Science.gov

Sample records for absorption lidar technique

  1. Differential absorption lidar technique for measurement of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Weng, C. Y.

    1983-01-01

    A new two-wavelength lidar technique for remotely measuring the pressure profile using the trough absorption region between two strong lines in the oxygen A band is described. The theory of integrated vertical path, differential ranging, and horizontal-path pressure measurements is given, with methods to desensitize and correct for temperature effects. The properties of absorption troughs are described and shown to reduce errors due to laser frequency jitter by up to two orders of magnitude. A general analysis, including laser bandwidth effects, demonstrates that pressure measurements with an integrated-vertical-path technique are typically fifty times more accurate than with a differential ranging technique. Simulations show 0.1-0.3 percent accuracy for ground and Shuttle-based pressure-profile and surface-pressure experiments.

  2. NONLINEAR-APPROXIMATION TECHNIQUE FOR DETERMINING VERTICAL OZONE-CONCENTRATION PROFILES WITH A DIFFERENTIAL-ABSORPTION LIDAR

    EPA Science Inventory

    A new technique is presented for the retrieval of ozone concentration profiles from backscattered signals obtained by a multi-wavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration...

  3. Investigation of potential of differential absorption Lidar techniques for remote sensing of atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Butler, C. F.; Shipley, S. T.; Allen, R. J.

    1981-01-01

    The NASA multipurpose differential absorption lidar (DIAL) system uses two high conversion efficiency dye lasers which are optically pumped by two frequency-doubled Nd:YAG lasers mounted rigidly on a supporting structure that also contains the transmitter, receiver, and data system. The DIAL system hardware design and data acquisition system are described. Timing diagrams, logic diagrams, and schematics, and the theory of operation of the control electronics are presented. Success in obtaining remote measurements of ozone profiles with an airborne systems is reported and results are analyzed.

  4. Analysis of diffential absorption lidar technique for measurements of anhydrous hydrogen chloride from solid rocket motors using a deuterium fluoride laser

    NASA Technical Reports Server (NTRS)

    Bair, C. H.; Allario, F.

    1977-01-01

    An active optical technique (differential absorption lidar (DIAL)) for detecting, ranging, and quantifying the concentration of anhydrous HCl contained in the ground cloud emitted by solid rocket motors (SRM) is evaluated. Results are presented of an experiment in which absorption coefficients of HCl were measured for several deuterium fluoride (DF) laser transitions demonstrating for the first time that a close overlap exists between the 2-1 P(3) vibrational transition of the DF laser and the 1-0 P(6) absorption line of HCl, with an absorption coefficient of 5.64 (atm-cm) to the -1 power. These measurements show that the DF laser can be an appropriate radiation source for detecting HCl in a DIAL technique. Development of a mathematical computer model to predict the sensitivity of DIAL for detecting anhydrous HCl in the ground cloud is outlined, and results that assume a commercially available DF laser as the radiation source are presented.

  5. Development of a 2-micron Pulsed Differential Absorption Lidar for Atmospheric CO2 Concentration Measurement by Direct Detection Technique

    NASA Astrophysics Data System (ADS)

    Yu, J.; Singh, U. N.; Petros, M.; Bai, Y.

    2011-12-01

    Researchers at NASA Langley Research Center are developing a 2-micron Pulsed Differential Absorption Lidar instrument for ground and airborne measurements via direct detection method. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capbility by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. A key component of the CO2 DIAL system, transceiver, is an existing, airborne ready, robust hardware which can provide 250mJ at 10Hz with double pulse format specifically designed for DIAL instrument. The exact wavelengths of the transceiver are controlled by well defined CW seed laser source to provide the required injection source for generating on-and-off line wavelength pulses sequentially. The compact, rugged, highly reliable transceiver is based on the unique Ho:Tm:YLF high-energy 2-micron pulsed laser technology. All the optical mounts are custom designed and have space heritage. They are designed to be adjustable and lockable and hardened to withstand vibrations that can occur in airborne operation. For the direct detection lidar application, a large primary mirror size is preferred. A 14 inch diameter telescope will be developed for this program. The CO2 DIAL/IPDA system requires many electronic functions to operate. These include diode, RF, seed laser, and PZT drivers; injection seeding detection and control; detector power supplies; and analog inputs to sample various sensors. Under NASA Laser Risk Reduction Program (LRRP), a control unit Compact Laser Electronics (CLE), is developed for the controlling the coherent wind lidar transceiver. Significant modifications and additions are needed to update it for CO2 lidar controls. The data acquisition system was built for ground CO2 measurement demonstration. The software will be updated for

  6. Multiple scattering technique lidar

    NASA Technical Reports Server (NTRS)

    Bissonnette, Luc R.

    1992-01-01

    The Bernouilli-Ricatti equation is based on the single scattering description of the lidar backscatter return. In practice, especially in low visibility conditions, the effects of multiple scattering can be significant. Instead of considering these multiple scattering effects as a nuisance, we propose here to use them to help resolve the problems of having to assume a backscatter-to-extinction relation and specifying a boundary value for a position far remote from the lidar station. To this end, we have built a four-field-of-view lidar receiver to measure the multiple scattering contributions. The system has been described in a number of publications that also discuss preliminary results illustrating the multiple scattering effects for various environmental conditions. Reported here are recent advances made in the development of a method of inverting the multiple scattering data for the determination of the aerosol scattering coefficient.

  7. Differential absorption and Raman lidar for water vapor profile measurements - A review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1991-01-01

    Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

  8. Lidar techniques for environmental and ecological monitoring

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    2015-04-01

    An overview of optical probing of the atmosphere will be given, where mostly active remote- sensing techniques of the laser-radar type will be covered, but also some passive techniques employing ambient radiation. Atmospheric objects of quite varying sizes can be studied. Mercury is the only pollutant in atomic form in the atmosphere, while other pollutants are either molecular or in particle form. Light detection and ranging (Lidar) techniques allow three-dimensional mapping of such constituents, and examples from atmospheric lidar work in Lund and in Guangzhou will be given. Recently, much larger lidar targets have been studied. Monitoring of flying insects and birds is of considerable ecological interest, and several projects have been pursued in collaboration with biologists. Mostly, elastic backscattering and fluorescence techniques are employed. Some references to recent activities by the author and his colleagues are given below. [1] Z.G. Guan, L. Mei, P. Lundin, G. Somesfalean, and S. Svanberg, Vertical Lidar Sounding of Air Pollutants in a Major Chinese City, Appl. Phys. B 101, 465 (2010) [2] L. Mei, G.Y. Zhou and S. Svanberg, Differential Absorption Lidar System Employed for Background Atomic Mercury Vertical Profiling in South China, Lasers Opt. Eng. 55, 128 (2013) [3] Z.G. Guan, M. Brydegaard, P. Lundin, M. Wellenreuther, E. Svensson, and S. Svanberg, Insect Monitoring with Fluorescence LIDAR techniques - Field experiments, Appl. Optics 48, 5668 (2010) [4] A. Runemark, M. Wellereuther, H. Jayaweera, S. Svanberg and M. Brydegaard, Rare Events in Remote Dark Field Spectroscopy: An Ecological Case study of Insects, IEEE JSTQE 18, 1573 (2011) [5] L. Mei, Z.G. Guan, H.J. Zhou, J. Lv, Z.R. Zhu, J.A. Cheng, F.J. Chen, C. Löfstedt, S. Svanberg, and G. Somesfalean, Agricultural Pest Monitoring using Fluorescence Lidar Techniques, Applied Physics B 106, 733 (2011) [6] P. Lundin, P. Samuelsson, S. Svanberg, A. Runemark, S. Åkesson, and M. Brydegaard, Remote

  9. Correction function in the Lidar equation and the solution techniques for CO2 Lidar date reduction

    NASA Technical Reports Server (NTRS)

    Zhao, Y.; Lea, T. K.; Schotland, R. M.

    1986-01-01

    For lidar systems with long laser pulses the unusual behavior of the near-range signals causes serious difficulties and large errors in reduction. The commonly used lidar equation is no longer applicable since the convolution of the laser pulse with the atmospheric parameter distributions should be taken into account. It is important to give more insight into this problem and find the solution techniques. Starting from the original equation, a general form is suggested for the single scattering lidar equation where a correction function Cr is introduced. The correction Function Cr(R) derived from the original equation indicates the departure from the normal lidar equation. Examples of Cr(R) for a coaxial CO2 lidar system are presented. The Differential Absorption Lidar (DIAL) errors caused by the differences of Cr(R) for H2O measurements are plotted against height.

  10. Differential Absorption Lidar (DIAL) Measurements from Air and Space

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Ismail, S.; Grant, W. B.

    1998-01-01

    Differential absorption lidar (DIAL) systems have been used for the measurement of ozone, water vapor, and aerosols from aircraft platforms for over 18 years, yielding new insights into atmospheric chemistry, composition, and dynamics in large-scale field experiments conducted all over the world. The successful deployment of the lidar in-space technology experiment (LITE) in September 1994 demonstrated that space-based lidars can also collect valuable information on the global atmosphere. This paper reviews some of the contributions of the NASA Langley Research Center's airborne ozone and water vapor DIAL systems and space-based LITE system to the understanding of the atmosphere and discusses the feasibility and advantages of putting DIAL systems in space for routine atmospheric measurements of ozone and/or water vapor and aerosols and clouds. The technology and applications of the differential absorption lidar (DIAL) technique have progressed significantly since the first DIAL measurements of Schotland, and airborne DIAL measurements of ozone and water vapor are frequently being made in a wide range of field experiments. In addition, plans are underway to develop DIAL systems for use on satellites for continuous global measurements. This paper will highlight the history of airborne lidar and DIAL systems, summarize the major accomplishments of the NASA Langley DIAL program, and discuss specifications and goals for DIAL systems in space.

  11. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  12. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  13. Towards quantitative atmospheric water vapor profiling with differential absorption lidar.

    PubMed

    Dinovitser, Alex; Gunn, Lachlan J; Abbott, Derek

    2015-08-24

    Differential Absorption Lidar (DIAL) is a powerful laser-based technique for trace gas profiling of the atmosphere. However, this technique is still under active development requiring precise and accurate wavelength stabilization, as well as accurate spectroscopic parameters of the specific resonance line and the effective absorption cross-section of the system. In this paper we describe a novel master laser system that extends our previous work for robust stabilization to virtually any number of multiple side-line laser wavelengths for the future probing to greater altitudes. In this paper, we also highlight the significance of laser spectral purity on DIAL accuracy, and illustrate a simple re-arrangement of a system for measuring effective absorption cross-section. We present a calibration technique where the laser light is guided to an absorption cell with 33 m path length, and a quantitative number density measurement is then used to obtain the effective absorption cross-section. The same absorption cell is then used for on-line laser stabilization, while microwave beat-frequencies are used to stabilize any number of off-line lasers. We present preliminary results using ∼300 nJ, 1 μs pulses at 3 kHz, with the seed laser operating as a nanojoule transmitter at 822.922 nm, and a receiver consisting of a photomultiplier tube (PMT) coupled to a 356 mm mirror.

  14. A Two Micron Coherent Differential Absorption Lidar Development

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo C.; Koch, Grady J.; Beyon, Jeffrey Y.; VanValkenburg, Randal L.; Kavaya, Michael J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-micron coherent Differential Absorption Lidar (DIAL)/Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument measures atmospheric CO2 profiles (by DIAL) from a ground platform. It allows the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop. Keywords: Differential Absorption Lidar, Near Infrared Laser,

  15. Stabilized master laser system for differential absorption lidar.

    PubMed

    Dinovitser, Alex; Hamilton, Murray W; Vincent, Robert A

    2010-06-10

    Wavelength accuracy and stability are key requirements for differential absorption lidar (DIAL). We present a control and timing design for the dual-stabilized cw master lasers in a pulsed master-oscillator power-amplifier configuration, which forms a robust low-cost water-vapor DIAL transmitter system. This design operates at 823 nm for water-vapor spectroscopy using Fabry-Perot-type laser diodes. However, the techniques described could be applied to other laser technologies at other wavelengths. The system can be extended with additional off-line or side-line wavelengths. The on-line master laser is locked to the center of a water absorption line, while the beat frequency between the on-line and the off-line is locked to 16 GHz using only a bandpass microwave filter and low-frequency electronics. Optical frequency stabilities of the order of 1 MHz are achieved.

  16. Calibration Technique for Polarization-Sensitive Lidars

    NASA Technical Reports Server (NTRS)

    Alvarez, J. M.; Vaughan, M. A.; Hostetler, C. A.; Hung, W. H.; Winker, D. M.

    2006-01-01

    Polarization-sensitive lidars have proven to be highly effective in discriminating between spherical and non-spherical particles in the atmosphere. These lidars use a linearly polarized laser and are equipped with a receiver that can separately measure the components of the return signal polarized parallel and perpendicular to the outgoing beam. In this work we describe a technique for calibrating polarization-sensitive lidars that was originally developed at NASA s Langley Research Center (LaRC) and has been used continually over the past fifteen years. The procedure uses a rotatable half-wave plate inserted into the optical path of the lidar receiver to introduce controlled amounts of polarization cross-talk into a sequence of atmospheric backscatter measurements. Solving the resulting system of nonlinear equations generates the system calibration constants (gain ratio, G, and offset angle, theta) required for deriving calibrated measurements of depolarization ratio from the lidar signals. In addition, this procedure also determines the mean depolarization ratio within the region of the atmosphere that is analyzed. Simulations and error propagation studies show the method to be both reliable and well behaved. Operational details of the technique are illustrated using measurements obtained as part of Langley Research Center s participation in the First ISCCP Regional Experiment (FIRE).

  17. First attempt to monitor atmospheric glyoxal using differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Lundin, Patrik; Somesfalean, Gabriel; Hu, Jiandong; Zhao, Guangyu; Svanberg, Sune; Bood, Joakim; Vrekoussis, Mihalis; Papayannis, Alexandros

    2012-11-01

    Glyoxal (CHOCHO), as an indicator of photochemical "hot spots", was for the first time the subject of a differential absorption lidar (DIAL) campaign. The strongest absorption line of glyoxal in the blue wavelength region - 455.1 nm - was chosen as the experimental absorption wavelength. In order to handle the effects of absorption cross-section variation of the interfering gas - nitrogen dioxide (NO2) - three-wavelength DIAL measurements simultaneously detecting glyoxal and NO2, were performed. The differential absorption curves, recorded in July 2012, indicate an extremely low glyoxal concentration in Lund, Sweden, although it is expected to be peaking at this time of the year.

  18. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  19. Broadband Lidar Technique for Precision CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2008-01-01

    Presented are preliminary experimental results, sensitivity measurements and discuss our new CO2 lidar system under development. The system is employing an erbium-doped fiber amplifier (EDFA), superluminescent light emitting diode (SLED) as a source and our previously developed Fabry-Perot interferometer subsystem as a detector part. Global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. The goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission is to significantly enhance the understanding of the role of CO2 in the global carbon cycle. The National Academy of Sciences recommended in its decadal survey that NASA put in orbit a CO2 lidar to satisfy this long standing need. Existing passive sensors suffer from two shortcomings. Their measurement precision can be compromised by the path length uncertainties arising from scattering within the atmosphere. Also passive sensors using sunlight cannot observe the column at night. Both of these difficulties can be ameliorated by lidar techniques. Lidar systems present their own set of problems however. Temperature changes in the atmosphere alter the cross section for individual CO2 absorption features while the different atmospheric pressures encountered passing through the atmosphere broaden the absorption lines. Currently proposed lidars require multiple lasers operating at multiple wavelengths simultaneously in order to untangle these effects. The current goal is to develop an ultra precise, inexpensive new lidar system for precise column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with the newly available high power SLED as the source. This approach reduces the number of individual lasers used in the system from three or more

  20. Transmittance ratio constrained retrieval technique for lidar cirrus measurements.

    PubMed

    Su, Jia; McCormick, M Patrick; Liu, Zhaoyan; Lee, Robert B; Leavor, Kevin R; Lei, Liqiao

    2012-05-01

    This letter describes a lidar retrieval technique that uses the transmittance ratio as a constraint to determine an average lidar ratio as well as extinction and backscatter coefficients of transparent cirrus clouds. The cloud transmittance ratio is directly obtained from two adjacent elastic lidar backscatter signals. The technique can be applied to cirrus measurements where neither the molecular scattering dominant signals above and below the cloud layer are found nor cloudfree reference profiles are available. The technique has been tested with simulated lidar signals and applied to backscatter lidar measurements at Hampton University, Hampton, Virginia.

  1. A High Spectral Resolution Lidar Based on Absorption Filter

    NASA Technical Reports Server (NTRS)

    Piironen, Paivi

    1996-01-01

    A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.

  2. Coherent differential absorption lidar for combined measurement of wind and trace atmospheric gases

    NASA Astrophysics Data System (ADS)

    Koch, Grady James

    A lidar system was developed for making combined range-resolved measurements of wind speed and direction, water vapor concentration, and carbon dioxide concentration in the atmosphere. This lidar combines the coherent Doppler technique for wind detection and the differential absorption lidar (DIAL) technique to provide a multifunctional capability. DIAL and coherent lidars have traditionally been thought of and implemented as separate instruments, but the research reported here has shown a demonstration of combining the coherent and DIAL techniques into a single instrument using solid-state lasers. The lasers used are of Ho:Tm:YLF, which operates at a wavelength of 2 mum. This wavelength is a further advantage to the lidar, as this wavelength offers a much higher level of eyesafety than shorter wavelengths conventionally used for DIAL. Two generations are lidars are described, with the first design making combined measurement of wind and water vapor. Wind speed measurements are shown of a precision better than 1 m/s, making it useful for many meteorological applications. Water vapor concentration measurements were of 86% accuracy, requiring improvement for scientific applications. This preliminary experiment revealed the largest source of error in concentration measurement to be a lack of stability in the wavelength of the laser. This problem was solved by implementing a means to precisely control the continuous-wave laser that injection seeds a pulsed laser. The finely tunable Ho:Tm:YLF laser was stabilized to absorption lines of both carbon dioxide and water vapor using a wavelength modulation technique. Long-term stabilization to within 13.5 MHz of absorption line center is shown, representing the first frequency-stabilized laser at or within 500 run of 2mum wavelength. Results are presented on injection seeding a pulsed Ho:Tm:YLF laser to impart the tunability and stabilization to the pulsed laser output. The stabilized laser system was incorporated into a

  3. Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania

    2011-01-01

    A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.

  4. Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie

    2009-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration

  5. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  6. Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg

    1995-01-01

    A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.

  7. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  8. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  9. Recent Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption to 13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Mao, J.; Hasselbrack, W.; Sun, X.; Rodriguez, M. R.

    2010-12-01

    We have developed a lidar technique for measuring atmospheric CO2 concentrations as a candidate for NASA’s ASCENDS mission. It uses pulsed laser transmitters to simultaneously measure a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers step in wavelength across the CO2 line and an O2 line pair during the measurement. The receiver uses a telescope and photon counting detectors, and measures the time resolved backscatter of the laser echoes. Signal processing is used to isolate the laser echo signals from the surface, estimate their range, and reject laser photons scattered in the atmosphere. The gas extinction and column densities for the CO2 and O2 gases are estimated via the IPDA technique. We developed a lidar to demonstrate the CO2 measurement from aricraft. The lidar steps the pulsed laser’s wavelength across a selected CO2 line with 20 or 30 steps per scan. The line scan rate is 450 Hz and laser pulse widths are 1 usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. During July and August 2009 we made 5 two hour long flights while installed on the NASA Glenn Lear-25 aircraft. We measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surfaces in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay. Strong laser signals and clear line shapes were observed at all altitudes, and some measurements were made through thin clouds. The Oklahoma and east coast flights were coordinated with the NASA LaRC/ITT CO2 lidar on their UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. Ed Browell

  10. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations

    SciTech Connect

    Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

    2006-04-10

    The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique.

  11. Tunable IR differential absorption lidar for remote sensing of chemicals

    NASA Astrophysics Data System (ADS)

    Prasad, Coorg R.; Kabro, Pierre; Mathur, Savyasachee L.

    1999-10-01

    Standoff sensors for rapid remote detection of chemical emissions from either clandestine chemical production sites, chemical and biological warfare agents, concealed internal combustion engine emissions or rocket propellants from missiles are required for several DoD applications. The differential absorption lidar (DIAL) operating in the infrared wavelengths has established itself as a very effective tool for rapidly detecting many of the chemicals, with sufficient sensitivity with a range of several kilometers. The wavelengths required for this task lie within the atmospheric window regions 3 to 5 micrometers and 8 to 12 micrometers . We are currently developing a differential absorption lidar (DIAL) tunable in the 3 to 5 micrometers range for detecting low concentrations of chemical species with high sensitivity (5 ppb) and accuracy (error < 10%) measurements for greater than 5 km range. We have successfully established the feasibility of an innovative frequency agile laser source which is the crucial component of the infrared DIAL. A diode-pumped ytterbium YAG laser was built for pumping and rapidly tuning an optical parametric oscillator (OPO) over the mid-infra red region. Good performance (5 mJ/pulse) of the laser and low threshold wide infra red tuning of OPO (2.2 - 3.1 micrometers ) were demonstrated. The simulated performance of the topographical IR-DIAL showed that 5 ppb concentration can be measured at 5 km range with a 35 cm telescope.

  12. Gluing for Raman lidar systems using the lamp mapping technique.

    PubMed

    Walker, Monique; Venable, Demetrius; Whiteman, David N

    2014-12-20

    In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis.

  13. Development of a lidar technique for profiling optical turbulence

    NASA Astrophysics Data System (ADS)

    Gimmestad, Gary; Roberts, David; Stewart, John; Wood, Jack

    2012-10-01

    Many techniques have been proposed for active optical remote sensing of the strength of atmospheric refractive turbulence. The early techniques, based on degradation of laser beams by turbulence, were susceptible to artifacts. In 1999, we began investigating a new idea, based on differential image motion (DIM), which is inherently immune to artifacts. The new lidar technique can be seen as a combination of two astronomical instruments: a laser guide star transmitter/receiver and a DIM monitor. The technique was successfully demonstrated on a horizontal path, with a hard-target analog of a lidar, and then a true lidar was developed. Several investigations were carried out first, including an analysis to predict the system's performance; new hard-target field measurements in the vertical direction; development of a robust inversion technique; and wave optics simulations. A brassboard lidar was then constructed and operated in the field, along with instruments to acquire truth data. The tests revealed many problems and pitfalls that were all solvable with engineering changes, and the results served to verify the new lidar technique for profiling turbulence. The results also enabled accurate performance predictions for future versions of the lidar. A transportable turbulence lidar system is currently being developed to support field tests of high-energy lasers.

  14. Lidar: A laser technique for remote sensing

    NASA Technical Reports Server (NTRS)

    Wilkerson, T. D.; Hickman, G. D.

    1978-01-01

    Experimental airborne lidar systems proved to be useful for shallow water bathymetric measurements, and detection and identification of oil slicks and algae. Dye fluorescence applications using organic dyes was studied. The possibility of remotely inducing dye flourescence by means of pulsed lasers opens up several hydrospheric applications for measuring water currents, water temperature, and salinity. Aerosol measurements by lidar are also discussed.

  15. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  16. Estimation of background gas concentration from differential absorption lidar measurements

    NASA Astrophysics Data System (ADS)

    Harris, Peter; Smith, Nadia; Livina, Valerie; Gardiner, Tom; Robinson, Rod; Innocenti, Fabrizio

    2016-10-01

    Approaches are considered to estimate the background concentration level of a target species in the atmosphere from an analysis of the measured data provided by the National Physical Laboratory's differential absorption lidar (DIAL) system. The estimation of the background concentration level is necessary for an accurate quantification of the concentration level of the target species within a plume, which is the quantity of interest. The focus of the paper is on methodologies for estimating the background concentration level and, in particular, contrasting the assumptions about the functional and statistical models that underpin those methodologies. An approach is described to characterise the noise in the recorded signals, which is necessary for a reliable estimate of the background concentration level. Results for measured data provided by a field measurement are presented, and ideas for future work are discussed.

  17. Differential Absorption Measurements of Atmospheric Water Vapor with a Coherent Lidar at 2050.532 nm

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Dharamsi, Amin; Davis, Richard E.; Petros, Mulugeta; McCarthy, John C.

    1999-01-01

    Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.

  18. Technique to separate lidar signal and sunlight.

    PubMed

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R

    2016-06-13

    Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise.

  19. Lidar

    NASA Technical Reports Server (NTRS)

    Collis, R. T. H.

    1969-01-01

    Lidar is an optical radar technique employing laser energy. Variations in signal intensity as a function of range provide information on atmospheric constituents, even when these are too tenuous to be normally visible. The theoretical and technical basis of the technique is described and typical values of the atmospheric optical parameters given. The significance of these parameters to atmospheric and meteorological problems is discussed. While the basic technique can provide valuable information about clouds and other material in the atmosphere, it is not possible to determine particle size and number concentrations precisely. There are also inherent difficulties in evaluating lidar observations. Nevertheless, lidar can provide much useful information as is shown by illustrations. These include lidar observations of: cirrus cloud, showing mountain wave motions; stratification in clear air due to the thermal profile near the ground; determinations of low cloud and visibility along an air-field approach path; and finally the motion and internal structure of clouds of tracer materials (insecticide spray and explosion-caused dust) which demonstrate the use of lidar for studying transport and diffusion processes.

  20. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  1. Lidar analysis techniques for use in the atmospheric boundary layer

    NASA Technical Reports Server (NTRS)

    Eichinger, William E.; Cooper, Daniel I.; Hof, Doug; Holtkamp, David; Quick, Robert, Jr.; Tiee, Joe; Karl, Robert

    1992-01-01

    There is a growing body of observational and theoretical evidence which suggests that local climate characteristics are associated with variations in the earth's surface. The link between surface variability and local-scale processes must be made if we are to improve our understanding of the feedback mechanisms involved in surface-atmosphere dynamics. However, to understand these interactions, the surface-atmosphere interface must be studied as a large-scale spatial system. Lidars are ideal tools to study the spatial properties of the atmosphere. The described techniques were developed for use with the Los Alamos Water Raman-Lidar, but are applicable to many other types of lidar. The methodology of the analysis of lidar data is summarized in order to determine meteorological parameters in the atmospheric boundary layer. The techniques are not exhaustive but are intended to show the depth and breadth of the information which can be obtained from lidars. Two methods for the computation of water-vapor fluxes were developed. The first uses the fact that the water vapor concentration in the vertical direction follows a logarithmic profile when corrected for atmospheric stability. The second method involves using inertial dissipation techniques in which lidar-derived spatial and temporal power spectra are used to determine the flux.

  2. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  3. Error analysis of Raman differential absorption lidar ozone measurements in ice clouds.

    PubMed

    Reichardt, J

    2000-11-20

    A formalism for the error treatment of lidar ozone measurements with the Raman differential absorption lidar technique is presented. In the presence of clouds wavelength-dependent multiple scattering and cloud-particle extinction are the main sources of systematic errors in ozone measurements and necessitate a correction of the measured ozone profiles. Model calculations are performed to describe the influence of cirrus and polar stratospheric clouds on the ozone. It is found that it is sufficient to account for cloud-particle scattering and Rayleigh scattering in and above the cloud; boundary-layer aerosols and the atmospheric column below the cloud can be neglected for the ozone correction. Furthermore, if the extinction coefficient of the cloud is ?0.1 km(-1), the effect in the cloud is proportional to the effective particle extinction and to a particle correction function determined in the limit of negligible molecular scattering. The particle correction function depends on the scattering behavior of the cloud particles, the cloud geometric structure, and the lidar system parameters. Because of the differential extinction of light that has undergone one or more small-angle scattering processes within the cloud, the cloud effect on ozone extends to altitudes above the cloud. The various influencing parameters imply that the particle-related ozone correction has to be calculated for each individual measurement. Examples of ozone measurements in cirrus clouds are discussed.

  4. Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurement

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-10-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 mJ and up to 10 Hz repetition rate. The two laser pulses are separated by 200 µs and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-µm direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-μm IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  5. Edge technique Doppler lidar wind measurements with high vertical resolution.

    PubMed

    Korb, C L; Gentry, B M; Li, S X

    1997-08-20

    We have developed a Doppler lidar system using the edge technique and have made atmospheric lidar wind measurements. Line-of-sight wind profiles with a vertical resolution of 22 m have a standard deviation of 0.40 m /s for a ten-shot average. Day and night lidar measurements of the vector wind have been made for altitudes from 200 to 2000 m. We validated the lidar measurements by comparing them with independent rawinsonde and pilot balloon measurements of wind speed and direction. Good agreement was obtained. The instrumental noise for these data is 0.11 m /s for a 500-shot average, which is in good agreement with the observed minimum value of the standard deviation for the atmospheric measurements. The average standard deviation over 30 mins varied from 1.16 to 0.25 m /s for day and night, respectively. High spatial and temporal resolution lidar profiles of line-of-sight winds clearly show wind shear and turbulent features at the 1 -2-m /s level with a high signal-to-noise ratio and demonstrate the potential of the edge-technique lidar for studying turbulent processes and atmospheric dynamics.

  6. Comment on Two-Wavelength Lidar Inversion Techniques

    NASA Astrophysics Data System (ADS)

    Gimmestad, Gary G.

    2001-04-01

    In a critique of two-wavelength lidar inversion techniques, Kunz [Appl. Opt. 38, 1015 (1999) presented mathematical] arguments that such techniques cannot yield unique solutions for extinction profiles. Ackermann [Appl. Opt. 38, 7414 (1999) presented an analytical solution for the extinction] profile from a two-wavelength lidar and also attempted to refute Kunz s mathematical arguments. However, the fundamental reasons why the authors of these two papers reached different conclusions were not fully uncovered. These previous papers are critically examined, and a new mathematical proof of uniqueness is provided. Further analyses are presented to explain how the technique works, along with comments on its limitations.

  7. Lidar

    NASA Astrophysics Data System (ADS)

    Sage, J.-P.; Aubry, Y.

    1981-09-01

    It is noted that a photodetector at the telescope focal plane of a lidar produces a signal which is processed, giving information on the concentration of the species being monitored. The delay between the emitted and return signals indicates the distance to the interacting volume. Because of the poor efficiency of the interaction processes, the main difficulty in developing a good lidar has to do with the availability of sufficiently efficient lasers. Certain laser characteristics are discussed, and a CNES program for the development of lasers for lidar techniques is presented, future space applications being considered as mid-term objectives. The various components of the laser system developed by CNES are described. These are a dual frequency tunable oscillator, the amplifier chain, the beam control unit and wavelength servo-system, and the harmonic conversion subsystem.

  8. Micropulse water vapor differential absorption lidar: transmitter design and performance.

    PubMed

    Nehrir, Amin R; Repasky, Kevin S; Carlsten, John L

    2012-10-22

    An all diode-laser-based micropulse differential absorption lidar (DIAL) laser transmitter for tropospheric water vapor and aerosol profiling is presented. The micropulse DIAL (MPD) transmitter utilizes two continuous wave (cw) external cavity diode lasers (ECDL) to seed an actively pulsed, overdriven tapered semiconductor optical amplifier (TSOA). The MPD laser produces up to 7 watts of peak power over a 1 µs pulse duration (7 µJ) and a 10 kHz pulse repetition frequency. Spectral switching between the online and offline seed lasers is achieved on a 1Hz basis using a fiber optic switch to allow for more accurate sampling of the atmospheric volume between the online and offline laser shots. The high laser spectral purity of greater than 0.9996 coupled with the broad tunability of the laser transmitter will allow for accurate measurements of tropospheric water vapor in a wide range of geographic locations under varying atmospheric conditions. This paper describes the design and performance characteristics of a third generation MPD laser transmitter with enhanced laser performance over the previous generation DIAL system.

  9. Laser speckle effects on hard target differential absorption lidar

    SciTech Connect

    MacKerrow, E.P.; Tiee, J.J.; Fite, C.B.

    1996-04-01

    Reflection of laser light from a diffuse surface exhibits a complex interference pattern known as laser speckle. Measurement of the reflected intensity from remote targets, common to ``hard-target`` differential absorption lidar (DIAL) requires consideration of the statistical properties of the reflected light. The authors have explored the effects of laser speckle on the noise statistics for CO{sub 2} DIAL. For an ensemble of independent speckle patterns it is predicted that the variance for the measured intensity is inversely proportional to the number of speckle measured. They have used a rotating drum target to obtain a large number of independent speckle and have measured the predicted decrease in the variance after correlations due to system drifts were accounted for. Measurements have been made using both circular and linear polarized light. These measurements show a slight improvement in return signal statistics when circular polarization is used. The authors have conducted experiments at close range to isolate speckle phenomena from other phenomena, such as atmospheric turbulence and platform motion thus allowing them to gain a full understanding of speckle. They have also studied how to remove correlation in the data due to albedo inhomogeneities producing a more statistically independent ensemble of speckle patterns. They find that some types of correlation are difficult to remove from the data.

  10. Progress Report on Frequency - Modulated Differential Absorption Lidar

    SciTech Connect

    Cannon, Bret D.; Harper, Warren W.; Myers, Tanya L.; Taubman, Matthew S.; Williams, Richard M.; Schultz, John F.

    2001-12-15

    Modeling done at Pacific Northwest National Laboratory (PNNL) in FY2000 predicted improved sensitivity for remote chemical detection by differential absorption lidar (DIAL) if frequency-modulated (FM) lasers were used. This improved sensitivity results from faster averaging away of speckle noise and the recently developed quantum cascade (QC) lasers offer the first practical method for implementing this approach in the molecular fingerprint region of the infrared. To validate this model prediction, a simple laboratory bench FM-DIAL system was designed, assembled, tested, and laboratory-scale experiments were carried out during FY2001. Preliminary results of the FM DIAL experiments confirm the speckle averaging advantages predicted by the models. In addition, experiments were performed to explore the use of hybrid QC - CO2 lasers for achieving sufficient frequency-modulated laser power to enable field experiments at longer ranges (up to one kilometer or so). This approach will allow model validation at realistic ranges much sooner than would be possible if one had to first develop master oscillator - power amplifier systems utilizing only QC devices. Amplification of a QC laser with a CO2 laser was observed in the first hybrid laser experiments, but the low gain and narrow linewidth of the CO2 laser available for these experiments prevented production of a high-power FM laser beam.

  11. Rayleigh-backscattering doppler broadening correction for differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Fan, Lanlan; Zhang, Yinchao; Chen, Siying; Guo, Pan; Chen, He

    2015-11-01

    The spectral broadening by Rayleigh backscattering can cause large changes in water vapor echo signals, causing errors when the water vapor concentration is inversed by differential absorption lidar (DIAL). A correction algorithm is proposed to revise the errors due to the effect of laser spectral broadening. The relative errors of water vapor are calculated in cases of different aerosol distribution and temperature changes before and after correction. The results show that measurement errors due to the Doppler broadening are more than 5% before correction and a 2% measurement error after corrected for the case of a smooth, background aerosol distribution. However, due to the high aerosol gradients and strong temperature inversion, errors can be up to 40% and 10% with no corrections for this effect, respectively. The relative errors can reduce to less than 2% after correction. Hence, the correction algorithm for Rayleigh Doppler broadening can improve detection accuracy in H2O DIAL measurements especially when it is applied to high aerosol concentration or strong temperature inversion.

  12. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Ramanathan, A.; Hasselbrack, W.; Mao, J.; Weaver, C. J.; Browell, E. V.

    2012-12-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the lidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected ~linear change of the peak DOD with altitude. For measurements at altitudes > 6 km the random errors were ~ 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity

  13. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  14. Identification and correction of analog-to-digital-converter nonlinearities and their implications for differential absorption lidar measurements.

    PubMed

    Langford, A O

    1995-12-20

    Differential absorption lidar (DIAL) is a powerful remote-sensing technique widely used to probe the spatial and temporal distribution of ozone and other gaseous atmospheric trace constituents. Although conceptually simple, the DIAL technique presents many challenging and often subtle technical difficulties that can limit its useful range and accuracy. One potentially serious source of error for many DIAL experiments is nonlinearity in the analog-to-digital converters used to capture lidar return signals. The impact of digitizer nonlinearity on DIAL measurements is examined, and a simple and inexpensive low-frequency dithering technique that significantly reduces the effects of ADC nonlinearity in DIAL and other applications in which the signal is repetitively averaged is described.

  15. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Ramanathan, Anand; Hasselbrack, William E.; Mao, Jianping; Weaver, Clark; Browell, Edward V.

    2012-01-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to greater than 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the Iidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected -linear change of the peak DOD with altitude. For measurements at altitudes greater than 6 km the random errors were approximately 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as wen as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly

  16. The Novel Nonlinear Adaptive Doppler Shift Estimation Technique and the Coherent Doppler Lidar System Validation Lidar

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.

    2006-01-01

    The signal processing aspect of a 2-m wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current estimates such as power, Doppler shift, wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime. A novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed on such behalf and its performance is analyzed using the wind data acquired over a long period of time by VALIDAR. The quality of Doppler shift and power estimations by conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly as SNR decreases. NADSET compensates such deterioration in the quality of wind parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a strong SNR range and identifying sporadic range bins where good Doppler shift estimates are found. The authenticity of NADSET is established by comparing the trend of wind parameters with and without NADSET applied to the long-period lidar return data.

  17. Improved speckle statistics in coherent differential absorption lidar with in-fiber wavelength multiplexing.

    PubMed

    Ridley, K D; Pearson, G N; Harris, M

    2001-04-20

    Remote detection of gaseous pollutants and other atmospheric constituents can be achieved with differential absorption lidar (DIAL) methods. The technique relies on the transmission of two or more laser wavelengths and exploits absorption features in the target gas by measuring the ratio of their detected powers to determine gas concentration. A common mode of operation is when the transmitter and receiver are collocated, and the absorption is measured over a return trip by a randomly scattering topographic target. Hence, in coherent DIAL, speckle fluctuation leads to a large uncertainty in the detected powers unless the signal is averaged over multiple correlation times, i.e., over many independent speckles. We examine a continuous-wave coherent DIAL system in which the laser wavelengths are transmitted and received by the same single-mode optical fibers. This ensures that the two wavelengths share a common spatial mode, which, for certain transmitter and target parameters, enables highly correlated speckle fluctuations to be readily achieved in practice. For a DIAL system, this gives the potential for improved accuracy in a given observation time. A theoretical analysis quantifies this benefit as a function of the degree of correlation between the two time series (which depends on wavelength separation and target depth). The results are compared with both a numerical simulation and a laboratory-based experiment.

  18. Characterization of Cavities Using the GPR, LIDAR and GNSS Techniques

    NASA Astrophysics Data System (ADS)

    Conejo-Martín, Miguel Angel; Herrero-Tejedor, Tomás Ramón; Lapazaran, Javier; Perez-Martin, Enrique; Otero, Jaime; Prieto, Juan F.; Velasco, Jesús

    2015-11-01

    The study of the many types of natural and manmade cavities in different parts of the world is important to the fields of geology, geophysics, engineering, architectures, agriculture, heritages and landscape. Ground-penetrating radar (GPR) is a noninvasive geodetection and geolocation technique suitable for accurately determining buried structures. This technique requires knowing the propagation velocity of electromagnetic waves (EM velocity) in the medium. We propose a method for calibrating the EM velocity using the integration of laser imaging detection and ranging (LIDAR) and GPR techniques using the Global Navigation Satellite System (GNSS) as support for geolocation. Once the EM velocity is known and the GPR profiles have been properly processed and migrated, they will also show the hidden cavities and the old hidden structures from the cellar. In this article, we present a complete study of the joint use of the GPR, LIDAR and GNSS techniques in the characterization of cavities. We apply this methodology to study underground cavities in a group of wine cellars located in Atauta (Soria, Spain). The results serve to identify construction elements that form the cavity and group of cavities or cellars. The described methodology could be applied to other shallow underground structures with surface connection, where LIDAR and GPR profiles could be joined, as, for example, in archaeological cavities, sewerage systems, drainpipes, etc.

  19. Adaptive Data Processing Technique for Lidar-Assisted Control to Bridge the Gap between Lidar Systems and Wind Turbines: Preprint

    SciTech Connect

    Schlipf, David; Raach, Steffen; Haizmann, Florian; Cheng, Po Wen; Fleming, Paul; Scholbrock, Andrew, Krishnamurthy, Raghu; Boquet, Mathieu

    2015-12-14

    This paper presents first steps toward an adaptive lidar data processing technique crucial for lidar-assisted control in wind turbines. The prediction time and the quality of the wind preview from lidar measurements depend on several factors and are not constant. If the data processing is not continually adjusted, the benefit of lidar-assisted control cannot be fully exploited, or can even result in harmful control action. An online analysis of the lidar and turbine data are necessary to continually reassess the prediction time and lidar data quality. In this work, a structured process to develop an analysis tool for the prediction time and a new hardware setup for lidar-assisted control are presented. The tool consists of an online estimation of the rotor effective wind speed from lidar and turbine data and the implementation of an online cross correlation to determine the time shift between both signals. Further, initial results from an ongoing campaign in which this system was employed for providing lidar preview for feed-forward pitch control are presented.

  20. 2-micron triple-pulse integrated path differential absorption lidar development for simultaneous airborne column measurements of carbon dioxide and water vapor in the atmosphere

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-05-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  1. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  2. [A new retrieval method for ozone concentration at the troposphere based on differential absorption lidar].

    PubMed

    Fan, Guang-Qiang; Liu, Jian-Guo; Liu, Wen-Qing; Lu, Yi-Huai; Zhang, Tian-Shu; Dong, Yun-Sheng; Zhao, Xue-Song

    2012-12-01

    Aerosols interfere with differential absorption lidar ozone concentration measurement and can introduce significant errors. A new retrieval method was introduced, and ozone concentration and aerosol extinction coefficient were gained simultaneously based on the retrieval method. The variables were analyzed by experiment including aerosol lidar ratio, aerosol wavelength exponent, and aerosol-molecular ratio at the reference point. The results show that these parameters introduce error less than 8% below 1 km. The measurement error derives chiefly from signal noise and the parameters introduce error less than 3% above 1 km. Finally the vertical profile of tropospheric ozone concentration and aerosol extinction coefficient were derived by using this algorithm. The retrieval results of the algorithm and traditional dual-wavelength difference algorithm are compared and analyzed. Experimental results indicate that the algorithm is feasible, and the algorithm can reduce differential absorption lidar measurement error introduced by aerosol.

  3. Spaceborne Simulations of Two Direct-Detection Doppler Lidar Techniques

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Li, Steve X.

    1998-01-01

    Direct-detection (or incoherent) lidar is now a proven technique for measuring winds in the atmosphere. Over the last few years, several types of direct-detection lidar have evolved. These methods rely on Fabry-Perot interferometers(also termed etalons) or other narrow-passband filters to provide the required spectral resolution. One method, now called the edge (EDG) technique, uses a sharply-sloping filter and measures changes in the filter transmission caused by Doppler shifting of the laser wavelength. A variation of the EDG method, called the double-edge (DEDG) technique, uses two filters. The molecular DEDG method was first demonstrated by Chanin et al. for stratospheric measurements and more recently Korb et al. successfully demonstrated the aerosol DEDG through the troposphere. A second method, here termed the multi-channel (MC) technique, measures Doppler shifts by observing angular displacement of a Fabry-Perot fringe in a spatially resolving detector. The EDG technique thus employs the Fabry-Perot to convert the frequency shift into an amplitude signal, while the MC technique uses the Fabry-Perot to resolve the spectral signature which is then fitted to determine the centroid. The focus of this presentation is on the DEDG and MC methods because these are viewed as the current state of the art in direct-detection lidar. Successful ground-based demonstrations of direct-detection wind measurements have resulted in proposals for spaceborne systems. With this new emphasis on spaceborne systems comes the need for accurate prediction of spaceborne direct-detection Doppler lidar performance. Previously, the EDG and MC methods have been compared although only for aerosol Doppler systems. A recent paper by McGill and Spinhirne compares the DEDG and MC methods in a non-system specific manner for both the aerosol and molecular Doppler systems. The purpose of this presentation is to extend the previous work of McGill and Spinhirne to examine the performance of

  4. The concentration-estimation problem for multiple-wavelength differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Payne, A. N.

    1994-07-01

    We are seeking to develop a reliable methodology for multi-chemical detection and discrimination based upon multi-wavelength differential absorption lidar measurements. In this paper, we summarize some preliminary results of our efforts to devise suitable concentration-estimation algorithms for use in detection and discrimination schemes.

  5. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption and Range During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar only on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear C02 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs

  6. A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Weng, C. Y.

    1982-01-01

    The theory of differential absorption lidar measurements for lines with a Voigt profile is given and applied to a two-wavelength technique for measuring the atmospheric temperature profile using a high J line in the oxygen A band. Explicit expressions for the temperature and pressure dependence of the absorption coefficient are developed for lines with a Voigt profile. An iteration procedure for calculating the temperature for narrow laser bandwidths is described which has an accuracy better than 0.2 K for bandwidths less than 0.01/cm. To reduce the errors in lidar measurements due to uncertainties in pressure, a method for estimating the pressure from the temperature profile is described. A procedure for extending the differential absorption technique to the case of finite laser bandwidth with good accuracy is also described. Simulation results show that a knowledge of the laser frequency is needed to 0.005/cm for accurate temperature measurements. Evaluation of the sensitivity for both ground- and Shuttle-based measurements shows accuracies generally better than 1 K. This technique allows up to an order of magnitude improvement in sensitivity compared to other differential absorption lidar techniques.

  7. Operating range of a differential-absorption lidar based on a CO{sub 2} laser

    SciTech Connect

    Ivashchenko, M V; Sherstov, I V

    2000-08-31

    The echolocation range and the remote sensing of ethylene in the atmosphere are simulated for a differential-absorption lidar based on TEA CO{sub 2} lasers. The dependence of the lidar echolocation range on the energy and the peak power of probe pulses is shown to be close to logarithmic. It is demonstrated that the use of narrow-band spectral filters is justified only for low-noise detectors and viewing angles of the receiver exceeding 5 mrad. The relative measurement error of the ethylene concentration in the atmosphere is estimated for various detection modes. (laser applications and other topics in quantum electronics)

  8. Advances in Diode-Laser-Based Water Vapor Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Spuler, Scott; Repasky, Kevin; Morley, Bruce; Moen, Drew; Weckwerth, Tammy; Hayman, Matt; Nehrir, Amin

    2016-06-01

    An advanced diode-laser-based water vapor differential absorption lidar (WV-DIAL) has been developed. The next generation design was built on the success of previous diode-laser-based prototypes and enables accurate measurement of water vapor closer to the ground surface, in rapidly changing atmospheric conditions, and in daytime cloudy conditions up to cloud base. The lidar provides up to 1 min resolution, 150 m range resolved measurements of water vapor in a broad range of atmospheric conditions. A description of the instrument and results from its initial field test in 2014 are discussed.

  9. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1995-04-03

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution, acquired over long periods at low operational and maintenance cost, are fundamental to the success of the ARM CART program. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. Application of profiles acquired with current techniques, have, to date, been limited by vertical resolution and uniqueness of solution [e.g. high resolution infrared (IR) Fourier transform radiometry], poor spatial and temporal coverage and high operating cost (e.g. radiosondes), or diminished daytime performance, lack of eye-safety, and high maintenance cost (e.g. Raman lidar). Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the study reported here, we develop DIAL system performance models and examine the potential of to solve some of the shortcomings of previous methods using parameterizations representative of current technologies. These models are also applied to diagnose and evaluate other strengths and weaknesses unique to the DIAL method for this application. This work is to continue in the direction of evaluating yet smaller and lower-cost laser diode-based systems for routine monitoring of the lower altitudes using photon counting detection methods. We regard the present report as interim in nature and will update and extend it as a final report at the end of the term of the contract.

  10. Wavelength-locking-free 1.57µm differential absorption lidar for CO₂ sensing.

    PubMed

    Liu, Hao; Chen, Tao; Shu, Rong; Hong, Guanglie; Zheng, Long; Ge, Ye; Hu, Yihua

    2014-11-03

    We propose a novel wavelength-locking-free differential absorption lidar system for CO₂ sensing. The ON-line wavelength laser was wavelength modulated around a specific CO₂ absorption line to ensure that the emission from the ON-line laser hit the atmospheric CO₂ absorption line peak twice a cycle. In the meantime, the intensity of the ON-line and OFF-line wavelength lasers were sinusoidally intensity modulated to enhance the SNR of the back-scattered signal. As a consequence, the system configuration was simplified and the measurement error caused by the deviation of CO₂ absorption coefficient from the long-time ON-line wavelength drifting was completely eliminated. Furthermore, a more precise calibration method was developed which could simultaneously calibrate the offset and precision of the lidar detector. This method could be applied to other differential-absorption-based lidar systems. The result showed that a measurement precision of 0.525% for the column concentration was achieved in 1 s time interval through a path of 780m. We recorded the CO₂ concentration variation for 12 hours starting from mid-night, the result showed that the course of the concentration derived from the DIAL was in good agreement with that of the in situ CO₂ sensor only when the status of atmosphere was stable.

  11. Analysis of Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Weaver, Clark J.; Riris, Haris; Mao, Jianping; Sun, Xiaoli; Allan, Graham R.; Hasselbrack, William; Browell, Edward V.

    2011-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS space mission [1]. It uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1575 nm band, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver measures the energies of the laser echoes from the surface along with the range profile of scattering in the path. The column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off-line signals via the integrated path differential absorption (IPDA) technique. The time of flight of the laser pulses is used to estimate the height of the scattering surface and to reject laser photons scattered in the atmosphere. We developed an airborne lidar to demonstrate an early version of the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar stepped the pulsed laser's wavelength across the selected CO2 line with 20 wavelength steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a NIR photomultiplier and is recorded on every other reading by a photon counting system [2]. During August 2009 we made a series of 2.5 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over locations in the US, including the SGP ARM site in Oklahoma, central Illinois, north-eastern North Carolina, and over the Chesapeake Bay and the eastern shore of Virginia. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes, and some measurements were made

  12. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The

  13. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  14. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  15. Novel polarization-sensitive micropulse lidar measurement technique.

    PubMed

    Flynn, Connor J; Mendoza, Albert; Zheng, Yunhui; Mathur, Savyasachee

    2007-03-19

    Polarization-sensitive detection of elastic backscattered light is useful for detection of cloud phase and depolarizing aerosols. The U.S. Department of Energy's Atmospheric Radiation Measurement Program has deployed micropulse lidar (MPL) for over a decade, but without polarized detection. Adding an actively-controlled liquid crystal retarder provides the capability to identify depolarizing particles by alternately transmitting linearly and circularly polarized light. This represents a departure from established techniques, which transmit exclusively linear polarization or exclusively circular polarization. Mueller matrix calculations yield simple relationships between the well-known linear depolarization ratio delta(linear), the circular depolarization ratio delta(circ), and this MPL depolarization ratio delta(MPL).

  16. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Harrison, F. W.; Obland, M. D.; Ismail, S.; Meadows, B.; Browell, E. V.

    2014-12-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper.

  17. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide.

    PubMed

    Nakazato, Masahisa; Nagai, Tomohiro; Sakai, Tetsu; Hirose, Yasuo

    2007-04-20

    A UV ozone differential-absorption lidar (DIAL) utilizing a Nd:YAG laser and a single Raman cell filled with carbon dioxide (CO(2)) is designed, developed, and evaluated. The generated wavelengths are 276, 287, and 299 nm, comprising the first to third Stokes lines of the stimulated Raman scattering technique. The correction terms originated from the aerosol extinction, the backscatter, and the absorption by other gases are estimated using a model atmosphere. The experimental results demonstrate that the emitted output energies were 13 mJ/pulse at 276 nm and 287 nm and 5 mJ/pulse at 299 nm, with pump energy of 91 mJ/pulse and a CO(2) pressure of 0.7 MPa. The three Stokes lines account for 44.0% of the available energy. The use of argon or helium as a buffer gas in the Raman cell was also investigated, but this leads to a dramatic decrease in the third Stokes line, which makes this wavelength practically unusable. Our observations confirmed that 30 min of integration were sufficient to observe ozone concentration profiles up to 10 km. Aerosol extinction and backscatter correction are estimated and applied. The aerosol backscatter correction profile using 287 and 299 nm as reference wavelengths is compared with that using 355 nm. The estimated statistical error is less than 5% at 1.5 km and 10% at 2.6 km. Comparisons with the operational carbon-iodine type chemical ozonesondes demonstrate 20% overestimation of the ozone profiles by the DIAL technique.

  18. Urban Classification Techniques Using the Fusion of LiDAR and Spectral Data

    DTIC Science & Technology

    2012-09-01

    TECHNIQUES USING THE FUSION OF LIDAR AND SPECTRAL DATA by Justin E. Mesina September 2012 Thesis Advisor: Richard C. Olsen Second...TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Urban Classification Techniques Using the Fusion of LiDAR and Spectral Data 5...the potential to be more accurate than a single sensor. This research fused airborne LiDAR data and WorldView-2 (WV-2) multispectral imagery (MSI) data

  19. Ultra Narrowband Optical Filters for Water Vapor Differential Absorption Lidar (DIAL) Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Stenholm, Ingrid; DeYoung, Russell J.

    2001-01-01

    Differential absorption lidar (DIAL) systems are being deployed to make vertical profile measurements of atmospheric water vapor from ground and airborne platforms. One goal of this work is to improve the technology of such DIAL systems that they could be deployed on space-based platforms. Since background radiation reduces system performance, it is important to reduce it. One way to reduce it is to narrow the bandwidth of the optical receiver system. However, since the DIAL technique uses two or more wavelengths, in this case separated by 0.1 nm, a fixed-wavelength narrowband filter that would encompass both wavelengths would be broader than required for each line, approximately 0.02 nm. The approach employed in this project is to use a pair of tunable narrowband reflective fiber Bragg gratings. The Bragg gratings are germanium-doped silica core fiber that is exposed to ultraviolet radiation to produce index-of-refraction changes along the length of the fiber. The gratings can be tuned by stretching. The backscattered laser radiation is transmitted through an optical circulator to the gratings, reflected back to the optical circulator by one of the gratings, and then sent to a photodiode. The filter reflectivities were >90 percent, and the overall system efficiency was 30 percent.

