Science.gov

Sample records for absorption line galaxies

  1. Interstellar MG II Absorption Lines from Low-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bowen, David V.; Blades, J. Chris; Pettini, Max

    1995-08-01

    We have used the GHRS aboard HST to search for interstellar Mg II 2796, 2803 absorption from the disks and halos of 17 low-redshift galaxies, using as probes QSOs and extragalactic supernovae whose sight lines pass close to, or through, intervening galaxies. The galaxies studied are of diverse morphological type, reside in different environments, and lie at separations of p' ≃ 2-113 h-1 kpc from a QSO line of sight. Ten of 11 galaxies at separations 31-113 h-1 kpc show no absorption to equivalent width limits of W(λ2796) <40-90 mÅ, which corresponds to N(Mg II) ≃1-4 × 1012 cm-2. Six galaxies lie at p' ≤ 9 kpc, and of these, four (NGC 4319, the LMC, M81, and the Milky Way) show absorption. Two early-type galaxies (NGC 1380 and Leo I) show no absorption at p' < 9 kpc: these nondetections are surprising because the separations are small and point to the possibility that the existence of extended absorbing halos may be a function of galaxy type. All of the galaxies which produce absorption are plausibly members of interacting systems. For absorbing galaxies probed below 9 kpc, the sight line passes within the optical radius of the galaxy, where the interstellar medium (ISM) is expected to have a high covering factor, and we do not attribute the absorption to the interactions. However, we do find that the environment of the absorbing galaxies affects the characteristics of the absorption detected the strength of lines, the complexity of line components, the ionization state of the gas and we warn of the dangers inherent in constructing models of generic halos based on statistical properties of QSO absorption-line surveys. Our data suggest that the covering factor of Mg II absorption is high for galaxies within ≍10 kpc, but very small beyond ≍30 h-1 kpc, a result consistent with the size found of Mg II halos deduced for galaxies at redshifts z > 0.2. The low-redshift galaxies observed in this study which show Mg II absorption are probably drawn from the same

  2. Intermediate-redshift galaxy halos - Results from QSO absorption lines

    SciTech Connect

    Lanzetta, K.M.; Bowen, D. Royal Greenwich Observatory, Cambridge )

    1990-07-01

    For a sample of Mg II-selected QSO absorption-line systems for which the absorbing galaxies have been successfully identified, the rest-frame equivalent widths of the Mg II 2796-A absorption lines are examined as a function of the known impact parameters between the background QSOs and the absorbing galaxies. There appears to exist a relationship between the equivalent widths and the impact parameters, in the sense that larger equivalent widths occur at smaller impact parameters. No trend of the doublet ratio is found with impact parameter, and neither the equivalent widths nor the doublet ratios are correlated with the absolute luminosities or redshifts of the absorbing galaxies. These results apparently indicate that the main factor that determines the equivalent width of a particular absorption system is the impact parameter between the background QSO and the absorbing galaxy. 32 refs.

  3. Interstellar absorption lines in the galaxy NGC 1705

    SciTech Connect

    York, D.G.; Caulet, A.; Rybski, P.M.; Gallagher, J.S.; Blades, J.C. Lowell Observatory, Flagstaff, AZ Space Telescope Science Institute, Baltimore, MD )

    1990-03-01

    The possibility is considered, and shown to be plausible, that the strong C IV and Si IV absorption lines in low-resolution ultraviolet spectra of gas-rich dwarf galaxies are primarily interstellar, not stellar as has been supposed. The argument is based on analogies with H II regions in the Local Group, on low-resolution equivalent width measurements of gas-rich dwarf galaxies from the literature and on high-resolution UV spectra of NGC 1705. 48 refs.

  4. Interstellar absorption lines in the galaxy NGC 1705

    NASA Technical Reports Server (NTRS)

    York, Donald G.; Caulet, Adeline; Rybski, Paul M.; Gallagher, John S.; Blades, J. Chris

    1990-01-01

    The possibility is considered, and shown to be plausible, that the strong C IV and Si IV absorption lines in low-resolution ultraviolet spectra of gas-rich dwarf galaxies are primarily interstellar, not stellar as has been supposed. The argument is based on analogies with H II regions in the Local Group, on low-resolution equivalent width measurements of gas-rich dwarf galaxies from the literature and on high-resolution UV spectra of NGC 1705.

  5. QSO Lyalpha Absorption Lines in Galaxy Superclusters and Voids

    NASA Astrophysics Data System (ADS)

    Stocke, J. T.; Shull, J. M.; Penton, S.; Burks, G.; Donahue, M.

    1993-12-01

    We have used the Hubble Space Telescope (HST) Goddard High Resolution Spectrograph (GHRS) to search for Lyalpha absorption clouds in nearby galaxy voids (cz <= 10,000 km s(-1) ). Thus far, we have obtained GHRS spectra (G160M, 1225 -- 1255 Angstroms, 0.25 Angstroms resolution) of three very bright Active Galactic Nuclei, Mrk 501, I Zw I, and Mrk 335, at V <= 14.5. We find 4 probable (4.0 sigma - 4.5 sigma ) and 4 definite (5 sigma - 16 sigma ) Lyalpha absorption lines, with equivalent widths W_λ = 50 - 200 m Angstroms, corresponding to column densities N(H I) = 10(13) -- 10(14) cm(-2) , assuming a typical Doppler parameter of b = 25 km s(-1) . Based on an updated version of the CfA redshift survey (Huchra and Clemens, private communication), most of these Lyalpha systems appear to be associated with supercluster - sized ``strings'' of galaxies similar to the ``Great Wall''. Toward Mrk 501, the nearest bright galaxy at the redshift of the strongest (200 m Angstroms) Lyalpha cloud lies 500 h75(-1) kpc off the line of sight. Models of H I disks exposed to the intergalactic ionizing radiation field (Dove & Shull 1994, ApJ, 423, in press) show that the N(H I) = 10(13) cm(-2) contour in a typical spiral galaxy is reached at 100 kpc radial extent. Thus, the Lyalpha absorbers associated with galaxy-string systems may be the result of H I in an extended halo, in dwarf satellite galaxies (M_B > -15), or in tidally-stripped gas. Most importantly for cosmological origins of baryons, one (4.3 sigma ) Lyalpha absorption line in the spectrum of Mrk 501 lies within the galaxy void in the foreground of the ``Great Wall''. The nearest bright galaxy, to a level M_B <= -18.5 for H_0 = 75 km s(-1) Mpc(-1) , is more than 5 Mpc away. A pencil-beam survey of faint galaxies to M_B = -16.0 finds no galaxy within 100 h75(-1) kpc of the line of sight, at or near the absorber redshift.

  6. Radio line and continuum observations of quasar-galaxy pairs and the origin of low reshift quasar absorption line systems

    NASA Technical Reports Server (NTRS)

    Carilli, C. L.; Vangorkom, J. H.; Hauxthausen, E. M.; Stocke, J. T.; Salzer, J.

    1990-01-01

    There are a number of known quasars for which our line of sight to the high redshift quasar passes within a few Holmberg radii of a low redshift galaxy. In a few of these cases, spectra of the quasar reveal absorption by gas associated with the low redshift galaxy. A number of these pairs imply absorption by gas which lies well outside the optical disk of the associated galaxy, leading to models of galaxies with 'halos' or 'disks' of gas extending to large radii. The authors present observations of 4 such pairs. In three of the four cases, they find that the associated galaxy is highly disturbed, typically due to a gravitational interaction with a companion galaxy, while in the fourth case the absorption can be explained by clouds in the optical disk of the associated galaxy. They are led to an alternative hypothesis concerning the origin of the low redshift absorption line systems: the absorption is by gas clouds which have been gravitationally stripped from the associated galaxy. These galaxies are rapidly evolving, and should not be used as examples of absorption by clouds in halos of field spirals. The authors conclude by considering the role extended gas in interacting systems plays in the origin of higher redshift quasar absorption line systems.

  7. Detectability of cold streams into high-redshift galaxies by absorption lines

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel

    2012-08-01

    Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.

  8. Absorption Line Analysis to Interprete and Constrain Cosmological Simulations of Galaxy Evolution with Feedback

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher

    2011-10-01

    The mammoth challenge for contemporary studies of galaxy formation and evolution are to establish detailed models in the cosmological context in which both the few parsec scale physics within galaxies are self-consistently unified and made consistent with the observed universe of galaxies. They key diagnostics reside with the gas physics, which dictate virtually every aspect of galaxy formation and evolution. The small scale physics includes stellar feedback, gas cooling, heating, and advection and the multiphase interstellar medium; the large scale physics includes intergalactic accretion, local merging, effects of supernovae driven winds, and the development of extended metal-enriched gas halos.Absorption line data have historically proven to be {and shall in the future} virtually the most powerful tool for understanding gas physics on all spatial scales over the majority of the age of the universe- the key to success. Simply stated, absorption lines are one of astronomy's most powerful observational windows on the universe {galaxy formation, galaxy winds, IGM metal enrichment, etc.}. The high quality and vast numbers of absorption line data {obtained with HST and FUSE} probe a broad range of gas structures {ISM, HVCs, halos, IGM} over the full cosmic span when galaxies are actively evolving.We propose to use LCDM hydrodynamic cosmological simulations employing a Eulerian Gasdynamics plus N-body Adaptive Refinement Tree {ART} code to develop and refine our understanding of stellar feedback physics and its role in governing the gas physics that regulates the evolution of galaxies and the IGM. We aim to substantially progress our understanding of all possible gas phases embedded within and extending far from galaxies. Our methodology is to apply a series of quantitative observational constraints from absorption line systems to better understand extended galaxy halos and the influence of the cosmological environment of the simulated galaxies: {1} galaxy halos

  9. Is the Na D Absorption Line Useful For Integrated Light Stellar Population Studies In Galaxies?

    NASA Astrophysics Data System (ADS)

    Bergmann, Marcel; Milvang-Jensen, B.

    2009-01-01

    The Sodium Na D absorption line at 5895 Angstroms is one of the strongest absorption features in stellar photospheres, but has been rarely used in integrated light stellar population studies of galaxies. A principal reason why it has not been used is the suspicion that interstellar absorption within the galaxies may enhance or alter the absorption profile of the combined stellar light, thus giving an errant description of the stellar population. As a project undertaken during the National Virtual Observatory Summer School, we have investigated to what extent ISM absorption seems to alter the measurements. We use VO tools to create multiple galaxy samples: a sample expected to have little ISM (cluster galaxies, which are mainly ellipticals), and two samples with higher expected levels of ISM (HI-detected galaxies and morphologically late-type galaxies). After culling the samples to match the same distribution of (older) ages and (higher) metallicities, we find that the Na D vs. velocity dispersion correlation is not significantly different for the samples with and without ISM, and all have similar levels of scatter. Consequently, the Na D line seems like a promising tool for evolutionary studies comparing high and low redshift galaxy samples. Our continuing work focuses on the effects of possible ISM absorption on the line-of-sight velocity profile as derived from the Na D line compared to Mgb and Ca H & K absorption features. This research has made use of data obtained from and software provided by the US National Virtual Observatory, which is sponsored by the National Science Foundation. We thank the US-VO and the NSF for the partial funding they provided to attend this meeting.

  10. Low-redshift Lyman-alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1992-01-01

    Ultraviolet observations of the low-redshift quasar 3C 273 using the Hubble Space Telescope have revealed many more Lyman-alpha absorption lines than would be expected from extrapolation of the absorption systems seen toward QSOs at z about 2. It is shown here that these absorption lines can plausibly be produced by gas at large radii in the disks of spiral and irregular galaxies; the gas is confined by the dark matter halos and ionized and heated by the extragalactic radiation field. This scenario does not require the extragalactic ionizing radiation field to decline as rapidly with decreasing z as the QSO emissivity. Observations of Ly-alpha absorption through the halos of known galaxies at low redshift will constrain both the extragalactic background and the properties of galactic halos.

