectroscopy as a tool for determining quality of sparkling wines.

    PubMed

    Elcoroaristizabal, Saioa; Callejón, Raquel M; Amigo, Jose M; Ocaña-González, Juan A; Morales, M Lourdes; Ubeda, Cristina

    2016-09-01

    Browning in sparkling wines was assessed by the use of excitation-emission fluorescence spectroscopy combined with PARAllel FACtor analysis (PARAFAC). Four different cava sparkling wines were monitored during an accelerated browning process and subsequently storage. Fluorescence changes observed during the accelerated browning process were monitored and compared with other conventional parameters: absorbance at 420nm (A420) and the content of 5-hydroxymethyl-2-furfural (5-HMF). A high similarity of the spectral profiles for all sparkling wines analyzed was observed, being explained by a four component PARAFAC model. A high correlation between the third PARAFAC factor (465/530nm) and the commonly used non-enzymatic browning indicators was observed. The fourth PARAFAC factor (280/380nm) gives us also information about the browning process following a first order kinetic reaction. Hence, excitation-emission fluorescence spectroscopy, together with PARAFAC, provides a faster alternative for browning monitoring to conventional methods, as well as useful key indicators for quality control.

  9. High-speed laser-induced fluorescence and spark plug absorption sensor diagnostics for mixing and combustion studies in engines.

    PubMed

    Cundy, Michael; Schucht, Torsten; Thiele, Olaf; Sick, Volker

    2009-02-01

    Simultaneous high-speed in-cylinder measurements of laser-induced fluorescence of biacetyl as a fuel tracer and mid-infrared broadband absorption of fuel and combustion products (water and carbon dioxide) using a spark plug probe are compared in an optical engine. The study addresses uncertainties and the applicability of absorption measurements at a location slightly offset to the spark plug when information about mixing at the spark plug is desired. Absorbance profiles reflect important engine operation events, such as valve opening and closing, mixing, combustion, and outgassing from crevices.

  10. FIRST CONNECTION BETWEEN COLD GAS IN EMISSION AND ABSORPTION: CO EMISSION FROM A GALAXY–QUASAR PAIR

    SciTech Connect

    Neeleman, Marcel; Prochaska, J. Xavier; Kanekar, Nissim; Christensen, Lise; Fynbo, Johan P. U.; Dessauges-Zavadsky, Miroslava; Zafar, Tayyaba

    2016-04-01

    We present the first detection of molecular emission from a galaxy selected to be near a projected background quasar using the Atacama Large Millimeter/submillimeter Array (ALMA). The ALMA detection of CO(1−0) emission from the z = 0.101 galaxy toward quasar PKS 0439–433 is coincident with its stellar disk and yields a molecular gas mass of M{sub mol} ≈ 4.2 × 10{sup 9} M{sub ⊙} (for a Galactic CO-to-H{sub 2} conversion factor), larger than the upper limit on its atomic gas mass. We resolve the CO velocity field, obtaining a rotational velocity of 134 ± 11 km s{sup −1} and a resultant dynamical mass of ≥4 × 10{sup 10} M{sub ⊙}. Despite its high metallicity and large molecular mass, the z = 0.101 galaxy has a low star formation rate, implying a large gas consumption timescale, larger than that typical of late-type galaxies. Most of the molecular gas is hence likely to be in a diffuse extended phase, rather than in dense molecular clouds. By combining the results of emission and absorption studies, we find that the strongest molecular absorption component toward the quasar cannot arise from the molecular disk, but is likely to arise from diffuse gas in the galaxy’s circumgalactic medium. Our results emphasize the potential of combining molecular and stellar emission line studies with optical absorption line studies to achieve a more complete picture of the gas within and surrounding high-redshift galaxies.

  11. Candidate Hα emission and absorption line sources in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Wevers, T.; Jonker, P. G.; Nelemans, G.; Torres, M. A. P.; Groot, P. J.; Steeghs, D.; Maccarone, T. J.; Hynes, R. I.; Heinke, C.; Britt, C.

    2017-04-01

    We present a catalogue of candidate Hα emission and absorption line sources and blue objects in the Galactic Bulge Survey (GBS) region. We use a point source catalogue of the GBS fields (two strips of (l × b) = (6° × 1°) centred at b = 1.5° above and below the Galactic Centre), covering the magnitude range 16 ≤ r΄ ≤ 22.5. We utilize (r΄ - i΄, r΄ - Hα) colour-colour diagrams to select Hα emission and absorption line candidates, and also identify blue objects (compared to field stars) using the r΄ - i΄ colour index. We identify 1337 Hα emission line candidates and 336 Hα absorption line candidates. These catalogues likely contain a plethora of sources, ranging from active (binary) stars, early-type emission line objects, cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs) to background active galactic nuclei (AGN). The 389 blue objects we identify are likely systems containing a compact object, such as CVs, planetary nebulae and LMXBs. Hot subluminous dwarfs (sdO/B stars) are also expected to be found as blue outliers. Cross-matching our outliers with the GBS X-ray catalogue yields 16 sources, including 7 (magnetic) CVs and 1 qLMXB candidate among the emission line candidates and 1 background AGN for the absorption line candidates. One of the blue outliers is a high-state AM CVn system. Spectroscopic observations combined with the multiwavelength coverage of this area, including X-ray, ultraviolet and (time-resolved) optical and infrared observations, can be used to further constrain the nature of individual sources.

  12. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    SciTech Connect

    Degueldre, Claude Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O₂ lattice in an irradiated (60 MW d kg⁻¹) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (~0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am³⁺ species within an [AmO₈]¹³⁻ coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix. - Graphical abstract: Americium LIII XAFS spectra recorded for the irradiated MOX sub-sample in the rim zone for a 300 μm×300 μm beam size area investigated over six scans of 4 h. The records remain constant during multi-scan. The analysis of the XAFS signal shows that Am is found as trivalent in the UO₂ matrix. This analytical work shall open the door of very challenging analysis (speciation of fission product and actinides) in irradiated nuclear fuels. - Highlights: • Americium was characterized by microX-ray absorption spectroscopy in irradiated MOX fuel. • The americium redox state as determined from XAS data of irradiated fuel material was Am(III). • In the sample, the Am³⁺ face an AmO₈¹³⁻coordination environment in the (Pu,U)O₂ matrix. • The americium dioxide is reduced by the uranium dioxide matrix.

  13. [Conformation of adenosine deaminase in complexes with inhibitors: application of selective quenching of fluorescence emission].

    PubMed

    Vermishian, I G; Sharoian, S G; Antonian, A A; Grigorian, N A; Mardanian, S S; Khoetsian, A V; Markarian, Sh A

    2008-01-01

    The effect of inhibitors, 1-deazaadenosine (1-dAdo) and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), on the conformation of adenosine deaminase was studied using the method of selective quenching of fluorescence emission by acrylamide, I- and Cs+. Both in free adenosine deaminase and in its complexes with the inhibitors, the wavelength maxima and half-width of the emission characterize the environment of fluorescing tryptophan residues in adenosine deaminase as weak polar with limited access to solvent. The formation of complexes with the ground state inhibitors used did not quench or change the main emission characteristics of tryptophan fluorescence in adenosine deaminase. Small blue shifts of emission maxima were observed upon quenching in all three samples. The Stern-Volmer parameters of tryptophan fluorescence quenching by acrylamide were not essentially influenced by complex formation of the enzyme with the inhibitors: in general, the folding of the enzyme molecule in the complexes is not perturbed. On the contrary, the emission quenching by charged heavy ions, I- and Cs+, in the complexes was hindered in comparison with free adenosine deaminase. In the complex with 1-deazaadenosine, the parameters for quenching by both ions evidence the essential worsening of their interaction with tryptophans. In the complex with erythro-9-(2-hydroxy-3-nonyl)adenine, along with the worse quenching by I-, complete prohibition of quenching by Cs+ was observed. These data indicate that the local environments of fluorescing tryptophan residues is substantially distorted compared with free adenosine deaminase, which leads to their screening from charged heavy ions.

  14. Evaluation of potential emission spectra for the reliable classification of fluorescently coded materials

    NASA Astrophysics Data System (ADS)

    Brunner, Siegfried; Kargel, Christian

    2011-06-01

    The conservation and efficient use of natural and especially strategic resources like oil and water have become global issues, which increasingly initiate environmental and political activities for comprehensive recycling programs. To effectively reutilize oil-based materials necessary in many industrial fields (e.g. chemical and pharmaceutical industry, automotive, packaging), appropriate methods for a fast and highly reliable automated material identification are required. One non-contacting, color- and shape-independent new technique that eliminates the shortcomings of existing methods is to label materials like plastics with certain combinations of fluorescent markers ("optical codes", "optical fingerprints") incorporated during manufacture. Since time-resolved measurements are complex (and expensive), fluorescent markers must be designed that possess unique spectral signatures. The number of identifiable materials increases with the number of fluorescent markers that can be reliably distinguished within the limited wavelength band available. In this article we shall investigate the reliable detection and classification of fluorescent markers with specific fluorescence emission spectra. These simulated spectra are modeled based on realistic fluorescence spectra acquired from material samples using a modern VNIR spectral imaging system. In order to maximize the number of materials that can be reliably identified, we evaluate the performance of 8 classification algorithms based on different spectral similarity measures. The results help guide the design of appropriate fluorescent markers, optical sensors and the overall measurement system.

  15. Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Wu, Lin; Wong, Ten It; Bauch, Martin; Zhang, Qingwen; Zhang, Jinling; Liu, Xiaohu; Zhou, Xiaodong; Bai, Ping; Dostalek, Jakub; Liedberg, Bo

    2016-04-01

    We investigated the simultaneous excitation of localized surface plasmons (LSPs) and propagating surface plasmons (PSPs) on a thin metallic film with an array of nanoholes for the enhancement of fluorescence intensity in heterogeneous bioassays. Experiments supported by simulations reveal that the co-excitation of PSP and LSP modes on the nanohole array in a Kretschmann configuration allows for fluorescence enhancement of about 102 as compared to a flat Au surface irradiated off-resonance. Moreover, this fluorescence signal was about 3-fold higher on the substrate supporting both PSPs and LSPs than that on a flat surface where only PSPs were resonantly excited. Simulations also indicated the highly directional fluorescence emission as well as the high fluorescence collection efficiency on the nanohole array substrate. Our contribution attempts to de-convolute the origin of this enhancement and identify further ways to maximize the efficiency of surface plasmon-enhanced fluorescence spectroscopy for implementation in ultra-sensitive bioassays.We investigated the simultaneous excitation of localized surface plasmons (LSPs) and propagating surface plasmons (PSPs) on a thin metallic film with an array of nanoholes for the enhancement of fluorescence intensity in heterogeneous bioassays. Experiments supported by simulations reveal that the co-excitation of PSP and LSP modes on the nanohole array in a Kretschmann configuration allows for fluorescence enhancement of about 102 as compared to a flat Au surface irradiated off-resonance. Moreover, this fluorescence signal was about 3-fold higher on the substrate supporting both PSPs and LSPs than that on a flat surface where only PSPs were resonantly excited. Simulations also indicated the highly directional fluorescence emission as well as the high fluorescence collection efficiency on the nanohole array substrate. Our contribution attempts to de-convolute the origin of this enhancement and identify further ways to maximize

  16. Design of rare-earth-ion doped chalcogenide photonic crystals for enhancing the fluorescence emission

    NASA Astrophysics Data System (ADS)

    Zhang, Peiqing; Dai, Shixun; Niu, Xueke; Xu, Yinsheng; Zhang, Wei; Wu, Yuehao; Xu, Tiefeng; Nie, Qiuhua

    2014-07-01

    Rare-earth-ion doped chalcogenide glass is a promising material for developing mid-infrared light sources. In this work, Tm3+-doped chalcogenide glass was prepared and photonic crystal structures were designed to enhance its fluorescence emission at approximately 3.8 μm. By employing the finite-difference time-domain (FDTD) simulation, the emission characteristics of the luminescent centers in the bulk material and in the photonic crystals were worked out. Utilizing analysis of the photon excitation inside the sample and the photon extraction on the sample surface, it was found that fluorescence emission can be significantly enhanced 260-fold with the designed photonic crystal structure. The results of this work can be used to realize high-efficiency mid-infrared light sources.

  17. Absolute excited-state absorption cross section and fluorescence quantum efficiency of Cr/sup 3 +/: gadolinium scandium gallium garnet

    SciTech Connect

    Seelert, W.; Strauss, E.

    1987-10-01

    Excited-state properties of the laser material Cr/sup 3 +/:Gd/sub 3/Sc/sub 2/(GaO/sub 4/)/sub 3/ were determined by a photocaloric technique. The excited-state absorption cross section at 650 nm is (3.6 +- 0.6)10/sup -20/ cm/sup 2/, and the fluorescence quantum efficiency at ambient temperature is (91 +- 1)%.

  18. Excitation energy dependence of excited states dynamics in all- trans-carotenes determined by femtosecond absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Yanagi, Kazuhiro; Nishio, Tomohiro; Hashimoto, Hideki; Yoshizawa, Masayuki

    2005-06-01

    Ultrafast relaxation kinetics in β-carotene and lycopene has been investigated by femtosecond absorption and fluorescence spectroscopies using tunable excitation pulses. The transient signals induced by the photoexcitation with larger excess energy have broader bands and longer lifetimes both in the 11Bu+and21Ag- excited states. The excess vibrational energy remains longer than several picoseconds and slows the relaxation kinetics in carotenoids.

  19. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Drag, Cyril; Blondel, Christophe; Guaitella, Olivier; Golda, Judith; Klarenaar, Bart; Engeln, Richard; Schulz-von der Gathen, Volker; Booth, Jean-Paul

    2016-12-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was investigated using a high-resolution TALIF technique in normal and Doppler-free configurations. The pressure broadening coefficients determined were {γ{{\\text{O}2}}}   =  0.40  ±  0.08  cm-1/bar for oxygen molecules and {γ\\text{He}}   =  0.46  ±  0.03 cm-1/bar for helium atoms. These correspond to pressure broadening rate constants k\\text{PB}{{\\text{O}2}}   =  9 · 10-9 cm3 s-1 and k\\text{PB}\\text{He}   =  4 · 10-9 cm3 s-1, respectively. The well-known quenching rate constants of O(3p 3 P J ) by O2 and He are at least one order of magnitude smaller, which signifies that non-quenching collisions constitute the main line-broadening mechanism. In addition to providing new insights into collisional processes of oxygen atoms in electronically excited 3p 3 P J state, reported pressure broadening parameters are important for quantification of oxygen TALIF line profiles when both collisional and Doppler broadening mechanisms are important. Thus, the Doppler component (and hence the temperature of oxygen atoms) can be accurately determined from high resolution TALIF measurements in a broad range of conditions.

  20. Two photon absorption laser induced fluorescence measurements of neutral density in a helicon plasma

    SciTech Connect

    Galante, M. E.; Magee, R. M.; Scime, E. E.

    2014-05-15

    We have developed a new diagnostic based on two-photon absorption laser induced fluorescence (TALIF). We use a high intensity (5 MW/cm{sup 2}), narrow bandwidth (0.1 cm{sup −1}) laser to probe the ground state of neutral hydrogen, deuterium and krypton with spatial resolution better than 0.2 cm, a time resolution of 10 ns, and a measurement cadence of 20 Hz. Here, we describe proof-of-principle measurements in a helicon plasma source that demonstrate the TALIF diagnostic is capable of measuring neutral densities spanning four orders of magnitude; comparable to the edge neutral gradients predicted in the DIII-D tokamak pedestal. The measurements are performed in hydrogen and deuterium plasmas and absolute calibration is accomplished through TALIF measurements in neutral krypton. The optical configuration employed is confocal, i.e., both light injection and collection are accomplished with a single lens through a single optical port in the vacuum vessel. The wavelength resolution of the diagnostic is sufficient to separate hydrogen and deuterium spectra and we present measurements from mixed hydrogen and deuterium plasmas that demonstrate isotopic abundance measurements are feasible. Time resolved measurements also allow us to explore the evolution of the neutral hydrogen density and temperature and effects of wall recycling. We find that the atomic neutral density grows rapidly at the initiation of the discharge, reaching the steady-state value within 1 ms. Additionally, we find that neutral hydrogen atoms are born with 0.08 eV temperatures, not 2 eV as is typically assumed.

  1. Structure control for fine tuning fluorescence emission from side-chain azobenzene polymers.

    PubMed

    Smitha, P; Asha, S K

    2007-06-14

    New fluorescent azobenzene dyes and side-chain polymers have been synthesized and characterized and their photophysical properties studied. A series of azobenzene dyes having different fluorophores such as phenol (S1), phenylphenol (S2) and naphthol (S3) incorporated in them were synthesized. S2 had unusually high fluorescence with a quantum yield of phi f = 0.2 recorded in dichloromethane (DCM), whereas S1 and S3 were found to be weakly fluorescent. The azobenzene dyes were converted into methacrylate monomers having short ethyleneoxy spacers and then free radically polymerized. Phenylphenol-based azobenzene polymer (P2) continued to show fluorescence, whereas fluorescence was completely quenched in the case of phenol (P1)- and naphthol (P3)-based polymers. Phenylphenol, though twisted in the ground state is known to have a more planar geometry in the excited state--a factor that enables it to retain its fluorescence behavior even when it is incorporated as part of an azobenzene unit. In contrast, naphthol, which is a better fluorophore compared to phenylphenol, loses much of its emissive behavior upon coupling to the azobenzene unit. The extent of trans to cis photoisomerization in solution was very low (approximately 17%) for P2 after 30 min of continuous irradiation using 365 nm light, in contrast to approximately 40% for P1 under identical conditions. This is attributed to the steric repulsion brought about by the bulky phenylphenol units that restrict rotation. A 2-fold enhancement in fluorescence emission was observed for P2 upon irradiation by UV light at 360 nm, which relaxed to the original intensity in about 7 day's time. The higher emission of the cis azobenzenes is generally attributed to an inhibition of photoinduced electron transfer (PET) mechanism. The emission of P2 showed a concentration dependence which increased initially and then decreased in intensity with the formation of a new red-shifted peak at higher concentration due to aggregation

  2. Ultrashort Two-Photon-Absorption Laser-Induced Fluorescence in Nanosecond-Duration, Repetitively Pulsed Discharges

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob Brian

    Absolute number densities of atomic species produced by nanosecond duration, repetitively pulsed electric discharges are measured by two-photon absorption laser-induced fluorescence (TALIF). Relatively high plasma discharge pulse energies (=1 mJ/pulse) are used to generate atomic hydrogen, oxygen, and nitrogen in a variety of discharge conditions and geometries. Unique to this work is the development of femtosecond-laser-based TALIF (fs-TALIF). Fs-TALIF offers a number of advantages compared to more conventional ns-pulse-duration laser systems, including better accuracy of direct quenching measurements in challenging environments, significantly reduced photolytic interference including photo-dissociation and photo-ionization, higher signal and increased laser-pulse bandwidth, the ability to collect two-dimensional images of atomic species number densities with far greater spatial resolution compared with more conventional diagnostics, and much higher laser repetition rates allowing for more efficient and accurate measurements of atomic species number densities. In order to fully characterize the fs-TALIF diagnostic and compare it with conventional ns-TALIF, low pressure (100 Torr) ns-duration pulsed discharges are operated in mixtures of H2, O2, and N2 with different buffer gases including argon, helium, and nitrogen. These discharge conditions are used to demonstrate the capability for two-dimensional imaging measurements. The images produced are the first of their kind and offer quantitative insight into spatially and temporally resolved kinetics and transport in ns-pulsed discharge plasmas. The two-dimensional images make possible comparison with high-fidelity plasma kinetics models of the presented data. The comparison with the quasi-one-dimensional kinetic model show good spatial and temporal agreement. The same diagnostics are used at atmospheric pressure, when atomic oxygen fs-TALIF is performed in an atmospheric-pressure plasma jet (APPJ). Here, the

  3. Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Liu, Zhongfang; Liu, Jiangtao; Liu, Shaopu; Shen, Wei

    2008-03-01

    In pH 4.4-4.5 Britton-Robinson (BR) buffer solution, fluoroquinolone antibiotics (FLQs) including ciprofloxacin (CIP), norfloxacin (NOR), levofloxacin (LEV) and lomefloxacin (LOM) could react with erythrosine (Ery) to form 1:1 ion-association complexes, which not only resulted in the changes of the absorption spectra and the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS). These offered some indications of the determination of fluoroquinolone antibiotics by spectrophotometric, fluorescence and resonance Rayleigh scattering methods. The detection limits for fluoroquinolone antibiotics were in the range of 0.097-0.265 μg/mL for absorption methods, 0.022-0.100 μg/mL for fluorophotometry and 0.014-0.027 μg/mL for RRS method, respectively. Among them, the RRS method had the highest sensitivity. In this work, the spectral characteristics of the absorption, fluorescence and RRS, the optimum conditions of the reactions and the properties of the analytical chemistry were investigated. The methods have been successfully applied to determination of some fluoroquinolone antibiotics in human urine samples and tablets. Taking CIP-Ery system as an example, the charge distribution, the enthalpy of formation and the mean polarizability were calculated by density function theory (DFT) method. In addition, the reasons for the enhancement of scattering spectra were discussed.

  4. Excitation-emission matrices (EEMs) and synchronous fluorescence spectroscopy (SFS) investigations of gastrointestinal tissues

    NASA Astrophysics Data System (ADS)

    Genova, Ts.; Borisova, E.; Zhelyazkova, Al.; Semyachkina-Glushkovskaya, O.; Penkov, N.; Keremedchiev, M.; Vladimirov, B.; Avramov, L.

    2015-01-01

    In this report we will present our recent investigations of the fluorescence properties of lower part gastrointestinal tissues using excitation-emission matrix and synchronous fluorescence spectroscopy measurement modalities. The spectral peculiarities observed will be discussed and the endogenous sources of the fluorescence signal will be addressed. For these fluorescence spectroscopy measurements the FluoroLog 3 system (HORIBA Jobin Yvon, France) was used. It consists of a Xe lamp (300 W, 200-650 nm), a double mono-chromators, and a PMT detector with a work region at 220- 850 nm. Autofluorescence signals were detected in the form of excitation-emission matrices for the samples of normal mucosa, dysphasia and colon carcinoma and specific spectral features for each tissue were found. Autofluorescence signals from the same samples are observed through synchronous fluorescence spectroscopy, which is a novel promising modality for fluorescence spectroscopy measurements of bio-samples. It is one of the most powerful techniques for multicomponent analysis, because of its sensitivity. In the SFS regime, the fluorescence signal is recorded while both excitation λexc and emission wavelengths λem are simultaneously scanned. A constant wavelength interval is maintained between the λexc and λem wavelengths throughout the spectrum. The resulted fluorescence spectrum shows narrower peak widths, in comparison with EEMs, which are easier for identification and minimizes the chance for false determinations or pretermission of specific spectral feature. This modality is also faster, than EEMs, a much smaller number of data points are required.1 In our measurements we use constant wavelength interval Δλ in the region of 10-200 nm. Measurements are carried out in the terms of finding Δλ, which results in a spectrum with most specific spectral features for comparison with spectral characteristics observed in EEMs. Implementing synchronous fluorescence spectroscopy in optical

  5. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    SciTech Connect

    Fara, M.; Novak, F.

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  6. Time-resolved spectroscopic fluorescence imaging, transient absorption and vibrational spectroscopy of intact and photo-inhibited photosynthetic tissue.

    PubMed

    Lukins, Philip B; Rehman, Shakil; Stevens, Gregory B; George, Doaa

    2005-01-01

    Fluorescence, absorption and vibrational spectroscopic techniques were used to study spinach at the photosystem II (PS II), chloroplast and cellular levels and to determine the effects and mechanisms of ultraviolet-B (UV-B) photoinhibition of these structures. Two-photon fluorescence spectroscopic imaging of intact chloroplasts shows significant spatial variations in the component fluorescence spectra in the range 640-740 nm, indicating that the type and distribution of chlorophylls vary markedly with position in the chloroplast. The chlorophyll distributions and excitonic behaviour in chloroplasts and whole plant tissue were studied using picosecond time-gated fluorescence imaging, which also showed UV-induced kinetic changes that clearly indicate that UV-B induces both structural and excitonic uncoupling of chlorophylls within the light-harvesting complexes. Transient absorption measurements and low-frequency infrared and Raman spectroscopy show that the predominant sites of UV-B damage in PS II are at the oxygen-evolving centre (OEC) itself, as well as at specific locations near the OEC-binding sites.

  7. Superspace Cavity QED Blackbody Equilibrium Modes Delineating CMBR Emission and Non-Doppler Redshift Absorption

    NASA Astrophysics Data System (ADS)

    Amoroso, Richard

    2004-05-01

    A blackbody equilibrium cavity QED theory for CMBR as emission and non-Doppler redshift as absorption is formulated utilizing an advanced form of Einstein's steady state cosmology. This Continuous State Universe (CSU) is based on a highly ordered periodic superspace that includes an energy dependent spacetime metric. The formalism for the superspace is derived by extending the Wheeler-Feynman absorber theory of radiation to the topology of the 12D periodic superspace. A fundamental least unit contains a core of Dirac spherical rotation with an inherent continuous compactification and dimensional reduction. It is shown formally that parameters of this cosmology demonstrate blackbody equilibrium conditions compatible with modes of emission and absorption suitable for describing CMBR and non-Doppler redshift.

  8. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy

    SciTech Connect

    Schwanke, C.; Lange, K. M.; Golnak, R.; Xiao, J.

    2014-10-15

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl{sub 2} aqueous solution by X-ray absorption and emission spectroscopy is presented.

  9. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy.

    PubMed

    Schwanke, C; Golnak, R; Xiao, J; Lange, K M

    2014-10-01

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl2 aqueous solution by X-ray absorption and emission spectroscopy is presented.

  10. Paradoxical solvent effects on the absorption and emission spectra of amino-substituted perylene monoimides.

    PubMed

    Zoon, Peter D; Brouwer, Albert M

    2005-08-12

    In N-(2,5-di-tert-butylphenyl)-9-pyrrolidinoperylene-3,4-dicarboximide (5PI) the absorption and emission spectra display large solvatochromic shifts, but, remarkably, the Stokes shift is practically independent of solvent polarity. This unique behavior is caused by the extraordinarily large ground-state dipole moment of 5PI, which further increases upon increasing the solvent polarity, whereas the excited-state dipole moment is less solvent dependent. In the corresponding piperidine compound, 6PI, this effect is much less important owing to the weaker coupling between the amino group and the aromatic imide moiety, and in the corresponding naphthalimide, 5NI, it is absent. The latter shows the conventional solvatochromic behavior of a push-pull substituted conjugated system, that is, minor shifts in absorption and a larger change in the emission energy with solvent polarity.

  11. Dual-emissive fluorescence measurements of hydroxyl radicals using a coumarin-activated silica nanohybrid probe.

    PubMed

    Liu, Saisai; Zhao, Jun; Zhang, Kui; Yang, Lei; Sun, Mingtai; Yu, Huan; Yan, Yehan; Zhang, Yajun; Wu, Lijun; Wang, Suhua

    2016-04-07

    This work reports a novel dual-emissive fluorescent probe based on dye hybrid silica nanoparticles for ratiometric measurement of the hydroxyl radical (˙OH). In the probe sensing system, the blue emission of coumarin dye (coumarin-3-carboxylic acid, CCA) immobilized on the nanoparticle surface is selectively enhanced by ˙OH due to the formation of a coumarin hydroxylation product with strong fluorescence, whereas the emission of red fluorescent dye encapsulated in the silica nanoparticle is insensitive to ˙OH as a self-referencing signal, and so the probe provides a good quantitative analysis based on ratiometric fluorescence measurement with a detection limit of 1.65 μM. Moreover, the probe also shows high selectivity for ˙OH determination against metal ions, other reactive oxygen species and biological species. More importantly, it exhibits low cytotoxicity and high biocompatibility in living cells, and has been successfully used for cellular imaging of ˙OH, showing its promising application for monitoring of intracellular ˙OH signaling events.

  12. Highly selective and sensitive nanoprobes for cyanide based on gold nanoclusters with red fluorescence emission

    NASA Astrophysics Data System (ADS)

    Zhang, Guomei; Qiao, Yunyun; Xu, Ting; Zhang, Caihong; Zhang, Yan; Shi, Lihong; Shuang, Shaomin; Dong, Chuan

    2015-07-01

    We report a novel and environmentally friendly fluorescent probe for detecting the cyanide ion (CN-) using l-amino acid oxidase (LAAOx)-protected Au nanoclusters (LAAOx@AuNCs) with red emission. The fluorescence-based sensing behaviour of LAAOx@AuNCs towards anions was investigated in buffered aqueous media. Among the anions studied, CN- was found to effectively quench the fluorescence emission of AuNCs based on CN- induced Au core decomposition. Excellent sensitivity and selectivity toward the detection of CN- in aqueous solution were observed. The CN- detection limit was determined to be approximately 180 nM, which is 15 times lower than the maximum level (2700 nM) of CN- in drinking water permitted by the World Health Organization (WHO). A linear relationship between the fluorescence intensity and CN- concentration was observed in two ranges of CN- concentration, including 3.2 × 10-6 to 3.4 × 10-5 mol L-1 and 3.81 × 10-5 to 1.04 × 10-4 mol L-1. The high sensitivity and selectivity to CN- among the 17 types of anions make the AuNCs good candidates for use in fluorescent nanoprobes of CN-.

  13. Quantification of zinc-porphyrin in dry-cured ham products by spectroscopic methods Comparison of absorption, fluorescence and X-ray fluorescence spectroscopy.

    PubMed

    Laursen, Kristoffer; Adamsen, Christina E; Laursen, Jens; Olsen, Karsten; Møller, Jens K S

    2008-03-01

    Zinc-protoporphyrin (Zn-pp), which has been identified as the major pigment in certain dry-cured meat products, was extracted with acetone/water (75%) and isolated from the following meat products: Parma ham, Iberian ham and dry-cured ham with added nitrite. The quantification of Zn-pp by electron absorption, fluorescence and X-ray fluorescence (XRF) spectroscopy was compared (concentration range used [Zn-pp]=0.8-9.7μM). All three hams were found to contain Zn-pp, and the results show no significant difference among the content of Zn-pp quantified by fluorescence, absorbance and X-ray fluorescence spectroscopy for Parma ham and Iberian ham. All three methods can be used for quantification of Zn-pp in acetone/water extracts of different ham types if the content is higher than 1.0ppm. For dry-cured ham with added nitrite, XRF was not applicable due to the low content of Zn-pp (<0.1ppm). In addition, XRF spectroscopy provides further information regarding other trace elements and can therefore be advantageous in this aspect. This study also focused on XRF determination of Fe in the extracts and as no detectable Fe was found in the three types of ham extracts investigated (limit of detection; Fe⩽1.8ppm), it allows the conclusion that iron containing pigments, e.g., heme, do not contribute to the noticeable red colour observed in some of the extracts.

  14. Controlling Quantum-dot Light Absorption and Emission by a Surface-plasmon Field

    DTIC Science & Technology

    2014-11-03

    Controlling quantum-dot light absorption and emission by a surface- plasmon field Danhong Huang,1∗ Michelle Easter,2 Godfrey Gumbs,3 A. A. Maradudin,4...as well as photon conversion by a surface- plasmon - polariton near field is explored for a quantum dot located above a metal surface. In contrast to the...resulting from the interference between the surface- plasmon field and the probe or self-emitted light field in such a strongly-coupled nonlinear system. Our

  15. Enhancements of the Andreev conductance due to emission/absorption of bosonic quanta.

    PubMed

    Barański, J; Domański, T

    2015-08-05

    We predict that the subgap spectrum and transport properties of the quantum dot embedded between superconducting and metallic reservoirs can be substantially enhanced by emission/absorption of external bosonic quanta. Upon tuning the gate voltage the in-gap Andreev states eventually interfere with each other. We explore the measurable signatures of such interference appearing in the differential conductance for both linear and nonlinear regimes.

  16. Emission, absorption and polarization of gyrosynchrotron radiation of mildly relativistic paricles

    NASA Technical Reports Server (NTRS)

    Petrosian, V.; Mctiernan, J. M.

    1982-01-01

    Approximate analytic expressions for the emissivity and absorption coefficient of synchrotron radiation of mildly relativistic particles with an arbitrary energy spectrum and pitch angle distribution are given. From these, an expression for the degree of polarization is derived. To accomplish this, previously developed methods of integration are used. The analytic results are compared with numerical results for both thermal and non-thermal (power law) distributions of particles.