  20. Performance characterization and ground testing of an airborne CO2 differential absorption LIDAR system

    NASA Astrophysics Data System (ADS)

    Senft, Daniel C.; Fox, Marsha J.; Bousek, Ronald R.; Dowling, James A.; Richter, Dale A.; Kelly, Brian T.

    1998-01-01

    The Phillips Laboratory Remote Optical Sensors (ROS) program is developing the Laser Airborne Remote Sensing (LARS) system for chemical detection using the differential absorption lidar (DIAL) technique. The system is based upon a high-power CO(subscript 2) laser which can use either the standard (superscript 12)C(superscript 16)O(subscript 2) or the (superscript 13)C(superscript 16)O(subscript 2) carbon dioxide isotopes as the lasing medium, and has output energies in excess of 4 J on the stronger laser transitions. The laser, transmitter optics, receiver telescope and optics, and monitoring equipment are mounted on a flight-qualified optical breadboard designed to mount in the Argus C-135E optical testbed aircraft operated by Phillips Laboratory. The LARS system is being prepared for initial flight experiments at Kirtland AFB, NM, in August 1997, and for chemical detection flight experiments at the Idaho National Engineering Laboratory (INEL) in September 1997. This paper briefly describes the system characterization, and presents some results from the pre- flight ground testing.

  1. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  2. New Examination of the Raman Lidar Technique for Water Vapor and Aerosols. Paper 1; Evaluating the Temperature Dependent Lidar Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.

    2003-01-01

    The intent of this paper and its companion is to compile together the essential information required for the analysis of Raman lidar water vapor and aerosol data acquired using a single laser wavelength. In this first paper several details concerning the evaluation of the lidar equation when measuring Raman scattering are considered. These details include the influence of the temperature dependence of both pure rotational and vibrational-rotational Raman scattering on the lidar profile. These are evaluated for the first time using a new form of the lidar equation. The results indicate that, for the range of temperatures encountered in the troposphere, the magnitude of the temperature dependent effect can reach 10% or more for narrowband Raman water vapor measurements. Also the calculation of atmospheric transmission is examined carefully including the effects of depolarization. Different formulations of Rayleigh cross section determination commonly used in the lidar field are compared revealing differences up to 5% among the formulations. The influence of multiple scattering on the measurement of aerosol extinction using the Raman lidar technique is considered as are several photon pulse-pileup correction techniques.

  3. Investigation of Lamp Mapping Technique for Calibration and Diagnostics of Raman LIDAR Systems

    NASA Astrophysics Data System (ADS)

    Walker, Monique

    Raman Lidar systems provide water vapor measurements that can be used for weather forecasting and atmospheric modeling. Most of the accuracy of Raman Lidar water vapor data is dependent on a secondary instrument such as the radiosonde. Here we discuss the use of the standard lamp mapping technique as it applies to Raman Lidar data. Using the standard lamp mapping technique causes the Raman Lidar water vapor data to rely on the accuracy of the fundamental Raman cross sections and the accuracy of the detection system. To be more specific we discuss how the lamp mapping technique (LMT) is used to determine a Raman Lidar water vapor mixing ratio calibration constant, correct a look-up table that could potentially be used to determine atmospheric temperatures based on Lidar measurements, determine a Lidar overlap function, determine Lidar glue coefficients and serve as a Raman Lidar diagnostic test. The mapping technique discussed here is a standard lamp being scanned over the aperture of a Raman Lidar telescope. From the mapping technique we are able to determine a system efficiency for the Lidar detection system, which allows us to perform the functions mentioned above. These various studies were conducted on two Raman Lidar systems with different optical detection systems and configurations. The water vapor mixing ratio calibration determined using the LMT and glue coefficients determined using the LMT showed good agreement with the traditional methods. In addition the LMT has shown to be an excellent diagnostic tool for Lidar systems. Furthermore, we were able to determine an overlap function for the Lidar system single optical channels and also the overlap function for water vapor mixing ratio (WVMR) using the LMT. Lastly, there was a limitation that did not allow us to obtain temperature calibration constants for Lidar-based temperature measurements using a look-up table corrected by the LMT. However, we were able to determine the detector response of the two

  4. Arctic aerosol and clouds studied by bistatic lidar technique

    NASA Astrophysics Data System (ADS)

    Olofson, K. Frans G.; Svensson, Erik A.; Witt, Georg; Pettersson, Jan B. C.

    2009-09-01

    Aerosol and cloud studies were carried out with a polarimetric bistatic lidar setup at the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) in Andenes (69°N, 16E°), Norway. The measurements were performed from 10 to 23 October 2006 and covered altitudes between 1.5 and 11 km, corresponding to scattering angles between 130 and 170°. The degree of linear polarization, PL, calculated from the experiments was compared with light scattering calculations using Lorenz-Mie theory for spherical particles, the T-matrix approach for nonspherical rotationally symmetric particles, and a geometric optics ray-tracing method. Average PL values between 0.61 and 0.72 were obtained for the background aerosol under cloud-free conditions. The aerosol results may be qualitatively reproduced by standard aerosol types if a suitable combination of coarse- and fine-mode spherical particles is assumed. The PL values obtained for thin and mildly opaque clouds were in the range from 0.21 to 0.38. These results were not well described by spherical particles, and the results for relatively small prolate and oblate particles studied with the T-matrix method tended to be slightly higher than the experimental values. Geometric optics calculations for hexagonal column ice particles with surface roughness were able to reproduce the experimental cloud data. This does not rule out contributions from other types of particles, and particle orientation effects may also have influenced the results. We conclude that the experimental results are consistent with earlier in situ studies of cirrus clouds, and the further development and application of the bistatic lidar technique is discussed.

  5. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.

    2009-01-01

    We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the C02 measurement from the NASA Glenn Lear 25 aircraft. The airborne lidar steps the pulsed laser's wavelength across a selected C02 line with 20 steps per scan. The line scan rate is 450 Hz and laser pulse widths are I usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric C02 column measurements using the 1571.4, 1572.02 and 1572.33 nm C02 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These nights were coordinated with DOE investigators who Hew an in-situ C02 sensor on a Cessna aircraft under the path. The increasing C02 line absorptions with

  6. Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Hasselbrack, W. E.; Sun, X.

    2009-12-01

    We have developed a lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA’s planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the CO2 line and an O2 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser’s wavelength across a selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, laser pulse energy is 25 uJ and laser pulse widths are 1 usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric CO2 column measurements using the 1571.4, 1572.02 and 1572.33 nm CO2 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The

  7. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the

  8. Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.

    2012-01-01

    We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".

  9. New experimental method for lidar overlap factor using a CCD side-scatter technique.

    PubMed

    Wang, Zhenzhu; Tao, Zongming; Liu, Dong; Wu, Decheng; Xie, Chenbo; Wang, Yingjian

    2015-04-15

    In theory, lidar overlap factor can be derived from the difference between the particle backscatter coefficient retrieved from lidar elastic signal without overlap correction and the actual particle backscatter coefficient, which can be obtained by other measured techniques. The side-scatter technique using a CCD camera is testified to be a powerful tool to detect the particle backscatter coefficient in near ground layer during night time. A new experiment approach to determine the overlap factor for vertically pointing lidar is presented in this study, which can be applied to Mie lidars. The effect of overlap factor on Mie lidar is corrected by an iteration algorithm combining the retrieved particle backscatter coefficient using CCD side-scatter method and Fernald method. This method has been successfully applied to Mie lidar measurements during a routine campaign, and the comparison of experimental results in different atmosphere conditions demonstrated that this method is available in practice.

  10. Novel polarization-sensitive micropulse lidar measurement technique

    SciTech Connect

    Flynn, Connor J.; Mendoza, Albert; Zheng, Yunhui; Mathur, Savyasachee

    2007-03-19

    Polarization-sensitive detection of elastic backscatter is useful for detection of cloud phase and depolarizing aerosols. The U.S. DOE Atmospheric Radiation Measurements (ARM) Program has deployed micropulse lidar (MPL) for over a decade, but without polarized detection. Adding an actively-controlled liquid crystal retarder provides the capability to identify depolarizing particles by alternately transmitting linearly and circularly polarized light. This represents a departure from established techniques which transmit exclusively linear polarization or exclusively circular polarization. Mueller matrix calculations yield simple relationships between the well-known linear depolarization ratio δlinear, the circular depolarization ratio δcirc, and the hybrid MPL depolarization ratio δMPL. This research was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement Program.

  11. Development of a Coherent Differential Absorption Lidar for Range Resolved Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulgueta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo. C.; Koch, Grady J.; Beyon, Jeffery J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-m coherent Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument will measure atmospheric CO2 profiles (by DIAL) initially from a ground platform, and then be prepared for aircraft installation to measure the atmospheric CO2 column densities in the atmospheric boundary layer (ABL) and lower troposphere. The airborne prototype CO2 lidar can measure atmospheric CO2 column density in a range bin of 1km with better than 1.5% precision at horizontal resolution of less than 50km. It can provide the image of the pooling of CO2 in lowlying areas and performs nighttime mass balance measurements at landscape scale. This sensor is unique in its capability to study the vertical ABL-free troposphere exchange of CO2 directly. It will allow the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop.

  12. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 and 2013 Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W.; Weaver, C. J.; Browell, E. V.

    2013-12-01

    We have developed a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan with 300 scans per second. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength every second. We then solve for the optimum CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak and the column average CO2 concentrations. We compared these to radiative transfer calculations based on the HITRAN 2008 database, the atmospheric conditions, and the CO2 concentrations sampled by in-situ sensors on the aircraft. Our team participated in the ASCENDS science flights during July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 absorption line shapes were recorded. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds and to stratus cloud tops. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption profile (averaged for 50 sec) matched the predicted profile to better than 1% RMS error for all flight altitudes. For 10 second averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by signal shot noise (i.e. the signal photon count). For flight

  13. Analytical Solution of the Two-Frequency Lidar Inversion Technique

    NASA Astrophysics Data System (ADS)

    Ackermann, Jrg

    1999-12-01

    A two-frequency lidar inversion on the assumptions of a range-independent relationship between the extinction coefficients of the two considered lidar wavelengths and of constant extinction-to-backscatter ratios was originally developed by Potter Appl. Opt. 26, 1250 (1987) . It is an iterative procedure to retrieve the boundary value for solution of the single-scatter lidar equation. This boundary value is expressed by the aerosol transmission along the evaluated lidar path. Recently, Kunz Appl. Opt. 38, 1015 (1999) stated that there is not enough information in the lidar signals of two wavelengths to obtain a unique solution for the boundary value and hence for the aerosol extinction profile. It is shown that a unique solution of the two-frequency lidar inversion exists, for which an analytical expression of the boundary value and, hence, the aerosol extinction profile, is given.

  14. Data Analysis of a Pulsed 2-micron Coherent Differential Absorption Lidar For Atmospheric CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Lu, J.; Yu, J.

    2013-12-01

    The study of climate change requires precise measurement of the production, migration, and sinking of greenhouse gases. Carbon Dioxide (CO2) is one of the principal greenhouse gases. NASA Langley Research Center (LARC) has developed a pulsed 2-micron coherent differential absorption lidar (DiAL) for CO2 measurement, operating on the R30 absorption line. On April 5, 2010, the lidar instrument transmitted alternating On-line and Off-line pulses from LARC into a residential area in Poquoson, Virginia; while a passive in-situ sensor measured the local CO2 concentration. This paper outlines a procedure to estimate CO2 concentration from atmospheric lidar return signal using the DiAL method; our calculation produced results in line with the in-situ measurement and matched the current state of DiAL instrument accuracy. Data from April 5 is part of a series of experiments validating the measurement accuracy and precision of this lidar. After a summative verification, a packaged lidar may be installed on research aircraft to perform CO2 studies at a great range of latitudes throughout the year, and to discover sources, sinks, and migration trends for this key greenhouse gas. The following procedure is used to estimate CO2 concentration from atmospheric lidar return using the DiAL method. First, MATLAB software developed at LARC sorts the lidar return into On-only and Off-only files containing pulses of only that type. The sorted pulses are reexamined for quality based on the center frequency, energy, and power - unsatisfactory pulses are removed. A 512-point Fast Fourier Transform (FFT) with 256-point shift is performed on each pulse to discretize the atmospheric return signal according to 63 distance 'bins'. Next, comparing decay rates of the On-line and Off-line atmospheric return intensity with distance yields the Differential Absorption Optical Slope (DAOD), which is proportional to the concentration of the desired gas. Then, in-situ meteorological data - pressure

  15. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  16. Challenges and Solutions for Frequency and Energy References for Spaceborne and Airborne Integrated Path Differential Absorption Lidars

    NASA Astrophysics Data System (ADS)

    Fix, Andreas; Quatrevalet, Mathieu; Witschas, Benjamin; Wirth, Martin; Büdenbender, Christian; Amediek, Axel; Ehret, Gerhard

    2016-06-01

    The stringent requirements for both the frequency stability and power reference represent a challenging task for Integrated Path Differential Absorption Lidars (IPDA) to measure greenhouse gas columns from satellite or aircraft. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. The concepts and realization of these important sub-systems are discussed.

  17. The polarization lidar technique for cloud research - A review and current assessment

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    1991-01-01

    The development of the polarization lidar technique is reviewed, and the current capabilities and limitations of the technique for the cloud research are discussed. At present, polarization lidar is a key component of climate-research programs designed to characterize the properties of cirrus clouds and is an integral part of multiple remote-sensor studies of mixed-phase cloud systems such as winter mountain storms, making it possible to discriminate between cloud phases and to identify some particle types and orientations. Recent theoretical approaches involving ice crystal ray-tracing and cloud microphysical-model simulations are expected to increase the utility of the polarization lidar technique.

  18. High Spectral Resolution Lidar Measurements Using an I2 Absorption Filter

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piironen, P.

    1996-01-01

    The University of Wisconsin high spectral resolution lidar (HSRL) measures optical properties of the atmosphere by separating the Doppler-broadened molecular backscatter return from the unbroadened aerosol return. The HSRL was modified to use an I2 absorption cell The modified HSRL transmitter uses a continuously pumped, Q-switched, injection seeded, frequency doubled Nd:YAG laser operating at a 4 kHz pulse repetition rate. This laser is tunable over a 124 GHz frequency range by temperature tuning the seed laser under computer control.

  19. Effect of collisional lines broadening and calibration functions in the pure rotational Raman lidar technique

    NASA Astrophysics Data System (ADS)

    Gerasimov, Vladislav V.; Zuev, Vladimir V.

    2016-10-01

    We present and examine two three-coefficient calibration functions to be used for the tropospheric temperature retrievals via the pure rotational Raman (PRR) lidar technique. These functions are the special cases of the general analytical calibration function in the PRR lidar technique. The general function special cases take into account the collisional (pressure) broadening of all individual atmospheric N2 and O2 PRR lines in varying degrees. We apply these two special cases to real lidar remote sensing data and compare nighttime temperature profiles retrieved using these calibration functions to the profiles retrieved using other known ones. The absolute statistical uncertainties of temperature retrieval are also given in an analytical form. Lidar measurements data, obtained in Tomsk (56.48° N, 85.05° E, Western Siberia, Russia) using the IMCES PRR lidar at λ = 354.67 nm on 1 April 2015, were used for the tropospheric temperature retrievals (3-12 km).

  20. Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return

    NASA Astrophysics Data System (ADS)

    Ishii, S.; Koyama, M.; Baron, P.; Iwai, H.; Mizutani, K.; Itabe, T.; Sato, A.; Asai, K.

    2013-05-01

    The National Institute of Information and Communications Technology (NICT) has made a great deal of effort to develop a coherent 2 μm differential absorption and wind lidar (Co2DiaWiL) for measuring CO2 and wind speed. First, coherent Integrated Path Differential Absorption (IPDA) lidar experiments were conducted using the Co2DiaWiL and a foothill target (tree and ground surface) located about 7.12 km south of NICT on 11, 27, and 28 December 2010. The detection sensitivity of a 2 μm IPDA lidar was examined in detail using the CO2 concentration measured by the foothill reflection. The precisions of CO2 measurements for the foothill target and 900, 4500 and 27 000 shot pairs were 6.5, 2.8, and 1.2%, respectively. The results indicated that a coherent IPDA lidar with a laser operating at a high pulse repetition frequency of a few tens of KHz is necessary for XCO2 (column-averaged dry air mixing ratio of CO2) measurement with a precision of 1-2 ppm in order to observe temporal and spatial variations in the CO2. Statistical comparisons indicated that, although a small amount of in situ data and the fact that they were not co-located with the foothill target made comparison difficult, the CO2 volume mixing ratio obtained by the Co2DiaWiL measurements for the foothill target and atmospheric returns was about -5 ppm lower than the 5 min running averages of the in situ sensor. Not only actual difference of sensing volume or the natural variability of CO2 but also the fluctuations of temperature could cause this difference. The statistical results indicated that there were no biases between the foothill target and atmospheric return measurements. The 2 μm coherent IPDA lidar can detect the CO2 volume mixing ratio change of 3% in the 5 min signal integration. In order to detect the position of the foothill target, to measure a range with a high SNR (signal-to-noise ratio), and to reduce uncertainty due to the presence of aerosols and clouds, it is important to make a

  1. Development of a differential absorption lidar for identification of carbon sequestration site leakage

    NASA Astrophysics Data System (ADS)

    Johnson, William Eric

    This thesis describes the development and deployment of a near-infrared scanning micropulse differential absorption lidar (DIAL) system for monitoring carbon dioxide sequestration site integrity. The DIAL utilizes a custom-built lidar (light detection and ranging) transmitter system based on two commercial tunable diode lasers operating at 1.571 microm, an acousto-optic modulator, fiber optic switches, and an Erbium-doped fiber amplifier to generate 65 microJ 200 ns pulses at a 15 kHz repetition rate. Backscattered laser transmitter light is collected with an 11 inch Schmidt-Cassegrain telescope where it is optically filtered to reduce background noise. A fiber-coupled photomultiplier tube operating in the photon counting mode is then used to monitor the collected return signal. Averaging over periods typically of one hour permit range-resolved measurements of carbon dioxide from 1 to 2.5 km with a typical error of 40 ppm. For monitoring a field site, the system scans over a field area by pointing the transmitter and receiver with a computer controlled motorized commercial telescope base. The system has made autonomous field measurements in an agricultural field adjacent to Montana State University and at the Kevin Dome carbon sequestration site in rural northern Montana. Comparisons have been made with an in situ sensor showing agreement between the two measurements to within the 40 error of the DIAL. In addition to the work on the 1.57 micron DIAL, this thesis also presents work done at NASA Langley Research Center on the development and deployment of a 2 micron integrated path differential absorption (IPDA) lidar. The 2 micron system utilizes a low repetition rate 140 mJ double pulsed Ho:Tm:YLF laser developed at NASA Langley.

  2. Atmospheric effects on CO{sub 2} differential absorption lidar sensitivity

    SciTech Connect

    Petrin, R.R.; Nelson, D.H.; Schmitt, M.J.

    1996-03-01

    The ambient atmosphere between the laser transmitter and the target can affect CO{sub 2} differential absorption lidar (DIAL) measurement sensitivity through a number of different processes. In this work, we will address two of the sources of atmospheric interference with CO{sub 2} DIAL measurements: effects due to beam propagation through atmospheric turbulence and extinction due to absorption by atmospheric gases. Measurements of atmospheric extinction under different atmospheric conditions are presented and compared to a standard atmospheric transmission model (FASCODE). We have also investigated the effects of atmospheric turbulence on system performance. Measurements of the effective beam size after propagation are compared to model predictions using simultaneous measurements of atmospheric turbulence as input to the model. These results are also discussed in the context of the overall effect of beam propagation through atmospheric turbulence on the sensitivity of DIAL measurements.

  3. Atmospheric effects on CO{sub 2} differential absorption lidar performance

    SciTech Connect

    Petrin, R.R.; Quagliano, J.R.; Nelson, D.H.; Schmitt, M.J.; Quick, C.R.; Sander, R.K.; Tiee, J.J.; Whitehead, M.

    1996-05-01

    CO{sub 2} differential absorption lidar (DIAL) performance can be adversely affected by the ambient atmosphere between the laser transmitter and the target through a number of different processes. This work addresses two sources of atmospheric interference with multispectral CO{sub 2} DIAL measurements: effects due to beam propagation through atmospheric turbulence and extinction due to absorption by atmospheric gases. The authors compare measurements of the effective beam size after propagation to predictions from a beam propagation model that includes turbulence effects such as beam steering and beam spreading. They also compare the experimental measurements of atmospheric extinction to those predicted by both a standard atmospheric transmission model (FASCODE) and a chemometric analysis.

  4. Picosecond lidar techniques in laboratory and field diagnostics

    NASA Astrophysics Data System (ADS)

    Goulard, R.

    1984-12-01

    The availability of picosecond laser systems opens a new potential in the field of diagnostics. It is now possible to observe chemical events over time intervals as short as 10 to the minus 9th power sec (e.g., fluorescence, bond-selective chemistry,...) without overlap with the much shorter 10 to the minus 12th power sec triggering signal. In addition, two specific effects are of special interest to real industrial flame diagnostics. One is the elimination of background noise, since the picosecond time-gating of the detector will collect the whole signal of interest but only a tiny fraction of the time-spread noise background (e.g., soot, walls,...). The other is related to the very short length of these pulses (similar to mm): it is the possibility to use the lidar/radar principle to convert the time history of the measured back scattered signals into a millimeter-resolved space distribution along the beam. In this fashion, Raman and other techniques can yield a detailed map of concentrations and temperatures in three-dimensional space, even in sooty combustors background, with the need of only one single porthole.

  5. Wavelength Locking to CO2 Absorption Line-Center for 2-Micron Pulsed IPDA Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong

    2016-01-01

    An airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-micron CW (Continuous Wave) laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nanometers, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.

  6. A robust optical parametric oscillator and receiver telescope for differential absorption lidar of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Robinson, Iain; Jack, James W.; Rae, Cameron F.; Moncrieff, John B.

    2015-10-01

    We report the development of a differential absorption lidar instrument (DIAL) designed and built specifically for the measurement of anthropogenic greenhouse gases in the atmosphere. The DIAL is integrated into a commercial astronomical telescope to provide high-quality receiver optics and enable automated scanning for three-dimensional lidar acquisition. The instrument is portable and can be set up within a few hours in the field. The laser source is a pulsed optical parametric oscillator (OPO) which outputs light at a wavelength tunable near 1.6 μm. This wavelength region, which is also used in telecommunications devices, provides access to absorption lines in both carbon dioxide at 1573 nm and methane at 1646 nm. To achieve the critical temperature stability required for a laserbased field instrument the four-mirror OPO cavity is machined from a single aluminium block. A piezoactuator adjusts the cavity length to achieve resonance and this is maintained over temperature changes through the use of a feedback loop. The laser output is continuously monitored with pyroelectric detectors and a custom-built wavemeter. The OPO is injection seeded by a temperature-stabilized distributed feedback laser diode (DFB-LD) with a wavelength locked to the absorption line centre (on-line) using a gas cell containing pure carbon dioxide. A second DFB-LD is tuned to a nearby wavelength (off-line) to provide the reference required for differential absorption measurements. A similar system has been designed and built to provide the injection seeding wavelengths for methane. The system integrates the DFB-LDs, drivers, locking electronics, gas cell and balanced photodetectors. The results of test measurements of carbon dioxide are presented and the development of the system is discussed, including the adaptation required for the measurement of methane.

  7. A new high spectral resolution lidar technique for direct retrievals of cloud and aerosol extinction

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Hlavka, D. L.

    2014-12-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a Doppler lidar system and high spectral resolution lidar (HSRL) recently developed at NASA Goddard Space Flight Center (GSFC). ACATS passes the returned atmospheric backscatter through a single etalon and divides the transmitted signal into several channels (wavelength intervals), which are measured simultaneously and independently (Figure 1). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particle extinction. The broad Rayleigh-scattered spectrum is imaged as a nearly flat background, illustrated in Figure 1c. The integral of the particulate backscattered spectrum is analogous to the aerosol measurement from the typical absorption filter HSRL technique in that the molecular and particulate backscatter components can be separated (Figure 1c and 1d). The main difference between HSRL systems that use the iodine filter technique and the multichannel etalon technique used in the ACATS instrument is that the latter directly measures the spectral broadening of the particulate backscatter using the etalon to filter out all backscattered light with the exception of a narrow wavelength interval (1.5 picometers for ACATS) that contains the particulate spectrum (grey, Figure 1a). This study outlines the method and retrieval algorithms for ACATS data products, focusing on the HSRL derived cloud and aerosol properties. While previous ground-based multi-channel etalon systems have been built and operated for wind retrievals, there has been no airborne demonstration of the technique and the method has not been used to derive HSRL cloud and aerosol properties. ACATS has flown on the NASA ER-2 during flights over Alaska in July 2014 and as part of the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This study will focus on the HSRL aspect of the ACATS instrument, since the method and retrieval algorithms have direct application

  8. Self-Calibration and Laser Energy Monitor Validations for a Double-Pulsed 2-Micron CO2 Integrated Path Differential Absorption Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Singh, Upendra N.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong

    2015-01-01

    Double-pulsed 2-micron integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photo-electromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-micron IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.

  9. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  10. Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region.

    PubMed

    Ambrico, P F; Amodeo, A; Di Girolamo, P; Spinelli, N

    2000-12-20

    The availability of new laser sources that are tunable in the IR spectral region opens new perspectives for differential absorption lidar (DIAL) measurements. A region of particular interest is located in the near IR, where some of the atmospheric pollutants have absorption lines that permit monitoring of emissions from industrial plants and in urban areas. In DIAL measurements, the absorption lines for the species to be measured must be carefully chosen to prevent interference from other molecules, to minimize the dependence of the absorption cross section on temperature, and to optimize the measurements with respect to the optical depth. We analyze the influence of these factors and discuss a set of criteria for selecting the best pairs of wavelengths (lambda(on) and lambda(off)) to be used in DIAL measurements of several molecular species (HCl, CO, CO(2), NO(2), CH(4), H(2)O, and O(2)). Moreover, a sensitivity study has been carried out for selected lines in three different regimes: clean air, urban polluted air, and emission from an incinerator stack.

  11. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  12. On-Line Wavelength Calibration of Pulsed Laser for CO2 Differential Absorption LIDAR

    NASA Astrophysics Data System (ADS)

    Xiang, Chengzhi; Ma, Xin; Han, Ge; Liang, Ailin; Gong, Wei

    2016-06-01

    Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO2 detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO2 concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO2 detection. The MWS conducted segmented sampling across the CO2 absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO2 can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.

  13. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  14. Insect monitoring with fluorescence lidar techniques: field experiments.

    PubMed

    Guan, Zuguang; Brydegaard, Mikkel; Lundin, Patrik; Wellenreuther, Maren; Runemark, Anna; Svensson, Erik I; Svanberg, Sune

    2010-09-20

    Results from field experiments using a fluorescence lidar system to monitor movements of insects are reported. Measurements over a river surface were made at distances between 100 and 300 m, detecting, in particular, damselflies entering the 355 nm pulsed laser beam. The lidar system recorded the depolarized elastic backscattering and two broad bands of laser-induced fluorescence, with the separation wavelength at 500 nm. Captured species, dusted with characteristic fluorescent dye powders, could be followed spatially and temporally after release. Implications for ecological research are discussed.

  15. On retrieval of lidar extinction profiles using Two-Stream and Raman techniques

    NASA Astrophysics Data System (ADS)

    Stachlewska, I. S.; Ritter, C.

    2009-09-01

    The Two-Stream technique employes simultaneous measurements performed by two elastic backscatter lidars aiming at each other to sample into the same atmosphere. It allows for a direct retrieval of the extinction coefficient profile from the ratio of the two involved lidar signals. During a few Alfred-Wegener-Institute's (AWI) campaigns dedicated to the Arctic research, the AWI's Polar 2 aircraft with the integrated onboard nadir-aiming Airborne Mobile Merosol Lidar (AMALi) overflew a vicinity of Ny Ålesund on Svalbard, where the zenith-aiming Koldewey Aerosol Raman Lidar (KARL) has been located. This experimental approach gave a unique opportunity to retrieve the extinction profiles with rather rarely used Two-Stream technique against the well established Raman technique. Both methods were applied to data obtained for a clean Arctic conditions during the Arctic Study of Tropospheric clouds and Radiation (ASTAR 2004) campaign and a slightly polluted Arctic conditions during the Svalbard Experiment (SvalEx 2005) campaign. Successful intercomparison of both evaluation tools in a different measurement conditions demonstrates sensitivity and feasibility of the Two-Stream method to obtain particle extinction and backscatter coefficients profiles without assumption of their relationship (lidar ratio). The method has a potential to serve as an extinction retrieval tool for KARL or AMALi simultaneous observations with the spaceborne CALYPSO lidar taken during the ASTAR 2007.

  16. On retrieval of lidar extinction profiles using Two-Stream and Raman techniques

    NASA Astrophysics Data System (ADS)

    Stachlewska, I. S.; Ritter, C.

    2010-03-01

    The Two-Stream technique employs simultaneous measurements performed by two elastic backscatter lidars pointing at each other to sample into the same atmosphere. It allows for a direct retrieval of the extinction coefficient profile from the ratio of the two involved lidar signals. During a number of Alfred-Wegener-Institute (AWI) campaigns dedicated to Arctic research, the AWI's Polar 2 aircraft with the integrated onboard nadir-pointing Airborne Mobile Aerosol Lidar (AMALi) was utilised. The aircraft flew over a vicinity of Ny Ålesund on Svalbard, where the zenith-pointing Koldewey Aerosol Raman Lidar (KARL) has been located. This experimental approach gave the unique opportunity to retrieve the extinction profiles with a rarely used Two-Stream technique against a well established Raman technique. Both methods were applied to data obtained for clean Arctic conditions during the Arctic Study of Tropospheric clouds and Radiation (ASTAR 2004) campaign, and slightly polluted Arctic conditions during the Svalbard Experiment (SvalEx 2005) campaign. Successful comparison of both evaluation tools in different measurement conditions demonstrates sensitivity and feasibility of the Two-Stream method to obtain particle extinction and backscatter coefficients profiles without assumption of their relationship (lidar ratio). The method has the potential to serve as an extinction retrieval tool for KARL or AMALi simultaneous observations with the space borne CALIPSO lidar overpasses during the ASTAR 2007.

  17. Development of a Pulsed 2-Micron Integrated Path Differential Absorption Lidar for CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Refaat, Tamer

    2013-01-01

    Atmospheric carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and global radiation budget on Earth. Active remote sensing of CO2 is important to address several limitations that contend with passive sensors. A 2-micron double-pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This active remote sensing instrument will provide an alternate approach of measuring atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise ratio level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. Commercial, on the shelf, components are implemented for the detection system. Instrument integration will be presented in this paper as well as a background for CO2 measurement at NASA Langley research Center

  18. Predictions of silicon avalanche photodiode detector performance in water vapor differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Kenimer, R. L.

    1988-01-01

    Performance analyses are presented which establish that over most of the range of signals expected for a down-looking differential absorption lidar (DIAL) operated at 16 km the silicon avalanche photodiode (APD) is the preferred detector for DIAL measurements of atmospheric water vapor in the 730 nm spectral region. The higher quantum efficiency of the APD's, (0.8-0.9) compared to a photomultiplier's (0.04-0.18) more than offsets the higher noise of an APD receiver. In addition to offering lower noise and hence lower random error the APD's excellent linearity and impulse recovery minimize DIAL systematic errors attributable to the detector. Estimates of the effect of detector system parameters on overall random and systematic DIAL errors are presented, and performance predictions are supported by laboratory characterization data for an APD receiver system.

  19. Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra.

    PubMed

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2014-10-20

    We report new methods for retrieving atmospheric constituents from symmetrically-measured lidar-sounding absorption spectra. The forward model accounts for laser line-center frequency noise and broadened line-shape, and is essentially linearized by linking estimated optical-depths to the mixing ratios. Errors from the spectral distortion and laser frequency drift are substantially reduced by averaging optical-depths at each pair of symmetric wavelength channels. Retrieval errors from measurement noise and model bias are analyzed parametrically and numerically for multiple atmospheric layers, to provide deeper insight. Errors from surface height and reflectance variations are reduced to tolerable levels by "averaging before log" with pulse-by-pulse ranging knowledge incorporated.

  20. Development of a pulsed 2-micron integrated path differential absorption lidar for CO2 measurement

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl

    2013-09-01

    Atmospheric carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and global radiation budget on Earth. Active remote sensing of CO2 is important to address several limitations that contend with passive sensors. A 2-micron double-pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This active remote sensing instrument will provide an alternate approach of measuring atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise ratio level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. Commercial, on the shelf, components are implemented for the detection system. Instrument integration will be presented in this paper as well as a background for CO2 measurement at NASA Langley research Center.

  1. Development and Testing of a Differential Absorption LIDAR system for Greenhouse Gas Measurements

    NASA Astrophysics Data System (ADS)

    Maxwell, S. E.; Douglass, K.; Plusquellic, D.; Whetstone, J. R.

    2013-12-01

    Our objective is to develop accurate and reliable methods for quantifying distributed carbon sources and sinks to support both mitigation efforts and climate change research. We will describe progress toward a field-deployable, eye-safe differential absorption LIDAR system. The current version of our system utilizes a high repetition rate (>200 kHz), 200 ns pulsed fiber amplifier driven by tunable DFB lasers around 1602 nm. Collection is performed using a small (3' diameter) telescope and an avalanche photodiode. We demonstrate a rapid hard target measurement of ambient levels of CO2 in our 100m test facility using low powers from the fiber laser and a highly-retro-reflecting target. We also discuss progress toward a range resolved measurement in the test facility, planned upgrades to the facility, and the development of a low-backscatter beam dump for range-limited applications.

  2. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  3. Evaluation of the effects of Mount Pinatubo aerosol on differential absorption lidar measurements of stratospheric ozone

    SciTech Connect

    Steinbrecht, W.; Carswell, A.I.

    1995-01-01

    Substantially increased aerosol backscattering and extinction after a major volcanic eruption can lead to errors in differential absorption lidar (DIAL) measurements of stratospheric ozone. Mie calculations, performed for the wavelengths 308 and 353 nm and based on size distributions measured over Laramie, Wyoming (41 deg), were used to assess size and temporal evolution of these errors. In many situations, neglecting the different aerosol backscattering at the absorption and reference wavelengths can lead to relative errors in the ozone concentration larger than 100% for the 308-, 353-nm pair. The error due to neglecting the differential aerosol extinction, however, will rarely exceed 2%. A correction for this differential extinction should only be attempted when high concentrations (greater than 100/cu cm) of small aerosol particles with radii below 0.1 micrometers are present, e.g., shortly after an eruption. A correction for the differential backscatter can be made by using additional lidar measurements at a second reference wavelength or by having general size distribution information on the aerosol. Possible corrections were tested and will usually reduce the error in the ozone concentration considerably. For the 308-, 353-nm pair, both Mie calculations and a comparison with ozone profiles from electrochemical cell sondes show, however, that even after the correction the uncertainty in the ozone concentration within some regions of the strongly enhanced Mt. Pinatubo aerosol layer can still be substantial, of the order of 10-50%. Wavelength separation smaller than 40 nm or use of wavelengths shorter than 300 nm will reduce the error. The best solution seems to be the addition of Raman channels. It avoids the large error due to the differential backscatter term.

  4. Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Weibring, P.; Smith, J. N.; Edner, H.; Svanberg, S.

    2003-10-01

    An all-solid-state fast-tuning lidar transmitter for range- and temporally resolved atmospheric gas concentration measurements has been developed and thoroughly tested. The instrument is based on a commercial optical parametric oscillator (OPO) laser system, which has been redesigned with piezoelectric transducers mounted on the wavelength-tuning mirror and on the crystal angle tuning element in the OPO. Piezoelectric transducers similarly control a frequency-mixing stage and doubling stage, which have been incorporated to extend system capabilities to the mid-IR and UV regions. The construction allows the system to be tuned to any wavelength, in any order, in the range of the piezoelectric transducers on a shot-to-shot basis. This extends the measurement capabilities far beyond the two-wavelength differential absorption lidar method and enables simultaneous measurements of several gases. The system performance in terms of wavelength, linewidth, and power stability is monitored in real time by an étalon-based wave meter and gas cells. The tests showed that the system was able to produce radiation in the 220-4300-nm-wavelength region, with an average linewidth better than 0.2 cm-1 and a shot-to-shot tunability up to 160 cm-1 within 20 ms. The utility of real-time linewidth and wavelength measurements is demonstrated by the ability to identify occasional poor quality laser shots and disregard these measurements. Also, absorption cell measurements of methane and mercury demonstrate the performance in obtaining stable wavelength and linewidth during rapid scans in the mid-IR and UV regions.

  5. Atmospheric absorption versus deep ultraviolet (pre-)resonance in Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Hallen, Hans D.; Willitsford, Adam H.; Neely, Ryan R.; Chadwick, C. Todd; Philbrick, C. Russell

    2016-05-01

    The Raman scattering of several liquids and solid materials has been investigated near the deep ultraviolet absorption features corresponding to the electron energy states of the chemical species present. It is found to provide significant enhancement, but is always accompanied by absorption due to that or other species along the path. We investigate this trade-off for water vapor, although the results for liquid water and ice will be quantitatively very similar. An optical parametric oscillator (OPO) was pumped by the third harmonic of a Nd:YAG laser, and the output frequency doubled to generate a tunable excitation beam in the 215-600 nm range. We use the tunable laser excitation beam to investigate pre-resonance and resonance Raman spectroscopy near an absorption band of ice. A significant enhancement in the Raman signal was observed. The A-term of the Raman scattering tensor, which describes the pre-resonant enhancement of the spectra, is also used to find the primary observed intensities as a function of incident beam energy, although a wide resonance structure near the final-state-effect related absorption in ice is also found. The results suggest that use of pre-resonant or resonant Raman LIDAR could increase the sensitivity to improve spatial and temporal resolution of atmospheric water vapor measurements. However, these shorter wavelengths also exhibit higher ozone absorption. These opposing effects are modeled using MODTRAN for several configurations relevant for studies of boundary layer water and in the vicinity of clouds. Such data could be used in studies of the measurement of energy flow at the water-air and cloud-air interface, and may help with understanding some of the major uncertainties in current global climate models.

  6. Application of the lamp mapping technique for overlap function for Raman lidar systems.

    PubMed

    Walker, Monique; Venable, Demetrius; Whiteman, David N; Sakai, Tetsu

    2016-04-01

    Traditionally, the lidar water vapor mixing ratio (WVMR) is corrected for overlap using data from another instrument, such as a radiosonde. Here we introduce a new experimental method to determine the overlap function using the lamp mapping technique (LMT), which relies on the lidar optics and detection system. The LMT discussed here involves a standard halogen lamp being scanned over the aperture of a Raman lidar telescope in synchronization with the lidar detection system [Appl. Opt.50, 4622 (2011)APOPAI0003-693510.1364/AO.50.004622, Appl. Opt.53, 8538 (2014)APOPAI0003-693510.1364/AO.53.008535]. In this paper, we show results for a LMT-determined overlap function for individual channels, as well as a WVMR overlap function. We found that the LMT-determined WVMR overlap functions deviate within 5% of the traditional radiosonde-determined overlap.

  7. Revisiting Raman lidar: application of new techniques to improve system performance

    NASA Astrophysics Data System (ADS)

    Chen, Carl G.; Sedlacek, Arthur J., III

    1996-11-01

    BNL has been developing a remote sensing technique for the detection of atmospheric pollutants using resonance Raman LIDAR that has also incorporated a number of new techniques/technologies designed to extend it performance envelope. Chief among these new techniques is the use of pattern recognition to take advantage of the spectral fingerprint and a new laser frequency modulation technique, referred to as Frequency Modulated Excitation Raman Spectroscopy, designed to suppress broadband fluorescence. In the laboratory, broadband fluorescence suppression approaching 3 orders-of-magnitude has been achieved. In addition, the application of a BNL designed knife-edge Rayleigh filter has also bee demonstrated using our LIDAR system where spectral features as close as 200 cm-1 from the excitation line were observed. How all these features help increase the overall performance of Raman LIDAR will be discussed.

  8. Development of a Ground-Based Differential Absorption Lidar for High Accurate Measurements of Vertical CO2 Concentration Profiles

    NASA Astrophysics Data System (ADS)

    Nagasawa, Chikao; Abo, Makoto; Shibata, Yasukuni; Nagai, Tomohiro; Nakazato, Masahisa; Sakai, Tetsu; Tsukamoto, Makoto; Sakaizawa, Daisuku

    2010-05-01

    High-accurate vertical carbon dioxide (CO2) profiles are highly desirable in the inverse method to improve quantification and understanding of the global sink and source of CO2, and also global climate change. We have developed a ground based 1.6μm differential absorption lidar (DIAL) to achieve high accurate measurements of vertical CO2 profiles in the atmosphere. The DIAL system is constructed from the optical parametric oscillation(OPO) transmitter and the direct detection receiving system that included a near-infrared photomultiplier tube operating at photon counting mode. The primitive DIAL measurement was achieved successfully the vertical CO2 profile up to 7 km altitude with an error less than 1.0 % by integration time of 50 minutes and vertical resolution of 150m. We are developing the next generation 1.6 μm DIAL that can measure simultaneously the vertical CO2 concentration, temperature and pressure profiles in the atmosphere. The output laser of the OPO is 20mJ at a 500 Hz repetition rate and a 600mm diameter telescope is employed for this measurement. A very narrow interference filter (0.5nm FWHM) is used for daytime measurement. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement may be realized. Moreover, the value of the retrieved CO2 concentration will be improved remarkably by processing the iteration assignment of CO2 concentration, temperature and pressure, which measured by DIAL techniques. This work was financially supported by the Japan EOS Promotion Program by the MEXT Japan and System Development Program for Advanced Measurement and Analysis by the JST. Reference D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and

  9. New Results from Frequency and Energy Reference Measurements during the first Test Flight with the Airborne Integrated Path Differential Absorption Lidar System CHARM-F

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Fix, A.; Amediek, A.; Quatrevalet, M.

    2015-12-01

    The Integrated Path Differential Absorption Lidar (IPDA) technique is regarded as a suitable means for the measurement of methane and carbon dioxide columns from satellite or aircraft platforms with unprecedented accuracy. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. Both use e.g. optical parametric oscillators (OPOs) in a double-pulse mode as the transmitter. Of particular importance for both instruments are the sub-modules required for the frequency stabilization of the transmitter wavelength and, since the IPDA technique, in contrast to DIAL, requires the exact knowledge of the energy ratio of outgoing on-line. The coherence of the lidar transmitter gives rise to speckle effects which have to be considered for the monitoring of the energy ratio of outgoing on- and off-line pulses. For the frequency reference of CHARM-F, a very successful stabilization scheme has been developed which will also serve as the reference for MERLIN. In Spring 2015, CHARM-F was flown aboard the German HALO aircraft for the first time which enables a detailed view on the performance of both the energy calibration and frequency reference subsystems under real flight conditions. As an initial quality check we will compared the airborne results to previous lab measurements which have been performed under stable environmental conditions.

  10. A new differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington DC region

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-04-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.) from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19% from 0-1.5 km, 10-18% from 1.5-3 km, and 11-25% from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington DC area.

  11. A New Differential Absorption Lidar to Measure Sub-Hourly Fluctuation of Tropospheric Ozone Profiles in the Baltimore - Washington D.C. Region

    NASA Technical Reports Server (NTRS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-01-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99 N, 76.84 W, 57 meters ASL) from 400 m to 12 km AGL. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19 percent from 0-1.5 km, 10-18 percent from 1.5-3 km, and 11-25 percent from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore

  12. Global observations of atmospheric CH4 by Integrated Path Differential-Absorption Lidar: the French-German Climate Monitoring Initiative

    NASA Astrophysics Data System (ADS)

    Ehret, Gerhard; Flamant, Pierre; Ciais, Philippe; Fabien, Gibert; Amediek, Axel; Kiemle, Christoph; Fix, Andreas; Quatrevalet, Mathieu; Wirth, Martin

    Atmospheric methane (CH4) is a powerful greenhouse gas, which has a Greenhouse Warming Potential (GWP) of 25 relative to CO2 on a time scale of 100 years. Despite the fact that the imbalance between the sources and sinks has decreased in the early 1990's to an insignificant value, a significant renewal of the CH4 growth is reported in recent years. Questions arise whether an increase of atmospheric CH4 might be fostered through melting of permafrost soil in the Arctic region or arise from changes of the tropical wetlands which comprise the biggest natural methane source. Another reason could be the change in the agro-industrial era of predominant human influence or the very large deposits of CH4 as gas hydrates on ocean shelves that are vulnerable to ocean warming. The French-German Climate Monitoring Initiative, which has recently been selected to undergo Phase0/A studies in a joint project by the space agencies CNES (France)and DLR (Germany), targets on satellite observations of atmospheric CH4 for the improvement of our knowledge on regional to synoptic scale CH4 sources on a global basis. As a novel feature, the observational instrument of this mission will be an Integrated Path Differential-Absorption (IPDA) Lidar system embarked on board of the French Myriade platform for the measurement of the column-weighted dry-air mixing ratio of CH4 in a nadir viewing configuration. This data will be provided by the lidar technique with no bias due to particles scattering in the light path and can directly be used as input for flux inversion models. In our presentation we will discuss the observational principle and the sampling strategy of the envisaged mission in connection to the needs for CH4 flux inversion experiments. In addition, we report on supporting campaign activities on airborne measurements of Lidar reflectivity data in the respective spectral region. The airborne data is of prime interest for the generation of pseudo CH4 data examples using the satellite

  13. Agricultural pest monitoring using fluorescence lidar techniques. Feasibility study

    NASA Astrophysics Data System (ADS)

    Mei, L.; Guan, Z. G.; Zhou, H. J.; Lv, J.; Zhu, Z. R.; Cheng, J. A.; Chen, F. J.; Löfstedt, C.; Svanberg, S.; Somesfalean, G.

    2012-03-01

    The fluorescence of different types of planthopper ( Hemiptera) and moth ( Lepidoptera), which constitute important Chinese agricultural pests, was investigated both in situ in a laboratory setting and remotely using a fluorescence light detection and ranging (lidar) system operating at a range of about 50 m. The natural autofluorescence of different species, as well as the fluorescence from insects that had been dusted with fluorescent dye powder for identification were studied. Autofluorescence spectra of both moths and planthoppers show a maximum intensity peak around 450 nm. Bleaching upon long-time laser illumination was modest and did not affect the shape of the spectrum. A single dyed rice planthopper, a few mm in size, could be detected at 50 m distance by using the fluorescence lidar system. By employing various marking dyes, different types of agricultural pest could be determined. We suggest that lidar may be used in studies of migration and movement of pest insects, including studies of their behavior in the vicinity of pheromone traps and in pheromone-treated fields.

  14. Modeling and comparative study of various detection techniques for FMCW LIDAR using optisystem

    NASA Astrophysics Data System (ADS)

    Elghandour, Ahmed H.; Ren, Chen D.

    2013-09-01

    In this paper we investigated the different detection techniques especially direct detection, coherent heterodyne detection and coherent homodyne detection on FMCW LIDAR system using Optisystem package. A model for target, propagation channel and various detection techniques were developed using Optisystem package and then a comparative study among various detection techniques for FMCW LIDAR systems is done analytically and simulated using the developed model. Performance of direct detection, heterodyne detection and homodyne detection for FMCW LIDAR system was calculated and simulated using Optisystem package. The output simulated performance was checked using simulated results of MATLAB simulator. The results shows that direct detection is sensitive to the intensity of the received electromagnetic signal and has low complexity system advantage over the others detection architectures at the expense of the thermal noise is the dominant noise source and the sensitivity is relatively poor. In addition to much higher detection sensitivity can be achieved using coherent optical mixing which is performed by heterodyne and homodyne detection.

  15. Novel absorption detection techniques for capillary electrophoresis

    SciTech Connect

    Xue, Yongjun

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the μM level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  16. High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, F.; Behrendt, A.; Muppa, S. K.; Metzendorf, S.; Riede, A.; Wulfmeyer, V.

    2014-11-01

    The scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) is presented. The UHOH DIAL is equipped with an injection-seeded frequency-stabilized high-power Ti:sapphire laser operated at 818 nm with a repetition rate of 250 Hz. A scanning transceiver unit with a 80 cm primary mirror receives the atmospheric backscatter signals. The system is capable of water vapor measurements with temporal resolutions of a few seconds and a range resolution between 30 and 300 m at daytime. It allows to investigate surface-vegetation-atmosphere exchange processes with high resolution. In this paper, we present the design of the instrument and illustrate its performance with recent water vapor measurements taken in Stuttgart-Hohenheim and in the frame of the HD(CP)2 Observational Prototype Experiment (HOPE). HOPE was located near research center Jülich, in western Germany, in spring 2013 as part of the project "High Definition of Clouds and Precipitation for advancing Climate Prediction" (HD(CP)2). Scanning measurements reveal the 3-dimensional structures of the water vapor field. The influence of uncertainties within the calculation of the absorption cross-section at wavelengths around 818 nm for the WV retrieval is discussed. Radiosonde intercomparisons show a very small bias between the instruments of only (-0.04 ± 0.11) g m-3 or (-1.0 ± 2.3) % in the height range of 0.5 to 3 km.

  17. Automated polarization-discrimination technique to minimize lidar-detected skylight background noise

    NASA Astrophysics Data System (ADS)

    Hassebo, Yasser Y.; Ahmed, Samir

    2007-10-01

    Recently, there has been significant interest in lidar signal-to-noise ratio (SNR) improvements, particularly for lidar daytime operations. Previously, we devised in the remote sensing laboratory at the City College of New York a polarization discrimination technique to maximize lidar detected SNR taking advantage of the natural polarization properties of scattered skylight radiation to track and minimize detected sky background signal (BGS). This tracking technique was achieved by rotating, manually, a combination of polarizer and analyzer on both the lidar transmitter and receiver subsystems, respectively. The polarization orientation at which the minimum BGS occurs, follows the solar azimuth angle, even for high aerosol loading. This has been confirmed, in our previous work, both theoretically, assuming single scattering theory, and experimentally. In this paper, a design to automate the polarization discrimination technique by real time tracking of the azimuth angle to attain the minimum BGS is presented. We introduce a feedback control system to track the minimum BGS by rotating the detector analyzer and the transmission polarizer simultaneously to maximize the SNR and attainable lidar ranges, thus achieving the same results as would be done manually. Analytical results for New York City are summarized and an approach for applying the proposed design globally is investigated.

  18. Lidar Measurements of Tropospheric Wind Profiles with the Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Mathur, Savyasachee; Chen, Huailin

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. A variety of direct detection Doppler wind lidar measurements have recently been reported indicating the growing interest in this area. Our program at Goddard has concentrated on the development of the edge technique for lidar wind measurements. Implementations of the edge technique using either the aerosol or molecular backscatter for the Doppler wind measurement have been described. The basic principles have been verified in lab and atmospheric lidar wind experiments. The lidar measurements were obtained with an aerosol edge technique lidar operating at 1064 nm. These measurements demonstrated high spatial resolution (22 m) and high velocity sensitivity (rms variances of 0.1 m/s) in the planetary boundary layer (PBL). The aerosol backscatter is typically high in the PBL and the effects of the molecular backscatter can often be neglected. However, as was discussed in the original edge technique paper, the molecular contribution to the signal is significant above the boundary layer and a correction for the effects of molecular backscatter is required to make wind measurements. In addition, the molecular signal is a dominant source of noise in regions where the molecular to aerosol ratio is large since the energy monitor channel used in the single edge technique measures the sum of the aerosol and molecular signals. To extend the operation of the edge technique into the free troposphere we

  19. Research on the space-borne coherent wind lidar technique and the prototype experiment

    NASA Astrophysics Data System (ADS)

    Gao, Long; Tao, Yuliang; An, Chao; Yang, Jukui; Du, Guojun; Zheng, Yongchao

    2016-10-01

    Space-borne coherent wind lidar technique is considered as one of the most promising and appropriate remote Sensing methods for successfully measuring the whole global vector wind profile between the lower atmosphere and the middle atmosphere. Compared with other traditional methods, the space-borne coherent wind lidar has some advantages, such as, the all-day operation; many lidar systems can be integrated into the same satellite because of the light-weight and the small size, eye-safe wavelength, and being insensitive to the background light. Therefore, this coherent lidar could be widely applied into the earth climate research, disaster monitoring, numerical weather forecast, environment protection. In this paper, the 2μm space-borne coherent wind lidar system for measuring the vector wind profile is proposed. And the technical parameters about the sub-system of the coherent wind lidar are simulated and the all sub-system schemes are proposed. For sake of validating the technical parameters of the space-borne coherent wind lidar system and the optical off-axis telescope, the weak laser signal detection technique, etc. The proto-type coherent wind lidar is produced and the experiments for checking the performance of this proto-type coherent wind lidar are finished with the hard-target and the soft target, and the horizontal wind and the vertical wind profile are measured and calibrated, respectively. For this proto-type coherent wind lidar, the wavelength is 1.54μm, the pulse energy 80μJ, the pulse width 300ns, the diameter of the off-axis telescope 120mm, the single wedge for cone scanning with the 40°angle, and the two dualbalanced InGaAs detector modules are used. The experiment results are well consisted with the simulation process, and these results show that the wind profile between the vertical altitude 4km can be measured, the accuracy of the wind velocity and the wind direction are better than 1m/s and +/-10°, respectively.

  20. Demonstration of novel polarization lidar technique for identifying horizontally oriented ice crystals

    NASA Astrophysics Data System (ADS)

    Hayman, M. M.; Thayer, J. P.; Neely, R. R.; O'Neill, M.; Stillwell, R.