  11. Reionisation and High-Redshift Galaxies: The View from Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Becker, George D.; Bolton, James S.; Lidz, Adam

    2015-12-01

    Determining when and how the first galaxies reionised the intergalactic medium promises to shed light on both the nature of the first objects and the cosmic history of baryons. Towards this goal, quasar absorption lines play a unique role by probing the properties of diffuse gas on galactic and intergalactic scales. In this review, we examine the multiple ways in which absorption lines trace the connection between galaxies and the intergalactic medium near the reionisation epoch. We first describe how the Ly α forest is used to determine the intensity of the ionising ultraviolet background and the global ionising emissivity budget. Critically, these measurements reflect the escaping ionising radiation from all galaxies, including those too faint to detect directly. We then discuss insights from metal absorption lines into reionisation-era galaxies and their surroundings. Current observations suggest a buildup of metals in the circumgalactic environments of galaxies over z ~ 6 to 5, although changes in ionisation will also affect the evolution of metal line properties. A substantial fraction of metal absorbers at these redshifts may trace relatively low-mass galaxies. Finally, we review constraints from the Ly α forest and quasar near zones on the timing of reionisation. Along with other probes of the high-redshift Universe, absorption line data are consistent with a relatively late end to reionisation (5.5 ≲ z ≲ 7); however, the constraints are still fairly week. Significant progress is expected to come through improved analysis techniques, increases in the number of known high-redshift quasars from optical and infrared sky surveys, large gains in sensitivity from next-generation observing facilities, and synergies with other probes of the reionisation era.

  12. Multi - Wavelength Analysis of Intermediate Class Absorption Line Galaxies in CFHTLS Field

    NASA Astrophysics Data System (ADS)

    Baburao Pandge, Mahadev

    2015-08-01

    We present optical and X-ray analysis of a sample of some absorption line galaxies (ALGs). These galaxies are lie in the redshift range 0.14 < z < 0.34 and have X-ray luminosities L{0.5-10keV} = 1041-1043 erg s-1. The distribution of log (fX/fO) imply that these objects are intermediate class objects, i.e. lie between normal and classical active galaxies. From X-ray analysis of two of the intermediate class galaxies, namely ALG2 and ALG3, exhibit extended nature, perhaps linked with their cluster environment. Thus, from the X-ray spectral and optical imaging analysis, it is likely that all the targeted ALGs studied here can be the group/cluster candidates. Hardness ratio of these 5 candidates is found to be -0.42 \\pm 0.10, consistent with that reported for galaxies.

  13. Is there a connection between broad absorption line quasars and narrow-line Seyfert 1 galaxies?

    SciTech Connect

    Grupe, Dirk; Nousek, John A.

    2015-02-01

    We consider whether broad absorption line quasars (BAL QSOs) and narrow-line Seyfert 1 galaxies (NLS1s) are similar, as suggested by Brandt and Gallagher and Boroson. For this purpose, we constructed a sample of 11 BAL QSOs from existing Chandra and Swift observations. We found that BAL QSOs and NLS1s both operate at high Eddington ratios L/L{sub Edd}, although BAL QSOs have slightly lower L/L{sub Edd}. BAL QSOs and NLS1s in general have high Fe ii/Hβ and low [O iii]/Hβ ratios following the classic “Boroson and Green” eigenvector 1 relation. We also found that the mass accretion rates M-dot of BAL QSOs and NLS1s are more similar than previously thought, although some BAL QSOs exhibit extreme mass accretion rates of more than 10 M{sub ⊙} yr{sup −1}. These extreme mass accretion rates may suggest that the black holes in BAL QSOs are relativistically spinning. Black hole masses in BAL QSOs are a factor of 100 larger than NLS1s. From their location on a M−σ plot, we find that BAL QSOs contain fully developed black holes. Applying a principal component analysis to our sample, we find eigenvector 1 to correspond to the Eddington ratio L/L{sub Edd}, and eigenvector 2 to black hole mass.

  14. Is There a Connection between Broad Absorption Line Quasars and Narrow-Line Seyfert 1 Galaxies?

    NASA Astrophysics Data System (ADS)

    Grupe, Dirk; Nousek, John. A.

    2015-02-01

    We consider whether broad absorption line quasars (BAL QSOs) and narrow-line Seyfert 1 galaxies (NLS1s) are similar, as suggested by Brandt & Gallagher and Boroson. For this purpose, we constructed a sample of 11 BAL QSOs from existing Chandra and Swift observations. We found that BAL QSOs and NLS1s both operate at high Eddington ratios L/{{L}Edd}, although BAL QSOs have slightly lower L/{{L}Edd}. BAL QSOs and NLS1s in general have high Fe ii/Hβ and low [O iii]/Hβ ratios following the classic “Boroson & Green” eigenvector 1 relation. We also found that the mass accretion rates \\dot{M} of BAL QSOs and NLS1s are more similar than previously thought, although some BAL QSOs exhibit extreme mass accretion rates of more than 10 {{M}⊙ } yr-1. These extreme mass accretion rates may suggest that the black holes in BAL QSOs are relativistically spinning. Black hole masses in BAL QSOs are a factor of 100 larger than NLS1s. From their location on a M-σ plot, we find that BAL QSOs contain fully developed black holes. Applying a principal component analysis to our sample, we find eigenvector 1 to correspond to the Eddington ratio L/{{L}Edd}, and eigenvector 2 to black hole mass.

  15. Outflows in infrared-luminous galaxies: Absorption-line spectroscopy of starbursts and AGN

    NASA Astrophysics Data System (ADS)

    Rupke, David S.

    Large-scale galactic outflows, better known as superwinds, are driven by the powerful energy reservoirs in star forming and active galaxies. They play a significant role in galaxy formation, galaxy evolution, and the evolution of the intergalactic medium. We have performed a survey of over 100 infrared-luminous galaxies in order to address the exact frequency with which they occur in different galaxy types, the dependence of their properties on those of their host galaxies, and their properties in the most luminous starburst and active galaxies. Most of our sample consists of ultraluminous infrared galaxies (ULIRGs), and we use moderate- resolution spectroscopy of the Na I D interstellar absorption feature (which directly probes the neutral gas phase). We find superwinds in the majority of these galaxies at typical maximum, deprojected velocities of 500 700 km s-1. The detection rate increases with star formation rate (SFR) in starbursts, while the mass outflow rate appears constant with SFR, contrary to theoretical expectations. The resulting mass entrainment efficiencies in ULIRGs are quite low, of order a few percent of the star formation rate. There is some dependence of outflow velocity on host galaxy properties; the outflow velocities in LINERs are higher than those in H II galaxies, and the highest column density gas in each galaxy may have an upper envelope in velocity that increases with SFR. Outflows in most galaxies hosting a dominant AGN have very similar properties to those in starbursts, so discerning their power source is difficult. The velocities in Seyfert 2 outflows may be slightly higher than those in starbursts, and the fraction of neutral gas escaping Seyfert 2s is higher than that in starbursts (˜50% vs. ≲ 20%). The outflows in our Seyfert 1 galaxies have extreme velocities of up to ˜104 km s-1, and two of three Seyfert is with outflows possess broad absorption lines. Finally, we find that spectroscopy of a few galaxies at very high

  16. Metal-line absorption at Z(sub abs) approximately Z(sub em) from associated galaxies

    NASA Technical Reports Server (NTRS)

    Ellingson, E.; Yee, H. K. C.; Bechtold, Jill; Dobrzycki, Adam

    1994-01-01

    For a preliminary study of whether C IV absorption at Z(sub abs) approximately Z(sub em) is related to associated galaxy companions, we have collected data from a sample of 10 quasars with 0.15 less than z less than 0.65 for which high-resolution optical and UV spectroscopy is available from the literature, and for which we have deep optical images and limited spectroscopy. We also present new optical spectra for two of our samples. Four of these quasars have associated C IV absorption systems. In thes four fields, there are eight galaxies with M(sub r) less than -19.0 mag within 35 kpc of the quasar (projected distance, assuming they are at the quasar redshift), which may be candidates for the associated C IV absorption. This observed density of galaxies near quasars with associated C IV absorption is significantly greater than that for a control sample of quasars chosen from the literature. This result suggests that galaxies near the quasar line of sight may be linked with associated C IV absorption. None of these quasars show associated Mg II absorption, despite the presence of galaxies very near the line of sight, suggesting a Mg II 'proximity effect,' where ionizing flux from the quasar destroys the Mg(+) from at least the outer parts of the galaxies. Three quasars are located in rich galaxy clusters, but none of these quasars are found to have associated C IV absorption. This suggests that galaxies in rich clusters associated with quasars are less likely to be metal-line absorbers. It is plausible that the extended galaxy halos which may be responsible for the absorptions are stripped from galaxies in these dense environments. While it seems that at Z approximately 0.6 rich clusters do not cause them, associated C IV absorption systems at higher redshift may be explained by associated clusters if there has been evolution in the properties of galaxy halos in dense environments.

  17. MOSFIRE ABSORPTION LINE SPECTROSCOPY OF z > 2 QUIESCENT GALAXIES: PROBING A PERIOD OF RAPID SIZE GROWTH

    SciTech Connect

    Belli, Sirio; Ellis, Richard S.; Konidaris, Nick P.; Newman, Andrew B.

    2014-06-20

    Using the MOSFIRE near-infrared multi-slit spectrograph on the Keck 1 Telescope, we have secured high signal-to-noise ratio absorption line spectra for six massive galaxies with redshift 2 < z < 2.5. Five of these galaxies lie on the red sequence and show signatures of passive stellar populations in their rest-frame optical spectra. By fitting broadened spectral templates we have determined stellar velocity dispersions and, with broad-band Hubble Space Telescope and Spitzer photometry and imaging, stellar masses and effective radii. Using this enlarged sample of galaxies, we confirm earlier suggestions that quiescent galaxies at z > 2 have small sizes and large velocity dispersions compared to local galaxies of similar stellar mass. The dynamical masses are in very good agreement with stellar masses (log M {sub *}/M {sub dyn} = –0.02 ± 0.03), although the average stellar-to-dynamical mass ratio is larger than that found at lower redshift (–0.23 ± 0.05). By assuming evolution at fixed velocity dispersion, not only do we confirm a surprisingly rapid rate of size growth but we also consider the necessary evolutionary track on the mass-size plane and find a slope α = dlog R{sub e} /dlog M {sub *} ≳ 2 inconsistent with most numerical simulations of minor mergers. Both results suggest an additional mechanism may be required to explain the size growth of early galaxies.

  18. IMPROVED AND QUALITY-ASSESSED EMISSION AND ABSORPTION LINE MEASUREMENTS IN SLOAN DIGITAL SKY SURVEY GALAXIES

    SciTech Connect

    Oh, Kyuseok; Yi, Sukyoung K.; Sarzi, Marc; Schawinski, Kevin

    2011-08-01

    We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting (pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionized gas emission. In order to check for systematic departures from the rather standard set of assumptions that enters our models, we provide a quality assessment for our fit to the SDSS spectra in our sample, for both the stellar continuum and the nebular emissions and across different wavelength regions. This quality assessment also allows the identification of objects with either problematic data or peculiar features. We hope to foster the discovery potential of our database; therefore, our spectral fit is available to the community. For example, based on the quality assessment around the H{alpha} and [N II] {lambda}6584 lines, approximately 1% of the SDSS spectra classified as 'galaxies' by the SDSS pipeline do in fact require additional broad lines to be matched, even though they do not show a strong continuum from an active

  19. Improved and Quality-assessed Emission and Absorption Line Measurements in Sloan Digital Sky Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, Marc; Schawinski, Kevin; Yi, Sukyoung K.

    2011-08-01

    We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting (pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionized gas emission. In order to check for systematic departures from the rather standard set of assumptions that enters our models, we provide a quality assessment for our fit to the SDSS spectra in our sample, for both the stellar continuum and the nebular emissions and across different wavelength regions. This quality assessment also allows the identification of objects with either problematic data or peculiar features. We hope to foster the discovery potential of our database; therefore, our spectral fit is available to the community. For example, based on the quality assessment around the Hα and [N II] λ6584 lines, approximately 1% of the SDSS spectra classified as "galaxies" by the SDSS pipeline do in fact require additional broad lines to be matched, even though they do not show a strong continuum from an active nucleus, as

  20. THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. II. RESULTS

    SciTech Connect

    Conroy, Charlie; Van Dokkum, Pieter G.