  17. A Method for Eliminating Beam Steering Error for the Modulated Absorption-Emission Thermometry Technique

    DTIC Science & Technology

    2014-01-01

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) Jan 2014 2. REPORT TYPE Technical...Paper 3. DATES COVERED (From - To) Jan 2014- June 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER In-House A Method for Eliminating Beam...14194 14. ABSTRACT Modulated absorption-emission thermometry (MAET) is a non-intrusive, radiometric technique for measuring line-of-sight average

  18. A Method for Eliminating Beam Steering Error for the Modulated Absorption-Emission Thermometry Technique

    DTIC Science & Technology

    2015-01-01

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) December 2014 2. REPORT TYPE...Briefing Charts 3. DATES COVERED (From - To) December 2014- January 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER N/A A Method for Eliminating...Jan 2015. PA#14562. 14. ABSTRACT Modulated absorption-emission thermometry (MAET) is a non-intrusive, radiometric technique for measuring line-of

  19. Excitation-emission matrices measurements of human cutaneous lesions: tool for fluorescence origin

    NASA Astrophysics Data System (ADS)

    Zhelyazkova, A.; Borisova, E.; Angelova, L.; Pavlova, E.; Keremedchiev, M.

    2013-11-01

    The light induced fluorescence (LIF) technique has the potential of providing real-time diagnosis of malignant and premalignant skin tissue; however, human skin is a multilayered and inhomogeneous organ with different optical properties that complicate the analysis of cutaneous fluorescence spectra. In spite of the difficulties related to the detection and analysis of fluorescent data from skin lesions, this technique is among the most widely applied techniques in laboratorial and pre-clinical investigations for early skin neoplasia diagnosis. The important point is to evaluate all sources of intrinsic fluorescence and find any significant alterations distinguishing the normal skin from a cancerous state of the tissue; this would make the autofluorescence signal obtained useful for the development of a non-invasive diagnostic tool for the dermatological practice. Our investigations presented here were based on ex vivo point-by-point measurements of excitation-emission matrices (EEM) from excised tumor lesions and the surrounding skin taken during the daily clinical practice of Queen Jiovanna- ISUL University Hospital, Sofia, the local Ethical Committee's approval having already been obtained. The fluorescence emission was measured between 300 nm and 800 nm using excitation in the 280-440 nm spectral range. In the process of excitation-emission matrices (EEM) measurements we could establish the origin of the autofluorescence and the compounds related by assigning the excitation and emission maxima obtained during the experiments. The EEM were compared for normal human skin, basal cell carcinoma, squamous cell carcinoma, benign nevi and malignant melanoma lesions to obtain information for the most common skin malignancies and their precursors. The main spectral features and the applicability of the technique of autofluorescent spectroscopy of human skin in general as an initial diagnostic tool are discussed as well.

  20. Fluorescence emission of Ca-atom from photodissociated Ca2 in Ar doped helium droplets. II. Theoretical.

    PubMed

    Hernando, A; Masson, A; Briant, M; Mestdagh, J-M; Gaveau, M-A; Halberstadt, N

    2012-11-14

    The stability of the ground or excited state calcium atom in an argon-doped helium droplet has been investigated using an extension of the helium density functional method to treat clusters. This work was motivated by the experimental study presented in a companion paper, hereafter called Paper I [A. Masson, M. Briant, J. M. Mestdagh, M. A. Gaveau, A. Hernando, and N. Halberstadt, J. Chem. Phys. 137, 184310 (2012)], which investigated Ca(2) photodissociation in an argon-doped helium droplet and the nature of the fluorescent species. It is found that one single argon atom is sufficient to bring the calcium atom inside the droplet, for droplets of over 200 helium atoms. The absorption and emission spectra of CaAr(M) (M = 0-7) clusters have been simulated using the recently developed density sampling method to describe the influence of the helium environment. Absorption spectra exhibit broad, double bands that are significantly blueshifted with respect to the calcium atomic line. The emission spectra are less broad and redshifted with respect to the calcium resonance line. The shifts are found to be additive only for M ≤ 2, because only the first two argon atoms are located in equivalent positions around the calcium p orbital. This finding gives a justification for the fit presented in the companion paper, which uses the observed shifts in the emission spectra as a function of argon pressure to deduce the shifts as a function of the number of argon atoms present in the cluster. An analysis of this fit is presented here, based on the calculated shifts. It is concluded that the emitting species following Ca(2) photodissociation in an argon-doped droplet in Paper I could be Ca∗Ar(M) in a partly evaporated droplet where less than 200 helium atoms remain.

  1. Bias and uncertainty in the absorption emission measurement of atomic sodium density in the SSME exit plane

    NASA Technical Reports Server (NTRS)

    Bauman, Leslie E.

    1990-01-01

    The measurement of atomic sodium concentration in the TTB 019 firing of April 1990 is significant in that it represents the first measurement of density at the exit plane of the space shuttle main engine. The knowledge of the sodium density, combined with the certainty that the exit plane of the plume is optically thin at the sodium D-line wavelengths, provides essential information for evaluation of diagnostic techniques using sodium atoms, such as resonant Doppler velocimetry for temperature, pressure, and velocity through high resolution fluorescent lineshape analysis. The technique used for the sodium atom line transmission (SALT) measurements is that of resonant absorption emission using a hollow cathode lamp as the reference source. Through the use of two-dimensional kinetic (TDK) predictions of temperature and density for the flight engine case and radiative transfer calculations, this line-of-sight spectrally integrated transmission indicates a sodium atom concentration, i.e., mole fraction, of 0.91e-10. The subject of this paper is the assumptions and measurement uncertainties tied into the calculation. Because of the narrow shape of the source emission, the uncertainties in the absorption profile could introduce considerable bias in the measurement. The following were investigated: (1) the inclusion of hyperfine splitting of the D-lines in the calculation; (2) the use of the flight engine predictions of plume temperature and density versus those for the large throat engine; (3) the assumption of a Gaussian, i.e., Doppler, distribution for the source radiance with a temperature of 400 K; (4) the use of atomic collisional shift and width values for the work by Jongerius; and (5) a Doppler shift for a 7 degree outward velocity vector at the plume edge. Also included in the study was the bias introduced by an uncertainty in the measurement of the D1/D2 line ratio in the source.

  2. MEASUREMENTS OF ABSORPTION, EMISSIVITY REDUCTION, AND LOCAL SUPPRESSION OF SOLAR ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui; Sun, M.-T.

    2009-05-01

    The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 {+-} 1.3%, emissivity reduction 8.2 {+-} 1.4%, and local suppression 68.5 {+-} 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10{sup -5} rad s{sup -1}.

  3. Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission.

    PubMed

    Qian, Hai; Cousins, Morgan E; Horak, Erik H; Wakefield, Audrey; Liptak, Matthew D; Aprahamian, Ivan

    2017-01-01

    Although there are some proposed explanations for aggregation-induced emission, a phenomenon with applications that range from biosensors to organic light-emitting diodes, current understanding of the quantum-mechanical origin of this photophysical behaviour is limited. To address this issue, we assessed the emission properties of a series of BF2-hydrazone-based dyes as a function of solvent viscosity. These molecules turned out to be highly efficient fluorescent molecular rotors. This property, in addition to them being aggregation-induced emission luminogens, enabled us to probe deeper into their emission mechanism. Time-dependent density functional theory calculations and experimental results showed that the emission is not from the S1 state, as predicted from Kasha's rule, but from a higher energy (>S1) state. Furthermore, we found that suppression of internal conversion to the dark S1 state by restricting the rotor rotation enhances fluorescence, which leads to the proposal that suppression of Kasha's rule is the photophysical mechanism responsible for emission in both viscous solution and the solid state.

  4. Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission

    NASA Astrophysics Data System (ADS)

    Qian, Hai; Cousins, Morgan E.; Horak, Erik H.; Wakefield, Audrey; Liptak, Matthew D.; Aprahamian, Ivan

    2017-01-01

    Although there are some proposed explanations for aggregation-induced emission, a phenomenon with applications that range from biosensors to organic light-emitting diodes, current understanding of the quantum-mechanical origin of this photophysical behaviour is limited. To address this issue, we assessed the emission properties of a series of BF2-hydrazone-based dyes as a function of solvent viscosity. These molecules turned out to be highly efficient fluorescent molecular rotors. This property, in addition to them being aggregation-induced emission luminogens, enabled us to probe deeper into their emission mechanism. Time-dependent density functional theory calculations and experimental results showed that the emission is not from the S1 state, as predicted from Kasha's rule, but from a higher energy (>S1) state. Furthermore, we found that suppression of internal conversion to the dark S1 state by restricting the rotor rotation enhances fluorescence, which leads to the proposal that suppression of Kasha's rule is the photophysical mechanism responsible for emission in both viscous solution and the solid state.

  5. Photobleaching response of different sources of chromophoric dissolved organic matter exposed to natural solar radiation using absorption and excitation-emission matrix spectra.

    PubMed

    Zhang, Yunlin; Liu, Xiaohan; Osburn, Christopher L; Wang, Mingzhu; Qin, Boqiang; Zhou, Yongqiang

    2013-01-01

    CDOM biogeochemical cycle is driven by several physical and biological processes such as river input, biogeneration and photobleaching that act as primary sinks and sources of CDOM. Watershed-derived allochthonous (WDA) and phytoplankton-derived autochthonous (PDA) CDOM were exposed to 9 days of natural solar radiation to assess the photobleaching response of different CDOM sources, using absorption and fluorescence (excitation-emission matrix) spectroscopy. Our results showed a marked decrease in total dissolved nitrogen (TDN) concentration under natural sunlight exposure for both WDA and PDA CDOM, indicating photoproduction of ammonium from TDN. In contrast, photobleaching caused a marked increase in total dissolved phosphorus (TDP) concentration for both WDA and PDA CDOM. Thus TDN:TDP ratios decreased significantly both for WDA and PDA CDOM, which partially explained the seasonal dynamic of TDN:TDP ratio in Lake Taihu. Photobleaching rate of CDOM absorption a(254), was 0.032 m/MJ for WDA CDOM and 0.051 m/MJ for PDA CDOM from days 0-9, indicating that phototransformations were initially more rapid for the newly produced CDOM from phytoplankton than for the river CDOM. Extrapolation of these values to the field indicated that 3.9%-5.1% CDOM at the water surface was photobleached and mineralized every day in summer in Lake Taihu. Photobleaching caused the increase of spectral slope, spectral slope ratio and molecular size, indicating the CDOM mean molecular weight decrease which was favorable to further microbial degradation of mineralization. Three fluorescent components were validated in parallel factor analysis models calculated separately for WDA and PDA CDOM. Our study suggests that the humic-like fluorescence materials could be rapidly and easily photobleached for WDA and PDA CDOM, but the protein-like fluorescence materials was not photobleached and even increased from the transformation of the humic-like fluorescence substance to the protein

  6. Angular distribution of light emission from compound-eye cornea with conformal fluorescent coating

    NASA Astrophysics Data System (ADS)

    Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh

    2014-09-01

    The complex morphology of the apposition compound eyes of insects of many species provides them a wide angular field of view. This characteristic makes these eyes attractive for bioreplication as artificial sources of light. The cornea of a blowfly eye was conformally coated with a fluorescent thin film with the aim of achieving wide field-of-view emission. On illumination by shortwave-ultraviolet light, the conformally coated eye emitted visible light whose intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.

  7. Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescence spectroscopy

    USGS Publications Warehouse

    Birdwell, J.E.; Valsaraj, K.T.

    2010-01-01

    Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores. ?? 2010.

  8. A multi-emissive fluorescent probe for the discrimination of glutathione and cysteine.

    PubMed

    Liu, Xue-Liang; Niu, Li-Ya; Chen, Yu-Zhe; Yang, Yunxu; Yang, Qing-Zheng

    2017-04-15

    Glutathione (GSH) and cysteine (Cys) play different roles in biological systems, thus the discrimination between them is of great importance. Herein we report a multi-emissive fluorescent probe for the selective detection of GSH and Cys. The probe was composed of covalently linked BODIPY and coumarin fluorophores. The BODIPY fluorophore was designed to react with GSH and Cys and generate different products with distinct photophysical properties, and the coumarin fluorophore acted as an internal standard. The probe exhibited green emission in aqueous solution. Upon addition of Cys, it yielded nitrogen-substituted BODIPY with weak fluorescence and free coumarin with blue emission. In the presence of glutathione, it generated mono- and di-sulfur substituted BODIPY and coumarin, resulting in various emission colors at different concentrations of GSH. Interestingly, the solution exhibited white fluorescence at GSH concentration of 0.4mM. The probe was capable of detecting and imaging GSH and Cys in living HeLa cells, indicating its significant potential in biological applications.

  9. Self-assembly and aggregate-induced enhanced emission of amphiphilic fluorescence dyes in water and in the solid state.

    PubMed

    Hirose, Takashi; Higashiguchi, Kenji; Matsuda, Kenji

    2011-04-04

    1-Cyano-1,2-bis(biphenyl)ethene (CNBE) derivatives with a hexa(ethylene glycol) group as an amphiphilic side chain were synthesized and the self-assembling character and fluorescence behavior were investigated. The amphiphilic derivatives showed aggregate-induced enhanced emission (AIEE) in water and in the solid state. The fluorescence quantum yield increased as the rigidity of the aggregates increased (i.e., in ethyl acetatefluorescence spectra, fluorescence quantum yields, and fluorescence lifetimes, a key factor for the enhanced emission is suppression of the nonradiative decay process arising from restricted molecular motion. Additionally, the difference in the emission rate constant is not negligible and can be used to interpret the difference in fluorescence quantum yield in water and in the solid state.

  10. [Lake algae chemotaxonomy technology based on fluorescence excitation emission matrix and parallel factor analysis].

    PubMed

    Chen, Xiao-Na; Han, Xiu-Rong; Su, Rong-Guo; Shi, Xiao-Yong

    2014-03-01

    An in vivo three-dimensional fluorescence method for the determination of algae community structure was developed by parallel factor (PARAFAC) analysis and CHEMTAX. The PARAFAC model was applied to fluorescence excitation-emission matrix (EEM) of 23 algae species and 12 fluorescent components were identified according to the residual sum of squares and specificity of the composition profiles of fluorescent. Based on the 12 fluorescent components, the algae species at different growth stages were correctly classified at the division level using Bayesian discriminant analysis (BDA). Then the reference fluorescent component ratio matrix was constructed for CHEMTAX, and the EEM-PARAFAC-CHEMTAX method was developed to differentiate taxonomic groups of algae. When the fluorometric method was used for 531 single-species samples, the average correct discrimination ratio (CDR) was 99.1% and the correct discrimination ratios (CDRs) were 100% at the division level except Chlorophyta, the CDR of which was 97.5%. The CDRs for 95 mixtures were above 98.5% for the dominant algae species and above 90.5% for the subdominant algae species, with average relative contents of 69.7% and 26.4%, respectively. This technique would be of great aid when low-cost and rapid analysis is needed for samples in a large batch.

  11. Ultraviolet emission and excitation fluorescence spectroscopic characterization of DMBA-treated Swiss Albino mice skin carcinogenesis for measuring tissue transformation

    NASA Astrophysics Data System (ADS)

    Aruna, Prakasa R.; Hemamalini, Srinivasan; Ebenezar, Jeyasingh; Ganesan, Singaravelu

    2002-05-01

    The ultraviolet fluorescence emission spectra of skin tissues under different pathological conditions were measured at 280nm excitation. At this excitation wavelength, the normal skin showed a primary peak emission at 352nm and this primary peak emission from neoplastic skin shows a blue shift with respect to normal tissue. This blue shift increases as the stage of abnormality increases and it is maximum (19nm) for well-differentiated squamous cell carcinoma. This alteration is further confirmed from fluorescence excitation spectra of the tissues for 340nm emission. The study concludes that the change in the emission of tryptophan around 340nm may be due to partial unfolding of protein.

  12. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  13. Nonlinear absorption of surface plasmons and emission of electrons from metallic targets

    SciTech Connect

    Singh, D. B.; Kumar, Gagan; Tripathi, V. K.

    2007-10-15

    A large-amplitude surface plasma wave (SPW) over a metal-vacuum interface Ohmically heats the electrons and undergoes nonlinear absorption. The attenuation rate increases with the local SPW amplitude. The enhanced electron temperature leads to stronger thermionic emission of electrons. At typical Nd:glass laser intensity I{sub L}=7 GW/cm{sup 2}, if one takes the amplitude of the SPW to be {approx_equal}6 times the amplitude of the laser, one obtains the thermionic electron emission current density J=200 A/cm{sup 2}. However, the emission current density decreases with propagation distance at a much faster rate than the SPW amplitude and electron temperature.

  14. Dual emission fluorescent silver nanoclusters for sensitive detection of the biological coenzyme NAD+/NADH.

    PubMed

    Yuan, Yufeng; Huang, Kehan; Chang, Mengfang; Qin, Cuifang; Zhang, Sanjun; Pan, Haifeng; Chen, Yan; Xu, Jianhua

    2016-02-01

    Fluorescent silver nanoclusters (Ag NCs) displaying dual-excitation and dual-emission properties have been developed for the specific detection of NAD(+) (nicotinamide adenine dinucleotide, oxidized form). With the increase of NAD(+) concentrations, the longer wavelength emission (with the peak at 550 nm) was gradually quenched due to the strong interactions between the NAD(+) and Ag NCs, whereas the shorter wavelength emission (peaking at 395 nm) was linearly enhanced. More important, the dual-emission intensity ratio (I395/I550), fitting by a single-exponential decay function, can efficiently detect various NAD(+) levels from 100 to 4000 μM, as well as label NAD(+)/NADH (reduced form of NAD) ratios in the range of 1-50.

  15. Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1983-01-01

    The present investigation provides a demonstration of the feasibility of the airborne detection of the laser-induced fluorescence spectral emissions from living terrestrial grasses, shrubs, and trees using existing levels of lidar technology. Airborne studies were performed to ascertain system requirements necessary to detect laser-induced fluorescence from living terrestrial plants, to assess the practical acquisition of useful single-shot laser-induced fluorescence (LIF) waveforms over vegetative canopies, and to determine the comparative suitability of laser system, airborne platform, and terrestrial environmental parameters. The field experiment was conducted on May 3, 1982, over the northern portion of Wallops Island, VA. Attention is given to airborne lidar results and the description of laboratory investigations.

  16. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community. PMID:24921725

  17. An environmentally sensitive fluorescent purine nucleoside that changes emission wavelength upon hybridization.

    PubMed

    Saito, Yoshio; Suzuki, Azusa; Okada, Yuji; Yamasaka, Yuki; Nemoto, Nobukatsu; Saito, Isao

    2013-06-25

    C7-naphthylethynylated 8-aza-7-deaza-2'-deoxyguanosine (na)G was synthesized and its photophysical properties were examined. The fluorescent nucleoside exhibited solvatofluorochromic properties (Δλ(fl)(max) = 67 nm). An ODN probe containing (na)G forms a stable base pair only with C and discriminates structural changes such as mismatches and deletions by a distinct change in its emission wavelength.

  18. Analysis of Spectral Features of Seawaterbiooptical Components Fluorescence from the Excitation-emission Matrix

    NASA Astrophysics Data System (ADS)

    Salyuk, P. A.; Nagorny, I. G.

    The paper presents the method for processing of excitation-emission matrix of sea water and the allocation of the spectral characteristics of different types of colored dissolved organic matter (CDOM) and phytoplankton cells in seawater. The method consists of identification of regularly observed fluorescence peaks of CDOM in marine waters of different type and definition of the spectral ranges, where the predominant influence of these peaks are observed.

  19. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    NASA Astrophysics Data System (ADS)

    Olson, Michael R.; Victoria Garcia, Mercedes; Robinson, Michael A.; Van Rooy, Paul; Dietenberger, Mark A.; Bergin, Michael; Schauer, James Jay

    2015-07-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings. Filter-based absorption measurements were corrected and compared to photoacoustic absorption results. BC absorption was segregated from the total light extinction to estimate the BrC absorption from individual sources. Results were compared to elemental carbon (EC)/organic carbon (OC) concentrations to determine composition's impact on light absorption. Multiple-wavelength absorption coefficients, Angstrom exponent (6.9 to <1.0), mass absorption cross section (MAC), and Delta C (97 µg m-3 to ~0 µg m-3) were highly variable. Sources such as incense and peat emissions showed ultraviolet wavelength (370 nm) BrC absorption over 175 and 80 times (respectively) the BC absorption but only 21 and 11 times (respectively) at 520 nm wavelength. The bulk EC MACEC, λ (average at 520 nm = 9.0 ± 3.7 m2 g-1; with OC fraction <0.85 = ~7.5 m2 g-1) and the BrC OC mass absorption cross sections (MACBrC,OC,λ) were calculated; at 370 nm ultraviolet wavelengths; the MACBrC,OC,λ ranged from 0.8 m2 g-1 to 2.29 m2 g-1 (lowest peat, highest kerosene), while at 520 nm wavelength MACBrC,OC,λ ranged from 0.07 m2 g-1 to 0.37 m2 g-1 (lowest peat, highest kerosene/incense mixture). These MAC results show that OC content can be an important contributor to light absorption when present in significant quantities (>0.9 OC/TC), source emissions have variable absorption spectra, and nonbiomass combustion sources can be significant contributors to BrC.

  20. Two-Photon Ratiometric Fluorescence Probe with Enhanced Absorption Cross Section for Imaging and Biosensing of Zinc Ions in Hippocampal Tissue and Zebrafish.

    PubMed

    Li, Wanying; Fang, Bingqing; Jin, Ming; Tian, Yang

    2017-02-21

    Zinc ion (Zn(2+)) not only plays an important function in the structural, catalytic, transcription, and regulatory of proteins, but is also an essential ionic signal to regulate brain neurotransmitters pass process. In this work, we designed and synthesized an intramolecular charge transfer-based ratiometric two-photon fluorescence probe, P-Zn, for imaging and biosensing of Zn(2+) in live cell, hippocampal tissue, and zebrafish. The developed probe demonstrated high two-photon absorption cross section (δ) of 516 ± 77 GM, which increased to 958 ± 144 GM after the probe was coordinated with Zn(2+). Furthermore, this P-Zn probe quickly recognized Zn(2+) with high selectivity, over other metal ions, amino acids, and reactive oxygen species. More interestingly, the initial emission peak of the present probe at 465 nm decreased with a new peak increased at 550 nm, leading to the ratiometric determination of Zn(2+) with high accuracy. Finally, this two-photon fluorescence probe with high temporal resolution and remarkable analytical performance, as well as low-cytotoxicity, was successfully applied in imaging of live cells, hippocampal tissues, and zebrafishes. The present P-Zn probe combined with FLIM provided accurate mapping of Zn(2+) distribution at single-cell level. More interestingly, the two-photon spectroscopic results demonstrated that the level of Zn(2+) in hippocampal tissue of mouse with AD was higher than that in normal mouse brain.

  1. Strong water absorption in the dayside emission spectrum of the planet HD 189733b.

    PubMed

    Grillmair, Carl J; Burrows, Adam; Charbonneau, David; Armus, Lee; Stauffer, John; Meadows, Victoria; van Cleve, Jeffrey; von Braun, Kaspar; Levine, Deborah

    2008-12-11

    Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'hot-Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial to understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report the detection of strong water absorption in a high-signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microm and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures may alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat redistribution from the dayside to the nightside is weak. Reconciling this with the high nightside temperature will require a better understanding of atmospheric circulation or possible additional energy sources.

  2. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  3. Direct Determination of Oxidation States of Uranium in Mixed-Valent Uranium Oxides Using Total Reflection X-ray Fluorescence X-ray Absorption Near-Edge Spectroscopy.

    PubMed

    Sanyal, Kaushik; Khooha, Ajay; Das, Gangadhar; Tiwari, M K; Misra, N L

    2017-01-03

    Total reflection X-ray fluorescence (TXRF)-based X-ray absorption near-edge spectroscopy has been used to determine the oxidation state of uranium in mixed-valent U3O8 and U3O7 uranium oxides. The TXRF spectra of the compounds were measured using variable X-ray energies in the vicinity of the U L3 edge in the TXRF excitation mode at the microfocus beamline of the Indus-2 synchrotron facility. The TXRF-based X-ray absorption near-edge spectroscopy (TXRF-XANES) spectra were deduced from the emission spectra measured using the energies below and above the U L3 edge in the XANES region. The data processing using TXRF-XANES spectra of U(IV), U(V), and U(VI) standard compounds revealed that U present in U3O8 is a mixture of U(V) and U(VI), whereas U in U3O7 is mixture of U(IV) and U(VI). The results obtained in this study are similar to that reported in literature using the U M edge. The present study has demonstrated the possibility of application of TXRF for the oxidation state determination and elemental speciation of radioactive substances in a nondestructive manner with very small amount of sample requirement.

  4. Effects of solvent polarity on the absorption and fluorescence spectra of chlorogenic acid and caffeic acid compounds: determination of the dipole moments.

    PubMed

    Belay, Abebe; Libnedengel, Ermias; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-02-01

    The effects of solvent polarity on absorption and fluorescence spectra of biologically active compounds (chlorogenic acid (CGA) and caffeic acids (CA)) have been investigated. In both spectra pronounced solvatochromic effects were observed with shift of emission peaks larger than the corresponding UV-vis electronic absorption spectra. From solvatochromic theory the ground and excited-state dipole moments were determined experimentally and theoretically. The differences between the excited and ground state dipole moment determined by Bakhshiev, Kawski-Chamma-Viallet and Reichardt equations are quite similar. The ground and excited-state dipole moments were determined by theoretical quantum chemical calculation using density function theory (DFT) method (Gaussian 09) and were also similar to the experimental results. The HOMO-LUMO energy band gaps for CGA and CFA were calculated and found to be 4.1119 and 1.8732 eV respectively. The results also indicated the CGA molecule is more stable than that of CFA. It was also observed that in both compounds the excited state possesses a higher dipole moment than that of the ground state. This confirms that the excited state of the hydroxycinnamic compounds is more polarized than that of the ground state and therefore is more sensitive to the solvent.

  5. Intrinsic fluorescence excitation-emission matrix spectral features of cottonseed protein fractions and the effects of denaturants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand the functional and physicochemical properties of cottonseed protein, we investigated the intrinsic fluorescence excitation-emission matrix (EEM) spectral features of cottonseed protein isolate (CSPI) and sequentially extracted water (CSPw) and alkali (CSPa) protein fractions, an...

  6. Chromatography, Absorption, and Fluorescence: A New Instrumental Analysis Experiment on the Measurement of Polycyclic Aromatic Hydrocarbons in Cigarette Smoke

    NASA Astrophysics Data System (ADS)

    Wingen, Lisa M.; Low, Jason C.; Finlayson-Pitts, Barbara J.

    1998-12-01

    The recent approval by the American Chemical Society of an undergraduate chemistry degree with an option in environmental chemistry requires the development of new experiments that teach fundamental chemistry in the context of environmental issues. We present an experiment suitable for an undergraduate junior/senior-level instrumental analysis laboratory which illustrates the principles of high-performance liquid chromatography (HPLC) and its application to the identification and measurement of polycyclic aromatic hydrocarbons (PAH) in tobacco smoke. Absorption and fluorescence detection methods for PAH, especially the differences in sensitivity and selectivity of these methods, are clearly demonstrated along with the basic principles of HPLC.

  7. Role of non-Condon vibronic coupling and conformation change on two-photon absorption spectra of green fluorescent protein

    NASA Astrophysics Data System (ADS)

    Ai, Yuejie; Tian, Guangjun; Luo, Yi

    2013-07-01

    Two-photon absorption spectra of green fluorescent proteins (GFPs) often show a blue-shift band compared to their conventional one-photon absorption spectra, which is an intriguing feature that has not been well understood. We present here a systematic study on one- and two-photon spectra of GFP chromophore by means of the density functional response theory and complete active space self-consistent field (CASSCF) methods. It shows that the popular density functional fails to provide correct vibrational progression for the spectra. The non-Condon vibronic coupling, through the localised intrinsic vibrational modes of the chromophore, is responsible for the blue-shift in the TPA spectra. The cis to trans isomerisation can be identified in high-resolution TPA spectra. Our calculations demonstrate that the high level ab initio multiconfigurational CASSCF method, rather than the conventional density functional theory is required for investigating the essential excited-state properties of the GFP chromophore.

  8. Two-Photon Absorption and Fluorescence with Quadrupolar and Branched CHROMOPHORES—EFFECT of Structure and Branching

    NASA Astrophysics Data System (ADS)

    Porrès, Laurent; Mongin, Olivier; Katan, Claudine; Charlot, Marina; Bhatthula, Bharath Kumar Goud; Jouikov, Viatcheslav; Pons, Thomas; Mertz, Jerome; Blanchard-Desce, Mireille

    The photophysical and two-photon absorption (TPA) properties of three homologous quadrupolar and one related three-branched chromophores were investigated. Design of the quadrupoles is based on the symmetrical functionalization of a biphenyl core. Modulation of the nonlinear absorptivity/transparency/photostability trade-off can be achieved by playing with the twist angle of the core and on the spacers (phenylene-vinylene versus phenylene-ethynylene). The quadrupolar chromophores combine high TPA cross-sections, high fluorescence quantum yield and solvent sensitive photoluminescence properties. The branched structure exhibits spectrally broadened TPA in the NIR region (up to 3660 GM at 740 nm measured in the femtosecond regime) but reduced sensitivity to the environment.

  9. Influence of mixed alkalies on absorption and emission properties of Sm 3+ ions in borate glasses

    NASA Astrophysics Data System (ADS)

    Ratnakaram, Y. C.; Thirupathi Naidu, D.; Vijaya Kumar, A.; Gopal, N. O.

    2005-04-01

    The present work aims to study the variation of Judd-Ofelt intensity parameters, radiative transition probabilities, absorption and emission cross sections with alkali content in three different Sm 3+-doped mixed alkali borate glasses. Mixed alkali borate glasses in the composition 67H 3BO 3· xLi 2CO 3(32- x)Na 2CO 3·1Sm 2O 3, 67H 3BO 3· xLi 2CO 3(32- x)K 2CO 3·1Sm 2O 3 and 67H 3BO 3· xNa 2CO 3(32- x)K 2CO 3·1Sm 2O 3 with x=8, 12, 16, 20 and 24 mol% were prepared by quenching melts consisting of the above chemicals (850-950 °C, 1-2 h) between two brass plates. Judd-Ofelt theory is used to study the spectral properties and to calculate the radiative transition probabilities and branching ratios. The predicted radiative transition probabilities ( Aed), branching ratios ( β) and integrated absorption cross-sections ( Σ) for certain transitions are reported. From the emission spectra, emission cross-sections ( σ) are obtained for the four transitions, 4G 5/2→ 6H 5/2, 4G 5/2→ 6H 7/2, 4G 5/2→ 6H 9/2 and 4G 5/2→ 6H 11/2 of Sm 3+ ion in these mixed alkali borate glasses. Optical band gaps ( Eopt) and absorption edges are reported for the three Sm 3+-doped mixed alkali borate glasses.

  10. Effects of Radiative Emission and Absorption on the Propagation and Extinction of Premixed Gas Flames

    NASA Technical Reports Server (NTRS)

    Ju, Yiguang; Masuya, Goro; Ronney, Paul D.

    1998-01-01

    Premixed gas flames in mixtures of CH4, O2, N2, and CO2 were studied numerically using detailed chemical and radiative emission-absorption models to establish the conditions for which radiatively induced extinction limits may exist independent of the system dimensions. It was found that reabsorption of emitted radiation led to substantially higher burning velocities and wider extinction limits than calculations using optically thin radiation models, particularly when CO2, a strong absorber, is present in the unburned gas, Two heat loss mechanisms that lead to flammability limits even with reabsorption were identified. One is that for dry hydrocarbon-air mixtures, because of the differences in the absorption spectra of H2O and CO2, most of the radiation from product H2O that is emitted in the upstream direction cannot be absorbed by the reactants. The second is that the emission spectrum Of CO2 is broader at flame temperatures than ambient temperature: thus, some radiation emitted near the flame front cannot be absorbed by the reactants even when they are seeded with CO2 Via both mechanisms, some net upstream heat loss due to radiation will always occur, leading to extinction of sufficiently weak mixtures. Downstream loss has practically no influence. Comparison with experiment demonstrates the importance of reabsorption in CO2 diluted mixtures. It is concluded that fundamental flammability limits can exist due to radiative heat loss, but these limits are strongly dependent on the emission-absorption spectra of the reactant and product -gases and their temperature dependence and cannot be predicted using gray-gas or optically thin model parameters. Applications to practical flames at high pressure, in large combustion chambers, and with exhaust-gas or flue-gas recirculation are discussed.

  11. Optical absorption and emission properties of Nd 3+ in TeO 2 -WO 3 and TeO 2 -WO 3 -CdO glasses

    NASA Astrophysics Data System (ADS)

    Bilir, G.; Ozen, G.