    2011-12-01

    Ice crystals are known to horizontally orient in the atmosphere when drag forces overcome the randomizing effects of Brownian motion. Such ice crystals have been shown to have an impact on radiative transfer, reflecting a greater portion of incident sunlight than their randomly oriented counter parts. However, regular identification of oriented ice crystals in the atmosphere has proven challenging. Existing lidar techniques rely on detection of strong specular backscatter from oriented platelets. These measurements are not common to most lidar systems, and are in fact, frequently avoided because such strong specular signals generally overwhelm lidar detector systems designed for typical cloud and aerosol studies. When lidars are tilted to avoid these specular returns, the low polarization ratio observed in some clouds consisting of oriented ice crystals will cause researchers to incorrectly conclude they are composed of liquid water, thereby skewing cloud phase statistics and providing an incorrect estimate of the cloud's impact on radiative transfer. To address these problems, we apply a novel lidar configuration, which provides a unique polarization capability that detects oriented ice crystals. By tilting the lidar off zenith and performing three polarization measurements, diattenuation, a polarization attribute only exhibited by oriented ice crystals, can be measured. This allows us to disambiguate clouds consisting of oriented ice crystals and water. We present here some of the first measurements of diattenuation for detection of oriented ice crystals as performed by the CAPABL lidar system in Summit Camp, Greenland. This polarization technique avoids detecting the strong specular reflections commonly used to identify oriented ice crystals, allowing return signals from oriented crystals to remain in the same dynamic range as other clouds and aerosols. This feature makes it possible for CAPABL to perform accurate, high performance measurements of all clouds and

  1. Edge technique - Theory and application to the lidar measurement of atmospheric wind

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Gentry, Bruce M.; Weng, Chi Y.

    1992-01-01

    The paper describes the theory of the edge technique, a powerful method for the detection and measurement of small frequency shifts. It can be employed with a lidar to obtain range-resolved measurements of wind with high accuracy and high vertical resolution. The technique can be applied to measure wind with a lidar by using either the aerosol or molecular backscattered signal. Simulations for a ground-based lidar at 1.06 micron using reasonable instrumental parameters show an accuracy of the vector components of the wind which is better than 0.5 m/s from the ground to an altitude of 20 km for a 100-m vertical resolution and a 100-shot average.

  2. First measurements of a carbon dioxide plume from an industrial source using a ground based mobile differential absorption lidar.

    PubMed

    Robinson, R A; Gardiner, T D; Innocenti, F; Finlayson, A; Woods, P T; Few, J F M

    2014-08-01

    The emission of carbon dioxide (CO2) from industrial sources is one of the main anthropogenic contributors to the greenhouse effect. Direct remote sensing of CO2 emissions using optical methods offers the potential for the identification and quantification of CO2 emissions. We report the development and demonstration of a ground based mobile differential absorption lidar (DIAL) able to measure the mass emission rate of CO2 in the plume from a power station. To our knowledge DIAL has not previously been successfully applied to the measurement of emission plumes of CO2 from industrial sources. A significant challenge in observing industrial CO2 emission plumes is the ability to discriminate and observe localised concentrations of CO2 above the locally observed background level. The objectives of the study were to modify our existing mobile infrared DIAL system to enable CO2 measurements and to demonstrate the system at a power plant to assess the feasibility of the technique for the identification and quantification of CO2 emissions. The results of this preliminary study showed very good agreement with the expected emissions calculated by the site. The detection limit obtained from the measurements, however, requires further improvement to provide quantification of smaller emitters of CO2, for example for the detection of fugitive emissions. This study has shown that in principle, remote optical sensing technology will have the potential to provide useful direct data on CO2 mass emission rates.

  3. Ground-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere.

    PubMed

    Proffitt, M H; Langford, A O

    1997-04-20

    The National Oceanic and Atmospheric Administration Aeronomy Laboratory's rapid tunable daylight differential absorption lidar system for monitoring ozone throughout the free troposphere is described. The system components are optimized to provide continuously and rapidly profiles of ozone, day or night, with a vertical resolution of 1 km and an absolute accuracy of +/-10% to the tropopause under clear sky conditions. Routine observations of ozone with frequent error assessments are made by scanning wavelengths between 286 and 292 nm.

  4. Atmospheric Backscatter Profiles at 1572nm from Pulsed Lidar Measurments of CO2 Column Absorption from the 2011 ASCENDS Flight Campaign

    NASA Astrophysics Data System (ADS)

    Allan, G. R.; Riris, H.; Hasselbrack, W.; Sun, X.; Ramanathan, A.; Mao, J.; Abshire, J. B.

    2012-12-01

    We present height-resolved backscatter profiles from the NASA Goddard Space Flight Center's CO2 sounder lidar, rich in detail, which shows clear evidence of multiple backscatter layers, clouds, and aerosols allowing for the identification of the Planetary Boundary Layer (PBL). This data is recorded as a consequence of our pulsed lidar measurements of the CO2 column absorption. The CO2 Sounder is a pulsed lidar for active remote measurements of CO2 abundance from an airborne platform and is one candidate for the lidar on the NASA ASCENDS mission. The lidar uses a scanning, pulsed laser and fiber amplifier in a Master Oscillator Power Amplifier (MOPA) configuration to measure CO2 absorption at 1572.335 nm, lineshape, range to scattering surface and backscatter profiles. The laser is scanned across the absorption feature measuring at 30 discrete wavelengths/scan and ~300 scans/sec. The time-resolved return signal, with a temporal resolution of 8ns, is detected by a photon-counting PMT fiber coupled to a modified commercial, 2m focal length f10 Schmidt-Cassegrain telescope. The column density for CO2 is estimated from the differential optical depth (DOD) of the scanned absorption line using an integrated-path differential absorption (IPDA) technique and the optical path from the time of flight. A backscatter profile of the measured column is recorded for every pulse of every scan and integrated for 1 second. The backscatter profiles we will show are determined from the receivers photon counting record using a cross-correaltion technique (sliding inner product) with a vertical resolution of better than 300m, set by the 1μs pulse width from the MOPA. The range to the surface can be determined to a few meters. Major benefits of a pulsed technique using time-resolved detection to measure lineshape, is the unambiguous detection of the ground return, intervening clouds, aerosols and information on the vertical distribution of CO2. This technique can uniquely identify the

  5. A Water Vapor Differential Absorption LIDAR Design for Unpiloted Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Mead, Patricia F.

    2004-01-01

    This system study proposes the deployment of a water vapor Differential Absorption LIDAR (DIAL) system on an Altair unmanned aerial vehicle (UAV) platform. The Altair offers improved payload weight and volume performance, and longer total flight time as compared to other commercial UAV's. This study has generated a preliminary design for an Altair based water vapor DIAL system. The design includes a proposed DIAL schematic, a review of mechanical challenges such as temperature and humidity stresses on UAV deployed DIAL systems, an assessment of the available capacity for additional instrumentation (based on the proposed design), and an overview of possible weight and volume improvements associated with the use of customized electronic and computer hardware, and through the integration of advanced fiber-optic and laser products. The results of the study show that less than 17% of the available weight, less than 19% of the volume capacity, and approximately 11% of the electrical capacity is utilized by the proposed water vapor DIAL system on the Altair UAV.

  6. Evaluation of tropospheric water vapor profiling using eye-safe, infrared differential absorption lidar

    SciTech Connect

    Rye, B.J. |; Machol, J.L.; Grund, C.J.; Hardesty, R.M.

    1996-05-14

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution are fundamental to the success of the ARM CART program. In addition, these should be acquired over long periods at low operational and maintenance cost. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. To date, application of profiles have been limited by vertical resolution and uniqueness and high operating cost, or diminished daytime performance, lack of eye-safety, and high maintenance cost. Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the studies reported here, we develop DIAL system performance models and examine the potential of solving some of the shortcomings of previous methods using parameters representative of current technologies. These simulations are also applied to determine the strengths and weaknesses unique to the DIAL method for this application.

  7. Self-calibration and laser energy monitor validations for a double-pulsed 2-μm CO2 integrated path differential absorption lidar application.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Petros, Mulugeta; Remus, Ruben; Yu, Jirong

    2015-08-20

    Double-pulsed 2-μm integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-μm double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photoelectromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-μm IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.

  8. Optimization of A 2-Micron Laser Frequency Stabilization System for a Double-Pulse CO2 Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Yu, Jirong; Bai, Yingsin; Koch, Grady; Petros, Mulugeta; Trieu, Bo; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    A carbon dioxide (CO2) Differential Absorption Lidar (DIAL) for accurate CO2 concentration measurement requires a frequency locking system to achieve high frequency locking precision and stability. We describe the frequency locking system utilizing Frequency Modulation (FM), Phase Sensitive Detection (PSD), and Proportional Integration Derivative (PID) feedback servo loop, and report the optimization of the sensitivity of the system for the feed back loop based on the characteristics of a variable path-length CO2 gas cell. The CO2 gas cell is characterized with HITRAN database (2004). The method can be applied for any other frequency locking systems referring to gas absorption line.

  9. Optical parametric oscillators in lidar sounding of trace atmospheric gases in the mid infrared region

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Sadovnikov, S. A.; Kharchenko, O. V.; Shumskii, V. K.; Yakovlev, S. V.

    2015-12-01

    Applicability of a KTA crystal-based laser system with optical parametric generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases is based on differential absorption (DIAL) technique and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases.

  10. Doppler Lidar Measurements of Tropospheric Wind Profiles Using the Aerosol Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Mathur, Savyasachee; Korb, C. Laurence; Chen, Huailin

    2000-01-01

    The development of a ground based direct detection Doppler lidar based on the recently described aerosol double edge technique is reported. A pulsed, injection seeded Nd:YAG laser operating at 1064 nm is used to make range resolved measurements of atmospheric winds in the free troposphere. The wind measurements are determined by measuring the Doppler shift of the laser signal backscattered from atmospheric aerosols. The lidar instrument and double edge method are described and initial tropospheric wind profile measurements are presented. Wind profiles are reported for both day and night operation. The measurements extend to altitudes as high as 14 km and are compared to rawinsonde wind profile data from Dulles airport in Virginia. Vertical resolution of the lidar measurements is 330 m and the rms precision of the measurements is a low as 0.6 m/s.

  11. UARS MILS O3 soundings compared with lidar measurements using the conservative coordinates reconstruction technique

    NASA Technical Reports Server (NTRS)

    Redaelli, G.; Lait, L. R.; Schoeberl, M.; Newman, P. A.; Visconti, G.; D'Altorio, A.; Masci, F.; Rizi, V.; Froidevaux, L.; Waters, J. W.

    1994-01-01

    A technique based on conservative properties of certain meteorological fields is used to compare ozone measurements from the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) with soundings from a lidar system operated at midlatitudes by the University of L'Aquila, Italy. A few typical cases are analyzed in connection with the position of the vortex relative to the observing station, and it is shown that in general lidar observations taken within the vortex compare well with the UARS data, regardless of whether they are coincident with a satellite overpass. It is shown that such analysis may be useful for comparing measurements of the same quantity taken at different sites using different measurement techniques.

  12. Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Bills, Richard E.; Gardner, Chester S.; She, Chiao-Yao

    1991-01-01

    A new two-frequency lidar for measuring mesospheric Na temperature profiles is described that uses a stabilized CW single-mode dye laser oscillator (rms frequency jitter less than 1 MHz) followed by a pulsed dye power amplifier (140 MHz FWHM linewidth) that is pumped by an injection-locked Nd:YAG laser. The laser oscillator is tuned to the two operating freqencies by observing the Doppler-free structure of the Na D2 fluorescence spectrum in a vapor cell. The lidar technique and initial observations of the temperature profile between 82 and 102 km at Ft. Collins, CO are described. Absolute temperature accuracies at the Na layer peak of better than + or - 3 K with a vertical resolution of 1 km and an integration period of approximately 5 min were achieved in this initial experiment. Finally, a multiple frequency technique for the simultaneous measurement of both temperature and Doppler wind profiles is discussed.

  13. Triple-Pulsed Two-Micron Integrated Path Differential Absorption Lidar: A New Active Remote Sensing Capability with Path to Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong

    2015-01-01

    The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-micron laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-micron integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.

  14. Progress toward a water-vapor differential absorption lidar (DIAL) using a widely tunable amplified diode laser source

    NASA Astrophysics Data System (ADS)

    Obland, Michael D.; Meng, Lei S.; Repasky, Kevin S.; Shaw, Joseph A.; Carlsten, John L.

    2005-08-01

    Water vapor is one of the most significant constituents of the atmosphere because of its role in cloud formation, precipitation, and interactions with electromagnetic radiation, especially its absorption of longwave infrared radiation. Some details of the role of water vapor and related feedback mechanisms in the Earth system need to be characterized better if local weather, global climate, and the water cycle are to be understood. A Differential Absorption LIDAR (DIAL) with a compact laser diode source may be able to provide boundary-layer water vapor profiles with improved vertical resolution relative to passive remote sensors. While the tradeoff with small DIAL systems is lower vertical resolution relative to large LIDARs, the advantage is that DIAL systems can be built much smaller and more robust at less cost, and consequently are the more ideal choice for creating a multi-point array or satellite-borne system. This paper highlights the progress made at Montana State University towards a water vapor DIAL using a widely tunable amplified external cavity diode laser (ECDL) transmitter. The ECDL is configured in a Littman-Metcalf configuration and was built at Montana State University. It has a continuous wave (cw) output power of 20 mW, a center wavelength of 832 nm, a coarse tuning range of 17 nm, and a continuous tuning range greater than 20 GHz. The ECDL is used to injection seed a tapered amplifier with a cw output power of 500 mW. The spectral characteristics of the ECDL are transferred to the output of the tapered amplifier. The rest of the LIDAR uses commercially available telescopes, filter optics, and detectors. Initial cw and pulsed absorption measurements are presented.

  15. New Examination of the Traditional Raman Lidar Technique. 1; Temperature Dependence and the Calculation of Atmospheric Transmission

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    The intent of this paper and its companion paper is to pull together the essential information required for the traditional Raman lidar data analysis to be performed. As a part of this, complications such as the temperature dependence of the water vapor signal is evaluated through numerical simulation. A new form of the lidar equation is presented that accounts for the temperature dependence of Raman scattering. Also the calculation of atmospheric transmission is examined carefully. Several photon correction techniques are considered as is the influence of multiple scattering on the measurement of aerosol extinction using the Raman lidar technique.

  16. Impact of broadened laser line-shape on retrievals of atmospheric species from lidar sounding absorption spectra.

    PubMed

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2015-02-09

    We examine the impact of broadened laser line-shape on retrievals of atmospheric species from lidar-sounding absorption spectra. The laser is assumed to be deterministically modulated into a stable, nearly top-hat frequency comb to suppress the stimulated Brillouin scattering, allowing over 10-fold pulse energy increase without adding measurement noise. Our model remains accurate by incorporating the laser line-shape factor into the effective optical depth. Retrieval errors arising from measurement noise and model bias are analyzed parametrically and numerically to provide deeper insight. The stable laser line-shape broadening minimally degrades the column-averaged retrieval, but can significantly degrade the multiple-layer retrievals.

  17. Development and operation of a real-time data acquisition system for the NASA-LaRC differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Butler, C.

    1985-01-01

    Computer hardware and software of the NASA multipurpose differential absorption lidar (DIAL) sysatem were improved. The NASA DIAL system is undergoing development and experimental deployment for remote measurement of atmospheric trace gas concentration from ground and aircraft platforms. A viable DIAL system was developed with the capability of remotely measuring O3 and H2O concentrations from an aircraft platform. Test flights were successfully performed on board the NASA/Goddard Flight Center Electra aircraft from 1980 to 1984. Improvements on the DIAL data acquisition system (DAS) are described.

  18. Acousto-optically tuned isotopic CO{sub 2} lasers for long-range differential absorption LIDAR

    SciTech Connect

    Thompson, D.C.; Busch, G.E.; Hewitt, C.J.; Remelius, D.K.; Shimada, Tsutomu; Strauss, C.E.M.; Wilson, C.W.

    1998-12-01

    The authors are developing 2--100 kHz repetition rate CO{sub 2} lasers with milliJoule pulse energies, rapid acousto-optic tuning and isotopic gas mixes, for Differential Absorption LIDAR (DIAL) applications. The authors explain the tuning method, which uses a pair of acousto-optic modulators and is capable of random access to CO{sub 2} laser lines at rates of 100 kHz or more. The laser system is also described, and they report on performance with both normal and isotopic gas mixes.

  19. Tone-burst technique measures high-intensity sound absorption

    NASA Technical Reports Server (NTRS)

    Powell, J. G.; Van Houten, J. J.

    1971-01-01

    Tone-burst technique, in which narrow-bandwidth, short-duration sonic pulse is propagated down a standing-wave tube, measures sound absorbing capacity of materials used in jet engine noise abatement. Technique eliminates effects of tube losses and yields normal-incidence absorption coefficient of specimen.

  20. Tropospheric temperature measurements with the pure rotational Raman lidar technique using nonlinear calibration functions

    NASA Astrophysics Data System (ADS)

    Zuev, Vladimir V.; Gerasimov, Vladislav V.; Pravdin, Vladimir L.; Pavlinskiy, Aleksei V.; Nakhtigalova, Daria P.

    2017-01-01

    Among lidar techniques, the pure rotational Raman (PRR) technique is the best suited for tropospheric and lower stratospheric temperature measurements. Calibration functions are required for the PRR technique to retrieve temperature profiles from lidar remote sensing data. Both temperature retrieval accuracy and number of calibration coefficients depend on the selected function. The commonly used calibration function (linear in reciprocal temperature 1/T with two calibration coefficients) ignores all types of broadening of individual PRR lines of atmospheric N2 and O2 molecules. However, the collisional (pressure) broadening dominates over other types of broadening of PRR lines in the troposphere and can differently affect the accuracy of tropospheric temperature measurements depending on the PRR lidar system. We recently derived the calibration function in the general analytical form that takes into account the collisional broadening of all N2 and O2 PRR lines (Gerasimov and Zuev, 2016). This general calibration function represents an infinite series and, therefore, cannot be directly used in the temperature retrieval algorithm. For this reason, its four simplest special cases (calibration functions nonlinear in 1/T with three calibration coefficients), two of which have not been suggested before, were considered and analyzed. All the special cases take the collisional PRR lines broadening into account in varying degrees and the best function among them was determined via simulation. In this paper, we use the special cases to retrieve tropospheric temperature from real PRR lidar data. The calibration function best suited for tropospheric temperature retrievals is determined from the comparative analysis of temperature uncertainties yielded by using these functions. The absolute and relative statistical uncertainties of temperature retrieval are given in an analytical form assuming Poisson statistics of photon counting. The vertical tropospheric temperature

  1. Diode-Laser-Based Differential Absorption Lidar (DIAL) for Long Term Autonomous Field Deployment

    NASA Astrophysics Data System (ADS)

    Moen, D.; Repasky, K. S.; Spuler, S.; Nehrir, A. R.

    2015-12-01

    The rapidly changing spatial and temporal distribution of water vapor in the planetary boundary layer influences dynamical and physical processes that drive weather phenomena, general circulation patterns, radiative transfer, and the global water cycle. The ability to measure the water vapor distribution continuously within the lower troposphere has been identified as a high priority measurement capability needed by both the weather forecasting and climate science communities. This presentation provides an update on an economical and compact diode-laser-based differential absorption lidar (DIAL) which has demonstrated the capability of meeting these high priority measurement needs. The DIAL instrument utilizes two continuous wave distributed feedback diode lasers to injection seed a current modulated tapered semiconductor optical amplifier. An improved switching time between the on-line and off-line wavelength, on the order of 16.7 ms, allows the instrument to retrieve water vapor profiles in rapidly changing atmospheric conditions. A shared telescope design based on a 40.64 cm diameter Dobsonian telescope allows the outgoing beam to be eye-safe at the exit of the telescope. The DIAL receiver utilizes the Dobsonian telescope to collect the scattered light and direct it through an optical narrow bandpass filter (NBF) and a Fabry-Perot etalon with a free spectral range of 0.1 nm which is equal to the wavelength difference between the on-line and off-line DIAL wavelengths. A beam splitter directs 90% of the scattered light through a second NBF, and couples it onto a fiber coupled avalanche photodiode (APD), providing a far field measurement. The remaining 10% of the light passing through the beam splitter is incident on a free space coupled APD, providing a wider field of view for water vapor measurements at lower altitudes. The two channel receiver allows water vapor measurement between 500 m and 4 km/6km during daytime/nighttime operation, respectively. The DIAL

  2. Advancing IM-CW Lidar Modulation Techniques for ASCENDS CO2 Column Measurements from Space

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Harrison, F. W.; Chen, S.; Obland, M. D.

    2013-12-01

    Global atmospheric carbon dioxide (CO2) measurements through the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) decadal survey recommended space mission are critical for improving our understanding of CO2 sources and sinks. IM-CW (Intensity Modulated Continuous Wave) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS science requirements. In previous laboratory and flight experiments we have successfully used linear swept frequency modulation to discriminate surface lidar returns from intermediate aerosol and cloud contamination. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate clouds, which is a requirement for the inversion of the CO2 column mixing ratio from the instrument optical depth measurements, has been demonstrated with the linear swept frequency modulation technique. We are concurrently investigating advanced techniques to help improve the auto-correlation properties of the transmitted waveform implemented through physical hardware to make cloud rejection more robust in special restricted scenarios. Several different modulation techniques are compared including orthogonal linear swept, orthogonal non-linear swept, time shifted PN, sine wave modulated PN, and sine wave pulsed PN. Different PN code techniques are presented that are appropriate for different types of lidar hardware, including our current ASCENDS IM-CW concept space hardware. These techniques have excellent auto-correlation properties without sidelobes while possessing a finite bandwidth (by way of a new cyclic digital filter), which will reduce bias error in the presence of multiple scatterers. Our analyses show that the studied modulation techniques can increase the accuracy of CO2 column measurements from space.

  3. Design of Advanced Atmospheric Water Vapor Differential Absorption Lidar (DIAL) Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    The measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The lidar atmospheric sensing experiment (LASE) is an instrument designed and operated by the Langley Research Center for high precision water vapor measurements. The design details of a new water vapor lidar detection system that improves the measurement sensitivity of the LASE instrument by a factor of 10 are discussed. The new system consists of an advanced, very low noise, avalanche photodiode (APD) and a state-of-the-art signal processing circuit. The new low-power system is also compact and lightweight so that it would be suitable for space flight and unpiloted atmospheric vehicles (UAV) applications. The whole system is contained on one small printed circuit board (9 x 15 sq cm). The detection system is mounted at the focal plane of a lidar receiver telescope, and the digital output is read by a personal computer with a digital data acquisition card.

  4. Visualization of a smoke flow field by using a lidar and DIC technique

    NASA Astrophysics Data System (ADS)

    Park, Nak Gyu; Baik, Sung Hoon; Park, Seung Kyu; Kim, Dong Lyul

    2015-11-01

    A visualization technique for the velocity field of plant smoke is described. We intend to present a long-range measurement method for a velocity field calculation from a series of images containing an illuminated planar layer of fluid. The main system is configured with two technical parts. One is a lidar system, which is for measuring the distance from an observer to the plant smoke, and the other is a DIC (digital image correlation) system. We configured the lidar system by using a Nd-YAG pulsed laser (10 Hz, injection seeded), a telescope (Schmidt Cassegrain type, diameter: 30 cm) and a PMT (photomultiplier tube). The DIC system is configured to track smoke images by using the developed fast correlation algorithm of the DIC. We acquired the velocity fields of smoke by using the calculated distance and the DIC algorithm. In this paper, we propose a new method for measuring the smoke velocity and visualizing the flow field.

  5. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements.

    PubMed

    Koch, Grady J; Beyon, Jeffrey Y; Gibert, Fabien; Barnes, Bruce W; Ismail, Syed; Petros, Mulugeta; Petzar, Paul J; Yu, Jirong; Modlin, Edward A; Davis, Kenneth J; Singh, Upendra N

    2008-03-01

    A 2 microm wavelength, 90 mJ, 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 2.9 GHz from the center of a CO(2) absorption line. Once detuned from the line center the laser wavelength is actively locked to keep the wavelength within 1.9 MHz standard deviation about the setpoint. This wavelength control allows optimization of the optical depth for a differential absorption lidar (DIAL) measuring atmospheric CO(2) concentrations. The laser transmitter has been coupled with a coherent heterodyne receiver for measurements of CO(2) concentration using aerosol backscatter; wind and aerosols are also measured with the same lidar and provide useful additional information on atmospheric structure. Range-resolved CO(2) measurements were made with <2.4% standard deviation using 500 m range bins and 6.7 min? (1000 pulse pairs) integration time. Measurement of a horizontal column showed a precision of the CO(2) concentration to <0.7% standard deviation using a 30 min? (4500 pulse pairs) integration time, and comparison with a collocated in situ sensor showed the DIAL to measure the same trend of a diurnal variation and to detect shorter time scale CO(2) perturbations. For vertical column measurements the lidar was setup at the WLEF tall tower site in Wisconsin to provide meteorological profiles and to compare the DIAL measurements with the in situ sensors distributed on the tower up to 396 m height. Assuming the DIAL column measurement extending from 153 m altitude to 1353 m altitude should agree with the tower in situ sensor at 396 m altitude, there was a 7.9 ppm rms difference between the DIAL and the in situ sensor using a 30 min? rolling average on the DIAL measurement.

  6. Multi-wavelength dual polarisation lidar for monitoring precipitation process in the cloud seeding technique

    NASA Astrophysics Data System (ADS)

    Sudhakar, P.; Sheela, K. Anitha; Ramakrishna Rao, D.; Malladi, Satyanarayana

    2016-05-01

    In recent years weather modification activities are being pursued in many countries through cloud seeding techniques to facilitate the increased and timely precipitation from the clouds. In order to induce and accelerate the precipitation process clouds are artificially seeded with suitable materials like silver iodide, sodium chloride or other hygroscopic materials. The success of cloud seeding can be predicted with confidence if the precipitation process involving aerosol, the ice water balance, water vapor content and size of the seeding material in relation to aerosol in the cloud is monitored in real time and optimized. A project on the enhancement of rain fall through cloud seeding is being implemented jointly with Kerala State Electricity Board Ltd. Trivandrum, Kerala, India at the catchment areas of the reservoir of one of the Hydro electric projects. The dual polarization lidar is being used to monitor and measure the microphysical properties, the extinction coefficient, size distribution and related parameters of the clouds. The lidar makes use of the Mie, Rayleigh and Raman scattering techniques for the various measurement proposed. The measurements with the dual polarization lidar as above are being carried out in real time to obtain the various parameters during cloud seeding operations. In this paper we present the details of the multi-wavelength dual polarization lidar being used and the methodology to monitor the various cloud parameters involved in the precipitation process. The necessary retrieval algorithms for deriving the microphysical properties of clouds, aerosols characteristics and water vapor profiles are incorporated as a software package working under Lab-view for online and off line analysis. Details on the simulation studies and the theoretical model developed in this regard for the optimization of various parameters are discussed.

  7. Liquid Water Cloud Measurements Using the Raman Lidar Technique: Current Understanding and Future Research Needs

    NASA Technical Reports Server (NTRS)

    Tetsu, Sakai; Whiteman, David N.; Russo, Felicita; Turner, David D.; Veselovskii, Igor; Melfi, S. Harvey; Nagai, Tomohiro; Mano, Yuzo

    2013-01-01

    This paper describes recent work in the Raman lidar liquid water cloud measurement technique. The range-resolved spectral measurements at the National Aeronautics and Space Administration Goddard Space Flight Center indicate that the Raman backscattering spectra measured in and below low clouds agree well with theoretical spectra for vapor and liquid water. The calibration coefficients of the liquid water measurement for the Raman lidar at the Atmospheric Radiation Measurement Program Southern Great Plains site of the U.S. Department of Energy were determined by comparison with the liquid water path (LWP) obtained with Atmospheric Emitted Radiance Interferometer (AERI) and the liquid water content (LWC) obtained with the millimeter wavelength cloud radar and water vapor radiometer (MMCR-WVR) together. These comparisons were used to estimate the Raman liquid water cross-sectional value. The results indicate a bias consistent with an effective liquid water Raman cross-sectional value that is 28%-46% lower than published, which may be explained by the fact that the difference in the detectors' sensitivity has not been accounted for. The LWP of a thin altostratus cloud showed good qualitative agreement between lidar retrievals and AERI. However, the overall ensemble of comparisons of LWP showed considerable scatter, possibly because of the different fields of view of the instruments, the 350-m distance between the instruments, and the horizontal inhomogeneity of the clouds. The LWC profiles for a thick stratus cloud showed agreement between lidar retrievals andMMCR-WVR between the cloud base and 150m above that where the optical depth was less than 3. Areas requiring further research in this technique are discussed.

  8. Wavelength locking to CO2 absorption line-center for 2-μm pulsed IPDA lidar application

    NASA Astrophysics Data System (ADS)

    Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong

    2016-05-01

    An airborne 2-m triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-μm CW laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nm, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.

  9. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-10-01

    Tropospheric ozone profiles have been retrieved from the new ground-based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.), from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the DIAL technique, which currently detects two wavelengths, 289 and 299 nm, with multiple receivers. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high-pressure hydrogen and deuterium, using helium as buffer gas. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range-resolved number density can be derived. An interesting atmospheric case study involving the stratospheric-tropospheric exchange (STE) of ozone is shown, to emphasize the regional importance of this instrument as well as to assess the validation and calibration of data. There was a low amount of aerosol aloft, and an iterative aerosol correction has been performed on the retrieved data, which resulted in less than a 3 ppb correction to the final ozone concentration. The retrieval yields an uncertainty of 16-19% from 0 to 1.5 km, 10-18% from 1.5 to 3 km, and 11-25% from 3 to 12 km according to the relevant aerosol concentration aloft. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington, D.C. area.

  10. Lidar reflectance from snow at 2.05  μm wavelength as measured by the JPL Airborne Laser Absorption Spectrometer.

    PubMed

    Spiers, Gary D; Menzies, Robert T; Jacob, Joseph C

    2016-03-10

    We report airborne measurements of lidar directional reflectance (backscatter) from land surfaces at a wavelength in the 2.05 μm CO₂ absorption band, with emphasis on snow-covered surfaces in various natural environments. Lidar backscatter measurements using this instrument provide insight into the capabilities of lidar for both airborne and future global-scale CO₂ measurements from low Earth orbit pertinent to the NASA Active Sensing of CO₂ Emissions over Nights, Days, and Seasons mission. Lidar measurement capability is particularly useful when the use of solar scattering spectroscopy is not feasible for high-accuracy atmospheric CO₂ measurements. Consequently, performance in high-latitude and winter season environments is an emphasis. Snow-covered surfaces are known to be dark in the CO₂ band spectral regions. The quantitative backscatter data from these field measurements help to elucidate the range of backscatter values that can be expected in natural environments.

  11. Pure rotational Raman lidar based on wavelength division multiplexing technique for temperature profiling of the troposphere

    NASA Astrophysics Data System (ADS)

    Mao, Jiandong; Hua, Dengxin; Hu, Liaolin; Gao, Fei; Wu, Min

    2007-11-01

    A new high-accuracy pure rotational Raman (PRR) lidar system at a laser wavelength of 532.25 nm, based on a technique of wavelength division multiplexing (WDM), has been designed for profiling the atmospheric temperature of the low troposphere. A special WDM, which was usually used in fiber communication field, is designed to separate two PRR signals of N II and O II for temperature retrieval, and to simultaneously block Mie- and Rayleigh-scattering signals with a rejection rate of large than 10 7. A numerical calculation is simulated to verify the feasibility of the lidar system, and the results showed that the PRR lidar based on spectroscopic characteristic of the WDM is capable of measuring the atmospheric temperature vertical profiles in the low troposphere, and a statistical temperature error less then 1K was achieved up to a height of 3.3 km and 5 km for daytime and nighttime measurement, respectively, under conditions of 300 mJ laser energy, 25-cm-diameter telescope, 10 min observation time, solar radiance of 3×10 8 Wm -2sr -1nm -1 and atmospheric backscattering ratio less then 3.4.

  12. Deconvolution of CPM absorption spectra: A new technique

    NASA Astrophysics Data System (ADS)

    Jensen, Pablo

    1990-12-01

    We have found a new technique for deconvoluting absorption spectra obtained with the constant photocurrent method on hydrogenated amorphous silicon samples. We have shown that our method is simpler and more accurate than those used until now. Finally, examples of spectra deconvolution for one sample after various thermal treatments are provided.

  13. Spectral Ratio Biospheric Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Knox, Robert G.

    2004-01-01

    A new active vegetation index measurement technique has been developed and demonstrated using low-power laser diodes to make horizontal-path lidar measurements of nearby deciduous foliage. The two wavelength laser transmitter operates within and adjacent to the 680 nm absorption feature exhibited by all chlorophyll containing vegetation. Measurements from early October through late November 2003 are presented and the results are discussed.

  14. Generalized high-spectral-resolution lidar technique with a multimode laser for aerosol remote sensing.

    PubMed

    Cheng, Zhongtao; Liu, Dong; Zhang, Yupeng; Liu, Chong; Bai, Jian; Wang, Dan; Wang, Nanchao; Zhou, Yudi; Luo, Jing; Yang, Yongying; Shen, Yibing; Su, Lin; Yang, Liming

    2017-01-23

    High-spectral-resolution lidar (HSRL) is a powerful tool for atmospheric aerosol remote sensing. The current HSRL technique often requires a single longitudinal mode laser as the transmitter to accomplish the spectral discrimination of the aerosol and molecular scattering conveniently. However, single-mode laser is cumbersome and has very strict requirements for ambient stability, making the HSRL instrument not so robust in many cases. In this paper, a new HSRL concept, called generalized HSRL technique with a multimode laser (MML-gHSRL), is proposed, which can work using a multimode laser. The MML-gHSRL takes advantage of the period characteristic of the spectral function of the interferometric spectral discrimination filter (ISDF) thoroughly. By matching the free spectral range of the ISDF with the mode interval of the multimode laser, fine spectral discrimination for the lidar return from each longitudinal mode can be realized. Two common ISDFs, i.e., the Fabry-Perot interferometer (FPI) and field-widened Michelson interferometer (FWMI), are introduced to develop the MML-gHSRL, and their performance is quantitatively analyzed and compared. The MML-gHSRL is a natural but significant generalization for the current HSRL technique based on the IDSF. It is potential that this technique would be a good entrance to future HSRL developments, especially in airborne and satellite-borne aerosol remote sensing applications.

  15. An Ozone Differential Absorption Lidar (DIAL) Receiver System for Use on Unpiloted Atmospheric Vehicles

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Goldschmidt, Soenke

    1999-01-01

    Measurements of global atmosphere ozone concentrations call for flexible lidar systems that can be operated from an unpiloted atmospheric vehicle (UAV) to reduce the cost of measurement missions. A lidar receiver system consisting of a fiber-optic-coupled telescope has been designed and tested for this purpose. The system weight is 13 kg and its volume of 0.06 m 3 would fit into the payload compartment of a Perseus B UAV. The optical efficiency of the telescope is 37 percent at 288 nm and 64 percent at 300 nm. Atmospheric measurements with a DIAL laser system have been performed, and the measured ozone density has matched the data from ozonesondes to an altitude of 7 km.

  16. Airborne Differential Absorption and High Spectral Resolution Lidar Measurements for Cirrus Cloud Studies

    NASA Astrophysics Data System (ADS)

    Gross, Silke; Schaefler, Andreas; Wirth, Martin; Fix, Andreas

    2016-06-01

    Aerosol and water vapor measurements were performed with the lidar system WALES of the German Aerospace Center (DLR) onboard the German research aircraft G550-HALO during the HALO Techno-Mission in October and November 2010 and during the ML-Cirrus mission in March and April 2014 over Central Europe and the North Atlantic region. Curtains composed of lidar profiles beneath the aircraft show the water vapor mixing ratio and the backscatter ratio. Temperature data from ECMWF model analysis are used to calculate the relative humidity above ice (RHi) in the 2-D field along the flight track to study the RHi distribution inside and outside of cirrus clouds at different stages of cloud evolution.

  17. Atmospheric Backscatter Profiles at 765nm and 1572nm from Pulsed Lidar Measurements of CO2 and O2 Column Absorption from the 2013 ASCENDS Flight Campaign

    NASA Astrophysics Data System (ADS)

    Allan, G. R.; Riris, H.; Hasselbrack, W.; Rodriguez, M.; Ramanathan, A.; Sun, X.; Mao, J.; Abshire, J. B.

    2013-12-01

    We present height-resolved, range corrected, backscatter profiles from NASA GSFC's two-channel (CO2 & O2) sounder, an Integrated Path Differential Absorption (IPDA) lidar, which measures simultaneously both carbon dioxide & oxygen column absorptions. These backscatter profiles show clear evidence of multiple backscattering layers, clouds & aerosols, which allows for the identification of the Planetary Boundary Layer (PBL). The backscatter measurements enable sampling of the vertical distribution of CO2 in the atmosphere when broken & thin clouds are present & may help identify sources & sinks within the PBL as opposed to natural variations in the vertical distribution of CO2. The CO2 Sounder is an airborne pulsed lidar for active remote measurements of CO2 abundance & is a candidate for NASA's ASCENDS mission (Active Sensing of CO2 Emissions over Nights, Days & Seasons). The O2 channel measures atmospheric pressure in the same air column to calculate the dry mixing ratio of CO2. The lidars use a scanning, pulsed laser & fiber amplifier in a Master Oscillator Power Amplifier configuration to measure lineshape, range to scattering surface & backscatter profiles. The CO2 channel operates at 1572.335 nm. The O2 channel uses similar technology but frequency doubles the output from ~1530nm to the O2 A-band absorption around 765nm. Both lasers are scanned across the absorption feature of interest sampling the line at a fixed number of discrete wavelengths per scan around ~300 scans per second. The time-resolved return signal is detected by photon-counting detectors with a temporal resolution of a few nanoseconds. The CO2 channel uses a PMT while the O2 channel uses Single Photon Counting Modules. The detectors are fiber coupled to a 2m f10 Schmidt-Cassegrain telescope. The column density of the gas of interest is estimated from the differential optical depths of the scanned absorption using the IPDA technique & the optical path from the time of flight. A backscatter

  18. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  19. Lidar investigations of atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Philbrick, C. Russell; Hallen, Hans D.

    2015-09-01

    Ground based lidar techniques using Raleigh and Raman scattering, differential absorption (DIAL), and supercontinuum sources are capable of providing unique signatures to study dynamical processes in the lower atmosphere. The most useful profile signatures of dynamics in the lower atmosphere are available in profiles of time sequences of water vapor and aerosol optical extinction obtained with Raman and DIAL lidars. Water vapor profiles are used to study the scales and motions of daytime convection cells, residual layer bursts into the planetary boundary layer (PBL), variations in height of the PBL layer, cloud formation and dissipation, scale sizes of gravity waves, turbulent eddies, as well as to study the seldom observed phenomena of Brunt-Väisälä oscillations and undular bore waves. Aerosol optical extinction profiles from Raman lidar provide another tracer of dynamics and motion using sequential profiles atmospheric aerosol extinction, where the aerosol distribution is controlled by dynamic, thermodynamic, and photochemical processes. Raman lidar profiles of temperature describe the stability of the lower atmosphere and measure structure features. Rayleigh lidar can provide backscatter profiles of aerosols in the troposphere, and temperature profiles in the stratosphere and mesosphere, where large gravity waves, stratospheric clouds, and noctilucent clouds are observed. Examples of several dynamical features are selected to illustrate interesting processes observed with Raman lidar. Lidar experiments add to our understanding of physical processes that modify atmospheric structure, initiate turbulence and waves, and describe the relationships between energy sources, atmospheric stability parameters, and the observed dynamics.

  20. Note: A sub-sampling technique for frequency locking in Doppler wind lidar.

    PubMed

    Yao, Yuan; Li, Feng; Chen, Lian; Jin, Ge

    2016-05-01

    Double-edge technique is employed in Doppler wind lidar for detecting the Doppler frequency shift. A dedicated locking channel, employing one channel of a triple Fabry-Perot etalon, is designed to compensate for the effects caused by the frequency drift of outgoing laser. Agilent Oscilloscopes, with a sampling rate of 2.5 GSPS, are employed to obtain accurate amplitudes of the narrow pulses in existing experiments. In order to achieve the requirement of real-time ability and integration, a sub-sampling technique based on the theory of statistics is presented. With the technique, the drift can be acquired at a sub-sampling rate, 250 MSPS. A prototype is designed and the test results show that the prototype, providing real-time ability and better integration, has a comparable performance as the oscilloscope for frequency locking.

  1. Distinguishing grass from ground using LiDAR: Techniques and applications

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.; Swetnam, T.; Papuga, S. A.; Nelson, K.; Brooks, P. D.; Harpold, A. A.; Chorover, J.

    2011-12-01

    grass height. A bare-earth DEM that corrects for the effects of dense vegetation can then be constructed by subtracting the estimated mean grass height from the mean of the LiDAR first returns. We illustrate two applications of this method. First, spectral analysis of grass height raster products of Valles Caldera reveal fractal patterns that reflect the roles of geomorphology (e.g. height above active channel) and small-scale disturbances on grass growth and hence on the spatial variations in grass height. Second, snow thicknesses mapped by airborne LiDAR in the Valles Caldera systematically under-predict the actual snow thickness in riparian areas because the ground-surface in the snow-off DEM fails to represent the true ground surface in areas of tall, dense grass. By comparing a grass-corrected LiDAR-derived snow thickness map to the results of snow survey data acquired during the time of the snow-on LiDAR flight, we show that the techniques we developed minimize this problem.

  2. Differential absorption lidar measurements of H2O and O2 using a coherent white light continuum

    NASA Astrophysics Data System (ADS)

    Somekawa, T.; Manago, N.; Kuze, H.; Fujita, M.

    2016-10-01

    We applied a broadband and coherent white light continuum to differential absorption lidar (DIAL) detection of H2O and O2 profiles in the troposphere. The white light continuum can be generated by focusing high intensity femtosecond laser pulses at 800 nm into a Kr gas cell covering a broad spectral range from UV to mid-IR. Thus, the use of white light continuum potentially enables the DIAL measurement of several greenhouse and/or pollutant gases simultaneously while minimizing the lead time for developing a tunable light source. In order to demonstrate such capability, here we report the lidar measurements of H2O and O2. These molecular species exhibit absorption lines in the near IR region where relatively high intensity of the white light continuum is available. The white light continuum was transmitted through the atmosphere collinearly to the axis of a receiver telescope. Backscattered light was passed through bandpass filters (H2O On: 725 and 730 nm, H2O Off: 750 nm, O2 On: 760 nm, O2 Off: 780 nm), and was detected by a photomultiplier tube. The detection wavelengths were selected consecutively by rotating the filter wheels that contain five bandpass filters with an interval of 1 minute. In addition, we propose a method for retrieving vertical profiles of H2O by considering wavelength dependence of the aerosol extinction coefficient α and backscatter coefficient β. These results show that for achieving precise retrieval of H2O distribution, one needs to reduce the effect of aerosol temporal variations by means of long-time accumulation or simultaneous detection of the On- and Off-wavelength signals.

  3. The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment.

    NASA Astrophysics Data System (ADS)

    Sassen, Kenneth

    1991-12-01

    The development of the polarization lidar field over the past two decades is reviewed, and the current cloud-research capabilities and limitations are evaluated. Relying on fundamental scattering principles governing the interaction of polarized laser light with distinctly shaped hydrometers, this remote-sensing technique has contributed to our knowledge of the composition and structure of a variety of cloud types. For example, polarization lidar is a key component of current climate-research programs to characterize the properties of cirrus clouds, and is an integral part of multiple remote-sensor studies of mixed-phase cloud systems, such as winter mountain storms. Although unambiguous cloud-phase discrimination and the identification of some ice particle types and orientations are demonstrated capabilities, recent theoretical approaches involving ice crystal ray-tracing and cloud microphysical model simulations are, promising to increase the utility of the technique. New results simulating the single and multiple scattering properties of precipitating mixed-phase clouds are given for illustration of such methods.

  4. Comprehensive view of high-spectral-resolution lidar technique from the perspective of spectral discrimination

    NASA Astrophysics Data System (ADS)

    Cheng, Zhongtao; Liu, Dong; Yang, Yongying; Luo, Jing; Zhang, Yupeng; Zhou, Yudi; Bai, Jian; Liu, Chong; Shen, Yibing

    2016-05-01

    As already known commonly, high-spectral-resolution lidar technique (HSRL) employs a narrowband spectroscopic filter to separate the elastic backscattered aerosol signal from the thermal Doppler broadened molecular backscattered contribution. This paper presents a new and comprehensive view of HSRL technique from the perspective of spectral discrimination, without concretizing the analysis into a specific spectral discrimination filter. Based on a general HSRL layout with three-channel configuration, a theoretical model of retrieval error evaluation is introduced. In this model, we only take the error sources related to the spectral discrimination parameters into account, and ignore other error sources not associated with these focused parameters. This theoretical model is subsequently verified by Monte Carlo (MC) simulations. Both the model and MC simulations demonstrate that a large molecular transmittance and a large spectral discrimination ratio (SDR, i.e., ratio of the molecular transmittance to the aerosol transmittance) are beneficial to reduce the retrieval error. Moreover, we find that the signal-to-noise ratio (SNR) and SDR of the lidar system are often tradeoffs, and we suggest considering a suitable SDR for higher molecular transmittance (thus higher SNR) instead of using unnecessarily high SDR when designing the spectral discrimination filter. This view interprets the function of the narrowband spectroscopic filter in HSRL system essentially, and will provide some general guidelines for the reasonable design of the spectral discrimination filter for HSRL community.

  5. Additional development of remote sensing techniques for observing morphology, microphysics, and radiative properties of clouds and tests using a new, robust CO{sub 2} lidar. Final report

    SciTech Connect

    Eberhard, W.L.; Brewer, W.A.; Intrieri, J.M.

    1998-09-28

    A three-year project with a goal of advancing CO{sub 2} lidar technology and measurement techniques for cloud studies was successfully completed. An eyesafe, infrared lidar with good sensitivity and improved Doppler accuracy was designed, constructed, and demonstrated. Dual-wavelength operation was achieved. A major leap forward in robustness was demonstrated. CO{sub 2} lidars were operated as part of two Intensive Operations Periods at the Southern Great Plains CART site. The first used an older lidar and was intended primarily for measurement technique development. The second used the new lidar and was primarily a demonstration and evaluation of its performance. Progress was demonstrated in the development, evaluation, and application of measurement techniques using CO{sub 2} lidar.

  6. A Broad Bank Lidar for Precise Atmospheric CO2 Column Absorption Measurement from Space

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.; Huang, W.

    2010-01-01

    Accurate global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. In order to uncover the "missing sink" that is responsible for the large discrepancies in the budget the critical precision for a measurement from space needs to be on the order of 1 ppm. To better understand the CO2 budget and to evaluate its impact on global warming the National Research Council (NRC) in its recent decadal survey report (NACP) to NASA recommended a laser based total CO2 mapping mission in the near future. That's the goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission - to significantly enhance the understanding of the role of CO2 in the global carbon cycle. Our current goal is to develop an ultra precise, inexpensive new lidar system for column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with a high power broadband source. This approach reduces the number of individual lasers used in the system and considerably reduces the risk of failure. It also tremendously reduces the requirement for wavelength stability in the source putting this responsibility instead on the Fabry- Perot subsystem.

  7. Recent improvements in PDS technique for low-absorption measurements

    NASA Astrophysics Data System (ADS)

    Montecchi, Marco; Masetti, Enrico; Emiliani, Gabriele

    1990-08-01

    Photothermal Deflection Spectroscopy (PDS) is a recently developed technique that is finding a useful application in the measurement of low optical absorptance of thin films. Among the noise sources affecting the PDS measurement, probe beam pointing instability and mechanical vibration play a considerable role. In this work an optoelectronic system for the reduction of their influence is described. Moreover, PDS measurements are typically performed keeping the sample immersed in a deflecting liquid; thus measured values of absorptance must be corrected when other surrounding media, as air, are considered. This correction is an easy task for single film coatings. Here the general case of an unknown multiplayer coating is analysed; a range of values containing the true absorptance in air is obtained by theoretical analysis and a practical method to evaluate the absorptance in air is discussed. Finally, deflecting liquids alternative to the commonly used CCI4 have been examined. Useful optical range, thermal diffusivity and "relative deflecting power" of CCI4, CS2, Iso-octane and Aceton are reported.

  8. Detection and monitoring of pollutant sources with Lidar/Dial techniques

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Gelfusa, M.; Malizia, A.; Parracino, S.; Richetta, M.; De Leo, L.; Perrimezzi, C.; Bellecci, C.

    2015-11-01

    It's well known that air pollution due to anthropogenic sources can have adverse effects on humans and the ecosystem. Therefore, in the last years, surveying large regions of the atmosphere in an automatic way has become a strategic objective of various public health organizations for early detection of pollutant sources in urban and industrial areas. The Lidar and Dial techniques have become well established laser based methods for the remote sensing of the atmosphere. They are often implemented to probe almost any level of the atmosphere and to acquire information to validate theoretical models about different topics of atmospheric physics. They can also be used for environment surveying by monitoring particles, aerosols and molecules. The aim of the present work is to demonstrate the potential of these methods to detect pollutants emitted from local sources (such as particulate and/or chemical compounds) and to evaluate their concentration. This is exemplified with the help of experimental data acquired in an industrial area in the south of Italy by mean of experimental campaign by use of pollutants simulated source. For this purpose, two mobile systems Lidar and Dial have been developed by the authors. In this paper there will be presented the operating principles of the system and the results of the experimental campaign.

  9. Integrated Path Differential Absorption Lidar Optimizations Based on Pre-Analyzed Atmospheric Data for ASCENDS Mission Applications

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S.

    2012-01-01

    In this paper a modeling method based on data reductions is investigated which includes pre analyzed MERRA atmospheric fields for quantitative estimates of uncertainties introduced in the integrated path differential absorption methods for the sensing of various molecules including CO2. This approach represents the extension of our existing lidar modeling framework previously developed and allows effective on- and offline wavelength optimizations and weighting function analysis to minimize the interference effects such as those due to temperature sensitivity and water vapor absorption. The new simulation methodology is different from the previous implementation in that it allows analysis of atmospheric effects over annual spans and the entire Earth coverage which was achieved due to the data reduction methods employed. The effectiveness of the proposed simulation approach is demonstrated with application to the mixing ratio retrievals for the future ASCENDS mission. Independent analysis of multiple accuracy limiting factors including the temperature, water vapor interferences, and selected system parameters is further used to identify favorable spectral regions as well as wavelength combinations facilitating the reduction in total errors in the retrieved XCO2 values.

  10. 315mJ, 2-micrometers Double-Pulsed Coherent Differential Absorption Lidar Transmitter for Atmospheric CO2 Sensing

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo; Bai, Yingxin; Koch, Grady; Chen, Songsheng; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    The design of a double pulsed, injection seeded, 2-micrometer compact coherent Differential absorption Lidar (DIAL) transmitter for CO2 sensing is presented. This system is hardened for ground and airborne applications. The design architecture includes three continuous wave lasers which provide controlled on and off line seeding, injection seeded power oscillator and a single amplifier operating in double pass configuration. As the derivative a coherent Doppler wind lidar, this instrument has the added benefit of providing wind information. The active laser material used for this application is a Ho: Tm:YLF crystal operates at the eye-safe wavelength. The 3-meter long folded ring resonator produces energy of 130-mJ (90/40) with a temporal pulse length around 220 nanoseconds and 530 nanosecond pulses for on and off lines respectively. The separation between the two pulses is on the order of 200 microseconds. The line width is in the order of 2.5MHz and the beam quality has an M(sup 2) of 1.1 times diffraction limited beam. A final output energy for a pair of both on and off pulses as high as 315 mJ (190/125) at a repetition rate of 10 Hz is achieved. The operating temperature is set around 20 C for the pump diode lasers and 10 C for the rod. Since the laser design has to meet high-energy as well as high beam quality requirements, close attention is paid to the laser head design to avoid thermal distortion in the rod. A side-pumped configuration is used and heat is removed uniformly by passing coolant through a tube slightly larger than the rod to reduce thermal gradient. This paper also discusses the advantage of using a long upper laser level life time laser crystal for DIAL application. In addition issues related to injection seeding with two different frequencies to achieve a transform limited line width will be presented.

  11. New analytical technique for carbon dioxide absorption solvents

    SciTech Connect

    Pouryousefi, F.; Idem, R.O.

    2008-02-15

    The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive index models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.

  12. High-power Ti:sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar.

    PubMed

    Wagner, Gerd; Behrendt, Andreas; Wulfmeyer, Volker; Späth, Florian; Schiller, Max

    2013-04-10

    The Ti:sapphire (TISA) laser transmitter of the mobile, three-dimensional-scanning water-vapor differential absorption lidar (DIAL) of the University of Hohenheim is described in detail. The dynamically-stable, unidirectional ring resonator contains a single Brewster-cut TISA crystal, which is pumped from both sides with 250 Hz using a diode-pumped frequency-doubled Nd:YAG laser. The resonator is injection seeded and actively frequency-stabilized using a phase-sensitive technique. The TISA laser is operating near 820 nm, which is optimum for ground-based water-vapor DIAL measurements. An average output power of up to 6.75 W with a beam quality factor of M2<2 is reached. The pointing stability is <13 μrad (rms), the depolarization <1%. The overall optical-optical conversion efficiency is up to 19%. The pulse length is 40 ns with a pulse linewidth of <157 MHz. The short- and long-term frequency stabilities are 10 MHz (rms). A spectral purity of 99.9% was determined by pointing to a stratus cloud in low-elevation scanning mode with a cloud bottom height of ≈2.4 km.

  13. New technique for retrieval of atmospheric temperature profiles from Rayleigh-scatter lidar measurements using nonlinear inversion.

    PubMed

    Khanna, Jaya; Bandoro, Justin; Sica, R J; McElroy, C Thomas

    2012-11-20

    The conventional method of calculating atmospheric temperature profiles using Rayleigh-scattering lidar measurements has limitations that necessitate abandoning temperatures retrieved at the greatest heights, due to the assumption of a pressure value required to initialize the integration at the highest altitude. An inversion approach is used to develop an alternative way of retrieving nightly atmospheric temperature profiles from the lidar measurements. Measurements obtained by the Purple Crow lidar facility located near The University of Western Ontario are used to develop and test this new technique. Our results show temperatures can be reliably retrieved at all heights where measurements with adequate signal-to-noise ratio exist. A Monte Carlo technique was developed to provide accurate estimates of both the systematic and random uncertainties for the retrieved nightly average temperature profile. An advantage of this new method is the ability to seed the temperature integration from the lowest rather than the greatest height, where the variability of the pressure is smaller than in the mesosphere or lower thermosphere and may in practice be routinely measured by a radiosonde, rather than requiring a rocket or satellite-borne measurement. Thus, this new technique extends the altitude range of existing Rayleigh-scatter lidars 10-15 km, producing the equivalent of four times the power-aperture product.