    2012-11-20

    The spectral absorption lines in early-type galaxies contain a wealth of information regarding the detailed abundance pattern, star formation history, and stellar initial mass function (IMF) of the underlying stellar population. Using our new population synthesis model that accounts for the effect of variable abundance ratios of 11 elements, we analyze very high quality absorption line spectra of 38 early-type galaxies and the nuclear bulge of M31. These data extend to 1 {mu}m and they therefore include the IMF-sensitive spectral features Na I, Ca II, and FeH at 0.82 {mu}m, 0.86 {mu}m, and 0.99 {mu}m, respectively. The models fit the data well, with typical rms residuals {approx}< 1%. Strong constraints on the IMF and therefore the stellar mass-to-light ratio, (M/L){sub stars}, are derived for individual galaxies. We find that the IMF becomes increasingly bottom-heavy with increasing velocity dispersion and [Mg/Fe]. At the lowest dispersions and [Mg/Fe] values the derived IMF is consistent with the Milky Way (MW) IMF, while at the highest dispersions and [Mg/Fe] values the derived IMF contains more low-mass stars (is more bottom-heavy) than even a Salpeter IMF. Our best-fit (M/L){sub stars} values do not exceed dynamically based M/L values. We also apply our models to stacked spectra of four metal-rich globular clusters in M31 and find an (M/L){sub stars} that implies fewer low-mass stars than a MW IMF, again agreeing with dynamical constraints. We discuss other possible explanations for the observed trends and conclude that variation in the IMF is the simplest and most plausible.

  1. 1E 0104.2 + 3153 - A broad absorption-line QSO viewed through a giant elliptical galaxy

    NASA Technical Reports Server (NTRS)

    Stocke, J. T.; Liebert, J.; Schild, R.; Gioia, I. M.; Maccacaro, T.

    1984-01-01

    The optical identification of the X-ray source 1E 0104.2 + 3153 is complicated by the close projection of a broad absorption-line (BAL) QSO (z = 2.027) 10 arcsec from a giant elliptical galaxy (z = 0.111) at the center of a compact group of galaxies. At only 1.2 de Vaucouleur radii (16 kpc for H sub 0 = 100 km/s Mpc) this QSO-galaxy projection is the closest yet discovered. Based upon current observations, the source of the X-ray emission cannot be conclusively determined. Present in the BAL QSO spectrum are extremely strong Ca II H and K absorption lines due to the intervening galaxy, the first optical detection of the cold interstellar medium in an elliptical galaxy. The strength of these lines (EW = 2 and 1 A) requires observation through several interstellar clouds in the line of sight to the QSO. By its proximity to the central regions of the elliptical galaxy and the relative distances of the galaxy and QSO, this QSO is a particularly good candidate for observing dramatic transient gravitational lensing phenomena due to halo stars in the foreground galaxy.

  2. Low redshift Lyman alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1993-01-01

    Recent observations using the Hubble Space Telescope of the z = 0.156 QSO 3C 273 have discovered a surprisingly large number of Ly-alpha absorption lines. In particular, Morris et al. found 9 certain and 7 possible Ly-alpha lines with equivalent widths above 25 mA. This is much larger (by a factor of 5-10) than the number expected from extrapolation of the high-redshift behavior of the Ly-alpha forest. Within the context of pressure-confined models for the Ly-alpha clouds, this behavior can be understood if the ionizing background declines sharply between z is approximately 2 and z is approximately 0. However, this requires that the ionizing photon flux drop as rapidly as the QSO volume emissivity; moreover, the absorbers must have a space density n(sub O) is approximately 2.6(N/10)h/((D/100 kpc)(sup 2)) Mpc(sup -3) where D is the present-day diameter of the absorbers. It is somewhat surprising that such necessarily fragile objects could have survived in such numbers to the present day. It is shown that it is plausible that the atomic hydrogen extents of spiral and irregular galaxies are large enough to produce the observed number of Ly-alpha absorption lines toward 3C 273, and that the neutral column densities and doppler b-values expected under these conditions fall in the range found by Morris et al. (1991).

  3. A Bayesian Method For Finding Galaxies That Cause Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Shoemaker, Emileigh Suzanne; Laubner, David Andrew; Scott, Jennifer E.

    2016-01-01

    We present a study of candidate absorber-galaxy pairs for 39 low redshift quasar sightlines (0.06 < z < 0.85) using a statistical approach to match absorbers with galaxies near the quasar lines of sight. Of the 75 quasars observed with HST/Cosmic Origins Spectrograph (COS) and archived on the Mikulski Archive for Space Telescopes (MAST), 39 overlap with the footprint of the Sloan Digital Sky Survey (SDSS). We downloaded the COS linelists for these quasar spectra from MAST and queried the SDSS DR12 database for photometric data on all galaxies within 1 Mpc of each of these quasar lines of sight. We calculated photometric redshifts for all the SDSS galaxies using the Bayesian Photometric Redshift code. We used all these absorber and galaxy data as input into an absorber-galaxy matching code which also employs a Bayesian scheme, along with known statistics of the intergalactic medium and circumgalactic media of galaxies, for finding the most probable galaxy match for each absorber. We compare our candidate absorber-galaxy matches to existing studies in the literature and explore trends in the absorber and galaxy properties among the matched and non-matched populations. This method of matching absorbers and galaxies can be used to find targets for follow up spectroscopic studies.

  4. Probing low-redshift galaxies using quasar absorption lines with an emphasis on Ca II absorption

    NASA Astrophysics Data System (ADS)

    Sardane, Gendith M.

    We searched for intervening CaII absorption in nearly 95,000 quasar spectra with i≤20 from the Sloan Digital Sky Survey(SDSS) data releases DR7+DR9. Our identification of >400 CaII systems is the largest compilation of CaII absorbers in a blind search. (Abstract shortened by ProQuest.).

  5. NEW PERSPECTIVE ON GALAXY OUTFLOWS FROM THE FIRST DETECTION OF BOTH INTRINSIC AND TRAVERSE METAL-LINE ABSORPTION

    SciTech Connect

    Kacprzak, Glenn G.; Cooke, Jeff; Martin, Crystal L.; Ho, Stephanie H.; Bouché, Nicolas; LeReun, Audrey; Schroetter, Ilane; Churchill, Christopher W.; Klimek, Elizabeth

    2014-09-01

    We present the first observation of a galaxy (z = 0.2) that exhibits metal-line absorption back-illuminated by the galaxy (down-the-barrel) and transversely by a background quasar at a projected distance of 58 kpc. Both absorption systems, traced by Mg II, are blueshifted relative to the galaxy systemic velocity. The quasar sight line, which resides almost directly along the projected minor axis of the galaxy, probes Mg I and Mg II absorption obtained from the Keck/Low Resolution Imaging Spectrometer as well as Lyα, Si II, and Si III absorption obtained from the Hubble Space Telescope/Cosmic Origins Spectrograph. For the first time, we combine two independent models used to quantify the outflow properties for down-the-barrel and transverse absorption. We find that the modeled down-the-barrel deprojected outflow velocities range between V {sub dtb} = 45-255 km s{sup –1}. The transverse bi-conical outflow model, assuming constant-velocity flows perpendicular to the disk, requires wind velocities V {sub outflow} = 40-80 km s{sup –1} to reproduce the transverse Mg II absorption kinematics, which is consistent with the range of V {sub dtb}. The galaxy has a metallicity, derived from Hα and N II, of [O/H] = –0.21 ± 0.08, whereas the transverse absorption has [X/H] = –1.12 ± 0.02. The galaxy star formation rate is constrained between 4.6-15 M {sub ☉} yr{sup –1} while the estimated outflow rate ranges between 1.6-4.2 M {sub ☉} yr{sup –1} and yields a wind loading factor ranging between 0.1-0.9. The galaxy and gas metallicities, the galaxy-quasar sight-line geometry, and the down-the-barrel and transverse modeled outflow velocities collectively suggest that the transverse gas originates from ongoing outflowing material from the galaxy. The ∼1 dex decrease in metallicity from the base of the outflow to the outer halo suggests metal dilution of the gas by the time it reached 58 kpc.

  6. New Perspective on Galaxy Outflows from the First Detection of Both Intrinsic and Traverse Metal-line Absorption

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn G.; Martin, Crystal L.; Bouché, Nicolas; Churchill, Christopher W.; Cooke, Jeff; LeReun, Audrey; Schroetter, Ilane; Ho, Stephanie H.; Klimek, Elizabeth

    2014-09-01

    We present the first observation of a galaxy (z = 0.2) that exhibits metal-line absorption back-illuminated by the galaxy (down-the-barrel) and transversely by a background quasar at a projected distance of 58 kpc. Both absorption systems, traced by Mg II, are blueshifted relative to the galaxy systemic velocity. The quasar sight line, which resides almost directly along the projected minor axis of the galaxy, probes Mg I and Mg II absorption obtained from the Keck/Low Resolution Imaging Spectrometer as well as Lyα, Si II, and Si III absorption obtained from the Hubble Space Telescope/Cosmic Origins Spectrograph. For the first time, we combine two independent models used to quantify the outflow properties for down-the-barrel and transverse absorption. We find that the modeled down-the-barrel deprojected outflow velocities range between V dtb = 45-255 km s-1. The transverse bi-conical outflow model, assuming constant-velocity flows perpendicular to the disk, requires wind velocities V outflow = 40-80 km s-1 to reproduce the transverse Mg II absorption kinematics, which is consistent with the range of V dtb. The galaxy has a metallicity, derived from Hα and N II, of [O/H] = -0.21 ± 0.08, whereas the transverse absorption has [X/H] = -1.12 ± 0.02. The galaxy star formation rate is constrained between 4.6-15 M ⊙ yr-1 while the estimated outflow rate ranges between 1.6-4.2 M ⊙ yr-1 and yields a wind loading factor ranging between 0.1-0.9. The galaxy and gas metallicities, the galaxy-quasar sight-line geometry, and the down-the-barrel and transverse modeled outflow velocities collectively suggest that the transverse gas originates from ongoing outflowing material from the galaxy. The ~1 dex decrease in metallicity from the base of the outflow to the outer halo suggests metal dilution of the gas by the time it reached 58 kpc.

  7. Star formation history in early-type galaxies - I. The line absorption indices diagnostics

    NASA Astrophysics Data System (ADS)

    Tantalo, Rosaria; Chiosi, Cesare

    2004-09-01

    To unravel the formation mechanism and the evolutionary history of elliptical galaxies (EGs) is one of the goals of modern astrophysics. In a simplified picture of the issue, the question to be answered is whether they have formed by hierarchical merging of pre-existing substructures (maybe disc galaxies) made of stars and gas, with each merging event probably accompanied by strong star formation, or conversely, whether they originated from the early aggregation of lumps of gas turned into stars in the remote past via a burst-like episode ever since followed by quiescence so as to mimic a sort of monolithic process. Even if the two alternatives seem to oppose each other, actually they may both contribute to shaping the final properties of EGs as seen today. Are there distinct signatures of the underlying dominant process in the observational data? To this aim we have examined the line absorption indices on the Lick system of the normal, field EGs of Trager and the interacting EGs (pair- and shell-objects) of Longhetti et al. The data show that both normal, field and interacting galaxies have the same scattered but smooth distribution in the Hβ versus [MgFe] plane even if the interacting ones show a more pronounced tail toward high Hβ values. This may suggest that a common physical cause is at the origin of their distribution. There are two straightforward interpretations of increasing complexity. (i) EGs span true large ranges of ages and metallicities. A young age is the signature of the aggregation mechanism, each event accompanied by metal enrichment. This simple scheme cannot, however, explain other spectro-photometric properties of EGs and has to be discarded. (ii) The bulk population of stars is old but subsequent episodes of star formation scatter the EGs in the diagnostic planes. However, this scheme would predict an outstanding clump at low Hβ values, contrary to what is observed. The model can be cured by supposing that the primary star formation

  8. ABSORPTION-LINE PROBES OF THE PREVALENCE AND PROPERTIES OF OUTFLOWS IN PRESENT-DAY STAR-FORMING GALAXIES

    SciTech Connect

    Chen Yanmei; Kauffmann, Guinevere; Wang Jing; Tremonti, Christy A.; Heckman, Timothy M.; Weiner, Benjamin J.; Brinchmann, Jarle

    2010-08-15

    We analyze star-forming galaxies drawn from SDSS DR7 to show how the interstellar medium (ISM) Na I {lambda}{lambda}5890, 5896 (Na D) absorption lines depend on galaxy physical properties, and to look for evidence of galactic winds. We combine the spectra of galaxies with similar geometry/physical parameters to create composite spectra with signal-to-noise {approx}300. The stellar continuum is modeled using stellar population synthesis models, and the continuum-normalized spectrum is fit with two Na I absorption components. We find that (1) ISM Na D absorption lines with equivalent widths EW > 0.8 A are only prevalent in disk galaxies with specific properties-large extinction (A{sub V} ), high star formation rates (SFR), high SFR per unit area ({Sigma}{sub SFR}), or high stellar mass (M{sub *}); (2) the ISM Na D absorption lines can be separated into two components: a quiescent disk-like component at the galaxy systemic velocity and an outflow component; (3) the disk-like component is much stronger in the edge-on systems, and the outflow component covers a wide angle but is stronger within 60{sup 0} of the disk rotation axis; (4) the EW and covering factor of the disk component correlate strongly with dust attenuation, highlighting the importance that dust shielding may play in the survival of Na I; (5) the EW of the outflow component depends primarily on {Sigma}{sub SFR} and secondarily on A{sub V} ; and (6) the outflow velocity varies from {approx}120 to 160 km s{sup -1} but shows little hint of a correlation with galaxy physical properties over the modest dynamic range that our sample probes (1.2 dex in log {Sigma}{sub SFR} and 1 dex in log M{sub *}).