    2011-11-01

    Effects of WO 3 and CdO on the spectroscopic properties of Nd 3+ doped tellurite glasses were investigated. The optical band gaps and Urbach energies of the samples were determined using the dependence of the absorption coefficient on the photon energy. The Urbach energies were found to vary from 0.18 to 0.25 eV as the WO 3 content in the binary glasses decreased from 20.0 to 10.0 mol% while the optical band gap of the same glasses did not show an appreciable dependence on the glass composition. Judd-Ofelt ( Ωt) parameters were calculated from the optical absorption spectra measured at room temperature. In all the glasses the J-O parameters follow the same trend as Ω2> Ω6> Ω4. The J-O intensity parameters were used to compute the radiative properties such as the radiative transition probabilities ( Aed), branching ratios ( β) and radiative lifetimes ( τr) for all the possible fluorescence bands. The fluorescence spectra obtained upon 805.2 nm excitation exhibited an intense emission band centered at 1064 nm ( 4F 3/2→ 4I 11/2) and two weak bands at 910 nm ( 4F 3/2→ 4I 9/2), and 1340 nm ( 4F 3/2→ 4I 13/2). The stimulated emission cross-section for the 1064 nm emission was determined using the emission spectra. The highest gain bandwidth ( σe×Δ λP) was determined to be 155.4 for the 0.79TeO 2-0.15WO 3-0.05CdO ternary glass composition, which could be more useful as promising material for the design and development of fiber amplifiers and lasers.

  12. Excitation-emission matrix fluorescence coupled to chemometrics for the exploration of essential oils.

    PubMed

    Mbogning Feudjio, William; Ghalila, Hassen; Nsangou, Mama; Mbesse Kongbonga, Yvon G; Majdi, Youssef

    2014-12-01

    Excitation-emission matrix fluorescence (EEMF) coupled to chemometrics was used to explore essential oils (EOs). The spectrofluorometer was designed with basic and inexpensive materials and was accompanied by appropriate tools for data pre-treatment. Excitation wavelengths varied between 320 nm and 600 nm while emission wavelengths were from 340 nm to 700 nm. Excitation-emission matrix (EEM) spectra of EOs presented different features, revealing the presence of varying fluorophores. EOs from the same species but from different origins presented almost the same spectra, showing the possibility that EEM spectra could be used as additional parameters in the standardisation of EOs. With the aid of unfold principal component analysis (UPCA), resemblances obtained by spectral analysis of EOs were confirmed. A five components parallel factor analysis (PARAFAC) model was used to find the profiles of fluorophores in EOs. One of those components was associated to chlorophyll a.

  13. Remote sensing of trace constituents from atmospheric infrared emission and absorption spectra

    NASA Technical Reports Server (NTRS)

    Barker, D. B.; Brooks, J. N.; Goldman, A.; Kosters, J. J.; Murcray, D. G.; Murcray, F. H.; Van Allen, J.; Williams, W. J.

    1976-01-01

    Atmospheric infrared emission and absorption spectra obtained from aircraft and balloon-borne spectrometers are presented. From such spectra, mixing ratio vs altitude profiles are derived for several minor constituents. Recent results for HNO3, CF2Cl2, CFCl3, and HF are presented. In addition, the feasibility of infrared detection of other trace constituents, such as HCl, HF, NH3, NO and SO2, against the rest of the atmospheric background is studied. From this study, made on a line-by-line basis for 'state of the art' airborne spectrometers, potential spectral features for detection of the trace constituents are isolated.

  14. Comparison Between X-rays Absorption and Emission Spectroscopy Measurements on a Ceramic Envelop Lamp

    NASA Astrophysics Data System (ADS)

    Lafitte, Bruno; Aubes, Michel; Zissis, Georges

    2007-12-01

    Burners of metal halide lamps used for illumination are generally made of polycrystalline alumina ceramic (PCA) which is translucent to visible light. We show that the difficulty of selecting a line of sight through the lamp prevents the use of optical emission diagnostic. X-rays photons are mainly absorbed and not scattered by PCA. Absorption by mercury atoms contributing to the discharge allowed us to determine the density of mercury in the lamp. By comparing diagnostic methods, we put in evidence the difficulty of taking into account the scattering of light mathematically.

  15. Nanoparticle-enhanced fluorescence emission for non-separation assays of carbohydrates using a boronic acid-alizarin complex.

    PubMed

    Li, Qianjin; Kamra, Tripta; Ye, Lei

    2016-03-04

    Addition of crosslinked polymer nanoparticles into a solution of a 3-nitrophenylboronic acid-alizarin complex leads to significant enhancement of fluorescence emission. Using the nanoparticle-enhanced boronic acid-alizarin system has improved greatly the sensitivity and extended the dynamic range of separation-free fluorescence assays for carbohydrates.

  16. An extended XMM-Newton observation of the Seyfert galaxy NGC 4051 - III. Fe K emission and absorption

    NASA Astrophysics Data System (ADS)

    Pounds, K. A.; Vaughan, S.

    2012-06-01

    An extended XMM-Newton observation of the Seyfert 1 galaxy NGC 4051 in 2009 detected a photoionized outflow with a complex absorption-line velocity structure and a broad correlation of velocity with ionization parameter, shown by Pounds & Vaughan to be consistent with a highly ionized, high-velocity wind running into the interstellar medium or previous ejecta, losing much of its kinetic energy in the resultant strong shock. In this paper, we examine the Fe K spectral region in more detail and find support for two distinct velocity components in the highly ionized absorber, with values corresponding to the putative fast wind (˜0.12c) and the post-shock flow (v˜ 5000-7000 km s-1). The Fe K absorption-line structure is seen to vary on a orbit-to-orbit time-scale, apparently responding to both a short-term increase in ionizing flux and - perhaps more generally - to changes in the soft X-ray (and simultaneous ultraviolet) luminosity. The latter result is particularly interesting in providing independent support for the existence of shocked gas being cooled primarily by Compton scattering of accretion disc photons. The Fe K emission is represented by a narrow fluorescent line from near-neutral matter, with a weak red wing modelled here by a relativistic DISKLINE. The narrow line flux is quasi-constant throughout the 45-d 2009 campaign, but is resolved, with a velocity width consistent with scattering from a component of the post-shock flow. Evidence for a P Cygni profile is seen in several individual orbit spectra for resonance transitions in both Fe XXV and Fe XXVI.

  17. [Studies on the remote measurement of the emission of formaldehyde by mobile differential optical absorption spectroscopy].

    PubMed

    Wu, Feng-Cheng; Xie, Pin-Hua; Li, Ang; Si, Fu-Qi; Dou, Ke; Liu, Yu; Xu, Jin; Wang, Jie

    2011-11-01

    Formaldehyde (HCHO) is the most abundant carbonyl compounds that play an important role in atmospheric chemistry and photochemical reactions. Formaldehyde is an important indicator of atmospheric reactivity and urban atmospheric aerosol precursors. In the present paper, the emission of formaldehyde from chemical area was measured using the mobile differential optical absorption spectroscopy (DOAS). This instrument uses the zenith scattered sunlight as the light source with successful sampling in the area loop. Vertical column density was retrieved by this system, combined with the meteorological wind field and car speed information, the emission of formaldehyde in the area was estimated. The authors carried out the measuring experiment in one chemical plant in Beijing using this technology. The result showed that the average value of the flux of formaldehyde in this area was 605 kg x h(-1) during the measuring period.

  18. How to Collect National Institute of Standards and Technology (NIST) Traceable Fluorescence Excitation and Emission Spectra.

    PubMed

    Gilmore, Adam Matthew

    2014-01-01

    Contemporary spectrofluorimeters comprise exciting light sources, excitation and emission monochromators, and detectors that without correction yield data not conforming to an ideal spectral response. The correction of the spectral properties of the exciting and emission light paths first requires calibration of the wavelength and spectral accuracy. The exciting beam path can be corrected up to the sample position using a spectrally corrected reference detection system. The corrected reference response accounts for both the spectral intensity and drift of the exciting light source relative to emission and/or transmission detector responses. The emission detection path must also be corrected for the combined spectral bias of the sample compartment optics, emission monochromator, and detector. There are several crucial issues associated with both excitation and emission correction including the requirement to account for spectral band-pass and resolution, optical band-pass or neutral density filters, and the position and direction of polarizing elements in the light paths. In addition, secondary correction factors are described including (1) subtraction of the solvent's fluorescence background, (2) removal of Rayleigh and Raman scattering lines, as well as (3) correcting for sample concentration-dependent inner-filter effects. The importance of the National Institute of Standards and Technology (NIST) traceable calibration and correction protocols is explained in light of valid intra- and interlaboratory studies and effective spectral qualitative and quantitative analyses including multivariate spectral modeling.

  19. High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline

    SciTech Connect

    Llorens, Isabelle; Lahera, Eric; Delnet, William; Proux, Olivier; Dermigny, Quentin; Gelebart, Frederic; Morand, Marc; Shukla, Abhay; Bardou, Nathalie; Ulrich, Olivier; and others

    2012-06-15

    Fluorescence detection is classically achieved with a solid state detector (SSD) on x-ray absorption spectroscopy (XAS) beamlines. This kind of detection however presents some limitations related to the limited energy resolution and saturation. Crystal analyzer spectrometers (CAS) based on a Johann-type geometry have been developed to overcome these limitations. We have tested and installed such a system on the BM30B/CRG-FAME XAS beamline at the ESRF dedicated to the structural investigation of very dilute systems in environmental, material and biological sciences. The spectrometer has been designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron beamlines or even with a laboratory x-ray source. The CAS allows to collect x-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy range allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U (Z = 92). It provides an energy resolution of 1-2 eV. XAS spectroscopy is the main application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can be also achieved with it. The performances of the CAS are illustrated by two experiments that are difficult or impossible to perform with SSD and the complementarity of the CAS vs SSD detectors is discussed.

  20. [C II] absorption and emission in the diffuse interstellar medium across the Galactic plane

    NASA Astrophysics Data System (ADS)

    Gerin, M.; Ruaud, M.; Goicoechea, J. R.; Gusdorf, A.; Godard, B.; de Luca, M.; Falgarone, E.; Goldsmith, P.; Lis, D. C.; Menten, K. M.; Neufeld, D.; Phillips, T. G.; Liszt, H.

    2015-01-01

    Aims: Ionized carbon is the main gas-phase reservoir of carbon in the neutral diffuse interstellar medium (ISM) and its 158 μm fine structure transition [C ii] is the most important cooling line of the diffuse ISM. We combine [C ii] absorption and emission spectroscopy to gain an improved understanding of physical conditions in the different phases of the ISM. Methods: We present high-resolution [C ii] spectra obtained with the Herschel/HIFI instrument towards bright dust continuum regions in the Galactic plane, probing simultaneously the diffuse gas along the line of sight and the background high-mass star forming regions. These data are complemented by single pointings in the 492 and 809 GHz fine structure lines of atomic carbon and by medium spectral resolution spectral maps of the fine structure lines of atomic oxygen at 63 and 145 μm with Herschel/PACS. Results: We show that the presence of foreground absorption may completely cancel the emission from the background source in medium spectral resolution PACS data and that high spectral resolution spectra are needed to interpret the [C ii] and [O i] emission and the [C ii]/FIR ratio. This phenomenon may explain part of the [C ii]/FIR deficit seen in external luminous infrared galaxies where the bright emission from the nuclear regions may be partially canceled by absorption from diffuse gas in the foreground. The C+ and C excitation in the diffuse gas is consistent with a median pressure of ~5900 K cm-3 for a mean kinetic temperature of ~100 K. A few higher pressure regions are detected along the lines of sight, as emission features in both fine structure lines of atomic carbon. The knowledge of the gas density allows us to determine the filling factor of the absorbing gas along the selected lines of sight. The derived median value of the filling factor is 2.4%, in good agreement with the properties of the Galactic cold neutral medium. The mean excitation temperature is used to derive the average cooling due

  1. A reference material with close to Lambertian reflectance and fluorescence emission profiles

    NASA Astrophysics Data System (ADS)

    Jaanson, P.; Pulli, T.; Manoocheri, F.; Ikonen, E.

    2016-12-01

    Fluorescent brightening agents are widely used in various industries to enhance the appearance of materials. The angular profiles of emission and reflectance of fluorescent surfaces have been shown to deviate from Lambertian behaviour, however, in industry and calibration facilities single geometry measurements are often used, which requires assumptions to be made on the angular distributions. In addition, the angular distribution of reflectance has been shown to deviate from that of fluorescence. In this work, it is shown that the angular distribution of reflectance is dependent on the excitation wavelength and the effect is explained by qualitative and quantitative models. These angular and spectral effects may cause measurement errors when single geometry bidirectional measurements are carried out. The angular distributions can be taken into account by using goniometrical measurements, which however, result in increased calibration time and cost. Alternatively, a reference material could be used where the angular dependencies are minimised. In this work, a novel material is presented which demonstrates more Lambertian emission and reflectance profiles than conventional polytetrafluoroethylene (PTFE) based materials and a smaller dependence of angular reflectance on the absorbance of the sample.

  2. o-Amino Analogs of Green Fluorescence Protein Chromophore: Photoisomerization, Photodimerization and Aggregation-induced Emission.

    PubMed

    Huang, Guan-Jhih; Lin, Che-Jen; Liu, Yi-Hung; Peng, Shie-Ming; Yang, Jye-Shane

    2015-01-01

    The photochemical properties of three o-amino analogs of the green fluorescence protein chromophore O0, O1 and O8 (o-ABDIs) have been investigated and compared with those of the m- and p-amino isomers (m-ABDIs and p-ABDIs) in solutions, aggregates, and the solid state. In aprotic solvents, the fluorescence competes with the Z → E photoisomerization for all cases, and the o-ABDIs display a fluorescence quantum efficiency of 1-6%, lying between the m-ABDIs of 5-48% and the p-ABDIs of < 0.1%. The fluorescence of both the o- and m-ABDIs is nearly quenched in protic solvents, attributable to the solvent-solute hydrogen bonding (SSHB) interactions. The phenomenon of aggregation-induced emission observed for O8 in poor solvents resembles the behavior of M8 as a consequence of exclusion of the SSHB interactions and restriction of internal rotation for molecules located inside the aggregates. The occurrence of [2 + 2] photodimerization for O0 in the solid state is unique among the ABDIs, and the X-ray crystal structures of O0 and the photodimer OD reveal the head-to-tail syn-oriented stereochemistry. Analysis on the X-ray crystal structures of O0, O1, M0, M1 and P0 shows that not only the pairwise topochemical geometry but also the columnar packing mode is important in determining the photodimerization reactivity.

  3. Red emission fluorescent probes for visualization of monoamine oxidase in living cells

    PubMed Central

    Li, Ling-Ling; Li, Kun; Liu, Yan-Hong; Xu, Hao-Ran; Yu, Xiao-Qi

    2016-01-01

    Here we report two novel red emission fluorescent probes for the highly sensitive and selective detection of monoamine oxidase (MAO) with large Stokes shift (227 nm). Both of the probes possess solid state fluorescence and can accomplish the identification of MAO on test papers. The probe MAO-Red-1 exhibited a detection limit down to 1.2 μg mL−1 towards MAO-B. Moreover, the cleavage product was unequivocally conformedby HPLC and LCMS and the result was in accordance with the proposed oxidative deamination mechanism. The excellent photostability of MAO-Red-1 was proved both in vitro and in vivo through fluorescent kinetic experiment and laser exposure experiment of confocal microscopy, respectively. Intracellular experiments also confirmed the low cytotoxity and exceptional cell imaging abilities of MAO-Red-1. It was validated both in HeLa and HepG2 cells that MAO-Red-1 was capable of reporting MAO activity through the variation of fluorescence intensity. PMID:27499031

  4. Absorption and fluorescence spectroscopic characterisation of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry)

    NASA Astrophysics Data System (ADS)

    Shirdel, J.; Zirak, P.; Penzkofer, A.; Breitkreuz, H.; Wolf, E.

    2008-09-01

    The absorption and fluorescence behaviour of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry) in a pH 8 aqueous buffer solution is studied. The flavin adenine dinucleotide (FAD) cofactor of dCry is identified to be present in its oxidized form (FAD ox), and the 5,10-methenyltetrahydrofolate (MTHF) cofactor is found to be hydrolyzed and oxidized to 10-formyldihydrofolate (10-FDHF). The absorption and the fluorescence behaviour of dCry is investigated in the dark-adapted (receptor) state, the light-adapted (signalling) state, and under long-time violet light exposure. Photo-excitation of FAD ox in dCry causes a reductive electron transfer to the formation of anionic FAD semiquinone (FAD rad - ), and photo-excitation of the generated FAD rad - causes an oxidative electron transfer to the back formation of FAD ox. In light adapted dCry a photo-induced equilibrium between FAD ox and FAD rad - exists. The photo-cycle dynamics of signalling state formation and recovery is discussed. Quantum yields of photo-induced signalling state formation of about 0.2 and of photo-induced back-conversion of about 0.2 are determined. A recovery of FAD rad - to FAD ox in the dark with a time constant of 1.6 min at room temperature is found.

  5. Excited state dipole moments of N, N-dimethylaniline from thermochromic effect on electronic absorption and fluorescence spectra

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2006-01-01

    The effect of temperature on absorption and fluorescence spectra of N, N-dimethylaniline (DMA) in ethyl acetate has been studied for temperature ranging from 293 to 388 K. The permittivity ɛ and refractive index n of the solvent decrease with temperature increase and the absorption and fluorescence bands are blue shifted (so-called "thermochromic shift"). Based on this phenomenon, the dipole moment μe in the excited singlet state and the Onsager interaction radius a for DMA were determined using the Bilot and Kawski theory [L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621; 18a (1963) 10, 256]. For the known dipole moment in the ground state μg = 1.61 D and for α/ a3 = 0.54 ( α is the polarizability of the solute) the average value of μe = 3.55 D and a = 3.1 Å were determined. The obtained values for DMA are compared with the experimental values determined by other authors.

  6. [The absorption and fluorescence spectra of the cyanobacterial phycobilins of cryptoendolithic lichens in the high-polar region of Antarctica].

    PubMed

    Erokhina, L G; Shatilovich, A V; Kaminskaia, O P; Gilichinskiĭ, D A

    2002-01-01

    The algologically pure cultures of the green-brown cyanobacterium Chroococcidiopsis sp. and three cyanobacteria of the genus Gloeocapsa, the blue-green Gloeocapsa sp.1, the brown Gloeocapsa sp.2, and the red-orange Gloeocapsa sp.3, were isolated from sandstones and rock fissures in the high-polar regions of Antarctica. These cyanobacteria are the most widespread phycobionts of cryptoendolithic lichens in these regions. The comparative analysis of the absorption and the second-derivative absorption spectra of the cyanobacteria revealed considerable differences in the content of chlorophyll a and in the content and composition of carotenoids and phycobiliproteins. In addition to phycocyanin, allophycocyanin, and allophycocyanin B, which were present in all of the cyanobacteria studied, Gloeocapsa sp.2 also contained phycoerythrocyanin and Gloeocapsa sp.3 phycoerythrocyanin and C-phycoerythrin (the latter pigment is typical of nitrogen-fixing cyanobacteria). The fluorescence spectra of Gloeocapsa sp.2 and Gloeocapsa sp.3 considerably differed from the fluorescence spectra of the other cyanobacteria as well. The data obtained suggest that various zones of the lichens may be dominated either by photoheterotrophic or photoautotrophic cyanobacterial phycobionts, which differ in the content and composition of photosynthetic pigments.

  7. Atomic Absorption Spectroscopy, Atomic Emission Spectroscopy, and Inductively Coupled Plasma-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Miller, Dennis D.; Rutzke, Michael A.

    Atomic spectroscopy has played a major role in the development of our current database for mineral nutrients and toxicants in foods. When atomic absorption spectrometers became widely available in the 1960s, the development of atomic absorption spectroscopy (AAS) methods for accurately measuring trace amounts of mineral elements in biological samples paved the way for unprecedented advances in fields as diverse as food analysis, nutrition, biochemistry, and toxicology (1). The application of plasmas as excitation sources for atomic emission spectroscopy (AES) led to the commercial availability of instruments for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) beginning in the late 1970s. This instrument has further enhanced our ability to measure the mineral composition of foods and other materials rapidly, accurately, and precisely. More recently, plasmas have been joined with mass spectrometers (MS) to form inductively coupled plasma-mass spectrometer ICP-MS instruments that are capable of measuring mineral elements with extremely low detection limits. These three instrumental methods have largely replaced traditional wet chemistry methods for mineral analysis of foods, although traditional methods for calcium, chloride, iron, and phosphorus remain in use today (see Chap. 12).

  8. Selective absorption and emission on magnetic transitions in low dimensional dielectric structures

    NASA Astrophysics Data System (ADS)

    Shugayev, Roman; Bermel, Peter

    2016-02-01

    Solid-state systems have potential advantages as platforms for manipulating spin states in several applications, such as quantum computing. Here, it is most desirable to utilize the zero phonon line (ZPL), since its corresponding states are partially shielded from loss and dephasing, but it often directly overlaps in frequency with broadened phonon sidebands at room temperature. The ZPL in solid-state spin systems, such as xenon vacancy centers in diamond and transition metal ions in crystals, is often magnetic dipole (MD), whereas the broadened phonon sideband is predominantly electric dipole (ED). In this letter, we numerically demonstrate a nanorod system that efficiently suppresses ED absorption, and furthermore allows selective detection of emitted radiation originating from MD transitions. The factor of suppression of electric absorption is 1.3 × 10 4 , while the factor of detected ED emission suppression is 20 in the plane. We also show that a nanoparticle suppresses ED emission by a factor of 12. This approach can allow nanoscale decoupling of ZPL from the phonon sidebands, thus facilitating the use of solid-state material systems with MD ZPL transitions for on-chip quantum applications.

  9. Compost may affect volatile and semi-volatile plant emissions through nitrogen supply and chlorophyll fluorescence.

    PubMed

    Ormeño, Elena; Olivier, Romain; Mévy, Jean Philippe; Baldy, Virginie; Fernandez, Catherine

    2009-09-01

    The use of composted biosolids as an amendment for forest regeneration in degraded ecosystems is growing since sewage-sludge dumping has been banned in the European Community. Its consequences on plant terpenes are however unknown. Terpene emissions of both Rosmarinus officinalis (a terpene-storing species) and Quercus coccifera (a non-storing species) and terpene content of the former, were studied after a middle-term exposure to compost at intermediate (50tha(-1): D50) and high (100tha(-1): D100) compost rates, in a seven-year-old post-fire shrubland ecosystem. Some chlorophyll fluorescence parameters (Fv/Fm, ETR, Phi(PSII)), soil and plant enrichment in phosphorus (P) and nitrogen (N) were monitored simultaneously in amended and non-amended plots in order to establish what factors were responsible for possible compost effect on terpenes. Compost affected all studied parameters with the exception of Fv/Fm and terpene content. For both species, mono- and sesquiterpene basal emissions were intensified solely under D50 plots. On the contrary leaf P, leaf N levels reached in D50 were partly responsible of terpene changes, suggesting that optimal N conditions occurred therein. N also affected ETR and Phi(PSII) which were, in turn, robustly correlated to terpene emissions. These results imply that emissions of terpene-storing and non-storing species were under nitrogen and chlorophyll fluorescence control, and that a correct management of compost rates applied on soil may modify terpene emission rate of plants, which in turn has consequences in air quality and plant defense mechanisms.

  10. Emission Tuning of Fluorescent Kinase Inhibitors: Conjugation Length and Substituent Effects

    PubMed Central

    2015-01-01

    Fluorescent N-phenyl-4-aminoquinazoline probes targeting the ATP-binding pocket of the ERBB family of receptor tyrosine kinases are reported. Extension of the aromatic quinazoline core with fluorophore “arms” through substitution at the 6- position of the quinazoline core with phenyl, styryl, and phenylbutadienyl moieties was predicted by means of TD-DFT calculations to produce probes with tunable photoexcitation energies and excited states possessing charge-transfer character. Optical spectroscopy identified several synthesized probes that are nonemissive in aqueous solutions and exhibit emission enhancements in solvents of low polarity, suggesting good performance as turn-on fluorophores. Ligand-induced ERBB2 phosphorylation assays demonstrate that despite chemical modification to the quinazoline core these probes still function as ERBB2 inhibitors in MCF7 cells. Two probes were found to exhibit ERBB2-induced fluorescence, demonstrating the utility of these probes as turn-on, fluoroescent kinase inhibitors. PMID:24784897

  11. Quantum-confined emission and fluorescence blinking of individual exciton complexes in CdSe nanowires.

    PubMed

    Franz, Dennis; Reich, Aina; Strelow, Christian; Wang, Zhe; Kornowski, Andreas; Kipp, Tobias; Mews, Alf

    2014-11-12

    One-dimensional semiconductor nanostructures combine electron mobility in length direction with the possibility of tailoring the physical properties by confinement effects in radial direction. Here we show that thin CdSe quantum nanowires exhibit low-temperature fluorescence spectra with a specific universal structure of several sharp lines. The structure strongly resembles the pattern of bulk spectra but show a diameter-dependent shift due to confinement effects. Also the fluorescence shows a pronounced complex blinking behavior with very different blinking dynamics of different emission lines in one and the same spectrum. Time- and space-resolved optical spectroscopy are combined with high-resolution transmission electron microscopy of the very same quantum nanowires to establish a detailed structure-property relationship. Extensive numerical simulations strongly suggest that excitonic complexes involving donor and acceptor sites are the origin of the feature-rich spectra.

  12. Improved and Quality-assessed Emission and Absorption Line Measurements in Sloan Digital Sky Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, Marc; Schawinski, Kevin; Yi, Sukyoung K.

    2011-08-01

    We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting (pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionized gas emission. In order to check for systematic departures from the rather standard set of assumptions that enters our models, we provide a quality assessment for our fit to the SDSS spectra in our sample, for both the stellar continuum and the nebular emissions and across different wavelength regions. This quality assessment also allows the identification of objects with either problematic data or peculiar features. We hope to foster the discovery potential of our database; therefore, our spectral fit is available to the community. For example, based on the quality assessment around the Hα and [N II] λ6584 lines, approximately 1% of the SDSS spectra classified as "galaxies" by the SDSS pipeline do in fact require additional broad lines to be matched, even though they do not show a strong continuum from an active nucleus, as

  13. IMPROVED AND QUALITY-ASSESSED EMISSION AND ABSORPTION LINE MEASUREMENTS IN SLOAN DIGITAL SKY SURVEY GALAXIES

    SciTech Connect

    Oh, Kyuseok; Yi, Sukyoung K.; Sarzi, Marc; Schawinski, Kevin

    2011-08-01

    We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting (pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionized gas emission. In order to check for systematic departures from the rather standard set of assumptions that enters our models, we provide a quality assessment for our fit to the SDSS spectra in our sample, for both the stellar continuum and the nebular emissions and across different wavelength regions. This quality assessment also allows the identification of objects with either problematic data or peculiar features. We hope to foster the discovery potential of our database; therefore, our spectral fit is available to the community. For example, based on the quality assessment around the H{alpha} and [N II] {lambda}6584 lines, approximately 1% of the SDSS spectra classified as 'galaxies' by the SDSS pipeline do in fact require additional broad lines to be matched, even though they do not show a strong continuum from an active

  14. Investigation of surface structure with X-ray absorption and electron emission spectroscopies

    NASA Astrophysics Data System (ADS)

    Pauli, Mark Daniel

    The use of electron spectromicroscopy for the study of the chemical composition and electronic properties of surfaces, overlayers, and interfaces has become widely accepted. Improvements to the optics of instruments such as the X-ray photo electron emission microscope have pushed spectroscopic microscopies into the realm of very high spatial resolution, at and below 1 micrometer [1]. Coupled with the high spectral resolution available from third generation synchrotron sources, this spatial resolution allows the measurement of micro-X-ray absorption near-edge spectra in addition to the more typical electron emission spectra and diffraction patterns. Complementary to the experimental developments is the development of improved theoretical methods for computational modeling of X-ray absorption and emission spectroscopies. In the field of tribochemistry, zinc dialkyl dithiophosphate (ZDDP) has long been a topic of much study. ZDDP is widely used as an anti-wear additive in engine oils and there is interest in determining the decomposition products of ZDDP that provide this protection against friction. An analysis of X-ray absorption near-edge spectra of thermal films from ZDDP samples is presented, including a comparison of the Zinc L-edge spectra with model calculations [2]. It was found essential to carry out self-consistent calculations of the electronic structure for the modeling. For the techniques of electron diffraction, a new method for a full multiple-scattering calculation of diffraction patterns from crystals with two-dimensional periodicity parallel to the surface is presented [3]. The calculation makes use of Helmholtz's reciprocity principle to compute the path-reversed process of the back propagation of a photoelectron from the position of a distant detector to that of the emitting atom. Early application is demonstrated with simulations of 64 eV M2,3VV and 914 eV L 2,3VV Auger electron diffraction from a Cu(001) surface. The functionality of the path

  15. Inter-laboratory Evaluation of Ultraviolet Radiation Emissions from Compact Fluorescent Lamps.

    PubMed

    Miller, Sharon; Bergman, Rolf; Duffy, Mark; Gross, David; Jackson, Andrew; James, Robert; Kotrebai, Mihaly; Lamontagne, Andre; Lyon, Terry; Yandek, Edward; Sliney, David

    2016-01-27

    There have been many recent reports regarding the potential risks of UV emissions from compact fluorescent lamps (CFLs). In some of these reports, the robustness of the measurements was difficult to discern. We conducted round-robin measurements, involving three lamp manufacturers and two government research laboratories to gather reliable data on the UV emissions from commercially-available CFLs. The initial sample of lamps consisted of 71 spiral-shaped CFLs purchased from local retailers. From the initial sample, 14 'high UV emitting' CFLs were chosen for further evaluation. We compared the UV emissions at a distance of 20 cm with the UV exposure limits (ELs) published by the International Commission on Non-ionizing Radiation Protection (ICNIRP). We found that the allowable exposure time for measured lamps ranged from 21 to 415 hrs. This indicates that the emissions would not exceed the short-term ELs that have been established by the ICNIRP for healthy individuals. We also evaluated the potential long-term risk and found it to be insignificant. There was a large variation in the UV emissions found, even for lamps from a single package, indicating that it is impossible to predict the UV output of a CFL based on its physical appearance and model designation. This article is protected by copyright. All rights reserved.

  16. Combined X-ray fluorescence and absorption computed tomography using a synchrotron beam

    NASA Astrophysics Data System (ADS)

    Hall, C.

    2013-06-01

    X-ray computed tomography (CT) and fluorescence X-ray computed tomography (FXCT) using synchrotron sources are both useful tools in biomedical imaging research. Synchrotron CT (SRCT) in its various forms is considered an important technique for biomedical imaging since the phase coherence of SR beams can be exploited to obtain images with high contrast resolution. Using a synchrotron as the source for FXCT ensures a fluorescence signal that is optimally detectable by exploiting the beam monochromaticity and polarisation. The ability to combine these techniques so that SRCT and FXCT images are collected simultaneously, would bring distinct benefits to certain biomedical experiments. Simultaneous image acquisition would alleviate some of the registration difficulties which comes from collecting separate data, and it would provide increased information about the sample: functional X-ray images from the FXCT, with the morphological information from the SRCT. A method is presented for generating simultaneous SRCT and FXCT images. Proof of principle modelling has been used to show that it is possible to recover a fluorescence image of a point-like source from an SRCT apparatus by suitably modulating the illuminating planar X-ray beam. The projection image can be successfully used for reconstruction by removing the static modulation from the sinogram in the normal flat and dark field processing. Detection of the modulated fluorescence signal using an energy resolving detector allows the position of a fluorescent marker to be obtained using inverse reconstruction techniques. A discussion is made of particular reconstruction methods which might be applied by utilising both the CT and FXCT data.

  17. Evaluating the effect of local pH on fluorescence emissions from oral bacteria of the genus Prevotella

    NASA Astrophysics Data System (ADS)

    Hope, Christopher K.; Higham, Susan M.

    2016-08-01

    A number of anaerobic oral bacteria, notably Prevotellaceae, exhibit red fluorescence when excited by short-wavelength visible light due to their accumulation of porphyrins, particularly protoporphyrin IX. pH affects the fluorescence of abiotic preparations of porphyrins due to transformations in speciation between monomers, higher aggregates, and dimers. To elucidate whether the porphyrin speciation phenomenon could be manifested within a microbiological system, suspensions of Prevotella intermedia and Prevotella nigrescens were examined by fluorescence spectrophotometry while being titrated against NaOH. The initial pH of the samples was <6, which was then raised toward the maximum found within a diseased periodontal pocket, being ˜pH 8.7. The intensity of the fluorescence emissions increased between 600 and 650 nm with increasing pH. Peak fluorescence emissions occurred at 635±1 nm with a second emission peak developing with increasing pH at 622 nm. A linear relationship was demonstrated between pH and the log10 ratio of 635:622 nm excitation fluorescence intensities. These findings suggest that the pH range found within the oral cavity could affect the fluorescence of oral bacteria in vivo, which may in turn have connotations for any clinical diagnoses that may be inferred from dental plaque fluorescence.