  14. A New Technique for Measurements of Cloud Properties Using Lidar Depolarization

    NASA Astrophysics Data System (ADS)

    McCullough, E. M.; Perro, C. W.; Sica, R. J.; Duck, T.; Walker, K. A.; Drummond, J. R.

    2013-12-01

    The radiative behaviour of clouds is dependent on cloud particle phase. Water droplets can exist in temperatures well below 0° C for extended periods. Lidar depolarization ratio measurements allow liquid and solid states to be differentiated in individual clouds at high spatial-temporal resolution. The 2012 and 2013 Canadian Arctic ACE Validation Campaigns in Eureka, Nunavut, Canada (80°N, 86°W) provided an opportunity to make nearly continuous depolarization measurements using the CANDAC Rayleigh-Mie-Raman Lidar (CRL) in the troposphere. Depolarization ratio measurements using two techniques are presented here. The CRL transmits linearly polarized 532 nm laser pulses. The depolarizing effect of the cloud particles on the backscattered 532 nm photons is expressed as the linear depolarization ratio. A typical lidar uses two detection channels to determine the ratio: a 'Parallel' channel and a 'Perpendicular' channel. Backscattered photons may all remain polarized parallel to the transmitted beam (depol ratio = 0), or be depolarized, up to half parallel and half perpendicular (depol ratio = 1; light unpolarized). Thus, even before taking receiver optics into account, maximum possible count rates differ by a factor of two between the channels. In the CRL, optics further suppress perpendicular photons, reducing perpendicular rates to an order of magnitude smaller than the parallel rates, making the conventional retrieval technique challenging. To use the conventional technique, perpendicular signals require considerable co-adding to meet acceptable signal-to-noise thresholds, i.e. greater than 30 minutes even in ice clouds where signal rates are highest. Clear-sky retrievals are impossible. The CRL has been experimenting with an alternate approach: using the parallel channel in conjunction with the familiar polarization-insensitive Rayleigh Elastic channel. Sufficient parallel and Rayleigh elastic photons are recorded that depolarization ratio calculations with the

  15. Tropospheric O3 measurement by simultaneous differential absorption lidar and null profiling and comparison with sonde measurement

    NASA Astrophysics Data System (ADS)

    Fukuchi, Tetsuo; Fujii, Takashi; Cao, Nianwen; Nemoto, Koshichi; Takeuchi, Nobuo

    2001-09-01

    A differential absorption lidar (DIAL) system consisting of two identical tunable laser systems and a single optical receiver is applied to measurement of O3 concentration profiles in the lower troposphere. Each laser is capable of emitting two wavelengths on alternate pulses, so the system is capable of simultaneous measurement of two species in the same wavelength region. We set the two lasers to emit at identical wavelength pairs consisting of on wavelength 285.0 nm and off wavelength 290.1 nm for simultaneous measurement of two null profiles, one at each wavelength, and two DIAL profiles, or O3 concentration profiles. Null profiles are useful in estimating instrumental error and checking the vertical range interval in which the DIAL profiles are accurate. Null and DIAL profiles are obtained for vertical range 1000 to 4000 m using neutral density filters of different transmissions to prevent the strong return signals from close range from saturating the photodetector. The obtained O3 concentration profiles agree with simultaneous O3 sonde measurements. An evaluation of the measurement error shows that the average O3 measurement error for vertical range 1000 to 4000 m was 3.4 ppb, or 8% relative to the average O3 concentration of 42.3 ppb, most of which is due to statistical error. The error due to differential Mie attenuation and differential backscatter gradient was found to be 0.5 ppb.

  16. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO{sub 2} differential absorption LIDAR (DIAL)

    SciTech Connect

    Nelson, D.H.; Petrin, R.R.; MacKerrow, E.P.; Schmitt, M.J.; Quick, C.R.; Zardecki, A.; Porch, W.M.; Whitehead, M.; Walters, D.L.

    1998-09-01

    The measurement sensitivity of CO{sub 2} differential absorption LIDAR (DIAL) can be affected by a number of different processes. The authors address the interaction of two of these processes: effects due to beam propagation through atmospheric turbulence and effects due to reflective speckle. Atmospheric turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has a major impact on the sensitivity of CO{sub 2} DIAL. The interaction of atmospheric turbulence and reflective speckle is of great importance in the performance of a DIAL system. A Huygens-Fresnel wave optics propagation code has previously been developed at the Naval Postgraduate School that models the effects of atmospheric turbulence as propagation through a series of phase screens with appropriate atmospheric statistical characteristics. This code has been modified to include the effects of reflective speckle. The performance of this modified code with respect to the combined effects of atmospheric turbulence and reflective speckle is examined. Results are compared with a combination of experimental data and analytical models.

  17. Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements

    NASA Astrophysics Data System (ADS)

    Milovac, Josipa; Warrach-Sagi, Kirsten; Behrendt, Andreas; Späth, Florian; Ingwersen, Joachim; Wulfmeyer, Volker

    2016-01-01

    Six simulations with the Weather Research and Forecasting (WRF) model differing in planetary boundary layer (PBL) schemes and land surface models (LSMs) are investigated in a case study in western Germany during clear-sky weather conditions. The simulations were performed at 2 km resolution with two local and two nonlocal PBL schemes, combined with two LSMs (NOAH and NOAH-MP). Resulting convective boundary layer (CBL) features are investigated in combination with high-resolution water vapor differential absorption lidar measurements at an experimental area. Further, the simulated soil-vegetation-atmosphere feedback processes are quantified applying a mixing diagram approach. The investigation shows that the nonlocal PBL schemes simulate a deeper and drier CBL than the local schemes. Furthermore, the application of different LSMs reveals that the entrainment of dry air depends on the energy partitioning at the land surface. The study demonstrates that the impact of processes occurring at the land surface is not constrained to the lower CBL but extends up to the interfacial layer and the lower troposphere. With respect to the choice of the LSM, the discrepancies in simulating a diurnal change of the humidity profiles are even more significant at the interfacial layer than close to the land surface. This indicates that the representation of land surface processes has a significant impact on the simulation of mixing properties within the CBL.

  18. Chemical detection with hyperspectral lidar using dual frequency combs.

    PubMed

    Boudreau, Sylvain; Levasseur, Simon; Perilla, Carlos; Roy, Simon; Genest, Jérôme

    2013-03-25

    High-resolution spectral lidar measurements using dual frequency combs as a source is presented. The technique enables the range-resolved measurement of fine spectral features, such as gas absorption lines, provided that a suitable scatterer is present in the scene. Measurements of HCN absorption lines at 20 meters are presented, with a water droplet cloud and a diffusely reflective surface as scatterers.

  19. The use of lidar for stratospheric measurements

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1977-01-01

    Stratospheric measurements possible with ground-based, airborne, and satellite-borne lidar systems are reviewed. The instruments, basic equations, and formats normally used for various scattering and absorption phenomena measurements are presented including a discussion of elastic, resonance, Raman, and fluorescence scattering techniques.

  20. Research of inverse synthetic aperture imaging lidar based on filtered back-projection tomography technique

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-chao; Yang, Jin-hua

    2014-07-01

    In order to obtain clear two-dimensional image under the conditions without using heterodyne interferometry by inverse synthetic aperture lidar(ISAL), designed imaging algorithms based on filtered back projection tomography technique, and the target "A" was reconstructed with simulation algorithm by the system in the turntable model. Analyzed the working process of ISAL, and the function of the reconstructed image was given. Detail analysis of the physical meaning of the various parameters in the process of echo data, and its parameters affect the reconstructed image. The image in test area was reconstructed by the one-dimensional distance information with filtered back projection tomography technique. When the measured target rotated, the sum of the echo light intensity at the same distance was constituted by the different position of the measured target. When the total amount collected is large enough, multiple equations can be solved change. Filtered back-projection image of the ideal image is obtained through MATLAB simulation, and analyzed that the angle intervals affected the reconstruction of image. The ratio of the intensity of echo light and loss light affected the reconstruction of image was analyzed. Simulation results show that, when the sampling angle is smaller, the resolution of the reconstructed image of measured target is higher. And the ratio of the intensity of echo light and loss light is greater, the resolution of the reconstructed image of measured target is higher. In conclusion after some data processing, the reconstructed image basically meets be effective identification requirements.

  1. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  2. Infrared lidar windshear detection for commercial aircraft and the edge technique, a new method for atmospheric wind measurement

    NASA Technical Reports Server (NTRS)

    Targ, Russell; Bowles, Roland L.; Korb, C. L.; Gentry, Bruce M.; Souilhac, Dominique

    1991-01-01

    The edge technique, a new method for measuring small frequency shifts, is described. The technique allows high-accuracy measurement of atmospheric winds (0.2-1 m/s) with a high vertical resolution (10 m) using currently available technology. With the edge technique, a lidar system can be used to obtain range resolved measurements of the wind in the atmosphere from the ground, aircraft, or spaceborne platforms. The edge technique can be used with different lasers over a broad range of wavelengths.

  3. Acousto-optic filtering of lidar signals

    NASA Astrophysics Data System (ADS)

    Kolarov, G.; Deleva, A.; Mitsev, Ts.

    1992-07-01

    The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.

  4. Acousto-optic filtering of lidar signals

    NASA Technical Reports Server (NTRS)

    Kolarov, G.; Deleva, A.; Mitsev, TS.

    1992-01-01

    The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.

  5. Turbulent Humidity Fluctuations in the Convective Boundary Layer: Case Studies Using Water Vapour Differential Absorption Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Muppa, Shravan Kumar; Behrendt, Andreas; Späth, Florian; Wulfmeyer, Volker; Metzendorf, Simon; Riede, Andrea

    2016-01-01

    Turbulent humidity fluctuations in the convective boundary layer (CBL) under clear-sky conditions were investigated by deriving moments up to fourth-order. High-resolution humidity measurements were collected with a water vapour differential absorption lidar system during the HD(CP)}2 Observational Prototype Experiment (HOPE). Two cases, both representing a well-developed CBL around local noon, are discussed. While the first case (from the intensive observation period (IOP) 5 on 20 April 2013) compares well with what is considered typical CBL behaviour, the second case (from IOP 6 on 24 April 2013) shows a number of non-typical characteristics. Both cases show similar capping inversions and wind shear across the CBL top. However, a major difference between both cases is the advection of a humid layer above the CBL top during IOP 6. While the variance profile of IOP 5 shows a maximum at the interfacial layer, two variance peaks are observed near the CBL top for IOP 6. A marked difference can also be seen in the third-order moment and skewness profiles: while both are negative (positive) below (above) the CBL top for IOP 5, the structure is more complex for IOP 6. Kurtosis is about three for IOP 5, whereas for IOP 6, the distribution is slightly platykurtic. We believe that the entrainment of an elevated moist layer into the CBL is responsible for the unusual findings for IOP 6, which suggests that it is important to consider the structure of residual humidity layers entrained into the CBL.

  6. Comparison of edge detection techniques for the automatic information extraction of Lidar data

    NASA Astrophysics Data System (ADS)

    Li, H.; di, L.; Huang, X.; Li, D.

    2008-05-01

    In recent years, there has been much interest in information extraction from Lidar point cloud data. Many automatic edge detection algorithms have been applied to extracting information from Lidar data. Generally they can be divided as three major categories: early vision gradient operators, optimal detectors and operators using parametric fitting models. Lidar point cloud includes the intensity information and the geographic information. Thus, traditional edge detectors used in remote sensed images can take advantage with the coordination information provided by point data. However, derivation of complex terrain features from Lidar data points depends on the intensity properties and topographic relief of each scene. Take road for example, in some urban area, road has the alike intensity as buildings, but the topographic relationship of road is distinct. The edge detector for road in urban area is different from the detector for buildings. Therefore, in Lidar extraction, each kind of scene has its own suitable edge detector. This paper compares application of the different edge detectors from the previous paragraph to various terrain areas, in order to figure out the proper algorithm for respective terrain type. The Canny, EDISON and SUSAN algorithms were applied to data points with the intensity character and topographic relationship of Lidar data. The Lidar data for test are over different terrain areas, such as an urban area with a mass of buildings, a rural area with vegetation, an area with slope, or an area with a bridge, etc. Results using these edge detectors are compared to determine which algorithm is suitable for a specific terrain area. Key words: Edge detector, Extraction, Lidar, Point data

  7. A differential absorption lidar instrument for the measurment of carbon dioxide and methane in the lower troposphere (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Budinov, Daniel; Clements, Robert; Rae, Cameron F.; Moncrieff, John B.; Jack, James W.

    2016-12-01

    Developments in the remote detection of trace gases in the atmosphere using Differential Absorption Lidar have been driven largely by improvements in two key technologies: lasers and detectors. We have designed and built a narrow linewidth pulsed laser source with a well-controlled output wavelength and sufficient pulse energy to measure the concentration profile of CO2 and CH4 to a range in excess of 4km. We describe here the initial measurements of concentration profiles recorded with this instrument. The system is built around a custom-designed Newtonian telescope with a 40cm diameter primary mirror. Laser sources and detectors attach directly to the side of the telescope allowing for flexible customization with a range of additional equipment. The instrument features an all-solid-state laser source based on an optical parametric oscillator (OPO) pumped by an YLF based diode-laser pumped solid-state laser and seeded by a tuned DFB seed. This provides a range of available wavelengths suitable for DIAL within the 1.5-1.6 μm spectral region. The output of the OPO is beam expanded and transmitted coaxially from the receiver telescope. A gas cell within the laser source controls the seed wavelength and allows the wavelength to be tuned to match a specific absorption feature of the selected gas species. The source can be rapidly tuned between the on-line and off-line wavelengths to make a DIAL measurement of either CO2 or CH4 The receiver is based on an InGaAs avalanche photodetector. Whilst photodiode detectors are a low-cost solution their limited sensitivity restricts the maximum range over which a signal can be detected. The receiver signal is digitised for subsequent processing to produce a sightline concentration profile. The instrument is mounted on a robust gimballed mount providing full directional movement within the upper hemisphere. Both static pointing and angular scan modes are available. Accurate angular position is available giving the sightline

  8. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and

  9. Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar

    NASA Astrophysics Data System (ADS)

    Liu, Zhishen; Wang, Zhangjun; Wu, Songhua; Liu, Bingyi; Li, Zhigang; Zhang, Xin; Bi, Decang; Chen, Yubao; Li, Rongzhong; Yang, Yuqiang

    2009-06-01

    The Key Laboratory of Ocean Remote Sensing of the Ministry of Education of China, Ocean University of China, has developed the first mobile Doppler wind lidar in China. As an important component of meteorological services for the Good Luck Beijing 2007 Qingdao International Regatta, the mobile Doppler wind lidar was used to measure the sea surface wind (SSW) with 100 m*100 m spatial and 10-min temporal resolution in Qingdao from 15 to 23 August 2007. We present the results from two aspects of this campaign. First, the lidar was operated in the fixed-direction mode and compared to SSW simultaneously measured by a collocated buoy. Second, we present lidar wind measurements throughout the regatta and show good agreement with the match situation of the International Regatta. In addition, we present a case study, accounting for the observation of sailboats stopped by the headwind. With considerable data accumulated, we have shown that the mobile Doppler wind lidar can indeed provide near real-time SSW in support of the sailing games. The lidar has also provided meteorological services for the 2008 Olympic sailing games from 8 to 22 August and Paralympics Sailing Games from 8 to 13 September 2008 in Qingdao.

  10. Gain control of photomultiplier tubes used in detecting differential absorption lidar returns

    NASA Technical Reports Server (NTRS)

    Allen, Robert J. (Inventor)

    1989-01-01

    A technique for controlling the gain of a photomultiplier tube (PMT) 20. A voltage divider (resistors 45-49 in FIG. 1 and zener diodes 60-65 in FIG. 3) is used to control the potentials on dynodes 5, 7, and 9 of PMT 20. Transistor switches 53 and 58 provide the control of the voltage divider in FIG. 1 and photodiodes 66, 67 and 70 provide the control in FIG. 3. The gain control of PMT 20 is in the range from 100% to less than 0.001% (100,000 to 1).

  11. Pseudorandom Noise Code-Based Technique for Thin Cloud Discrimination with CO2 and O2 Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.

    2011-01-01

    NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a pseudo noise (PN) code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths.

  12. Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.

    1986-01-01

    The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.

  13. Speckle Reduction for LIDAR Using Optical Phase Conjugation

    SciTech Connect

    Bowers, M W; Kecy, C; Little, L; Cooke, J; Benterou, J; Boyd, R; Birks, T

    2001-02-26

    Remote detection of chemicals using LIDAR (Light Detection and Ranging) utilizing DIAL (Differential Absorption LIDAR) is now a standard detection technique for both military and civilian activities. We have developed a novel nonlinear optical phase conjugation system that can reduce the effects of speckle noise and atmospheric turbulence on DIAL remote detection systems. We have shown numerically and experimentally that it is possible to increase the signal-to-noise (S/N) ratio for LIDAR systems under certain conditions using optical phase conjugation. This increase in S/N can result in more accurate detection of chemical effluents while simultaneously reducing the time necessary to acquire this information.

  14. A comparison of two embedded programming techniques for high rep rate coherent Doppler lidars

    NASA Astrophysics Data System (ADS)

    Arend, Mark F.; Abdelazim, Sameh; Lopez, Miguel; Moshary, Fred

    2013-05-01

    Two FPGA embedded programming approaches are considered and compared for a 20 kHz pulse repetition rate coherent Doppler lidar system which acquires return signals at 400 Msamples/second and operates with signal to noise ratios as low as -20 dB. In the first approach, the acquired return signal is gated in time and the square modulus of the fast Fourier transform is accumulated for each of the range gates, producing a series of power spectra as a function of range. Wind speed decisions based on numerical estimators can then be made after transferring the range gated accumulated power spectra to a host computer, enabling the line of sight wind speed as a function of range gate to be calculated and stored for additional processing. In the second FPGA approach, a digital IQ demodulator and down sampler reduces the data flow requirements so that an autocorrelation matrix representing a pre-selected number of lags can be accumulated, allowing for the process of range gating to be explored on the host computer. The added feature of the second approach is that it allows for an additional capability to adjust the range gate period dynamically as the state of the atmospheric boundary layer (e.g. backscatter coefficient and stability condition) changes. A simple manual beam scanning technique is used to calculate the wind field vector which is graphically displayed on time-height cross section plots. A comparison to other observed and modeled information is presented suggesting the usefulness for the characterization of microscale meteorology.

  15. Investigation of Overlap Correction Techniques for the Micro-Pulse Lidar NETwork (MPLNET)

    NASA Technical Reports Server (NTRS)

    Berkoff, T. A.; Welton, E. J.; Campbell, J. R.; Scott, V. S.; Spinhirne, J. D.

    2003-01-01

    The Micro-Pulse Lidar NETwork (MPLNET) uses elastic-scattering lidars stationed at sites around the globe to produce aerosol and cloud vertical profiles on a continuous year-round basis. Processing of MPLNET data requires a correction for the lidar overlap function in the 0-6 km range, to take into account the loss in near-field receiver efficiency. This correction is normally determined from recording horizontal profiles that require a approximately 10 km clear line-of-sight and homogenous atmospheric conditions, limiting the practicality in which successful corrections can be obtained. An alternative overlap correction method using a secondary receiver is considered that eliminates the need for horizontal measurements. A review of both methods is presented, including a discussion of signal uncertainties.

  16. Laser induced deflection technique for absolute thin film absorption measurement: optimized concepts and experimental results

    SciTech Connect

    Muehlig, Christian; Kufert, Siegfried; Bublitz, Simon; Speck, Uwe

    2011-03-20

    Using experimental results and numerical simulations, two measuring concepts of the laser induced deflection (LID) technique are introduced and optimized for absolute thin film absorption measurements from deep ultraviolet to IR wavelengths. For transparent optical coatings, a particular probe beam deflection direction allows the absorption measurement with virtually no influence of the substrate absorption, yielding improved accuracy compared to the common techniques of separating bulk and coating absorption. For high-reflection coatings, where substrate absorption contributions are negligible, a different probe beam deflection is chosen to achieve a better signal-to-noise ratio. Various experimental results for the two different measurement concepts are presented.

  17. Nonlinear Kalman filtering techniques for incoherent backscatter lidar: return power and log power estimation.

    PubMed

    Rye, B J; Hardesty, R M

    1989-09-15

    Recursive estimation of nonlinear functions of the return power in a lidar system entails use of a nonlinear filter. This also permits processing of returns in the presence of multiplicative noise (speckle). The use of the extended Kalman filter is assessed here for estimation of return power, log power, and speckle noise (which is regarded as a system rather than a measurement component), using coherent lidar returns and tested with simulated data. Reiterative processing of data samples using system models comprising a random walk signal together with an uncorrelated speckle term leads to self-consistent estimation of the parameters.

  18. Design and simulation of a biconic multipass absorption cell for the frequency stabilization of the reference seeder laser in IPDA lidar.

    PubMed

    Mu, Yongji; Du, Juan; Yang, Zhongguo; Sun, Yanguang; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2016-09-01

    The design process and simulation method of a multipass absorption cell used for the frequency stabilization of the reference seeder laser in integrated path differential absorption (IPDA) lidar are presented. On the basis of the fundamental theory of the Herriott multipass cell comprising two spherical mirrors, the initial parameters of the multipass cell, which has an optical path greater than 10 m and consists of two biconic mirrors, were calculated. More than 30 light spots were distributed on each mirror, and the distance between adjacent spots was mostly optimized to greater than six times the beam waist. After optimization, the simulated transmittance spectrum and associated differential signal were obtained. The interference induced by surface scattering was also simulated, and its influence on the differential signal was analyzed. A correspondence between the simulated results and the testing data was observed.

  19. Development of 3.0-3.45 μm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Veerabuthiran, S.; Razdan, A. K.; Jindal, M. K.; Sharma, R. K.; Sagar, Vikas

    2015-10-01

    We have developed a tripod mounted 3.0-3.45 μm OPO laser based differential absorption lidar (DIAL) system for sensing of atmospheric methane. The system operates with Nd: YAG laser pumped OPO laser, a 20 cm aperture telescope and a pan-tilt system to scan the atmosphere. Atmospheric transmission spectra over the entire spectral region are measured and indentified the absorption region of the various molecules in comparison with HITRAN. The backscattered signal for range resolved and hard target configuration up to a range of 400 m are measured with range resolution of 15 m. The stable daytime measurements of methane concentration varied from 1.9 ppm to 2.4 ppm with rms deviation of 0.2 ppm have been achieved. The measured concentration is in good agreement with reported values.

  20. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  1. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  2. Raman Lidar Measurements during the International HZO Project. 1; Instrumentation and Analysis Techniques, Popular Summary

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Comer, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Cadirola, M.; Rush, K.; Schwemmer, G.; Gentry, B.

    2005-01-01

    The amount of water vapor in the atmosphere helps to determine the likelihood that severe storms may develop. The concentration of water vapor, though, is highly variable in space and time. And yet small changes in water vapor concentration over a short period of time or over a short spatial distance can determine whether a storm may or may not develop. Therefore, in order to improve the ability to forecast severe weather such as thunderstorms it is important to measure water vapor in the atmosphere with high spatial and temporal resolution. One of the most attractive research tools for measuring water vapor in the atmosphere with high spatial and temporal resolution is a Raman lidar. A Raman lidar consists of a laser transmitter, a telescope receiver and optics and electronics for processing opticand electronic signals. A laser pulse is emitted into the atmosphere and it interacts with molecules in the atmosphere causing them to become excited and to emit, through the Raman process, photons of different wavelength than emitted by the laser. The molecule that emitted these emitted. This is the way that a Raman lidar identifies water vapor molecules in the atmosphere. can be identified based on the wavelength of the photons One of the great challenges in Raman lidar measurements has been to make useful daytime measurements of the water vapor profile under bright daytime conditions. In this first of two papers, we describe the instrumentation and analysis of the first documented Raman lidar that is able to measure water vapor in the daytime with sufficient quality to permit the study of developing storm systems.

  3. Atmospheric aerosol and gas sensing using Scheimpflug lidar

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Brydegaard, Mikkel

    2015-04-01

    This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard

  4. Retrieval of Spatio-temporal Distributions of Particle Parameters from Multiwavelength Lidar Measurements Using the Linear Estimation Technique and Comparison with AERONET

    NASA Technical Reports Server (NTRS)

    Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Kolgotin, A.; Dubovik, O.; Perez-Ramirez, D.; Suvorina, A.

    2013-01-01

    The results of the application of the linear estimation technique to multiwavelength Raman lidar measurements performed during the summer of 2011 in Greenbelt, MD, USA, are presented. We demonstrate that multiwavelength lidars are capable not only of providing vertical profiles of particle properties but also of revealing the spatio-temporal evolution of aerosol features. The nighttime 3 Beta + 1 alpha lidar measurements on 21 and 22 July were inverted to spatio-temporal distributions of particle microphysical parameters, such as volume, number density, effective radius and the complex refractive index. The particle volume and number density show strong variation during the night, while the effective radius remains approximately constant. The real part of the refractive index demonstrates a slight decreasing tendency in a region of enhanced extinction coefficient. The linear estimation retrievals are stable and provide time series of particle parameters as a function of height at 4 min resolution. AERONET observations are compared with multiwavelength lidar retrievals showing good agreement.

  5. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  6. A Comparison of IM-CW Lidar Modulation Techniques for ASCENDS CO2 Column Measurements from Space

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; Lin, Bing; Nehrir, Amin; Harrison, Fenton; Obland, Michael; Ismail, Syed

    2014-05-01

    Global atmospheric carbon dioxide (CO2) measurements through the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) Decadal Survey recommended space mission are critical for improving our understanding of CO2 sources and sinks. IM-CW (Intensity Modulated Continuous Wave) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS science requirements. In previous laboratory and flight experiments we have successfully used linear swept frequency modulation to discriminate surface lidar returns from intermediate aerosol and cloud contamination. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate clouds, which is a requirement for the inversion of the CO2 column-mixing ratio from the instrument optical depth measurements, has been demonstrated with the linear swept frequency modulation technique. We are concurrently investigating advanced techniques to help improve the auto-correlation properties of the transmitted waveform implemented through physical hardware to make cloud rejection more robust in special restricted scenarios. Several different carrier based modulation techniques are compared including orthogonal linear swept, orthogonal non-linear swept, and Binary Phase Shift Keying (BPSK). Techniques are investigated that reduce or eliminate sidelobes. These techniques have excellent auto-correlation properties while possessing a finite bandwidth (by way of a new cyclic digital filter), which will reduce bias error in the presence of multiple scatterers. Our analyses show that the studied modulation techniques can increase the accuracy of CO2 column measurements from space. A comparison of various properties such as signal to noise ratio (SNR) and time-bandwidth product are discussed.

  7. A Comparison of Potential IM-CW Lidar Modulation Techniques for ASCENDS CO2 Column Measurements From Space

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Ismail, Syed

    2014-01-01

    Global atmospheric carbon dioxide (CO2) measurements through the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) Decadal Survey recommended space mission are critical for improving our understanding of CO2 sources and sinks. IM-CW (Intensity Modulated Continuous Wave) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS science requirements. In previous laboratory and flight experiments we have successfully used linear swept frequency modulation to discriminate surface lidar returns from intermediate aerosol and cloud contamination. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate clouds, which is a requirement for the inversion of the CO2 column-mixing ratio from the instrument optical depth measurements, has been demonstrated with the linear swept frequency modulation technique. We are concurrently investigating advanced techniques to help improve the auto-correlation properties of the transmitted waveform implemented through physical hardware to make cloud rejection more robust in special restricted scenarios. Several different carrier based modulation techniques are compared including orthogonal linear swept, orthogonal non-linear swept, and Binary Phase Shift Keying (BPSK). Techniques are investigated that reduce or eliminate sidelobes. These techniques have excellent auto-correlation properties while possessing a finite bandwidth (by way of a new cyclic digital filter), which will reduce bias error in the presence of multiple scatterers. Our analyses show that the studied modulation techniques can increase the accuracy of CO2 column measurements from space. A comparison of various properties such as signal to noise ratio (SNR) and time-bandwidth product are discussed.

  8. A numerical technique for the calculation of cloud optical extinction from lidar

    NASA Technical Reports Server (NTRS)

    Alvarez, J. M.; Vaughan, M. A.

    1993-01-01

    A simple numerical algorithm which calculates optical extinction from cloud lidar data is presented. The method assumes a two-component atmosphere consisting of 'clear air' and cloud particulates. 'Clear air' may consist of either molecules only or a mix of molecules and atmospheric aerosols. For certain clouds, the method may be utilized to provide an estimate of the cloud-atmospheric parameter defined as the ratio of the cloud volume backscatter coefficient to the cloud extinction coefficient divided by the atmospheric volume backscatter coefficient at a given altitude. The cloud-atmospheric parameter may be estimated only from cloud data from which the optical thickness may reliably be used as a constraint on the numerical solution. This constraint provides the additional information necessary to obtain the cloud-atmospheric parameter. Conversely, the method may be applied to obtain cloud extinction and optical thickness from lidar cloud soundings if an estimate of the cloud-atmospheric parameter is available.

  9. Boundary Layer Observations of Water Vapor and Aerosol Profiles with an Eye-Safe Micro-Pulse Differential Absorption Lidar (DIAL)

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Repasky, K. S.; Carlsten, J.; Ismail, S.

    2011-12-01

    Measurements of real-time high spatial and temporal resolution profiles of combined water vapor and aerosols in the boundary layer have been a long standing observational challenge to the meteorological, weather forecasting, and climate science communities. To overcome the high reoccurring costs associated with radiosondes as well as the lack of sufficient water vapor measurements over the continental united states, a compact and low cost eye-safe all semiconductor-based micro-pulse differential absorption lidar (DIAL) has been developed for water vapor and aerosol profiling in the lower troposphere. The laser transmitter utilizes two continuous wave external cavity diode lasers operating in the 830 nm absorption band as the online and offline seed laser sources. An optical switch is used to sequentially injection seed a tapered semiconductor optical amplifier (TSOA) with the two seed laser sources in a master oscillator power amplifier (MOPA) configuration. The TSOA is actively current pulsed to produce up to 7 μJ of output energy over a 1 μs pulse duration (150 m vertical resolution) at a 10 kHz pulse repetition frequency. The measured laser transmitter spectral linewidth is less than 500 kHz while the long term frequency stability of the stabilized on-line wavelength is ± 55 MHz. The laser transmitter spectral purity was measured to be greater than 0.9996, allowing for simultaneous measurements of water vapor in the lower and upper troposphere. The DIAL receiver utilizes a commercially available full sky-scanning capable 35 cm Schmidt-Cassegrain telescope to collect the scattered light from the laser transmitter. Light collected by the telescope is spectrally filtered to suppress background noise and is coupled into a fiber optic cable which acts as the system field stop and limits the full angle field of view to 140 μrad. The light is sampled by a fiber coupled APD operated in a Geiger mode. The DIAL instrument is operated autonomously where water vapor and

  10. Diode laser absorption tomography using data compression techniques

    NASA Astrophysics Data System (ADS)

    Lindstrom, Chad; Tam, Chung-Jen; Givens, Ryan; Davis, Doug; Williams, Skip

    2008-02-01

    Tunable diode laser absorption spectroscopy (TDLAS) shows promise for in situ monitoring in high-speed flows. However, the dynamic nature of typical flows of supersonic combustors, gas turbine engines and augmenters can also lead to inhomogenities that cannot be captured by a single line-of-sight TDLAS measurement. Instead, multiple measurements varied over several spatial locations need to be made. In the current study, shock train structure in the isolator section of the Research Cell 18 supersonic combustion facility at Wright-Patterson AFB is measured. Although only two view angles are available for measurement, multiple absorption features along with a priori computational fluid dynamics (CFD) simulations enable estimates of two dimensional flow features to be formed. Vector quantization/kmeans data clustering is used to identify key flow features from the temporal history of the raw sinograms. Through the use of multiple absorption features that are measured nearly simultaneously, an approximate two-dimensional image can be formed. This image can be further refined through the use of an optimal set of basis functions that can be derived from a set of CFD simulations that describes the flow shapes.

  11. Land-based lidar mapping: a new surveying technique to shed light on rapid topographic change

    USGS Publications Warehouse

    Collins, Brian D.; Kayen, Robert

    2006-01-01

    The rate of natural change in such dynamic environments as rivers and coastlines can sometimes overwhelm the monitoring capacity of conventional surveying methods. In response to this limitation, U.S. Geological Survey (USGS) scientists are pioneering new applications of light detection and ranging (lidar), a laser-based scanning technology that promises to greatly increase our ability to track rapid topographic changes and manage their impact on affected communities.

  12. Intercomparison between ozone profiles measured above Spitsbergen by lidar and sonde techniques

    NASA Technical Reports Server (NTRS)

    Fabian, Rolf; Vondergathen, Peter; Ehlers, J.; Krueger, Bernd C.; Neuber, Roland; Beyerle, Georg

    1994-01-01

    This paper compares coincident ozone profile measurements by electrochemical sondes and lidar performed at Ny-Alesund/Spitsbergen. A detailed height dependent statistical analysis of the differences between these complementary methods was performed for the overlapping altitude region (13-35 km). The data set comprises ozone profile measurements conducted between Jan. 1989 and Jan. 1991. Differences of up to 25 percent were found above 30 km altitude.

  13. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriquez, Michael; Allan, Graham R.; Hasselbrack, William E.; Stephen, Mark A.; Abshire, James B.

    2011-01-01

    We report on airborne measurements of atmospheric pressure using a fiber-laser based lidar operating in the oxygen A-band near 765 nm and the integrated path differential absorption measurement technique. Our lidar uses fiber optic technology and non-linear optics to generate tunable laser radiation at 765 nm, which overlaps an absorption line pair in the Oxygen A-band. We use a pulsed time resolved technique, which rapidly steps the laser wavelength across the absorption line pair, a 20 cm telescope and photon counting detector to measure Oxygen concentrations.

  14. Phototransistors Development and their Applications to Lidar

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, Tamer F.; Ismail, Syed; Singh, Upendra N.

    2007-01-01

    Custom-designed two-micron phototransistors have been developed using Liquid Phase Epitaxy (LPE), Molecular Beam Epitaxy (MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD) techniques under Laser Risk Reduction Program (LRRP). The devices were characterized in the Detector Characterization Laboratory at NASA Langley Research Center. It appears that the performance of LPE- and MBE-grown phototransistors such as responsivity, noise-equivalent-power, and gain, are better than MOCVD-grown devices. Lidar tests have been conducted using LPE and MBE devices under the 2-micrometer CO2 Differential Absorption Lidar (DIAL) Instrument Incubator Program (IIP) at the National Center for Atmospheric Research (NCAR), Boulder, Colorado. The main focus of these tests was to examine the phototransistors performances as compared to commercial InGaAs avalanche photodiode by integrating them into the Raman-shifted Eye-safe Aerosol Lidar (REAL) operating at 1.543 micrometers. A simultaneous measurement of the atmospheric backscatter signals using the LPE phototransistors and the commercial APD demonstrated good agreement between these two devices. On the other hand, simultaneous detection of lidar backscatter signals using MBE-grown phototransistor and InGaAs APD, showed a general agreement between these two devices with a lower performance than LPE devices. These custom-built phototransistors were optimized for detection around 2-micrometer wavelength while the lidar tests were performed at 1.543 micrometers. Phototransistor operation at 2-micron will improve the performance of a lidar system operating at that wavelength. Measurements include detecting hard targets (Rocky Mountains), atmospheric structure consisting of cirrus clouds and boundary layer. These phototransistors may have potential for high sensitivity differential absorption lidar measurements of carbon dioxide and water vapor at 2.05-micrometers and 1.9-micrometers, respectively.

  15. Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli

    2012-01-01

    An overview of space-based lidar systems is presented. from the first laser altimeter on APOLLO 15 mission in 1971 to the Mercury Laser Altimeter on MESSENGER mission currently in orbit, and those currently under development. Lidar, which stands for Light Detection And Ranging, is a powerful tool in remote sensing from space. Compared to radars, lidars operate at a much shorter wavelength with a much narrower beam and much smaller transmitter and receiver. Compared to passive remote sensing instruments. lidars carry their own light sources and can continue measuring day and night. and over polar regions. There are mainly two types of lidars depending on the types of measurements. lidars that are designed to measure the distance and properties of hard targets are often called laser rangers or laser altimeters. They are used to obtain the surface elevation and global shape of a planet from the laser pulse time-of-night and the spacecraft orbit position. lidars that are designed to measure the backscattering and absorption of a volume scatter, such as clouds and aerosols, are often just called lidars and categorized by their measurements. such as cloud and aerosol lidar, wind lidar, CO2 lidar, and so on. The advantages of space-based lidar systems over ground based lidars are the abilities of global coverage and continuous measurements.

  16. A nonlinear merging method of analog and photon signals for CO2 detection in lower altitudes using differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Qi, Zhong; Zhang, Teng; Han, Ge; Li, Dongcang; Ma, Xin; Gong, Wei

    2017-04-01

    The current acquisition system of a lidar detects return signals in two modes (i.e., analog and photon counting); resulting in the lower (below 1500 m) and upper (higher than 1100 m) atmospheric parameters need analog and photon counting signal to retrieve, respectively. Hence, a lidar cannot obtain a continuous column of the concentrations of atmospheric components. For carbon cycle studies, the range-resolved concentration of atmospheric CO2 in the lower troposphere (below 1500 m) is one of the most significant parameters that should be determined. This study proposes a novel gluing method that merges the CO2 signal detected by ground-based DIAL in the lower troposphere. Through simulation experiments, the best uniform approximation polynomial theorem is utilized to determine the transformation coefficient to correlate signals from the different modes perfectly. The experimental results (both simulation experiments and actual measurement of signals) show that the proposed method is suitable and feasible for merging data in the region below 1500 m. Hence, the photon-counting signals whose SNRs are higher than those of the analog signals can be used to retrieve atmospheric parameters at an increased near range, facilitating atmospheric soundings using ground-based lidar in various fields.

  17. Measurement of initial absorption of fused silica at 193nm using laser induced deflection technique (LID)

    NASA Astrophysics Data System (ADS)

    Schönfeld, Dörte; Klett, Ursula; Mühlig, Christian; Thomas, Stephan

    2008-01-01

    The ongoing development in microlithography towards further miniaturization of structures creates a strong demand for lens material with nearly ideal optical properties. Beside the highly demanding requirements on homogeneity and stress induced birefringence (SIB), low absorption is a key factor. Even a small absorption is associated with a temperature increase and results in thermally induced local variations of refractive index and SIB. This could affect the achievable resolution of the lithographic process. The total absorption of the material is composed of initial absorption and of absorption induced during irradiation. Thus, the optimization of both improves the lifetime of the material. In principal, it is possible to measure transmission and scattering with a suitable spectrometer assembly and calculate absorption from them. However, owing to the influence of sample surfaces and errors of measurement, these methods usually do not provide satisfactory results for highly light-transmissive fused silica. Therefore, it is most desirable to find a technique that is capable of directly measuring absorption coefficients in the range of (1...10)•10 -4 cm -1 (base 10) directly. We report our first results for fused silica achieved with the LID technique. Besides a fused silica grade designed for 193 nm applications, grades with higher absorption at 193 nm were measured to test the LID technique. A special focus was set on the possibility of measuring initial absorption without the influence of degradation effects.

  18. Lidar search for atmospheric atomic mercury in Icelandic geothermal fields

    SciTech Connect

    Edner, H.; Faris, G.W.; Sunesson, A.; Svanberg, S. ); Bjarnason, J.O.; Kristmanndottir, H.; Sigurdsson, K.H. )

    1991-02-20

    A search for atmospheric atomic mercury as a possible tracer gas for geothermal energy exploration was performed in three Icelandic geothermal fields using differential absorption lidar technique. Contrary to expectations, concentrations basically only at the Atlantic background value of about 2 ng/m{sup 3} were found in Iceland.

  19. Simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques

    NASA Astrophysics Data System (ADS)

    Lübken, Franz-Josef; Baumgarten, Gerd; Hildebrand, Jens; Schmidlin, Francis J.

    2016-08-01

    We present the first comparison of a new lidar technique to measure winds in the middle atmosphere, called DoRIS (Doppler Rayleigh Iodine Spectrometer), with a rocket-borne in situ method, which relies on measuring the horizontal drift of a target ("starute") by a tracking radar. The launches took place from the Andøya Space Center (ASC), very close to the ALOMAR observatory (Arctic Lidar Observatory for Middle Atmosphere Research) at 69° N. DoRIS is part of a steerable twin lidar system installed at ALOMAR. The observations were made simultaneously and with a horizontal distance between the two lidar beams and the starute trajectories of typically 0-40 km only. DoRIS measured winds from 14 March 2015, 17:00 UTC, to 15 March 2015, 11:30 UTC. A total of eight starute flights were launched successfully from 14 March, 19:00 UTC, to 15 March, 00:19 UTC. In general there is excellent agreement between DoRIS and the in situ measurements, considering the combined range of uncertainties. This concerns not only the general height structures of zonal and meridional winds and their temporal developments, but also some wavy structures. Considering the comparison between all starute flights and all DoRIS observations in a time period of ±20 min around each individual starute flight, we arrive at mean differences of typically ±5-10 m s-1 for both wind components. Part of the remaining differences are most likely due to the detection of different wave fronts of gravity waves. There is no systematic difference between DoRIS and the in situ observations above 30 km. Below ˜ 30 km, winds from DoRIS are systematically too large by up to 10-20 m s-1, which can be explained by the presence of aerosols. This is proven by deriving the backscatter ratios at two different wavelengths. These ratios are larger than unity, which is an indication of the presence of aerosols.

  20. Theory and operation of the real-time data acquisition system for the NASA-LaRC differential absorption lidar (DIAL)

    NASA Technical Reports Server (NTRS)

    Butler, C.

    1986-01-01

    The improvement of computer hardware and software of the NASA Multipurpose Differential Absorption Lidar (DIAL) system is documented. The NASA DIAL system is undergoing development and experimental deployment at NASA Langley Research Center for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms. A viable DIAL system was developed capable of remotely measuring O3 and H2O concentrations from an aircraft platform. Test flights of the DIAL system were successfully performed onboard the NASA Goddard Flight Center Electra aircraft from 1980 to 1985. The DIAL Data Acquisition System has undergone a number of improvements over the past few years. These improvements have now been field tested. The theory behind a real time computer system as it applies to the needs of the DIAL system is discussed. This report is designed to be used as an operational manual for the DIAL DAS.

  1. Theory and operation of the real-time data acquisition system for the NASA-LaRC differential absorption lidar (DIAL)

    NASA Technical Reports Server (NTRS)

    Butler, Carolyn; Spencer, Randall

    1988-01-01

    The improvement of computer hardware and software of the NASA Multipurpose Differential Absorption Lidar (DIAL) system is documented. The NASA DIAL system has undergone development and experimental deployment at NASA/Langley Res. Center for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms. A viable DIAL system was developed capable of remotely measuring O3 and H2O concentrations from an aircraft platform. The DIAL Data Acquisition System (DAS) has undergone a number of improvements also. Due to the participation of the DIAL in the Global Tropospheric Experiment, modifications and improvements of the system were tested and used both in the lab and in air. Therefore, this is an operational manual for the DIAL DAS.

  2. 2-D tomography of volcanic CO2 from scanning hard-target differential absorption lidar: the case of Solfatara, Campi Flegrei (Italy)

    NASA Astrophysics Data System (ADS)

    Queißer, Manuel; Granieri, Domenico; Burton, Mike

    2016-11-01

    Solfatara is part of the active volcanic zone of Campi Flegrei (Italy), a densely populated urban area where ground uplift and increasing ground temperature are observed, connected with rising rates of CO2 emission. A major pathway of CO2 release at Campi Flegrei is diffuse soil degassing, and therefore quantifying diffuse CO2 emission rates is of vital interest. Conventional in situ probing of soil gas emissions with accumulation chambers is accurate over a small footprint but requires significant time and effort to cover large areas. An alternative approach is differential absorption lidar, which allows for a fast and spatially integrated measurement. Here, a portable hard-target differential absorption lidar has been used to acquire horizontal 1-D profiles of column-integrated CO2 concentration at the Solfatara crater. To capture heterogenic features in the CO2 distribution, a 2-D tomographic map of the CO2 distribution has been inverted from the 1-D profiles. The scan was performed one-sided, which is unfavorable for the inverse problem. Nonetheless, the result is in agreement with independent measurements and furthermore confirms an area of anomalous CO2 degassing along the eastern edge as well as the center of the Solfatara crater. The method may have important implications for measurements of degassing features that can only be accessed from limited angles, such as airborne sensing of volcanic plumes. CO2 fluxes retrieved from the 2-D map are comparable, but modestly higher than emission rates from previous studies, perhaps reflecting an increase in CO2 flux or a more integrated measurement or both.

  3. Absorption measurement of thin films by using photothermal techniques: The influence of thermal properties

    SciTech Connect

    Wu, Z.L.; Kuo, P.K.; Thomas, R.L.; Fan, Z.X.

    1995-12-31

    Photothermal techniques are widely used for measuring optical absorption of thin film coatings. In these applications the calibration of photothermal signal is typically based on the assumption that the thermal properties of the thin film make very little contribution. In this paper we take mirage technique as an example and present a detailed analysis of the influence of thin film thermal properties on absorption measurements. The results show that the traditional calibration method is not valid on surprisingly many situations.

  4. Sensitive and absolute absorption measurements in optical materials and coatings by laser-induced deflection technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Christian; Bublitz, Simon

    2012-12-01

    The laser-induced deflection (LID) technique, a photo-thermal deflection setup with transversal pump-probe-beam arrangement, is applied for sensitive and absolute absorption measurements of optical materials and coatings. Different LID concepts for bulk and transparent coating absorption measurements, respectively, are explained, focusing on providing accurate absorption data with only one measurement and one sample. Furthermore, a new sandwich concept is introduced that allows transferring the LID technique to very small sample geometries and to significantly increase the sensitivity for materials with weak photo-thermal responses. For each of the different concepts, a representative application example is given. Particular emphasis is placed on the importance of the calibration procedure for providing absolute absorption data. The validity of an electrical calibration procedure for the LID setup is proven using specially engineered surface absorbing samples. The electrical calibration procedure is then applied to evaluate two other approaches that use either doped samples or highly absorptive reference samples.

  5. Techniques for inferring terrain parameters related to ground vehicle mobility using UAV born IFSAR and lidar data

    NASA Astrophysics Data System (ADS)

    Durst, Phillip J.; Baylot, Alex; McKinley, Burney

    2011-05-01

    Predicting ground vehicle performance requires in-depth knowledge, captured as numeric parameters, of the terrain on which the vehicles will be operating. For off-road performance, predictions are based on rough terrain ride comfort, which is described using a parameter entitled root-mean-square (RMS) surface roughness. Likewise, on-road vehicle performance depends heavily on the slopes of the individual road segments. Traditional methods of computing RMS and road slope values call for high-resolution (inch-scale) surface elevation data. At this scale, surface elevation data is both difficult and time consuming to collect. Nevertheless, a current need exists to attribute large geographic areas with RMS and road slope values in order to better support vehicle mobility predictions, and high-resolution surface data is neither available nor collectible for many of these regions. On the other hand, meter scale data can be quickly and easily collected for these areas using unmanned aerial vehicle (UAV) based IFSAR and LIDAR sensors. A statistical technique for inferring RMS values for large areas using a combination of fractal dimension and spectral analysis of five-meter elevation data is presented. Validation of the RMS prediction technique was based on 43 vehicle ride courses with 30-centimeter surface elevation data. Also presented is a model for classifying road slopes for long road sections using five-meter elevation data. The road slope model was validated against one-meter LIDAR surface elevation profiles. These inference algorithms have been successfully implemented for regions of northern Afghanistan, and some initial results are presented.

  6. A New Raman Water Vapor Lidar Calibration Technique and Measurements in the Vicinity of Hurricane Bonnie

    NASA Technical Reports Server (NTRS)

    Evans, Keith D.; Demoz, Belay B.; Cadirola, Martin P.; Melfi, S. H.; Whiteman, David N.; Schwemmer, Geary K.; Starr, David OC.; Schmidlin, F. J.; Feltz, Wayne

    2000-01-01

    The NAcA/Goddard Space Flight Center Scanning Raman Lidar has made measurements of water vapor and aerosols for almost ten years. Calibration of the water vapor data has typically been performed by comparison with another water vapor sensor such as radiosondes. We present a new method for water vapor calibration that only requires low clouds, and surface pressure and temperature measurements. A sensitivity study was performed and the cloud base algorithm agrees with the radiosonde calibration to within 10- 15%. Knowledge of the true atmospheric lapse rate is required to obtain more accurate cloud base temperatures. Analysis of water vapor and aerosol measurements made in the vicinity of Hurricane Bonnie are discussed.

  7. Application of Optical Parametric Generator for Lidar Sensing of Minor Gas Components of the Atmosphere in 3-4 μm Spectral Range

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Sadovnikov, S. A.; Kharchenko, O. V.; Shumskii, V. K.; Yakovlev, S. V.

    2016-07-01

    Possibility of application of a laser system with parametric light generation based on a nonlinear KTA crystal for lidar sensing of the atmosphere in the 3-4 μm spectral range is investigated. A technique for lidar measurements of gas components in the atmosphere with the use of differential absorption lidar (DIAL) and differential optical absorption spectroscopy (DOAS) method is developed. The DIAL-DOAS technique is tested for estimating the possibility of laser sensing of minor gas components in the atmosphere.

  8. Study of Ground Subsidence in North West Houston using GPS, LiDAR and InSAR techniques

    NASA Astrophysics Data System (ADS)

    Karacay, A.; Khan, S. D.

    2012-12-01

    Land subsidence can be caused by natural or human activities, such as carbonate dissolution, extraction of material from mines, soil compaction and fluid withdrawal. This phenomenon affects many cities around the world, such as Nagoya-Japan, Venice-Italy, San Joaquin Valley and Long Beach in California. Recent work by Engelkemeir et al, (2010), suggested that subsidence occurred as high as 5.6 cm/year in northwest Houston. The processes that may contribute to land subsidence in the Houston-Galveston area includes faulting, soil compaction, salt tectonic, water pumping and hydrocarbon extraction. This study aims to assess the possible role of water pumping on subsidence. Northwest Houston has two aquifer systems, the Evangeline and Chicot aquifers that dip in the southeast direction. The effect of water pumping on subsidence from these two aquifers was monitored using InSAR, GPS and LiDAR data. The data from eleven GPS stations were processed using Online Positioning User Service (OPUS) of National Geodetic Survey (NGS). Three of these GPS stations are Continuously Operating Reference Stations (CORS) and eight are Port-A-Measure (PAM) sites. All the GPS data were obtained from Harris-Galveston Subsidence District (HGSD). CORS sites were used as reference stations for processing GPS data from the PAM stations. GPS data show that subsidence rate in northwest Houston decreased to approximately 2 cm/year. In addition, the surface deformation is also estimated using Light Detection and Ranging (LiDAR) technique. For this purpose, raw LiDAR (LAS-Long ASCII Standart) files of 2001 and 2008 were processed. The subsidence rate near the Hockley Fault was calculated by applying zonal statistics method on LiDAR data which shows about 10 cm of subsidence in nine years. This result is supported by processed GPS data from PAM site 48 that show subsidence rate of 1.3 cm/yr. For the InSAR (Interferometric Synthetic Aperture Radar) technique, an image pair of PALSAR (The Phased Array

  9. Exploring a geophysical process-based attribution technique for the determination of the atmospheric boundary layer depth using aerosol lidar and near-surface meteorological measurements

    NASA Astrophysics Data System (ADS)

    Pal, Sandip; Haeffelin, Martial; Batchvarova, Ekaterina

    2013-08-01

    A new objective method for the determination of the atmospheric boundary layer (ABL) depth using routine vertically pointing aerosol lidar measurements is presented. A geophysical process-based analysis is introduced to improve the attribution of the lidar-derived aerosol gradients, which is so far the most challenging part in any gradient-based technique. Using micrometeorological measurements of Obukhov length scale, both early morning and evening transition periods are determined which help separate the turbulence regimes during well-mixed convective ABL and nocturnal/stable ABL. The lidar-derived aerosol backscatter signal intensity is used to determine the hourly-averaged vertical profiles of variance of the fluctuations of particle backscatter signal providing the location of maximum turbulent mixing within the ABL; thus, obtained mean ABL depth guides the attribution by searching for the appropriate minimum of the gradients. An empirical classification of the ABL stratification patterns into three different types is proposed by determining the changes in the near-surface stability scenarios. First results using the lidar observations obtained between March and July in 2011 at SIRTA atmospheric observatory near Palaiseau (Paris suburb) in France demonstrate that the new attribution technique makes the lidar estimations of ABL depth more physically reliable under a wide spectrum of meteorological conditions. While comparing lidar and nearby radiosonde measurements of ABL depths, an excellent concordance was found with a correlation coefficient of 0.968 and 0.927 for daytime and nighttime measurements, respectively. A brief climatology of the characteristics of the ABL depth, its diurnal cycle, a detailed discussion of the morning and evening transitions are presented.

  10. Inter-comparison of 2 microm Heterodyne Differential Absorption Lidar, Laser Diode Spectrometer, LICOR NDIR analyzer and flasks measurements of near-ground atmospheric CO2 mixing ratio.

    PubMed

    Gibert, Fabien; Joly, Lilian; Xuéref-Rémy, Irène; Schmidt, Martina; Royer, Adrien; Flamant, Pierre H; Ramonet, Michel; Parvitte, Bertrand; Durry, Georges; Zéninari, Virginie

    2009-01-01

    Remote sensing and in situ instruments are presented and compared in the same location for accurate CO(2) mixing ratio measurements in the atmosphere: (1) a 2.064 microm Heterodyne DIfferential Absorption Lidar (HDIAL), (2) a field deployable infrared Laser Diode Spectrometer (LDS) using new commercial diode laser technology at 2.68 microm, (3) LICOR NDIR analyzer and (4) flasks. LDS, LICOR and flasks measurements were made in the same location, LICOR and flasks being taken as reference. Horizontal HDIAL measurements of CO(2) absorption using aerosol backscatter signal are reported. Using new spectroscopic data in the 2 microm band and meteorological sensor measurements, a mean CO(2) mixing ratio is inferred by the HDIAL in a 1 km long path above the 15m height location of the CO(2) in situ sensors. We compare HDIAL and LDS measurements with the LICOR data for 30 min of time averaging. The mean standard deviation of the HDIAL and the LDS CO(2) mixing ratio results are 3.3 ppm and 0.89 ppm, respectively. The bias of the HDIAL and the LDS measurements are -0.54 ppm and -0.99 ppm, respectively.