  9. Metal-line absorption around z ≈ 2.4 star-forming galaxies in the Keck Baryonic Structure Survey

    NASA Astrophysics Data System (ADS)

    Turner, Monica L.; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.; Strom, Allison L.

    2014-11-01

    We study metal absorption around 854 z ≈ 2.4 star-forming galaxies taken from the Keck Baryonic Structure Survey. The galaxies examined in this work lie in the fields of 15 hyperluminous background quasi-stellar objects, with galaxy impact parameters ranging from 35 proper kpc (pkpc) to 2 proper Mpc (pMpc). Using the pixel optical depth technique, we present the first galaxy-centred 2D maps of the median absorption by O VI, N V, C IV, C III, and Si IV, as well as updated results for H I. At small galactocentric radii we detect a strong enhancement of the absorption relative to randomly located regions that extend out to at least 180 pkpc in the transverse direction, and ±240 km s-1 along the line of sight (LOS, ˜1 pMpc in the case of pure Hubble flow) for all ions except N V. For C IV (and H I) we detect a significant enhancement of the absorption signal out to 2 pMpc in the transverse direction, corresponding to the maximum impact parameter in our sample. After normalizing the median absorption profiles to account for variations in line strengths and detection limits, in the transverse direction we find no evidence for a sharp drop-off in metals distinct from that of H I. We argue instead that non-detection of some metal-line species in the extended circumgalactic medium is consistent with differences in the detection sensitivity. Along the LOS, the normalized profiles reveal that the enhancement in the absorption is more extended for O VI, C IV, and Si IV than for H I. We also present measurements of the scatter in the pixel optical depths, covering fractions, and equivalent widths as a function of projected galaxy distance. Limiting the sample to the 340 galaxies with redshifts measured from nebular emission lines does not decrease the extent of the enhancement along the LOS compared to that in the transverse direction. This rules out redshift errors as the source of the observed redshift-space anisotropy and thus implies that we have detected the signature

  10. Ca II AND Na I QUASAR ABSORPTION-LINE SYSTEMS IN AN EMISSION-SELECTED SAMPLE OF SDSS DR7 GALAXY/QUASAR PROJECTIONS. I. SAMPLE SELECTION

    SciTech Connect

    Cherinka, B.; Schulte-Ladbeck, R. E.

    2011-10-15

    The aim of this project is to identify low-redshift host galaxies of quasar absorption-line systems by selecting galaxies that are seen in projection onto quasar sightlines. To this end, we use the Seventh Data Release of the Sloan Digital Sky Survey to construct a parent sample of 97,489 galaxy/quasar projections at impact parameters of up to 100 kpc to the foreground galaxy. We then search the quasar spectra for absorption-line systems of Ca II and Na I within {+-}500 km s{sup -1} of the galaxy's velocity. This yields 92 Ca II and 16 Na I absorption systems. We find that most of the Ca II and Na I systems are sightlines through the Galactic disk, through high-velocity cloud complexes in our halo, or Virgo Cluster sightlines. Placing constraints on the absorption line rest equivalent width significance ({>=}3.0{sigma}), the local standard of rest velocity along the sightline ({>=}345 km s{sup -1}), and the ratio of the impact parameter to the galaxy optical radius ({<=}5.0), we identify four absorption-line systems that are associated with low-redshift galaxies at high confidence, consisting of two Ca II systems (one of which also shows Na I) and two Na I systems. These four systems arise in blue, {approx}L*{sub r} galaxies. Tables of the 108 absorption systems are provided to facilitate future follow-up.

  11. THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. I. DATA AND EMPIRICAL TRENDS

    SciTech Connect

    Van Dokkum, Pieter G.; Conroy, Charlie

    2012-11-20

    The strength of gravity-sensitive absorption lines in the integrated light of old stellar populations is one of the few direct probes of the stellar initial mass function (IMF) outside of the Milky Way. Owing to the advent of fully depleted CCDs with little or no fringing it has recently become possible to obtain accurate measurements of these features. Here, we present spectra covering the wavelength ranges 0.35-0.55 {mu}m and 0.72-1.03 {mu}m for the bulge of M31 and 34 early-type galaxies from the SAURON sample, obtained with the Low Resolution Imaging Spectrometer on Keck. The signal-to-noise ratio is {approx}> 200 A{sup -1} out to 1 {mu}m, which is sufficient to measure gravity-sensitive features for individual galaxies and to determine how they depend on other properties of the galaxies. Combining the new data with previously obtained spectra for globular clusters in M31 and the most massive elliptical galaxies in the Virgo cluster, we find that the dwarf-sensitive Na I {lambda}8183, 8195 doublet and the FeH {lambda}9916 Wing-Ford band increase systematically with velocity dispersion, while the giant-sensitive Ca II {lambda}8498, 8542, 8662 triplet decreases with dispersion. These trends are consistent with a varying IMF, such that galaxies with deeper potential wells have more dwarf-enriched mass functions. In a companion paper, we use a comprehensive stellar population synthesis model to demonstrate that IMF effects can be separated from age and abundance variations and quantify the IMF variation among early-type galaxies.

  12. X-Raying the Ultraluminous Infrared Starburst Galaxy and Broad Absorption Line QSO Markarian 231 with Chandra

    NASA Technical Reports Server (NTRS)

    Gallagher, S. C.; Brandt, W. N.; Chartas, G.; Garmire, G. P.; Sambruna, R. M.

    2002-01-01

    With 40 ks of Clzandra ACIS-S3 exposure, new information on both the starburst and QSO components of the X-ray emission of Markarian 231, an ultraluminous infrared galaxy and broad absorption line QSO, has been obtained. The bulk of the X-ray luminosity is emitted from an unresolved nuclear point source, and the spectrum is remarkably hard, with the majority of the flux emitted above 2 keV. Most notably, significant nuclear variability (a decrease of -45% in approximately 6 hr) at energies above 2 keV indicates that Chuizdra has probed within light-hours of the central black hole. Although we concur with Maloney & Reynolds that the direct continuum is not observed, this variability coupled with the 188 eV upper limit on the equivalent width of the Fe K o emission line argues against the reflection-dominated model put forth by these authors based on their ASCA data. Instead, we favor a model in which a small, Compton-thick absorber blocks the direct X-rays, and only indirect, scattered X-rays from multiple lines of sight can reach the observer. Extended soft, thermal emission encompasses the optical extent of the galaxy and exhibits resolved structure. An off-nuclear X-ray source with a 0.35-8.0 keV luminosity of Lx = 7 x 10 sup39 ergs s sup -1 , consistent with the ultraluminous X-ray sources in other nearby starbursts, is detected. We also present an unpublished Faint Object Spectrograph spectrum from the Hirhhle Spuce Telescope archive showing the broad C IV absorption.

  13. Variable Reddening and Broad Absorption Lines in the Narrow-line Seyfert 1 Galaxy WPVS 007: An Origin in the Torus

    NASA Astrophysics Data System (ADS)

    Leighly, Karen M.; Cooper, Erin; Grupe, Dirk; Terndrup, Donald M.; Komossa, S.

    2015-08-01

    We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddening increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11733, 13015, and 14058.

  14. The assembly histories of quiescent galaxies since z = 0.7 from absorption line spectroscopy

    SciTech Connect

    Choi, Jieun; Conroy, Charlie; Moustakas, John; Graves, Genevieve J.; Holden, Bradford P.; Brown, Michael J. I.; Van Dokkum, Pieter G.

    2014-09-10

    We present results from modeling the optical spectra of a large sample of quiescent galaxies between 0.1 < z < 0.7 from the Sloan Digital Sky Survey (SDSS) and the AGN and Galaxy Evolution Survey (AGES). We examine how the stellar ages and abundance patterns of galaxies evolve over time as a function of stellar mass from 10{sup 9.6}-10{sup 11.8} M {sub ☉}. Galaxy spectra are stacked in bins of mass and redshift and modeled over a wavelength range from 4000 Å to 5500 Å. Full spectrum stellar population synthesis modeling provides estimates of the age and the abundances of the elements Fe, Mg, C, N, and Ca. We find negligible evolution in elemental abundances at fixed stellar mass over roughly 7 Gyr of cosmic time. In addition, the increase in stellar ages with time for massive galaxies is consistent with passive evolution since z = 0.7. Taken together, these results favor a scenario in which the inner ∼0.3-3 R {sub e} of massive quiescent galaxies have been passively evolving over the last half of cosmic time. Interestingly, the derived stellar ages are considerably younger than the age of the universe at all epochs, consistent with an equivalent single-burst star formation epoch of z ≲ 1.5. These young stellar population ages coupled with the existence of massive quiescent galaxies at z > 1 indicate the inhomogeneous nature of the z ≲ 0.7 quiescent population. The data also permit the addition of newly quenched galaxies at masses below ∼10{sup 10.5} M {sub ☉} at z < 0.7. Additionally, we analyze very deep Keck DEIMOS spectra of the two brightest quiescent galaxies in a cluster at z = 0.83. There is tentative evidence that these galaxies are older than their counterparts in low-density environments. In the Appendix, we demonstrate that our full spectrum modeling technique allows for accurate and reliable modeling of galaxy spectra to low S/N (∼20 Å{sup –1}) and/or low spectral resolution (R ∼ 500).

  15. The theory of QSO absorption line systems and their relationship to the galaxies

    NASA Technical Reports Server (NTRS)

    Charlton, Jane

    1993-01-01

    The fundamental goal of this effort is to paint a picture of what the Ly-alpha forest clouds are and how they are distributed in space. Progress during the first phase of this program involved development of the 'Cheshire Cat Model' of Ly-alpha clouds in which systems over a large range of column densities are produced by disks with somewhat smaller column densities than those of normal galaxies. A prediction of the slab model of Ly-alpha clouds was confirmed by a new observational result, and the comparison of models to the new data allowed an estimate of the pressure of the intergalactic medium. This result should be forthcoming in pre-print form within the next month. The various results will now be described in more detail.

  16. UV Absorption Lines as Metallicity Estimator and the Metal Content of Star-forming Galaxies at z=5

    NASA Astrophysics Data System (ADS)

    Faisst, Andreas; Capak, Peter L.; Davidson, Iary; Kakazu, Yuko; Salvato, Mara; Laigle, Clotilde; Onodera, Masato; Masters, Daniel; COSMOS Team

    2016-01-01

    Probing the metal content of high redshift galaxies is essential to study their formation and evolution in the early universe. However, the spectral features used to measure the metallicity are shifted out of the wavelength range of current spectrographs at high-z and therefore alternative methods must be used.We measure the relation between four prominent UV absorption complexes and metallicity for more than 50 local galaxies and, by using a sample of more than 20 galaxies at z ~ 2 - 3, verify that this relation holds up to z ˜ 3. We then apply this method to a sample of ˜ 220 galaxies at 3.5 < z < 6.0 in COSMOS, for which unique UV spectra from DEIMOS and accurate stellar mass estimates from SPLASH are available. The z ~ 5 galaxies at 9 < log(m/M⊙) < 11 are characterized by 0.3 - 0.4 dex (in units of 12 + log(O/H)) lower metallicities than galaxies at z ˜ 2 but comparable to z ˜ 3 - 3.5 galaxies. In the same stellar mass range, we do not find a significant relation between stellar mass and metallicity (MZ relation), suggesting that the MZ relation at z ~ 5 is very shallow or breaking down. Since we verify a correlation between dust obscuration (measured by β) and UV absorption strength (i.e., metallicity), we argue that the process of dust production and metal enrichment in the first billion years of galaxy formation is more stochastic than at later times. Using a "bathtub" model approach, we find that an exponential build up of stellar mass within a short time of several 100 Myr can explain a shallow MZ relation at z ˜ 5. Furthermore, we find a weak anti-correlation between star-formation rates and UV absorption strength (i.e., metallicity), indicative of these galaxies being fueled by the inflow of pristine (metal-poor) gas. The galaxy sample presented in this work is unique to further test these scenarios using ALMA and the upcoming James Webb Space Telescope.