  18. Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy.

    PubMed

    Bixler, Joel N; Cone, Michael T; Hokr, Brett H; Mason, John D; Figueroa, Eleonora; Fry, Edward S; Yakovlev, Vladislav V; Scully, Marlan O

    2014-05-20

    Clean water is paramount to human health. In this article, we present a technique for detection of trace amounts of human or animal waste products in water using fluorescence emission cavity-enhanced spectroscopy. The detection of femtomolar concentrations of urobilin, a metabolic byproduct of heme metabolism that is excreted in both human and animal waste in water, was achieved through the use of an integrating cavity. This technique could allow for real-time assessment of water quality without the need for expensive laboratory equipment.

  19. Determination of Yttrium in High Density Silicon Nitride by Emission and X-Ray Fluorescence Spectroscopy.

    DTIC Science & Technology

    1981-08-01

    AD-AI07 596 ARMY MATERIALS AND MECHANICS RESEARCH CENTER WATERTOWN MA F/S 7/4 DETERMINATION OF YTTRIUM IN HIGH DENSITY SILICON NITRIDE BY EMI-ETCIU...AUG Al B H STRAUSS. UNCLASSIFIED AMMRC-TR-Al-39 N AMMRC TR 81-39 A ~LEVEL ’ t’- .- DETERMINATION OF YTTRIUM IN 1 HIGH DENSITY SILICON NITRIDE BY...DETERMINATION OF YTTRIUM IN HIGH DENSITY SILICON NITRIDE BY EMISSION AND X-RAY Final Report FLUORESCENCE SPECTROSCOPY 6 PERFORMING ORG. REPORT NUMBER 7. AUTHOR

  20. Emission wavelength dependence of fluorescence lifetimes of bacteriological spores and pollens

    NASA Astrophysics Data System (ADS)

    Thomas, Ann; Sands, David; Baum, Dave; To, Leleng; Rubel, Glenn O.

    2006-09-01

    Concern about biological terrorism has greatly increased in the 21st century, and correspondingly, so has the need for accurate detection and identification of biological hazards, such as Bacillus anthracis. Optical techniques have been shown to be useful for this purpose. Use of fluorescence lifetimes as a function of emission wavelength for different materials using point- detection methods appears to be an additional viable option. Although the lifetimes range only between 2 and 6 ns, most biological materials tested in this study were distinguishable. A preliminary database has been compiled for use in a possible future detection system.

  1. OH Vibrational Prompt Emission and Water Hot-Band Fluorescent Emission in C/2000 WM1 (LINEAR)

    NASA Astrophysics Data System (ADS)

    Bonev, B. P.; Mumma, M. J.; Dello Russo, N.; DiSanti, M. A.; Gibb, E. L.; Magee-Sauer, K.; Weaver, H. A.; Chin, G.

    2004-11-01

    Two methods for deriving cometary water production rates from ground-based high-resolution near-infrared spectra have now been developed. The water molecule can be directly sampled through "hot-band" fluorescent emission near 2.0, 2.9, 4.6, and 5.0 μ m [1]. Knowledge of the H2O rotational temperature and ortho-to-para ratio is needed to fully constrain its production rate via this method. More recently, vibrational prompt emission from OH has also been used as a proxy for water production. This method depends on the accuracy of the OH emission efficiencies derived from simultaneous observations of H2O and OH in comets C/1999 H1 (Lee) and C/2001 A2 (Linear) [2]. We report water production rates for a third comet (C/2000 WM1) based on independent analyses of H2O hot-band lines near 2.9 μ m and of OH prompt emission lines near 3046 cm-1, observed with NIRSPEC at the W. M. Keck Observatory. This comparison further reveals the capabilities and potential limitations of the two methods, while placing a special emphasis on the newer OH-based method. This work was supported by grants to M. J. Mumma (RTOP 344-32-30-07) and to H. A. Weaver and G. Chin (NAG5-12230) under NASA's Planetary Astronomy Program, and to N. Dello Russo (NAG5-10795) under NASA's Planetary Atmospheres Program. [1] Dello Russo et al. 2002, JGR, 107 (E11) 5095. [2] Bonev et al. 2004, ApJ, in press.

  2. Optical absorption and emission spectroscopy studies of ammonia-containing plasmas

    NASA Astrophysics Data System (ADS)

    Kang, S. J.; Donnelly, V. M.

    2007-05-01

    The chemistry of NH3/Ar/He plasmas was investigated, using a combination of ultraviolet (UV) optical absorption spectroscopy (OAS) and optical emission spectroscopy (OES). Absolute NH3 number densities in 1 Torr plasmas were measured by OAS as a function of inductively coupled plasma power and substrate heater temperature (Th). OES and actinometry were used to determine semi-quantitative H-atom density. A 'self-actinometry' method was introduced to measure the absolute number density of N2 that formed following the dissociation of NH3 and secondary reactions. In this approach, small amounts of N2 are added to the NH3-containing plasma, leading to an increase in the N2(C 3 Πu → B 3 Πg) emission intensity. This provides an accurate calibration factor for converting relative N2 emission intensities into absolute number densities. The number densities of NH3 were found to decrease with increasing power and Th, reaching >90% dissociation at 400 W and 900 K. N2 densities increased with power and Th. The majority of dissociated NH3 was converted to N2 (i.e. the total nitrogen content was conserved in the sum of these two species). The major hydrogen-containing species appeared to be H2; however, a substantial amount of H-atoms (comparable to H2) was present at the highest powers.

  3. Absorption and emission spectroscopic characterisation of the LOV2-domain of phot from Chlamydomonas reinhardtii fused to a maltose binding protein

    NASA Astrophysics Data System (ADS)

    Holzer, W.; Penzkofer, A.; Susdorf, T.; Álvarez, M.; Islam, Sh. D. M.; Hegemann, P.

    2004-07-01

    The absorption and emission behaviour of flavin mononucleotide (FMN) in the wild-type light, oxygen and voltage-sensitive (LOV) domain LOV2 of the photoreceptor phot from the green alga Chlamydomonas reinhardtii is studied at pH 8. Actually a LOV2-MBP-fusion protein (MBP=maltose binding protein) expressed in an Escherichia coli strain is investigated. For fresh samples stored in the dark an initial fluorescence quantum yield of φF=0.08±0.01 is determined. Blue-light photo-excitation generates a non-fluorescent intermediate photoproduct (flavin-C(4a)-cysteinyl adduct with absorption peak at 390 nm). In the aqueous solutions studied approximately seven percent of the FMN molecules are not bound to the protein (free FMN in oxidized form) and about seven percent of the non-covalently bound FMN are not convertible to an adduct. Approximately two thirds of the intermediate photoproduct recovers with a time constant of 41 ± 1 s, while approximately one third recovers with a time constant of about 7 min. The photo-adduct formation is thought to proceed via singlet excited-state electron transfer and triplet formation.

  4. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...

    2016-04-22

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less

  5. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy

    SciTech Connect

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; Doughty, Benjamin; Yang, Bin

    2016-04-22

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. The remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.

  6. Multi-Photon Absorption Spectra: A Comparison Between Transmittance Change and Fluorescence Methods

    DTIC Science & Technology

    2015-05-21

    AFRL-OSR-VA-TR-2015-0134 multi-photon absorption spectra Cleber Mendonca INSTITUTO DE FISICA DE SAO CARLOS Final Report 05/21/2015 DISTRIBUTION A...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Instituto de Fisica de Sao Carlos - Universidade de Sao Paulo Av...Trabalhador Saocarlense 400 Sao Carlos, SP, 13566-590 Brazil 8. PERFORMING ORGANIZATION REPORT NUMBER Report 3 - Final 9. SPONSORING/MONITORING AGENCY

  7. Emission-wavelength-dependent decay of the fluorescent probe N-phenyl-1-naphthylamine.

    PubMed

    Matayoshi, E D; Kleinfeld, A M

    1981-06-22

    We have measured the fluorescence decay of N-phenyl-1-naphthylamine using the phase-modulation method, in several solvent systems and egg phosphatidylcholine vesicles. The decay is monoexponential in pure solvents (both polar and non-polar) of low viscosity. In polar viscous solvents or in non-polar solvents containing an added polar solute, the decay is heterogeneous and emission wavelength dependent. In such cases, dielectric relaxation and/or excited-rate complexing give rise to a shift of the emission spectrum on the nanosecond time scale. Emission-wavelength-dependent decay was also observed when N-phenyl-1-naphthylamine was bound to egg phosphatidylcholine vesicles. From these results as well as the position of the emission spectral maximum, we conclude that N-phenyl-1-naphthylamine probes the ester-carbonyl region of the phospholipid acyl chains, where it undergoes an excited-state reaction. This result contradicts the often made assumption that N-phenyl-1-naphthylamine probes the deeper hydrocarbon region of the bilayer.

  8. 3,6-diHydroxyflavone/bovine serum albumin interaction in cyclodextrin medium: Absorption and emission monitoring

    NASA Astrophysics Data System (ADS)

    Voicescu, Mariana; Bandula, Rodica

    2015-03-01

    Photophysical properties of a bioactive flavonol which can be used as a model for polyhydroxylated natural flavonols, 3,6-diHydroxyflavone (3,6-diHF) in cyclodextrins (CDs)/bovine serum albumin (BSA) systems have been studied by absorption and fluorescence spectroscopy. The influence of CDs nature and of the different molar ratios BSA/CDs on the fluorescent characteristics of 3,6-diHF, and on the excited - state intramolecular proton transfer (ESIPT) process were studied. Quantitative information on the interaction between 3,6-diHF and BSA in CDs medium, were estimated. The influence of temperature (25-60 °C range) on the intrinsic fluorescence of BSA in 3,6-diHF/BSA/CDs systems, was investigated. The results are discussed with relevance to 3,6-diHF as a potential sensitive fluorescence probe in the systems of biological interest.

  9. Spectrochemical investigations of fluorescence quenching agents. Part 5. Effect of surfactants on the ability of nitromethane to selectively quench fluorescence emission of alternant PAHs

    NASA Astrophysics Data System (ADS)

    Pandey, Siddharth; Fletcher, Kristin A.; Powell, Joyce R.; McHale, Mary E. R.; Kauppila, Ann-Sofi M.; Acree, William E.; Fetzer, John C.; Dai, Wei; Harvey, Ronald G.

    1997-02-01

    Applicability of the nitromethane selective quenching rule for discriminating between alternant vs. nonalternant polycyclic aromatic hydrocarbons (PAHs) is examined for 18 representative PAH solutes dissolved in micellar cetyltrimethylammonium chloride (CTACl), micellar dodecyltrimethylammonium bromide (DTAB), micellar Brij-35 and micellar sodium octanoate (SO) solvent media. Experimental results show that nitromethane quenched fluorescence emission of only the 10 alternant PAHs in the two cationic (CTAC1 and DTAB) and nonionic Brij-35 surfactant solvent media as expected. Emission intensities of nonalternant PAHs, except for the few exceptions noted previously, were unaffected by nitromethane addition. Unexpected quenching behavior was observed, however, in the case of nonalternant PAHs dissolved in micellar sodium octanoate solvent media. Nitromethane quenched fluorescence emission of all nonalternant PAHs studied in the SO solvent media, which is contrary to the selective quenching rule.

  10. In Vivo Dendritic Cell Tracking Using Fluorescence Lifetime Imaging and Near-Infrared-Emissive Polymersomes

    PubMed Central

    Christian, Natalie A.; Benencia, Fabian; Milone, Michael C.; Li, Guizhi; Frail, Paul R.; Therien, Michael J.; Coukos, George; Hammer, Daniel A.

    2009-01-01

    Purpose: Noninvasive in vivo cell-tracking techniques are necessary to advance the field of cellular-based therapeutics as well as to elucidate mechanisms governing in vivo cell biology. Fluorescence is commonly used for in vitro and postmortem biomedical studies but has been limited by autofluorescence at the whole-animal level. Procedures: In this report, we demonstrate the ability of in vivo fluorescent lifetime imaging to remove autofluorescence and thereby enable in vivo dendritic cell tracking in naïve mice. Specifically, we track mature dendritic cells (DCs) labeled internally with near-infrared-emissive polymersomes (NIR-DCs). Results: We establish the ability to detect labeled cells in vivo and image NIR-DC trafficking after both intravenous and subcutaneous delivery. In addition, we demonstrate the longitudinal capacity of this method by characterizing NIR-DC migration kinetics in the popliteal lymph node. Conclusions: This work provides a tool to evaluate dendritic-cell-based immunotherapy and generates novel opportunities for in vivo fluorescence imaging. PMID:19194761

  11. Imaging Multimodalities for Dissecting Alzheimer's Disease: Advanced Technologies of Positron Emission Tomography and Fluorescence Imaging

    PubMed Central

    Shimojo, Masafumi; Higuchi, Makoto; Suhara, Tetsuya; Sahara, Naruhiko

    2015-01-01

    The rapid progress in advanced imaging technologies has expanded our toolbox for monitoring a variety of biological aspects in living subjects including human. In vivo radiological imaging using small chemical tracers, such as with positron emission tomography, represents an especially vital breakthrough in the efforts to improve our understanding of the complicated cascade of neurodegenerative disorders including Alzheimer's disease (AD), and it has provided the most reliable visible biomarkers for enabling clinical diagnosis. At the same time, in combination with genetically modified animal model systems, the most recent innovation of fluorescence imaging is helping establish diverse applications in basic neuroscience research, from single-molecule analysis to animal behavior manipulation, suggesting the potential utility of fluorescence technology for dissecting the detailed molecular-based consequence of AD pathophysiology. In this review, our primary focus is on a current update of PET radiotracers and fluorescence indicators beneficial for understanding the AD cascade, and discussion of the utility and pitfalls of those imaging modalities for future translational research applications. We will also highlight current cutting-edge genetic approaches and discuss how to integrate individual technologies for further potential innovations. PMID:26733795

  12. Engineering of fluorescent emission of silk fibroin composite materials by material assembly.

    PubMed

    Lin, Naibo; Meng, Zhaohui; Toh, Guoyang William; Zhen, Yang; Diao, Yingying; Xu, Hongyao; Liu, Xiang Yang

    2015-03-01

    This novel materials assembly technology endows the designated materials with additional/enhanced performance by fixing "functional components" into the materials. Such functional components are molecularly recognized and accommodated by the designated materials. In this regard, two-photon fluorescence (TPF) organic molecules and CdTe quantum dots (QDs) are adopted as functional components to functionalize silk fibers and films. TPF organic molecules, such as, 2,7-bis[2-(4-nitrophenyl) ethenyl]-9,9-dibutylfluorene (NM), exhibit TPF emission quenching because of the molecular stacking that leads to aggregation in the solid form. The specific recognition between -NO2 in the annealed fluorescent molecules and the -NH groups in the silk fibroin molecules decouples the aggregated molecules. This gives rise to a significant increase in the TPF quantum yields of the silk fibers. Similarly, as another type of functional components, CdTe quantum dots (QDs) with different sizes were also adopted in the silk functionalization method. Compared to QDs in solution the fluorescence properties of functionalized silk materials display a long stability at room temperature. As the functional materials are well dispersed at high quantum yields in the biocompatible silk a TPF microscope can be used to pursue 3D high-resolution imaging in real time of the TPF-silk scaffold.

  13. Toward Fourier interferometry fluorescence excitation/emission imaging of malignant cells combined with photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Kohen, Elli; Hirschberg, Joseph G.; Berry, John P.; Ozkutuk, Nuri; Ornek, Ceren; Monti, Marco; Leblanc, Roger M.; Schachtschabel, Dietrich O.; Haroon, Sumaira

    2003-10-01

    Dual excitation fluorescence imaging has been used as a first step towards multi-wavelength excitation/emission fluorescence spectral imaging. Target cells are transformed keratinocytes, and other osteosarcoma, human breast and color cancer cells. Mitochondrial membrane potential probes, e.g. TMRM (tetramethylrhodamine methyl ester), Mitotracker Green (Molecular Probes, Inc., Eugene OR,USA; a recently synthesized mitochondrial oxygen probe, [PRE,P1"- pyrene butyl)-2-rhodamine ester] allow dual excitation in the UV plus in teh blue-green spectral regions. Also, using the natural endogenous probe NAD(P)H, preliminary results indicate mitochondrial responses to metabolic challenges (e.g. glucose addition), plus changes in mitochonrial distribution and morphology. In terms of application to biomedicine (for diagnostiscs, prognostsics and drug trials) three parameters have been selected in addition to the natural probe NAD(P)H, i.e. vital fluorescence probing of mitochondria, lysosomes and Golgi apparatus. It is hoped that such a multiparameter approach will allow malignant cell characterization and grading. A new area being introduced is the use of similar methodology for biotechnical applications such as the study of the hydrogen-producing alga Chlamydomonas Reinhardtii, and possible agricultural applications, such as Saccharomyces yeast for oenology. Complementation by Photoacoustic Microscopy is also contemplated, to study the internal conversion component which follows the excitation by photons.

  14. Modeling of dual emission laser induced fluorescence for slurry thickness measurements in chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Gray, Caprice; Rogers, Chris B.; Manno, Vincent P.; White, Robert D.

    2011-07-01

    Dual emission laser induced fluorescence (DELIF) is a technique for measuring the instantaneous thin fluid film thickness in dynamic systems. Two fluorophores within the system produce laser induced emissions that are filtered and captured by two cameras. The ratio of the images from these cameras is used to cancel the effect of the laser beam profile on the image intensity. The resultant intensity ratio can be calibrated to a fluid film thickness. The utilization of a 2-dye system when applied to Chemical Mechanical Polishing (CMP) is complicated by the fluorescence of the polymeric polishing pad and the light scattering particles in the polishing slurry. We have developed a model of DELIF for CMP with 1-dye employing the polishing pad as the second fluorophore. While scattering particles in the slurry decrease the overall intensity of the individual images, the contrast in the image ratio increases. Using the 1-dye DELIF system to measure thin slurry films, our model results indicate that a cubic calibration may be needed. However, experimental results suggest a linear calibration is achieved for slurry films between 0 and 133 μm thick with scattering coefficients as high as 8.66 mm-1 at a wavelength equal to 410 nm.

  15. Laboratory Setup for Scanning-Free Grazing Emission X-ray Fluorescence.

    PubMed

    Baumann, J; Herzog, C; Spanier, M; Grötzsch, D; Lühl, L; Witte, K; Jonas, A; Günther, S; Förste, F; Hartmann, R; Huth, M; Kalok, D; Steigenhöfer, D; Krämer, M; Holz, T; Dietsch, R; Strüder, L; Kanngießer, B; Mantouvalou, I

    2017-02-07

    Grazing incidence and grazing emission X-ray fluorescence spectroscopy (GI/GE-XRF) are techniques that enable nondestructive, quantitative analysis of elemental depth profiles with a resolution in the nanometer regime. A laboratory setup for soft X-ray GEXRF measurements is presented. Reasonable measurement times could be achieved by combining a highly brilliant laser produced plasma (LPP) source with a scanning-free GEXRF setup, providing a large solid angle of detection. The detector, a pnCCD, was operated in a single photon counting mode in order to utilize its energy dispersive properties. GEXRF profiles of the Ni-Lα,β line of a nickel-carbon multilayer sample, which displays a lateral (bi)layer thickness gradient, were recorded at several positions. Simulations of theoretical profiles predicted a prominent intensity minimum at grazing emission angles between 5° and 12°, depending strongly on the bilayer thickness of the sample. This information was used to retrieve the bilayer thickness gradient. The results are in good agreement with values obtained by X-ray reflectometry, conventional X-ray fluorescence and transmission electron microscopy measurements and serve as proof-of-principle for the realized GEXRF setup. The presented work demonstrates the potential of nanometer resolved elemental depth profiling in the soft X-ray range with a laboratory source, opening, for example, the possibility of in-line or even in situ process control in semiconductor industry.

  16. Emission and fs/ns-TRANSIENT Absorption of Organometallic Complexes Bound to a Dinuclear Metal Center

    NASA Astrophysics Data System (ADS)

    Durr, Christopher B.; Brown-Xu, Samantha E.; Chisholm, Malcolm H.

    2012-06-01

    Compounds containing a MM quadruple bond (M = Mo or W) of the form M2L2L'2, where L and L' are conjugated organic ligands, show interesting photophysical properties along with a metal-to-ligand charge transfer (MLCT) band that is tunable throughout the UV-Vis-NIR spectra. Recently, our attention has shifted towards ligands that incorporate a secondary transition metal complex bound to an organic moiety. Along with allowing for a second tunable MLCT band for better coverage of the solar spectrum, these hybrid molecules show unique spectroscopic properties that were explored using fs/ns-transient absorption and UV-Vis/NIR emission. These techniques allow for the elucidation of the electronic character of the excited states as well as their lifetimes. This knowledge will be put to use in the design of new materials that could later be incorporated into next generation photovoltaic devices.

  17. Photon assisted processes: Probability amplitudes for the absorption and emission of photons and dc-photocurrents

    SciTech Connect

    Micu, C.; Racolta, D.; Papp, E.

    2014-11-24

    In this paper one deals with the derivation of probability amplitudes characterizing the photon assisted injection of electrons in a two-terminal quantum conductor. For this purpose one accounts for spatially constant but time dependent periodic voltages applied on an Ohmic contact. Resorting to the discrete Fourier transform provides the probability amplitudes for the emission and absorption of photons in terms of squared Bessel functions of the first kind and integer order. Several kinds of ac-pulses like sinusoidal and dc+sinusoidal are assumed. Mean square values concerning photon numbers have been discussed in some more detail. Time averages of squared time dependent classical currents and leading corrections to the rescaled dc-photocurrent have also been accounted for.

  18. Controlling quantum-dot light absorption and emission by a surface-plasmon field.

    PubMed

    Huang, Danhong; Easter, Michelle; Gumbs, Godfrey; Maradudin, A A; Lin, Shawn-Yu; Cardimona, D A; Zhang, Xiang

    2014-11-03

    The possibility for controlling both the probe-field optical gain and absorption, as well as photon conversion by a surface-plasmon-polariton near field is explored for a quantum dot located above a metal surface. In contrast to the linear response in the weak-coupling regime, the calculated spectra show an induced optical gain and a triply-split spontaneous emission peak resulting from the interference between the surface-plasmon field and the probe or self-emitted light field in such a strongly-coupled nonlinear system. Our result on the control of the mediated photon-photon interaction, very similar to the 'gate' control in an optical transistor, may be experimentally observable and applied to ultra-fast intrachip/interchip optical interconnects, improvement in the performance of fiber-optic communication networks, and developments of optical digital computers and quantum communications.

  19. Strategy for sensor based on fluorescence emission red shift of conjugated polymers: applications in pH response and enzyme activity detection.

    PubMed

    Tang, Yanli; Liu, Yue; Cao, Ali

    2013-01-15

    A new strategy was developed and applied in monitoring pH response and enzyme activity based on fluorescence emission red shift (FERS) of the conjugated polymer PPP-OR10 induced by the inner filter effect (IFE) of nitrobenzene derivatives. Neutral poly(p-phenylenes) functionalized with oligo(oxyethylene) side chains (PPP-OR10) was designed and synthesized by the Suzuki cross-coupling reaction. Nitrobenzene derivatives display different light absorption activities in the acidic or basic form due to adopting different electron-transition types. When environmental pH is higher than their pK(a) values, nitrobenzene derivatives exhibit strong absorbance around 400 nm, which is close to the maximal emission of polymer PPP-OR10. As a result, the maximal emission wavelength of PPP-OR10/nitrobenzene derivatives red shifts with the pH value increasing. Apparently, the IFE plays a very important role in this case. A new method has been designed that takes advantage of this pH-sensitive platform to sensor α-chymotrypsin (ChT) based on the IFE of p-nitroaniline, since the absorption spectrum of p-nitroaniline, the ChT-hydrolyzed product of N-benzoyl-L-tyrosine-p-nitroaniline (BTNA), overlaps with the emission spectrum of PPP-OR10. In addition, the present approach can detect α-chymotrypsin with a detection limit of 0.1 μM, which is lower than that of the corresponding absorption spectroscopy method. Furthermore, the pH response and enzyme detections can be carried out in 10% serum, which makes this new FERS-based strategy promising in applications in more complex conditions and a broader field.

  20. Compact fluorescent lighting in Wisconsin: elevated atmospheric emission and landfill deposition post-EISA implementation.

    PubMed

    Arendt, John D; Katers, John F

    2013-07-01

    The majority of states in the USA, including Wisconsin, have been affected by elevated air, soil and waterborne mercury levels. Health risks associated with mercury increase from the consumption of larger fish species, such as Walleye or Pike, which bio-accumulate mercury in muscle tissue. Federal legislation with the 2011 Mercury and Air Toxics Standards and the Wisconsin legislation on mercury, 2009 Wisconsin Act 44, continue to aim at lowering allowable levels of mercury emissions. Meanwhile, mercury-containing compact fluorescent lights (CFL) sales continue to grow as businesses and consumers move away from energy intensive incandescent light bulbs. An exchange in pollution media is occurring as airborne mercury emissions from coal-burning power plants, the largest anthropogenic source of mercury, are being reduced by lower energy demand and standards, while more universal solid waste containing mercury is generated each time a CFL is disposed. The treatment of CFLs as a 'universal waste' by the Environmental Protection Agency (EPA) led to the banning of non-household fluorescent bulbs from most municipal solid waste. Although the EPA encourages recycling of bulbs, industry currently recycles fluorescent lamps and CFLs at a rate of only 29%. Monitoring programs at the federal and state level have had only marginal success with industrial and business CFL recycling. The consumer recycling rate is even lower at only 2%. A projected increase in residential CFL use in Wisconsin owing to the ramifications of the Energy Independence and Security Act of 2007 will lead to elevated atmospheric mercury and landfill deposition in Wisconsin.

  1. X-Ray Absorption, Nuclear Infrared Emission, and Dust Covering Factors of AGNs: Testing Unification Schemes

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Asensio Ramos, A.; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.; Ramos Almeida, C.

    2016-03-01

    We present the distributions of the geometrical covering factors of the dusty tori (f2) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2-10 keV luminosities between 1042 and 1046 erg s-1, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1-20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f2 than type 1 AGNs. Nevertheless, ˜20% of type 1 AGNs have tori with large covering factors, while ˜23%-28% of type 2 AGNs have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f2 increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f2 determine the optical appearance of an AGN and control the shape of the rest-frame ˜1-20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  2. X-RAY ABSORPTION, NUCLEAR INFRARED EMISSION, AND DUST COVERING FACTORS OF AGNs: TESTING UNIFICATION SCHEMES

    SciTech Connect

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Ramos, A. Asensio; Almeida, C. Ramos; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.

    2016-03-10

    We present the distributions of the geometrical covering factors of the dusty tori (f{sub 2}) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2–10 keV luminosities between 10{sup 42} and 10{sup 46} erg s{sup −1}, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1–20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f{sub 2} than type 1 AGNs. Nevertheless, ∼20% of type 1 AGNs have tori with large covering factors, while ∼23%–28% of type 2 AGNs have tori with small covering factors. Low f{sub 2} are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f{sub 2} increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f{sub 2} determine the optical appearance of an AGN and control the shape of the rest-frame ∼1–20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  3. Enhanced two-photon absorption and fluorescence upconversion in Thioflavin T micelle-type aggregates in glycerol/water solution

    NASA Astrophysics Data System (ADS)

    Donnelly, Julie; Vesga, Yuly; Hernandez, Florencio E.

    2016-09-01

    In this article, we report the systematic characterization of the two-photon absorption of ThT in different mixtures of glycerol/water solution. The relationships of TPA peak position and amplitude revealed a dependence on particle size suggesting that the curious trend observed in TPA with changing glycerol content can be attributed to the presence of micelle-type aggregates. Consequently, the relatively strong TPA cross-section (δTPA = 300 GM) obtained in 8.75% glycerol/water solutions could be attributed to the immobilization of dye molecules and the strong coupling of the molecular transition dipoles in micelle-type aggregates. This enhancement of TPA, in addition to the already reported significant fluorescence quantum yield of ThT attached to brain tissue, is expected to boost the application of this compound for in vitro and perhaps in vivo high resolution multiphoton bioimaging of amyloids in brain tissue.

  4. Versatile plug flow catalytic cell for in situ transmission/fluorescence x-ray absorption fine structure measurements

    NASA Astrophysics Data System (ADS)

    Centomo, P.; Meneghini, C.; Zecca, M.

    2013-05-01

    A novel flow-through catalytic cell has been developed for in situ x-ray absorption spectroscopy (XAS) experiments on heterogeneous catalysts under working conditions and in the presence of a liquid and a gas phase. The apparatus allows to carry out XAS measurements in both the transmission and fluorescence modes, at moderate temperature (from RT to 50-80 °C) and low-medium gas pressure (up to 7-8 bars). The materials employed are compatible with several chemicals such as those involved in the direct synthesis of hydrogen peroxide (O2, H2, H2O2, methanol). The versatile design of the cell allows to fit it to different experimental setups in synchrotron radiation beamlines. It was used successfully for the first time to test nanostructured Pd catalysts during the direct synthesis of hydrogen peroxide (H2O2) in methanol solution from dihydrogen and dioxygen.

  5. Absorption and Luminescence Studies of Some Highly Fluorescent Derivatives of Vitamin B1; Solvent and pH Effects

    NASA Astrophysics Data System (ADS)

    Marciniak, B.; Koput, J.; Kozubek, H.

    1990-08-01

    The influence of solvent on the UV-visible absorption and luminescence spectra of some highly fluorescent vitamin B1 derivatives, the products of the reaction of N-methylated vitamin B1 with cytidine (I), adenosine (II) and 2-amino-4-methylpyridine (III) is studied. Spectroscopic manifestations of protonation of I and II are also investigated using a semiempirical INDO/S CI method. Singlet and triplet energy levels of the free ion and several protonated species are calculated, and transition energies and oscillator strengths are compared with the experimental spectra. Calculated charge densities on heteroatoms in the ground and excited singlet and triplet states are correlated with changes of the experimental pKa values with excitation. The results for I and II are compared with those for the trimethylated pyrichrominium ion (III) previously studied

  6. Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy

    PubMed Central

    Verma, Pramod Kumar; Steinbacher, Andreas; Schmiedel, Alexander; Nuernberger, Patrick; Brixner, Tobias

    2015-01-01

    We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs) to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps) followed by decay (≈390 ps) to the corresponding ground state. PMID:26798837

  7. A new colorimetric and far-red fluorescent probe for hydrazine with a large red-shifted absorption spectrum.

    PubMed

    Xu, Zujun; Pang, Mengmeng; Li, Changwang; Zhu, Baocun

    2016-10-18

    Recently, growing attention has been paid to the detection of hydrazine (NH2 NH2 ) because of its important roles in industrial chemical and high toxicity to human beings. Herein, we have constructed a new colorimetric and far-red fluorescent probe containing a receptor of 4-bromobutanoate to selectively detect hydrazine. The probe could detect hydrazine quantitatively in the range of 40-500 μM with the detection limit of 2.9 μM. In addition, the probe could monitor hydrazine by the ratiometric method with a large (185 nm) red-shifted absorption spectrum, and the color changes from yellow to blue make it as a 'naked-eye' indicator for hydrazine. Consequently, our proposed probe would be of great benefit for monitoring hydrazine in aqueous solution.

  8. Proton emission from resonant laser absorption and self-focusing effects from hydrogenated structures

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Torrisi, L.; Margarone, D.; Picciotto, A.

    2013-05-01

    Effects of resonant absorption and self-focusing are investigated by using fast and intense laser pulses. The ion emission and acceleration in the non-equilibrium laser-generated plasma are investigated at low and high intensities, from 1010 up to about 1016 W/cm2. The properties of plasma are strongly dependent on the time and space, laser intensity and wavelength. A special interest concerns the energetic and intense proton generation for the multiplicity use that proton beams have in different scientific fields (Nuclear Physics, Astrophysics, Bio-Medicine, Microelecronics, etc.). Investigations have been performed at INFN-LNS of Catania and at PALS Laboratory of Prague, by using thick and thin targets and different technique of ion analysis. The mechanisms of resonant absorption of the laser light, produced in special targets containing nanostructures with dimensions comparable with the laser wavelength, enhances the proton energy. The mechanisms of self-focusing, obtained by changing the laser focal distance from the target surface, increase the local intensity and consequently the high directional ion acceleration. Real-time ion detections were performed through Thomson parabola spectrometer (TPS), ion collectors (IC), SiC detectors and ion energy analyzer (IEA) employed in time-of-flight configuration (TOF). The energy and the amount of ions increase significantly when the two non-linear phenomena occurs, as will be described.