  11. Lidar and Occultation Remote Sensing Applied to Atmospheric Measurements

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.

    2008-05-01

    The use of lidar began in the early 1960s soon after a laboratory laser was shown to Q-switch and emit short pulses of light. The lidar technique makes measurements typically through backscattering, fluorescence, attenuation and absorption, and has become more and more sophisticated over the years, being used at ground stations and aboard airplanes and spacecraft. Routine measurements of aerosols, clouds, ozone, and atmospheric constituents like wind speeds and direction are being made. The passive technique of solar, lunar and stellar occultation has been used aboard balloons, aircraft and spacecraft also beginning in the 1960s, and since 1975, aboard spacecraft. It is a technique that, like lidar, is capable of vertical profiling, and has produced global measurements of stratospheric aerosols and ozone on a routine basis since about 1978. This talk will present a walk through the history of the author's involvement in the development of and measurements using these two techniques. Record-setting data sets on stratospheric aerosols from a ground-based lidar and satellite measurements of global aerosols and ozone (SAM~II and SAGE series) will be presented. The naming and characterization of Polar Stratospheric Clouds will be described in the context of the ozone hole. Aircraft lidar campaigns to study the impact of volcanic aerosols will be described, as well as the use of airborne lidar to validate satellite occultation measurements. Finally, the proof-of-principle LITE Space Shuttle lidar experiment and the long duration unmanned CALIPSO lidar mission presently in orbit will be discussed along with example results. A look-back at these contributions will be followed by a look into the future.

  12. Correction Technique for Raman Water Vapor Lidar Signal-Dependent Bias and Suitability for Water Wapor Trend Monitoring in the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.; Jordan, A.; Voemel, H.

    2012-01-01

    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper

  13. Investigation of Overlap Correction Techniques for Application in the Micro-Pulse Lidar Network (MPLNET)

    NASA Technical Reports Server (NTRS)

    Berkoff, Timothy A.; Welton, Ellsworth J.; Campbell, James R.; Scott, Vibart S.; Spinhirne, James D.

    2003-01-01

    The Micro-Pulse Lidar NETwork (MPLNET) is comprised of micro-pulse lidars (MPL) stationed around the globe to provide measurements of aerosol and cloud vertical distribution on a continuous basis. MPLNET sites are co-located with sunphotometers in the AErosol Robotic NETwork (AERONET) to provide joint measurements of aerosol optical depth, size, and other inherent optical properties. The IPCC 2001 report discusses . the importance of obtaining routine measurements of aerosol vertical structure, especially for absorbing aerosols. MPLNET provides exactly this sort of measurement, including calculation of aerosol extinction profiles, in a near real-time basis for all sites in the network. In order to obtain aerosol profiles, near range signal returns (0-6 km) must be accurately measured by the MPL. This measurement is complicated by the instrument s overlap range: Le., the minimum distance at which returning signals are completely in the instrument s field-of-view (FOV). Typical MPL overlap distances are large, between 5 - 6 km, due to the narrow FOV of the MPL receiver. A function describing the MPL overlap must be determined and used to correct signals in this range. Currently, overlap functions for MPLNET are determined using horizontal MPL measurements along a path with 10-1 5 km clear line-of-sight and a homogenous atmosphere. These conditions limit the location and ease in which successful overlaps can be obtained. Furthermore, the current MPLNET process of correcting for overlap increases the uncertainty and bias error for the near range signals and the resulting aerosol extinction profiles. To address these issues, an alternative overlap correction method using a small-diameter, wide FOV receiver is being considered for potential use in MPLNET. The wide FOV receiver has a much shorter overlap distance and will be used to calculate the overlap function of the MPL receiver. This approach has a significant benefit in that overlap corrections could be obtained

  14. Automated individual tree crown delineation from LIDAR data using morphological techniques

    NASA Astrophysics Data System (ADS)

    Jing, L.; Hu, B.; Li, H.; Li, J.; Noland, T.

    2014-03-01

    In current tree crown delineation from LiDAR data, treetops and 3D geometric shapes of tree crowns are frequently extracted from LiDAR-derived Crown Height Model (CHM) and used as references to localize and delineate crowns. However, it is difficult to detect deciduous treetops and delineate deciduous tree crowns. The 3D shape of a crown, which can be derived from CHM, may be taken as a half ellipsoid, and any horizontal slice of the ellipsoid contains the treetop and indicates not only the location but also the spatial extent of the crown. Based on such slices, a novel multi-scale method for individual tree crown delineation from CHM was proposed in this study. This method consists mainly of two steps: (1) morphologically open the CHM over the scale range of target tree crowns; and (2) take local maxima within each resulting opened CHM as the horizontal slices of target crowns at the corresponding scale level and integrate all the slices within the scale range together to represent the spatial distribution of target crowns. In an experiment on CHMs over two natural closed canopy forests in Ontario, Canada, the proposed method accurately delineated the majority of the tree crowns from closed canopy forests.

  15. Laser sources for lidar applications

    NASA Astrophysics Data System (ADS)

    Kilmer, J.; Iadevaia, A.; Yin, Y.

    2012-06-01

    Advanced LIDAR applications such as next gen: Micro Pulse; Time of Flight (e.g., Satellite Laser Ranging); Coherent and Incoherent Doppler (e.g., Wind LIDAR); High Spectral Resolution; Differential Absorption (DIAL); photon counting LIDAR (e.g., 3D LIDAR); are placing more demanding requirements on conventional lasers (e.g., increased rep rates, etc.) and have inspired the development of new types of laser sources. Today, solid state lasers are used for wind sensing, 2D laser Radar, 3D scanning and flash LIDAR. In this paper, we report on the development of compact, highly efficient, high power all-solidstate diode pulsed pumped ns lasers, as well as, high average power/high pulse energy sub nanosecond (<1ns) and picosecond (<100ps) lasers for these next gen LIDAR applications.

  16. A quality control technique based on UV-VIS absorption spectroscopy for tequila distillery factories

    NASA Astrophysics Data System (ADS)

    Barbosa Garcia, O.; Ramos Ortiz, G.; Maldonado, J. L.; Pichardo Molina, J.; Meneses Nava, M. A.; Landgrave, Enrique; Cervantes, M. J.

    2006-02-01

    A low cost technique based on the UV-VIS absorption spectroscopy is presented for the quality control of the spirit drink known as tequila. It is shown that such spectra offer enough information to discriminate a given spirit drink from a group of bottled commercial tequilas. The technique was applied to white tequilas. Contrary to the reference analytic methods, such as chromatography, for this technique neither special personal training nor sophisticated instrumentations is required. By using hand-held instrumentation this technique can be applied in situ during the production process.

  17. A Compact Ti:Sapphire Laser With its Third Harmonic Generation (THG) for an Airborne Ozone Differential Absorption Lidar (DIAL) Transmitter

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.

    2000-01-01

    A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.

  18. Analysis of a random modulation single photon counting differential absorption lidar system for space-borne atmospheric CO2 sensing.

    PubMed

    Ai, X; Pérez-Serrano, A; Quatrevalet, M; Nock, R W; Dahnoun, N; Ehret, G; Esquivias, I; Rarity, J G

    2016-09-05

    The ability to observe the Earth's carbon cycles from space provides scientists an important tool to analyze climate change. Current proposed systems are mainly based on pulsed integrated path differential absorption lidar, in which two high energy pulses at different wavelengths interrogate the atmosphere sequentially for its transmission properties and are back-scattered by the ground. In this work an alternative approach based on random modulation single photon counting is proposed and analyzed; this system can take advantage of a less power demanding semiconductor laser in intensity modulated continuous wave operation, benefiting from a better efficiency, reliability and radiation hardness. Our approach is validated via numerical simulations considering current technological readiness, demonstrating its potential to obtain a 1.5 ppm retrieval precision for 50 km averaging with 2.5 W average power in a space-borne scenario. A major limiting factor is the ambient shot noise, if ultra-narrow band filtering technology could be applied, 0.5 ppm retrieval precision would be attainable.

  19. Combined laser calorimetry and photothermal technique for absorption measurement of optical coatings

    SciTech Connect

    Li Bincheng; Blaschke, Holger; Ristau, Detlev

    2006-08-10

    To the best of our knowledge, a combined sensitive technique employing both laser calorimetry and a surface thermal lens scheme for measuring absorption values of optical coatings is presented for the first time. Laser calorimetric and pulsed surface thermal lens signals are simultaneously obtained with a highly reflecting UV coating sample irradiated at 193 nm. The advantages and potential applications of the combined technique and the experimental factors limiting the measurement sensitivity are discussed.

  20. Combined laser calorimetry and photothermal technique for absorption measurement of optical coatings.

    PubMed

    Li, Bincheng; Blaschke, Holger; Ristau, Detlev

    2006-08-10

    To the best of our knowledge, a combined sensitive technique employing both laser calorimetry and a surface thermal lens scheme for measuring absorption values of optical coatings is presented for the first time. Laser calorimetric and pulsed surface thermal lens signals are simultaneously obtained with a highly reflecting UV coating sample irradiated at 193 nm. The advantages and potential applications of the combined technique and the experimental factors limiting the measurement sensitivity are discussed.

  1. Photothermal self-phase-modulation technique for absorption measurements on high-reflective coatings.

    PubMed

    Steinlechner, Jessica; Jensen, Lars; Krüger, Christoph; Lastzka, Nico; Steinlechner, Sebastian; Schnabel, Roman

    2012-03-10

    We propose and demonstrate a new measurement technique for the optical absorption of high-reflection coatings. Our technique is based on photothermal self-phase modulation and exploits the deformation of cavity Airy peaks that occurs due to coating absorption of intracavity light. The mirror whose coating is under investigation needs to be the input mirror of a high-finesse cavity. Our example measurements were performed on a high-reflection SiO2-Ta2O5 coating in a three-mirror ring-cavity setup at a wavelength of 1064 nm. The optical absorption of the coating was determined to be α=(23.9±2.0)·10(-6) per coating. Our result is in excellent agreement with an independently performed laser calorimetry measurement that gave a value of α=(24.4±3.2)·10(-6) per coating. Since the self-phase modulation in our coating-absorption measurement affects mainly the propagation through the cavity input mirror, our measurement result is practically uninfluenced by the optical absorption of the other cavity mirrors.

  2. Sandwich concept: enhancement for direct absorption measurements by laser-induced deflection (LID) technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.; Bublitz, S.; Paa, W.

    2012-11-01

    The new sandwich concept for absolute photo-thermal absorption measurements using the laser induced deflection (LID) technique is introduced and tested in comparison to the standard LID concept. The sandwich concept's idea is the decoupling of the optical materials for the pump and probe beams by placing a sample of investigation in between two optical (sandwich) plates. The pump beam is guided through the sample whereas the probe beams are deflected within the sandwich plates by the thermal lens that is generated by heat transfer from the irradiated sample. Electrical simulation and laser experiments reveal that using appropriate optical materials for the sandwich plates, the absorption detection limit for photo-thermally insensitive materials can be lowered by up to two orders of magnitude. Another advantage of the sandwich concept, the shrinking of the currently required minimum sample size, was used to investigate the laser induced absorption change in a Nd:YVO4 crystal at 1030nm. It was found that the absorption in Nd:YVO4 lowers due to the laser irradiation but partially recovers during irradiation breaks. Furthermore, absorption spectroscopy has been performed at two LBO crystals in the wavelength range 410...600nm to study the absorption structure around the SHG wavelengths of common high power lasers based on Neodymium doped laser crystals.

  3. Development of surface thermal lensing technique in absorption and defect analyses of optical coatings

    NASA Astrophysics Data System (ADS)

    He, Hongbo; Li, Xia; Fan, Shuhai; Shao, Jianda; Zhao, Yuanan; Fan, Zhengxiu

    2005-12-01

    Absorption is one of the main factors which cause damage to optical coatings, under the radiation of high power lasers. Surface thermal lensing (STL) technique was developed into a practical high-sensitivity apparatus for the weak absorption analysis of optical coatings. A 20 W continuous-wave 1064 nm Nd:YAG laser and a 30 mW He-Ne laser were employed as pump source and probe source, respectively. Low noise photoelectrical components and an SR830 DSP lock-in amplifier were used for photo-thermal deformation signal detection. In order to improve sensitivity, the configuration of the apparatus was optimized through choosing appropriate parameters, that including pump beam spot size, chopper frequency, detection distance, waist radius and position of probe beam. Coating samples were mounted on an x-y stage which was driven by high precision stepper motors. Different processes of absorption measurements, including single spot, linear scan and 2-dimension area scan, could be performed manually or automatically under the control of PC program. Various optical coatings were prepared by both electron beam evaporation and ion beam sputtering deposition. High sensitivity was obtained and low to 10 ppb absorption could be measured by surface thermal lensing technique. And a spatial resolution of 25 micron was proved according to the area scanning which traced out the profile of photo-thermal defects inside optical coatings. The system was employed in the analyses of optical absorption, absorption uniformity and defect distribution, and revealed the relationship between laser-induced damage and absorption of optical coatings.

  4. Water vapor lidar

    NASA Technical Reports Server (NTRS)

    Ellingson, R.; Mcilrath, T.; Schwemmer, G.; Wilkerson, T. D.

    1976-01-01

    The feasibility was studied of measuring atmospheric water vapor by means of a tunable lidar operated from the space shuttle. The specific method evaluated was differential absorption, a two-color method in which the atmospheric path of interest is traversed by two laser pulses. Results are reported.

  5. New Examination of the Traditional Raman Lidar Technique II: Temperature Dependence Aerosol Scattering Ratio and Water Vapor Mixing Ratio Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman water vapor signal and the lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here we use those results to derive the temperature dependent forms of the equations for the aerosol scattering ratio, aerosol backscatter coefficient, extinction to backscatter ratio and water vapor mixing ratio. Pertinent analysis examples are presented to illustrate each calculation.

  6. Space Lidar and Applications

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Smith, David E. (Technical Monitor)

    2001-01-01

    With advances in lasers and electro-optic technology, lidar is becoming an established technique for remote sensing of the Earth and planets from space. Some of the earliest space-based lidar measurements were made in the early 1970s from lunar orbit using the laser altimeter on the Apollo 15 mission. Space lidar instruments in active use today include the MOLA instrument aboard the Mars Global Surveyor mission and the Near Laser Rangefinder on the Near Earth Asteroid Rendezvous (NEAR) Mission. This talk will review laser remote sensing techniques, critical technologies, and some results from past and present NASA missions. It will also review near term plans for NASA's ICESat and Picasso missions and summarize some concepts for lidar on future missions.

  7. Oceanic Lidar

    NASA Technical Reports Server (NTRS)

    Carder, K. L. (Editor)

    1981-01-01

    Instrument concepts which measure ocean temperature, chlorophyll, sediment and Gelbstoffe concentrations in three dimensions on a quantitative, quasi-synoptic basis were considered. Coastal zone color scanner chlorophyll imagery, laser stimulated Raman temperaure and fluorescence spectroscopy, existing airborne Lidar and laser fluorosensing instruments, and their accuracies in quantifying concentrations of chlorophyll, suspended sediments and Gelbstoffe are presented. Lidar applications to phytoplankton dynamics and photochemistry, Lidar radiative transfer and signal interpretation, and Lidar technology are discussed.

  8. Spectrum sensing of trace C(2)H(2) detection in differential optical absorption spectroscopy technique.

    PubMed

    Chen, Xi; Dong, Xiaopeng

    2014-09-10

    An improved algorithm for trace C(2)H(2) detection is presented in this paper. The trace concentration is accurately calculated by focusing on the absorption spectrum from the frequency domain perspective. The advantage of the absorption spectroscopy frequency domain algorithm is its anti-interference capability. First, the influence of the background noise on the minimum detectable concentration is greatly reduced. Second, the time-consuming preprocess of spectra calibration in the differential optical absorption spectroscopy technique is skipped. Experimental results showed the detection limit of 50 ppm is achieved at a lightpath length of 0.2 m. This algorithm can be used in real-time spectrum analysis with high accuracy.

  9. Broadband absorption spectroscopy by combining frequency-domain and steady-state techniques

    NASA Astrophysics Data System (ADS)

    Berger, Andrew J.; Bevilacqua, Frederic; Jakubowski, Dorota B.; Cerussi, Albert E.; Butler, John A.; Hsiang, D.; Tromberg, Bruce J.

    2001-06-01

    A technique for measuring broadband near-infrared absorption spectra of turbid media is presented using a combination of frequency-domain (FD) and steady-state (SS) reflectance methods. Most of the wavelength coverage is provided by a white-light SS measurement, while the FD data are acquired at a few selected wavelengths. Coefficients of absorption ((mu) a) and reduced scattering ((mu) s') derived from the FD data are used to intensity-calibrate the SS measurements and to estimate (mu) s' at all wavelengths in the spectral window of interest. After these steps are performed, (mu) a can be determined by comparing the SS reflectance values to the predictions of diffusion theory, wavelength by wavelength. We present an application of this method to breast tumor characterization. A case study of a fibroadenoma is shown, where different absorption spectra were found between the normal and the tumor sides.

  10. Lidar Report

    SciTech Connect

    Wollpert.

    2009-04-01

    This report provides an overview of the LiDAR acquisition methodology employed by Woolpert on the 2009 USDA - Savannah River LiDAR Site Project. LiDAR system parameters and flight and equipment information is also included. The LiDAR data acquisition was executed in ten sessions from February 21 through final reflights on March 2, 2009; using two Leica ALS50-II 150kHz Multi-pulse enabled LiDAR Systems. Specific details about the ALS50-II systems are included in Section 4 of this report.

  11. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Theory and Simulations

    NASA Technical Reports Server (NTRS)

    Borel, Christoph C.; Schlaepfer, Daniel

    1996-01-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels; (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels. (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an "Atmospheric Pre-corrected Differential Absorption" (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than +5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  12. Lidar measurements of stratospheric ozone at Table Mountain, California, since 1988

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. Stuart; Schmoe, Martha; Walsh, T. Daniel

    1994-01-01

    Regular measurements of stratospheric ozone concentration profiles have been made at Table Mountain, California, since January 1988. During the period to December 1991, 435 independent profiles were measured by the differential absorption lidar technique. These long-term results, and an evaluation of their quality, is presented in this paper.

  13. A Method for Eliminating Beam Steering Error for the Modulated Absorption-Emission Thermometry Technique

    DTIC Science & Technology

    2014-01-01

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) Jan 2014 2. REPORT TYPE Technical...Paper 3. DATES COVERED (From - To) Jan 2014- June 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER In-House A Method for Eliminating Beam...14194 14. ABSTRACT Modulated absorption-emission thermometry (MAET) is a non-intrusive, radiometric technique for measuring line-of-sight average

  14. A Method for Eliminating Beam Steering Error for the Modulated Absorption-Emission Thermometry Technique

    DTIC Science & Technology

    2015-01-01

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) December 2014 2. REPORT TYPE...Briefing Charts 3. DATES COVERED (From - To) December 2014- January 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER N/A A Method for Eliminating...Jan 2015. PA#14562. 14. ABSTRACT Modulated absorption-emission thermometry (MAET) is a non-intrusive, radiometric technique for measuring line-of

  15. Coal thickness gauge using RRAS techniques, part 1. [radiofrequency resonance absorption

    NASA Technical Reports Server (NTRS)

    Rollwitz, W. L.; King, J. D.

    1978-01-01

    A noncontacting sensor having a measurement range of 0 to 6 in or more, and with an accuracy of 0.5 in or better is needed to control the machinery used in modern coal mining so that the thickness of the coal layer remaining over the rock is maintained within selected bounds. The feasibility of using the radiofrequency resonance absorption (RRAS) techniques of electron magnetic resonance (EMR) and nuclear magnetic resonance (NMR) as the basis of a coal thickness gauge is discussed. The EMR technique was found, by analysis and experiments, to be well suited for this application.

  16. MERLIN (Methane Remote Sensing Lidar Mission): an Overview

    NASA Astrophysics Data System (ADS)

    Pierangelo, C.; Millet, B.; Esteve, F.; Alpers, M.; Ehret, G.; Flamant, P.; Berthier, S.; Gibert, F.; Chomette, O.; Edouart, D.; Deniel, C.; Bousquet, P.; Chevallier, F.

    2016-06-01

    The Methane Remote Sensing Lidar Mission (MERLIN), currently in phase B, is a joint cooperation between France and Germany on the development, launch and operation of a methane (CH4) monitoring satellite. MERLIN is focused on global measurements of the spatial and temporal gradients of atmospheric CH4, the second most anthropogenic gas, with a precision and accuracy sufficient to constrain Methane fluxes significantly better than with the current observation network. For the first time, measurements of atmospheric composition will be performed from space thanks to an IPDA (Integrated Path Differential Absorption) LIDAR (Light Detecting And Ranging). This payload is under the responsibility of the German space agency (DLR), while the platform (MYRIADE Evolutions product line) is developed by the French space agency (CNES). The IPDA technique relies on DIAL (Differential Absorption LIDAR) measurements using a pulsed laser emitting at two wavelengths, one wavelength accurately locked on a spectral feature of the methane absorption line, and the other wavelength free from absorption to be used as reference. This technique enables measurements in all seasons, at all latitudes. It also guarantees almost no contamination by aerosols or water vapour cross-sensitivity, and thus has the advantage of an extremely low level of systematic error on the dry-air column mixing ratio of CH4.

  17. Entrainment Heat Flux Computed with Lidar and Wavelet Technique in Buenos Aires During Last Chaitén Volcano Eruption

    NASA Astrophysics Data System (ADS)

    Pawelko, Ezequiel Eduardo; Salvador, Jacobo Omar; Ristori, Pablo Roberto; Pallotta, Juan Vicente; Otero, Lidia Ana; Quel, Eduardo Jaime

    2016-06-01

    At Lidar Division of CEILAP (CITEDEF-CONICET) a multiwavelength Raman-Rayleigh lidar optimized to measure the atmospheric boundary layer is being operated. This instrument is used for monitoring important aerosol intrusion events in Buenos Aires, such as the arrival of volcanic ashes from the Chaitén volcano eruption on May 2008. That was the first monitoring of volcanic ash with lidar in Argentina. In this event several volcanic ash plumes with high aerosol optical thickness were detected in the free atmosphere, affecting the visibility, surface radiation and therefore, the ABL evolution. In this work, the impact of ashes in entrainment flux ratio is studied. This parameter is obtained from the atmospheric boundary layer height and entrainment zone thickness using algorithms based on covariance wavelet transform.

  18. Method and apparatus for measuring butterfat and protein content using microwave absorption techniques

    DOEpatents

    Fryer, Michael O.; Hills, Andrea J.; Morrison, John L.

    2000-01-01

    A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

  19. A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient

    NASA Astrophysics Data System (ADS)

    Gaudette, Richard J.; Brooks, Dana H.; Di Marzio, Charles A.; Kilmer, Misha E.; Miller, Eric L.; Gaudette, Thomas; Boas, David A.

    2000-04-01

    We compare, through simulations, the performance of four linear algorithms for diffuse optical tomographic reconstruction of the three-dimensional distribution of absorption coefficient within a highly scattering medium using the diffuse photon density wave approximation. The simulation geometry consisted of a coplanar array of sources and detectors at the boundary of a half-space medium. The forward solution matrix is both underdetermined, because we estimate many more absorption coefficient voxels than we have measurements, and ill-conditioned, due to the ill-posedness of the inverse problem. We compare two algebraic techniques, ART and SIRT, and two subspace techniques, the truncated SVD and CG algorithms. We compare three-dimensional reconstructions with two-dimensional reconstructions which assume all inhomogeneities are confined to a known horizontal slab, and we consider two `object-based' error metrics in addition to mean square reconstruction error. We include a comparison using simulated data generated using a different FDFD method with the same inversion algorithms to indicate how our conclusions are affected in a somewhat more realistic scenario. Our results show that the subspace techniques are superior to the algebraic techniques in localization of inhomogeneities and estimation of their amplitude, that two-dimensional reconstructions are sensitive to underestimation of the object depth, and that an error measure based on a location parameter can be a useful complement to mean squared error.

  20. Reconstructing landslide dynamics and characteristics using remote sensing data (photogrammetry, LiDAR and seismic data): comparison between different techniques and complementary data analysis

    NASA Astrophysics Data System (ADS)

    Torné, Marta; Guinau, Marta; Tapia, Mar; Perez, Cristina; Jesús Royan, Manuel; Echeverria, Anna; Roig, Pere; Suriñach, Emma

    2015-04-01

    The purpose of this study is to characterize the rock planar landslide that occurred in the village of La Riba (Catalonia) on May 5th 2013, using different techniques such as photogrammetry, terrestrial LiDAR data, and seismic data. Advantages and disadvantages of these techniques were evaluated. Back-analysis and characterization of landslides allow us to better understand their behaviour. This information could be used to protect areas affected by similar hazards. Remote techniques are an excellent tool to obtain data and to reduce the exposure of technicians in unstable (or inaccessible) areas. After the May 5th natural landslide, a controlled blasting was carried out to stabilize the slope. Using this programmed blasting as a benchmark, two photogrammetric models and two terrestrial LiDAR data models corresponding to the pre and post blast were made to compute the rock volume involved in the blast. The blasting process was recorded with two HD video cameras and by two temporary seismic stations deployed close to the site. Both the seismic and video records enabled us to reconstruct the details of the blasted landslide. The volumes obtained from seismic data were compared with the total volumes computed by LiDAR and photogrammetry. Moreover, information about the natural landslide was obtained from the records of a permanent seismic station 10 km from the site. Data such as the estimated fallen volume, the landslide mechanism and time of occurrence are information that would otherwise not be obtained. Six discontinuity families were detected and characterized in the rock slope using the photogrammetric and LiDAR models with a software developed by the Institut de Recerca de Geomodels of the Universitat de Barcelona. Similar results were obtained from the two models, but the higher point density of the LiDAR data enabled us to detect more discontinuity surfaces and in greater detail. The volume involved in the blast was calculated using two methods: 1) the

  1. Lidar Remote Sensing for Industry and Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  2. An experimental/analytical program to assess the utility of lidar for pollution monitoring

    NASA Technical Reports Server (NTRS)

    Mills, F. S.; Allen, R. J.; Butler, C. F.; Kindle, E. C.

    1978-01-01

    The development and demonstration of lidar techniques for the remote measurement of atmospheric constituents and transport processes in the lower troposphere was carried out. Particular emphasis was given to techniques for monitoring SO2 and particulates, the principal pollutants in power plant and industrial plumes. Data from a plume dispersion study conducted in Maryland during September and October 1976 were reduced, and a data base was assembled which is available to the scientific community for plume model verification. A UV Differential Absorption Lidar (DIAL) was built, and preliminary testing was done.

  3. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Theory and simulations

    SciTech Connect

    Borel, C.C.; Schlaepfer, D.

    1996-03-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels; and (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an {open_quote}Atmospheric Pre-corrected Differential Absorption{close_quote} (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than {+-}5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  4. Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6  μm.

    PubMed

    Wagner, Gerd A; Plusquellic, David F

    2016-08-10

    A ground-based, integrated path, differential absorption light detection and ranging (IPDA LIDAR) system is described and characterized for a series of nighttime studies of CO2, CH4, and H2O. The transmitter is based on an actively stabilized, continuous-wave, single-frequency external-cavity diode laser (ECDL) operating from 1.60 to 1.65 μm. The fixed frequency output of the ECDL is microwave sideband tuned using an electro-optical phase modulator driven by an arbitrary waveform generator and filtered using a confocal cavity to generate a sequence of 123 frequencies separated by 300 MHz. The scan sequence of single sideband frequencies of 600 ns duration covers a 37 GHz region at a spectral scan rate of 10 kHz (100 μs per scan). Simultaneously, an eye-safe backscatter LIDAR system at 1.064 μm is used to monitor the atmospheric boundary layer. IPDA LIDAR measurements of the CO2 and CH4 dry air mixing ratios are presented in comparison with those from a commercial cavity ring-down (CRD) instrument. Differences between the IPDA LIDAR and CRD concentrations in several cases appear to be well correlated with the atmospheric aerosol structure from the backscatter LIDAR measurements. IPDA LIDAR dry air mixing ratios of CO2 and CH4 are determined with fit uncertainties of 2.8 μmol/mol (ppm) for CO2 and 22 nmol/mol (ppb) for CH4 over 30 s measurement periods. For longer averaging times (up to 1200 s), improvements in these detection limits by up to 3-fold are estimated from Allan variance analyses. Two sources of systematic error are identified and methods to remove them are discussed, including speckle interference from wavelength decorrelation and the seed power dependence of amplified spontaneous emission. Accuracies in the dry air retrievals of CO2 and CH4 in a 30 s measurement period are estimated at 4 μmol/mol (1% of ambient levels) and 50

  5. Progress Toward an Autonomous Field Deployable Diode Laser Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Repasky, K. S.; Spuler, S.; Nehrir, A. R.; Moen, D.

    2013-12-01

    Water vapor is the most dominant greenhouse gas in the atmosphere and plays an important role in many key atmospheric processes associated with both weather and climate. Water vapor is highly variable in space and time due to large scale transport and biosphere-atmosphere interactions. Having long-term, high-resolution, vertical profiles of water vapor will help to better understand the water vapor structure and variability and its associated impact on weather and climate. A diode laser based differential absorption lidar (DIAL) for full-time water vapor and aerosol profiling in the lower troposphere has been demonstrated at Montana State University. This prototype instrument has the potential to form the basis of a ground based network of eye-safe autonomous instruments that can provide important information on the spatial and temporal variability of water vapor in the lower troposphere. To achieve this potential, major improvements to the prototype instrument need to be implemented and demonstrated including developing a laser transmitter capable of long term operation and modifying the optical receiver to make measurement below 0.5 km. During the past year, work on incorporating a new laser transmitter based on two distributed Bragg reflector (DBR) diode lasers, one operating at the on-line/side-line wavelength and the second operating at the off-line wavelength to injection seed a tapered semiconductor optical amplifier (TSOA) in a master oscillator power amplifier (MOPA) configuration has been completed. Recent work on the optical receiver is driven by the fact that the majority of the atmospheric water vapor resides below 2 km. The current single channel DIAL receiver has a narrow field of view and does not come in to full overlap until approximately 2 km. A two channel DIAL receiver has been designed that will allow the DIAL to achieve full overlap at ranges of less the 0.5 km providing significant improvement to the instrument performance. A discussion of

  6. Aerosol Measurements by the Globally Distributed Micro Pulse Lidar Network

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Welton, Judd; Campbell, James; Berkoff, Tim; Starr, David (Technical Monitor)

    2001-01-01

    Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide full time profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently eight sites in operation and over a dozen planned. At all sited there are also passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The network operation includes instrument operation and calibration and the processing of aerosol measurements with standard retrievals and data products from the network sites. Data products include optical thickness and extinction cross section profiles. Application of data is to supplement satellite aerosol measurements and to provide a climatology of the height distribution of aerosol. The height distribution of aerosol is important for aerosol transport and the direct scattering and absorption of shortwave radiation in the atmosphere. Current satellite and other data already provide a great amount of information on aerosol distribution, but no passive technique can adequately resolve the height profile of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched in early 2002. GLAS will provide global measurements of the height distribution of aerosol. The MP lidar network will provide ground truth and analysis support for GLAS and other NASA Earth Observing System data. The instruments, sites, calibration procedures and standard data product algorithms for the MPL network will be described.

  7. Laser Frequency Stabilization for Coherent Lidar Applications using Novel All-Fiber Gas Reference Cell Fabrication Technique

    NASA Technical Reports Server (NTRS)

    Meras, Patrick, Jr.; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Levin, Jason; Spiers, Gary D.

    2008-01-01

    Compact hollow-core photonic crystal fiber (HC-PCF)gas frequency reference cell was constructed using a novel packaging technique that relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers. The use of this gas cell for laser frequency stabilization was demonstrated by locking a tunable diode laser to the center of the P9 line from the (nu)1+(nu)3 band of acetylene with RMS frequency error of 2.06 MHz over 2 hours. This effort was performed in support of a task to miniaturize the laser frequency stabilization subsystem of JPL/LMCT Laser Absorption Spectrometer (LAS) instrument.

  8. The absorption of ultraviolet light by cell nuclei. A technique for identifying neoplastic change

    SciTech Connect

    Baisden, C.R.; Booker, D.; Wright, R.D. )

    1989-11-01

    A technique for measuring the absorption of 260-nm ultraviolet light by cell nuclei is described. The results of such measurements of normal thyroid epithelial cells and benign and malignant thyroid neoplastic cells demonstrate a progressive increase in absorbance that correlates with the histologic appearance of neoplasia. The possible theoretic basis for this phenomenon is explored. The increased nuclear absorbance observed in neoplastic cells is hypothesized to result from the disruption of hydrogen bonds between the DNA base pairs, which allows unwinding of the double helix and loss of the normal control of mitosis.

  9. Lidar detection of carbon dioxide in volcanic plumes

    NASA Astrophysics Data System (ADS)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  10. Autonomous Ozone and Aerosol Lidar Platform: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Strawbridge, K. B.

    2014-12-01

    Environment Canada is developing an autonomous tropospheric ozone and aerosol lidar system for deployment in support of short-term field studies. Tropospheric ozone and aerosols (PM10 and PM2.5) are important atmospheric constituents in low altitude pollution affecting human health and vegetation. Ozone is photo-chemically active with nitrogen oxides and can have a distinct diurnal variability. Aerosols contribute to the radiative budget, are a tracer for pollution transport, undergo complex mixing, and contribute to visibility and cloud formation. This particular instrument will employ two separate lidar transmitter and receiver assemblies. The tropospheric ozone lidar, based on the differential absorption lidar (DIAL) technique, uses the fourth harmonics of a Nd:YAG laser directed into a CO2 Raman cell to produce 276 nm, 287nm and 299 nm (first to third Stokes lines) output wavelengths. The aerosol lidar is based on the 3+2 design using a tripled Nd:YAG to output 355 nm, 532 nm and 1064nm wavelengths. Both lidars will be housed in a modified cargo trailer allowing for easy deployment to remote areas. The unit can be operated and monitored 24 hours a day via an internet link and requires an external power source. Simultaneous ozone and aerosol lidar measurements will provide the vertical context necessary to understand the complex mixing and transformation of pollutants - particularly when deployed near other ground-based in-situ sensors. Preliminary results will be shown from a summer field study at the Centre For Atmospheric Research Experiments (CARE).

  11. Performance verification of a LIF-LIDAR technique for stand-off detection and classification of biological agents

    NASA Astrophysics Data System (ADS)

    Wojtanowski, Jacek; Zygmunt, Marek; Muzal, Michał; Knysak, Piotr; Młodzianko, Andrzej; Gawlikowski, Andrzej; Drozd, Tadeusz; Kopczyński, Krzysztof; Mierczyk, Zygmunt; Kaszczuk, Mirosława; Traczyk, Maciej; Gietka, Andrzej; Piotrowski, Wiesław; Jakubaszek, Marcin; Ostrowski, Roman

    2015-04-01

    LIF (laser-induced fluorescence) LIDAR (light detection and ranging) is one of the very few promising methods in terms of long-range stand-off detection of air-borne biological particles. A limited classification of the detected material also appears as a feasible asset. We present the design details and hardware setup of the developed range-resolved multichannel LIF-LIDAR system. The device is based on two pulsed UV laser sources operating at 355 nm and 266 nm wavelength (3rd and 4th harmonic of Nd:YAG, Q-switched solid-state laser, respectively). Range-resolved fluorescence signals are collected in 28 channels of compound PMT sensor coupled with Czerny-Turner spectrograph. The calculated theoretical sensitivities are confronted with the results obtained during measurement field campaign. Classification efforts based on 28-digit fluorescence spectral signatures linear processing are also presented.

  12. New Examination of the Traditional Raman Lidar Technique II: Evaluating the Ratios for Water Vapor and Aerosols

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.

    2003-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here those results are used to derive the temperature dependent forms of the equations for the water vapor mixing ratio, aerosol scattering ratio, aerosol backscatter coefficient, and extinction to backscatter ratio (Sa). The error equations are developed, the influence of differential transmission is studied and different laser sources are considered in the analysis. The results indicate that the temperature functions become significant when using narrowband detection. Errors of 5% and more can be introduced in the water vapor mixing ratio calculation at high altitudes and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus aerosol backscatter coefficient and extinction to backscatter ratio.

  13. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  14. Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy.

    PubMed

    Carriles, Ramón; Schafer, Dawn N; Sheetz, Kraig E; Field, Jeffrey J; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W; Squier, Jeffrey A

    2009-08-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences.

  15. OPO DIAL lidar for remote measurements of atmospheric gases in the IR range

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Kharchenko, O. V.; Shumskii, V. K.; Sadovnikov, S. A.; Yakovlev, S. V.

    2016-05-01

    Applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG) is based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS). The new technique uses broadband radiation and a CCD detector, which ensures measurement of backscattering signals with simultaneous altitude and wavelength resolution. The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. The laser system design provides a possibility of narrowing the laser line within the 0.01-5 cm-1 limits. This possible improvement along with a small step of laser line tuning and the presence of absorption lines of other atmospheric gases, including atmospheric pollutants, in the spectral range under study make this laser a unique instrument for atmospheric sounding.

  16. Development of the laser absorption radiation thermometry technique to measure thermal diffusivity in addition to temperature

    NASA Astrophysics Data System (ADS)

    Levick, Andrew; Lobato, Killian; Edwards, Gordon

    2003-01-01

    A comparative technique based on photothermal radiometry has been developed to measure thermal diffusivity of semi-infinite targets with arbitrary geometry. The technique exploits the principle that the frequency response of the temperature modulation induced by a periodic modulated heating source (in this case a laser spot) scales with thermal diffusivity. To demonstrate this technique, a photothermal radiometer has been developed, which detects modulated thermal radiance at a wavelength of 2 μm due to a small temperature modulation induced on the target surface by a modulated erbium fiber laser of power 1 W. Two frequency responses were measured for platinum and oxidized Inconel 600 targets (the frequency response is a scan of the amplitude of the modulated thermal radiance over laser modulation frequency). Scaling the two responses with respect to frequency gives a ratio of thermal diffusivities Dplatinum/DInconel of 4.45(33) which compares with a literature value of 4.46(50). The aim is to combine this technique with laser absorption radiation thermometry to produce multithermal property instrument for measuring "industrial" targets.

  17. Towards a Greenhouse Gas Lidar in Space

    NASA Astrophysics Data System (ADS)

    Ehret, Gerhard; Amediek, Axel; Quatrevalet, Mathieu

    Highly accurate measurements of atmospheric carbon dioxide (CO2) and methane (CH4) by a space-borne lidar will help to substantially improve knowledge of greenhouse gas fluxes. The method of integrated-path differential-absorption lidar for total column measurements has proven to be a suitable means for CH4 detection in natural gas leak surveillance and active remote sensing of CO2. This pioneering work facilitated the instrument development of an advanced greenhouse gas lidar on HALO and set the stage for the development of a CH4-lidar in space instrument foreseen in the Franco-German climate mission MERLIN.

  18. Remote sensing measurements of the CO2 mixing ratio in the planetary boundary layer using cloud slicing with airborne lidar

    NASA Astrophysics Data System (ADS)

    Ramanathan, Anand K.; Mao, Jianping; Abshire, James B.; Allan, Graham R.

    2015-03-01

    We have measured the CO2 volume mixing ratio (VMR) within the planetary boundary layer (PBL) using cloud slicing with an airborne pulsed integrated path differential absorption (IPDA) lidar from flight altitudes of up to 13 km. During a flight over Iowa in summer 2011, simultaneous measurement of the optical range and CO2 absorption to clouds and the ground were made using time-resolved detection of pulse echoes from each scattering surface. We determined the CO2 absorption in the PBL by differencing the two lidar-measured absorption line shapes, one to a broken shallow cumulus cloud layer located at the top of the PBL and the other to the ground. Solving for the CO2 VMR in the PBL and that of the free troposphere, we measured a ≈15 ppm (4%) drawdown in the PBL. Both CO2 VMRs were within ≈3 ppm of in situ CO2 profile measurements. We have also demonstrated cloud slicing using scatter from thin, diffuse cirrus clouds and cumulus clouds, which allowed solving for the CO2 VMR for three vertical layers. The technique and retrieval algorithm are applicable to a space-based lidar instrument as well as to lidar IPDA measurements of other trace gases. Thus, lidar cloud slicing also offers promise toward space-based remote sensing of vertical trace gas profiles in the atmosphere using a variety of clouds.

  19. Probing local structure of pyrochlore lead zinc niobate with synchrotron x-ray absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Kanchiang, Kanokwan; Pramchu, Sittichain; Yimnirun, Rattikorn; Pakawanit, Phakkhananan; Ananta, Supon; Laosiritaworn, Yongyut

    2013-08-01

    Local structure of lead zinc niobate (PZN) ceramic, synthesized via B-site oxide precursor route in atmospheric pressure, was investigated using synchrotron x-ray absorption spectroscopy (XAS) technique. The x-ray absorption near-edge structure (XANES) simulation was first carried out. The XANES simulation results indicate that the PZN ceramic is in pyrochlore phase having Zn2+ substituted on Nb5+ site. Afterwards, the extended x-ray absorption fine structure (EXAFS) analysis was performed to extract the bond length information between Zn2+ and its neighboring atoms. From the EXAFS fitting, the bond length between Zn2+ and Pb2+ in the pyrochlore phase was found to be longer than the previously reported bond length in the perovskite phase. Further, with the radial distribution information of Zn2+'s neighboring atoms, the formation energies along the precursor-to-pyrochlore and precursor-to-perovskite reaction paths were calculated using the density functional theory (DFT). The calculated results show that the formation energy of the perovskite phase is noticeably higher than that of the pyrochlore phase, which is influenced by the presence of energetic Pb2+ lone pair, as the perovskite phase has shorter Zn2+ to Pb2+ bonding. This therefore suggests the steric hindrance of Pb2+ lone pair and the mutual interactions between Pb2+ lone pair and Zn2+ are main causes of the instability of lead zinc niobate in the perovskite structure and confirm the efficacy of XAS and DFT analysis in revealing local structural details of complex pyrochlore materials.

  20. Evaluation of iron-containing carbon nanotubes by near edge X-ray absorption technique

    NASA Astrophysics Data System (ADS)

    Osorio, A. G.; Bergmann, C. P.

    2015-10-01

    The synthesis of carbon nanotubes (CNTs) via Chemical Vapor Deposition method with ferrocene results in CNTs filled with Fe-containing nanoparticles. The present work proposes a novel route to characterize the Fe phases in CNTs inherent to the synthesis process. CNTs were synthesized and, afterwards, the CNTs were heat treated at 1000 °C for 20 min in an inert atmosphere during a thermogravimetric experiment. X-Ray Absorption Spectroscopy (XAS) experiments were performed on the CNTs before and after the heat treatment and, also, during the heat treatment, e.g., in situ tests were performed while several Near-Edge X-Ray Absorption (XANES) spectra were collected during the heating of the samples. The XAS technique was successfully applied to evaluate the phases encapsulated by CNTs. Phase transformations of the Fe-based nanoparticles were also observed from iron carbide to metallic iron when the in situ experiments were performed. Results also indicated that the applied synthesis method guarantees that Fe phases are not oxidize. In addition, the results show that heat treatment under inert atmosphere can control which phase remains encapsulated by the CNTs.

  1. Understanding refraction contrast using a comparison of absorption and refraction computed tomographic techniques

    NASA Astrophysics Data System (ADS)

    Wiebe, S.; Rhoades, G.; Wei, Z.; Rosenberg, A.; Belev, G.; Chapman, D.

    2013-05-01

    Refraction x-ray contrast is an imaging modality used primarily in a research setting at synchrotron facilities, which have a biomedical imaging research program. The most common method for exploiting refraction contrast is by using a technique called Diffraction Enhanced Imaging (DEI). The DEI apparatus allows the detection of refraction between two materials and produces a unique ''edge enhanced'' contrast appearance, very different from the traditional absorption x-ray imaging used in clinical radiology. In this paper we aim to explain the features of x-ray refraction contrast as a typical clinical radiologist would understand. Then a discussion regarding what needs to be considered in the interpretation of the refraction image takes place. Finally we present a discussion about the limitations of planar refraction imaging and the potential of DEI Computed Tomography. This is an original work that has not been submitted to any other source for publication. The authors have no commercial interests or conflicts of interest to disclose.

  2. Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures

    NASA Astrophysics Data System (ADS)

    Martín de la Cruz, M. C.; Gonzalez Vilas, L.; Yarovenko, N.; Spyrakos, E.; Torres Palenzuela, J. M.

    2013-08-01

    Biofuel production from microalgae can be both sustainable and economically viable. Particularly in the case of algal growth in wastewater an extra benefit is the removal or biotransformation of pollutants from these types of waters. A continuous monitoring system of the microalgae status and the concentration of different wastewater contaminants could be of great help in the biomass production and the water characterisation. In this study we present a system where spectral fluorescence signature (SFS) techniques are used along with absorption measurements to monitor microalgae cultures in wastewater and other mediums. This system aims to optimise the microalgae production for biofuel applications or other uses and was developed and tested in prototype indoor photo-bioreactors at the University of Vigo. SFS techniques were applied using the fluorescence analyser INSTAND-SCREENER developed by Laser Diagnostic Instruments AS. INSTAND-SCREENER permits wavelength scanning in two modes, one in UV and another in VIS. In parallel, it permits the on-line monitoring and rapid analysis of both water quality and phytoplankton status without prior treatment of the sample. Considering that different contaminants and microalgae features (density, status etc.) have different spectral signatures of fluorescence and absorption properties, it is possible to characterise them developing classification libraries. Several algorithms were used for the classification. The implementation of this system in an outdoor raceway reactor in a Spanish wastewater treatment plant is also discussed. This study was part of the Project EnerBioAlgae (http://www.enerbioalgae.com/), which was funded by the Interreg SUDOE and led by the University of Vigo.

  3. Aerosol Properties From Combined Oxygen A Band Radiances and Lidar

    NASA Technical Reports Server (NTRS)

    Winker, Dave; Zhai, Peng-Wang; Hu, Yongxiang

    2015-01-01

    We have developed a new aerosol retrieval technique based on combing high-resolution A band spectra with lidar profiles. Our goal is the development of a technique to retrieve aerosol absorption, one of the critical parameters affecting the global radiation budget and one which is currently poorly constrained by satellite measurements. Our approach relies on two key factors: 1) the use of high spectral resolution (17,000:1) measurements which resolve the A-band line structure, and 2) the use of co-located lidar profile measurements to constrain the vertical distribution of scatterers in the forward model. The algorithm has been developed to be applied to observations from the CALIPSO and OCO-2 satellites, flying in formation as part of the A-train constellation. We describe the approach and present simulated retrievals to illustrate performance potential.

  4. Can CO2 Turbulent Flux Be Measured by Lidar? A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Gilbert, Fabien; Koch, Grady; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Flamant, Pierre H.; Singh, Upendra N.

    2011-01-01

    The vertical profiling ofCO2 turbulent fluxes in the atmospheric boundary layer (ABL) is investigated using a coherent differential absorption lidar (CDIAL) operated nearby a tall tower in Wisconsin during June 2007. A CDIAL can perform simultaneous range-resolved CO2 DIAL and velocity measurements. The lidar eddy covariance technique is presented. The aims of the study are (i) an assessment of performance and current limitation of available CDIAL for CO2 turbulent fluxes and (ii) the derivation of instrument specifications to build a future CDIAL to perform accurate range-resolved CO2 fluxes. Experimental lidar CO2 mixing ratio and vertical velocity profiles are successfully compared with in situ sensors measurements. Time and space integral scales of turbulence in the ABL are addressed that result in limitation for time averaging and range accumulation. A first attempt to infer CO2 fluxes using an eddy covariance technique with currently available 2-mm CDIAL dataset is reported.

  5. Comparison of 2 micron Ho and 10 micron CO2 lidar for atmospheric backscatter and Doppler windshear detection

    NASA Technical Reports Server (NTRS)

    Killinger, Dennis

    1991-01-01

    The development of eye-safe, solid-state Lidar systems is discussed, with an emphasis on Coherent Doppler Lidar for Atmospheric Wind Measurements. The following subject areas are covered: tunable Ho DIAL (Differential Absorption Lidar)/lidar atmospheric measurements; atmospheric turbulence measurements and detector arrays; diurnal measurements of C(sub n)(sup 2) for KSC lidar measurements; and development of single-frequency Ho laser/lidar.

  6. Formation and microwave absorption of barium and strontium ferrite prepared by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Sürig, C.; Hempel, K. A.; Bonnenberg, D.

    1993-11-01

    Ba and Sr ferrites are prepared by sol-gel technique with different Fe/Ba(Sr) ratios in the starting materials. Magnetization, coercive, and anisotropy field strength are determined depending on the heat treatment of the gel and the iron/barium(strontium) ratio in the starting material. A two-step heat treatment is used to prepare single-domain powders with high magnetization. These powders prepared by sol-gel technique show single-domain behavior with specific magnetization σS=649 A cm2/g and coercive field strength HcM=402 kA/m in the case of Ba ferrite and σS=695 A cm2/g and HcM=416 kA/m for Sr the ferrite. Al-substituted ferrites with high anisotropy field strengths are prepared additionally. Ferromagnetic resonance absorption is used to determine the anisotropy field strength and to investigate the formation process of the hexaferrite phase during the heat treatment. The beginning of hexaferrite formation occurs at annealing temperatures below 700 °C.

  7. Lidar applications to pollution studies.

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Fuller, W. H., Jr.

    1971-01-01

    This paper discusses the application of lidar (laser radar) to the measurement of air pollution. Lidar techniques and instrumentation utilizing elastic, Raman, and fluorescence scattering are discussed. Data showing measurements of the mixing of particulate pollutants in the atmosphere are presented. These data include: simultaneous two-wavelength results, isopleths showing the temporal dynamics of particulate mixing, measurements of the top of the earth's mixing layer, and measurements in a valley with restricted circulation and mixing. All measurements are compared with simultaneous radiosonde and/or aircraft-mounted temperature probe support. In addition, a second generation lidar system presently under development is described.

  8. Exicimer lidar measurements of ozone

    NASA Technical Reports Server (NTRS)

    Shibata, T.; Uchino, O.; Maeda, M.

    1985-01-01

    The observation of the atmospheric ozone profile in an altitude range of 3 to 28 km by means of differential absorption lidar in combination with an XeCl laser (308 nm) and SRS pumped by a KrF laser (249 nm) is discussed.

  9. An adaptive computer vision technique for estimating the biomass and density of loblolly pine plantations using digital orthophotography and LiDAR imagery

    NASA Astrophysics Data System (ADS)

    Bortolot, Zachary J.

    Forests have been proposed as a means of reducing atmospheric carbon dioxide levels due to their ability to store carbon as biomass. To quantify the amount of atmospheric carbon sequestered by forests, biomass and density estimates are oven needed. This study develops, implements, and tests an individual tree-based algorithm for obtaining forest density and biomass using orthophotographs and small footprint LiDAR imagery. It was designed to work with a range of forests and image types without modification, which is accomplished by using generic properties of trees found in many types of images. Multiple parameters are employed to determine how these generic properties are used. To set these parameters, training data is used in conjunction with an optimization algorithm (a modified Nelder-Mead simplex algorithm or a genetic algorithm). The training data consist of small images in which density and biomass are known. A first test of this technique was performed using 25 circular plots (radius = 15 m) placed in young pine plantations in central Virginia, together with false color orthophotograph (spatial resolution = 0.5 m) or small footprint LiDAR (interpolated to 0.5 m) imagery. The highest density prediction accuracies (r2 up to 0.88, RMSE as low as 83 trees/ha) were found for runs where photointerpreted densities were used for training and testing. For tests run using density measurements made on the ground, accuracies were consistency higher for orthophotograph-based results than for LiDAR-based results, and were higher for trees with DBH ≥10cm than for trees with DBH ≥7 cm. Biomass estimates obtained by the algorithm using LiDAR imagery had a lower RMSE (as low as 15.6 t/ha) than most comparable studies. The correlations between the actual and predicted values (r2 up to 0.64) were lower than comparable studies, but were generally highly significant (p ≤ 0.05 or 0.01). In all runs there was no obvious sensitive to which training and testing data were

  10. Airborne Double Pulsed 2-Micron IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Singh, Upendra

    2015-01-01

    We have developed an airborne 2-micron Integrated Path Differential Absorption (IPDA) lidar for atmospheric CO2 measurements. The double pulsed, high pulse energy lidar instrument can provide high-precision CO2 column density measurements.

  11. Sodium temperature lidar based on injection seeded Nd:YAG pulse lasers using a sum-frequency generation technique.

    PubMed

    Kawahara, Takuya D; Kitahara, Tsukasa; Kobayashi, Fumitoshi; Saito, Yasunori; Nomura, Akio

    2011-02-14

    We report on a sodium (Na) temperature lidar based on two injection seeded Nd:YAG pulse lasers using single-pass sum-frequency generation. The laser power at 589 nm is 400 mW (40 mJ per pulse at a repetition rate of 10 Hz) and the pulse width is 22 nsec FWHM. The narrowband laser tuned to the Doppler broadened Na D2 spectrum enables us to measure the temperature of the mesopause region (80-115 km). This solid-state transportable system demonstrated high performance and capability at Syowa Station in Antarctica for 3 years and at Uji in Japan for an additional year without any major operational troubles.

  12. Advancement in LIDAR Data Collection: NASA's Experimental Airborne Advanced Research LIDAR

    NASA Technical Reports Server (NTRS)

    Riordan, Kevin; Wright, C. Wayne; Noronha, Conan

    2003-01-01

    The NASA Experimental Airborne Advanced Research LIDAR (EAARL) is a new developmental LIDAR designed to investigate and advance LIDAR techniques using a adaptive time resolved backscatter information for complex coastal research and monitoring applications. Information derived from such an advanced LIDAR system can potentially improve the ability of resource managers and policy makers to make better informed decisions. While there has been a large amount of research using LIDAR in coastal areas, most are limited in the amount of information captured from each laser pulse. The unique design of the EAARL instrument permits simultaneous acquisition of coastal environments which include subaerial bare earth topography, vegetation biomass, and bare earth beneath vegetated areas.