  17. Rest-UV Absorption Lines as Metallicity Estimator: The Metal Content of Star-forming Galaxies at z ~ 5

    NASA Astrophysics Data System (ADS)

    Faisst, A. L.; Capak, P. L.; Davidzon, I.; Salvato, M.; Laigle, C.; Ilbert, O.; Onodera, M.; Hasinger, G.; Kakazu, Y.; Masters, D.; McCracken, H. J.; Mobasher, B.; Sanders, D.; Silverman, J. D.; Yan, L.; Scoville, N. Z.

    2016-05-01

    We measure a relation between the depth of four prominent rest-UV absorption complexes and metallicity for local galaxies and verify it up to z∼ 3. We then apply this relation to a sample of 224 galaxies at 3.5\\lt z\\lt 6.0 (< z> =4.8) in the Cosmic Evolution Survey (COSMOS), for which unique UV spectra from the Deep Imaging Multi-object Spectrograph (DEIMOS) and accurate stellar masses from the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) are available. The average galaxy population at z∼ 5 and {log}(M/{M}ȯ )\\gt 9 is characterized by 0.3–0.4 dex (in units of 12+{log}({{O/H}})) lower metallicities than at z ∼ 2, but comparable to z∼ 3.5. We find galaxies with weak or no Lyα emission to have metallicities comparable to z ∼ 2 galaxies and therefore may represent an evolved subpopulation of z∼ 5 galaxies. We find a correlation between metallicity and dust in good agreement with local galaxies and an inverse trend between metallicity and star-formation rate consistent with observations at z ∼ 2. The relation between stellar mass and metallicity (MZ relation) is similar to z∼ 3.5, but there are indications of it being slightly shallower, in particular for the young, Lyα-emitting galaxies. We show that, within a “bathtub” approach, a shallower MZ relation is expected in the case of a fast (exponential) build-up of stellar mass with an e-folding time of 100–200 Myr. Because of this fast evolution, the process of dust production and metal enrichment as a function of mass could be more stochastic in the first billion years of galaxy formation compared to later times.

  18. Nustar Reveals an Intrinsically X-ray Weak Broad Absorption Line Quasar in the Ultraluminous Infrared Galaxy Markarian 231

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Brandt. W. N.; Harrison, F. A.; Luo, B.; Alexander, D. M.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Fabian, A. C.; Farrah, D.; Fiore, F.; Gandhi, P.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R. C.; Madsen, K. K.; Ptak, A. F.; Rigby, Jane Rebecca; Risaliti, G.; Saz, C.; Stern, D.; Veilleux, S.; Walton, D. J.; Wik, D. R.; Zhang, W. W.

    2014-01-01

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin N(sub H) approx. 1.2(sup +0.3) sub-0.3) x 10(exp 23) / sq cm) column. The intrinsic X-ray luminosity L(sub 0.5-30 Kev) approx. 1.0 x 10(exp 43) erg /s) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is approx. 0.03% compared to the typical values of 2-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope alpha(sub 0X) approx. -1.7. It is a local example of a low-ionization broad absorption line (LoBAL) quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  19. PEARS Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; Cohen, Seth; Belini, Andrea; Holwerda, Benne W.; Straughn, Amber; Mechtley, Matthew

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 < z < 1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allOW8 us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 [OII], [OIII] and/or H-alpha emission lines have been identified in the PEARS sample of approx 906 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  20. How absorption selected galaxies trace the general high-redshift galaxy population

    NASA Astrophysics Data System (ADS)

    Christensen, Lise

    2015-08-01

    Strong absorption lines seen in quasar spectra arise when the lines of sight to the quasars intersect intervening galaxies. The associated metal absorption lines from the strongest absorption lines, the damped Lyman alpha absorbers (DLAs), allow us to trace the metallicity of galaxies back to redshifts z>5. Typical metallicities range from 0.1-100% solar metallicities with a huge scatter at any given redshift. Understanding the nature of galaxies that host DLAs is one strategy to probe the early phase and origin of stars in the outskirts of present-day galaxy disks.The search for emission from the elusive high-redshift DLA galaxies has reached a mature state now that we have determined how to best identify the absorbing galaxies. From a growing number of emission-line detections from DLA galaxies at redshifts ranging between 0.1 and 3, we can analyse galaxies in both absorption and emission, and probe the gas-phase metallicities in the outskirts and halos of the galaxies.By combining information for galaxies seen in emission and absorption, I will show that there is a relation between DLA metallicities and the host galaxy luminosities similar to the well-known the mass-metallicity relation for luminosity selected galaxies. This implies that DLA galaxies are drawn from the general population of low- to intermediate mass galaxies. We can determine a metallicity gradient in the extended halo of the galaxies out to ~40 kpc, and this allows us to reproduce observed galaxy correlation functions derived from conventional samples of luminosity selected galaxies.

  1. DEEP ABSORPTION LINE STUDIES OF QUIESCENT GALAXIES AT z {approx} 2: THE DYNAMICAL-MASS-SIZE RELATION AND FIRST CONSTRAINTS ON THE FUNDAMENTAL PLANE

    SciTech Connect

    Toft, S.; Gallazzi, A.; Zirm, A.; Wold, M.; Zibetti, S.; Grillo, C.; Man, A.

    2012-07-20

    We present dynamical and structural scaling relations of quiescent galaxies at z = 2, including the dynamical-mass-size relation and the first constraints on the fundamental plane (FP). The backbone of the analysis is a new, very deep Very Large Telescope/X-shooter spectrum of a massive, compact, quiescent galaxy at z = 2.0389. We detect the continuum between 3700 and 22,000 A and several strong absorption features (Balmer series, Ca H+K, G band) from which we derive a stellar velocity dispersion of 318 {+-} 53 km s{sup -1}. We perform detailed modeling of the continuum emission and line indices and derive strong simultaneous constraints on the age, metallicity, and stellar mass. The galaxy is a dusty (A{sub V} = 0.77{sup +0.36}{sub -0.32}) solar metallicity (log(Z/Z{sub Sun }) = 0.02{sup +0.20}{sub -0.41}) post-starburst galaxy, with a mean-luminosity-weighted log(age/yr) of 8.9 {+-} 0.1. The galaxy formed the majority of its stars at z > 3 and currently has little or no ongoing star formation. We compile a sample of three other z {approx} 2 quiescent galaxies with measured velocity dispersions, two of which are also post-starburst like. Their dynamical-mass-size relation is offset significantly less than the stellar-mass-size relation from the local early-type relations, which we attribute to a lower central dark matter fraction. Recent cosmological merger simulations agree qualitatively with the data, but cannot fully account for the evolution in the dark matter fraction. The z {approx} 2 FP requires additional evolution beyond passive stellar aging to be in agreement with the local FP. The structural evolution predicted by the cosmological simulations is insufficient, suggesting that additional, possibly non-homologous, structural evolution is needed.

  2. Absorption-line detections of 10{sup 5}-10{sup 6} K gas in spiral-rich groups of galaxies

    SciTech Connect

    Stocke, John T.; Keeney, Brian A.; Danforth, Charles W.; Syphers, David; Yamamoto, H.; Shull, J. Michael; Green, James C.; Froning, Cynthia; Savage, Blair D.; Wakker, Bart; Kim, Tae-Sun; Ryan-Weber, Emma V.; Kacprzak, Glenn G.

    2014-08-20

    Using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, the COS Science Team has conducted a high signal-to-noise survey of 14 bright QSOs. In a previous paper, these far-UV spectra were used to discover 14 'warm' (T ≥ 10{sup 5} K) absorbers using a combination of broad Lyα and broad O VI absorptions. A reanalysis of a few of this new class of absorbers using slightly relaxed fitting criteria finds as many as 20 warm absorbers could be present in this sample. A shallow, wide spectroscopic galaxy redshift survey has been conducted around these sight lines to investigate the warm absorber environment, which is found to be spiral-rich groups or cluster outskirts with radial velocity dispersions σ = 250-750 km s{sup –1}. While 2σ evidence is presented favoring the hypothesis that these absorptions are associated with the galaxy groups and not with the individual, nearest galaxies, this evidence has considerable systematic uncertainties and is based on a small sample size so it is not entirely conclusive. If the associations are with galaxy groups, the observed frequency of warm absorbers (dN/dz = 3.5-5 per unit redshift) requires them to be very extended as an ensemble on the sky (∼1 Mpc in radius at high covering factor). Most likely these warm absorbers are interface gas clouds whose presence implies the existence of a hotter (T ∼ 10{sup 6.5} K), diffuse, and probably very massive (>10{sup 11} M {sub ☉}) intra-group medium which has yet to be detected directly.

  3. Atlas of Infrared Absorption Lines

    NASA Technical Reports Server (NTRS)

    Park, J. H.

    1977-01-01

    This atlas of infrared absorption line contains absorption line parameters (line strength vs. wavenumber) from 500 to 7000 cm(exp-1) for 15 gases: H2O, CO2, O3, N2O, CO, CH4, O2, SO2, NO, NO2, NH3, HCl, HF, HNO3 and CH3Cl.

  4. NuSTAR reveals an intrinsically X-ray weak broad absorption line quasar in the ultraluminous infrared galaxy Markarian 231

    SciTech Connect

    Teng, Stacy H.; Rigby, J. R.; Brandt, W. N.; Luo, B.; Harrison, F. A.; Grefenstette, B. W.; Madsen, K. K.; Alexander, D. M.; Gandhi, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fabian, A. C.; Farrah, D.; Fiore, F.; Hailey, C. J.; Hickox, R. C.; Ptak, A. F.; and others

    2014-04-10

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin (N{sub H}∼1.2{sub −0.3}{sup +0.3}×10{sup 23} cm{sup –2}) column. The intrinsic X-ray luminosity (L {sub 0.5–30} {sub keV} ∼ 1.0 × 10{sup 43} erg s{sup –1}) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is ∼0.03% compared to the typical values of 2%-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope (α{sub OX} ∼ –1.7). It is a local example of a low-ionization broad absorption line quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  5. Absorption-line measurements of AGN outflows

    NASA Astrophysics Data System (ADS)

    Fields, Dale L.

    Investigations into the elemental abundances in two nearby active galaxies, the narrow-line Seyfert 1 Markarian 1044 and the Seyfert 1 Markarian 279, are reported. Spectra from three space-based observatories HST, FUSE, and CHANDRA, are used to measure absorption lines in material outflowing from the nucleus. I make multi-wavelength comparisons to better convert the ionic column densities into elemental column densities which can then be used to determine abundances (metallicities). Narrow-line Seyfert 1 galaxies are known to have extreme values of a number of properties compared to active galactic nuclei (AGNs) as a class. In particular, emission-line studies have suggested that NLS1s are unusually metal-rich compared to broad-line AGNs of comparable luminosity. To test these suggestions I perform absorption-line studies on the NLS1 Markarian 1044, a nearby and bright AGN. I use lines of H I, C IV, N V, and O VI to properly make the photoionization correction through the software Cloudy and determine abundances of Carbon, Nitrogen and Oxygen. I find two results. The first is that Markarian 1044 has a bulk metallicity greater than five times solar. The second is that the N/C ratio in Markarian 1044 is consistent with a solar mixture. This is in direct contradiction of extrapolations from local H II regions which state N/ C should scale with bulk metallicity. This implies a different enrichment history in Markarian 1044 than in the Galactic disk. I also report discovery of three new low-redshift Lya forest lines with log N HI >= 12:77 in the spectrum of Markarian 1044. This number is consistent with the 2.6 expected Lya forest lines in the path length to Markarian 1044. I also investigate the CHANDRA X-ray spectrum of Markarian 279, a broad-line Seyfert 1. I use a new code, PHASE, to self-consistently model the entire absorption spectrum simultaneously. Using solely the X-ray spectrum I am able to determine the physical parameters of this absorber to a degree only

  6. Properties of low-redshift QSO absorption systems - QSO-galaxy pairs

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.