  9. Evaluation and clinically relevant applications of a fluorescent imaging analog to fluorodeoxyglucose positron emission tomography

    NASA Astrophysics Data System (ADS)

    Sheth, Rahul A.; Josephson, Lee; Mahmood, Umar

    2009-11-01

    A fluorescent analog to 2-deoxy-2 [18F] fluoro-D-glucose position emission tomography (FDG-PET) would allow for the introduction of metabolic imaging into intraoperative and minimally invasive settings. We present through in vitro and in vivo experimentation an evaluation of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), a fluorescently labeled glucose molecule, as a molecular beacon of glucose utilization. The competitive inhibition of 2-NBDG uptake by excess free glucose is directly compared against FDG uptake inhibition in cultured cells. 2-NBDG uptake in the brain of a mouse experiencing a generalized seizure is measured, as well as in subcutaneously implanted tumors in mice during fed and fasting states. Localization of 2-NBDG into malignant tissues is studied by laser scanning microscopy. The clinical relevance of 2-NBDG imaging is examined by performing fluorescence colonoscopy, and by correlating preoperative FDG-PET with intraoperative fluorescence imaging. 2-NBDG exhibits a similar uptake inhibition to FDG by excess glucose in the growth media. Uptake is significantly increased in the brain of an animal experiencing seizures versus control, and in subcutaneous tumors after the animals are kept nil per os (NPO) for 24 h versus ad libidum feeding. The clinical utility of 2-NBDG is confirmed by the demonstration of very high target-to-background ratios in minimally invasive and intraoperative imaging of malignant lesions. We present an optical analog of FDG-PET to extend the applicability of metabolic imaging to minimally invasive and intraoperative settings.

  10. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission.

    PubMed

    Mishra, Kumud Bandhu; Iannacone, Rina; Petrozza, Angelo; Mishra, Anamika; Armentano, Nadia; La Vecchia, Giovanna; Trtílek, Martin; Cellini, Francesco; Nedbal, Ladislav

    2012-01-01

    Drought stress is one of the most important factors that limit crop productivity worldwide. In order to obtain tomato plants with enhanced drought tolerance, we inserted the transcription factor gene ATHB-7 into the tomato genome. This gene was demonstrated earlier to be up-regulated during drought stress in Arabidopsis thaliana thus acting as a negative regulator of growth. We compared the performance of wild type and transgenic tomato line DTL-20, carrying ATHB-7 gene, under well-irrigated and water limited conditions. We found that transgenic plants had reduced stomatal density and stomatal pore size and exhibited an enhanced resistance to soil water deficit. We used the transgenic plants to investigate the potential of chlorophyll fluorescence to report drought tolerance in a simulated high-throughput screening procedure. Wild type and transgenic tomato plants were exposed to drought stress lasting 18 days. The stress was then terminated by rehydration after which recovery was studied for another 2 days. Plant growth, leaf water potential, and chlorophyll fluorescence were measured during the entire experimental period. We found that water potential in wild type and drought tolerant transgenic plants diverged around day 11 of induced drought stress. The chlorophyll fluorescence parameters: the non-photochemical quenching, effective quantum efficiency of PSII, and the maximum quantum yield of PSII photochemistry yielded a good contrast between wild type and transgenic plants from day 7, day 12, and day 14 of induced stress, respectively. We propose that chlorophyll fluorescence emission reports well on the level of water stress and, thus, can be used to identify elevated drought tolerance in high-throughput screens for selection of resistant genotypes.

  11. Photobleaching Response of Different Sources of Chromophoric Dissolved Organic Matter Exposed to Natural Solar Radiation Using Absorption and Excitation–Emission Matrix Spectra

    PubMed Central

    Zhang, Yunlin; Liu, Xiaohan; Osburn, Christopher L.; Wang, Mingzhu; Qin, Boqiang; Zhou, Yongqiang

    2013-01-01

    CDOM biogeochemical cycle is driven by several physical and biological processes such as river input, biogeneration and photobleaching that act as primary sinks and sources of CDOM. Watershed-derived allochthonous (WDA) and phytoplankton-derived autochthonous (PDA) CDOM were exposed to 9 days of natural solar radiation to assess the photobleaching response of different CDOM sources, using absorption and fluorescence (excitation-emission matrix) spectroscopy. Our results showed a marked decrease in total dissolved nitrogen (TDN) concentration under natural sunlight exposure for both WDA and PDA CDOM, indicating photoproduction of ammonium from TDN. In contrast, photobleaching caused a marked increase in total dissolved phosphorus (TDP) concentration for both WDA and PDA CDOM. Thus TDN∶TDP ratios decreased significantly both for WDA and PDA CDOM, which partially explained the seasonal dynamic of TDN∶TDP ratio in Lake Taihu. Photobleaching rate of CDOM absorption a(254), was 0.032 m/MJ for WDA CDOM and 0.051 m/MJ for PDA CDOM from days 0–9, indicating that phototransformations were initially more rapid for the newly produced CDOM from phytoplankton than for the river CDOM. Extrapolation of these values to the field indicated that 3.9%–5.1% CDOM at the water surface was photobleached and mineralized every day in summer in Lake Taihu. Photobleaching caused the increase of spectral slope, spectral slope ratio and molecular size, indicating the CDOM mean molecular weight decrease which was favorable to further microbial degradation of mineralization. Three fluorescent components were validated in parallel factor analysis models calculated separately for WDA and PDA CDOM. Our study suggests that the humic-like fluorescence materials could be rapidly and easily photobleached for WDA and PDA CDOM, but the protein-like fluorescence materials was not photobleached and even increased from the transformation of the humic-like fluorescence substance to the protein

  12. Fluorescence excitation and emission spectra of 1,5-dihydroxyanthraquinone-d2 in n-hexane at 10 K

    NASA Astrophysics Data System (ADS)

    Smulevich, Giulietta; Foggi, Paolo

    1987-11-01

    The fluorescence excitation, between 430 and 505 nm, and emission, between 505 and 725 nm, spectra in n-hexane of 1,5-dihydroxyanthraquinone-d0 and -d2 at 10 K have been measured. Dual excitation and emission associated to excited state proton transfer were observed. Apart from the long wavelength emission, well resolved vibrational structures were obtained. A remarkable spectral shift (684 cm-1) of the origin of the high frequency transition was observed upon deuteration. The energy gaps between the transition origins both in excitation and emission as well as the isotopic shifts of the origins, were interpreted in terms of Lippincott-Schroeder asymmetric double minimum potential functions along the OH coordinate. An extra fluorescence occurs in the low frequency range, vanishing upon deuteration. It was explained as due to the ν(OH) stretching mode of the high frequency emission enhanced via vibronic coupling between the two ground states.

  13. Solvatochromic effect in absorption and emission spectra of star-shaped bipolar derivatives of 1,3,5-triazine and carbazole. A time-dependent density functional study.

    PubMed

    Baryshnikov, Gleb V; Bondarchuk, Sergey V; Minaeva, Valentina A; Ågren, Hans; Minaev, Boris F

    2017-02-01

    A series of three star-shaped compounds containing both donor (carbazole) and acceptor (2,4,6-triphenyl-1,3,5-triazine) moieties linked through various linking bridges was studied theoretically at the linear response TD-DFT level of theory to describe their absorption and fluorescence spectra. The concept of a localized charge-transfer excited state has been applied successfully to explain the observed strong solvatochromic effect in the emission spectra of the studied molecules, which can be utilized for the fabrication of color tunable solution-processable OLEDs. The concept is in particularly applicable to donor-acceptor species with a C 3 symmetry point group where the static dipole moment changes dramatically upon electronic excitation. An important peculiarity of the studied molecules is that they are characterized by non-zero values of the HOMO and LUMO orbitals in the same common part of molecular space that provides a large electric dipole transition moment for both light absorption and emission. Graphical abstract Star-shaped C 3 symmetry point group derivatives for color tunable OLEDs.

  14. A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission

    PubMed Central

    Sreenath, Kesavapillai; Yuan, Zhao; Allen, John R.

    2015-01-01

    We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells. PMID:25382395

  15. Determination of the Dipole Geometry of Fluorescent Nanoparticles Using Polarized Excitation and Emission Analysis.

    PubMed

    Li, Jianan; Kwok, Ka-Cheung; Cheung, Nai-Ho

    2016-02-01

    We demonstrate that the geometries of the absorption dipole μab and emission dipole μem of nano-emitters such as quantum dots can be determined simultaneously by far-field polarimetry. The method involves plotting the emission polarization ratio against the absorption polarization ratio of single nano-emitters. Using Monte Carlo simulation, we show that these plots depend sensitively on the aspect ratio of the dipole shape. For example, the so-called 3D-2D dipole combination, that is, μab of radius ratio 1:1:1 and μem of ratio 1:1:0, would give rise to a vertical line plot. Polarization ratios of commercial cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots are measured and plotted. The empirical data points are best-fitted to yield μab of radius ratio 1:1:0.28 and μem of ratio 1:1:0.

  16. Origin of Unusual Excitonic Absorption and Emission from Colloidal Ag2S Nanocrystals: Ultrafast Photophysics and Solar Cell.

    PubMed

    Mir, Wasim J; Swarnkar, Abhishek; Sharma, Rituraj; Katti, Aditya; Adarsh, K V; Nag, Angshuman

    2015-10-01

    Colloidal Ag2S nanocrystals (NCs) typically do not exhibit sharp excitonic absorption and emission. We first elucidate the reason behind this problem by preparing Ag2S NCs from nearly monodisperse CdS NCs employing cation exchange reaction. It was found that the defect-related midgap transitions overlap with excitonic transition, blurring the absorption spectrum. On the basis of this observation, we prepared nearly defect-free Ag2S NCs using molecular precursors. These defect-free Ag2S NCs exhibit sharp excitonic absorption, emission (quantum yield 20%) in near-infrared (853 nm) region, and improved performance of Ag2S quantum-dot-sensitized solar cells (QDSSCs). Samples with lower defects exhibit photoconversion efficiencies >1% and open circuit voltage of ∼0.3 V, which are better compared with prior reports of Ag2S QDSSCs. Femtosecond transient absorption shows pump-probe two-photon absorption above 630 nm and slow-decaying excited state absorption below 600 nm. Concomitantly, open-aperture z-scan shows strong two-photon absorption at 532 nm (coefficient 55 ± 3 cm/GW).

  17. Quantitative treatment of the solvent effects on the electronic absorption and fluorescence spectra of acridines and phenazines. The ground and first excited singlet-state dipole moments

    NASA Astrophysics Data System (ADS)

    Aaron, Jean Jacques; Maafi, Mounir; Párkányi, Cyril; Boniface, Christian

    1995-04-01

    Electronic absorption and fluorescence excitation and emission spectra of four acridines (acridine, Acridine Yellow, 9-aminoacridine and proflavine) and three phenazines (phenazine, neutral Red and safranine) are determined at room temperature (298 K) in several solvents of various polarities (dioxane, chloroform, ethyl ether, ethyl acetate, 1-butanol, 2-propanol, ethanol, methanol, dimethylformamide, acetonitrile and dimethyl sulfoxide). The effect of the solvent upon the spectral characteristics of the above compounds, is studied. In combination with the ground-state dipole moments of these compounds, the spectral data are used to evaluate their first excited singlet-state dipole moments by means of the solvatochromic shift method (Bakhshiev's and Kawski-Chamma-Viallet's correlations). The theoretical ground and excited singlet-state dipole moments for acridines and phenazines are also calculated as a vector sum of the π-component (obtained by the PPP method) and the σ-component (obtained from σ-bond moments). For most acridines and phenazines under study, the experimental excited singlet-state dipole moments are found to be higher than their ground state counterpart. The application of the Kamlet-Abboud-Taft solvatochromic parameters to the solvent effect on spectral properties of acridine and phenazine derivatives is discussed.

  18. Designed plasmonic nanocatalysts for the reduction of eosin Y: absorption and fluorescence study

    NASA Astrophysics Data System (ADS)

    Komalam, Abha; Muraleegharan, Lekha Girija; Subburaj, Suganthi; Suseela, Suji; Babu, Aswathy; George, Sony

    2012-10-01

    In this work, we report a one-step green synthesis of gold nanoparticles (AuNPs) by microwave irradiation using nontoxic and biodegradable polysaccharide chitosan as a reducing and stabilizing agent. The interaction between gold nanoparticles with the amine group of chitosan was confirmed by Fourier transform infrared spectroscopy analysis, and the stability of the nanoparticle is ascertained by zeta potential measurements. Transmission electron microscopy photograph and dynamic light scattering measurements confirmed the average size of gold nanoparticles as 25 nm. The ability of the synthesised gold nanoparticles as a catalyst for the reduction of eosin dye in the presence of NaBH4 was monitored by means of spectrofluorometry and spectrophotometry. It is found that the NaBH4-induced reduction of eosin is enhanced in the presence of AuNPs even without a catalyst. Time-resolved fluorescence decay studies also confirmed the reduction of eosin in the presence of AuNPs.

  19. A fluorescent sensing of nerve agent simulant with dual emissions at wide pH range in aqueous solution.

    PubMed

    Kim, Youngsam; Jang, Yoon Jeong; Mulay, Sandip V; Nguyen, Thuy-Tien T; Churchill, David G

    2017-03-23

    A new 1,8-naphthalimide-based fluorescent probe for the detection of diethyl cyanophosphonate, a very common nerve agent simulant, was designed, synthesized and characterized fully. The probe showed around 50-fold enhancement of fluorescence intensity over other nerve agent simulants. Importantly, the probe is able to work under aqueous conditions at wide pH range. Two reactive groups, the oxime and phenol, allowed a dual emission with different kinetic reaction. The reaction of diethyl cyanophosphonate with the oxime group occurred in advance; the resulting time-response of fluorescence enhancement was observed within ~30 s. After the oxime underwent reaction, then phenol also underwent substitution reaction with diethyl cyanophosphate resulting blue emission. To show real application of this new probe, silica plate assays for the detection of diethyl cyanophosphonate in gas and liquid phase through dual emissions channel were carried out.

  20. Carbon-dot-based dual-emission silica nanoparticles as a ratiometric fluorescent probe for Bisphenol A

    NASA Astrophysics Data System (ADS)

    Xiang, Guo-Qiang; Ren, Yue; Xia, Yin; Mao, Wenjie; Fan, Chao; Guo, Si-Yu; Wang, Pan-Pan; Yang, Deng-Hui; He, Lijun; Jiang, Xiuming

    2017-04-01

    A simple and effective strategy for designing a ratiometric fluorescent nanosensor is described in this work. A carbon dots (CDs) based dual-emission nanosensor for Bisphenol A (BPA) was prepared by coating CDs on the surface of dye-doped silica nanoparticles. The fluorescence of dual-emission silica nanoparticles was quenched in hydrochloric acid by potassium bromate (KBrO3) oxidation; BPA inhibited KBrO3 oxidation, resulting in the ratiometric fluorescence response of dual-emission silica nanoparticles. Several important parameters affecting the performance of the nanosensor were investigated and optimized. The detection limit of this nanosensor was 0.80 ng mL- 1 with a linear range from 10 to 500 ng mL- 1. This was applied successfully to determine BPA in the leached solution of different plastic products with satisfactory results.

  1. Characterization of the Electronic Structure of Silicon Nanoparticles Using X-ray Absorption and Emission

    SciTech Connect

    Vaverka, April Susan Montoya

    2008-01-01

    Resolving open questions regarding transport in nanostructures can have a huge impact on a broad range of future technologies such as light harvesting for energy. Silicon has potential to be used in many of these applications. Understanding how the band edges of nanostructures move as a function of size, surface termination and assembly is of fundamental importance in understanding the transport properties of these materials. In this thesis work I have investigated the change in the electronic structure of silicon nanoparticle assemblies as the surface termination is changed. Nanoparticles are synthesized using a thermal evaporation technique and sizes are determined using atomic force microscopy (AFM). By passivating the particles with molecules containing alcohol groups we are able to modify the size dependent band edge shifts. Both the valence and conduction bands are measured using synchrotron based x-ray absorption spectroscopy (XAS) and soft x-ray fluorescence (SXF) techniques. Particles synthesized via recrystallization of amorphous silicon/SiO2 multilayers of thicknesses below 10 nm are also investigated using the synchrotron techniques. These samples also show quantum confinement effects but the electronic structure is different from those synthesized via evaporation methods. The total bandgap is determined for all samples measured. The origins of these differences in the electronic structures are discussed.

  2. Fluorescence excitation-emission matrix spectra coupled with parallel factor and regional integration analysis to characterize organic matter humification.

    PubMed

    He, Xiao-Song; Xi, Bei-Dou; Li, Xiang; Pan, Hong-Wei; An, Da; Bai, Shuo-Guo; Li, Dan; Cui, Dong-Yu

    2013-11-01

    The present several humification indexes cannot provide the whole fluorescence information on organic matter composition and the evaluation results from them are inconsistent sometimes. In this study, fluorescence excitation-emission matrix spectra coupled with parallel factor analysis and fluorescence regional integration analysis were utilized to investigate organic matter humification, and the projection pursuit cluster (PPC) model was applied to form a suitable index for overcoming the difficulties in multi-index evaluation. The result showed that the ratio between the volume of humic- and fulvic-like fluorescence region and the volume of protein-like fluorescence region not only revealed the heterogeneity of organic matter, but also provided more accurate information on organic matter humification. In addition, the results showed that the PPC model could be used to characterize integrally the humification, and the projected characteristic value calculated from the PPC model could be used as the integrated humification evaluation index.

  3. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A.

    1993-02-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  4. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A.

    1993-01-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  5. Intramolecular charge transfer with the planarized 4-cyanofluorazene and its flexible counterpart 4-cyano-N-phenylpyrrole. Picosecond fluorescence decays and femtosecond excited-state absorption.

    PubMed

    Druzhinin, Sergey I; Kovalenko, Sergey A; Senyushkina, Tamara A; Demeter, Attila; Machinek, Reinhard; Noltemeyer, Mathias; Zachariasse, Klaas A

    2008-09-11

    The fluorescence spectrum of the rigidified 4-cyanofluorazene (FPP4C) in n-hexane consists of a dual emission from a locally excited (LE) and an intramolecular charge-transfer (ICT) state, with an ICT/LE fluorescence quantum yield ratio of Phi'(ICT)/Phi(LE) = 3.3 at 25 degrees C. With the flexible 4-cyano- N-phenylpyrrole (PP4C) in n-hexane, such an ICT reaction also takes place, with Phi'(ICT)/Phi(LE) = 1.5, indicating that for this reaction, a perpendicular twist of the pyrrole and benzonitrile moieties is not required. The ICT emission band of FPP4C and PP4C in n-hexane has vibrational structure, but a structureless band is observed in all other solvents more polar than the alkanes. The enthalpy difference Delta H of the LE --> ICT reaction in n-hexane, -11 kJ/mol for FPP4C and -7 kJ/mol for PP4C, is determined by analyzing the temperature dependence of Phi'(ICT)/Phi(LE). Using these data, the energy E(FC,ICT) of the Franck-Condon ground state populated by the ICT emission is calculated, 41 (FPP4C) and 40 kJ/mol (PP4C). These large values for E(FC,ICT) lead to the conclusion that with FPP4C and PP4C, direct ICT excitation, bypassing LE, does not take place. FPP4C has an ICT dipole moment of 15 D, similar to that of PP4C (16 D). Picosecond fluorescence decays allow the determination of the ICT lifetime, from which the radiative rate constant k'(f)(ICT) is derived, with comparable values for FPP4C and PP4C. This shows that an argument for a twisted ICT state of PP4C cannot come from k'(f)(ICT). After correction for the solvent refractive index and the energy of the emission maximum nu(max)(ICT), it appears that k'(f)(ICT) is solvent-polarity-independent. Femtosecond transient absorption with FPP4C and PP4C in n-hexane reveals that the ICT state is already nearly fully present at 100 fs after excitation, in rapid equilibrium with LE. In MeCN, the ICT state of FPP4C and PP4C is likewise largely developed at this delay time, and the reaction is limited by dielectric

  6. Absorption and fluorescence properties of chromophoric dissolved organic matter: implications for the monitoring of water quality in a large subtropical reservoir.

    PubMed

    Liu, Xiaohan; Zhang, Yunlin; Shi, Kun; Zhu, Guangwei; Xu, Hai; Zhu, Mengyuan

    2014-12-01

    The development of techniques for real-time monitoring of water quality is of great importance for effectively managing inland water resources. In this study, we first analyzed the absorption and fluorescence properties in a large subtropical reservoir and then used a chromophoric dissolved organic matter (CDOM) fluorescence monitoring sensor to predict several water quality parameters including the total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), dissolved organic carbon (DOC), and CDOM fluorescence parallel factor analysis (PARAFAC) components in the reservoir. The CDOM absorption coefficient at 254 nm (a(254)), the humic-like component (C1), and the tryptophan-like component (C3) decreased significantly along a gradient from the northwest to the lake center, northeast, southwest, and southeast region in the reservoir. However, no significant spatial difference was found for the tyrosine-like component (C2), which contributed only four marked peaks. A highly significant linear correlation was found between the a(254) and CDOM concentration measured using the CDOM fluorescence sensor (r(2) = 0.865, n = 76, p < 0.001), indicating that CDOM concentrations could act as a proxy for the CDOM absorption coefficient measured in the laboratory. Significant correlations were also found between the CDOM concentration and TN, TP, COD, DOC, and the maximum fluorescence intensity of C1, suggesting that the real-time monitoring of CDOM concentrations could be used to predict these water quality parameters and trace the humic-like fluorescence substance in clear aquatic ecosystems with DOC <2 mg/L and total suspended matter (TSM) concentrations <15 mg/L. These results demonstrate that the CDOM fluorescence sensor is a useful tool for on-line water quality monitoring if the empirical relationship between the CDOM concentration measured using the CDOM fluorescence sensor and the water quality parameters is calibrated and validated.

  7. Correlation of magnetic dichroism in x-ray absorption and photoelectron emission using ultrathin magnetic alloy films

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Mankey, G.J.; Willis, R.F.; Denlinger, J.D.; Rotenberg, E.; Warwick, A.

    1996-04-01

    We have begun a program to characterize magnetic alloy overlays using both magnetic x-ray circular dichroism (MXCD) and magnetic x-ray linear dichroism (MXLD). This will allow a direct comparison of MXCD-absorption and MXLD-photoelectron emission. First results from the Advanced Light Source will be presented.

  8. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    ERIC Educational Resources Information Center

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  9. Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams

    NASA Astrophysics Data System (ADS)

    Rong, Zihao; Kuang, Cuifang; Fang, Yue; Zhao, Guangyuan; Xu, Yingke; Liu, Xu

    2015-11-01

    We propose a novel fluorescence emission difference microscopy (FED) system based on focusing cylindrical vector beams. In conventional FED, a Gaussian beam and a 0-2π vortex phase plate are used to generate solid and hollow spots. We focus radially polarized and azimuthally polarized cylindrical vector beams to obtain an expanded solid spot and a shrunken hollow spot, taking advantage of the optical properties of cylindrical vector beams to improve the conventional FED performance. Our novel method enhances FED performance because the hollow spot size determines the FED resolution and an expanded solid spot effectively reduces negative side-lobe emergence during image processing. We demonstrate improved performance theoretically and experimentally using an in-house built FED. Our FED achieved resolution of less than λ/4 in test images of 100 nm nanoparticles, better than the confocal image resolution by a factor of approximately 1/3. We also discuss detailed simulation analyses and FED imaging of biological cells.

  10. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    ERIC Educational Resources Information Center

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  11. Two-photon absorption of fluorescent protein chromophores incorporating non-canonical amino acids: TD-DFT screening and classical dynamics.

    PubMed

    Alaraby Salem, M; Brown, Alex

    2015-10-14

    Two-photon spectroscopy of fluorescent proteins is a powerful bio-imaging tool characterized by deep tissue penetration and little damage. However, two-photon spectroscopy has lower sensitivity than one-photon microscopy alternatives and hence a protein with a large two-photon absorption cross-section is needed. We use time-dependent density functional theory (TD-DFT) at the B3LYP/6-31+G(d,p) level of theory to screen twenty-two possible chromophores that can be formed upon replacing the amino-acid Tyr66 that forms the green fluorescent protein (GFP) chromophore with a non-canonical amino acid. A proposed chromophore with a nitro substituent was found to have a large two-photon absorption cross-section (29 GM) compared to other fluorescent protein chromophores as determined at the same level of theory. Classical molecular dynamics are then performed on a nitro-modified fluorescent protein to test its stability and study the effect of the conformational flexibility of the chromophore on its two-photon absorption cross-section. The theoretical results show that the large cross-section is primarily due to the difference between the permanent dipole moments of the excited and ground states of the nitro-modified chromophore. This large difference is maintained through the various conformations assumed by the chromophore in the protein cavity. The nitro-derived protein appears to be very promising as a two-photon absorption probe.

  12. Isotope and temperature effects in liquid water probed by x-ray absorption and resonant x-ray emission spectroscopy.

    PubMed

    Fuchs, O; Zharnikov, M; Weinhardt, L; Blum, M; Weigand, M; Zubavichus, Y; Bär, M; Maier, F; Denlinger, J D; Heske, C; Grunze, M; Umbach, E

    2008-01-18

    High-resolution x-ray absorption and emission spectra of liquid water exhibit a strong isotope effect. Further, the emission spectra show a splitting of the 1b1 emission line, a weak temperature effect, and a pronounced excitation-energy dependence. They can be described as a superposition of two independent contributions. By comparing with gas phase, ice, and NaOH/NaOD, we propose that the two components are governed by the initial state hydrogen bonding configuration and ultrafast dissociation on the time scale of the O 1s core hole decay.

  13. An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices.

    PubMed

    Richard, Charles; Renaudin, Alan; Aimez, Vincent; Charette, Paul G

    2009-05-21

    We present a hybrid optical filter design that combines interference and absorbing components for enhanced fluorescence detection in miniaturized highly-integrated lab-on-a-chip devices. The filter is designed in such a way that the advantages of each technology are used to offset the disadvantages of the other. The filter is fabricated with microfabrication compatible processes and materials for monolithic integration with microelectronics and microfluidics devices. The particular embodiment of the filter described herein is designed to discriminate fluorescence emission at 650 nm from excitation at 532 nm. The 9-layer interference filter component is fabricated with alternating TiO(2) and SiO(2) thin-film layers and has an attenuation of -12.6 dB at 532 nm and -0.76 dB at 650 nm. The absorbing filter component is fabricated using a dyed photopolymer (KMPR + Orasol Red) having an attenuation of -32.6 dB at 532 nm and -1.28 dB at 650 nm. The total rejection ratio of the hybrid filter is 43 dB. The filter exhibits very low autofluorescence and performs equally well at off-axis incidence angles.

  14. Fluorescence excitation-emission matrix spectroscopy analysis of landfill leachate DOM in coagulation-flocculation process.

    PubMed

    Zhu, Guocheng; Wang, Chuang; Dong, Xingwei

    2016-09-29

    Landfill leachate contains a variety of organic matters, some of which can be excited and emit fluorescence signal. In order to degrade these organic matters, the pretreatment of the leachate is needed, which can improve the degradation performance of post-treatment process. Coagulation-flocculation is one of the important pretreatment processes to treat landfill leachate. Assessing the chemical compositions of landfill leachate is helpful in the understanding of their sources and fates as well as the mechanistic behaviors in the water environment. The present work aimed to use fluorescence excitation-emission matrix spectroscopy (EEMs) to characterize the chemical fractions of landfill leachate dissolved organic matter (DOM) in conjunction with parallel factor analysis (PARAFAC). Results showed that the DOM of landfill leachate tested in this study was identified resulting from microbial input, which included five typical characteristic peaks and four kinds of PARAFAC fractions. These fractions were mainly composed of hydrophobic macromolecule humic acid-like (HM-HA), hydrophilic intermediate molecular fulvic acid-like (HIM-FA), and hydrophilic small molecule protein-like substances (HSM-PS). HM-HA and HIM-FA were found to be easier to remove than HSM-PS. Further research on HSM-PS removal by coagulation-flocculation still needs to be improved.

  15. Fluorescence emission spectral measurements for the detection of oil on shore

    SciTech Connect

    Balick, L.K.; Di Benedetto, J.A.; Lutz, S.S.

    1996-12-31

    The U.S. DOE Special Technologies Laboratory is developing an airborne Laser-Induced Fluorescence Imaging (LIFI) system to support environmental management of government facilities. This system, or a system to be derived from it, is being evaluated for its potential to detect spilled oils oN shore, in wetlands, and on ice. To more fully understand the detectivity of oil spills, emphasis has been placed on the spectral contrast between the oil signatures and signatures associated with the natural backgrounds (sand, vegetation, etc.). To support this evaluation, two series of controlled measurements have been performed to provide rigorous characterization of the excitation-emission properties of some oils and background materials, and to look at the effects of weathering of oil on terrestrial background materials. Oil targets included a heavy crude oil, diesel, kerosene, and aviation fuel and backgrounds included beach sand, straw, mud, tar and kelp. Fluorescence of oil on background materials decreases rapidly over the first few days of exposure to the environment and is more rapid than for neat oil samples.

  16. Fluorescence emission spectral measurements for the detection of oil on shore

    SciTech Connect

    Balick, L.K.; Di Benedetto, J.A.; Lutz, S.S.

    1997-06-01

    The US DOE Special Technologies Laboratory is developing an airborne Laser-Induced Fluorescence Imaging (LIFI) system to support environmental management of government Utilities. This system, or a system to be derived from it, is being evaluated for its potential to detect spilled oils on shore, in wetlands, and on ice. To more fully understand the detectivity of oil spills, emphasis has been placed on the spectral contrast between the oil signatures and signatures associated with the natural backgrounds (sand, vegetation, etc.). To support this evaluation, two series of controlled measurements have been performed to provide rigorous characterization of the excitation-emission properties of some oils and background materials, and to look at the effects of weathering of oil on terrestrial background materials. Oil targets included a heavy crude oil, diesel, kerosene, and aviation fuel and backgrounds included beach sand, straw, mud, tar and kelp. Fluorescence of oil on background materials decreases rapidly over the first few days of exposure to the environment and is more rapid than for neat oil samples.

  17. Laser Absorption spectrometer instrument for tomographic 2D-measurement of climate gas emission from soils

    NASA Astrophysics Data System (ADS)

    Seidel, Anne; Wagner, Steven; Dreizler, Andreas; Ebert, Volker

    2014-05-01

    One of the most intricate effects in climate modelling is the role of permafrost thawing during the global warming process. Soil that has formerly never totally lost its ice cover now emits climate gases due to melting processes[1]. For a better prediction of climate development and possible feedback mechanisms, insights into physical procedures (like e.g. gas emission from underground reservoirs) are required[2]. Therefore, a long-term quantification of greenhouse gas concentrations (and further on fluxes) is necessary and the related structures that are responsible for emission need to be identified. In particular the spatial heterogeneity of soils caused by soil internal structures (e.g. soil composition changes or surface cracks) or by surface modifications (e.g. by plant growth) generate considerable complexities and difficulties for local measurements, for example with soil chambers. For such situations, which often cannot be avoided, a spatially resolved 2D-measurement to identify and quantify the gas emission from the structured soil would be needed, to better understand the influence of the soil sub-structures on the emission behavior. Thus we designed a spatially scanning laser absorption spectrometer setup to determine a 2D-gas concentration map in the soil-air boundary layer. The setup is designed to cover the surfaces in the range of square meters in a horizontal plane above the soil to be investigated. Existing field instruments for gas concentration or flux measurements are based on point-wise measurements, so structure identification is very tedious or even impossible. For this reason, we have developed a tomographic in-situ instrument based on TDLAS ('tunable diode laser absorption spectroscopy') that delivers absolute gas concentration distributions of areas with 0.8m × 0.8m size, without any need for reference measurements with a calibration gas. It is a simple and robust device based on a combination of scanning mirrors and reflecting foils, so

  18. Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Shuang; Su, Tie; Li, Zhong-Shan; Bai, Han-Chen; Yan, Bo; Yang, Fu-Rong

    2016-10-01

    An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence (LIF) methods is developed to quantitatively measure the concentrations of hydroxyl in CH4/air flat laminar flame. In our approach, particular attention is paid to the linear laser-induced fluorescence and absorption processes, and experimental details as well. Through measuring the temperature, LIF signal distribution and integrated absorption, spatially absolute OH concentrations profiles are successfully resolved. These experimental results are then compared with the numerical simulation. It is proved that the good quality of the results implies that this method is suitable for calibrating the OH-PLIF measurement in a practical combustor. Project supported by the National Natural Science Foundation of China (Grant No. 11272338), the Science and Technology on Scramjet Key Laboratory Funding, China (Grant No. STSKFKT 2013004), and the China Scholarship Council.