  13. Characterization of a laser-produced plasma using the technique of point-projection absorption spectroscopy

    SciTech Connect

    O'Neill, D.M.; Lewis, C.L.S.; Neely, D.; Davidson, S.J. ); Rose, S.J. ); Lee, R.W. )

    1991-08-15

    The technique of point-projection spectroscopy has been shown to be applicable to the study of expanding aluminum plasmas generated by {similar to}80 ps laser pulses incident on massive, aluminum stripe targets of {similar to}125 {mu}m width. Targets were irradiated at an intensity of 2.5{plus minus}0.5{times}10{sup 13} W/cm{sup 2} in a line focus geometry and under conditions similar to those of interest in x-ray laser schemes. Hydrogenic and heliumlike aluminum resonance lines were observed in absorption using a quasicontinuous uranium backlighter plasma. Using a pentaerythrital Bragg crystal as the dispersive element, a resolving power of {similar to}3500 was achieved with spatial resolution at the 5-{mu}m level in frame times of the order of 100 ps. Reduction of the data for times up to 150 ps after the peak of the incident laser pulse produced estimates of the temperature and ion densities present, as a function of space and time. The one-dimensional Lagrangian hydrodynamic code MEDUSA coupled to the atomic physics non-local-thermodynamic-equilibrium ionized material package was used to simulate the experiment in planar geometry and has been shown to be consistent with the measurements.

  14. Effect of nonlinear absorption on electric field applied lead chloride by Z-scan technique

    SciTech Connect

    Rejeena, I.; Lillibai,; Nampoori, V. P. N.; Radhakrishnan, P.; Rahimkutty, M. H.

    2014-10-15

    The preparation, spectral response and optical nonlinearity of gel grown lead chloride single crystals subjected to electric field of 20V using parallel plate arrangements have been investigated. Optical band gap of the samples were determined using linear absorption spectra. Open aperture z-scan was employed for the determination of nonlinear absorption coefficient of PbCl{sub 2} solution. The normalized transmittance curve exhibits a valley shows reverse saturable absorption. The non linear absorption at different input fluences were recorded using a single Gaussian laser beam in tight focus geometry. The RSA nature of the sample makes it suitable for optical limiting applications.

  15. New Broadband LIDAR for Greenhouse Carbon Dioxide Gas Sensing in the Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Georgieva, Elena; Heaps, William S.; Huang,Wen

    2011-01-01

    We present demonstration of a novel broadband lidar technique capable of dealing with the atmospherically induced variations in CO2 absorption using a Fabry-Perot based detector and a broadband laser. The Fabry-Perot solid etalon in the receiver part is tuned to match the wavelength of several CO2 absorption lines simultaneously. The broadband technique tremendously reduces the requirement for source wavelength stability, instead putting this responsibility on the Fabry- Perot based receiver. The instrument technology we are developing has a clear pathway to space and realistic potential to become a robust, low risk space measurement system.

  16. Photoacoustic technique for simultaneous measurements of thermal effusivity and absorptivity of pigments in liquid solution.

    PubMed

    Balderas-López, J A; Díaz-Reyes, J; Zelaya-Angel, O

    2011-12-01

    A photoacoustic (PA) methodology, in the transmission configuration, for simultaneous measurements of thermal effusivity and molar absorption coefficient (absorptivity) for pigments in liquid solution is introduced. The analytical treatment involves a self-normalization procedure for the PA signal, as a function of the modulation frequency, for a strong absorbing material in the thermally thin regime, when the light travels across the sample under study. Two fitted parameters are obtained from the analysis of the self-normalized PA amplitude and phase, one of them proportional to the sample's optical absorption coefficient and from which, taking it for a series of samples at different concentrations, the pigment's absorptivity in liquid solution can be measured, the other one yields the sample's thermal effusivity. Methylene blue's absorptivity in distilled water was measured with this methodology at 658 nm, finding good agreement with the corresponding one reported in the literature.

  17. Improving Lidar Turbulence Estimates for Wind Energy

    SciTech Connect

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; Klein, Petra

    2016-10-03

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.

  18. Improving lidar turbulence estimates for wind energy

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Clifton, A.; Churchfield, M. J.; Klein, P.

    2016-09-01

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.

  19. Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites

    SciTech Connect

    Repasky, Kevin

    2014-03-31

    A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.

  20. Lidar Observations of Atmospheric CO2 Column During 2014 Summer Flight Campaigns

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrison, F. Wallace; Fan, Tai-Fang

    2015-01-01

    Advanced knowledge in atmospheric CO2 is critical in reducing large uncertainties in predictions of the Earth' future climate. Thus, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) from space was recommended by the U.S. National Research Council to NASA. As part of the preparation for the ASCENDS mission, NASA Langley Research Center (LaRC) and Exelis, Inc. have been collaborating in development and demonstration of the Intensity-Modulated Continuous-Wave (IM-CW) lidar approach for measuring atmospheric CO2 column from space. Airborne laser absorption lidars such as the Multi-Functional Fiber Laser Lidar (MFLL) and ASCENDS CarbonHawk Experiment Simulator (ACES) operating in the 1.57 micron CO2 absorption band have been developed and tested to obtain precise atmospheric CO2 column measurements using integrated path differential absorption technique and to evaluate the potential of the space ASCENDS mission. This presentation reports the results of our lidar atmospheric CO2 column measurements from 2014 summer flight campaign. Analysis shows that for the 27 Aug OCO-2 under flight over northern California forest regions, significant variations of CO2 column approximately 2 ppm) in the lower troposphere have been observed, which may be a challenge for space measurements owing to complicated topographic condition, heterogeneity of surface reflection and difference in vegetation evapotranspiration. Compared to the observed 2011 summer CO2 drawdown (about 8 ppm) over mid-west, 2014 summer drawdown in the same region measured was much weak (approximately 3 ppm). The observed drawdown difference could be the results of the changes in both meteorological states and the phases of growing seasons. Individual lidar CO2 column measurements of 0.1-s integration were within 1-2 ppm of the CO2 estimates obtained from on-board in-situ sensors. For weak surface reflection conditions such as ocean surfaces, the 1- s integrated signal-to-noise ratio (SNR) of

  1. High Spectral Resolution Lidar: System Calibration

    NASA Astrophysics Data System (ADS)

    Vivek Vivekanandan, J.; Morley, Bruce; Spuler, Scott; Eloranta, Edwin

    2015-04-01

    One of the unique features of the high spectral resolution lidar (HSRL) is simultaneous measurements of backscatter and extinction of atmosphere. It separates molecular scattering from aerosol and cloud particle backscatter based on their Doppler spectrum width. Scattering from aerosol and cloud particle are referred as Mie scattering. Molecular or Rayleigh scattering is used as a reference for estimating aerosol extinction and backscatter cross-section. Absolute accuracy of the backscattered signals and their separation into Rayleigh and Mie scattering depends on spectral purity of the transmitted signals, accurate measurement of transmit power, and precise performance of filters. Internal calibration is used to characterize optical subsystems Descriptions of high spectral resolution lidar system and its measurement technique can be found in Eloronta (2005) and Hair et al.(2001). Four photon counting detectors are used to measure the backscatter from the combined Rayleigh and molecular scattering (high and low gain), molecular scattering and cross-polarized signal. All of the detectors are sensitive to crosstalk or leakage through the optical filters used to separate the received signals and special data files are used to remove these effects as much as possible. Received signals are normalized with respect to the combined channel response to Mie and Rayleigh scattering. The laser transmit frequency is continually monitored and tuned to the 1109 Iodine absorption line. Aerosol backscatter cross-section is measured by referencing the aerosol return signal to the molecular return signal. Extinction measurements are calculated based on the differences between the expected (theoretical) and actual change in the molecular return. In this paper an overview of calibration of the HSRL is presented. References: Eloranta, E. W., High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Klaus Weitkamp editor, Springer Series in Optical

  2. Boundary Layer CO2 mixing ratio measurements by an airborne pulsed IPDA lidar

    NASA Astrophysics Data System (ADS)

    Ramanathan, A. K.; Mao, J.; Abshire, J. B.; Allan, G. R.

    2014-12-01

    Since the primary signature of CO2 fluxes at the surface occurs in the planetary boundary layer (PBL), remote sensing measurements of CO2 that can resolve the CO2 absorption in the PBL separate from the total column are more sensitive to fluxes than those that can only measure a total column. The NASA Goddard CO2 sounder is a pulsed, range-resolved lidar that samples multiple (presently 30) wavelengths across the 1572.335 nm CO2 absorption line. The range resolution and line shape measurement enable CO2 mixing ratio measurements to be made in two or more altitude layers including the PBL via lidar cloud-slicing and multi-layer retrievals techniques. The pulsed lidar approach allows range-resolved backscatter of scattering from ground and cloud tops. Post flight data analysis can be used split the vertical CO2 column into layers (lidar cloud-slicing) and solve for the CO2 mixing ratio in each layer. We have demonstrated lidar cloud slicing with lidar measurements from a flight over Iowa, USA in August 2011 during the corn-growing season, remotely measuring a ≈15 ppm drawdown in the PBL CO2. We will present results using an improved lidar cloud slicing retrieval algorithm as well as preliminary measurements from the upcoming ASCENDS 2014 flight campaign. The CO2 absorption line is also more pressure broadened at lower altitudes. Analyzing the line shape also allows solving for some vertical resolution in the CO2 distribution. By allowing the retrieval process to independently vary the column concentrations in two or more altitude layers, one can perform a best-fit retrieval to obtain the CO2 mixing ratios in each of the layers. Analysis of airborne lidar measurements (in 2011) over Iowa, USA and Four Corners, New Mexico, USA show that for altitudes above 8 km, the CO2 sounder can detect and measure enhanced or diminished CO2 mixing ratios in the PBL even in the absence of clouds. We will present these results as well as preliminary measurements from the upcoming

  3. Resonance lidar detection of the mesospheric nickel layer

    NASA Astrophysics Data System (ADS)

    Martus, C. M.; Collins, R. L.

    2013-12-01

    We present the first reported detection of the mesospheric nickel (Ni) layer with resonance lidar. Ni is abundant in meteorites, the source of the metal layers, but has not been previously detected in the mesosphere. We detail the wavelength search we used to find the Ni absorption line and the SNR technique we used to extract the low resonance signal. Simulation results based on measurements of sodium (Na) with our system show that the signals received are as expected. We present an initial estimate of the Ni layer density and spatial parameters and find that the Ni layer characteristics are similar to those of the sodium layer.

  4. Prediction of Human intestinal absorption of compounds using artificial intelligence techniques.

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-04-04

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. In current work, we are presenting a comprehensive study of prediction of absorption. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds with prediction accuracy of 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development.

  5. Performance Simulations for a Spaceborne Methane Lidar Mission

    NASA Technical Reports Server (NTRS)

    Kiemle, C.; Kawa, Stephan Randolph; Quatrevalet, Mathieu; Browell, Edward V.

    2014-01-01

    Future spaceborne lidar measurements of key anthropogenic greenhouse gases are expected to close current observational gaps particularly over remote, polar, and aerosol-contaminated regions, where actual in situ and passive remote sensing observation techniques have difficulties. For methane, a "Methane Remote Lidar Mission" was proposed by Deutsches Zentrum fuer Luft- und Raumfahrt and Centre National d'Etudes Spatiales in the frame of a German-French climate monitoring initiative. Simulations assess the performance of this mission with the help of Moderate Resolution Imaging Spectroradiometer and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations of the earth's surface albedo and atmospheric optical depth. These are key environmental parameters for integrated path differential absorption lidar which uses the surface backscatter to measure the total atmospheric methane column. Results showthat a lidar with an average optical power of 0.45W at 1.6 µm wavelength and a telescope diameter of 0.55 m, installed on a low Earth orbit platform(506 km), will measure methane columns at precisions of 1.2%, 1.7%, and 2.1% over land, water, and snow or ice surfaces, respectively, for monthly aggregated measurement samples within areas of 50 × 50 km2. Globally, the mean precision for the simulated year 2007 is 1.6%, with a standard deviation of 0.7%. At high latitudes, a lower reflectance due to snow and ice is compensated by denser measurements, owing to the orbital pattern. Over key methane source regions such as densely populated areas, boreal and tropical wetlands, or permafrost, our simulations show that the measurement precision will be between 1 and 2%.

  6. Performance simulations for a spaceborne methane lidar mission

    NASA Astrophysics Data System (ADS)

    Kiemle, C.; Kawa, S. R.; Quatrevalet, M.; Browell, E. V.

    2014-04-01

    Future spaceborne lidar measurements of key anthropogenic greenhouse gases are expected to close current observational gaps particularly over remote, polar, and aerosol-contaminated regions, where actual in situ and passive remote sensing observation techniques have difficulties. For methane, a "Methane Remote Lidar Mission" was proposed by Deutsches Zentrum für Luft- und Raumfahrt and Centre National d'Etudes Spatiales in the frame of a German-French climate monitoring initiative. Simulations assess the performance of this mission with the help of Moderate Resolution Imaging Spectroradiometer and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations of the earth's surface albedo and atmospheric optical depth. These are key environmental parameters for integrated path differential absorption lidar which uses the surface backscatter to measure the total atmospheric methane column. Results show that a lidar with an average optical power of 0.45 W at 1.6 µm wavelength and a telescope diameter of 0.55 m, installed on a low Earth orbit platform (506 km), will measure methane columns at precisions of 1.2%, 1.7%, and 2.1% over land, water, and snow or ice surfaces, respectively, for monthly aggregated measurement samples within areas of 50 × 50 km2. Globally, the mean precision for the simulated year 2007 is 1.6%, with a standard deviation of 0.7%. At high latitudes, a lower reflectance due to snow and ice is compensated by denser measurements, owing to the orbital pattern. Over key methane source regions such as densely populated areas, boreal and tropical wetlands, or permafrost, our simulations show that the measurement precision will be between 1 and 2%.

  7. Imaging of droplets and vapor distributions in a diesel fuel spray by means of a laser absorption-scattering technique.

    PubMed

    Zhang, Y Y; Yoshizaki, T; Nishida, K

    2000-11-20

    The droplets and vapor distributions in a fuel spray were imaged by a dual-wavelength laser absorption-scattering technique. 1,3-dimethylnaphthalene, which has physical properties similar to those of Diesel fuel, strongly absorbs the ultraviolet light near the fourth harmonic (266 nm) of a Nd:YAG laser but is nearly transparent to the visible light near the second harmonic (532 nm) of a Nd:YAG laser. Therefore, droplets and vapor distributions in a Diesel spray can be visualized by an imaging system that uses a Nd:YAG laser as the incident light and 1,3-dimethylnaphthalene as the test fuel. For a quantitative application consideration, the absorption coefficients of dimethylnapthalene vapor at different temperatures and pressures were examined with an optical spectrometer. The findings of this study suggest that this imaging technique has great promise for simultaneously obtaining quantitative information of droplet density and vapor concentration in Diesel fuel spray.

  8. Airborne IPDA Lidar Measurements of Atmospheric Methane in Support of MERLIN

    NASA Astrophysics Data System (ADS)

    Kiemle, C.; Amediek, A.; Wirth, M.; Ehret, G.

    2015-12-01

    Space-based lidar missions targeting greenhouse gases are expected to close observational gaps, e.g., over subarctic permafrost and tropical wetlands, where in-situ and passive remote sensing techniques have difficulties. Consequently, a "Methane Remote Lidar Mission" (MERLIN) was proposed by the German and French space agencies DLR and CNES. MERLIN is now in Phase B, in which all mission components are planned in detail; launch is foreseen in 2020. An integrated path differential absorption (IPDA) lidar will measure weighted columns of atmospheric methane (XCH4) along the satellite track. Primary objective is to provide accurate global observations of methane concentration gradients for inverse numerical models in order to better quantify regional fluxes. DLR has developed an airborne demonstrator, CHARM-F, for technology demonstration and validation purposes. First successful flights on-board the German HALO research aircraft have been performed in May 2015 over Central Europe. The measurements are expected to help solve general retrieval issues for future space-borne IPDA lidars. For example, the CHARM-F flights over ocean and lakes help assess the strength and variability of backscatter from water surfaces. The IPDA weighting function, or measurement sensitivity, is dependent on atmospheric pressure and temperature, in particular close to the surface. We use ECMWF analyses interpolated in space and time to the aircraft track that provide these auxiliary data at 14 km horizontal resolution. Due to the coarse representation of orography the model's pressure and temperature profiles have to be extrapolated down to the true lidar's scattering surface elevation, which generates uncertainties that we assess. We also assess biases by spectroscopic uncertainties in the methane absorption lines' parameters. Overall, the airborne results will support the development of advanced processing algorithms for future space lidar missions such as MERLIN.

  9. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Application to AVIRIS 91/95 Data

    NASA Technical Reports Server (NTRS)

    Schlaepfer, Daniel; Borel, Christoph C.; Keller, Johannes; Itten, Klaus I.

    1996-01-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 nm resolution. This data includes the information on constituents of the earth's surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various ratioing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, the spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. The objective of this work is to test the best performing differential absorption techniques for imaging spectrometry of

  10. Improving Lidar Turbulence Estimates for Wind Energy

    DOE PAGES

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; ...

    2016-10-03

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.« less

  11. Development of a Coherent Lidar for Aiding Precision Soft Landing on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Tolson, Robert H.; Powell, Richard W.; Davidson, John B.; Peri, Frank

    2005-01-01

    Coherent lidar can play a critical role in future planetary exploration missions by providing key guidance, navigation, and control (GNC) data necessary for navigating planetary landers to the pre-selected site and achieving autonomous safe soft-landing. Although the landing accuracy has steadily improved over time to approximately 35 km for the recent Mars Exploration Rovers due to better approach navigation, a drastically different guidance, navigation and control concept is required to meet future mission requirements. For example, future rovers will require better than 6 km landing accuracy for Mars and better than 1 km for the Moon plus maneuvering capability to avoid hazardous terrain features. For this purpose, an all-fiber coherent lidar is being developed to address the call for advancement of entry, descent, and landing technologies. This lidar will be capable of providing precision range to the ground and approach velocity data, and in the case of landing on Mars, it will also measure the atmospheric wind and density. The lidar obtains high resolution range information from a frequency modulated-continuous wave (FM-CW) laser beam whose instantaneous frequency varies linearly with time, and the ground vector velocity is directly extracted from the Doppler frequency shift. Utilizing the high concentration of aerosols in the Mars atmosphere (approx. two order of magnitude higher than the Earth), the lidar can measure wind velocity with a few watts of optical power. Operating in 1.57 micron wavelength regime, the lidar can use the differential absorption (DIAL) technique to measure the average CO2 concentration along the laser beam using, that is directly proportional to the Martian atmospheric density. Employing fiber optics components allows for the lidar multi-functional operation while facilitating a highly efficient, compact and reliable design suitable for integration into a spacecraft with limited mass, size, and power resources.

  12. Backscatter LIDAR signal simulation applied to spacecraft LIDAR instrument design

    NASA Astrophysics Data System (ADS)

    Fochesatto, J.; Ristori, P.; Flamant, P.; Machado, M. E.; Singh, U.; Quel, E.

    2004-01-01

    In the framework of the scientific cooperation between the CEILAP laboratory (Argentina) and IPSL Institut Pierre Simon Laplace (France), devoted to the development of LIDAR techniques for Atmospheric sciences, a new area of scientific research, involving LIDARs, is starting in Argentine space technology. This new research area is under consideration at CEILAP in a joint effort with CONAE, the Argentine space agency, responsible for the development of future space missions. The LIDAR technique is necessary to improve our knowledge of meteorological, dynamic, and radiative processes in the South American region, for the whole troposphere and the lower stratosphere. To study this future mission, a simple model for the prediction of backscatter LIDAR signal from a spacecraft platform has been used to determine dimensions and detection characteristics of the space borne LIDAR instrument. The backscatter signal was retrieved from a modeled atmosphere considering its molecular density profile and taking into account different aerosols and clouds conditions. Signal-to-noise consideration, within the interval of possible dimension of the instrument parameters, allows us to constrain the telescope receiving area and to derive maximum range achievable, integration time and the final spatial and temporal resolutions of backscatter profiles.

  13. Lidar Measurements of Methane and Applications for Aircraft and Spacecraft

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Abshire, James; Li, Steve; Wu, Stewart; Krainak, Michael; Sun, Xiaoli

    2010-01-01

    Atmospheric methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but observations since 2007 show that levels may be increasing. This trend may be caused by increased fossil fuel production, rice farming, livestock and landfills, but the underlying causes are quite uncertain. One hypothesis is that reservoirs of carbon trapped in the permafrost regions of northern Canada, Europe, and Siberia thaw as global temperatures rise and are releasing increasing amounts of methane. Another hypothesis points to increased production of methane by microbes as the permafrost warms. Currently most observations of greenhouse gases are limited to in-situ (surface and tower sites) and limited airborne in-situ measurements. Space column density measurements are starting to become available from the GOSAT mission. Although methane survives for a shorter time in the atmosphere than CO2, its impact on climate change per molecule is about 23 times than that of CO2. Accurate global observations of several greenhouse gases, including methane, are urgently needed in order to better understand climate change processes and to reduce the uncertainty in the carbon budget. Differential absorption lidar is a well-established technique to measure atmospheric gases, and methane has optical absorption bands near 1.65,2.2,3.4 and 7.8 micron. The near infrared overtones lines of CH4 near 1650 nm are relatively free of interference from other species. There are absorption lines near 1651 nm which are both temperature insensitive and have line strengths well suited for lidar measurements. We have developed a laser and demonstrated lidar measurements of CH4 using lines in this band. Our laser uses a narrow linewidth 1064 nm laser pulse passing through a nonlinear crystal. We generate the tunable laser signals near 1651 nm by using the optical parametric amplification (OPA) process. Inside the crystal the 1064 nm beam overlaps with an injection seed

  14. Alexandrite lidar for the atmospheric water vapor detection and development of powerful tunable sources in IR

    NASA Technical Reports Server (NTRS)

    Uchiumi, M.; Maeda, M.; Muraoka, K.; Uchino, O.

    1992-01-01

    New tunable solid-state lasers, such as alexandrite and Ti-sapphire lasers, provide a powerful technique to detect various molecules in the atmosphere whose absorption bands are in the infrared region. The differential absorption lidar (DIAL) system to measure the tropospheric water vapor has been investigated by many authors, in an early stage, by dye and ruby lasers. Using the alpha band of water vapor, the longest detection range can be obtained with high accuracy, and the alexandrite laser is the most suitable laser for this purpose. In this paper, we describe the detection of water vapor in the atmosphere by an alexandrite lidar, and the development of powerful tunable sources based on Raman lasers in the infrared region.

  15. Pulsed Lidar Measurements of Atmospheric CO2 Column Concentration in the ASCENDS 2014 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A. K.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Chen, J. R.

    2015-12-01

    We report progress in demonstrating a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line by using 30 wavelength samples distributed across the lube. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength 10 times per second. The retrievals solve for the optimum CO2 absorption line shape and the column average CO2 concentrations using radiative transfer calculations based on HITRAN, the aircraft altitude, range to the scattering surface, and the atmospheric conditions. We compare these to CO2 concentrations sampled by in-situ sensors on the aircraft. The number of wavelength samples can be reduced in the retrievals. During the ASCENDS airborne campaign in 2013 two flights were made in February over snow in the Rocky Mountains and the Central Plains allowing measurement of snow-covered surface reflectivity. Several improvements were made to the lidar for the 2014 campaign. These included using a new step-locked laser diode source, and incorporating a new HgCdTe APD detector and analog digitizer into the lidar receiver. Testing showed this detector had higher sensitivity, analog response, and a more linear dynamic range than the PMT detector used previously. In 2014 flights were made in late August and early September over the California Central Valley, the redwood forests along the California coast, two desert areas in Nevada and California, and two flights above growing agriculture in Iowa. Two flights were also made under OCO-2 satellite ground tracks. Analyses show the retrievals of lidar range and CO2 column absorption, and mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, and through thin clouds and aerosol scattering. The lidar measurements clearly

  16. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    PubMed

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  17. Differential Absorption Lidar (DIAL) in Alberta: A New Remote Sensing Tool for Wide Area Measurement of Particulates, CO2, and CH4 Emissions from Energy Extraction and Production Sites

    NASA Astrophysics Data System (ADS)

    Wojcik, M.; Lemon, R.; Crowther, B. G.; Valupadas, P.; Fu, L.; Yang, Z.; Huda, Q.; Leung, B.; Chambers, A.

    2014-12-01

    Alberta Environmental Monitoring, Evaluation and Reporting Agency (AEMERA) in cooperation with the Space Dynamics Laboratory (SDL) of Utah State University, have developed a mobile DIAL sensor designed specifically for particle, CO2 and CH4 emissions measurement. Rapid expansion of the oil and gas industry in Alberta, including the oil sands, has challenged the Alberta Government to keep pace in its efforts to monitor and mitigate the environmental impacts of development. The limitations of current monitoring systems has pushed the provincial government to seek out advanced sensing technologies such as differential absorption lidar (DIAL) to help assess the impact of energy development and industrial operations. This instrument is housed inside a 36' trailer and can be quickly staged and used to characterize source emissions and to locate fugitive leaks. DIAL is capable of measuring concentrations for carbon dioxide (CO2) and methane (CH4) at ranges of up to 3 km with a spatial resolution of 1.5 m. DIAL can map both CO2 and CH4, as well as particulate matter (PM) in a linear fashion; by scanning the laser beam in both azimuth and elevation, DIAL can create images of emissions concentrations and ultimately can be used to determine emission factors, locate fugitive leaks, assess plume dispersion and confirm air dispersion modeling. The DIAL system has been deployed at a landfill, a coal-fired power plant, and an oil sands production area. A system overview of the DIAL instrument and recent results will be discussed.

  18. Stark effect spectrophone for continuous absorption spectra monitoring. [a technique for gas analysis

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J. (Inventor)

    1981-01-01

    A Stark effect spectrophone using a pulsed or continuous wave laser having a beam with one or more absorption lines of a constituent of an unknown gas is described. The laser beam is directed through windows of a closed cell while the unknown gas to be modified flows continuously through the cell between electric field plates disposed in the cell on opposite sides of the beam path through the cell. When the beam is pulsed, energy absorbed by the gas increases at each point along the beam path according to the spectral lines of the constituents of the gas for the particular field strengths at those points. The pressure measurement at each point during each pulse of energy yields a plot of absorption as a function of electric field for simultaneous detection of the gas constituents. Provision for signal averaging and modulation is included.

  19. An overview of NASA's ASCENDS Mission's Lidar Measurement Requirements

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Browell, E. V.; Menzies, R. T.; Lin, B.; Spiers, G. D.; Ismail, S.

    2014-12-01

    The objectives of NASA's ASCENDS mission are to improve the knowledge of global CO2 sources and sinks by precisely measuring the tropospheric column abundance of atmospheric CO2 and O2. The mission will use a continuously operating nadir-pointed integrated path differential absorption (IPDA) lidar in a polar orbit. The lidar offers a number of important new capabilities and will measure atmospheric CO2 globally over a wide range of challenging conditions, including at night, at high latitudes, through hazy and thin cloud conditions, and to cloud tops. The laser source enables a measurement of range, so that the absorption path length to the scattering surface will be always accurately known. The lidar approach also measures consistently in a nadir-zenith path and the narrow laser linewidth allows weighting the measurement to the lower troposphere. Using these measurements with atmospheric and flux models will allow improved estimates of CO2 fluxes and hence better understanding of the processes that exchange CO2 between the surface and atmosphere. The ASCENDS formulation team has developed a preliminary set of requirements for the lidar measurements. These were developed based on experience gained from the numerous ASCENDS airborne campaigns that have used different candidate lidar measurement techniques. They also take into account the complexity of making precise measurement of atmospheric gas columns when viewing the Earth from space. Some of the complicating factors are the widely varying reflectance and topographic heights of the Earth's land and ocean surfaces, the variety of cloud types, and the degree of cloud and aerosol absorption and scattering in the atmosphere. The requirements address the precision and bias in the measured column mixing ratio, the dynamic range of the expected surface reflected signal, the along-track sampling resolution, measurements made through thin clouds, measurements to forested and slope surfaces, range precision, measurements

  20. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  1. Advances in High Energy Solid-State Pulsed 2-micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Singh, Upendra; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael; Remus, Ruben

    2015-04-01

    NASA Langley Research Center has a long history of developing 2 µm lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2 µm lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250-mJ in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hrs of flight measurement were made from an altitude ranging 1500 meter to 8000 meter. These measurements were compared to in-situ measurements and NOAA airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a triple-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA

  2. VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.

    PubMed

    Prakash, P Giri; Rao, J Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites.

  3. Continuous wave laser absorption techniques for gasdynamic measurements in supersonic flows

    NASA Technical Reports Server (NTRS)

    Davidson, David F.; Chang, Albert Y.; Dirosa, Michael D.; Hanson, Ronald K.

    1991-01-01

    Line-of-sight measurements of velocity, temperature, pressure, density, and mass flux were performed in a transient shock tube flow using three laser absorption schemes. All methods employed an intracavity-doubled ring dye laser tuned to an OH transition at 306 nm. In the first scheme, the gas was labeled by 193.3-nm excimer photolysis of H2O, and the passage of the generated OH was detected downstream. In the second method, the laser was tuned at a rate of 3 kHz over the R1(7) and R1(11) line pair, and absorption was simultaneously monitored at 90 and 60 deg with respect to the flow. Velocity was determined from the Doppler shift of the profiles and the temperature from the intensity ratio of the lines. Pressure was determined from both the magnitude of absorption and the collisional broadening. In the third method, the laser wavelength was fixed at a single frequency, and a continuous measurement of velocity and pressure was obtained using the signals from the two beam paths. All methods gave results which compare favorably to calculated values.

  4. Evaluation of laser absorption spectroscopic techniques for eddy covariance flux measurements of ammonia.

    PubMed

    Whitehead, James D; Twigg, Marsailidh; Famulari, Daniela; Nemitz, Eiko; Sutton, Mark A; Gallagher, Martin W; Fowler, David

    2008-03-15

    An intercomparison was made between eddy covariance flux measurements of ammonia by a quantum cascade laser absorption spectrometer (QCLAS) and a lead-salt tunable diode laser absorption spectrometer (TDLAS). The measurements took place in September 2004 and again in April 2005 over a managed grassland site in Southern Scotland, U.K. These were also compared with a flux estimate derived from an "Ammonia Measurement by ANnular Denuder with online Analysis" (AMANDA), using the aerodynamic gradient method (AGM). The concentration and flux measurements from the QCLAS correlated well with those of the TDLAS and the AGM systems when emissions were high, following slurry application to the field. Both the QCLAS and TDLAS, however, underestimated the flux when compared with the AMANDA system, by 64%. A flux loss of 41% due to chemical reaction of ammonia in the QCLAS (and 37% in the TDLAS) sample tube walls was identified and characterized using laboratory tests but did not fully accountforthis difference. Recognizing these uncertainties, the agreement between the systems was nevertheless very close (R2 = 0.95 between the QCLAS and the TDLAS; R2 = 0.84 between the QCLAS and the AMANDA) demonstrating the suitability of the laser absorption methods for quantifying the temporal dynamics of ammonia fluxes.

  5. Lidar postcards

    USGS Publications Warehouse

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) Coastal and Marine Geology Program develops and uses specialized technology to build high-resolution topographic and habitat maps. High-resolution maps of topography, bathymetry, and habitat describe important features affected by coastal-management decisions. The mapped information serves as a baseline for evaluating resources and tracking the effectiveness of resource- and conservation-management decisions. These data products are critical to researchers, decision makers, resource managers, planners, and the public. To learn more about Lidar (light detection and ranging) technology visit: http://ngom.usgs.gov/dsp/.

  6. Cyclone diagnostics. [rainfall estimation, backscatter, and lidar

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A GOES IR rainfall estimation algorithm was completed and verified. The technique was applied to the South Pacific convergent zone. The NASA earth observation mission series is discussed briefly. Backscatter was investigated using 10.6 micron coherent lidar.

  7. X-ray absorption spectroscopy of Mn doped ZnO thin films prepared by rf sputtering technique

    SciTech Connect

    Yadav, Ashok Kumar; Jha, S. N.; Bhattacharyya, D.; Haque, Sk Maidul; Shukla, Dinesh; Choudhary, Ram Janay

    2015-11-15

    A set of r.f. sputter deposited ZnO thin films prepared with different Mn doping concentrations have been characterised by Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Spectroscopy (XANES) measurements at Zn, Mn and O K edges and at Mn L{sub 2,3} edges apart from long range structural characterisation by Grazing Incident X-ray Diffraction (GIXRD) technique. Magnetic measurements show room temperature ferromagnetism in samples with lower Mn doping which is however, gets destroyed at higher Mn doping concentration. The results of the magnetic measurements have been explained using the local structure information obtained from EXAFS and XANES measurements.

  8. Improving Lidar Turbulence Estimates for Wind Energy

    SciTech Connect

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; Klein, Petra

    2016-10-06

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.

  9. Finnish Meteorological Institute Doppler Lidar

    SciTech Connect

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  10. Validation Issues of a Space-based Methane Lidar

    NASA Astrophysics Data System (ADS)

    Kiemle, C.; Fix, A.; Ehret, G.; Flamant, P.

    2014-12-01

    Space-based lidar missions targeting greenhouse gases are expected to close observational gaps, e.g., over subarctic permafrost and tropical wetlands, where in-situ and passive remote sensing techniques have difficulties. In the frame of a joint climate monitoring initiative, a "Methane Remote Lidar Mission" (MERLIN) was proposed by the German and French space agencies DLR and CNES. MERLIN is now in Phase B, in which all mission components are planned in detail. Launch is foreseen in 2019. The instrument is an integrated path differential absorption (IPDA) lidar which, installed on a low earth orbit platform provided by CNES, uses the surface backscatter to measure the atmospheric methane column. The globally observed concentration gradients will primarily help inverse numerical models to better infer regional methane fluxes. The lidar signals are able to travel through optically thin cloud and aerosol layers without producing a bias, and MERLIN's small field of view, of order 100 m, is expected to provide observations in broken cloud environments, often encountered in the tropics. As IPDA is a novel technique, calibration and validation will be essential. It is foreseen to validate MERLIN by under-flying the satellite with another IPDA lidar, CHARM-F, and a passive remote sensor, both airborne. However, active and passive remote sensors have different, pressure and temperature dependent measurements sensitivities (weighting functions), different fields of view, and do not sample the total methane column on-board an aircraft. Furthermore, since the methane profile is not constant, its column depends on the height of the boundary layer and of the tropopause. We investigate the impact of these issues on the expected validation accuracy, and we examine whether the ground-based Total Carbon Column Observing Network (TCCON) may be useful for validation, too. Finally, validation opportunities are dependent on the location and size of cloud-free regions, since clouds with

  11. Reexamination of depolarization in lidar measurements.

    PubMed

    Gimmestad, Gary G

    2008-07-20

    Almost all of the depolarization papers in the lidar literature employ a physically inappropriate notation and they use a definition of the depolarization ratio that is not linear in the quantity of interest. This depolarization lidar legacy is misleading and confusing. In particular, subscripts meaning parallel and perpendicular do not apply to atmospheric parameters, such as the volume backscatter coefficient, because (for linear polarization) the two components of the backscattered light are polarized in the transmitted sense and completely unpolarized; the unpolarized component is not "perpendicular." An analysis of lidar depolarization measurements with a particle scattering matrix recently provided in the literature yields algorithms for retrieving the depolarization parameter from either linear or circular depolarization lidar measurements. The analysis, notation, and definitions recommended here harmonize lidar depolarization analysis with radiative transfer theory, particle scattering theory, and standard polarization measurement techniques.

  12. Analysis for nonlinear inversion technique developed to estimate depth-distribution of absorption by spatially resolved backscattering measurement

    NASA Astrophysics Data System (ADS)

    Nishida, Kazuhiro; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi

    2015-03-01

    We have proposed a new nonlinear inversion technique to estimate the spatial distribution of the absorption coefficient (μa) in the depth direction of a turbid medium by spatially resolved backscattering measurement. With this technique, we can obtain cross-sectional image of μa as deep as the backscattered light traveled even when the transmitted light through the medium cannot be detected. In this technique, the depth distribution of absorption coefficient is determined by iterative calculation using the spatial path-length distribution (SPD) of traveled photons as a function of source-detector distance. In this calculation, the variance of path-length of many photons in each layer is also required. The SPD and the variance of path-length are obtained by Monte Carlo simulation using a known reduced scattering coefficient (μs'). Therefore, we need to know the μs' of the turbid medium beforehand. We have shown in computer simulation that this technique works well when the μs' is the typical values of mammalian body tissue, or 1.0 /mm. In this study, the accuracy of the μa estimation was analyzed and its dependence on the μs' was clarified quantitatively in various situations expected in practice. 10% deviations in μs' resulted in about 30% error in μa estimation, in average. This suggested that the measurement or the appropriate estimation of μs' is required to utilize the proposed technique effectively. Through this analysis, the effectiveness and the limitation of the newly proposed technique were clarified, and the problems to be solved were identified.

  13. Measurement of Hydrogen Absorption in Ternary Alloys with Volumetric (Sieverts Loop) Techniques

    SciTech Connect

    Aceves, S.

    2015-10-26

    The Sieverts loop is an inexpensive, robust and reliable methodology for calculating hydrogen absorption in materials [1]. In this approach, we start by storing a sample of the material being tested in the volume Vcell (Figure 1) and initiate the process by producing a high vacuum in the system while the material sample is heated to eliminate (most of) the hydrogen and other impurities previously absorbed. The system typically operates isothermally, with the volume Vref at ambient temperature and the sample at a temperature of interest – high enough to liquefy the alloy for the current application to nuclear fusion.

  14. Application of lidar to current atmospheric topics

    SciTech Connect

    Sedlacek, A.J. III

    1996-12-31

    The goal of the conference was to address the various applications of lidar to topics of interest in the atmospheric community. Specifically, with the development of frequency-agile, all solid state laser systems, high-quantum-efficiency detectors, increased computational power along with new and more powerful algorithms, and novel detection schemes, the application of lidar to both old and new problems has expanded. This expansion is evidenced by the contributions to the proceedings, which demonstrate the progress made on a variety of atmospheric remote sensing problems, both theoretically and experimentally. The first session focused on aerosol, ozone, and temperature profile measurements from ground-based units. The second session, Chemical Detection, provided applications of lidar to the detection of atmospheric pollutants. Papers in the third session, Wind and Turbulence Measurements, described the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiments, Doppler techniques for ground-based wind profiling and mesopause radial wind and temperature measurements utilizing a frequency-agile lidar system. The papers in the last two sessions, Recent Advanced in Lidar Technology and Techniques and Advanced Operational Lidars, provided insights into novel approaches, materials, and techniques that would be of value to the lidar community. Papers have been processed separately for inclusion on the data base.

  15. Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign

    SciTech Connect

    Choukulkar, Aditya; Brewer, W. Alan; Sandberg, Scott P.; Weickmann, Ann; Bonin, Timothy A.; Hardesty, R. Michael; Lundquist, Julie K.; Delgado, Ruben; Iungo, G. Valerio; Ashton, Ryan; Debnath, Mithu; Bianco, Laura; Wilczak, James M.; Oncley, Steven; Wolfe, Daniel

    2017-01-01

    Accurate three-dimensional information of wind flow fields can be an important tool in not only visualizing complex flow but also understanding the underlying physical processes and improving flow modeling. However, a thorough analysis of the measurement uncertainties is required to properly interpret results. The XPIA (eXperimental Planetary boundary layer Instrumentation Assessment) field campaign conducted at the Boulder Atmospheric Observatory (BAO) in Erie, CO, from 2 March to 31 May 2015 brought together a large suite of in situ and remote sensing measurement platforms to evaluate complex flow measurement strategies.

    In this paper, measurement uncertainties for different single and multi-Doppler strategies using simple scan geometries (conical, vertical plane and staring) are investigated. The tradeoffs (such as time–space resolution vs. spatial coverage) among the different measurement techniques are evaluated using co-located measurements made near the BAO tower. Sensitivity of the single-/multi-Doppler measurement uncertainties to averaging period are investigated using the sonic anemometers installed on the BAO tower as the standard reference. Finally, the radiometer measurements are used to partition the measurement periods as a function of atmospheric stability to determine their effect on measurement uncertainty.

    It was found that with an increase in spatial coverage and measurement complexity, the uncertainty in the wind measurement also increased. For multi-Doppler techniques, the increase in uncertainty for temporally uncoordinated measurements is possibly due to requiring additional assumptions of stationarity along with horizontal homogeneity and less representative line-of-sight velocity statistics. It was also found that wind speed measurement uncertainty was lower during stable conditions compared to unstable conditions.

  16. Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign

    NASA Astrophysics Data System (ADS)

    Choukulkar, Aditya; Brewer, W. Alan; Sandberg, Scott P.; Weickmann, Ann; Bonin, Timothy A.; Hardesty, R. Michael; Lundquist, Julie K.; Delgado, Ruben; Valerio Iungo, G.; Ashton, Ryan; Debnath, Mithu; Bianco, Laura; Wilczak, James M.; Oncley, Steven; Wolfe, Daniel

    2017-01-01

    Accurate three-dimensional information of wind flow fields can be an important tool in not only visualizing complex flow but also understanding the underlying physical processes and improving flow modeling. However, a thorough analysis of the measurement uncertainties is required to properly interpret results. The XPIA (eXperimental Planetary boundary layer Instrumentation Assessment) field campaign conducted at the Boulder Atmospheric Observatory (BAO) in Erie, CO, from 2 March to 31 May 2015 brought together a large suite of in situ and remote sensing measurement platforms to evaluate complex flow measurement strategies. In this paper, measurement uncertainties for different single and multi-Doppler strategies using simple scan geometries (conical, vertical plane and staring) are investigated. The tradeoffs (such as time-space resolution vs. spatial coverage) among the different measurement techniques are evaluated using co-located measurements made near the BAO tower. Sensitivity of the single-/multi-Doppler measurement uncertainties to averaging period are investigated using the sonic anemometers installed on the BAO tower as the standard reference. Finally, the radiometer measurements are used to partition the measurement periods as a function of atmospheric stability to determine their effect on measurement uncertainty. It was found that with an increase in spatial coverage and measurement complexity, the uncertainty in the wind measurement also increased. For multi-Doppler techniques, the increase in uncertainty for temporally uncoordinated measurements is possibly due to requiring additional assumptions of stationarity along with horizontal homogeneity and less representative line-of-sight velocity statistics. It was also found that wind speed measurement uncertainty was lower during stable conditions compared to unstable conditions.

  17. Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign

    DOE PAGES

    Choukulkar, Aditya; Brewer, W. Alan; Sandberg, Scott P.; ...

    2017-01-23

    Accurate three-dimensional information of wind flow fields can be an important tool in not only visualizing complex flow but also understanding the underlying physical processes and improving flow modeling. However, a thorough analysis of the measurement uncertainties is required to properly interpret results. The XPIA (eXperimental Planetary boundary layer Instrumentation Assessment) field campaign conducted at the Boulder Atmospheric Observatory (BAO) in Erie, CO, from 2 March to 31 May 2015 brought together a large suite of in situ and remote sensing measurement platforms to evaluate complex flow measurement strategies. In this paper, measurement uncertainties for different single and multi-Doppler strategies using simple scanmore » geometries (conical, vertical plane and staring) are investigated. The tradeoffs (such as time–space resolution vs. spatial coverage) among the different measurement techniques are evaluated using co-located measurements made near the BAO tower. Sensitivity of the single-/multi-Doppler measurement uncertainties to averaging period are investigated using the sonic anemometers installed on the BAO tower as the standard reference. Finally, the radiometer measurements are used to partition the measurement periods as a function of atmospheric stability to determine their effect on measurement uncertainty. It was found that with an increase in spatial coverage and measurement complexity, the uncertainty in the wind measurement also increased. For multi-Doppler techniques, the increase in uncertainty for temporally uncoordinated measurements is possibly due to requiring additional assumptions of stationarity along with horizontal homogeneity and less representative line-of-sight velocity statistics. It was also found that wind speed measurement uncertainty was lower during stable conditions compared to unstable conditions.« less

  18. A Geosynchronous Lidar System for Atmospheric Winds, Temperature, and Moisture Measurements

    NASA Technical Reports Server (NTRS)

    Emmitt, Dave; Komar, George (Technical Monitor)

    2001-01-01

    A geosynchronous Lidar would enable synoptic measurement of atmospheric winds; temperature; and moisture, which are key first-order variables of the Earth's weather equation. Simultaneous measurement of these parameters at fast revisit rates promises large advancements in our weather predictive skills. Such capabilities would: a) yield greatly improved initial conditions for models, b) make obsolete existing (discrete) measurement approaches which are both costly and cumbersome, and c) obviate the use of numerical techniques needed to correct data obtained using present methods. Additionally, simultaneous synoptic Lidar observations would lead to improvements in model parameters, and in our knowledge of small-scale weather processes. A Dial Lidar system could simultaneously measure winds, temperatures, and humidity through a combination of Doppler and Differential Absorption techniques. Also, such a system would provide basic aerosol (dry dust) measurement capabilities that could have an impact on Earth radiation budget measurements. On the technical side, a geosynchronous Lidar DAR system would require transmit optics of a few meters in diameter, a hundred meter diameter receive telescope, fineness of both optical systems scaled to the wavelength, and scanning for the transmit system. Potential technology issues include optical quality of large transmit and receive telescope optics, the large detector area needed, the transmit scanning system, signal detection (S/N ratio of detector system) for the extremely weak return signal at GEO, and power demands in the KW range.

  19. Vitamin A equivalency and apparent absorption of beta-carotene in ileostomy subjects using a dual-isotope dilution technique.

    PubMed

    Van Loo-Bouwman, Carolien A; Naber, Ton H J; van Breemen, Richard B; Zhu, Dongwei; Dicke, Heleen; Siebelink, Els; Hulshof, Paul J M; Russel, Frans G M; Schaafsma, Gertjan; West, Clive E

    2010-06-01

    The objective was to quantify the vitamin A equivalency of beta-carotene in two diets using a dual-isotope dilution technique and the apparent beta-carotene absorption as measured by the oral-faecal balance technique. Seventeen healthy adults with an ileostomy completed the 4-week diet-controlled, cross-over intervention study. Each subject followed both diets for 2 weeks: a diet containing vegetables low in beta-carotene content with supplemental beta-carotene in salad dressing oil ('oil diet'; mean beta-carotene intake 3.1 mg/d) and a diet containing vegetables and fruits high in beta-carotene content ('mixed diet'; mean beta-carotene intake 7.6 mg/d). Daily each subject consumed a mean of 190 microg [13C10]beta-carotene and 195 microg [13C10]retinyl palmitate in oil capsules. The vitamin A equivalency of beta-carotene was calculated as the dose-corrected ratio of [13C5]retinol to [13C10]retinol in serum. Apparent absorption of beta-carotene was determined with oral-faecal balance. Isotopic data quantified a vitamin A equivalency of [13C10]beta-carotene in oil of 3.6:1 (95 % CI 2.8, 4.6) regardless of dietary matrices differences. The apparent absorption of (labelled and dietary) beta-carotene from the 'oil diet' (30 %) was 1.9-fold higher than from the 'mixed diet' (16 %). This extrinsic labelling technique can measure precisely the vitamin A equivalency of beta-carotene in oil capsules, but it does not represent the effect of different dietary matrices.

  20. Low-level optical absorption phenomena in organic thin films for solar cell applications investigated by highly sensitive photocurrent and photothermal techniques

    NASA Astrophysics Data System (ADS)

    Goris, Ludwig J.; Haenen, Ken; Nesladek, Milos; Poruba, A.; Vanecek, M.; Wagner, P.; Lutsen, Laurence J.; Manca, Jean; Vanderzande, Dirk; De Schepper, Luc

    2004-09-01

    Optical absorption phenomena and in particular sub band gap absorption features are of great importance in the understanding of processes of charge generation and transport in organic pure and composite semiconductor films. To come towards this objective, an alternative and high sensitive spectroscopic approach is introduced to examine the absorption of light in pure and compound organic semiconductors. Because sub band gap absorption features are typically characterized by very low absorption coefficients, it is not possible to resolve them using common transmission and reflection measurements and high sensitive alternatives are needed. Therefore, a combination of photocurrent (Constant Photocurrent Method CPM/Fourier Transform Photocurrent Spectroscopy FT-PS) and photothermal techniques (Photothermal Deflection Spectroscopy PDS) has been used, increasing sensitivity by a factor of thousand, reaching detectable absorption coefficients ((E) down to 0.1 cm-1. In this way, the dynamic range of measurable absorption coefficients is increased by several orders of magnitude compared to transmission/reflection measurements. These techniques have been used here to characterize ground state absorption of thin films of MDMO-PPV, PCBM and a mixture of both materials in a 1:4 ratio, as typically used in a standard active layer in a fully organic solar cell. The spectra reveal defect related absorption phenomena and significant indication of existing interaction in the ground state between both materials, contrary to the widely spread conviction that this is not the case. Experimental details of the techniques and measurement procedures are explained.

  1. Performance Modeling of an Airborne Raman Water Vapor Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Schwemmer, G.; Berkoff, T.; Plotkin, H.; Ramos-Izquierdo, L.; Pappalardo, G.

    2000-01-01

    A sophisticated Raman lidar numerical model had been developed. The model has been used to simulate the performance of two ground-based Raman water vapor lidar systems. After tuning the model using these ground-based measurements, the model is used to simulate the water vapor measurement capability of an airborne Raman lidar under both day-and night-time conditions for a wide range of water vapor conditions. The results indicate that, under many circumstances, the daytime measurements possess comparable resolution to an existing airborne differential absorption water vapor lidar while the nighttime measurement have higher resolution. In addition, a Raman lidar is capable of measurements not possible using a differential absorption system.

  2. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  3. Remote-Sensing Technique for Determination of the Volume Absorption Coefficient of Turbid Water

    NASA Astrophysics Data System (ADS)

    Sydor, Michael; Arnone, Robert A.; Gould, Richard W., Jr.; Terrie, Gregory E.; Ladner, Sherwin D.; Wood, Christoper G.

    1998-07-01

    We use remote-sensing reflectance from particulate R rs to determine the volume absorption coefficient a of turbid water in the 400 700-nm spectral region. The calculated and measured values of a ( ) show good agreement for 0 . 5 a 10 (m 1 ). To determine R rs from a particulate, we needed to make corrections for remote-sensing reflectance owing to surface roughness S rs . We determined the average spectral distribution of S rs from the difference in total remote-sensing reflectance measured with and without polarization. The spectral shape of S rs showed an excellent fit to theoretical formulas for glare based on Rayleigh and aerosol scattering from the atmosphere.

  4. Multilayer thin film design for far ultraviolet polarizers using an induced transmission and absorption technique

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Torr, Douglas G.

    1993-01-01

    An explanation of induced transmission for spectral regions excluding the far ultraviolet (FUV) is given to better understand how induced transmission and absorption can be used to design effective polarizers in the FUV spectral region. We achieve high s-polarization reflectance and a high degree of polarization (P equals (Rs-Rp)/(Rs+Rp)) by means of a MgF2/Al/MgF2 three layer structure on an opaque thick film of Al as the substrate. For example, our polarizer designed for the Lyman-alpha line (lambda equals 121.6 nm) has 87.95 percent reflectance for the s-polarization case and 0.43 percent for the p-polarization case, with a degree of polarization of 99.03 percent. If a double reflection polarizer is made with this design, it will have a degree of polarization of 99.99 percent and s-polarization throughput of 77.35 percent.

  5. Lidar base specification

    USGS Publications Warehouse

    Heidemann, Hans Karl.

    2012-01-01

    Lidar is a fast evolving technology, and much has changed in the industry since the final draft of the “Lidar Base Specification Version 1.0” was written. Lidar data have improved in accuracy and spatial resolution, geospatial accuracy standards have been revised by the American Society for Photogrammetry and Remote Sensing (ASPRS), industry standard file formats have been expanded, additional applications for lidar have become accepted, and the need for interoperable data across collections has been realized. This revision to the “Lidar Base Specification Version 1.0” publication addresses those changes and provides continued guidance towards a nationally consistent lidar dataset.

  6. Lidar Measurements for Desert Dust Characterization: An Overview

    NASA Technical Reports Server (NTRS)

    Mona, L.; Liu, Z.; Mueller, D.; Omar, A.; Papayannis, A.; Pappalardo, G.; Sugimoto, N.; Vaughan, M.

    2012-01-01

    We provide an overview of light detection and ranging (lidar) capability for describing and characterizing desert dust. This paper summarizes lidar techniques, observations, and fallouts of desert dust lidar measurements. The main objective is to provide the scientific community, including non-practitioners of lidar observations with a reference paper on dust lidar measurements. In particular, it will fill the current gap of communication between research-oriented lidar community and potential desert dust data users, such as air quality monitoring agencies and aviation advisory centers. The current capability of the different lidar techniques for the characterization of aerosol in general and desert dust in particular is presented. Technical aspects and required assumptions of these techniques are discussed, providing readers with the pros and cons of each technique. Information about desert dust collected up to date using lidar techniques is reviewed. Lidar techniques for aerosol characterization have a maturity level appropriate for addressing air quality and transportation issues, as demonstrated by some first results reported in this paper

  7. Fabrication of controllable form submicrometer structures on positive photoresist by one-photon absorption direct laser writing technique

    NASA Astrophysics Data System (ADS)

    Tong, Quang Cong; Do, Minh Thanh; Journet, Bernard; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-04-01

    We demonstrate a very simple and low-cost method based on one-photon absorption direct laser writing technique to fabricate arbitrary two-dimensional (2D) polymeric submicrometer structures with controllable form. In this technique, a continuous-wave green laser beam (532 nm) with very weak power is tightly focused into a positive photoresist (S1805) by a high numerical aperture (NA) objective lens (OL), depolymerizing the polymer in a local submicrometer region. The focusing spot is then moved in a controllable trajectory by a 3D piezo translation stage, resulting in desired structures. The low absorption effect of the photoresist at the excitation wavelength allows obtaining structures with submicrometer size and great depth. In particular, by controlling the exposure dose, e.g. the scanning speed, and the scanning configuration, the structures have been created in positive (cylindrical material in air) or negative (air holes) form. The 2D square structures with periods in between 0.6 μm and 1 μm and with a feature size of about 150 nm have been demonstrated with an OL of NA = 0.9 (air-immersion). The fabricated results are well consistent with those obtained numerically by using a vectorial diffraction theory for high NA OLs. This investigation should be very useful for fabrication of photonic and plasmonic templates.