    1993-01-01

    The chance proximity of QSOs and galaxies provides unique opportunities to probe the extent and content of gas in the foreground galaxies through evaluation of the incidence and strength of absorption lines in the spectra of the background QSOs. Recent results on the observed properties of these low-redshift, heavy-element absorption systems are summarized. These results are discussed in the context of the galaxy morphologies and environments and are briefly compared with Galactic absorption and with the inferred properties of higher-redshift QSO absorption systems.

  7. Probing the extent and content of low ionization gas in galaxies: QSO absorption and HI emission

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.

    1993-01-01

    The small projected separations of some QSO's and low-redshift galaxies provide unique opportunities to study the extent and content of gas in galaxies through observation of absorption in the QSO spectra. Observations of these systems provide valuable information on the connection between the absorbing gas and the galaxy, as well as detailed information on the morphology and environment of the galaxy itself. While there is direct evidence that galaxies can produce the intervening-type QSO absorption lines, over the past decade, the study of such 'QSO-galaxy pairs' (at low redshift) has been considered unsuccessful because new detections of absorption were seldom made. A fundamental problem concerning the relation between these low-redshift systems and those seen at moderate to high redshift remains unresolved. Direct and indirect measures of galaxy absorption cross sections at moderate to high redshifts (z is approximately greater than 20.5) are much larger than the optical and HI sizes of local galaxies. However, direct comparison of the low and moderate to high redshift systems is difficult since different ions are observed in different redshift regimes. Observations are presented for a new sample of QSO-galaxy pairs. Nine new QSO's which shine through nearby galaxies (on the sky-plane) were observed to search for CaII absorption in the QSO spectra at the foreground galaxy redshifts.

  8. Active Galactic Nuclei Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru

    2007-07-01

    Quasars are the extremely bright nuclei found in about 10% of galaxies. A variety of absorption features (known collectively as quasar absorption lines) are detected in the rest-frame UV spectra of these objects. While absorption lines that have very broad widths originate in gas that is probably physocally related to the quasars, narrow absorption lines (NALs) were thought to arise in galaxies and/or in the intter-alacttic medium between the quasars and us. Using high-resolution spectra of quasars, it is found that a substantial fraction of NALs arise in gas in the immediate vicinity of the quasars. A dramatically variable, moderately-broad absorption line in the spectrum of the quasar HS 1603+3820l is also found. The variability of this line is monitored in a campaign with Subaru telescope. These observational results are compared to models for outflows from the quasars, specifically, models for accretion disk winds and evaporating obscuring tori. It is quite important to determine the mechanism of outflow because of its cosmological implications. The outflow could expel angular momentum from the accretion disk and enable quasars to accrete and shine. In addition, the outflow may also regulate star formation in the early stages of the assembly of the host galaxy and enrich the interstellar and intergalactic medium with metals.

  9. Spectral classification of emission-line galaxies

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, M.; Pindao, M.; Maeder, A.; Kunth, D.

    2000-03-01

    The main goal of this work is to further investigate the classification of emission-line galaxies from the ``Spectrophotometric Catalogue of H II galaxies'' by Terlevich et al. (1991) in a homogeneous and objective way, using the three line-ratio diagrams, called diagnostic diagrams, of Veilleux & Osterbrock (1987). On the basis of the resulting catalogue, we critically discuss the classification methods in the optical range. In particular we compare our classification scheme to the one done by Rola et al. (1997) which is efficient for the classification of redshifted galaxies. We also propose a new diagnostic diagram involving the known intensity ratio R23=([O II],l 3727+[O III] l 4959+{[O III] l 5007)/Hb which appears to be a very good criterion allowing to discriminate the Seyfert 2 from H ii galaxies. The revised catalogue including 314 narrow-emission-line galaxies contains H II galaxies, Seyfert 2 galaxies, Low Ionization Nuclear Emission-Line Regions (hereafter LINERs) galaxies and some particular types of galaxies with the most intriguing ones, called ``ambiguous'', due to the ambiguity of their location in the diagnostic diagrams. These galaxies appear as H II galaxies and as active galactic nuclei (hereafter AGNs) in different diagrams of Veilleux & Osterbrock and constitute certainly a sample of particularly interesting candidates for a thorough study of connections between starbursts and AGNs. Available in electronic form only via anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html

  10. Local Group Galaxy Emission-line Survey

    NASA Astrophysics Data System (ADS)

    Blaha, Cindy; Baildon, Taylor; Mehta, Shail; Garcia, Edgar; Massey, Philip; Hodge, Paul W.

    2015-01-01

    We present the results of the Local Group Galaxy Emission-line Survey of Hα emission regions in M31, M33 and seven dwarf galaxies in (NGC6822, IC10, WLM, Sextans A and B, Phoenix and Pegasus). Using data from the Local Group Galaxy Survey (LGGS - see Massey et al, 2006), we used continuum-subtracted Ha emission line images to define emission regions with a faint flux limit of 10 -17 ergs-sec-1-cm-2above the background. We have obtained photometric measurements for roughly 7450 Hα emission regions in M31, M33 and five of the seven dwarf galaxies (no regions for Phoenix or Pegasus). Using these regions, with boundaries defined by Hα-emission flux limits, we also measured fluxes for the continuum-subtracted [OIII] and [SII] images and constructed a catalog of Hα fluxes, region sizes and [OIII]/ Hα and [SII]/ Hα line ratios. The HII region luminosity functions and size distributions for the spiral galaxies M31 and M33 are compared with those of the dwarf galaxies NGC 6822 and IC10. For M31 and M33, the average [SII]/ Hα and [OIII]/ Hα line ratios, plotted as a function of galactocentric radius, display a linear trend with shallow slopes consistent with other studies of metallicity gradients in these galaxies. The galaxy-wide averages of [SII]/ Hα line ratios correlate with the masses of the dwarf galaxies following the previously established dwarf galaxy mass-metallicity relationship. The slope of the luminosity functions for the dwarf galaxies varies with galaxy mass. The Carleton Catalog of this Local Group Emission-line Survey will be made available on-line.

  11. Shocked Post-starbust Galaxy Survey: Candidate Post-Starbust Galaxies with Narrow Emission Line Ratios Arising from Shocks

    NASA Astrophysics Data System (ADS)

    Cales, Sabrina; Alatalo, Katherine A.; Appleton, Philip N.; Lisenfeld, Ute; Rich, Jeffrey; Nyland, Kristina; Lacy, Mark; Kewley, Lisa J.

    2015-01-01

    As galaxies age they move from the blue cloud (star forming) to the red sequence (`dead' galaxies) in the color-magnitude diagram of galaxies. Galaxies between the blue cloud and red sequence (i.e., the green valley) are caught in the act of transitioning and they show large Balmer jump and high order Balmer absorption lines in their optical spectra. These galaxies answer to many names (i.e., E+A, K+A, Hdelta-strong, post-starburst), all with similar but slightly different selection criteria. Many studies of transitioning galaxies invoke strong constraints on emission lines in order to guarantee a dominant post-starburst (rather that actively star bursting) stellar population, however these constraints bias the sample against narrow-line emission not arising from star formation, namely active galactic nuclei, low-ionization nuclear emission regions and shocks. Using the Oh-Sarzi-Schawinski-Yi (OSSY) emission and absorption line measurements for SDSS DR7 galaxies we study the intersection between transitioning galaxies and those with shock line ratios. We show that a significant fraction of transitioning galaxies have emission-line ratios indicative of shocks. We postulate that these shocks may be in part responsible for the shepherding of blue star forming galaxies to passive early-types.

  12. Iron Line Diagnostics of Narrow Emission Line Galaxies

    NASA Astrophysics Data System (ADS)

    Nousek, John A.

    1996-05-01

    This report describes the activities at Penn State University supported by NASA Grant NAG5-2528, 'Iron Line Diagnostics of Narrow Emission Line Galaxies'. The aim of this investigation was to accurately measure the iron (Fe K) line emission in two X-ray selected Seyfert 2 galaxies (NGC 2992 and MCG-5-23-16). The astrophysics being probed was to determine whether the Fe line was narrow, broad or both. The broad line component is very important as a probe of the nature of the innermost accretion onto the central engine in AGN's.

  13. The missing UV absorption lines of NGC 4151

    NASA Technical Reports Server (NTRS)

    Leech, K. J.; Penston, M. V.; Snijders, M. A. J.; Ward, M. J.; Gull, T. R.

    1990-01-01

    Near simultaneous high dispersion long and short wavelength International Ultraviolet Explorer (IUE) observations of the Seyfert galaxy NGC 4151 are discussed. Previous observations revealed a narrow absorption system in Mg II not present in Ly alpha or C IV. The new observations confirm the presence of this system in Mg II and its absence in the other lines. Possible reasons for this are discussed. Future Hubble Space Telescope studies of NGC 4151 are discussed.

  14. Do Atoms Really "Emit" Absorption Lines?

    ERIC Educational Resources Information Center

    Brecher, Kenneth

    1991-01-01

    Presents three absorption line sources that enhance student understanding of the phenomena associated with the interaction of light with matter and help dispel the misconception that atoms "emit" absorption lines. Sources include neodymium, food coloring and other common household liquids, and fluorescent materials. (MDH)

  15. A Statistical Study of Mg II Absorption Selected Galaxies in the SDSS at 0.4

    NASA Astrophysics Data System (ADS)

    Curtis, Brittney; Lundgren, B.

    2014-01-01

    The spectra of distant quasars frequently exhibit absorption features from singly-ionized magnesium (Mg II), which are understood to trace gas outflow and accretion processes in foreground galaxies. Host galaxies of the Mg II absorbing gas are difficult to detect because they are often faint and have small angular separation from the bright background quasar. We have undertaken a statistical study of low redshift ( 0.4) galaxies identified as potential Mg II absorption hosts which are visible in the Sloan Digital Sky Survey (SDSS). Using data from the SDSS DR7, we compiled a census of ~3200 photometrically-identified galaxies within a projected 150 kpc of an Mg II absorbing system. These potential Mg II absorption hosts were then compared to a control sample of galaxies in the foreground of quasars without absorption systems in the same redshift range. We report a positive detection of excess galaxies around the lines of sight to quasars with Mg II absorption systems, extending to ~90 kpc. We present the luminosity distribution of these excess galaxies and compare to previous, smaller studies from the literature. This work was partially supported by the National Science Foundation's REU program through NSF Award AST-1004881 to the University of Wisconsin-Madison.

  16. A Deep Search For Faint Galaxies Associated With Very Low-redshift C IV Absorbers. II. Program Design, Absorption-line Measurements, and Absorber Statistics

    NASA Astrophysics Data System (ADS)

    Burchett, Joseph N.; Tripp, Todd M.; Prochaska, J. Xavier; Werk, Jessica K.; Tumlinson, Jason; O'Meara, John M.; Bordoloi, Rongmon; Katz, Neal; Willmer, C. N. A.

    2015-12-01

    To investigate the evolution of metal-enriched gas over recent cosmic epochs as well as to characterize the diffuse, ionized, metal-enriched circumgalactic medium, we have conducted a blind survey for C iv absorption systems in 89 QSO sightlines observed with the Hubble Space Telescope Cosmic Origins Spectrograph. We have identified 42 absorbers at z < 0.16, comprising the largest uniform blind sample size to date in this redshift range. Our measurements indicate an increasing C iv absorber number density per comoving path length (d{N}/{dX}= 7.5 ± 1.1) and modestly increasing mass density relative to the critical density of the universe (ΩC iv = 10.0 ± 1.5 × 10-8) from z ˜ 1.5 to the present epoch, consistent with predictions from cosmological hydrodynamical simulations. Furthermore, the data support a functional form for the column density distribution function that deviates from a single power law, also consistent with independent theoretical predictions. As the data also probe heavy element ions in addition to C iv at the same redshifts, we identify, measure, and search for correlations between column densities of these species where components appear to be aligned in velocity. Among these ion-ion correlations, we find evidence for tight correlations between C ii and Si ii, C ii and Si iii, and C iv and Si iv, suggesting that these pairs of species arise in similar ionization conditions. However, the evidence for correlations decreases as the difference in ionization potential increases. Finally, when controlling for observational bias, we find only marginal evidence for a correlation (86.8% likelihood) between the Doppler line width b(C iv) and column density N(C iv).