  19. Mechanism for optical enhancement and suppression of fluorescence.

    PubMed

    Bradshaw, David S; Andrews, David L

    2009-06-18

    When fluorescence from electronically excited states follows the absorption of radiation, the emission spectrum is often a key to identification of the excited species. It now emerges that passing off-resonant laser light through such an electronically excited system may enhance or suppress the fluorescent emission. This report establishes the mechanism and theory for this optical control of spontaneous fluorescence, derived by quantum electrodynamical analysis. Experimental techniques to detect the enhanced signal are also proposed.

  20. Naturally occurring fluorescence in frogs.

    PubMed

    Taboada, Carlos; Brunetti, Andrés E; Pedron, Federico N; Carnevale Neto, Fausto; Estrin, Darío A; Bari, Sara E; Chemes, Lucía B; Peporine Lopes, Norberto; Lagorio, María G; Faivovich, Julián

    2017-04-04

    Fluorescence, the absorption of short-wavelength electromagnetic radiation reemitted at longer wavelengths, has been suggested to play several biological roles in metazoans. This phenomenon is uncommon in tetrapods, being restricted mostly to parrots and marine turtles. We report fluorescence in amphibians, in the tree frog Hypsiboas punctatus, showing that fluorescence in living frogs is produced by a combination of lymph and glandular emission, with pigmentary cell filtering in the skin. The chemical origin of fluorescence was traced to a class of fluorescent compounds derived from dihydroisoquinolinone, here named hyloins. We show that fluorescence contributes 18-29% of the total emerging light under twilight and nocturnal scenarios, largely enhancing brightness of the individuals and matching the sensitivity of night vision in amphibians. These results introduce an unprecedented source of pigmentation in amphibians and highlight the potential relevance of fluorescence in visual perception in terrestrial environments.

  1. Directional fluorescence emission by individual V-antennas explained by mode expansion.

    PubMed

    Vercruysse, Dries; Zheng, Xuezhi; Sonnefraud, Yannick; Verellen, Niels; Di Martino, Giuliana; Lagae, Liesbet; Vandenbosch, Guy A E; Moshchalkov, Victor V; Maier, Stefan A; Van Dorpe, Pol

    2014-08-26

    Specially designed plasmonic antennas can, by far-field interference of different antenna elements or a combination of multipolar antenna modes, scatter light unidirectionally, allowing for directional light control at the nanoscale. One of the most basic and compact geometries for such antennas is a nanorod with broken rotational symmetry, in the shape of the letter V. In this article, we show that these V-antennas unidirectionally scatter the emission of a local dipole source in a direction opposite the undirectional side scattering of a plane wave. Moreover, we observe high directivity, up to 6 dB, only for certain well-defined positions of the emitter relative to the antenna. By employing a rigorous eigenmode expansion analysis of the V-antenna, we fully elucidate the fundamental origin of its directional behavior. All findings are experimentally verified by measuring the radiation patterns of a scattered plane wave and the emission pattern of fluorescently doped PMMA positioned in different regions around the antenna. The fundamental interference effects revealed in the eigenmode expansion can serve as guidelines in the understanding and further development of nanoscale directional scatterers.

  2. Long-Duration Gamma-Ray Burst Host Galaxies in Emission and Absorption

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.; Niino, Yuu; Tanvir, Nial R.; Vergani, Susanna D.; Fynbo, Johan P. U.

    2016-12-01

    The galaxy population hosting long-duration GRBs provides a means to constrain the progenitor and an opportunity to use these violent explosions to characterize the nature of the high-redshift universe. Studies of GRB host galaxies in emission reveal a population of star-forming galaxies with great diversity, spanning a wide range of masses, metallicities, and redshifts. However, as a population GRB hosts are significantly less massive and poorer in metals than the hosts of other core-collapse transients, suggesting that GRB production is only efficient at metallicities significantly below Solar. GRBs may also prefer compact galaxies, and dense and/or central regions of galaxies, more than other types of core-collapse explosion. Meanwhile, studies of hosts in absorption against the luminous GRB optical afterglow provide a unique means of unveiling properties of the ISM in even the faintest and most distant galaxies; these observations are helping to constrain the chemical evolution of galaxies and the properties of interstellar dust out to very high redshifts. New ground- and space-based instrumentation, and the accumulation of larger and more carefully-selected samples, are continually enhancing our view of the GRB host population.

  3. Electronic transitions and fermi edge singularity in polar heterostructures studied by absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Cavalcoli, D.; Minj, A.; Fraboni, B.; Cavallini, A.; Gamarra, P.; Poisson, M. A.

    2012-12-01

    Optically induced electronic transitions in nitride based polar heterostructures have been investigated by absorption and emission spectroscopy. Surface photovoltage (SPV), photocurrent (PC), and photo luminescence spectroscopy have been applied to high quality InAlN/AlN/GaN structures to study the optical properties of two dimensional electron gas. Energy levels within the two dimensional electron gas (2DEG) well at the interface between the GaN and AlN have been directly observed by SPV and PC. Moreover, a strong enhancement of the photoluminescence intensity due to holes recombining with electrons at the Fermi Energy, known as fermi energy singularity, has been observed. These analyses have been carried out on InAlN/AlN/GaN heterojunctions with the InAlN barrier layer having different In content, a parameter which affects the energy levels within the 2DEG well as well as the optical signal intensity. The measured energy values are in a very good agreement with the ones obtained by Schrödinger-Poisson simulations.

  4. Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas

    SciTech Connect

    Skrodzki, P. J.; Shah, N. P.; Taylor, N.; Hartig, K. C.; LaHaye, N. L.; Brumfield, B. E.; Jovanovic, I.; Phillips, M. C.; Harilal, S. S.

    2016-11-01

    This study employs laser ablation (LA) to investigate mechanisms for U optical signal variation under various environmental conditions during laser absorption spectroscopy (LAS) and optical emission spectroscopy (OES). Potential explored mechanisms for signal quenching related to ambient conditions include plasma chemistry (e.g., uranium oxide formation), ambient gas confinement effects, and other collisional interactions between plasma constituents and the ambient gas. LA-LAS studies show that the persistence of the U ground state population is significantly reduced in the presence of air ambient compared to nitrogen. LA-OES results yield congested spectra from which the U I 356.18 nm transition is prominent and serves as the basis for signal tracking. LA-OES signal and persistence vary negligibly between the test gases (air and N2), unlike the LA-LAS results. The plume hydrodynamic features and plume fundamental properties showed similar results in both air and nitrogen ambient. Investigation of U oxide formation in the laser-produced plasma suggests that low U concentration in a sample hinders consistent detection of UO molecular spectra.

  5. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    PubMed Central

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-01-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements. PMID:28186190

  6. Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas

    NASA Astrophysics Data System (ADS)

    Skrodzki, P. J.; Shah, N. P.; Taylor, N.; Hartig, K. C.; LaHaye, N. L.; Brumfield, B. E.; Jovanovic, I.; Phillips, M. C.; Harilal, S. S.

    2016-11-01

    This study employs laser ablation (LA) to investigate mechanisms for U optical signal variation under various environmental conditions during laser absorption spectroscopy (LAS) and optical emission spectroscopy (OES). Potential mechanisms explored for signal quenching related to ambient conditions include plasma chemistry (e.g., uranium oxide formation), ambient gas confinement effects, and other collisional interactions between plasma constituents and the ambient gas. LA-LAS studies show that the persistence of the U ground state population is significantly reduced in the presence of air ambient compared to nitrogen. LA-OES yields congested spectra from which the U I 356.18 nm transition is prominent and serves as the basis for signal tracking. LA-OES signal and persistence vary negligibly between the test gases (air and N2), unlike the LA-LAS results. The plume hydrodynamic features and plume fundamental properties showed similar results in both air and nitrogen ambient. Investigation of U oxide formation in the laser-produced plasma suggests that low U concentration in a sample hinders consistent detection of UO molecular spectra.

  7. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks

    PubMed Central

    Heo, Hoseok; Sung, Ji Ho; Cha, Soonyoung; Jang, Bo-Gyu; Kim, Joo-Youn; Jin, Gangtae; Lee, Donghun; Ahn, Ji-Hoon; Lee, Myoung-Jae; Shim, Ji Hoon; Choi, Hyunyong; Jo, Moon-Ho

    2015-01-01

    Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system. PMID:26099952

  8. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study.

    PubMed

    Chuang, Cheng-Hao; Ray, Sekhar C; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-10

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp(2)-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  9. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  10. Titanium density analysed by optical absorption and emission spectroscopy in a dc magnetron discharge

    NASA Astrophysics Data System (ADS)

    Gaillard, M.; Britun, N.; Kim, Yong M.; Han, Jeon G.

    2007-02-01

    This paper presents an optical diagnostic examination of dc planar magnetron discharge used for titanium deposition at 30 mTorr in argon bulk gas. The results were obtained by optical absorption (OAS) and emission (OES) spectroscopy for two distances from the target without substrate. The absolute density of titanium in the ground and metastable states at 4 cm from the target ranged, respectively, between 8 × 1010 cm-3 and 1012 cm-3 and between 6 × 1010 cm-3 and 3 × 1011 cm-3, in the range 0.2-1.0 A. OES results were used to prepare an assumed interpretation in terms of differences in loss mechanisms, mainly by either diffusion towards the walls for all particles at 8 cm from the target or collision losses for non-radiative species at 4 cm from the target, except for the titanium ground state. This was confirmed by our results of the argon metastable density measurement at 4 cm which was constant at around 7 × 1010 cm-3 with discharge current.

  11. Fluorescence Aggregation-Caused Quenching versus Aggregation-Induced Emission: A Visual Teaching Technology for Undergraduate Chemistry Students

    ERIC Educational Resources Information Center

    Ma, Xiaofeng; Sun, Rui; Cheng, Jinghui; Liu, Jiaoyan; Gou, Fei; Xiang, Haifeng; Zhou, Xiangge

    2016-01-01

    A laboratory experiment visually exploring two opposite basic principles of fluorescence of aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) is demonstrated. The students would prepared two salicylaldehyde-based Schiff bases through a simple one-pot condensation reaction of one equiv of 1,2-diamine with 2 equiv of…

  12. A novel aggregation-induced emission based fluorescent probe for an angiotensin converting enzyme (ACE) assay and inhibitor screening.

    PubMed

    Wang, Haibo; Huang, Yi; Zhao, Xiaoping; Gong, Wan; Wang, Yi; Cheng, Yiyu

    2014-12-11

    A 'turn-on' fluorescent probe based on aggregation-induced emission (AIE) has been developed. It exhibits excellent selectivity and sensitivity for monitoring angiotensin converting enzyme (ACE) activity both in solutions and in living cells as well as for screening ACE inhibitors in vitro.

  13. Prediction of two-photon absorption enhancement in red fluorescent protein chromophores made from non-canonical amino acids.

    PubMed

    Salem, M Alaraby; Twelves, Isaac; Brown, Alex

    2016-09-21

    Two-photon spectroscopy of fluorescent proteins is a powerful bio-imaging tool known for deep tissue penetration and little cellular damage. Being less sensitive than the one-photon microscopy alternatives, a protein with a large two-photon absorption (TPA) cross-section is needed. Here, we use time-dependent density functional theory (TD-DFT) at the B3LYP and CAM-B3LYP/6-31+G(d,p) levels of theory to screen twenty-two possible chromophores that can be formed upon replacing the amino-acid Tyr66 that forms the red fluorescent protein (RFP) chromophore with a non-canonical amino acid. The two-level model for TPA was used to assess the properties (i.e., transition dipole moment, permanent dipole moment difference, and the angle between them) leading to the TPA cross-sections determined via response theory. Computing TPA cross-sections with B3LYP and CAM-B3LYP yields similar overall trends. Results using both functionals agree that the RFP-derived model of the Gold Fluorescent Protein chromophore (Model 20) has the largest intrinsic TPA cross-section at the optimized geometry. TPA was further computed for selected chromophores following conformational changes: variation of both the dihedral angle of the acylimine moiety and the tilt and twist angles between the rings of the chromophore. The TPA cross-section assumed an oscillatory trend with the rotation of the acylimine dihedral, and the TPA is maximized in the planar conformation for almost all models. Model 21 (a hydroxyquinoline derivative) is shown to be comparable to Model 20 in terms of TPA cross-section. The conformational study on Model 21 shows that the acylimine angle has a much stronger effect on the TPA than its tilt and twist angles. Having an intrinsic TPA ability that is more than 7 times that of the native RFP chromophore, Models 20 and 21 appear to be very promising for future experimental investigation.

  14. Optical absorption and fluorescence properties of Er{sup 3+}/Yb{sup 3+} codoped lead bismuth alumina borate glasses

    SciTech Connect

    Goud, K. Krishna Murthy Reddy, M. Chandra Shekhar Rao, B. Appa

    2014-04-24

    Lead bismuth alumina borate glasses codoped with Er{sup 3+}/Yb{sup 3+} were prepared by melt quenching technique. Optical absorption, FTIR and photoluminescence spectra of these glasses have been studied. Judd-Ofelt theory has been applied to to the f ↔ f transitions for evaluating Ω{sub 2}, Ω{sub 4} and Ω{sub 6} parameters. Radiative properties like branching ratio β{sub r} and the radiative life time τ{sub R} have been determined on the basis of Judd-Ofelt theory. Upconversion emissions have been observed under 980nm laser excitation at room temperature. Green and red up-conversion emissions are centered at 530, 550 and 656 nm corresponding to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} transitions of Er{sup 3+} respectively. The results obtained are discussed quantitatively based on the energy transfer between Yb{sup 3+} and Er{sup 3+}.

  15. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  16. Compensation for Spherical Geometric and Absorption Effects on Lower Thermospheric Emission Intensities Derived from High Earth Orbit Images

    NASA Technical Reports Server (NTRS)

    Swift, W.; Germany, G. A.; Richards, P. G.; Parks, G. K.; Brittnacher, M.; Spann, J. F., Jr.

    1997-01-01

    Remote sensing of the atmosphere from high earth orbit is very attractive due to the large field of view obtained and a true global perspective. This viewpoint is complicated by earth curvature effects so that slant path enhancement and absorption effects, small from low earth orbit, become dominant even at small nadir view angles. The effect is further complicated by the large range of local times and solar zenith angles in a single image leading to a modulation of the image intensity by a significant portion of the diurnal height variation of the absorbing layer. The latter effect is significant in particular for mesospheric, stratospheric and auroral emissions due to their depth in the atmosphere. As a particular case, the emissions from atomic oxygen (130.4 and 135.6 nm) and molecular nitrogen (two LBH bands, LBHS from 140 to 160 nm and LBHL from 160 to 180 nm) as viewed from the Ultraviolet Imager (UVI) are examined. The LBH emissions are of particular interest since LBHS has significant 02 absorption while LBHL does not, In the case of auroral emissions this differential absorption, well examined in the nadir, gives information about the height of the emission and therefore the energy of the precipitating particles. Using simulations of the viewing geometry and images from the UVI we examine these effects and obtain correction factors to adjust to the nadir case with a significant improvement of the derived characteristic energy. There is a surprisingly large effect on the images from the 02 diurnal layer height changes. An empirical compensation to the nadir case is explored based on the local nadir and local zenith angles for each portion of the image. These compensations are demonstrated as applied to the above emissions in both auroral and dayglow images and compared to models. The extension of these findings to other instruments, emissions and spectral regions is examined.

  17. Direct observation of single layer graphene oxide reduction through spatially resolved, single sheet absorption/emission microscopy.

    PubMed

    Sokolov, Denis A; Morozov, Yurii V; McDonald, Matthew P; Vietmeyer, Felix; Hodak, Jose H; Kuno, Masaru

    2014-06-11

    Laser reduction of graphene oxide (GO) offers unique opportunities for the rapid, nonchemical production of graphene. By tuning relevant reduction parameters, the band gap and conductivity of reduced GO can be precisely controlled. In situ monitoring of single layer GO reduction is therefore essential. In this report, we show the direct observation of laser-induced, single layer GO reduction through correlated changes to its absorption and emission. Absorption/emission movies illustrate the initial stages of single layer GO reduction, its transition to reduced-GO (rGO) as well as its subsequent decomposition upon prolonged laser illumination. These studies reveal GO's photoreduction life cycle and through it native GO/rGO absorption coefficients, their intrasheet distributions as well as their spatial heterogeneities. Extracted absorption coefficients for unreduced GO are α405 nm ≈ 6.5 ± 1.1 × 10(4) cm(-1), α520 nm ≈ 2.1 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 1.1 ± 0.3 × 10(4) cm(-1) while corresponding rGO α-values are α405 nm ≈ 21.6 ± 0.6 × 10(4) cm(-1), α520 nm ≈ 16.9 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 14.5 ± 0.4 × 10(4) cm(-1). More importantly, the correlated absorption/emission imaging provides us with unprecedented insight into GO's underlying photoreduction mechanism, given our ability to spatially resolve its kinetics and to connect local rate constants to activation energies. On a broader level, the developed absorption imaging is general and can be applied toward investigating the optical properties of other two-dimensional materials, especially those that are nonemissive and are invisible to current single molecule optical techniques.

  18. Relativistic Iron K Emission and Absorption in the Seyfert 1.9 Galaxy MCG-05-23-16

    NASA Technical Reports Server (NTRS)

    Braito, V.; Reeves, J. N.; Dewangan, G. C.; George, I.; Griffiths, R.; Markowitz, A.; Nandra, K.; Porquet, D.; Ptak, A.; Turner, T. J.; Yaqoob, T.; Weaver, K.

    2007-01-01

    We present the results of the simultaneous deep XMM-Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of the best known examples of a relativistically broadened iron Kalpha line. We detected a narrow sporadic absorption line at 7.7 keV which appears to be variable on a time-scale of 20 ksec. If associated with FeXXVI this absorption is indicative of a possible variable high ionization, high velocity outflow. The time averaged spectral analysis shows that the iron K-shell complex is best modeled with an unresolved narrow emission component (FWHM less than 5000 kilometers per second, EW approx. 60 eV) plus a broad component. This latter component has FWHM approx. 44000 kilometers per second, an EW approx. 50 eV and its profile is well described with an emission line originating from the accretion disk viewed with an inclination angle approx. 40 deg. and with the emission arising from within a few tens of gravitational radii of the central black hole. The time-resolved spectral analysis of the XMM-Newton EPIC-pn spectrum shows that both the narrow and broad components of the Fe K emission line appear to be constant within the errors. The analysis of the XMM-Newton/RGS spectrum reveals that the soft X-ray emission of MCG-5-23-16 is likely dominated by several emission lines superimposed on an unabsorbed scattered power-law continuum. The lack of strong Fe L shell emission together with the detection of a strong forbidden line in the O VII triplet supports a scenario where the soft X ray emission lines are produced in a plasma photoionized by the nuclear emission.

  19. H I emission and absorption in nearby, gas-rich galaxies - II. Sample completion and detection of intervening absorption in NGC 5156

    NASA Astrophysics Data System (ADS)

    Reeves, S. N.; Sadler, E. M.; Allison, J. R.; Koribalski, B. S.; Curran, S. J.; Pracy, M. B.; Phillips, C. J.; Bignall, H. E.; Reynolds, C.

    2016-04-01

    We present the results of a survey for intervening 21 cm H I absorption in a sample of 10 nearby, gas-rich galaxies selected from the H I Parkes All-Sky Survey (HIPASS). This follows the six HIPASS galaxies searched in previous work and completes our full sample. In this paper, we searched for absorption along 17 sightlines with impact parameters between 6 and 46 kpc, making one new detection. We also obtained simultaneous H I emission-line data, allowing us to directly relate the absorption-line detection rate to the H I distribution. From this, we find the majority of the non-detections in the current sample are because sightline does not intersect the H I disc of the galaxy at sufficiently high column density, but that source structure is also an important factor. The detected absorption-line arises in the galaxy NGC 5156 (z = 0.01) at an impact parameter of 19 kpc. The line is deep and narrow with an integrated optical depth of 0.82 km s-1. High-resolution Australia Telescope Compact Array (ATCA) images at 5 and 8 GHz reveal that the background source is resolved into two components with a separation of 2.6 arcsec (500 pc at the redshift of the galaxy), with the absorption likely occurring against a single component. We estimate that the ratio of the spin temperature and covering factor, TS/f, is approximately 950 K in the outer disc of NGC 5156, but further observations using very long baseline interferometry would allow us to accurately measure the covering factor and spin temperature of the gas.

  20. Absorption and fluorescence of hydrophobic components of dissolved organic matter in several Karelian lakes with stratified structures

    NASA Astrophysics Data System (ADS)

    Khundzhua, Daria A.; Kharcheva, Anastasia V.; Krasnova, Elena D.; Gorshkova, Olga M.; Chevel, Kira A.; Yuzhakov, Viktor I.; Patsaeva, Svetlana V.

    2016-04-01

    Hydrophobic components of cromophoric dissolved organic matter (CDOM) extracted from water samples and sediments taken in several relic basins located on Karelian shoreline of the White Sea were analyzed using spectroscopic techniques. Those water reservoirs exist at various stages of isolation from the White Sea and represent complex stratified systems of fresh and marine water layers not completely mixing trough the year. Basins separating from the White Sea are the unique natural objects for investigations of properties CDOM, its transformation in the process of turning the marine ecosystem into freshwater environment. CDOM occurring in all types of natural water represents a significant reservoir of organic carbon and plays a key role in the carbon cycle on the Earth. However, aquatic CDOM and nonliving organic matter in sediments from relic separating basins still have not been studied. The target of this work was to study absorption and fluorescence spectra of hydrophobic components of aquatic CDOM from different water depth and sediments in several separated basins of the Kandalaksha Gulf of the White Sea located near the N.A. Pertsov White Sea Biological Station.

  1. Calcium in the developing Ambystoma neural axis shown by 3H and fluorescent chlortetracycline and atomic absorption spectrometry

    SciTech Connect

    Moran, D.J. )

    1990-12-01

    The calcium ion has been implicated in the mediation of the morphogenetic movements that occur during neural tube formation. The present study identifies high levels of calcium in the neuroepithelium of the neural plate, folds, and tube. These levels are substantially higher than those discerned elsewhere in the embryo. The calcium is localized in morphogenetically active regions by using the antibiotic chlortetracycline (CTC) which chelates calcium and is demonstrated in this investigation by both autoradiography and calcium-linked fluorescence. The specificity of CTC reaction for calcium in the developing neural axis is confirmed by EGTA competition. A comparison of the actual calcium levels in the developing neural axis (dorsal) with equivalently weighted ventral tissues was obtained by atomic absorption spectrometry (AAS). This method provides a total count of the calcium without any loss during tissue processing. For AAS, living tissues were precisely excised and immediately dessicated. Each tissue sample (dry weight 1.5 mg) was then solubilized for analysis. The spectrometric data reveal that the embryonic dorsal aspect forming the neural tube contains 57% more calcium than an equivalent weight of the ventral aspect.

  2. Versatile plug flow catalytic cell for in situ transmission/fluorescence x-ray absorption fine structure measurements

    SciTech Connect

    Centomo, P.; Zecca, M.; Meneghini, C.

    2013-05-15

    A novel flow-through catalytic cell has been developed for in situ x-ray absorption spectroscopy (XAS) experiments on heterogeneous catalysts under working conditions and in the presence of a liquid and a gas phase. The apparatus allows to carry out XAS measurements in both the transmission and fluorescence modes, at moderate temperature (from RT to 50-80 Degree-Sign C) and low-medium gas pressure (up to 7-8 bars). The materials employed are compatible with several chemicals such as those involved in the direct synthesis of hydrogen peroxide (O{sub 2}, H{sub 2}, H{sub 2}O{sub 2}, methanol). The versatile design of the cell allows to fit it to different experimental setups in synchrotron radiation beamlines. It was used successfully for the first time to test nanostructured Pd catalysts during the direct synthesis of hydrogen peroxide (H{sub 2}O{sub 2}) in methanol solution from dihydrogen and dioxygen.

  3. Solvent Effects on the Electronic Absorption and Fluorescence Spectra of HNP: Estimation of Ground and Excited State Dipole Moments.

    PubMed

    Desai, Vani R; Hunagund, Shirajahammad M; Basanagouda, Mahantesha; Kadadevarmath, Jagadish S; Sidarai, Ashok H

    2016-07-01

    We report the effect of solvents on absorption and fluorescence spectra of biologically active 3(2H)-pyridazinone namely 5-(2-hydroxy-naphthalen-1-yl)-2-phenyl-2H-pyridazin-3-one (HNP) in different solvents at room temperature. The ground and the excited state dipole moments of HNP molecule was estimated from Lippert's, Bakshiev's and Kawski-Chamma-Viallet's equations using the solvatochromic shift method. The ground state dipole moment (μ g ) was also estimated by Guggenheim and Higasi method using the dielectric constant and refractive index of solute at different concentrations, the μ g value obtained from these two methods are comparable to the μ g value obtained by the solvatochromic shift method. The excited state dipole moment (μ e ) is greater than the ground state dipole moment (μ g ), which indicates that the excited state is more polar than the ground state. Further, we have evaluated the change in dipole moment (Δμ) from the solvatochromic shift method and on the basis of molecular-microscopic solvent polarity parameter[Formula: see text], later on the values were compared.

  4. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    PubMed Central

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.

    2011-01-01

    Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909

  5. Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an air atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Conway, Jim; Gogna, Gurusharan; Daniels, Stephen

    2016-09-01

    Two-photon Absorption Laser Induced Fluorescence (TALIF) is used to measure atomic oxygen number density [O] in an air Atmospheric Pressure Plasma Jet (APPJ). A novel technique based on photolysis of O2 is used to calibrate the TALIF system ensuring the same species (O) is probed during calibration and measurement. As a result, laser intensity can be increased outside the TALIF quadratic laser power region without affecting calibration reliability as any high intensity saturation effects will be identical for calibration and experiment. Higher laser intensity gives stronger TALIF signals helping overcome weak TALIF signals often experienced at atmospheric pressure due to collisional quenching. O2 photo-dissociation and two-photon excitation of the resulting [O] are both achieved within the same laser pulse. The photolysis [O] is spatially non-uniform and time varying. To allow valid comparison with [O] in a plasma, spatial and temporal correction factors are required. Knowledge of the laser pulse intensity I0(t), and wavelength allows correction factors to be found using a rate equation model. The air flow into the jet was fixed and the RF power coupled into the system varied. The resulting [O] was found to increase with RF power.

  6. Curium analysis in plutonium uranium mixed oxide by x-ray fluorescence and absorption fine structure spectroscopy.

    PubMed

    Degueldre, C; Borca, C; Cozzo, C

    2013-10-15

    Plutonium uranium mixed oxide (MOX) fuels are being used in commercial nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regards to their environment and the coolant. In this work the study of the local occurrence, speciation and next-neighbour environment of curium (Cm) in the (Pu,U)O2 lattice within an irradiated (60 MW d kg(-1) average burn-up) MOX sample was performed employing micro-x-ray fluorescence (µ-XRF) and micro-x-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Cm (≈ 0.7 wt% in the rim and ≈ 0.03 wt% in the centre) are determined from the experimental data gained for the irradiated fuel material examined in its centre and peripheral (rim) zones of the fuel. Curium occurrence is also reduced from the centre (hot) to the periphery (colder) because of the condensation of these volatile oxides. In the irradiated sample Cm builds up as Cm(3+) species (>90%) within a [CmO8](13-) or [CmO7](11-) coordination environment and no (<10%) Cm(IV) can be detected in the rim zone. Curium dioxide is reduced because of the redox buffering activity of the uranium dioxide matrix and of its thermodynamic instability.

  7. Ion pairs of indobenzimidazolo cyanines: a structural study based on conductivity, absorption, fluorescence and 1H-NMR

    NASA Astrophysics Data System (ADS)

    Tatikolov, Aleksandr S.; Ishchenko, Aleksandr A.; Ghelli, Stefano; Ponterini, Glauco

    1998-11-01

    Asymmetric benzimidazolo carbo, di- and tricarbocyanines form ion pairs of the solvent-separated and contact types with different counterions in tetrahydrofuran, toluene and toluene-nitrile mixtures. The dissociation constants of the ion pairs in tetrahydrofuran, evaluated from conductivity data, do not depend on the length of the polymethine chain and show only a small decrease with decreasing counterion size. The absorption and fluorescence excitation spectra of the contact ion pairs exhibit a pronounced hypsochromic shift with respect to the solvated ions and the solvent-separated ion pairs. 1H-NMR experiments have provided information about the electronic structures of the ions of both the asymmetric dyes and the corresponding symmetric carbocyanines. They have also revealed different preferred anion locations in the contact ion pairs of the symmetric indocarbocyanine on one hand, and of the benzimidazolo carbocyanine and the asymmetric dyes on the other. This structural difference is suggested to be a cause of the observed opposite effects of ion pairing on the isomerization kinetics of the two groups of dyes.

  8. Analysis of waveguide-coupled directional emission for efficient collection of Fluorescence/Raman light from surface

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Lu, Dan-Feng; Gao, Ran; Qi, Zhi-Mei

    2016-05-01

    A theoretical method based on the optical reciprocity theorem combined with the Fresnel theory has been developed for the analysis of waveguide-coupled directional emission technique, which is useful for the surface Fluorescence/Raman spectroscopy. The Kretschmann-type waveguide with a molecular dipole located above or inside the core layer serves as the simulation model. The two-dimensional (2D) pattern of power density for the waveguide-coupled emission from the molecular dipole was calculated using the theoretical method. According to the results, with a given waveguide the 2D pattern of power density is highly dependent on both the orientation and position of the dipole. The maximum fraction of power occupied by the waveguide-coupled emission is 87% with the plasmon waveguide and 95% with the resonant mirror. Compared with the dipole emission in free space, the waveguide-coupled directional emission possesses easy collection, which is benefit for the detection of weak Fluorescence and Raman signals. From this point, the theoretical method used here is helpful for design and optimization of Kretschmann-type waveguide structures for high-sensitivity surface monitoring by Fluorescence/Raman spectroscopy.

  9. [Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of dissolved organic matter in water of coal-mining area].

    PubMed

    Yang, Ce; Zhong, Ning-Ning; Shui, Yu-Lei; Wang, Fei-Yu; Chen, Dang-Yi

    2008-01-01

    Three-dimensional excitation emission matrix was applied to characterize the fluorescence properties of dissolved organic matter in various waters of Shilong coal-mining area. Fluorescence peak I (fulvic-like) and peak II (humic-like) were strong, while peak IV and peak V (protein-like) were weak or even undetected in some samples. Fluorescence peaks in various waters and different zones showed great difference in intensities and the fluorescence peaks in underground water tended to be much lower than those of surface waters. Furthermore, the fluorescence peaks of rivers and lakes were higher than those of mine drainage, and also the fluorescence peaks in coking zone and coal mining zone were higher than those in sewage-irrigated zone, or even much higher than those in farming zone. The reason may be that coal mining activities and coal industry can bring plenty of organic matter from coal to surroundings. Meanwhile, surface water would accept mine drainage, waste water of coal-washing and sewage from daily life easier than underground water, so surface water can be polluted seriously. Fluorescence peaks in waters from coal mining area are little influenced by pH of the water but can be influenced by the content of Ca2+ to water in some extent.

  10. Anharmonic Franck-Condon simulation of the absorption and fluorescence spectra for the low-lying S1 and S2 excited states of pyridine.

    PubMed

    Wang, Huan; Zhu, Chaoyuan; Yu, Jian-Guo; Lin, Sheng Hsien

    2009-12-31

    Anharmonic effects of the absorption and fluorescence spectra of pyridine molecule are studied and analyzed for the two-low lying singlet excited states S(1)((1)B(1)) and S(2)((1)B(2)). The complete active space self-consistent field (CASSCF) method is utilized to compute equilibrium geometries and all 27 vibrational normal-mode frequencies for the ground state and the two excited states. The present calculations show that the frequency differences between the ground and two excited states are small for the ten totally symmetric vibrational modes so that the displaced oscillator approximation can be used for spectrum simulations. The Franck-Condon factors within harmonic approximation basically grasp the main features of molecular spectra, but simulated 0-0 transition energy position and spectrum band shapes are not satisfactorily good for S(1)((1)B(1)) absorption and fluorescence spectra in comparison with experiment observation. As the first-order anharmonic correction added to Franck-Condon factors, both spectrum positions and band shapes can be simultaneously improved for both absorption and fluorescence spectra. It is concluded that the present anharmonic correction produces a significant dynamic shifts for spectrum positions and improves spectrum band shapes as well. The detailed structures of absorption spectrum of S(2)((1)B(2)) state observed from experiment can be also reproduced with anharmonic Franck-Condon simulation, and these were not shown in the harmonic Franck-Condon simulation with either distorted or Duschinsky effects in the literature.