  8. One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect

    SciTech Connect

    Nguyen, Dam Thuy Trang; Tong, Quang Cong; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-01-07

    In this work, local thermal effect induced by a continuous-wave laser has been investigated and exploited to optimize the low one-photon absorption (LOPA) direct laser writing (DLW) technique for fabrication of polymer-based microstructures. It was demonstrated that the temperature of excited SU8 photoresist at the focusing area increases to above 100 °C due to high excitation intensity and becomes stable at that temperature thanks to the use of a continuous-wave laser at 532 nm-wavelength. This optically induced thermal effect immediately completes the crosslinking process at the photopolymerized region, allowing obtain desired structures without using the conventional post-exposure bake (PEB) step, which is usually realized after the exposure. Theoretical calculation of the temperature distribution induced by local optical excitation using finite element method confirmed the experimental results. LOPA-based DLW technique combined with optically induced thermal effect (local PEB) shows great advantages over the traditional PEB, such as simple, short fabrication time, high resolution. In particular, it allowed the overcoming of the accumulation effect inherently existed in optical lithography by one-photon absorption process, resulting in small and uniform structures with very short lattice constant.

  9. High-resolution measurements of humidity and temperature with lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, Andreas; Wulfmeyer, Volker; Spaeth, Florian; Hammann, Eva; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea

    2015-04-01

    3-dimensional thermodynamic fields of temperature and moisture including their turbulent fluctuations have been observed with the two scanning lidar systems of University of Hohenheim in three field campaigns in 2013 and 2014. In this contribution, we will introduce these two self-developed instruments and illustrate their performance with measurement examples. Finally, an outlook to envisioned future research activities with the new data sets of the instruments is given. Our temperature lidar is based on the rotational Raman technique. The scanning rotational Raman lidar (RRL) uses a seeded frequency-doubled Nd:YAG laser at a wavelength of 355 nm. A two-mirror scanner with a 40-cm telescope collects the atmospheric backscatter signals. Humidity measurements are made with a scanning water vapor differential absorption lidar (DIAL) which uses a titanium sapphire laser at 820 nm as transmitter. This laser is pumped with a frequency-doubled Nd:YAG laser and injection-seeded for switching between the online and offline wavelengths. The DIAL receiver consists of a scanning 80-cm telescope. The measured temperature and humidity profiles of both instruments have typical resolutions of only a few seconds and 100 m in the atmospheric boundary layer both in day- and night-time. Recent field experiments with the RRL and the DIAL of University of Hohenheim were (1) the HD(CP)2 Prototype Experiment (HOPE) in spring 2013 in western Germany - this activity is embedded in the project HD(CP)2 (High-definition clouds and precipitation for advancing climate prediction); (2) a measurement campaign in Hohenheim in autumn 2013; (3) the campaign SABLE (Surface Atmospheric Boundary Layer Exchange) in south-western Germany in summer 2014. The collected moisture and temperature data will serve as initial thermodynamic fields for forecast experiments related to the formation of clouds and precipitation. Due to their high resolution and high precision, the systems are capable of resolving

  10. Screening Technique for Lead and Cadmium in Toys and Other Materials Using Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Brouwer, Henry

    2005-01-01

    A simple procedure to quickly screen different consumer products for the presence of lead, cadmium, and other metals is described. This screening technique avoids expending a lot of preparation time on samples known to contain low levels of hazardous metals where only samples testing positive for the desired elements need to be analyzed…

  11. Optimizing three-frequency Na, Fe, and He lidars for measurements of wind, temperature, and species density and the vertical fluxes of heat and constituents.

    PubMed

    Gardner, Chester S; Vargas, Fabio A

    2014-07-01

    The measurement accuracies of three-frequency resonance fluorescence Doppler lidars are limited by photon noise and uncertainties in the laser frequency and line width. We analyze the performance of Na, Fe, and He lidars using a new technique, which incorporates precise information about the absorption spectrum of the species and the pulse spectrum of the lasers. We derive the measurement errors associated with photon noise, laser frequency errors, and laser line width errors. Optimizing the lidar design, based upon the measurement requirements, can improve system performance by reducing the required integration times, enabling measurements to be made in less time or at higher altitudes where the densities and signal levels are smaller. The optimum frequency shift for observing heat and constituent transport velocities is 689 MHz (580 MHz) at night (day) for Na lidars and 774 MHz (597 MHz) for Fe lidars. The optimum frequency shift for observing winds, temperature, and He densities is 3.66 GHz (3.16 GHz) at night (day) for He lidars.

  12. InGaAsSb Detectors' Characterization for 2-Micron CO2 Lidar/DIAL Applications

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Koch, Grady J.; Singh, Upendra N.

    2003-01-01

    Recent interest in monitoring atmospheric CO2 focuses attention on infrared remote sensing using the 2-micron lidar/differential absorption lidar (DIAL) technique. Quantum detectors are critical components in this technique, and many research efforts concentrate on developing such devices for the 2-micron wavelength. Characterization results of InGaAsSb quantum detectors for the 2-micron wavelength range are presented, including experimental setup and procedure. Detectors are prototype devices manufactured by using separate absorption and multiplication (SAM) structures. Characterization experiments include V-I measurements, spectral response and its variation with bias voltage and temperature, noise measurements, noise-equivalent-power (NEP) and detectivity calculations, and signal-to-noise ratio (SNR) estimation. A slight increase in the output signal occurred with increased bias voltage and was associated with a noise level increase. Cooling down the detectors reduces noise and shifts the cutoff wavelength to shorter values. Further improvement in the design and manufacturing process, by increasing the device gain and lowering its noise level, is necessary to meet the required CO2 lidar/DIAL specifications.

  13. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2013-03-31

    project "Advanced Digital Signal Processing for Hybrid Lidar " covering the period of 1/1/2013-3/31/2013. 9LO\\SO^O’IH^’?’ William D. Jemison...Chaotic LIDAR for Naval Applications This document contains a Progress Summary for FY13 Q2 and a Short Work Statement for FY13 Progress Summary for...This technique has the potential to increase the unambiguous range of hybrid lidar -radar while maintaining reasonable range resolution. Proof-of

  14. Pre-shuttle lidar system research

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Zaghloul, M. E.

    1986-01-01

    Included are the results of the initial phase of a simulation study in connection with photomultiplier tubes (PMT) and associated networks and an analytical study of atmospheric physics (including multiscattering) leading to modeling studies in connection with differential absorption lidar (DIAL) observations. This effort was in support of the ER-2 aircraft DIAL projects.

  15. Multilayer Thin Film Polarizer Design for Far Ultraviolet using Induced Transmission and Absorption Technique

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Wilson, Michele M.; Park, Jung Ho; Torr, Douglas G.

    1994-01-01

    Good theoretical designs of far ultraviolet polarizers have been reported using a MgF2/Al/MgF2 three layer structure on a thick Al layer as a substrate. The thicknesses were determined to induce transmission and absorption of p-polarized light. In these designs Al optical constants were used from films produced in ultrahigh vacuum (UHV: 10(exp -10) torr). Reflectance values for polarizers fabricated in a conventional high vacuum (p approx. 10(exp -6 torr)) using the UHV design parameters differed dramatically from the design predictions. Al is a highly reactive material and is oxidized even in a high vacuum chamber. In order to solve the problem other metals have been studied. It is found that a larger reflectance difference is closely related to higher amplitude and larger phase difference of Fresnel reflection coefficients between two polarizations at the boundary of MgF2/metal. It is also found that for one material a larger angle of incidence from the surface normal brings larger amplitude and phase difference. Be and Mo are found good materials to replace Al. Polarizers designed for 121.6 nm with Be at 60 deg and with Mo at 70 deg are shown as examples.

  16. Mid-infrared carbon monoxide detection system using differential absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Dong, Ming; Sui, Yue; Li, Guo-lin; Zheng, Chuan-tao; Chen, Mei-mei; Wang, Yi-ding

    2015-11-01

    A differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g. light-collector) and a multi-pass gas-chamber is presented in this paper. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path and environmental changes. Detection principle of the device is described, and both the optical part and the electrical part are developed. Experiments are carried out to evaluate the sensing performance on CO concentration. The results indicate that at 1.013×105 Pa and 298 K, the limit of detection (LoD) is about 11.5 mg/m3 with an absorption length of 40 cm. As the gas concentration gets larger than 115 mg/m3 (1.013×105 Pa, 298 K), the relative detection error falls into the range of -1.7%—+1.9%. Based on 12 h long-term measurement on the 115 mg/m3 and 1 150 mg/m3 CO samples, the maximum detection errors are about 0.9% and 5.5%, respectively. Due to the low cost and competitive characteristics, the proposed device shows potential applications in CO detection in the circumstances of coal-mine production and environmental protection.

  17. A differential absorption technique to estimate atmospheric total water vapor amounts

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Middleton, Elizabeth

    1990-01-01

    Vertically integrated water-vapor amounts can be remotely determined by measuring the solar radiance reflected by the earth's surface with satellites or aircraft-based instruments. The technique is based on the method by Fowle (1912, 1913) and utilizes the 0.940-micron water-vapor band to retrieve total-water-vapor data that is independent of surface reflectance properties and other atmospheric constituents. A channel combination is proposed to provide more accurate results, the SE-590 spectrometer is used to verify the data, and the effects of atmospheric photon backscattering is examined. The spectrometer and radiosonde data confirm the accuracy of using a narrow and a wide channel centered on the same wavelength to determine water vapor amounts. The technique is suitable for cloudless conditions and can contribute to atmospheric corrections of land-surface parameters.

  18. Lidar Measurements of Ozone in the Upper Troposphere - Lower Stratosphere at Siberian Lidar Station in Tomsk

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Dolgii, S. I.; Burlakov, V. D.; Nevzorov, A. A.; Nevzorov, A. V.

    2016-06-01

    The paper presents the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station. Sensing is performed according to the method of differential absorption and scattering at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-16 km. The temperature correction of zone absorption coefficients is introduced in the software to reduce the retrieval errors.

  19. Airborne Light Detection and Ranging (lidar) Derived Deformation from the MW 6.0 24 August, 2014 South Napa Earthquake Estimated by Two and Three Dimensional Point Cloud Change Detection Techniques

    NASA Astrophysics Data System (ADS)

    Lyda, A. W.; Zhang, X.; Glennie, C. L.; Hudnut, K.; Brooks, B. A.

    2016-06-01

    Remote sensing via LiDAR (Light Detection And Ranging) has proven extremely useful in both Earth science and hazard related studies. Surveys taken before and after an earthquake for example, can provide decimeter-level, 3D near-field estimates of land deformation that offer better spatial coverage of the near field rupture zone than other geodetic methods (e.g., InSAR, GNSS, or alignment array). In this study, we compare and contrast estimates of deformation obtained from different pre and post-event airborne laser scanning (ALS) data sets of the 2014 South Napa Earthquake using two change detection algorithms, Iterative Control Point (ICP) and Particle Image Velocimetry (PIV). The ICP algorithm is a closest point based registration algorithm that can iteratively acquire three dimensional deformations from airborne LiDAR data sets. By employing a newly proposed partition scheme, "moving window," to handle the large spatial scale point cloud over the earthquake rupture area, the ICP process applies a rigid registration of data sets within an overlapped window to enhance the change detection results of the local, spatially varying surface deformation near-fault. The other algorithm, PIV, is a well-established, two dimensional image co-registration and correlation technique developed in fluid mechanics research and later applied to geotechnical studies. Adapted here for an earthquake with little vertical movement, the 3D point cloud is interpolated into a 2D DTM image and horizontal deformation is determined by assessing the cross-correlation of interrogation areas within the images to find the most likely deformation between two areas. Both the PIV process and the ICP algorithm are further benefited by a presented, novel use of urban geodetic markers. Analogous to the persistent scatterer technique employed with differential radar observations, this new LiDAR application exploits a classified point cloud dataset to assist the change detection algorithms. Ground

  20. Folic acid absorption determined by a single stool sample test--a double-isotope technique. The folic acid absorption capacity in children

    SciTech Connect

    Hjelt, K. )

    1989-10-01

    The fractional folic acid absorption (FAFol) was determined in 66 patients with various gastrointestinal diseases by a double-isotope technique, employing a single stool sample test (SSST) as well as a complete stool collection. The age of the patients ranged from 2.5 months to 16.8 years (mean 6.3 years). The test dose was administered orally and consisted of 50 micrograms of (3H)folic acid (monoglutamate) (approximately 20 muCi), carmine powder, and 2 mg 51CrCl3 (approximately 1.25 muCi) as the unabsorbable tracer. The whole-body radiation given to a 1-year-old child averaged 4.8 mrad only. The stool and napkin contents were collected and homogenized by the addition of 300 ml chromium sulfuric acid. A 300-ml sample of the homogenized stool and napkin contents, as well as 300 ml chromium sulfuric acid (75% vol/vol) containing the standards, were counted for the content of 51Cr in a broad-based well counter. The quantity of (3H)folic acid was determined by liquid scintillation, after duplicate distillation. Estimated by SSST, the FAFol, which employs the stool with the highest content of 51Cr corresponding to the most carmine-colored stool, correlated closely with the FAFol based on complete stool collection (r = 0.96, n = 39, p less than 0.0001). The reproducibility of FAFol determined by SSST was assessed from repeated tests in 18 patients. For a mean of 81%, the SD was 4.6%, which corresponded to a coefficient of variation of 5.7%.

  1. Combined Raman Lidar and DIAL Sounding of Water Vapour and Temperature at the NDACC Station Zugspitze

    NASA Astrophysics Data System (ADS)

    Klanner, Lisa; Trickl, Thomas; Vogelmann, Hannes

    2010-05-01

    The primary greenhouse gas water vapour has moved into the focus of lidar sounding within the Network for the Detection of Atmosperhic Compostion Change (NDACC). Lidar systems with an operating range reaching at least the tropopause region are asked for, with some future extension into the stratosphere. As a first step, we installed in 2003 a powerful differential-absorption lidar (DIAL) at the Schneefernerhaus high-altitude station next to the Zugspitze summit (Germany) [Vogelmann and Trickl, 2008]. This lidar system, located at 2675 m a.s.l., provides water-vapour profiles in the entire free troposphere above 3 km with high vertical resolution and an accuracy of about 5 % up to 8 km without observable bias. Most importantly, due to the high sensitivity of the DIAL technique this wide operating range is also achieved during daytime and under dry conditions. In a parallel contribution we present examples from the routine measurements of this lidar system during the past three years. The results reflect the extreme variability of the free-tropospheric water-vapour concentration, caused by the rich tropospheric dynamics. The system is capable of quantititatively detecting relative humidities of 0 to 2 % in layers of stratospheric origin even just 300 m wide. Due to the very low stratospheric water-vapour mixing ratio of about 5 ppm an extension of the lidar sounding of H2O into the stratosphere is a highly demanding task. Our solution is a particularly big Raman lidar system, which is currently under development at the Schneefernerhaus. By using a 350-W xenon-chloride laser system and a 1.5-m-diameter receiver we hope to extend for the first time the humidity measurements to almost 30 km during nighttime (as extrapolated from results by Leblanc et al. [2004], Whiteman et al. [2008]). We expect that this system is going to fill the existing gap for accurate vertically resolved ground-based routine measurements of water vapour in the lower stratosphere. At the same

  2. Lidar Measurements of Aerosol and Ozone Distributions During the 1992 Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Butler, C. F.; Fenn, M. A.; Grant, W. B.; Carter, A. F.

    1992-01-01

    The LaRC airborne lidar system was operated from the ARC DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition (ASEE-2) to investigate the distribution of stratospheric aerosols and O3 across the Arctic vortex from Jan. to Mar. 1992. Monthly flights were made across the Arctic vortex from Anchorage, Alaska, to Stavanger, Norway, and then back to Bangor, Maine, and additional round-trip flights north into the vortex were made each month from either Stavanger or Bangor depending on the location of the vortex that month. The airborne lidar system uses the differential absorption lidar (DIAL) technique at laser wavelengths of 301.5 and 310.8 nm to measure O3 profiles above the DC-8 over the 12-25 km altitude range. Lidar measurements of aerosol backscatter and depolarization profiles over the 12-30 km altitude range are made simultaneously with the O3 measurements using infrared (IR) and visible (VIS) laser wavelengths of 603 and 1064 nm, respectively. The measurements of Pinatubo aerosols, polar stratospheric clouds, and O3 made with the airborne DIAL system during the AASE-2 expedition and to chemical and dynamical process that contribute to O3 depletion in the wintertime Arctic stratosphere.

  3. Measurement of the Vertical Distribution of Aerosol by Globally Distributed MP Lidar Network Sites

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Welton, Judd; Campbell, James; Starr, David OC. (Technical Monitor)

    2001-01-01

    The global distribution of aerosol has an important influence on climate through the scattering and absorption of shortwave radiation and through modification of cloud optical properties. Current satellite and other data already provide a great amount of information on aerosol distribution. However there are critical parameters that can only be obtained by active optical profiling. For aerosol, no passive technique can adequately resolve the height profile of aerosol. The aerosol height distribution is required for any model for aerosol transport and the height resolved radiative heating/cooling effect of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched by 2002. GLAS will provide global measurements of the height distribution of aerosol. The sampling will be limited by nadir only coverage. There is a need for local sites to address sampling, and accuracy factors. Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently six sites in operation and over a dozen planned. At all sites there are a complement of passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The aerosol measurements, retrievals and data products from the network sites will be discussed. The current and planned application of data to supplement satellite aerosol measurements is covered.

  4. Spectroscopic lidar technology for small space apparatus

    NASA Astrophysics Data System (ADS)

    Matvienko, Gennadii G.; Ponomarev, Yurii N.; Romanovskii, Oleg A.; Ptashnik, Igor V.

    2002-01-01

    The development of the techniques for spaceborne detecting gas anomalies in the lower atmosphere is very important. The results of the Kioto protocol, an extended use of hydrocarbon raw material, the occurrence of new chemical emissions call for further realization of global control over gaseous contaminations in the atmosphere. A spaceborne location of sensors is very promising for solving this problem. In this case the light automatic satellites, oriented to a limited area of application, are the most promising. As a rule, for such satellites the orbits at 500 km altitude and more are selected. This altitude and small mass of a satellite impose severe requirements on the efficiency of the techniques and apparatus realizations. Taking account of the last-named fact, the paper describes the use of the differential absorption method with a reflection from the Earth's surface for global monitoring of gaseous contaminations. The experiments were performed to assess lidar detection of ground anomalies of hydrocarbons in the 3-5 micrometers transmittance window. It is shown that, as applied to a spaceborne platform MKA- 200, this technique provides for localization of the background concentration excess of gases of hydrocarbon cycle with an error from 15% to 25%.

  5. An indoor test campaign of the tomography long path differential optical absorption spectroscopy technique.

    PubMed

    Mettendorf, K U; Hartl, A; Pundt, I

    2006-02-01

    In this study we validate the two-dimensional long path DOAS tomography measurement technique by means of an indoor experiment with well-known concentration distributions. The experiment was conducted over an area of 10 m x 15 m using one and two cylindrical polycarbonate containers of diameter 2 m, respectively, filled with NO2. The setup was realized with three of the multibeam instruments recently developed by Pundt and Mettendorf (Appl. Opt., 2005, in press), which allow the simultaneous measurement along at least four light paths each. The configuration consisted of twelve simultaneous light beams, 39 horizontal light paths in total, and 18 different cylinder positions inside the field. It was found that for the discretization and inversion technique shown here reconstructions of the concentration distributions from experimental data agree well with simulated reconstructions. In order to draw conclusions for atmospheric applications, numerical studies including instrumental errors were carried out. It was found that with the presented measurement setup it is possible to measure and reconstruct one or two NO2 plumes of 600 m diameter and average concentrations above 4.2 ppbv each, on a scale of 13.5 km2. Theoretical investigations show that it should be possible to localize and quantify 600 m diameter plumes of SO2 > 1.5 ppbv, H2CO > 6.3 ppbv, HONO > 3.2 ppbv, and ozone > 46.2 ppbv. Larger plumes can be measured with higher precision.

  6. Underwater lidar system: design challenges and application in pollution detection

    NASA Astrophysics Data System (ADS)

    Gupta, Pradip; Sankolli, Swati; Chakraborty, A.

    2016-05-01

    The present remote sensing techniques have imposed limitations in the applications of LIDAR Technology. The fundamental sampling inadequacy of the remote sensing data obtained from satellites is that they cannot resolve in the third spatial dimension, the vertical. This limits our possibilities of measuring any vertical variability in the water column. Also the interaction between the physical and biological process in the oceans and their effects at subsequent depths cannot be modeled with present techniques. The idea behind this paper is to introduce underwater LIDAR measurement system by using a LIDAR mounted on an Autonomous Underwater Vehicle (AUV). The paper introduces working principles and design parameters for the LIDAR mounted AUV (AUV-LIDAR). Among several applications the papers discusses the possible use and advantages of AUV-LIDAR in water pollution detection through profiling of Dissolved Organic Matter (DOM) in water bodies.

  7. Pulse-compression ghost imaging lidar via coherent detection

    NASA Astrophysics Data System (ADS)

    Deng, Chenjin; Gong, Wenlin; Han, Shensheng

    2016-11-01

    Ghost imaging (GI) lidar, as a novel remote sensing technique,has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target's spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which can dramatically improve the detection sensitivity and detection range.

  8. Pulse-compression ghost imaging lidar via coherent detection.

    PubMed

    Deng, Chenjin; Gong, Wenlin; Han, Shensheng

    2016-11-14

    Ghost imaging (GI) lidar, as a novel remote sensing technique, has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target's spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which is helpful to improve the detection sensitivity and detection range.

  9. Lidar Wind Measurements with the Goddard Lidar Observatory for Winds (GLOW)

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Chen, Hualilin; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We report on the development of GLOW (Goddard Lidar Observatory for Winds), a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. The system employs a Nd:YAG laser transmitter to measure winds using either aerosol backscatter at a wavelength of 1064 run or molecular backscatter at 355 nm. The system is modular in design to allow the incorporation of new technologies as they become available. GLOW is intended to be used as a deployable field system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. Finally it can be used for calibration/validation activities following launch of spaceborne wind lidar systems. A description of the mobile system is presented along with the first validated lidar wind profiles obtained with the system using a new molecular 'double edge' receiver.

  10. Determination of mercury in an assortment of dietary supplements using an inexpensive combustion atomic absorption spectrometry technique.

    PubMed

    Levine, Keith E; Levine, Michael A; Weber, Frank X; Hu, Ye; Perlmutter, Jason; Grohse, Peter M

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a result, manufacturers and regulatory agencies concerned with monitoring lot-to-lot product quality may find this approach an attractive alternative to the more classical acid-decomposition, cold vapor atomic absorption methodology. Dietary supplement samples analyzed included astragalus, calcium, chromium picolinate, echinacea, ephedra, fish oil, ginger, ginkgo biloba, ginseng, goldenseal, guggul, senna, St John's wort, and yohimbe products. Quality control samples analyzed with the dietary supplements indicated a high level of method accuracy and precision. Ten replicate preparations of a standard reference material (NIST 1573a, tomato leaves) were analyzed, and the average mercury recovery was 109% (2.0% RSD). The method quantitation limit was 0.3 ng, which corresponded to 1.5 ng/g sample. The highest found mercury concentration (123 ng/g) was measured in a concentrated salmon oil sample. When taken as directed by an adult, this product would result in an approximate mercury ingestion of 7 mug per week.

  11. Determination of Mercury in an Assortment of Dietary Supplements Using an Inexpensive Combustion Atomic Absorption Spectrometry Technique

    PubMed Central

    Levine, Michael A.; Weber, Frank X.; Hu, Ye; Perlmutter, Jason; Grohse, Peter M.

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a result, manufacturers and regulatory agencies concerned with monitoring lot-to-lot product quality may find this approach an attractive alternative to the more classical acid-decomposition, cold vapor atomic absorption methodology. Dietary supplement samples analyzed included astragalus, calcium, chromium picolinate, echinacea, ephedra, fish oil, ginger, ginkgo biloba, ginseng, goldenseal, guggul, senna, St John's wort, and yohimbe products. Quality control samples analyzed with the dietary supplements indicated a high level of method accuracy and precision. Ten replicate preparations of a standard reference material (NIST 1573a, tomato leaves) were analyzed, and the average mercury recovery was 109% (2.0% RSD). The method quantitation limit was 0.3 ng, which corresponded to 1.5 ng/g sample. The highest found mercury concentration (123 ng/g) was measured in a concentrated salmon oil sample. When taken as directed by an adult, this product would result in an approximate mercury ingestion of 7 μg per week. PMID:18924735

  12. DEMONSTRATION OF TUMOR-SPECIFIC ANTIGENS IN HUMAN COLONIC CARCINOMATA BY IMMUNOLOGICAL TOLERANCE AND ABSORPTION TECHNIQUES

    PubMed Central

    Gold, Phil; Freedman, Samuel O.

    1965-01-01

    Two methods were used to demonstrate the presence of tumor-specific antigens in adenocarcinomata of the human colon: (a) rabbits were immunized with extracts of pooled colonic carcinomata, and the antitumor antisera thus produced were absorbed with a pooled extract of normal human colon and with human blood components; (b) newborn rabbits were made immunologically tolerant to normal colonic tissue at birth, and were then immunized with pooled tumor material in adult life. Normal and tumor tissues were obtained from the same human donors in order to avoid misinterpretation of results due to individual-specific antigenic differences. The antisera prepared by both methods were tested against normal and tumor antigens by the techniques of agar gel diffusion, immunoelectrophoresis, hemagglutination, PCA, and immunofluorescence. Distinct antibody activity directed against at least two qualitatively tumor-specific antigens, or antigenic determinants, was detected in the antisera prepared by both methods and at least two additional tumor antigens were detected exclusively in antisera prepared by the tolerance technique. Whether these additional antigens were qualitatively different from normal tissue antigens, or merely present in tumor tissue in higher concentrations than in normal tissue has not as yet been determined. Furthermore, it was shown that the tumor-specific antibodies were not directed against bacterial contaminants or against the unusually high concentrations of fibrin found in many neoplastic tissues. It was concluded from these results that the pooled tumor extracts contained tumor-specific antigens not present in normal colonic tissue. Identical tumor-specific antigens were also demonstrated in a number of individual colonic carcinomata obtained from different human donors. PMID:14270243

  13. Lidar vegetation mapping in national parks: Gulf Coast Network

    USGS Publications Warehouse

    Brock, John C.; Palaseanu-Lovejoy, Monica; Segura, Martha

    2011-01-01

    Airborne lidar (Light Detection and Ranging) is an active remote sensing technique used to collect accurate elevation data over large areas. Lidar provides an extremely high level of regional topographic detail, which makes this technology an essential component of U.S. Geological Survey (USGS) science strategy. The USGS Coastal and Marine Geology Program (CMGP) has collaborated with the National Aeronautics and Space Administration (NASA) and the National Park Service (NPS) to acquire dense topographic lidar data in a variety of coastal environments.

  14. The feasibility of water vapor sounding of the cloudy boundary layer using a differential absorption radar technique

    NASA Astrophysics Data System (ADS)

    Lebsock, M. D.; Suzuki, K.; Millan, L. F.; Kalmus, P. M.

    2015-06-01

    The feasibility of Differential Absorption Radar (DAR) for the spaceborne remote profiling of water vapor within the cloudy boundary layer is assessed by applying a radar instrument simulator to Large Eddy Simulations (LES). Frequencies near the 183 GHz water vapor absorption line attenuate too strongly to penetrate the large vapor concentrations that are ubiquitous in the boundary layer. However it is shown that lower frequencies between 140 and 170 GHz in the water vapor absorption continuum and on the wings of the absorption line, which are attenuated less efficiently than those near the line center, still have sufficient spectral variation of gaseous attenuation to perform sounding. The high resolution LES allow for assessment of the potential uncertainty in the method due to natural variability in thermodynamic and dynamic variables on scales smaller than the instrument field of view. The (160, 170) GHz frequency pair is suggested to best maximize signal for vapor profiling while minimizing noise due to undesired spectral variation in the target extinction properties. Precision in the derived water vapor is quantified as a function of the range resolution and the instrument precision. Assuming an observational spatial scale of 500 m vertical and 750 m Full Width at Half Maximum (FWHM) horizontal, measurement precision better that 1 g m-3 is achievable for stratocumulus scenes and 3 g m-3 for cumulus scenes given precision in radar reflectivity of 0.16 dBZ. Expected precision in the Column Water Vapor (CWV) is achievable between 0.5 and 2 kg m-2 on these same spatial scales. Sampling efficiency is quantified as a function of radar sensitivity. Mean biases in CWV due to natural variability in the target extinction properties do not exceed 0.25 kg m-2. Potential biases due to uncertainty in the temperature and pressure profile are negligible relative to those resulting from natural variability. Assuming a -35 dBZ minimum detectable signal, 40 % (21.9 %) of

  15. The feasibility of water vapor sounding of the cloudy boundary layer using a differential absorption radar technique

    NASA Astrophysics Data System (ADS)

    Lebsock, M. D.; Suzuki, K.; Millán, L. F.; Kalmus, P. M.

    2015-09-01

    The feasibility of differential absorption radar (DAR) for the spaceborne remote profiling of water vapor within the cloudy boundary layer is assessed by applying a radar instrument simulator to large eddy simulations (LES). Frequencies near the 183 GHz water vapor absorption line attenuate too strongly to penetrate the large vapor concentrations that are ubiquitous in the boundary layer. However it is shown that lower frequencies between 140 and 170 GHz in the water vapor absorption continuum and on the wings of the absorption line, which are attenuated less efficiently than those near the line center, still have sufficient spectral variation of gaseous attenuation to perform sounding. The high resolution LES allow for assessment of the potential uncertainty in the method due to natural variability in thermodynamic and dynamic variables on scales smaller than the instrument field of view. The (160, 170) GHz frequency pair is suggested to best maximize signal for vapor profiling while minimizing noise due to undesired spectral variation in the target extinction properties. Precision in the derived water vapor is quantified as a function of the range resolution and the instrument precision. Assuming an observational spatial scale of 500 m vertical and 750 m full width at half maximum (FWHM) horizontal, measurement precision better that 1 g m-3 is achievable for stratocumulus scenes and 3 g m-3 for cumulus scenes given precision in radar reflectivity of 0.16 dBZ. Expected precision in the column water vapor (CWV) is achievable between 0.5 and 2 kg m-2 on these same spatial scales. Sampling efficiency is quantified as a function of radar sensitivity. Mean biases in CWV due to natural variability in the target extinction properties do not exceed 0.25 kg m-2. Potential biases due to uncertainty in the temperature and pressure profile are negligible relative to those resulting from natural variability. Assuming a -35 dBZ minimum detectable signal, 40 %(21.9 %) of

  16. First lidar measurements of water vapor and aerosols from a high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed

    1995-01-01

    Water vapor plays an important role in many atmospheric processes related to radiation, climate change, atmospheric dynamics, meteorology, the global hydrologic cycle, and atmospheric chemistry, and yet our knowledge of the global distribution of water vapor is very limited. The differential absorption lidar (DIAL) technique has the potential of providing needed high resolution water vapor measurements from aircraft and from space, and the Lidar Atmospheric Sensing Experiment (LASE) is a key step in the development of this capability. The LASE instrument is the first fully engineered, autonomous DIAL system, and it is designed to operate from a high-altitude aircraft (ER-2) and to make water vapor and aerosol profile measurements across the troposphere. The LASE system was flown from the NASA Wallops Flight Facility in a series of engineering flights during September 1994. This paper discusses the characteristics of the LASE system and presents the first LASE measurements of water vapor and aerosol profiles.

  17. Lidar instruments for ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2004-06-01

    The idea of deploying a lidar system on an Earth-orbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra-Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field

  18. A combined Raman lidar for low tropospheric studies

    NASA Technical Reports Server (NTRS)

    Arshinov, Y. F.; Bobrovnikov, S. M.; Zuev, V. E.; Nadeev, A. I.; Shelevoy, K. D.

    1986-01-01

    One of the main goals of laser sensing of the atmosphere was the development of techniques and facilities for remote determination of atmospheric meteorological and optical parameters. Of lidar techniques known at present the Raman-lidar technique occupies a specific place. On the one hand Raman lidar returns due to scattering on different molecular species are very simple for interpretation and for extracting the information on the atmospheric parameters sought, but, on the other hand, the performance of these techniques in a lidar facility is overburdened with some serious technical difficulties due to extremely low cross sections of Raman effect. Some results of investigations into this problem is presented which enables the construction of a combined Raman lidar capable of acquiring simultaneously the profiles of atmospheric temperature, humidity, and some optical characteristics in the ground atmospheric layer up to 1 km height. The operation of this system is briefly discussed.

  19. Lidar base specification

    USGS Publications Warehouse

    Heidemann, Hans Karl.

    2012-01-01

    In late 2009, a $14.3 million allocation from the “American Recovery and Reinvestment Act” for new light detection and ranging (lidar) elevation data prompted the U.S. Geological Survey (USGS) National Geospatial Program (NGP) to develop a common base specification for all lidar data acquired for The National Map. Released as a draft in 2010 and formally published in 2012, the USGS–NGP “Lidar Base Specification Version 1.0” (now Lidar Base Specification) was quickly embraced as the foundation for numerous state, county, and foreign country lidar specifications. Prompted by a growing appreciation for the wide applicability and inherent value of lidar, a USGS-led consortium of Federal agencies commissioned a National Enhanced Elevation Assessment (NEEA) study in 2010 to quantify the costs and benefits of a national lidar program. A 2012 NEEA report documented a substantial return on such an investment, defined five Quality Levels (QL) for elevation data, and recommended an 8-year collection cycle of Quality Level 2 (QL2) lidar data as the optimum balance of benefit and affordability. In response to the study, the USGS–NGP established the 3D Elevation Program (3DEP) in 2013 as the interagency vehicle through which the NEEA recommendations could be realized. Lidar is a fast evolving technology, and much has changed in the industry since the final draft of the “Lidar Base Specification Version 1.0” was written. Lidar data have improved in accuracy and spatial resolution, geospatial accuracy standards have been revised by the American Society for Photogrammetry and Remote Sensing (ASPRS), industry standard file formats have been expanded, additional applications for lidar have become accepted, and the need for interoperable data across collections has been realized. This revision to the “Lidar Base Specification Version 1.0” publication addresses those changes and provides continued guidance towards a nationally consistent lidar dataset.

  20. Mobile lidar system for measurement of water vapor mixing ratio and ozone number density

    NASA Technical Reports Server (NTRS)

    Whiteman, D.

    1988-01-01

    The Water Vapor Lidar was modified and extended to make differential absorption measurements of ozone. Water vapor measurements make use of a weak molecular scattering process known as Raman scattering. It is characterized by a shift in wavelength of the scattered beam of light relative to the incident one. Some of the energy of the incident photon is converted to vibrational or rotational energy within the molecule leaving the scattered photon shifted to a slightly longer wavelength. When performing water vapor measurements, profiles are acquired of water vapor mixing ratio from near the ground to beyond 7 km every 2 minutes. By forming a color composite image of the individual profiles, the spatial and temporal evolution of water vapor is visible with vertical resolution of 75 to 150m and temporal resolution of 2 minutes. The ozone lidar is intended for use as a cross calibration facility for other stationary ozone lidar systems. The ozone measurement employs the technique known as differential absorption. The backscattered laser radiation from two different wavelengths is measured. Successful measurements of 308 nm returns were made from 80 km with an averaging period of 6 hours. Using these data and a standard atmosphere density curve, an ozone number density profile was made which agrees very well with the standard ozone curve between 20 and 40 km.

  1. Lidar measurements of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Li, Guangkun; Philbrick, C. Russell

    2003-03-01

    Raman lidar techniques have been used in remote sensing to measure the aerosol optical extinction in the lower atmosphere, as well as water vapor, temperature and ozone profiles. Knowledge of aerosol optical properties assumes special importance in the wake of studies strongly correlating airborne particulate matter with adverse health effects. Optical extinction depends upon the concentration, composition, and size distribution of the particulate matter. Optical extinction from lidar returns provide information on particle size and density. The influence of relative humidity upon the growth and size of aerosols, particularly the sulfate aerosols along the northeast US region, has been investigated using a Raman lidar during several field measurement campaigns. A particle size distribution model is being developed and verified based on the experimental results. Optical extinction measurements from lidar in the NARSTO-NE-OPS program in Philadelphia PA, during summer of 1999 and 2001, have been analyzed and compared with other measurements such as PM sampling and particle size measurements.

  2. Lidar beams in opposite directions for quality assessment of Cloud-Aerosol Lidar with Orthogonal Polarization spaceborne measurements.

    PubMed

    Cuesta, Juan; Flamant, Pierre H

    2010-04-20

    We present the "lidar beams in opposite directions" (LIBOD) technique and applications for quality assessment of spaceborne observations made by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite. LIBOD is applicable to standard total backscatter lidar because it does not require a priori knowledge of the particle extinction-to-backscatter ratio. In this paper, we present (i) an objective assessment of the lidar signal quality and representativity of correlative ground-based lidar and CALIOP measurements only using normalized range-corrected lidar signals and (ii) a numerical filtering and optimization technique for reducing the spurious oscillations induced by noisy signal differentiation as needed for retrieval of particle extinction coefficients and extinction-to-backscatter ratio profiles. Numerical simulations and Monte Carlo tests are conducted for assessing the performance of the LIBOD technique. The applications are illustrated with examples of actual correlative 532 nm lidar profiles from CALIOP and a ground-based lidar deployed in Tamanrasset in the heart of Sahara in 2006 and near Strasbourg, France, in 2007.

  3. GLOW: The Goddard Lidar Observatory for Winds

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    GLOW (Goddard Lidar Observatory for Winds) is a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. The system is contained in a modified van to allow deployment in field operations. The lidar system uses a Nd:YAG laser transmitter to measure winds using either aerosol backscatter at 1064 nm or molecular backscatter at 355 nm. The receiver telescope is a 45 cm Dall-Kirkham which is fiber coupled to separate Doppler receivers, one optimized for the aerosol backscatter wind measurement and another optimized for the molecular backscatter wind measurement. The receivers are implementations of the 'double edge' technique and use high spectral resolution Fabry-Perot etalons to measure the Doppler shift. A 45 cm aperture azimuth-over-elevation scanner is mounted on the roof of the van to allow full sky access and a variety of scanning options. GLOW is intended to be used as a deployable field system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. In addition, it can be used for calibration/validation activities following launch of spaceborne wind lidar systems. A description of the mobile system is presented along with the examples of lidar wind profiles obtained with the system.

  4. GLOW- The Goddard Lidar Observatory for Winds

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Chen, Huailin; Li, Steven X.

    2000-01-01

    GLOW (Goddard Lidar Observatory for Winds) is a mobile Doppler lidar system which uses direct detection Doppler lidar techniques to measure wind profiles from the surface into the lower stratosphere. The system is contained in a modified van to allow deployment in field operations. The lidar system uses a Nd:YAG laser transmitter to measure winds using either aerosol backscatter at 1064 nm or molecular backscatter at 355 nm. The receiver telescope is a 45 cm Dall-Kirkham which is fiber coupled to separate Doppler receivers, one optimized for the aerosol backscatter wind measurement and another optimized for the molecular backscatter wind measurement. The receivers are implementations of the 'double edge' technique and use high spectral resolution Fabry-Perot etalons to measure the Doppler shift. A 45 cm aperture azimuth-over-elevation scanner is mounted on the roof of the van to allow full sky access and a variety of scanning options. GLOW is intended to be used as a deployable field system for studying atmospheric dynamics and transport and can also serve as a testbed to evaluate candidate technologies developed for use in future spaceborne systems. In addition, it can be used for calibration/validation activities following launch of spaceborne wind lidar systems. A description of the mobile system is presented along with the examples of lidar wind profiles obtained with the system.

  5. Improving Lidar Turbulence Estimates for Wind Energy: Preprint

    SciTech Connect

    Newman, Jennifer; Clifton, Andrew; Churchfield, Matthew; Klein, Petra

    2016-10-01

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.

  6. A preliminary study of air-pollution measurement by active remote-sensing techniques

    NASA Technical Reports Server (NTRS)

    Wright, M. L.; Proctor, E. K.; Gasiorek, L. S.; Liston, E. M.

    1975-01-01

    Air pollutants are identified, and the needs for their measurement from satellites and aircraft are discussed. An assessment is made of the properties of these pollutants and of the normal atmosphere, including interactions with light of various wavelengths and the resulting effects on transmission and scattering of optical signals. The possible methods for active remote measurement are described; the relative performance capabilities of double-ended and single-ended systems are compared qualitatively; and the capabilities of the several single-ended or backscattering techniques are compared quantitatively. The differential-absorption lidar (DIAL) technique is shown to be superior to the other backscattering techniques. The lidar system parameters and their relationships to the environmental factors and the properties of pollutants are examined in detail. A computer program that models both the atmosphere (including pollutants) and the lidar system is described. The performance capabilities of present and future lidar components are assessed, and projections are made of prospective measurement capabilities for future lidar systems. Following a discussion of some important operational factors that affect both the design and measurement capabilities of airborne and satellite-based lidar systems, the extensive analytical results obtained through more than 1000 individual cases analyzed with the aid of the computer program are summarized and discussed. The conclusions are presented. Recommendations are also made for additional studies to investigate cases that could not be explored adequately during this study.

  7. A compact high repetition rate CO2 coherent Doppler lidar

    NASA Technical Reports Server (NTRS)

    Alejandro, S.; Frelin, R.; Dix, B.; Mcnicholl, P.

    1992-01-01

    As part of its program to develop coherent heterodyne detection lidar technology for space, airborne, and ground based applications, the Optical Environment Division of the USAF's Phillips Laboratory developed a compact coherent CO2 TEA lidar system. Although originally conceived as a high altitude balloon borne system, the lidar is presently integrated into a trailer for ground based field measurements of aerosols and wind fields. In this role, it will also serve as a testbed for signal acquisition and processing development for planned future airborne and space based solid state lidar systems. The system has also found significance in new areas of interest to the Air Force such as cloud studies and coherent Differential Absorption Lidar (DIAL) systems.

  8. Gas correlation lidar for methane detection

    NASA Technical Reports Server (NTRS)

    Galletti, E.; Zanzottera, E.; Draghi, S.; Garbi, M.; Petroni, R.

    1986-01-01

    A new type of DIAL system for the detection of methane in the atmosphere is being developed. The main feature of this lidar is the use of a gas correlation technique to obtain the reference signal by means of a single laser pulse, instead of two shots at different wavelengths. This fact is useful to make measurements on fast moving platforms. To meet the infrared absorption band of methane an optical parametric oscillator (OPO) was used with a LiNbO3 crystal as active element, and a tuning range between 1.5 divided by 4 microns. As known, the major problem to overcome in parametric oscillators are the pump beam quality and the difficulty in reducing the linewidth. The first requirement is met by using, as a pump, a Nd-YAG laser based on a new type of resonator cavity, named SFUR (Self Filtering Unstable Resonator). The laser emits, with high efficiency, near diffraction limited pulsed beams of about 250 mJ of energy, 20 ns of duration at 10 pps of frequency repetition rate. On the other hand, the gas correlation technique allows the operation with a bandwidth as large as 1/cm, which is obtainable using only a diffraction grating as a dispersive element in the OPO cavity.

  9. Remote sensing of chemical warfare agent by CO2 -lidar

    NASA Astrophysics Data System (ADS)

    Geiko, Pavel P.; Smirnov, Sergey S.

    2014-11-01

    The possibilities of remote sensing of chemical warfare agent by differential absorption method were analyzed. The CO2 - laser emission lines suitable for sounding of chemical warfare agent with provision for disturbing absorptions by water vapor were choose. The detection range of chemical warfare agents was estimated for a lidar based on CO2 - laser The other factors influencing upon echolocation range were analyzed.

  10. An investigation of mountain waves with lidar observations.

    NASA Technical Reports Server (NTRS)

    Viezee, W.; Collis, R. T. H.; Lawrence, J. D., Jr.

    1973-01-01

    In March and April of 1969 and 1970, lidar (laser radar) observations of the atmospheric structure were made in the lee of the Sierra Nevada during the occurrence of mountain lee waves. Rawinsonde ascents and, on some occasions, research aircraft flights supported the lidar observations. The objective of the program was to explore the applicability of the lidar technique to atmospheric turbulence detection. The observations demonstrate that a ground-based lidar can delineate significant features of the atmospheric flow pattern by monitoring echoes from concentrations of particulate matter that characterize the airflow structure in the form of either visible or subvisible clouds and dust.

  11. Role of Lidar Technology in Future NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    2008-01-01

    The past success of lidar instruments in space combined with potentials of laser remote sensing techniques in improving measurements traditionally performed by other instrument technologies and in enabling new measurements have expanded the role of lidar technology in future NASA missions. Compared with passive optical and active radar/microwave instruments, lidar systems produce substantially more accurate and precise data without reliance on natural light sources and with much greater spatial resolution. NASA pursues lidar technology not only as science instruments, providing atmospherics and surface topography data of Earth and other solar system bodies, but also as viable guidance and navigation sensors for space vehicles. This paper summarizes the current NASA lidar missions and describes the lidar systems being considered for deployment in space in the near future.

  12. Doppler Lidar (DL) Handbook

    SciTech Connect

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  13. Recent development of hyperspectral LiDAR using supercontinuum laser

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Li, Chuanrong; Zhou, Mei; Zhang, Huijing; He, Wenjing; Li, Wei; Qiu, Yuanyuan

    2016-10-01

    Hyperspectral Light Detection And Ranging (Hyperspectral LiDAR), a recently developed technique, combines the advantages of the LiDAR and hyperspectral imaging and has been attractive for many applications. Supercontinuum laser (SC laser), a rapidly developing technique offers hyperspectral LiDAR a suitable broadband laser source and makes hyperspectral Lidar become an installation from a theory. In this paper, the recent research and progressing of the hyperspectral LiDAR are reviewed. The hyperspectral LiDAR has been researched in theory, prototype system, instrument, and application experiment. However, the pulse energy of the SC laser is low so that the range of the hyperspectral LiDAR is limited. Moreover, considering the characteristics of sensors and A/D converter, in order to obtain the full waveform of the echo, the repetition rate and the pulse width of the SC laser needs to be limited. Recently, improving the detection ability of hyperspectral LiDAR, especially improving the detection range, is a main research area. A higher energy pulse SC laser, a more sensitive sensor, or some algorithms are applied in hyperspectral LiDAR to improve the detection distance from 12 m to 1.5 km. At present, a lot of research has been focused on this novel technology which would be applied in more applications.

  14. Airborne Measurements of Atmospheric Pressure made Using an IPDA Lidar Operating in the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Abshire, James B.; Stephen, Mark; Rodriquez, Michael; Allan, Graham; Hasselbrack, William; Mao, Jianping

    2012-01-01

    We report airborne measurements of atmospheric pressure made using an integrated path differential absorption (IPDA) lidar that operates in the oxygen A-band near 765 nm. Remote measurements of atmospheric temperature and pressure are needed for NASA s Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission to measure atmospheric CO2. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve our predictions of climate change. The goal of ASCENDS is to determine the CO2 dry mixing ratio with lidar measurements from space at a level of 1 ppm. Analysis to date shows that with current weather models, measurements of both the CO2 column density and the column density of dry air are needed. Since O2 is a stable molecule that uniformly mixed in the atmosphere, measuring O2 absorption in the atmosphere can be used to infer the dry air density. We have developed an airborne (IPDA) lidar for Oxygen, with support from the NASA ESTO IIP program. Our lidar uses DFB-based seed laser diodes, a pulsed modulator, a fiber laser amplifier, and a non-linear crystal to generate wavelength tunable 765 nm laser pulses with a few uJ/pulse energy. The laser pulse rate is 10 KHz, and average transmitted laser power is 20 mW. Our lidar steps laser pulses across a selected line O2 doublet near 764.7 nm in the Oxygen A-band. The direct detection lidar receiver uses a 20 cm diameter telescope, a Si APD detector in Geiger mode, and a multi-channel scalar to detect and record the time resolved laser backscatter in 40 separate wavelength channels. Subsequent analysis is used to estimate the transmission line shape of the doublet for the laser pulses reflected from the ground. Ground based data analysis allows averaging from 1 to 60 seconds to increase SNR in the transmission line shape of the doublet. Our retrieval algorithm fits the expected O2 lineshapes against the measurements and

  15. Retrieval of Temperature and Water Vapour from Multiple Channel Lidar Systems Using an Optimal Estimation Method

    NASA Astrophysics Data System (ADS)

    Sica, Robert; Haefele, Alexander

    2016-04-01

    While the application of optimal estimation methods (OEMs) is well-known for the retrieval of atmospheric parameters from passive instruments, active instruments have typically not employed the OEM. For instance, the measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for these temperatures have several shortcomings which can be overcome using an OEM. Forward models have been constructed that fully characterize the measurement and allow the simultaneous retrieval of temperature, dead time and background. The OEM allows a full uncertainty budget to be obtained on a per profile basis that includes, in addition to the statistical uncertainties, the smoothing error and uncertainties due to Rayleigh extinction, ozone absorption, the lidar constant, nonlinearity in the counting system, variation of the Rayleigh-scatter cross section with altitude, pressure, acceleration due to gravity and the variation of mean molecular mass with altitude. The vertical resolution of the temperature profile is found at each height, and a quantitative determination is made of the maximum height to which the retrieval is valid. A single temperature profile can be retrieved from measurements with multiple channels that cover different height ranges, vertical resolutions and even different detection methods. The OEM employed is shown to give robust estimates of temperature consistent with previous methods, while requiring minimal computational time. Retrieval of water vapour mixing ratio from vibrational Raman scattering lidar measurements is another example where an OEM offers a considerable advantage over the standard analysis technique, with the same advantages as discussed above for Rayleigh-scatter temperatures but with an additional benefit. The conversion of the lidar measurement into mixing ratio requires a calibration constant to be employed. Using OEM the calibration

  16. Retrieval of Temperature and Water Vapour From Multiple Channel Lidar Systems Using an Optimal Estimation Method

    NASA Astrophysics Data System (ADS)

    Sica, Robert; Haefele, Alexander

    2015-04-01

    While the application of optimal estimation methods (OEMs) is well-known for the retrieval of atmospheric parameters from passive instruments, active instruments have typically not employed the OEM. For instance, the measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for these temperatures have several shortcomings which can be overcome using an OEM. Forward models have been constructed that fully characterize the measurement and allow the simultaneous retrieval of temperature, dead time and background. The OEM allows a full uncertainty budget to be obtained on a per profile basis that includes, in addition to the statistical uncertainties, the smoothing error and uncertainties due to Rayleigh extinction, ozone absorption, the lidar constant, nonlinearity in the counting system, variation of the Rayleigh-scatter cross section with altitude, pressure, acceleration due to gravity and the variation of mean molecular mass with altitude. The vertical resolution of the temperature profile is found at each height, and a quantitative determination is made of the maximum height to which the retrieval is valid. A single temperature profile can be retrieved from measurements with multiple channels that cover different height ranges, vertical resolutions and even different detection methods. The OEM employed is shown to give robust estimates of temperature consistent with previous methods, while requiring minimal computational time. Retrieval of water vapour mixing ratio from vibrational Raman scattering lidar measurements is another example where an OEM offers a considerable advantage over the standard analysis technique, with the same advantages as discussed above for Rayleigh-scatter temperatures but with an additional benefit. The conversion of the lidar measurement into mixing ratio requires a calibration constant to be employed. Using OEM the calibration

  17. Lidar Remote Sensing

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The laser radar, or lidar (for light detection and ranging) is an important tool for atmospheric studies. Lidar provides a unique and powerful method for unobtrusively profiling aerosols, wind, water vapor, temperature, and other atmospheric parameters. This brief overview of lidar remote sensing is focused on atmospheric applications involving pulsed lasers. The level of technical detail is aimed at the educated non-lidar expert and references are provided for further investigation of specific topics. The article is divided into three main sections. The first describes atmospheric scattering processes and the physics behind laser-atmosphere interactions. The second section highlights some of the primary lidar applications, with brief descriptions of each measurement capability. The third section describes the practical aspects of lidar operation, including the governing equation and operational considerations.

  18. Gating characteristics of photomultiplier tubes for Lidar applications

    NASA Technical Reports Server (NTRS)

    Barrick, J. D. W.

    1986-01-01

    A detector test facility was developed and applied in the evaluation and characterization of lidar detectors in support of the multipurpose airborne differential absorption lidar (DIAL) system based at the Langley Research Center (LaRC). A performance data base of various detector configurations available to the DIAL system was obtained for optimum lidar detector selection. Photomultiplier tubes (PMT's) with multialkaline and bialkaline photocathodes were evaluated in voltage-divider networks (bases) by using either the focusing electrode or dynodes as a gating mechanism. Characteristics used for detector evaluation included gain stability, signal rise time, and the ability to block unwanted high light levels.

  19. Retrieval of Temperature From a Multiple Channel Rayleigh-Scatter Lidar Using an Optimal Estimation Method

    NASA Astrophysics Data System (ADS)

    Sica, R. J.; Haefele, A.