  17. Line Strength Gradients in Elliptical and Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Fisher, David; Franx, Marijn; Illingworth, Garth

    1995-07-01

    Line strengths and their gradients in Mg, Fe, and Hβ have been determined for seven elliptical and nine brightest cluster galaxies (BCGs) in order to study their stellar populations and investigate their relationship to one another. We find that BCGs follow the same relationship between central Mg b line strength and central velocity dispersion found for elliptical galaxies. Brightest cluster galaxies are in agreement with the known trend toward more massive elliptical galaxies having larger [Mg/Fe] ratios, while the internal gradients within our BCG and E galaxies are consistent with a roughly constant [Mg/Fe] ratio. We find that a correlation exists between the central [Mg/Fe] ratio and average Hβ line strength in the sense that both BCG and elliptical galaxies with larger [Mg/Fe] ratios have lower strengths. For our sample, Hβ is the best predictor of [Mg/Fe] ratio. If the dominant contribution to the Hβ feature is from turnoff stars then this relation predicts that more massive elliptical galaxies are older than less massive ones. If, however, the main source of the H index is from horizontal-branch stars, then the observed {[Mg/Fe],HP} relation could be the result of more massive elliptical galaxies having flatter IMFs for high-mass stars than less massive elliptical galaxies. The line strengths of the objects in our sample span a range of values. The BCGs generally have low global Hβ line strengths, which, under the assumption that the Hβ feature can be used as an age discriminant, indicates that the bulk of these systems underwent their last major episode of star formation ≳ 8-10 Gyr ago. For both the elliptical galaxies and BCGs we find that within a galaxy, the Hβ profile is flat for objects whose Hβ absorption can be reliably measured. In the presence of a declining metallicity gradient this suggests that the centers of elliptical galaxies and BCGs are ˜1-3 Gyr younger than their outer regions. The metal line strength gradients for

  18. The emission line - continuum connection in galaxies

    NASA Astrophysics Data System (ADS)

    Sodre, Laerte; Albernaz-Sirico, Ana Carolina

    2015-08-01

    Star-forming galaxies with a blue continuum tend to present prominent emission lines, whereas in red galaxies emission lines are associated mostly to nuclear activity or to certain stellar populations, like post-AGB stars. In this work we have used tools of machine learning to investigate how theemission line equivalent widths of galaxies are related to their optical continuum. From the analysis of a sample of high S/N spectra of SDSS/DR9 we show that indeed it is possible to estimate with good accuracy the equivalent width of the most intense emission lines from galaxy continuum information only for star-forming galaxies and AGNs (LINERS and Seyfer 2 emitters) by using simple relationships (linear and/or polynomial models) between the EWs and the relative flux at certain wavelengths. An important motivation for this work is to produce realistic spectra to test the data reduction pipelines of the new generation of galaxy surveys, like J-PAS and PFS/SuMIRe.

  19. Properties of QSO Metal-line Absorption Systems at High Redshifts: Nature and Evolution of the Absorbers and New Evidence on Escape of Ionizing Radiation from Galaxies

    NASA Astrophysics Data System (ADS)

    Boksenberg, Alec; Sargent, Wallace L. W.

    2015-05-01

    Using Voigt-profile-fitting procedures on Keck High Resolution Spectrograph spectra of nine QSOs, we identify 1099 C IV absorber components clumped in 201 systems outside the Lyman forest over 1.6 <~ z <~ 4.4. With associated Si IV, C II, Si II and N V where available, we investigate the bulk statistical and ionization properties of the components and systems and find no significant change in redshift for C IV and Si IV while C II, Si II and N V change substantially. The C IV components exhibit strong clustering, but no clustering is detected for systems on scales from 150 km s-1 out to 50,000 km s-1. We conclude that the clustering is due entirely to the peculiar velocities of gas present in the circumgalactic media of galaxies. Using specific combinations of ionic ratios, we compare our observations with model ionization predictions for absorbers exposed to the metagalactic ionizing radiation background augmented by proximity radiation from their associated galaxies and find that the generally accepted means of radiative escape by transparent channels from the internal star-forming sites is spectrally not viable for our stronger absorbers. We develop an active scenario based on runaway stars with resulting changes in the efflux of radiation that naturally enable the needed spectral convergence, and in turn provide empirical indicators of morphological evolution in the associated galaxies. Together with a coexisting population of relatively compact galaxies indicated by the weaker absorbers in our sample, the collective escape of radiation is sufficient to maintain the intergalactic medium ionized over the full range 1.9 < z <~ 4.4. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck

  20. Magellan LDSS3 emission confirmation of galaxies hosting metal-rich Lyman α absorption systems

    NASA Astrophysics Data System (ADS)

    Straka, Lorrie A.; Johnson, Sean; York, Donald G.; Bowen, David V.; Florian, Michael; Kulkarni, Varsha P.; Lundgren, Britt; Péroux, Celine

    2016-06-01

    Using the Low Dispersion Survey Spectrograph 3 at the Magellan II Clay Telescope, we target candidate absorption host galaxies detected in deep optical imaging (reaching limiting apparent magnitudes of 23.0-26.5 in g, r, i, and z filters) in the fields of three QSOs, each of which shows the presence of high metallicity, high N_{H I} absorption systems in their spectra (Q0826-2230: zabs = 0.9110, Q1323-0021: zabs = 0.7160, Q1436-0051: zabs = 0.7377, 0.9281). We confirm three host galaxies at redshifts 0.7387, 0.7401, and 0.9286 for two of the Lyman α absorption systems (one with two galaxies interacting). For these systems, we are able to determine the star formation rates (SFRs); impact parameters (from previous imaging detections); the velocity shift between the absorption and emission redshifts; and, for one system, also the emission metallicity. Based on previous photometry, we find these galaxies have L > L*. The [O II] SFRs for these galaxies are in the range 11-25 M⊙ yr-1 (uncorrected for dust), while the impact parameters lie in the range 35-54 kpc. Despite the fact that we have confirmed galaxies at 50 kpc from the QSO, no gradient in metallicity is indicated between the absorption metallicity along the QSO line of sight and the emission line metallicity in the galaxies. We confirm the anticorrelation between impact parameter and N_{H I} from the literature. We also report the emission redshift of five other galaxies: three at zem > zQSO, and two (L < L*) at zem < zQSO not corresponding to any known absorption systems.

  1. HALO GAS AND GALAXY DISK KINEMATICS OF A VOLUME-LIMITED SAMPLE OF Mg II ABSORPTION-SELECTED GALAXIES AT z {approx} 0.1

    SciTech Connect

    Kacprzak, Glenn G.; Cooke, Jeff; Churchill, Christopher W.; Barton, Elizabeth J. E-mail: jcooke@astro.swin.edu.au E-mail: ebarton@uci.edu

    2011-06-01

    We have directly compared Mg II halo gas kinematics to the rotation velocities derived from emission/absorption lines of the associated host galaxies. Our 0.096 {<=} z {<=} 0.148 volume-limited sample comprises 13 {approx}L{sub *} galaxies, with impact parameters of 12-90 kpc from background quasar sight lines, associated with 11 Mg II absorption systems with Mg II equivalent widths 0.3 A {<=} W{sub r} (2796) {<=} 2.3 A. For only 5/13 galaxies, the absorption resides to one side of the galaxy systemic velocity and trends to align with one side of the galaxy rotation curve. The remainder have absorption that spans both sides of the galaxy systemic velocity. These results differ from those at z {approx} 0.5, where 74% of the galaxies have absorption residing to one side of the galaxy systemic velocity. For all the z {approx} 0.1 systems, simple extended disk-like rotation models fail to reproduce the full Mg II velocity spread, implying that other dynamical processes contribute to the Mg II kinematics. In fact 55% of the galaxies are 'counter-rotating' with respect to the bulk of the Mg II absorption. These Mg II host galaxies are isolated, have low star formation rates (SFRs) in their central regions ({approx}< 1 M{sub sun} yr{sup -1}), and SFRs per unit area well below those measured for galaxies with strong winds. The galaxy Na ID (stellar+ISM) and Mg Ib (stellar) absorption line ratios are consistent with a predominately stellar origin, implying kinematically quiescent interstellar media. These facts suggest that the kinematics of the Mg II absorption halos for our sample of galaxies are not influenced by galaxy-galaxy environmental effects, nor by winds intrinsic to the host galaxies. For these low-redshift galaxies, we favor a scenario in which infalling gas accretion provides a gas reservoir for low-to-moderate SFRs and disk/halo processes.

  2. Bright emission lines in new Seyfert galaxies

    SciTech Connect

    Afanasev, V.L.; Denisiuk, E.K.; Lipovetskii, V.A.; Shapovalova, A.I.

    1983-01-01

    Observational data are given on bright emission lines (H-alpha, H-beta, and forbidden N II, S II, and O III) for 14 recently discovered Seyfert galaxies. The investigated objects can be divided into three groups, which correspond approximately to the first (5 objects), the intermediate (4 objects), and the second (4 objects) Seyfert types. Attention is drawn to the properties of the galaxy Markaryan 1018, which has features of both the first and the second type and is distinguished by the weakness of its emission lines, which is probably due to a gas deficit. 7 references.

  3. Spectral classification of emission-line galaxies

    SciTech Connect

    Veilleux, S.; Osterbrock, D.E.

    1987-02-01

    A revised method of classification of narrow-line active galaxies and H II region-like galaxies is proposed. It involves the line ratios which take full advantage of the physical distinction between the two types of objects and minimize the effects of reddening correction and errors in the flux calibration. Large sets of internally consistent data are used, including new, previously unpublished measurements. Predictions of recent photoionization models by power-law spectra and by hot stars are compared with the observations. The classification is based on the observational data interpreted on the basis of these models. 63 references.

  4. 5 CM OH absorption toward the megamaser galaxy IC 4553

    NASA Astrophysics Data System (ADS)

    Henkel, C.; Guesten, R.; Batrla, W.

    1986-11-01

    Absorption in the 2Π3/2 J = 5/2 main line of OH at 6035 MHz, 120K above the ground state, is reported from the OH megamaser galaxy IC 4553 (Arp 220). An upper limit is given for Mrk 231. For IC 4553, the authors derive an OH rotation temperature Trot ≡ 45K between the 2Π3/2 J = 5/2 and 3/2 ground levels, that is ≡30% below the dust temperature. Potential pumping mechanisms for the inversion of the ground state doublet are discussed and it is argued that the most likely OH excitation scenario involves pumping by FIR photons (79, 119 μm) and centimeter wave photons (5, 6 cm).

  5. Line asymmetry in the Seyfert Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Bautista, Manuel; Kallman, Timothy

    2005-01-01

    We have reanalyzed the 900 ks Chandra X-ray spectrum of NGC 3783, finding evidence on the asymmetry of the spectral absorption lines. The lines are fitted with a parametric expression that results from an analytical treatment of radiatively driven winds. The line asymmetry distribution derived from the spectrum is consistent with a non-spherical outflow with a finite optical depth. Within this scenario, our model explains the observed correlations between the line velocity shifts and the ionization parameter and between the line velocity shift and the line asymmetry. The present results may provide a framework for detailed testing of models for the dynamic and physical properties of warm absorber in Seyfert galaxies.