  11. Fluorescence emission and polarization analyses for evaluating binding of ruthenium metalloglycocluster to lectin and tetanus toxin c-fragment

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Minoura, Norihiko

    2010-02-01

    We have developed a fluorescent ruthenium metalloglycocluster as a powerful molecular probe for evaluating a binding event between carbohydrates and lectins by fluorescence emission (FE) and fluorescence polarization (FP) analysis. The fluorescent ruthenium metalloglycoclusters, [Ru(bpy-2Gal)3] and [Ru(bpy-2Glc)3], possess clustered galactose and glucose surrounding the ruthenium center. Changes in FE and FP of these metalloglycoclusters were measured by adding each lectin (Peanut agglutinin (PNA), Ricinus communis agglutinin 120 (RCA), Concanavalin A (ConA), or Wheat germ agglutinin (WGA)) or tetanus toxin c-fragment (TCF). Following the addition of PNA, the FE spectrum of [Ru(bpy- 2Gal)3] showed new emission peak and the FP value of [Ru(bpy-2Gal)3] increased. Similarly, the FE spectrum of [Ru(bpy-2Glc)3] showed new emission peak and the FP value increased following the addition of ConA. Since other combinations of the metalloglycoclusters and lectin caused little change, specific bindings of galactose to PNA and glucose to ConA were proved by the FE and FP measurement. From nonlinear least-squares fitting, dissociation constants (Kd) of [Ru(bpy-2Gal)3] to PNA was 6.1 μM, while the Kd values of [Ru(bpy)2(bpy-2Gal)] to PNA was ca. 10-4 M. Therefore, the clustered carbohydrates were proved to increase affinity to lectins. Furthermore, the FP measurements proved specific binding of [Ru(bpy-2Gal)3] to TCF.

  12. Absorption and emission line shapes in the O2 atmospheric bands - Theoretical model and limb viewing simulations

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Bucholtz, A.; Hays, P. B.; Ortland, D.; Skinner, W. R.

    1989-01-01

    A multiple scattering radiative transfer model has been developed to carry out a line-by-line calculation of the absorption and emission limb measurements that will be made by the High Resolution Doppler Imager to be flown on the Upper Atmosphere Research Satellite. The multiple scattering model uses the doubling and adding methods to solve the radiative transfer equation, modified to take into account a spherical inhomogeneous atmosphere. Representative absorption and emission line shapes in the O2 1Sigma(+)g - 3Sigma(-)g atmospheric bands (A,B, and gamma) and their variation with altitude are presented. The effects of solar zenith angle, aerosol loading, surface albedo, and cloud height on the line shapes are also discussed.

  13. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-10-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s5) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s3) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations.

  14. Thermal Pressure in Diffuse H2 Gas Measured by Herschel [C II] Emission and FUSE UV H2 Absorption

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.

    2017-04-01

    UV absorption studies with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite have made important observations of H2 molecular gas in Galactic interstellar translucent and diffuse clouds. Observations of the 158 μm [C ii] fine-structure line with Herschel trace the same H2 molecular gas in emission. We present [C ii] observations along 27 lines of sight (LOSs) toward target stars of which 25 have FUSE H2 UV absorption. Two stars have only HST STIS C ii λ2325 absorption data. We detect [C ii] 158 μm emission features in all but one target LOS. For three target LOSs that are close to the Galactic plane, | {\\text{}}b| < 1°, we also present position–velocity maps of [C ii] emission observed by Herschel Heterodyne Instrument in the Far Infrared (HIFI) in on-the-fly spectral-line mapping. We use the velocity-resolved [C ii] spectra observed by the HIFI instrument toward the target LOSs observed by FUSE to identify [C ii] velocity components associated with the H2 clouds. We analyze the observed velocity integrated [C ii] spectral-line intensities in terms of the densities and thermal pressures in the H2 gas using the H2 column densities and temperatures measured by the UV absorption data. We present the H2 gas densities and thermal pressures for 26 target LOSs and from the [C ii] intensities derive a mean thermal pressure in the range of ∼6100–7700 K cm‑3 in diffuse H2 clouds. We discuss the thermal pressures and densities toward 14 targets, comparing them to results obtained using the UV absorption data for two other tracers C i and CO. Our results demonstrate the richness of the far-IR [C ii] spectral data which is a valuable complement to the UV H2 absorption data for studying diffuse H2 molecular clouds. While the UV absorption is restricted to the directions of the target star, far-IR [C ii] line emission offers an opportunity to employ velocity-resolved spectral-line mapping capability to study in detail the clouds’ spatial and velocity

  15. Solvent-Controlled Doublet Emission of an Organometallic Gold(I) Complex with a Polychlorinated Diphenyl(4-pyridyl)methyl Radical Ligand: Dual Fluorescence and Enhanced Emission Efficiency.

    PubMed

    Ogino, Yasuyo; Kusamoto, Tetsuro; Hattori, Yohei; Shimada, Masaki; Tsuchiya, Mizuho; Yamanoi, Yoshinori; Nishibori, Eiji; Sugimoto, Kunihisa; Nishihara, Hiroshi

    2017-04-03

    A paramagnetic, luminescent organometallic gold(I) complex Au(I)(C6F5)(PyBTM), where PyBTM is a photostable fluorescent polychlorinated diphenyl(4-pyridyl)methyl radical, was prepared, and its crystal and electronic structures and magnetic and optical properties were investigated. Magnetic studies using electron spin resonance spectroscopy and a superconducting quantum interference device magnetometer indicated the existence of S = (1)/2 spin per molecule, with the spin density distributed mainly on the PyBTM ligand. The complex exhibited fluorescence in CHCl3 with emission peak wavelength (λem) of 619 nm and the absolute fluorescence quantum yield (ϕem) of 0.04, confirming that Au(I)(C6F5)(PyBTM) is the first luminescent organometallic complex with a coordinated luminescent radical. Solvent-dependent unique luminescent characteristics were observed in halogenated solvents (CCl4, CHCl3, CH2Cl2, and ClCH2CH2Cl). ϕem decreased, and λem shifted to longer wavelengths as the polarity (dielectric constant) of the solvent increased. Notably, the complex in CCl4 displayed fluorescence with ϕem = 0.23, which was quite high in radicals, while showed dual fluorescence in CH2Cl2 and ClCH2CH2Cl with lifetimes of around 1 and 7 ns for two emissive components. Density functional theory (DFT) and time-dependent (TD)-DFT calculations indicated that the fluorescence occurred from an interligand charge transfer (CT) excited state in CCl4, in which the C6F5 and PyBTM moieties acted as electron donor and acceptor, respectively, while the fluorescence was centered at the PyBTM ligand in the other three solvents. This method, i.e., the formation of an interligand CT state, to enhance ϕem is distinctly different from the methods reported previously. The present study revealed that a coordination bond is available for forming emissive CT excited states that lead to high ϕem, providing a novel method with greater capability for realizing highly emissive radicals.

  16. Changes in fluorescent emission of cationic fluorophores in the presence of n-alkanes and alcohols in different polarity solvents

    NASA Astrophysics Data System (ADS)

    Delgado-Camón, Arantzazu; Garriga, Rosa; Mateos, Elena; Cebolla, Vicente L.; Galbán, Javier; Membrado, Luis; Marcos, Susana de; Gálvez, Eva M.

    2011-01-01

    Berberine and coralyne experience either fluorescence enhancement or quenching when long hydrocarbon chain compounds (e.g., n-alkanes or alcohols) are added to their solutions, depending on solvent polarity. In polar solvents, as methanol or acetonitrile, the added compounds provide an apolar microenvironment that hinders alternative relaxation mechanisms, favouring fluorescence emission. However, alkane additions produce quenching in dichloromethane, which has been explained taking into account ion pairing between cationic fluorophore and counterion. The strong quenching measured after alcohol additions in dichloromethane suggests reversed micelle formation. Procedures and results described here may find practical applications in the development of analytical methods.

  17. Absorption and emission of radiation by a sourceless Abelian gauge wall in a Robertson-Walker space-time.

    NASA Astrophysics Data System (ADS)

    Morris, J. R.

    1992-04-01

    A model of a sourceless Abelian "gauge wall" consisting of a singular magnetic field occupying the (y, z)-plane is examined in the context of a flat Robertson-Walker space-time background. Exact solutions are found for the gauge field structure function. The solutions may be static or time dependent. Dynamic solutions exist which describe the absorption and emission of gauge field radiation by the gauge wall.

  18. X-Ray Warm Absorption and Emission in the Polar-scattered Seyfert 1 Galaxy Mrk 704

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Dewangan, Gulab C.; Kembhavi, Ajit K.

    2011-06-01

    We present a detailed study of the ionized environment of the Seyfert 1 galaxy Mrk 704 using medium- and high-resolution X-ray spectra obtained with a long XMM-Newton observation. The 0.3-10 keV continuum, well described by a power law (Γ ≈ 1.86) and two blackbodies (kT ≈ 0.085 and 0.22 keV), is found to be affected by a neutral partial covering absorption (N H ≈ 1023 cm-2, covering fraction ≈0.22) and two warm absorber components. We identify a low-ionization, ξ ~ 20 erg cm s-1, and high outflow velocity, v ~ 1350 km s-1, phase producing the O VI and Fe M-shell unresolved-transition array. An additional high-ionization warm absorbing phase with ξ ~ 500 erg cm s-1 and low outflow velocity, v ~ 540 km s-1, gives rise to absorption features due to O VII, O VIII, N VI, N VII, and C VI. We also detected weak emission lines of He-like triplets from O VII and N VI ions, thus making Mrk 704 a Seyfert 1 galaxy with both warm absorption and emission. The emission lines are well described by two warm emitting, photoionized media with different densities but comparable ξ, suggesting discrete clouds of warm emission. The high-density phase (ne ~ 1013 cm-3) responsible for the resonance lines appears to outflow at high velocity ~5000 km s-1. The low-velocity, low-density phase is likely similar to the X-ray line emitting regions found in Seyfert 2 galaxies. The physical conditions of warm emitters and warm absorbers suggest that these clouds are similar but observed in absorption along our line of sight and in emission at other lines of sight. The unique line of sight passing close to the torus opening angle is likely responsible for the neutral partial covering absorption and our view of emission lines due to the suppressed continuum in this polar-scattered Seyfert 1 galaxy.

  19. Carbonyl-functionalized quaterthiophenes: a study of the vibrational Raman and electronic absorption/emission properties guided by theoretical calculations.

    PubMed

    Aragó, Juan; Ponce Ortiz, Rocío; Nieto-Ortega, Belén; Hernández, Víctor; Casado, Juan; Facchetti, Antonio; Marks, Tobin J; Viruela, Pedro M; Ortí, Enrique; López Navarrete, Juan T

    2012-01-16

    This work investigates the evolution of the molecular, vibrational, and optical properties within a family of carbonyl-functionalized quaterthiophenes: 5,5'''-diheptanoyl-2,2':5',2'':5'',2'''-quaterthiophene (1), 5,5'''-diperfluorohexylcarbonyl-2,2':5',2'':5'',2'''-quaterthiophene (2), and 2,7-[bis(5-perfluorohexylcarbonylthien-2-yl)]-4H-cyclopenta[2,1-b:3,4-b']-dithiophene-4-one (3). The analysis is performed by Raman and UV/Vis absorption/excitation/fluorescence spectroscopy in combination with density functional calculations. Theoretical calculations show that substitution with carbonyl groups and perfluorohexyl chains induces progressive quinoidization of the π-conjugated backbone in comparison to the carbonyl-free compound 5,5'''-dimethyl-2,2':5',2'':5'',2'''-quaterthiophene (DM-4T) used as reference. Raman spectra are dominated by a strong Raman line which mainly corresponds to a combination of C-C/C=C stretching vibrations spreading over the whole thiophene core. This band undergoes a remarkable downshift as a consequence of the structural changes induced by the electron-withdrawing groups on the π-conjugated backbone. The band splitting on incorporation of a central carbonyl bridge evidences the formation of two structural domains in the molecule. The excitation and fluorescence spectra recorded at low temperature show well-resolved vibronic structures associated with the most intense collective C-C/C=C stretching mode. Optical absorption and fluorescence bands exhibit remarkable bathochromic dispersion on carbonyl functionalization, indicative of extension of π conjugation. TDDFT calculations enable a detailed description of the trends observed in the absorption spectra. Resonance Raman spectra reflect the structural changes predicted for the S(0)→S(1) electronic transition and evidence the cross-conjugated character that the central carbonyl group confers on 3.

  20. Comparing Compositions of Modern Cast Bronze Sculptures: Optical Emission Spectroscopy Versus x-Ray Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Young, M. L.; Dunand, D. C.

    2015-07-01

    Bulk elemental compositions of 74 modern cast bronze sculptures from the collection at the Art Institute of Chicago, the Philadelphia Museum of Art, and the Rodin Museum (Philadelphia, PA) were determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and a handheld x-ray fluorescence (XRF) spectrometer. The elemental compositions of the cast sculptures as measured previously by ICP-OES and presently by XRF are compared: A good match is found between the two methods for the base metal (Cu) and the two majority alloying elements (Zn and Sn). For both ICP-OES and XRF data, when the Zn composition is plotted versus the Sn composition, three discernable clusters are found that are related to the artist, foundry, casting date, and casting method; they consist of (A) high-zinc brass, (B) low-zinc, low-tin brass, and (C) low-zinc, tin bronze. Thus, our study confirms that the relatively fast, nondestructive XRF spectrometry can be used effectively over slower and invasive, but more accurate, ICP-OES to help determine a sculpture's artist, foundry, date of creation, date of casting, and casting method.

  1. Correlating structure with fluorescence emission in phase-separated conjugated-polymer blends.

    PubMed

    Chappell, John; Lidzey, David G; Jukes, Paul C; Higgins, Anthony M; Thompson, Richard L; O'Connor, Stephen; Grizzi, Ilaria; Fletcher, Robert; O'Brien, Jim; Geoghegan, Mark; Jones, Richard A L

    2003-09-01

    Blends of conjugated polymers are frequently used as the active semiconducting layer in light-emitting diodes and photovoltaic devices. Here we report the use of scanning near-field optical microscopy, scanning force microscopy and nuclear-reaction analysis to study the structure of a thin film of a phase-separated blend of two conjugated polymers prepared by spin-casting. We show that in addition to the well-known micrometre-scale phase-separated morphology of the blend, one of the polymers preferentially wets the surface and forms a 10-nm-thick, partially crystallized wetting layer. Using near-field microscopy we identify unexpected changes in the fluorescence emission from the blend that occurs in a 300-nm-wide band located at the interface between the different phase-separated domains. Our measurements provide an insight into the complex structure of phase-separated conjugated-polymer thin films. Characterizing and controlling the properties of the interfaces in such films will be critical in the further development of efficient optoelectronic devices.

  2. Aggregation-induced emissive nanoparticles for fluorescence signaling in a low cost paper-based immunoassay.

    PubMed

    Engels, Jan F; Roose, Jesse; Zhai, Demi Shuang; Yip, Ka Man; Lee, Mei Suet; Tang, Ben Zhong; Renneberg, Reinhard

    2016-07-01

    Low cost paper based immunoassays are receiving interest due to their fast performance and small amounts of biomolecules needed for developing an immunoassay complex. In this work aggregation-induced emissive (AIE) nanoparticles, obtained from a diastereoisomeric mixture of 1,2-di-(4-hydroxyphenyl)-1,2-diphenylethene (TPEDH) in a one-step top-down method, are characterized through Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Zeta potential. By measuring the Zeta potential before and after labeling the nanoparticles with antibodies we demonstrate that the colloidal system is stable in a wide pH-range. The AIE-active nanoparticles are deposited on chitosan and glutaraldehyde modified paper pads overcoming the common aggregation-caused quenching (ACQ) effect. Analyte concentrations from 1000ng and below are applied in a model immunocomplex using Goat anti-Rabbit IgG and Rabbit IgG. In the range of 7.81ng-250ng, linear trends with a high R(2) are observed, which leads to a strong increase of the blue fluorescence from the TPEDH nanoparticles.

  3. Finding the Elusive Iodocarbene: Fluorescence Excitation and Single Vibronic Level Emission Spectroscopy of Chi

    NASA Astrophysics Data System (ADS)

    Tao, C.; Ebben, C.; Ko, H. T.; Reid, S. A.; Wang, Z.; Sears, T. J.

    2009-06-01

    Among the triatomic halocarbenes, only the iodocarbenes remain to be characterized. The search for these elusive species is motivated by a controversy regarding the multiplicity of the ground state. Photoelectron spectra of Lineberger and co-workers suggest a triplet ground state for CHI, at variance with recent ab initio studies, which suggest a singlet ground state with a singlet-triplet gap of around 4 kcal mol^{-1}. In this work, we have succeeded in finding the spectra of CHI and its deuterated isotopomer using pulsed discharge jet spectroscopy. Rotationally resolved fluorescence excitation spectra are consistent with a singlet-singlet transition, and the derived rotational constants are in good agreement with theoretical predictions. Single vibronic level emission spectra confirm a singlet multiplicity for the ground state, and reveal extensive mixing of the singlet and triplet levels at higher energy. We are able to set a lower limit on the singlet-triplet gap of 4.1 kcal mol^{-1}, in excellent agreement with theory. Extrapolation of the observed bending levels for CHI and CDI to a common origin suggests that the origin of the A^{1}A^'' state lies near 10 500 cm^{-1}, and we will report on high resolution measurements near the electronic origin made at Brookhaven National Laboratory. M. K. Gilles, K. M. Ervin, J. Ho, and W. C. Lineberger, J. Phys. Chem. 96, 1130 (1992).

  4. Robust and economical multi-sample, multi-wavelength UV/vis absorption and fluorescence detector for biological and chemical contamination

    NASA Astrophysics Data System (ADS)

    Lu, Peter J.; Hoehl, Melanie M.; Macarthur, James B.; Sims, Peter A.; Ma, Hongshen; Slocum, Alexander H.

    2012-09-01

    We present a portable multi-channel, multi-sample UV/vis absorption and fluorescence detection device, which has no moving parts, can operate wirelessly and on batteries, interfaces with smart mobile phones or tablets, and has the sensitivity of commercial instruments costing an order of magnitude more. We use UV absorption to measure the concentration of ethylene glycol in water solutions at all levels above those deemed unsafe by the United States Food and Drug Administration; in addition we use fluorescence to measure the concentration of d-glucose. Both wavelengths can be used concurrently to increase measurement robustness and increase detection sensitivity. Our small robust economical device can be deployed in the absence of laboratory infrastructure, and therefore may find applications immediately following natural disasters, and in more general deployment for much broader-based testing of food, agricultural and household products to prevent outbreaks of poisoning and disease.

  5. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    PubMed

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  6. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    PubMed Central

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  7. Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity.

    PubMed

    Samburova, Vera; Connolly, Jessica; Gyawali, Madhu; Yatavelli, Reddy L N; Watts, Adam C; Chakrabarty, Rajan K; Zielinska, Barbara; Moosmüller, Hans; Khlystov, Andrey

    2016-10-15

    In recent years, brown carbon (BrC) has been shown to be an important contributor to light absorption by biomass-burning atmospheric aerosols in the blue and near-ultraviolet (UV) part of the solar spectrum. Emission factors and optical properties of 113 polycyclic aromatic hydrocarbons (PAHs) were determined for combustion of five globally important fuels: Alaskan, Siberian, and Florida swamp peat, cheatgrass (Bromus tectorum), and ponderosa pine (Pinus ponderosa) needles. The emission factors of total analyzed PAHs were between 1.9±0.43.0±0.6 and 9.6±1.2-42.2±5.4mgPAHkg(-1)fuel for particle- and gas phase, respectively. Spectrophotometric analysis of the identified PAHs showed that perinaphthenone, methylpyrenes, and pyrene contributed the most to the total PAH light absorption with 17.2%, 3.3 to 10.5%, and 7.6% of the total particle-phase PAH absorptivity averaged over analyzed emissions from the fuels. In the gas phase, the top three PAH contributors to BrC were acenaphthylene (32.6%), anthracene (8.2%), and 2,4,5-trimethylnaphthalene (8.0%). Overall, the identified PAHs were responsible for 0.087-0.16% (0.13% on average) and 0.033-0.15% (0.11% on average) of the total light absorption by dichloromethane-acetone extracts of particle and gas emissions, respectively. Toxic equivalency factor (TEF) analysis of 16 PAHs prioritized by the United States Environmental Protection Agency (EPA) showed that benzo(a)pyrene contributed the most to the PAH carcinogenic potency of particle phase emissions (61.8-67.4% to the total carcinogenic potency of Σ16EPA PAHs), while naphthalene played the major role in carcinogenicity of the gas phase PAHs in the biomass-burning emission analyzed here (35.4-46.0% to the total carcinogenic potency of Σ16EPA PAHs). The 16 EPA-prioritized PAHs contributed only 22.1±6.2% to total particle and 23.4±11% to total gas phase PAH mass, thus toxic properties of biomass-burning PAH emissions are most likely underestimated.

  8. Copper uptake, intracellular localization, and speciation in marine microalgae measured by synchrotron radiation X-ray fluorescence and absorption microspectroscopy

    DOE PAGES

    Adams, Merrin S.; Dillon, Carolyn T.; Vogt, Stefan; ...

    2016-07-20

    Metal toxicity to aquatic organisms depends on the speciation of the metal and its binding to the critical receptor site(s) (biotic ligand) of the organism. The intracellular nature of the biotic ligand for Cu in microalgal cells was investigated using the high elemental sensitivity of microprobe synchrotron radiation X-ray fluorescence (SR-XRF) and X-ray absorption near-edge spectroscopy (XANES). The marine microalgae, Ceratoneis closterium, Phaeodactylum tricornutum, and Tetraselmis sp. were selected based on their varying sensitivities to Cu (72-h 50% population growth inhibitions of 8–47 μg Cu/L). Intracellular Cu in control cells was similar for all three species (2.5–3.2 × 10–15 gmore » Cu/cell) and increased 4-fold in C. closterium and Tetraselmis sp. when exposed to copper, but was unchanged in P. tricornutum (72-h exposure to 19, 40, and 40 μg Cu/L, respectively). Whole cell microprobe SR-XRF identified endogenous Cu in the central compartment (cytoplasm) of control (unexposed) cells. After Cu exposure, Cu was colocated with organelles/granules dense in P, S, Ca, and Si and this was clearly evident in thin sections of Tetraselmis sp. XANES indicated coexistence of Cu(I) and Cu(II) in control and Cu-exposed cells, with the Cu ligand (e.g., phytochelatin) in P. tricornutum different from that in C. closterium and Tetraselmis sp. Here, this study supports the hypothesis that Cu(II) is reduced to Cu(I) and that polyphosphate bodies and phytochelatins play a significant role in the internalization and detoxification of Cu in marine microalgae.« less

  9. Copper uptake, intracellular localization, and speciation in marine microalgae measured by synchrotron radiation X-ray fluorescence and absorption microspectroscopy

    SciTech Connect

    Adams, Merrin S.; Dillon, Carolyn T.; Vogt, Stefan; Lai, Barry; Stauber, Jennifer; Jolley, Dianne F.

    2016-07-20

    Metal toxicity to aquatic organisms depends on the speciation of the metal and its binding to the critical receptor site(s) (biotic ligand) of the organism. The intracellular nature of the biotic ligand for Cu in microalgal cells was investigated using the high elemental sensitivity of microprobe synchrotron radiation X-ray fluorescence (SR-XRF) and X-ray absorption near-edge spectroscopy (XANES). The marine microalgae, Ceratoneis closterium, Phaeodactylum tricornutum, and Tetraselmis sp. were selected based on their varying sensitivities to Cu (72-h 50% population growth inhibitions of 8–47 μg Cu/L). Intracellular Cu in control cells was similar for all three species (2.5–3.2 × 10–15 g Cu/cell) and increased 4-fold in C. closterium and Tetraselmis sp. when exposed to copper, but was unchanged in P. tricornutum (72-h exposure to 19, 40, and 40 μg Cu/L, respectively). Whole cell microprobe SR-XRF identified endogenous Cu in the central compartment (cytoplasm) of control (unexposed) cells. After Cu exposure, Cu was colocated with organelles/granules dense in P, S, Ca, and Si and this was clearly evident in thin sections of Tetraselmis sp. XANES indicated coexistence of Cu(I) and Cu(II) in control and Cu-exposed cells, with the Cu ligand (e.g., phytochelatin) in P. tricornutum different from that in C. closterium and Tetraselmis sp. Here, this study supports the hypothesis that Cu(II) is reduced to Cu(I) and that polyphosphate bodies and phytochelatins play a significant role in the internalization and detoxification of Cu in marine microalgae.

  10. Franck-Condon factors perturbed by damped harmonic oscillators: Solvent enhanced X 1Ag ↔ A1B1u absorption and fluorescence spectra of perylene

    NASA Astrophysics Data System (ADS)

    Wang, Chen-Wen; Yang, Ling; Zhu, Chaoyuan; Yu, Jian-Guo; Lin, Sheng-Hsien

    2014-08-01

    Damped harmonic oscillators are utilized to calculate Franck-Condon factors within displaced harmonic oscillator approximation. This is practically done by scaling unperturbed Hessian matrix that represents local modes of force constants for molecule in gaseous phase, and then by diagonalizing perturbed Hessian matrix it results in direct modification of Huang-Rhys factors which represent normal modes of solute molecule perturbed by solvent environment. Scaling parameters are empirically introduced for simulating absorption and fluorescence spectra of an isolated solute molecule in solution. The present method is especially useful for simulating vibronic spectra of polycyclic aromatic hydrocarbon molecules in which hydrogen atom vibrations in solution can be scaled equally, namely the same scaling factor being applied to all hydrogen atoms in polycyclic aromatic hydrocarbons. The present method is demonstrated in simulating solvent enhanced X 1Ag ↔ A1B1u absorption and fluorescence spectra of perylene (medium-sized polycyclic aromatic hydrocarbon) in benzene solution. It is found that one of six active normal modes v10 is actually responsible to the solvent enhancement of spectra observed in experiment. Simulations from all functionals (TD) B3LYP, (TD) B3LYP35, (TD) B3LYP50, and (TD) B3LYP100 draw the same conclusion. Hence, the present method is able to adequately reproduce experimental absorption and fluorescence spectra in both gas and solution phases.

  11. Stack emission monitoring using non-dispersive infrared spectroscopy with an optimized nonlinear absorption cross interference correction algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Y. W.; Liu, C.; Chan, K. L.; Xie, P. H.; Liu, W. Q.; Zeng, Y.; Wang, S. M.; Huang, S. H.; Chen, J.; Wang, Y. P.; Si, F. Q.

    2013-08-01

    In this paper, we present an optimized analysis algorithm for non-dispersive infrared (NDIR) to in situ monitor stack emissions. The proposed algorithm simultaneously compensates for nonlinear absorption and cross interference among different gases. We present a mathematical derivation for the measurement error caused by variations in interference coefficients when nonlinear absorption occurs. The proposed algorithm is derived from a classical one and uses interference functions to quantify cross interference. The interference functions vary proportionally with the nonlinear absorption. Thus, interference coefficients among different gases can be modeled by the interference functions whether gases are characterized by linear or nonlinear absorption. In this study, the simultaneous analysis of two components (CO2 and CO) serves as an example for the validation of the proposed algorithm. The interference functions in this case can be obtained by least-squares fitting with third-order polynomials. Experiments show that the results of cross interference correction are improved significantly by utilizing the fitted interference functions when nonlinear absorptions occur. The dynamic measurement ranges of CO2 and CO are improved by about a factor of 1.8 and 3.5, respectively. A commercial analyzer with high accuracy was used to validate the CO and CO2 measurements derived from the NDIR analyzer prototype in which the new algorithm was embedded. The comparison of the two analyzers show that the prototype works well both within the linear and nonlinear ranges.

  12. Stack emission monitoring using non-dispersive infrared with optimized nonlinear absorption cross-interference correction algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Y.-W.; Liu, C.; Chan, K.-L.; Xie, P.-H.; Liu, W.-Q.; Zeng, Y.; Wang, S.-M.; Huang, S.-H.; Chen, J.; Wang, Y.-P.; Si, F.-Q.

    2013-02-01

    In this paper, we present an optimized analysis algorithm for non-dispersive infrared (NDIR) to monitor stack emissions. The newly developed analysis algorithm simultaneously compensates for nonlinear absorption and cross-interference between different gases. We present a mathematical derivation for the measurement error caused by variations in interference coefficients when nonlinear absorption occurs. The optimized algorithm is derived from a classical one and uses interference functions to quantify cross-interference. The interference functions vary proportionally with the nonlinear absorption. Thus, interference coefficients among different gases can be modeled by the interference functions whether gases are characterized by linear or nonlinear absorption. In this study, the simultaneous analysis of two components (CO2 and CO) serves as an example for the validation of the optimized algorithm. The interference functions in this case can be obtained by least-squares fitting with three-order polynomials. Experiments show that the results of cross-interference correction are improved significantly by utilizing fitted interference functions when nonlinear absorptions occur. The dynamic measurement ranges of CO2 and CO are improved by about a factor of 1.8 and 3.5, respectively. A commercial NDIR multi-gas analyzer with high accuracy was used to validate the CO and CO2 measurements derived from the NDIR analyzer prototype in which the new cross-interference correction algorithm was embedded. Both measurements well agreed.

  13. Efficient two-photon fluorescent probe with red emission for imaging of thiophenols in living cells and tissues.

    PubMed

    Liu, Hong-Wen; Zhang, Xiao-Bing; Zhang, Jing; Wang, Qian-Qian; Hu, Xiao-Xiao; Wang, Peng; Tan, Weihong

    2015-09-01

    Thiophenols, a class of highly toxic and pollutant compounds, are widely used in industrial production. Some aliphatic thiols play important roles in living organisms. Therefore, the development of efficient methods to discriminate thiophenols from aliphatic thiols is of great importance. Although several one-photon fluorescent probes have been reported for thiophenols, two-photon fluorescent probes are more favorable for biological imaging due to its low background fluorescence, deep penetration depth, and so on. In this work, a two-photon fluorescent probe for thiophenols, termed NpRb1, has been developed for the first time by employing 2,4-dinitrobenzene-sulfonate (DNBS) as a recognition unit (also a fluorescence quencher) and a naphthalene-BODIPY-based through-bond energy transfer (TBET) cassette as a fluorescent reporter. The TBET system consists of a D-π-A structured two-photon naphthalene fluorophore and a red-emitting BODIPY. It displayed highly energy transfer efficiency (93.5%), large pseudo-Stokes shifts upon one-photon excitation, and red fluorescence emission (λem = 586 nm), which is highly desirable for bioimaging applications. The probe exhibited a 163-fold thiophenol-triggered two-photon excited fluorescence enhancement at 586 nm. It showed a high selectivity and excellent sensitivity to thiophenols, with a detection limit of 4.9 nM. Moreover, it was successfully applied for practical detection of thiophenol in water samples with a good recovery, two-photon imaging of thiophenol in living cells, and tissues with tissue-imaging depths of 90-220 μm, demonstrating its practical application in environmental samples and biological systems.

  14. Effect of zeolite properties on ground-state and triplet-triplet absorption, prompt and oxygen induced delayed fluorescence of tetraphenylporphyrin at gas/solid interface

    NASA Astrophysics Data System (ADS)

    Levin, P. P.; Costa, Silvia M. B.; Lopes, J. M.; Serralha, F. N.; Ribeiro, F. Ramôa

    2000-08-01

    The ground-state and transient absorption, prompt and delayed fluorescence of tetraphenylporphyrin (TPP) adsorbed onto the external surface of different zeolites was monitored using diffuse-reflectance steady-state and laser flash photolysis. The delayed fluorescence (DF) of TPP detected in the presence of O 2 is attributed to the energy transfer from 3TPP to 3O 2 to form 1O 2 and subsequent energy transfer from 1O 2 to some other 3TPP within the organised molecular ensembles on the zeolite surface. The spectroscopic and kinetic parameters, namely the yield of DF (2-20% relative to prompt fluorescence), depend on the zeolite properties: the observed differences were correlated with the acid-base properties of the two zeolite series studied in this work (KA, NaA, CaA) and (NaA, NaX, NaY).