    2014-12-01

    The measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for these temperature have several shortcoming which can be overcome using an optimal estimation method (OEM). OEMs are applied to the retrieval of temperature from Rayleigh-scatter lidar measurements using both single and multiple channel measurements. Forward models are presented that completely characterize the measurement and allow the simultaneous retrieval of temperature, dead time and background. The method allows a full uncertainty budget to be obtained on a per profile basis that includes, in addition to the statistical uncertainties, the smoothing error and uncertainties due to Rayleigh extinction, ozone absorption, the lidar constant, nonlinearity in the counting system, variation of the Rayleigh-scatter cross section with altitude, pressure, acceleration due to gravity and the variation of mean molecular mass with altitude. The vertical resolution of the temperature profile is found at each height, and a quantitative determination is made of the maximum height to which the retrieval is valid. A single temperature profile can be retrieved from measurements with multiple channels that cover different height ranges, vertical resolutions and even different detection methods. The OEM employed is shown to give robust estimates of temperature consistent with previous methods, while requiring minimal computational time. This demonstrated success of lidar temperature retrievals using an OEM opens new possibilities in atmospheric science for measurement integration between active and passive remote sensing instruments. We are currently working on extending our method to simultaneously retrieve water vapour and temperature using Raman-scatter lidar measurements.

  20. Filter algorithm for airborne LIDAR data

    NASA Astrophysics Data System (ADS)

    Li, Qi; Ma, Hongchao; Wu, Jianwei; Tian, Liqiao; Qiu, Feng

    2007-11-01

    Airborne laser scanning data has become an accepted data source for highly automated acquisition of digital surface models(DSM) as well as for the generation of digital terrain models(DTM). To generate a high quality DTM using LIDAR data, 3D off-terrain points have to be separated from terrain points. Even though most LIDAR system can measure "last-return" data points, these "last-return" point often measure ground clutter like shrubbery, cars, buildings, and the canopy of dense foliage. Consequently, raw LIDAR points must be post-processed to remove these undesirable returns. The degree to which this post processing is successful is critical in determining whether LIDAR is cost effective for large-scale mapping application. Various techniques have been proposed to extract the ground surface from airborne LIDAR data. The basic problem is the separation of terrain points from off-terrain points which are both recorded by the LIDAR sensor. In this paper a new method, combination of morphological filtering and TIN densification, is proposed to separate 3D off-terrain points.

  1. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements.

    PubMed

    Pal, Sandip

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features.

  2. Lidar Calibration Centre

    NASA Astrophysics Data System (ADS)

    Pappalardo, Gelsomina; Freudenthaler, Volker; Nicolae, Doina; Mona, Lucia; Belegante, Livio; D'Amico, Giuseppe

    2016-06-01

    This paper presents the newly established Lidar Calibration Centre, a distributed infrastructure in Europe, whose goal is to offer services for complete characterization and calibration of lidars and ceilometers. Mobile reference lidars, laboratories for testing and characterization of optics and electronics, facilities for inspection and debugging of instruments, as well as for training in good practices are open to users from the scientific community, operational services and private sector. The Lidar Calibration Centre offers support for trans-national access through the EC HORIZON2020 project ACTRIS-2.

  3. Linear LIDAR versus Geiger-mode LIDAR: impact on data properties and data quality

    NASA Astrophysics Data System (ADS)

    Ullrich, A.; Pfennigbauer, M.

    2016-05-01

    LIDAR has become the inevitable technology to provide accurate 3D data fast and reliably even in adverse measurement situations and harsh environments. It provides highly accurate point clouds with a significant number of additional valuable attributes per point. LIDAR systems based on Geiger-mode avalanche photo diode arrays, also called single photon avalanche photo diode arrays, earlier employed for military applications, now seek to enter the commercial market of 3D data acquisition, advertising higher point acquisition speeds from longer ranges compared to conventional techniques. Publications pointing out the advantages of these new systems refer to the other category of LIDAR as "linear LIDAR", as the prime receiver element for detecting the laser echo pulses - avalanche photo diodes - are used in a linear mode of operation. We analyze the differences between the two LIDAR technologies and the fundamental differences in the data they provide. The limitations imposed by physics on both approaches to LIDAR are also addressed and advantages of linear LIDAR over the photon counting approach are discussed.

  4. An efficient and accurate technique to compute the absorption, emission, and transmission of radiation by the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee; Ackerman, Thomas P.; Pollack, James B.

    1990-01-01

    CO2 comprises 95 pct. of the composition of the Martian atmosphere. However, the Martian atmosphere also has a high aerosol content. Dust particles vary from less than 0.2 to greater than 3.0. CO2 is an active absorber and emitter in near IR and IR wavelengths; the near IR absorption bands of CO2 provide significant heating of the atmosphere, and the 15 micron band provides rapid cooling. Including both CO2 and aerosol radiative transfer simultaneously in a model is difficult. Aerosol radiative transfer requires a multiple scattering code, while CO2 radiative transfer must deal with complex wavelength structure. As an alternative to the pure atmosphere treatment in most models which causes inaccuracies, a treatment was developed called the exponential sum or k distribution approximation. The chief advantage of the exponential sum approach is that the integration over k space of f(k) can be computed more quickly than the integration of k sub upsilon over frequency. The exponential sum approach is superior to the photon path distribution and emissivity techniques for dusty conditions. This study was the first application of the exponential sum approach to Martian conditions.

  5. Applications of the direct photon absorption technique for measuring bone mineral content in vivo. Determination of body composition in vivo

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.

    1972-01-01

    The bone mineral content, BMC, determined by monoenergetic photon absorption technique, of 29 different locations on the long bones and vertebral columns of 24 skeletons was measured. Compressive tests were made on bone from these locations in which the maximum load and maximum stress were measured. Also the ultimate strain, modulus of elasticity and energy absorbed to failure were determined for compact bone from the femoral diaphysis and cancellous bone from the eighth through eleventh thoracic vertebrae. Correlations and predictive relationships between these parameters were examined to investigate the applicability of using the BMC at sites normally measured in vivo, i.e. radius and ulna in estimating the BMC and/or strength of the spine or femoral neck. It was found that the BMC at sites on the same bone were highly correlated r = 0.95 or better; the BMC at sites on different bones were also highly interrelated, r = 0.85. The BMC at various sites on the long bones could be estimated to between 10 and 15 per cent from the BMC of sites on the radius or ulna.

  6. Standardization and validation of a new atomic absorption spectroscopy technique for determination and quantitation of aluminium adjuvant in immunobiologicals.

    PubMed

    Mishra, Arti; Bhalla, Sumir Rai; Rawat, Sameera; Bansal, Vivek; Sehgal, Rakesh; Kumar, Sunil

    2007-10-01

    In the present study, Aluminium quantification in immunobiologicals has been described using atomic absorption spectroscopy (AAS) technique. The assay was found to be linear in 25-125 microg/ml Aluminium range. The procedure was found to be accurate for different vaccines with recoveries of external additions ranging between 93.26 and 103.41%. The mean Limit of Variation (L.V.) for both intra- and inter-assay precision was calculated to be 1.62 and 2.22%, respectively. Further the procedure was found to be robust in relation to digestion temperature, alteration in acid (HNO(3) and H(2)SO(4)) ratio used for sample digestion and storage of digested vaccine samples up to a period of 15 days. After validation, AAS method was compared for its equivalency with routinely used complexometric titration method. On simultaneously applying on seven different groups of both bacterial and viral vaccines, viz., DPT, DT, TT, Hepatitis-A and B, Antirabies vaccine (cell culture) and tetravalent DPT-Hib, a high degree of positive correlation (+0.85-0.998) among AAS and titration methods was observed. Further AAS method was found to have an edge over complexometric titration method that a group of vaccines, viz., ARV (cell culture, adsorbed) and Hepatitis-A, in which Aluminium estimation is not feasible by pharmacopoeial approved complexometric titration method (possibly due to some interference in the sample matrix), this newly described and validated AAS assay procedure delivered accurate and reproducible results.

  7. Comparative measurements of stratospheric particulate content by aircraft and ground-based lidar. [aerosol sampling and scattering data analysis

    NASA Technical Reports Server (NTRS)

    Viezee, W.; Russell, P. B.; Hake, R. D., Jr.

    1974-01-01

    The matching method of lidar data analysis is explained, and the results from two flights studying the stratospheric aerosol using lidar techniques are summarized and interpreted. Support is lent to the matching method of lidar data analysis by the results, but it is not yet apparent that the analysis technique leads to acceptable results on all nights in all seasons.

  8. Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range.

    PubMed

    Leidinger, M; Fieberg, S; Waasem, N; Kühnemann, F; Buse, K; Breunig, I

    2015-08-24

    We employ three highly sensitive spectrometers: a photoacoustic spectrometer, a photothermal common-path interferometer and a whispering-gallery-resonator-based absorption spectrometer, for a comparative study of measuring the absorption coefficient of nominally transparent undoped, congruently grown lithium niobate for ordinarily and extraordinarily polarized light in the wavelength range from 390 to 3800 nm. The absorption coefficient ranges from below 10(-4) cm(-1) up to 2 cm(-1). Furthermore, we measure the absorption at the Urbach tail as well as the multiphonon edge of the material by a standard grating spectrometer and a Fourier-transform infrared spectrometer, providing for the first time an absorption spectrum of the whole transparency window of lithium niobate. The absorption coefficients obtained by the three highly sensitive and independent methods show good agreement.

  9. An overtone CO laser application for lidar measurements of profiles of atmospheric meteorological parameters

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Kharchenko, O. V.; Yakovlev, S. V.

    2014-11-01

    Possibilities of using an overtone CO laser in the mid-IR range for lidar measurements of air humidity and temperature profiles by the differential absorption method have been studied. Wavelengths for lidar measurements of meteorological parameters are selected. Spatial and spectrally resolved lidar signals, as well as random errors of retrieval of profiles of the atmospheric meteorological parameters, have been calculated using the wavelengths.

  10. Pulsed Compression for Aerosol Ranging with Coherent Pulse-Doppler Lidar Systems

    DTIC Science & Technology

    1990-12-01

    as well as conventional Doppler radar hard-target applications. Accord- ing to Menzies and Hardesty , the accuracy of Doppler lidar velocity...density expressed in Equation (80). As Hardesty and Menzies explain, if a lidar of a single carrier frequency f illuminates a volume of dense, randomly...ham, WA: SPIE, 1988. 14. Hardesty , Michael R. Measurement of Range-Resolved Water Vapor Concentra- tion by Coherent C0 2 Differential Absorption Lidar

  11. LIDAR, Point Clouds, and their Archaeological Applications

    SciTech Connect

    White, Devin A

    2013-01-01

    It is common in contemporary archaeological literature, in papers at archaeological conferences, and in grant proposals to see heritage professionals use the term LIDAR to refer to high spatial resolution digital elevation models and the technology used to produce them. The goal of this chapter is to break that association and introduce archaeologists to the world of point clouds, in which LIDAR is only one member of a larger family of techniques to obtain, visualize, and analyze three-dimensional measurements of archaeological features. After describing how point clouds are constructed, there is a brief discussion on the currently available software and analytical techniques designed to make sense of them.

  12. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    ERIC Educational Resources Information Center

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  13. Lidar point density analysis: implications for identifying water bodies

    USGS Publications Warehouse

    Worstell, Bruce B.; Poppenga, Sandra; Evans, Gayla A.; Prince, Sandra

    2014-01-01

    Most airborne topographic light detection and ranging (lidar) systems operate within the near-infrared spectrum. Laser pulses from these systems frequently are absorbed by water and therefore do not generate reflected returns on water bodies in the resulting void regions within the lidar point cloud. Thus, an analysis of lidar voids has implications for identifying water bodies. Data analysis techniques to detect reduced lidar return densities were evaluated for test sites in Blackhawk County, Iowa, and Beltrami County, Minnesota, to delineate contiguous areas that have few or no lidar returns. Results from this study indicated a 5-meter radius moving window with fewer than 23 returns (28 percent of the moving window) was sufficient for delineating void regions. Techniques to provide elevation values for void regions to flatten water features and to force channel flow in the downstream direction also are presented.

  14. Reliability of a new technique for the determination of vitamin B12 absorption in children: single stool sample test--a double isotope technique

    SciTech Connect

    Hjelt, K.

    1986-03-01

    The fractional vitamin B12 absorption (FAB12) was determined in 39 patients with various gastrointestinal diseases by a double-isotope technique, employing a single stool sample test (SSST), as well as a complete stool collection. The age of the patients ranged from 2.5 months to 16.2 years (mean 5.0 years). The test dose was administered orally and consisted of 0.5-4.5 micrograms of /sup 57/CoB12 (approximately 0.05 microCi), carmine powder, and 2 mg /sup 51/CrCl/sub 3/ (approximately 1.25 microCi) as the inabsorbable tracer. The wholebody radiation to a 1-year-old child averaged only 20 mrad. The stool and napkin was collected and homogenized by addition of 300 ml chromium sulfuric acid. A 300-ml sample of the homogenized stool and napkin, as well as 300 ml chromium sulfuric acid (75% v/v) containing the standards, were counted in a broad-based well counter. The FAB12 determined by SSST employing the stool with the highest content of /sup 51/Cr (which corresponded to the most carmine-colored stool) correlated closely to the FAB12 based on complete stool collection (r = 0.98, n = 39, p less than 0.001). The reproducibility of FAB12 determined by SSST was assessed from double assays in 19 patients. For a mean value of 12%, the SD was 3%, which corresponded to a coefficient of variation (CV) of 25%. The excretion of /sup 57/Co and /sup 51/Cr in the urine was examined in six patients with moderate to severe mucosal damage and was found to be low.

  15. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  16. Raman-Augmented Stratospheric-Ozone Lidar

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. Stuart

    1994-01-01

    Differential-absorption lidar (DIAL) system measures concentration of ozone in stratosphere augmented with subsystem measuring Raman scattering from nitrogen. One of number of DIAL systems used in long-term monitoring of stratospheric ozone. Raman scattering from nitrogen provides data to correct for effects of aerosols. Channels at wavelengths of 332 and 385 nm added to DIAL receiver to measure Raman backscattering from nitrogen molecules in stratosphere. Data-acquisition electronics sample photon counts at a rate of 250 MHz.

  17. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; Veselovskii, Igor; Forno, Ricardo; Mielke, Bernd; Stein, Bernhard; Leblanc, Thierry; McDermid, Stuart; Voemel, Holger

    2010-01-01

    -II measurements, along with numerical simulation, were used to determine that the likely reason for the suboptimal airborne aerosol extinction performance during theWAVES_2007 campaign was amisaligned interference filter. With full laser power and a properly tuned interference filter,RASL is shown to be capable ofmeasuring themain water vapor and aerosol parameters with temporal resolutions of between 2 and 45 s and spatial resolutions ranging from 30 to 330 m from a flight altitude of 8 km with precision of generally less than 10%, providing performance that is competitive with some airborne Differential Absorption Lidar (DIAL) water vapor and High Spectral Resolution Lidar (HSRL) aerosol instruments. The use of diode-pumped laser technology would improve the performance of an airborne Raman lidar and permit additional instrumentation to be carried on board a small research aircraft. The combined airborne and ground-based measurements presented here demonstrate a level of versatility in Raman lidar that may be impossible to duplicate with any other single lidar technique.

  18. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2015-01-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new 2-miron pulsed IPDA lidar has been flown in spring of 2014 for total ten flights with 27 flight hours. It provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  19. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2016-06-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new instrument has been flown in spring of 2014 for a total of ten flights with 27 flight hours. This IPDA lidar provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the results.

  20. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  1. LIDAR data compression using wavelets

    NASA Astrophysics Data System (ADS)

    Pradhan, B.; Mansor, Shattri; Ramli, Abdul Rahman; Mohamed Sharif, Abdul Rashid B.; Sandeep, K.

    2005-10-01

    The lifting scheme has been found to be a flexible method for constructing scalar wavelets with desirable properties. In this paper, it is extended to the LIDAR data compression. A newly developed data compression approach to approximate the LIDAR surface with a series of non-overlapping triangles has been presented. Generally a Triangulated Irregular Networks (TIN) are the most common form of digital surface model that consists of elevation values with x, y coordinates that make up triangles. But over the years the TIN data representation has become a case in point for many researchers due its large data size. Compression of TIN is needed for efficient management of large data and good surface visualization. This approach covers following steps: First, by using a Delaunay triangulation, an efficient algorithm is developed to generate TIN, which forms the terrain from an arbitrary set of data. A new interpolation wavelet filter for TIN has been applied in two steps, namely splitting and elevation. In the splitting step, a triangle has been divided into several sub-triangles and the elevation step has been used to 'modify' the point values (point coordinates for geometry) after the splitting. Then, this data set is compressed at the desired locations by using second generation wavelets. The quality of geographical surface representation after using proposed technique is compared with the original LIDAR data. The results show that this method can be used for significant reduction of data set.

  2. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  3. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    NASA Astrophysics Data System (ADS)

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-06-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2- (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2- species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2-, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples.

  4. Requirements For Lidar Aerosol and Ozone Measurements

    NASA Astrophysics Data System (ADS)

    Frey, S.; Woeste, L.

    Laser remote sensing is the preferable method, when spatial-temporal resolved data is required. Data from stationary laser remote sensing devices at the earth surface give a very good impression about daily, annual and in general time trends of a measurand and can be compared sometimes to airborne instruments to get a direct link between optical and other methods. Space borne measurements on the other hand are the only possibility for obtaining as much data, as modeller wish to have to initialise, compare or validate there computation. But in this case it is very difficult to get the input in- formation, which is necessary for good quantitative analysis as well as to find points for comparison. In outer space and other harsh field environments only the simplest and most robust equipment for the respective purpose should be applied, to ensure a long-term stable operation. The first question is: what do we have to know about the properties of the atmosphere to get reliable data from instruments, which are just simple enough?, and secondly: how to set-up the instruments? Even for the evaluation of backscatter coefficients a density profile and the so-called Lidar-ratio, the ratio of backscatter to total volume scatter intensity, is necessary. Raman Lidar is a possibility to handle this problem by measuring aerosol extinction profiles. But again a density profile and in addition a guess about the wavelength dependence of the aerosol extinc- tion between the Raman and laser wavelength are required. Unfortunately the tech- nique for Raman measurements is much more sensible and less suited for space borne measurements, because of the much smaller back scatter cross sections and the result- ing weak signals. It becomes worth, when we will have to maintain special laser with colours at molecular absorption bands in outer space, to measure gas concentration. I want to present simulation of optical systems for laser remote sensing, experimental experiences and compare air

  5. A lidar system for measuring atmospheric pressure and temperature profiles

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey

    1987-01-01

    The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.

  6. Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation.

    PubMed

    Sun, Xiaoli; Abshire, James B

    2012-09-10

    We use theoretical models to compare the receiver signal to noise ratio (SNR) vs. average rate of detected signal photons for an integrated path differential absorption (IPDA) lidar using coherent detection with continuous wave (CW) lasers and direct detection with sine-wave and pulse modulations. The results show the coherent IPDA lidar has high receiver gain and narrow bandwidth to overcome the effects of detector circuit noise and background light, but the actual receiver performance can be limited by the coherent mixing efficiency, speckle and other factors. For direct detection, using sine-wave modulation allows the use of a low peak power laser transmitter and synchronous detection. The pulse modulation technique requires higher laser peak powers but is more efficient than sine-wave modulation in terms of average detected signal photon rate required to achieve a given receiver SNR. We also conducted experiments for the direct detection cases and the results agreed well with theory.

  7. Airborne sodium lidar measurements of gravity wave intrinsic parameters

    NASA Astrophysics Data System (ADS)

    Kwon, Kang H.; Gardner, Chester S.

    1990-11-01

    A data analysis technique for determining gravity wave intrinsic parameters including wave propagation direction is described. The technique involves measuring the altitude variations of the wave-induced density perturbations of the atmospheric Na layer. This technique can be used with airborne lidars, multiple ground-based lidars, and steerable lidars. In this paper the technique is applied to airborne Na lidar data obtained during a round-trip flight from Denver, Colorado, to the Pacific Coast in November 1986. During the flight, strong wave perturbations were observed in the Na layer near the Pacific coast over a horizontal distance of nearly 700 km. The intrinsic horizontal wavelength of this wave was estimated to be about 85 km, and the vertical wavelength was 4.1 km. The intrinsic period was about 102 min, and the propagation direction was almost due south.

  8. Correction scheme for close-range lidar returns.

    PubMed

    Biavati, Gionata; Di Donfrancesco, Guido; Cairo, Francesco; Feist, Dietrich G

    2011-10-20

    Because of the effect of defocusing and incomplete overlap between the laser beam and the receiver field of view, elastic lidar systems are unable to fully capture the close-range backscatter signal. Here we propose a method to empirically estimate and correct such effects, allowing to retrieve the lidar signal in the region of incomplete overlap. The technique is straightforward to implement. It produces an optimized numerical correction by the use of a simple geometrical model of the optical apparatus and the analysis of two lidar acquisitions taken at different elevation angles. Examples of synthetic and experimental data are shown to demonstrate the validity of the technique.

  9. Excitonic emission and absorption resonances in V0.25W0.75Se2 single crystals grown by direct vapour transport technique

    NASA Astrophysics Data System (ADS)

    Solanki, G. K.; Pataniya, Pratik; Sumesh, C. K.; Patel, K. D.; Pathak, V. M.

    2016-05-01

    A systematic study on emission and absorption spectra of vanadium mixed tungsten diselenide single crystals grown by direct vapour transport (DVT) technique is reported. The grown crystals were characterized by energy dispersive analysis of X-ray (EDAX), which gives the confirmation about the stoichiometry. The structural characterizations were accomplished by X-ray diffraction (XRD), surface morphology and transmission electron microscopy (TEM). These characterizations were indicating the growth of V0.25W0.75Se2 single crystal from vapour phase. The optical response of this material has been observed by combination of UV-vis-NIR spectroscopy and photo luminescence (PL) spectroscopy. A detailed study of excitonic emission and absorption resonances was carried out on grown crystals. The energy band gap was calculated for indirect allowed transition with absorbed and emitted phonon. Additionally, absorption tail for grown crystal is found to obey the Urbach's rule.

  10. Forest Biomass retrieval strategies from Lidar and Radar modeling

    NASA Astrophysics Data System (ADS)

    Sun, G.; Ranson, J.

    2008-12-01

    Estimates of regional and global forest biomass and forest structure are essential for understanding and monitoring ecosystem responses to human activities and climate change. Lidars with capabilities of recording the time-varying return signals provide vegetation height, ground surface height, and vertical distribution of vegetated surfaces intercepted by laser pulses. Large footprint lidar has been shown to be an effective technique for measuring forest canopy height, and biomass from space. Essentially, radar responds to the amount of water in a forest canopy, as well as its spatial structure. Data from these sensors contain information relevant to different aspects of the biophysical properties of the vegetation canopy including above ground biomass. The planned NASA new mission DESDynI will provide global systematic lidar sampling data and complete global coverage of L-band high resolution SAR and InSAR data for vegetation 3D structure mapping. By combining lidar and high-resolution SAR data, our quantitative knowledge of global carbon dynamics and ecosystem structure and function can be improved. This requires some new data processing and fusion technologies. What is the proper lidar sampling design and how to expand the vegetation spatial structural parameters estimated at lidar footprints to global spatial coverage in high resolution need to be resolved. Current configuration of DESDynI may also require lidar observations with variable looking angles, which creates a new challenge in lidar data processing. Models designed to simulate lidar and radar response from a variety of forest canopies can help answer these questions. In this paper we present an overview of our spatially explicit lidar and radar models and their use for examining the questions above. Specifically we will discuss sensitivities of large-footprint lidar and L-band polarimetric and interferometric radar to forest

  11. Double-Pulsed 2-Micrometer Lidar Validation for Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Yu, Jirong; Petros, Mulugeta; Remus, Ruben

    2015-01-01

    A double-pulsed, 2-micron Integrated Path Differential Absorption (IPDA) lidar instrument for atmospheric carbon dioxide (CO2) measurements is successfully developed at NASA Langley Research Center (LaRC). Based on direct detection technique, the instrument can be operated on ground or onboard a small aircraft. Key features of this compact, rugged and reliable IPDA lidar includes high transmitted laser energy, wavelength tuning, switching and locking, and sensitive detection. As a proof of concept, the IPDA ground and airborne CO2 measurement and validation will be presented. IPDA lidar CO2 measurements ground validation were conducted at NASA LaRC using hard targets and a calibrated in-situ sensor. Airborne validation, conducted onboard the NASA B-200 aircraft, included CO2 plum detection from power stations incinerators, comparison to in-flight CO2 in-situ sensor and comparison to air sampling at different altitude conducted by NOAA at the same site. Airborne measurements, spanning for 20 hours, were obtained from different target conditions. Ground targets included soil, vegetation, sand, snow and ocean. In addition, cloud slicing was examined over the ocean. These flight validations were conducted at different altitudes, up to 7 km, with different wavelength controlled weighing functions. CO2 measurement results agree with modeling conducted through the different sensors, as will be discussed.

  12. Retrieval of Cirrus Cloud Radiative and Backscattering Properties Using Combined Lidar and Infrared Radiometer (LIRAD) Measurements

    SciTech Connect

    Comstock, Jennifer M.; Sassen, Kenneth

    2001-10-01

    A method for retrieval of cirrus macrophysical and radiative properties using combined ruby lidar and infrared radiometer measurements is explained in detail. The retrieval algorithm includes estimation of a variable backscatter-to-extinction ratio for each lidar profile, which accounts for changes in cloud microphysical properties with time. The technique also utilizes a correlated K distribution radiative transfer model,where absorption coefficients K have been tabulated specifically for the bandwidth and filter function of the infrared radiometer. The radiative transfer model allows for estimation of infrared emission due to atmospheric water vapor,ozone,and carbon dioxide, which is essential for deriving cirrus radiative properties. Also described is an improved technique for estimation of upwelling IR radiation that is emitted by the surface of the earth and reflected by the cloud into the radiometer field-of-view. Derived cirrus cloud properties include base and top height and temperature, visible optical depth, emittance, backscatter-to-extinction ratio, and extinction-to-absorption ratio. The purpose of this algorithm is to facilitate the analysis of the extensive high-cloud dataset obtained at the University of Utah, Facility for Atmospheric Remote Sensing in Salt Lake City, UT. To illustrate the method, a cirrus case study is presented.

  13. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  14. Influence of Ga doping ratio on the saturable absorption mechanism in Ga doped ZnO thin solid films processed by sol–gel spin coating technique

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.; Byrappa, K.

    2017-03-01

    In the present study, the nonlinear optical properties of sol–gel spin coated gallium doped zinc oxide (GZO) thin solid films are explored with nanosecond laser pulses using the z-scan technique. The higher doping ratios of Ga result in a large redshift of the energy gap (0.38 eV) due to the existence of enhanced grain boundary defects in GZO films. A positive nonlinear absorption coefficient is observed in undoped 1 at.wt.% GZO and 2 at.wt.% GZO films, and a negative nonlinear absorption coefficient in 3 at.wt.% GZO film. Fewer defects in undoped 1% GZO and 2% GZO films resulted in reverse saturable absorption (RSA), whereas a saturable absorption (SA) mechanism is observed in 3% GZO films and is attributed to the enhanced defect concentration in the band structure of GZO. However, all the films showed a self-defocusing mechanism, derived by a closed aperture z-scan technique. The present work sheds light on the defect mechanism involved in the observed nonlinear properties of GZO films.

  15. Performance of a Space-based Methane Lidar

    NASA Astrophysics Data System (ADS)

    Kiemle, Christoph; Ehret, Gerhard; Flamant, Pierre; Kawa, Randy; Browell, Ed

    2014-05-01

    Future space-based lidar measurements of anthropogenic greenhouse gases are expected to close observational gaps particularly over remote, polar, and aerosol-contaminated regions where in-situ and passive remote sensing observation techniques have difficulties. Recently, a "Methane Remote Lidar Mission" (MERLIN) was proposed by DLR and CNES in the frame of a German-French climate monitoring initiative. The goal is to measure atmospheric methane at high precision and unprecedented accuracy sufficient to constrain the various surface sources significantly better than with the current observational network. The MERLIN mission will have a minimum operational lifetime of 3 years. It is currently in Phase B, in which all mission components are planned in detail. Launch is foreseen in 2017. The MERLIN data will primarily be supplied to inverse numerical models that use the globally observed concentration gradients to infer methane surface fluxes. Simulations with an instrument model are used to assess the performance of this mission in terms of random error (measurement precision) with the help of MODIS and CALIPSO satellite observations of earth surface albedo and atmospheric optical depth, respectively. These are key environmental state parameters for integrated path differential absorption (IPDA) lidar which uses the surface backscatter to measure the atmospheric methane column beneath the satellite. Our results show that a lidar with an average optical power of 0.45 W at 1.6 µm wavelength and a telescope diameter of 0.55 m, installed on a low earth orbit platform (506 km), will measure methane columns at precisions of 1.2 %, 1.7 % and 2.1 % over land, water, and snow or ice surfaces, respectively. This applies to monthly aggregated measurement samples within areas of 50x50 km², and approaches the requirements that had been formulated by future users of the data in order to meet the abovementioned goal. Globally, the mean precision for the simulated year 2007 is 1

  16. Raman lidar/AERI PBL Height Product

    DOE Data Explorer

    Ferrare, Richard

    2012-12-14

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  17. Langley Mobile Ozone Lidar (LMOL) results from the Denver, CO DISCOVER-AQ campaign

    NASA Astrophysics Data System (ADS)

    De Young, Russell; Carrion, William; Pliutau, Denis; Ganoe, Rene

    2015-10-01

    The Langley Mobile Ozone Lidar (LMOL) is a compact mobile differential absorption lidar (DIAL) system that was developed at NASA Langley Research Center, Hampton, VA, USA to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric air quality campaigns. This lidar is part of the Tropospheric Ozone Lidar Network (TOLNet) currently made up of six other ozone lidars across the U.S and Canada. This lidar has been deployed to Denver, CO July 15-August 15, 2014 for the DISCOVER-AQ air quality campaign. Ozone and aerosol profiles were taken showing the influence of emissions from the Denver region. Results of ozone concentration, aerosol scattering ratio, boundary layer height and clouds will be presented with emphasis on regional air quality.

  18. Phoenix Lidar Operation Animation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of the Canadian-built meteorological station's lidar, which was successfully activated on Sol 2. The animation shows how the lidar is activated by first opening its dust cover, then emitting rapid pulses of light (resembling a brilliant green laser) into the Martian atmosphere. Some of the light then bounces off particles in the atmosphere, and is reflected back down to the lidar's telescope. This allows the lidar to detect dust, clouds and fog.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Aerosol lidar ``M4``

    SciTech Connect

    Shelevoy, C.D.; Andreev, Y.M. |

    1994-12-31

    Small carrying aerosol lidar in which is used small copper vapor laser ``Malachite`` as source of sounding optical pulses is described. The advantages of metal vapor laser and photon counting mode in acquisition system of lidar gave ability to get record results: when lidar has dimensions (1 x .6 x .3 m) and weight (65 kg), it provides the sounding of air industrial pollutions at up to 20 km range in scanning sector 90{degree}. Power feed is less than 800 Wt. Lidar can be disposed as stationary so on the car, helicopter, light plane. Results of location of smoke tails and city smog in situ experiments are cited. Showed advantages of work of acquisition system in photon counting mode when dynamic range of a signal is up to six orders.

  20. Software system for simulation IPDA lidar sensing from space platform

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Sukhanov, A. Ya.

    2014-11-01

    High measurement sensitivity of troposphere CO2 and CH4 is expected from using of integrated path differential absorption (IPDA) lidar, where the strong lidar echoes on two wavelengths from cloud tops or the Earth's take place. We consider a software system for the radiation transport simulation in the atmosphere by Monte-Carlo method that applied in the greenhouse gas (CH4 and CO2) sensing space-based IPDA-lidar. This software is used to evaluate the accuracy of measurement of the green house gas concentration. The paper investigates the impact of multiple scattering in presence of clouds. So multiple scattering can influence on signal power, but differential absorption method eliminates this drawback.

  1. Characterization of the Spatial Distributions and Optical Properties of Smoke Using Lidar Observations during SEAC4RS

    NASA Astrophysics Data System (ADS)

    Hair, J. W.; Ferrare, R. A.; Butler, C. F.; Fenn, M. A.; Burton, S. P.; Scarino, A. J.; Notari, A.; Collins, J. E., Jr.; Nehrir, A. R.; Ismail, S.; Hu, Y.; Hostetler, C. A.

    2014-12-01

    The NASA Langley Research Center airborne combined Differential Absorption Lidar - High Spectral Resolution Lidar (DIAL/HSRL) characterized ozone and aerosol distributions while deployed on the NASA DC-8 during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) airborne field campaign. In addition to measuring ozone concentrations throughout the troposphere and lower stratosphere, this advanced lidar system simultaneously measures aerosol extinction and aerosol optical thickness (AOT) at 532 nm via the HSRL technique, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm in both nadir and zenith directions. The DIAL/HSRL measurements of lidar ratio (i.e., the ratio of extinction and backscatter), aerosol depolarization ratio, backscatter color ratio, and spectral depolarization ratio (i.e., the ratio of aerosol depolarization at the two wavelengths) provide information about the aerosol physical properties and so are combined to infer aerosol type. Aerosol extinction and optical thickness are apportioned to these aerosol types. Smoke from biomass burning is identified by the lidar data and the optical parameters along with the vertical and horizontal distributions are presented from the SEAC4RS campaigns. Mixed Layer (ML) heights, which are often good proxies for daytime Planetary Boundary Layer (PBL) heights, are derived along the aircraft track by locating strong gradients in the aerosol backscatter profiles. The DIAL/HSRL measurements are used to determine the fraction of AOT due to smoke within and above the ML. In addition, the DIAL/HSRL measurements from the research flight on August 6, 2013 are used to quantify and characterize smoke above uniform stratus clouds.

  2. Lidar Technology at the Goddard Laser and Electro-Optics Branch

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    Discovery-class orbiters now in the NASA planetary program. The purpose of the lidar is to continuously profile the water vapor and dust in the Mars atmosphere from orbit in order to quantify its dynamics, their relationship in the diurnal cycles, and to infer water vapor exchange with the Mars surface. To remotely measure the water-vapor height profiles, we will use the differential absorption lidar (DIAL) technique. We are also developing a laser sensor for measuring the total column content of CO2 in the atmosphere of the earth. CO2 is the principal greenhouse gas and has increased by roughly 80 ppm in the last century and a half. We will report our efforts in the development of the laser transmitter and photon counting detector components for a Mars Orbiting DIAL system and for the CO2 sounder.

  3. Study of atmospheric aerosols and mixing layer by LIDAR.

    PubMed

    Angelini, Federico; Barnaba, Francesca; Landi, Tony Christian; Caporaso, Luca; Gobbi, Gian Paolo

    2009-12-01

    The LIDAR (laser radar) is an active remote sensing technique, which allows for the altitude-resolved observation of several atmospheric constituents. A typical application is the measurement of the vertically resolved aerosol optical properties. By using aerosol particles as a marker, continuous determination of the mixing layer height (MLH) can also be obtained by LIDAR. Some examples of aerosol extinction coefficient profiles and MLH extracted from a 1-year LIDAR data set collected in Milan (Italy) are discussed and validated against in situ data (from a balloon-borne optical particle counter). Finally a comparison of the observation-based MLH with relevant numerical simulations (mesoscale model MM5) is provided.

  4. The Zugspitze Raman Lidar: System Testing

    NASA Astrophysics Data System (ADS)

    Höveler, Katharina; Klanner, Lisa; Trickl, Thomas; Vogelmann, Hannes

    2016-06-01

    A high-power Raman lidar system has been installed at the high-altitude research station Schneefernerhaus (Garmisch-Partenkirchen, Germany) at 2675 m a.s.l., at the side of the existing wide-range differrential-absorption lidar. An industrial XeCl laser was modified for polarized single-line operation at an average power of about 175 W. This high power and a 1.5-m-diameter receiver are expected to allow us to extend the operating range for water-vapour sounding to more than 25 km, at an accuracy level of the order of 10 %. In addition, temperature measurements in the free troposphere and to altitudes beyond 80 km are planned. The system is currently thoroughly tested and exhibits an excellent performance up to the lowermost stratosphere. We expect that results for higher altitudes can be presented at the meeting.

  5. Alexandrite laser source for atmospheric lidar measurements

    NASA Technical Reports Server (NTRS)

    Pelon, J.; Loth, C.; Flamant, P.; Megie, G.

    1986-01-01

    During the past years, there has been a marked increase in interest in the applications of vibronic solid state lasers to meteorology and atmospheric physics. Two airborne lidar programs are now under development in France. The differential absorption lidar (DIAL) method with vibronic solid state lasers is very attractive for water vapor, temperature and pressure measurements. Alexandrite laser and titanium-sapphire are both suitable for these applications. However, only alexandrite rods are commercially available. The requirements on the laser source for airborne dial applications are two fold: (1) a restriction on laser linewidth and a requirement on stability and tunability with a good spectral purity; and (2) a requirement on the time separation between the two pulses. These constraints are summarized.

  6. Characterization of a 16-Bit Digitizer for Lidar Data Acquisition

    NASA Technical Reports Server (NTRS)

    Williamson, Cynthia K.; DeYoung, Russell J.

    2000-01-01

    A 6-MHz 16-bit waveform digitizer was evaluated for use in atmospheric differential absorption lidar (DIAL) measurements of ozone. The digitizer noise characteristics were evaluated, and actual ozone DIAL atmospheric returns were digitized. This digitizer could replace computer-automated measurement and control (CAMAC)-based commercial digitizers and improve voltage accuracy.

  7. Resonance lamp absorption technique for simultaneous determination of the OH concentration and temperature at 10 spatial positions in combustion environments

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Gregory, Ray W.

    1994-01-01

    A rugged, easy to implement, line-of-sight absorption instrument which utilizes a low pressure water vapor microwave discharge cell as the light source, has been developed to make simultaneous measurements of the OH concentration and temperature at 10 spatial positions. The design, theory, and capability of the instrument are discussed. Results of the measurements obtained on a methane/air flat flame burner are compared with those obtained using a single-frequency, tunable dye laser system.

  8. Pulsed Lidar for Measurement of C02 Concentrations for the ASCENDS Mission - Update

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Sun, Xiaoli; Mao, Jianping; Weaver, Clark; Yu, Anthony; Chen, Jeffrey; Rodriquez, Michael; Kawa, S. Randy

    2011-01-01

    We have been developing a laser-based sounding technique for the remote measurement of the tropospheric CO2 concentrations from orbit for NASA is ASCENDS mission. The mission's goals are to provide measurements of tropospheric CO2 abundance with global-coverage, a few hundred km spatial and monthly temporal resolution. These are needed to better understand CO2 fluxes and the processes that regulate CO2 storage by the land and oceans. For the lIP, we are developing and demonstrating the lidar techniques and key lidar technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to demonstrate the key capabilities needed for a space lidar and mission approach for the ASCENDS mission. We use a pulsed lidar technique, which is much less sensitive to errors from cloud and atmospheric scattering and to noise from solar background. It allows continuous measurements of CO2 mixing ratio in the lower troposphere during day and night. Our approach uses the 1570nm CO2 band and a two-wavelength laser absorption spectrometer, which continuously measures at nadir from a circular polar orbit. It directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. It uses a pair of tunable laser transmitters, which allowing measurement of the extinction from a single selected CO2 absorption line in the 1570 nm band and from a line pair in the Oxygen A-band near 765 nm. These regions have temperature insensitive absorption lines are free from interference from other gases. The lasers pulse at 10KHz, use tunable diode seed lasers followed by laser amplifiers, and have MHz spectral widths. During the measurement the lasers are stepped across the selected lines at a kHz rate. The receiver uses a 1-m class telescope and photon sensitive detectors and measures the background light and energies of the laser echoes from the

  9. Energy Measurement Studies for CO2 Measurement with a Coherent Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Vanvalkenburg, Randal L.; Yu, Jirong; Singh, Upendra N.; Kavaya, Michael J.

    2010-01-01

    The accurate measurement of energy in the application of lidar system for CO2 measurement is critical. Different techniques of energy estimation in the online and offline pulses are investigated for post processing of lidar returns. The cornerstone of the techniques is the accurate estimation of the spectrum of lidar signal and background noise. Since the background noise is not the ideal white Gaussian noise, simple average level estimation of noise level is not well fit in the energy estimation of lidar signal and noise. A brief review of the methods is presented in this paper.

  10. Laser Energy Monitor for Double-Pulsed 2-Micrometer IPDA Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong; Singh, Upendra N.

    2014-01-01

    Integrated path differential absorption (IPDA) lidar is a remote sensing technique for monitoring different atmospheric species. The technique relies on wavelength differentiation between strong and weak absorbing features normalized to the transmitted energy. 2-micron double-pulsed IPDA lidar is best suited for atmospheric carbon dioxide measurements. In such case, the transmitter produces two successive laser pulses separated by short interval (200 microseconds), with low repetition rate (10Hz). Conventional laser energy monitors, based on thermal detectors, are suitable for low repetition rate single pulse lasers. Due to the short pulse interval in double-pulsed lasers, thermal energy monitors underestimate the total transmitted energy. This leads to measurement biases and errors in double-pulsed IPDA technique. The design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on a high-speed, extended range InGaAs pin quantum detectors suitable for separating the two pulse events. Pulse integration is applied for converting the detected pulse power into energy. Results are compared to a photo-electro-magnetic (PEM) detector for impulse response verification. Calibration included comparing the three detection technologies in single-pulsed mode, then comparing the pin and PEM detectors in double-pulsed mode. Energy monitor linearity will be addressed.

  11. Laser energy monitor for double-pulsed 2-μm IPDA lidar application

    NASA Astrophysics Data System (ADS)

    Refaat, Tamer F.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong; Singh, Upendra N.

    2014-10-01

    Integrated path differential absorption (IPDA) lidar is a remote sensing technique for monitoring different atmospheric species. The technique relies on wavelength differentiation between strong and weak absorbing features normalized to the transmitted energy. 2-μm double-pulsed IPDA lidar is best suited for atmospheric carbon dioxide measurements. In such case, the transmitter produces two successive laser pulses separated by short interval (200 μs), with low repetition rate (10Hz). Conventional laser energy monitors, based on thermal detectors, are suitable for low repetition rate single pulse lasers. Due to the short pulse interval in double-pulsed lasers, thermal energy monitors underestimate the total transmitted energy. This leads to measurement biases and errors in double-pulsed IPDA technique. The design and calibration of a 2-μm double-pulse laser energy monitor is presented. The design is based on a highspeed, extended range InGaAs pin quantum detectors suitable for separating the two pulse events. Pulse integration is applied for converting the detected pulse power into energy. Results are compared to a photo-electro-magnetic (PEM) detector for impulse response verification. Calibration included comparing the three detection technologies in singlepulsed mode, then comparing the pin and PEM detectors in double-pulsed mode. Energy monitor linearity will be addressed.

  12. Lidar Tracking of Multiple Fluorescent Tracers: Method and Field Test

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Willis, Ron J.

    1992-01-01

    Past research and applications have demonstrated the advantages and usefulness of lidar detection of a single fluorescent tracer to track air motions. Earlier researchers performed an analytical study that showed good potential for lidar discrimination and tracking of two or three different fluorescent tracers at the same time. The present paper summarizes the multiple fluorescent tracer method, discusses its expected advantages and problems, and describes our field test of this new technique.

  13. Raman lidar for the remote measurement of subsurface ocean parameters

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.; Caputo, B.

    1984-01-01

    The Raman lidar technique was developed for the remote measurement of temperature and salinity profiles. A temperature accuracy of 0.5 degrees Centigrade is attainable in a practical field system for depths of up to 3 diffuse attentuation lengths, which can be 100 meters or more in the open ocean. In this paper field test results are reviewed and performance specifications for typical Raman lidar systems are presented.

  14. Lidar performance analysis

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1994-01-01

    Section 1 details the theory used to build the lidar model, provides results of using the model to evaluate AEOLUS design instrument designs, and provides snapshots of the visual appearance of the coded model. Appendix A contains a Fortran program to calculate various forms of the refractive index structure function. This program was used to determine the refractive index structure function used in the main lidar simulation code. Appendix B contains a memo on the optimization of the lidar telescope geometry for a line-scan geometry. Appendix C contains the code for the main lidar simulation and brief instruction on running the code. Appendix D contains a Fortran code to calculate the maximum permissible exposure for the eye from the ANSI Z136.1-1992 eye safety standards. Appendix E contains a paper on the eye safety analysis of a space-based coherent lidar presented at the 7th Coherent Laser Radar Applications and Technology Conference, Paris, France, 19-23 July 1993.

  15. Standoff Stack Emissions Monitoring Using Short Range Lidar

    NASA Astrophysics Data System (ADS)

    Gravel, Jean-Francois Y.; Babin, Francois; Allard, Martin

    2016-06-01

    There are well documented methods for stack emissions monitoring. These are all based on stack sampling through sampling ports in well defined conditions. Once sampled, the molecules are quantified in instruments that often use optical techniques. Unfortunately sampling ports are not found on all stacks/ducts or the use of the sampling ports cannot be planned efficiently because of operational constraints or the emissions monitoring equipment cannot be driven to a remote stack/duct. Emissions monitoring using many of the same optical techniques, but at a standoff distance, through the atmosphere, using short range high spatial resolution lidar techniques was thus attempted. Standoff absorption and Raman will be discussed and results from a field campaign will be presented along with short descriptions of the apparatus. In the first phase of these tests, the molecules that were targeted were NO and O2. Spatially resolved optical measurements allow for standoff identification and quantification of molecules, much like the standardized methods, except for the fact that it is not done in the stack, but in the plume formed by the emissions from the stack. The pros and cons will also be discussed, and in particular the problem of mass emission estimates that require the knowledge of the flow rate and the distribution of molecular concentration in the plane of measurement.

  16. Lidar Observation of Ozone Profiles in the Equatorial Tropopause Region

    NASA Astrophysics Data System (ADS)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2014-12-01

    Tropospheric ozone in the tropics zone is significant in terms of the oxidizing efficiency and greenhouse effect. However, in the upper troposphere, the ozone budget in the tropics has not been fully understood yet because of the sparsity of the range-resolved observations of vertical ozone concentration profiles. We have constructed the lidar facility for survey of atmospheric structure over troposphere, stratosphere, mesosphere and low thermosphere over Kototabang (100.3E, 0.2S), Indonesia in the equatorial region. The lidar system consists of the Mie and Raman lidars for tropospheric aerosol, water vapor and cirrus cloud measurements, the Rayleigh lidar for stratospheric and mesospheric temperature measurements and the Resonance lidar for metallic species such as Na, Fe, Ca ion measurements and temperature measurements in the mesopause region. The lidar observations started from 2004, and routine observations of clouds and aerosol in the troposphere and stratosphere are continued now. We have installed DIAL (differential absorption lidar) system for high-resolution measurements of vertical ozone profiles in the equatorial tropopause region over Kototabang. There were many ozone DIAL systems in the world, but their systems are almost optimized for stratospheric ozone layer measurement or tropospheric ozone measurement. Because of deep ozone absorption in the UV region, the wavelength selection is important. Over the equatorial region, the tropopause height is almost 17km. So we use 305nm for on-line and 355nm for off-line using second harmonics of dye laser and third harmonics of Nd:YAG laser. We have observed large ozone enhancement in the upper troposphere, altitude of 13-17km in June 2014, concurring with a zonal wind oscillation associated with the equatorial Kelvin wave around the tropopause[1] at equatorial region. References Fujiwara, M. et al., JGR, 103, D15, 19,173-19,182, 1998.

  17. Optical systems modeling and experimental realization of pump and probe technique: investigation of nonlinear absorption in colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Golinskaya, A.; Ezhova, K.; Kozlova, M.; Dneprovskii, V.

    2016-04-01

    Two optical systems modeling of laser and broadband radiation focusing, that is necessary for realization of the pump and probe method, was carried out in this work. Modeling was utilized to construct experimental setup for transmission spectra measuring of studied sample by probe nanosecond broadband radiation (coumarin photoluminescence) depending on the intensity of the nanosecond laser pump pulses. The saturation effect of absorption and the induced charge Stark-effect coexistence and predominate issue of these effects are determined by power of optical excitation. In dependence of tuning of excitation radiation frequency from basic exciton transition frequency nonlinear effects in colloidal CdSe/ZnS quantum dots has been investigated.

  18. Evanescent wave absorption based fiber optic pH sensor prepared by dye doped sol-gel immobilization technique

    NASA Astrophysics Data System (ADS)

    Gupta, B. D.; Sharma, D. K.

    1997-02-01

    A fiber optic pH sensor based on evanescent wave absorption is presented. To prepare the probe a small length of the cladding is removed from the middle portion of the fiber. A thin porous film of glass with pH-sensitive dye entrapped in it is deposited on the surface of the unclad portion of the fiber using sol-gel technology. The sensor response and its dynamic range are reported for phenol red, cresol red and bromophenol blue dyes. The sol-gel process has been found to increase the dynamic range of the pH sensor.

  19. LIDAR data filtering and classification with TIN and assistant plane

    NASA Astrophysics Data System (ADS)

    Zeng, Qihong; Mao, Jianhua; Li, Xianhua; Liu, Xuefeng

    2007-06-01

    LIDAR is a new promising technique in obtaining instantly 3D point cloud data representing the earth surface information. In order to extract valuable earth surface feature information for further application, 3D sub-randomly spatial distributed LIDAR point cloud should be filtered and classified firstly. In this article, a new LIDAR data filtering and classification algorithm is presented. First, the points' neighboring relation and height-jump situation in TIN (triangulated irregular network) model for 3D LIDAR point cloud are analyzed. After that, the filtering algorithm based on TIN neighboring relation and height-jump is presented. Third, an assistant plane is designed in TIN neighborhood filtering algorithm in order to yield more effective filtering result. Then, the LIDAR points are classified into bare ground points, building points and vegetation points using the above filtering algorithms. The experiment is performed using the airborne LIDAR data, and the result shows that this method has better effect on filtering and classification of LIDAR point cloud data.

  20. Derivation of Sky-View Factors from LIDAR Data

    NASA Technical Reports Server (NTRS)

    Kidd, Christopher; Chapman, Lee

    2013-01-01

    The use of Lidar (Light Detection and Ranging), an active light-emitting instrument, is becoming increasingly common for a range of potential applications. Its ability to provide fine resolution spatial and vertical resolution elevation data makes it ideal for a wide range of studies. This paper demonstrates the capability of Lidar data to measure sky view factors (SVF). The Lidar data is used to generate a spatial map of SVFs which are then compared against photographically-derived SVF at selected point locations. At each location three near-surface elevations measurements were taken and compared with collocated Lidar-derived estimated. It was found that there was generally good agreement between the two methodologies, although with decreasing SVF the Lidar-derived technique tended to overestimate the SVF: this can be attributed in part to the spatial resolution of the Lidar sampling. Nevertheless, airborne Lidar systems can map sky view factors over a large area easily, improving the utility of such data in atmospheric and meteorological models.

  1. Determination of cadmium and lead in urine by derivative flame atomic absorption spectrometry using the atom trapping technique

    NASA Astrophysics Data System (ADS)

    Han-wen, Sun; De-qiang, Zhang; Li-li, Yang; Jian-min, Sun

    1997-06-01

    A method is described for the determinations of cadmium and lead in urine by derivative flame atomic absorption spectrometry with a modified water-cooled stainless steel atom trapping tube. The effects of the trap position, the flame conditions, the coolant flow rates, and the collection time were studied. With a 1 min collection time, the characteristic concentrations (derivative absorbance of 0.0044) for cadmium and lead were 0.028 and 1.4 μg L -1, the detection limits (3σ) were 0.02 and 0.27 μg L -1, respectively. The detection limits and sensitivities of the proposed method were 2 and 3 orders of magnitude higher for 1-3 min collection time than those of conventional flame atomic absorption spectrometry for cadmium and lead, respectively. Urine samples from a small population of normal individuals have been analyzed for cadmium and lead by the proposed method. Satisfactory recoveries of 91-110% and 91-106%, for Cd and Pb were obtained with these urine samples.

  2. Wavelength calibration techniques and subtle surface and atmospheric absorption features in the Mariner 6, 7 IRS reflectance data

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Roush, T. L.; Martin, T. Z.; Pollack, James B.; Freedman, R.

    1994-01-01

    1994 marks the 25th anniversary of the Mariner 6 and 7 flyby missions to Mars. Despite its age, the Mariner 6,7 Infrared Spectrometer (IRS) data are a unique set of measurements that can provide important information about the Martian surface, atmospheric, and atmospheric aerosol composition. For certain mid-IR wavelengths, the IRS spectra are the only such spacecraft data obtained for Mars. At other wavelengths, IRS measured surface regions different from those measured by Mariner 9 or Phobos 2 and under different dust opacity conditions. We are interested in examining the IRS reflectance data in the 1.8 to 3.0 micron region because there are numerous diagnostic absorption features at these wavelengths that could be indicative of hydrated silicate minerals or of carbonate- or sulfate-bearing minerals. Groundbased telescopic data and recent Phobos ISM measurements have provided controversial and somewhat contradictory evidence for the existence of mineralogic absorption features at these wavelengths. Our goal is to determine whether any such features can be seen in the IRS data and to use their presence or absence to re-assess the quality and interpretations of previous telescopic and spacecraft measurements.

  3. Micro pulse lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering has been demonstrated. The transmitter of the micropulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited by optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that systems built on the micropulse lidar concept are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  4. Visibility and Cloud Lidar

    NASA Astrophysics Data System (ADS)

    Werner, Christian; Streicher, Jürgen; Leike, Ines; Münkel, Christoph

    In summary it can be stated that visibility lidar is an accepted technology wherever impaired vision must be detected to impose speed limits to road or takeoff and landing restrictions to air traffic. Visibility lidars known as ceilometers have reached a degree of maturity to work 24 hours a day in the required fully-automated, hands-off operation mode. The development of much smaller systems for use under restricted space conditions and of systems small and cheap enough to be used as a truck and car accessory is in progress, with good chances to reach full commercial availability soon.

  5. Micropulse Lidar (MPL) Handbook

    SciTech Connect

    Mendoza, A; Flynn, C

    2006-05-01

    The micropulse lidar (MPL) is a ground-based optical remote sensing system designed primarily to determine the altitude of clouds overhead. The physical principle is the same as for radar. Pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is infered. Besides real-time detection of clouds, post-processing of the lidar return can also characterize the extent and properties of aerosol or other particle-laden regions.

  6. Two-frequency lidar based on an ammonium laser

    SciTech Connect

    Anan'ev, V Yu; Vasil'ev, B I; Lobanov, A N; Lytkin, A P; Cho, Cheon W; Kim, Juing S</