  15. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation

    SciTech Connect

    Moix, Jeremy M.; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  16. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

    PubMed

    Moix, Jeremy M; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  17. Mapping live cell viscosity with an aggregation-induced emission fluorogen by means of two-photon fluorescence lifetime imaging.

    PubMed

    Chen, Sijie; Hong, Yuning; Zeng, Yan; Sun, Qiqi; Liu, Yang; Zhao, Engui; Bai, Gongxun; Qu, Jianan; Hao, Jianhua; Tang, Ben Zhong

    2015-03-09

    Intracellular viscosity is a crucial parameter that indicates the functioning of cells. In this work, we demonstrate the utility of TPE-Cy, a cell-permeable dye with aggregation-induced emission (AIE) property, in mapping the viscosity inside live cells. Owing to the AIE characteristics, both the fluorescence intensity and lifetime of this dye are increased along with an increase in viscosity. Fluorescence lifetime imaging of live cells stained with TPE-Cy reveals that the lifetime in lipid droplets is much shorter than that from the general cytoplasmic region. The loose packing of the lipids in a lipid droplet results in low viscosity and thus shorter lifetime of TPE-Cy in this region. It demonstrates that the AIE dye could provide good resolution in intracellular viscosity sensing. This is also the first work in which AIE molecules are applied in fluorescence lifetime imaging and intracellular viscosity sensing.

  18. Submicrosecond phospholipid dynamics using a long-lived fluorescence emission anisotropy probe.

    PubMed Central

    Davenport, L; Targowski, P

    1996-01-01

    The use of the long-lived fluorescence probe coronene (mean value of tau(FL) approximately 200 ns) is described for investigating submicrosecond lipid dynamics in DPPC model bilayer systems occurring below the lipid phase transition. Time-resolved fluorescence emission anisotropy decay profiles, measures as a function of increasing temperature toward the lipid-phase transition temperature (T(C)), for coronene-labeled DPPC small unilamellar vesicles (SUVs), are best described in most cases by three rotational decay components (phi(i = 3)). We have interpreted these data using two dynamic lipid bilayer models. In the first, a compartmental model, the long correlation time (phi(N)) is assigned to immobilized coronene molecules located in "gel-like" or highly ordered lipid phases (S-->1) of the bilayer, whereas a second fast rotational time (phi(F) approximately 2-5 ns) is associated with probes residing in more "fluid-like" regions (with corresponding lower ordering, S-->0). Interests here have focused on the origins of an intermediate correlation time (50-100 ns), the associated amplitude (beta(G)) of which increases with increasing temperature. Such behavior suggests a changing rotational environment surrounding the coronene molecules, arising from fluidization of gel lipid. The observed effective correlation time (phi(EFF)) thus reflects a discrete gel-fluid lipid exchange rate (k(FG)). A refinement of the compartmental model invokes a distribution of gel-fluid exchange rates (d(S,T)) corresponding to a distribution of lipid order parameters and is based on an adapted Landau expression for describing "gated" packing fluctuations. A total of seven parameters (five thermodynamic quantities, defined by the free energy versus temperature expansion; one gating parameter (gamma) defining a cooperative "melting" requirement; one limiting diffusion rate (or frequency factor: d(infinity))) suffice to predict complete anisotropy decay curves measured for coronene at several

  19. Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore.

    PubMed

    Liu, Xiang-Yang; Chang, Xue-Ping; Xia, Shu-Hua; Cui, Ganglong; Thiel, Walter

    2016-02-09

    The chemical locking of the central single bond in core chromophores of green fluorescent proteins (GFPs) influences their excited-state behavior in a distinct manner. Experimentally, it significantly enhances the fluorescence quantum yield of GFP chromophores with an ortho-hydroxyl group, while it has almost no effect on the photophysics of GFP chromophores with a para-hydroxyl group. To unravel the underlying physical reasons for this different behavior, we report static electronic structure calculations and nonadiabatic dynamics simulations on excited-state intramolecular proton transfer, cis-trans isomerization, and excited-state deactivation in a locked ortho-substituted GFP model chromophore (o-LHBI). On the basis of our previous and present results, we find that the S1 keto species is responsible for the fluorescence emission of the unlocked o-HBI and the locked o-LHBI species. Chemical locking does not change the parts of the S1 and S0 potential energy surfaces relevant to enol-keto tautomerization; hence, in both chromophores, there is an ultrafast excited-state intramolecular proton transfer that takes only 35 fs on average. However, the locking effectively hinders the S1 keto species from approaching the keto S1/S0 conical intersections so that most of trajectories are trapped in the S1 keto region for the entire 2 ps simulation time. Therefore, the fluorescence quantum yield of o-LHBI is enhanced compared with that of unlocked o-HBI, in which the S1 excited-state decay is efficient and ultrafast. In the case of the para-substituted GFP model chromophores p-HBI and p-LHBI, chemical locking hardly affects their efficient excited-state deactivation via cis-trans isomerization; thus, the fluorescence quantum yields in these chromophores remain very low. The insights gained from the present work may help to guide the design of new GFP chromophores with improved fluorescence emission and brightness.

  20. Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore

    PubMed Central

    2016-01-01

    The chemical locking of the central single bond in core chromophores of green fluorescent proteins (GFPs) influences their excited-state behavior in a distinct manner. Experimentally, it significantly enhances the fluorescence quantum yield of GFP chromophores with an ortho-hydroxyl group, while it has almost no effect on the photophysics of GFP chromophores with a para-hydroxyl group. To unravel the underlying physical reasons for this different behavior, we report static electronic structure calculations and nonadiabatic dynamics simulations on excited-state intramolecular proton transfer, cis–trans isomerization, and excited-state deactivation in a locked ortho-substituted GFP model chromophore (o-LHBI). On the basis of our previous and present results, we find that the S1 keto species is responsible for the fluorescence emission of the unlocked o-HBI and the locked o-LHBI species. Chemical locking does not change the parts of the S1 and S0 potential energy surfaces relevant to enol–keto tautomerization; hence, in both chromophores, there is an ultrafast excited-state intramolecular proton transfer that takes only 35 fs on average. However, the locking effectively hinders the S1 keto species from approaching the keto S1/S0 conical intersections so that most of trajectories are trapped in the S1 keto region for the entire 2 ps simulation time. Therefore, the fluorescence quantum yield of o-LHBI is enhanced compared with that of unlocked o-HBI, in which the S1 excited-state decay is efficient and ultrafast. In the case of the para-substituted GFP model chromophores p-HBI and p-LHBI, chemical locking hardly affects their efficient excited-state deactivation via cis–trans isomerization; thus, the fluorescence quantum yields in these chromophores remain very low. The insights gained from the present work may help to guide the design of new GFP chromophores with improved fluorescence emission and brightness. PMID:26744782

  1. Highly sensitive dual-mode fluorescence detection of lead ion in water using aggregation-induced emissive polymers.

    PubMed

    Saha, Sukanta Kumar; Ghosh, Khama Rani; Gao, Jian Ping; Wang, Zhi Yuan

    2014-09-01

    A series of fluorene-based conjugated polymers containing the aggregation-induced emissive (AIE)-active tetraphenylethene and dicarboxylate pseudocrown as a receptor exhibits a unique dual-mode sensing ability for selective detection of lead ion in water. Fluorescence turn-off and turn-on detections are realized in 80%-90% and 20% water in tetrahydrofuran (THF), respectively, for lead ion with a concentration as low as 10(-8) m.

  2. Single particle size and fluorescence spectra from emissions of burning materials in a tube furnace to simulate burn pits

    NASA Astrophysics Data System (ADS)

    Pan, Yong-Le; Houck, Joshua D. T.; Clark, Pamela A.; Pinnick, Ronald G.

    2013-08-01

    A single-particle fluorescence spectrometer (SPFS) and an aerodynamic particle sizer were used to measure the fluorescence spectra and particle size distribution from the particulate emissions of 12 different burning materials in a tube furnace to simulate open-air burning of garbage. Although the particulate emissions are likely dominated by particles <1 μm diameter, only the spectra of supermicron particles were measured here. The overall fluorescence spectral profiles exhibit either one or two broad bands peaked around 300-450 nm within the 280-650 nm spectral range, when the particles are illuminated with a 263-nm laser. Different burning materials have different profiles, some of them (cigarette, hair, uniform, paper, and plastics) show small changes during the burning process, and while others (beef, bread, carrot, Styrofoam, and wood) show big variations, which initially exhibit a single UV peak (around 310-340 nm) and a long shoulder in visible, and then gradually evolve into a bimodal spectrum with another visible peak (around 430-450 nm) having increasing intensity during the burning process. These spectral profiles could mainly derive from polycyclic aromatic hydrocarbons with the combinations of tyrosine-like, tryptophan-like, and other humic-like substances. About 68 % of these single-particle fluorescence spectra can be grouped into 10 clustered spectral templates that are derived from the spectra of millions of atmospheric aerosol particles observed in three locations; while the others, particularly these bimodal spectra, do not fall into any of the 10 templates. Therefore, the spectra from particulate emissions of burning materials can be easily discriminated from that of common atmospheric aerosol particles. The SFFS technology could be a good tool for monitoring burning pit emissions and possibly for distinguishing them from atmospheric aerosol particles.

  3. Fluorescence emission and polarization analyses for evaluating binding of ruthenium metalloglycoclusters to lectins and tetanus toxin C-fragment

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Minoura, Norihiko

    2011-03-01

    We develop a fluorescent ruthenium metalloglycocluster for use as a powerful molecular probe in evaluating the binding between carbohydrates and lectins by fluorescence emission (FE) and fluorescence polarization (FP) analyses. Changes in the FE and FP of these metalloglycoclusters are measured following the addition of lectin [peanut agglutinin (PNA), Ricinus communis agglutinin 120, Concanavalin A (ConA), or wheat germ agglutinin] or tetanus toxin c-fragment (TCF). After the addition of PNA, the FE spectrum of [Ru(bpy-2Gal)3] shows a new emission peak and the FP value of [Ru(bpy-2Gal)3] increases. Similarly, the FE spectrum of [Ru(bpy-2Glc)3] shows a new emission peak and the FP value increases on addition of ConA. Because other combinations of metalloglycoclusters and lectins show little change, specific binding of galactose to PNA and that of glucose to ConA are confirmed by the FE and FP measurements. Resulting dissociation constants (Kd) prove that the metalloglycoclusters with highly clustered carbohydrates show higher affinity for the respective lectins than those with less clustered carbohydrates. Furthermore, specific binding of [Ru(bpy-2Gal)3] to TCF was confirmed by the FP measurement.

  4. Efficient ratiometric fluorescence probe based on dual-emission quantum dots hybrid for on-site determination of copper ions.

    PubMed

    Yao, Jianlei; Zhang, Kui; Zhu, Houjuan; Ma, Fang; Sun, Mingtai; Yu, Huan; Sun, Jian; Wang, Suhua

    2013-07-02

    Of various chemosensory protocols, the color change observed by the naked eye is considered to be a conceivable and on-site way to indicate the presence of an analyte. We herein designed a ratiometric fluorescence probe by hybridizing dual-emission quantum dots (QDs) and demonstrated its efficiency for on-site visual determination of copper ions. The hybrid probe comprises two sizes of cadmium telluride QDs emitting red and green fluorescence, respectively, in which the red-emitting ones are embedded in silica nanoparticles and the green-emitting ones are covalently linked onto the surface. The fluorescence of the embedded QDs is insensitive to the analyte, whereas the green emissive QDs are functionalized to be selectively quenched by the analyte. Upon exposure to different amounts of copper ions, the variations of the dual emission intensity ratios display continuous color changes from green to red, which can be clearly observed by the naked eye. The limit of detection for copper is estimated to be 1.1 nM, much lower than the allowable level of copper (~20 μM) in drinking water set by U.S. Environmental Protection Agency. The probe is demonstrated for the determination of copper ions in lake water and mineral water samples, especially for visually monitoring copper residues on herb leaves. This prototype ratiometric probe is simple, fully self-contained, and thus potentially attractive for visual identification without the need for elaborate equipment.

  5. Strong enhancement of light absorption and highly directive thermal emission in graphene.

    PubMed

    Pu, Mingbo; Chen, Po; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Huang, Cheng; Hu, Chenggang; Luo, Xiangang

    2013-05-20

    Graphene is a two-dimensional material with exotic electronic, optical and thermal properties. The optical absorption in monolayer graphene is limited by the fine structure constant α. Here we demonstrated the strong enhancement of light absorption and thermal radiation in homogeneous graphene. Numerical simulations show that the light absorbance can be controlled from near zero to 100% by tuning the Fermi energy. Moreover, a set of periodically located absorption peaks is observed at near grazing incidence. Based on this unique property, highly directive comb-like thermal radiation at near-infrared frequencies is demonstrated.

  6. Dynamics of bolaamphiphilic fluorescent polyenes in lipid bilayers from polarization emission spectroscopy.

    PubMed

    Acuña, A Ulises; Amat-Guerri, Francisco; Quesada, Ernesto; Vélez, Marisela

    2006-06-20

    The rotational motions of the biamphiphilic polyenes (bolapolyenes) dimethyl all-(E)-octacosa-10,12,14,16,18-pentaenedioate (DE28:5) and dimethyl all-(E)-tetratriaconta-13,15,17,19,21-pentaenedioate (DE34:5), with head-to-head distances of 34 and 42A, respectively, have been examined by fluorescence anisotropy methods. The membrane-spanning bolapolyenes, which contain a central emitting pentaene group tethered to two methoxycarbonyl opposite polar heads by symmetric C(8) (DE28:5) and C(11) (DE34:5) polymethylene chains, were dispersed in lipid bilayers of DPPC or DMPC, and the stationary and picosecond-resolved emission was recorded as a function of temperature. In fluid-phase DMPC bilayers, three relaxation times could be determined, assigned to fast (0.2 and 2ns) single-bond isomerization processes localized on the alkyl chains, and to whole-molecule oscillations ( approximately 11ns), respectively. The anisotropy decay parameters were further analyzed in terms of a diffusive model for wobbling in a Gaussian ordering potential, to assess the anchoring effect of the symmetric polar heads. In this way, the average rotational diffusion constant of the bolapolyenes, D( perpendicular), could be estimated as 0.022-0.026rad(2) ns(-1) (DMPC bilayers, 35 degrees Celsius), a value that is only 1/3 of that corresponding to the related pentaene fatty acid spanning a single membrane monolayer. In contrast, the amplitude of the equilibrium orientational distribution (theta(half-cone) approximately 50 degrees ) is very similar for both the transmembrane and the single-headed polyenes. The reorientational oscillations of the central emitting group in the bolapolyenes necessarily would produce large-amplitude (2-5A) and very fast (ns) translational motions of the polar heads.

  7. [Vermicomposting of different organic materials and three-dimensional excitation emission matrix fluorescence spectroscopic characterization of their dissolved organic matter].

    PubMed

    Yang, Wei; Wang, Dong-sheng; Liu, Man-qiang; Hu, Feng; Li, Hui-xin; Huang, Zhong-yang; Chang, Yi-jun; Jiao, Jia-guo

    2015-10-01

    In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting.

  8. Environmentally friendly Zn0.75Cd0.25S/PVA heterosystem nanocomposite: UV-stimulated emission and absorption spectra

    NASA Astrophysics Data System (ADS)

    Imam, N. G.; Mohamed, Mohamed Bakr

    2016-02-01

    Zn0.75Cd0.25S nanoparticles prepared at different temperatures were composited with polyvinyl alcohol for functionalization it in wide spectrum of applications such as in photocatalysis. The nanostructure of the Zn0.75Cd0.25S mother phase is confirmed by X-ray diffraction in addition to absorption and fluorescence spectra. UV/VIS. measurements show that, the transmittance coefficient of Zn0.75Cd0.25S/PVA nanocomposite is lesser than that of pure PVA by 0.33% and varies upon increasing the preparation temperature; reaching a maximum value for the sample prepared at 300 °C. It was found that the optical band gap tunes with annealing temperature which, in turns, with particle size. The refractive index of the Zn0.75Cd0.25S/PVA nanocomposite films decrease with increasing wavelength and saturates at high wavelengths. The optical conductivity increases with increasing photon energy which may be due to the excitation of electrons by photon energy. The optical conductivity of Zn0.75Cd0.25S/PVA nanocomposite is lesser than that of pure PVA and it decreases as the preparation temperature of Zn0.75Cd0.25S nanoparticles in PVA matrix increases which could be related to the decrease in the extinction coefficient and the density of localized states in the gap. Abroad peak deconvoluted, by Gaussian fitting function, into two violet and blue colors was observed in the fluorescence spectra under UV light irradiation. The two emission bands are attributed to band edge emission and neutral oxygen vacancies respectively. Analysis of fluorescence (FL) spectra reveals quenching in FL intensity and a peak shifting towards the lower wavelength side with increasing the preparation temperature of the mother phase. The results suggest that the 200 °C Zn0.75Cd0.25S/PVA nanocomposites have been regarded as a promising candidate in many technical fields, such as photocatalytic hydrogen production and/or photocatalytic degradation of organic dyes under UV irradiation due to its high optical

  9. The mechanism and properties of bio-photon emission and absorption in protein molecules in living systems

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-feng

    2012-05-01

    The mechanism and properties of bio-photon emission and absorption in bio-tissues were studied using Pang's theory of bio-energy transport, in which the energy spectra of protein molecules are obtained from the discrete dynamic equation. From the energy spectra, it was determined that the protein molecules could both radiate and absorb bio-photons with wavelengths of <3 μm and 5-7 μm, consistent with the energy level transitions of the excitons. These results were consistent with the experimental data; this consisted of infrared absorption data from collagen, bovine serum albumin, the protein-like molecule acetanilide, plasma, and a person's finger, and the laser-Raman spectra of acidity I-type collagen in the lungs of a mouse, and metabolically active Escherichia coli. We further elucidated the mechanism responsible for the non-thermal biological effects produced by the infrared light absorbed by the bio-tissues, using the above results. No temperature rise was observed; instead, the absorbed infrared light promoted the vibrations of amides as well the transport of the bio-energy from one place to other in the protein molecules, which changed their conformations. These experimental results, therefore, not only confirmed the validity of the mechanism of bio-photon emission, and the newly developed theory of bio-energy transport mentioned above, but also explained the mechanism and properties of the non-thermal biological effects produced by the absorption of infrared light by the living systems.

  10. Absorption of laser radiation by femtosecond laser-induced plasma of air and its emission characteristics

    NASA Astrophysics Data System (ADS)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.

    2015-11-01

    The energy absorbed by femtosecond laser plasma has nonlinear dependence on incident laser energy. The threshold power for plasma formation is 5.2 GW. Emission of nitrogen molecule, nitrogen molecule ion, atomic oxygen (unresolved triplet O I 777 nm) and nitrogen (triplet N I 742.4, 744.3 and 746.8 nm) lines is detected. Molecular emission consists of second positive and firs negative systems of nitrogen. Time-resolved spectroscopy of plasmas shows short molecular line emission (up to 1 ns) and long atomic line emission (up to 150 ns).

  11. Measurement procedure for absolute broadband infrared up-conversion photoluminescent quantum yields: Correcting for absorption/re-emission

    SciTech Connect

    MacDougall, Sean K. W.; Ivaturi, Aruna; Marques-Hueso, Jose; Richards, Bryce S.

    2014-06-15

    The internal photoluminescent quantum yield (iPLQY) – defined as the ratio of emitted photons to those absorbed – is an important parameter in the evaluation and application of luminescent materials. The iPLQY is rarely reported due to the complexities in the calibration of such a measurement. Herein, an experimental method is proposed to correct for re-emission, which leads to an underestimation of the absorption under broadband excitation. Although traditionally the iPLQY is measured using monochromatic sources for linear materials, this advancement is necessary for nonlinear materials with wavelength dependent iPLQY, such as the application of up-conversion to solar energy harvesting. The method requires an additional measurement of the emission line shape that overlaps with the excitation and absorption spectra. Through scaling of the emission spectrum, at the long wavelength edge where an overlap of excitation does not occur, it is possible to better estimate the value of iPLQY. The method has been evaluated for a range of nonlinear material concentrations and under various irradiances to analyze the necessity and boundary conditions that favor the proposed method. Use of this refined method is important for a reliable measurement of iPLQY under a broad illumination source such as the Sun.

  12. THE 217.5 nm BAND, INFRARED ABSORPTION, AND INFRARED EMISSION FEATURES IN HYDROGENATED AMORPHOUS CARBON NANOPARTICLES

    SciTech Connect

    Duley, W. W.; Hu, Anming E-mail: a2hu@uwaterloo.ca

    2012-12-20

    We report on the preparation of hydrogenated amorphous carbon nanoparticles whose spectral characteristics include an absorption band at 217.5 nm with the profile and characteristics of the interstellar 217.5 nm feature. Vibrational spectra of these particles also contain the features commonly observed in absorption and emission from dust in the diffuse interstellar medium. These materials are produced under ''slow'' deposition conditions by minimizing the flux of incident carbon atoms and by reducing surface mobility. The initial chemistry leads to the formation of carbon chains, together with a limited range of small aromatic ring molecules, and eventually results in carbon nanoparticles having an sp {sup 2}/sp {sup 3} ratio Almost-Equal-To 0.4. Spectroscopic analysis of particle composition indicates that naphthalene and naphthalene derivatives are important constituents of this material. We suggest that carbon nanoparticles with similar composition are responsible for the appearance of the interstellar 217.5 nm band and outline how these particles can form in situ under diffuse cloud conditions by deposition of carbon on the surface of silicate grains. Spectral data from carbon nanoparticles formed under these conditions accurately reproduce IR emission spectra from a number of Galactic sources. We provide the first detailed fits to observational spectra of Type A and B emission sources based entirely on measured spectra of a carbonaceous material that can be produced in the laboratory.

  13. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    NASA Technical Reports Server (NTRS)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; Fabian, A. C.; Farrah, D.; Fiore, F.; Fuerst, F.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R.; Madsen, K. K.; Matt, G.; Ogle, P.; Risaliti, G.; Saez, C.; Teng, S. H.; Walton, D. J.; Zhang, W. W.

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  14. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    SciTech Connect

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Hickox, R.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fabian, A. C.; Farrah, D.; Fiore, F.; Hailey, C. J.; Matt, G.; Ogle, P.; and others

    2013-08-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  15. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments

    NASA Astrophysics Data System (ADS)

    Park, Seung Shik; Yu, Jaemyeong

    2016-07-01

    PM2.5 samples from biomass burning (BB) emissions of three types - rice straw (RS), pine needles (PN), and sesame stems (SS) - were collected through laboratory-controlled combustion experiments and analyzed for the mass, organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and water soluble inorganic species (Na+, NH4+, K+, Ca2+, Mg2+, Cl-, NO3-, SO42-, and oxalate). The combustion experiments were carried out at smoldering conditions. Water-soluble HULIS in BB samples was isolated using a one-step solid phase extraction method, followed by quantification with a total organic carbon analyzer. This study aims to explore chemical and light absorption characteristics of HULIS from BB emissions. The contributions of HULIS (=1.94 × HULIS-C) to PM2.5 emissions were observed to be 29.5 ± 2.0, 15.3 ± 3.1, and 25.8 ± 4.0%, respectively, for RS, PN, and SS smoke samples. Contributions of HULIS-C to OC and WSOC for the RS, PN, and SS burning emissions were 0.26 ± 0.03 and 0.63 ± 0.05, 0.15 ± 0.04 and 0.36 ± 0.08, and 0.29 ± 0.08 and 0.51 ± 0.08, respectively. Light absorption by the water extracts from BB aerosols exhibited strong wavelength dependence, which is characteristic of brown carbon spectra with a sharply increasing absorption as wavelength decreases. The average absorption Ångström exponents (AAE) of the water extracts (WSOC) fitted between wavelengths of 300-400 nm were 8.3 (7.4-9.0), 7.4 (6.2-8.5), and 8.0 (7.1-9.3) for the RS, PN, and SS burning samples, which are comparable to the AAE values of BB samples reported in previous publications (e.g., field and laboratory chamber studies). The average mass absorption efficiencies of WSOC measured at 365 nm (MAE365) were 1.37 ± 0.23, 0.86 ± 0.09, and 1.38 ± 0.21 m2/gṡC for RS, PN, and SS burning aerosols, respectively. Correlations of total WSOC, hydrophilic WSOC (= total WSOC-HULIS-C), and HULIS-C concentrations in solution with the light

  16. OPEN PATH TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY FOR ACQUISITION OF FUGITIVE EMISSION FLUX DATA

    EPA Science Inventory

    Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. EPA has developed a gorund-based optical remote sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transfor...

  17. THE FAR-ULTRAVIOLET 'CONTINUUM' IN PROTOPLANETARY DISK SYSTEMS. II. CARBON MONOXIDE FOURTH POSITIVE EMISSION AND ABSORPTION

    SciTech Connect

    France, Kevin; Schindhelm, Eric; Burgh, Eric B.; Brown, Alexander; Green, James C.; Herczeg, Gregory J.; Brown, Joanna M.; Harper, Graham M.; Linsky, Jeffrey L.; Yang Hao; Abgrall, Herve; Ardila, David R.; Bergin, Edwin; Bethell, Thomas; Calvet, Nuria; Ingleby, Laura; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne A.; Hussain, Gaitee

    2011-06-10

    We exploit the high sensitivity and moderate spectral resolution of the Hubble Space Telescope Cosmic Origins Spectrograph to detect far-ultraviolet (UV) spectral features of carbon monoxide (CO) present in the inner regions of protoplanetary disks for the first time. We present spectra of the classical T Tauri stars HN Tau, RECX-11, and V4046 Sgr, representative of a range of CO radiative processes. HN Tau shows CO bands in absorption against the accretion continuum. The CO absorption most likely arises in warm inner disk gas. We measure a CO column density and rotational excitation temperature of N(CO) = (2 {+-} 1) x 10{sup 17} cm{sup -2} and T{sub rot}(CO) 500 {+-} 200 K for the absorbing gas. We also detect CO A-X band emission in RECX-11 and V4046 Sgr, excited by UV line photons, predominantly H I Ly{alpha}. All three objects show emission from CO bands at {lambda} > 1560 A, which may be excited by a combination of UV photons and collisions with non-thermal electrons. In previous observations these emission processes were not accounted for due to blending with emission from the accretion shock, collisionally excited H{sub 2}, and photo-excited H{sub 2}, all of which appeared as a 'continuum' whose components could not be separated. The CO emission spectrum is strongly dependent upon the shape of the incident stellar Ly{alpha} emission profile. We find CO parameters in the range: N(CO) {approx} 10{sup 18}-10{sup 19} cm{sup -2}, T{sub rot}(CO) {approx}> 300 K for the Ly{alpha}-pumped emission. We combine these results with recent work on photo-excited and collisionally excited H{sub 2} emission, concluding that the observations of UV-emitting CO and H{sub 2} are consistent with a common spatial origin. We suggest that the CO/H{sub 2} ratio ({identical_to} N(CO)/N(H{sub 2})) in the inner disk is {approx}1, a transition between the much lower interstellar value and the higher value observed in solar system comets today, a result that will require future

  18. Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption

    NASA Technical Reports Server (NTRS)

    Barnes, James C.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1989-01-01

    Amplified spontaneous emission, ASE, generated by a Ti:Al2O3 laser amplifier has been measured as a function of pump energy, and thus gain, using the atomic absorption of rubidium, Rb, gas at 0.780 micron. By tuning the Ti:Al2O3 laser, the Rb cell could selectively absorb the narrow spectral bandwidth laser radiation while transmitting the wide spectral bandwidth ASE. Transmission of laser amplifier pulses through a Rb absorption cell, measured at various temperatures, thus allows the measurement of the weak ASE in the vicinity of the strong laser pulse. A model for the transmission of Rb as a function of temperature and wavelength has been developed. The measured transmissions are in good agreement with the transmission model predictions.

  19. Computing the Absorption and Emission Spectra of 5-Methylcytidine in Different Solvents: A Test-Case for Different Solvation Models.

    PubMed

    Martínez-Fernández, L; Pepino, A J; Segarra-Martí, J; Banyasz, A; Garavelli, M; Improta, R

    2016-09-13

    The optical spectra of 5-methylcytidine in three different solvents (tetrahydrofuran, acetonitrile, and water) is measured, showing that both the absorption and the emission maximum in water are significantly blue-shifted (0.08 eV). The absorption spectra are simulated based on CAM-B3LYP/TD-DFT calculations but including solvent effects with three different approaches: (i) a hybrid implicit/explicit full quantum mechanical approach, (ii) a mixed QM/MM static approach, and (iii) a QM/MM method exploiting the structures issuing from molecular dynamics classical simulations. Ab-initio Molecular dynamics simulations based on CAM-B3LYP functionals have also been performed. The adopted approaches all reproduce the main features of the experimental spectra, giving insights on the chemical-physical effects responsible for the solvent shifts in the spectra of 5-methylcytidine and providing the basis for discussing advantages and limitations of the adopted solvation models.

  20. CO2 absorption/emission and aerodynamic effects of trees on the concentrations in a street canyon in Guangzhou, China.

    PubMed

    Li, Jian-Feng; Zhan, Jie-Min; Li, Y S; Wai, Onyx W H

    2013-06-01

    In this paper, the effects of trees on CO2 concentrations in a street canyon in Guangzhou, China are examined by Computational Fluid Dynamics (CFD) simulations of the concentration distribution, taking into account both the CO2 absorption/emission and aerodynamic effects of trees. Simulation results show that, under a 2 m/s southerly prevailing wind condition, CO2 absorption by trees will reduce the CO2 concentration by around 2.5% in the daytime and at the same time the trees' resistance will increase the difference of CO2 concentrations in the street and at the inflow by 43%. As the traffic density increases to 50 vehicles/min, the effect of trees on the ambient CO2 concentration will change from positive to negative. At night, trees have a negative effect on the concentration in the street canyon mainly because of their resistance to airflow. When environmental wind changes, the effect of trees will be different.

  1. The action of oxygen on chlorophyll fluorescence quenching and absorption spectra in pea thylakoid membranes under the steady-state conditions.

    PubMed

    Garstka, Maciej; Nejman, Patrycja; Rosiak, Małgorzata

    2004-12-02

    The effect of oxygen concentration on both absorption and chlorophyll fluorescence spectra was investigated in isolated pea thylakoids at weak actinic light under the steady-state conditions. Upon the rise of oxygen concentration from anaerobiosis up to 412 microM a gradual absorbance increase around both 437 and 670 nm was observed, suggesting the disaggregation of LHCII and destacking of thylakoids. Simultaneously, an increase in oxygen concentration resulted in a decline in the Chl fluorescence at 680 nm to about 60% of the initial value. The plot of normalized Chl fluorescence quenching, F(-O(2))/F(+O(2)), showed discontinuity above 275 microM O(2), revealing two phases of quenching, at both lower and higher oxygen concentrations. The inhibition of photosystem II by DCMU or atrazine as well as that of cyt b(6)f by myxothiazol attenuated the oxygen-induced quenching events observed above 275 microM O(2), but did not modify the first phase of oxygen action. These data imply that the oxygen mediated Chl fluorescence quenching is partially independent on non-cyclic electron flow. The second phase of oxygen-induced decline in Chl fluorescence is diminished in thylakoids with poisoned PSII and cyt b(6)f activities and treated with rotenone or N-ethylmaleimide to inhibit NAD(P)H-plastoquinone dehydrogenase. The data suggest that under weak light and high oxygen concentration the Chl fluorescence quenching results from interactions between oxygen and PSI, cyt b(6)f and Ndh. On the contrary, inhibition of non-cyclic electron flow by antimycin A or uncoupling of thylakoids by carbonyl cyanide m-chlorophenyl hydrazone did not modify the steady-state oxygen effect on Chl fluorescence quenching. The addition of NADH protected thylakoids against oxygen-induced Chl fluorescence quenching, whereas in the presence of exogenic duroquinone the decrease in Chl fluorescence to one half of the initial level did not result from the oxygen effect, probably due to oxygen action as a

  2. Using the near-field coupling of a sharp tip to tune fluorescence-emission fluctuations during quantum-dot blinking.

    PubMed

    Shafran, Eyal; Mangum, Benjamin D; Gerton, Jordan M

    2011-07-15

    We demonstrate that the cycling between internal states of quantum dots during fluorescence blinking can be used to tune the near-field coupling with a sharp tip. In particular, the fluorescence emission from states with high quantum yield is quenched due to energy transfer, while that from low-yield states is elevated due to field enhancement. Thus, as a quantum dot blinks, its emission fluctuations are progressively suppressed upon approach of a tip.

  3. Planck's Dusty GEMS. II. Extended [CII] emission and absorption in the Garnet at z = 3.4 seen with ALMA

    NASA Astrophysics Data System (ADS)

    Nesvadba, N.; Kneissl, R.; Cañameras, R.;