  6. Studies of galaxies giving rise to QSO absorption systems and observations of the high-redshift universe

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen

    I present a study of the galaxies that give rise to Lyman-α (Lyα) and triply ionized carbon (CIV) absorption lines observed in the spectra of background quasi-stellar objects (QSOs), as well as on studies of the high-redshift universe. By comparing the redshifts of galaxies and Lyα absorption systems along common lines of sight, I confirmed the existence of an anti- correlation between Lyα absorption equivalent width and galaxy impact parameter. Further analysis showed that tenuous gas is likely to be distributed around galaxies in spherical halos rather than in flattened disks with the gaseous extent scaling with galaxy B-band and K-band luminosities. I found that extended gaseous halos are a common and generic feature of galaxies over a wide range of luminosity and morphological type and Lyα absorption systems traced a significant and representative portion of the galaxy population. Applying the scaling relation between galaxy gaseous radius and galaxy B-band luminosity to predict the incidence of Lyα absorption systems originating in extended gaseous envelopes of galaxies, I found that luminous galaxies can explain about 50% of Lyα absorption systems with absorption equivalent width W > 0.3 Å. By comparing the redshifts of galaxies and CIV absorption systems along common lines of sight, I found that extended gaseous halos of galaxies have been metal contaminated out to large galactocentric radii, ~100 h-1 kpc. The covering factor of ionized gas in galactic halos was estimated to be 0.93 with a 1 σ lower bound of 0.83, which may strongly constrain the possibilities that CIV absorption systems arised in accreting satellite galaxies or in filaments of gravitationally collapsed structures. To study the high-redshift universe, I analyzed very deep slitless spectroscopy observations acquired by the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. These observations are especially suited for identifying very distant galaxies due to

  7. On the statistics of quasar absorption lines

    NASA Astrophysics Data System (ADS)

    Zuiderwijk, E. J.

    1984-12-01

    The distribution of absorption lines in 13 quasar spectra is analyzed and shown to be fully consistent with the hypothesis of randomly, but not uniformly, distributed absorption features. The analysis by Libby et al. (1984), in which it is claimed that the number of wavelength coincidences among absorption lines in different quasar spectra (as measured in the rest frame of the quasars) is much larger than expected, implying absorbers in the quasars themselves, is totally invalid. Instead, the number of these coincidences is fully commensurate with the expected one on the assumption of randomness.

  8. Ionization states of metallic absorption-line systems in continua of quasars

    NASA Technical Reports Server (NTRS)

    Denda, Kiyomi; Ikeuchi, Satoru

    1993-01-01

    Ionization states of metallic absorption-line systems in continua of quasars (QSO's) are studied, assuming that the metallic lines arise in gaseous halos of high-redshift galaxies in photoionization equilibrium under the background UV radiation, and constraints on the intensity and spectral shape of the UV radiation are obtained. Then a structure of absorbers suitable for all of the metallic absorption line systems are discussed.

  9. Spectrophotometry of Seyfert 2 galaxies and narrow-line radio galaxies

    NASA Technical Reports Server (NTRS)

    Koski, A. T.

    1978-01-01

    Results are reported for a spectrophotometric survey of several Seyfert 2 galaxies, intermediate Seyferts, and narrow-line radio galaxies. The emission-line spectra of the galaxies are analyzed, emphasizing line intensities, reddening, temperatures, densities, line strength correlations, line widths, and redshift differences. The continuous spectra are examined, and possible ionization sources are considered. It is found that: (1) there are no distinguishing differences between the spectra of Seyfert 2 galaxies and narrow-line radio galaxies; (2) the emission spectra are rich in lines from a wide range of ionization levels; (3) the continuum is starlight diluted by an underlying continuous spectrum; (4) the line widths of both classes of galaxies have the same distribution; (5) there appear to be regions of high and low ionization in the Seyfert 2 and narrow-line radio galaxies; (6) photoionization seems quite likely as the energy input to the gas; and (7) all the galaxies show a UV excess in their spectra.

  10. Spectral classification of emission-line galaxies

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain; Osterbrock, Donald E.

    1987-01-01

    A revised method of classification of narrow line active galaxies and H II region-like galaxies is proposed. It involves the line ratios (O III) lambda 5007/H beta, (N II) lambda 6583/H alpha, (S II) (lambda lambda 6716 = 6731)/H alpha, and (O I) lambda 6300/H alpha. These line ratios take full advantage of the physical distinction between the two types of objects and minimize the effects of reddening correction and errors in the flux calibration. Large sets of internally consistent data are used including new previously unpublished measurements. Prediction of recent photoionization models by power law spectra and by hot stars are compared with the observations. The classification is based on the observational data interpreted on the basis of these models.

  11. Investigating Starburst Galaxy Emission Line Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Meskhidze, Helen; Richardson, Chris T.

    2016-01-01

    Modeling star forming galaxies with spectral synthesis codes allows us to study the gas conditions and excitation mechanisms that are necessary to reproduce high ionization emission lines in both local and high-z galaxies. Our study uses the locally optimally-emitting clouds model to develop an atlas of starburst galaxy emission line equivalent widths. Specifically, we address the following question: What physical conditions are necessary to produce strong high ionization emission lines assuming photoionization via starlight? Here we present the results of our photoionization simulations: an atlas spanning 15 orders of magnitude in ionizing flux and 10 orders of magnitude in hydrogen density that tracks over 150 emission lines ranging from the UV to the near IR. Each simulation grid contains ~1.5x104 photoionization models calculated by supplying a spectral energy distribution, grain content, and chemical abundances. Specifically, we will be discussing the effects on the emission line equivalent widths of varying the metallicity of the cloud, Z = 0.2 Z⊙ to Z = 5.0 Z⊙, and varying the star-formation history, using the instantaneous and continuous evolution tracks and the newly released Starburst99 Geneva rotation tracks.

  12. Nebular UV Absorption Lines in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Dinerstein, Harriet

    We propose to continue our Cycle 1 program of studying the Lyman and Werner bands of H_2, seen in absorption against the UV continua of planetary nebula central stars, which arise within neutral-molecular envelopes surrounding the ionized gas. These are the pump lines for a fluorescent cascade of near-infrared emission lines which are observed in many planetary nebulae. By observing the UV lines we can probe the chemical and thermal structure of the envelopes, as well as measure molecular column densities and clarify the excitation processes for the infrared lines. In Cycle 1 we were granted time for three targets, one of which was successfully observed shortly before submission of this proposal. Although the data were not yet available for examination, similar target observed by the project team revealed a rich set of H_2 circumstellar absorption features, demonstrating the feasibility of our program. FUSE spectra also include absorption features from atomic species such as O I and C II, which give rise to important far-infrared fine-structure cooling lines that likewise have been observed from planetary nebulae. In Cycle 2, we add as a secondary goal a search for nebular components of the O VI 032, 1038 AA absorption lines, which trace the presence of hot shocked gas, in nebulae with anomalously strong optical recombination lines of ions of oxygen and nitrogen. This will test a plausible hypothesis for the origin of this anomaly.

  13. The Gaseous Extent of Galaxies and the Origin of Lyα Absorption Systems. III. Hubble Space Telescope Imaging of Lyα-absorbing Galaxies at z < 1

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen; Lanzetta, Kenneth M.; Webb, John K.; Barcons, Xavier

    1998-05-01

    We present initial results of a program to obtain and analyze Hubble Space Telescope (HST) Wide Field Planetary Camera 2 images of galaxies identified in an imaging and spectroscopic survey of faint galaxies in fields of HST spectroscopic target QSOs. We measure properties of 87 galaxies, of which 33 are associated with corresponding Lyα absorption systems and 24 do not produce corresponding Lyα absorption lines to within sensitive upper limits. Considering only galaxy and absorber pairs that are likely to be physically associated and excluding galaxy and absorber pairs within 3000 km s-1 of the background QSOs leaves 26 galaxy and absorber pairs and seven galaxies that do not produce corresponding Lyα absorption lines to within sensitive upper limits. Redshifts of the galaxy and absorber pairs range from 0.0750 to 0.8912 with a median of 0.3718, and impact parameter separations of the galaxy and absorber pairs range from 12.4 to 157.4 h-1 kpc with a median of 62.4 h-1 kpc. The primary result of the analysis is that the amount of gas encountered along the line of sight depends on the galaxy impact parameter and B-band luminosity but does not depend strongly on the galaxy average surface brightness, disk-to-bulge ratio, or redshift. This result confirms and improves upon the anticorrelation between Lyα absorption equivalent width and galaxy impact parameter found previously by Lanzetta et al. in 1995. Spherical halos cannot be distinguished from flattened disks on the basis of the current observations, and there is no evidence that galaxy interactions play an important role in distributing tenuous gas around galaxies in most cases. Galaxies might account for all Lyα absorption systems with W > 0.3 Å, but this depends on the unknown luminosity function and gaseous cross sections of low-luminosity galaxies as well as on the uncertainties of the observed number density of Lyα absorption systems. Based on observations with the NASA/ESA Hubble Space Telescope

  14. The Intervening Galaxies Hypothesis of the Absorption Spectra of Quasi-Stellar Objects: Some Statistical Studies

    NASA Astrophysics Data System (ADS)

    Duari, Debiprosad; Narlikar, Jayant V.

    This paper examines, in the light of the available data, the hypothesis that the heavy element absorption line systems in the spectra of QSOs originate through en-route absorption by intervening galaxies, halos etc. Several statistical tests are applied in two different ways to compare the predictions of the intervening galaxies hypothesis (IGH) with actual observations. The database is taken from a recent 1991 compilation of absorption line systems by Junkkarinen, Hewitt and Burbidge. Although, prima facie, a considerable gap is found between the predictions of the intervening galaxies hypothesis and the actual observations despite inclusion of any effects of clustering and some likely selection effects, the gap narrows after invoking evolution in the number density of absorbers and allowing for the incompleteness and inhomogeneity of samples examined. On the latter count the gap might be bridgeable by stretching the parameters of the theory. It is concluded that although the intervening galaxies hypothesis is a possible natural explanation to account for the absorption line systems and may in fact do so in several cases, it seems too simplistic to be able to account for all the available data. It is further stressed that the statistical techniques described here will be useful for future studies of complete and homogenous samples with a view to deciding the extent of applicability of the IGH.

  15. Narrow-Line Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Leighly, Karen M.

    2000-01-01

    The primary work during this year has been the analysis and interpretation of our HST spectra from two extreme Narrow-line Seyfert 1 galaxies (NLS1s) Infrared Astronomy Satellite (IRAS) 13224-3809 and 1H 0707-495. This work has been presented as an invited talk at the workshop entitled "Observational and theoretical progress in the Study of Narrow-line Seyfert 1 Galaxies" held in Bad Honnef, Germany December 8-11, as a contributed talk at the January 2000 AAS meeting in Atlanta, Georgia, and as a contributed talk at the workshop "Probing the Physics of Active Galactic Nuclei by Multiwavelength Monitoring" held at Goddard Space Flight Center June 20-22, 2000.

  16. IR Fine-Structure Line Signatures of Central Dust-Bounded Nebulae in Luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Allen, R.; Dudley, C. C.; Satyapal, S.; Luhman, M.; Wolfire, M.; Smith, H. A.

    2004-01-01

    To date, the only far-infrared spectroscopic observations of ultraluminous infrared galaxies have been obtained with the European Space Agency s Infrared Space Observatory Long Wavelength Spectrometer. The spectra of these galaxies are characterized by molecular absorption lines and weak emission lines from photodissociation regions (PDRs), but no far-infrared (greater than 40 microns) lines from ionized regions have been detected. ESA s Herschel Space Observatory, slated for launch in 2007, will likely be able to detect these lines in samples of local and moderate redshift ultra luminous galaxies and to enable measurement of the ionization parameters, the slope of the ionizing continuum, and densities present in the ionized regions of these galaxies. The higher spatial resolution of proposed observatories discussed in this workshop will enable isolation of the central regions of local galaxies and detection of these lines in high-redshift galaxies for study of the evolution of galaxies. Here we discuss evidence for the e.ects of absorption by dust within ionized regions and present the spectroscopic signatures predicted by photoionization modeling of dust-bounded regions.

  17. Absorption lines in the spectrum of Q0248 + 4302 due to a foreground tidal tail

    SciTech Connect

    Sargent, W.L.W.; Steidel, C.C. California Univ., Berkeley )

    1990-08-01

    The strong absorption lines in the spectrum of the quasar Q0248 + 4302 are discussed. The absorption has been shown to be produced in a sinuous tidal tail which emanates from the nearby galaxy pair G0248 + 4302A,B. There is a velocity difference of about 260 km/s between the systemic redshift of the interacting galaxies and the redshift of the tidal tail at a galactocentric distance of about 11/h kpc. The large velocity spread observed in the tail gas is probably responsible for the unusual strength of the interstellar lines. 18 refs.

  18. Line profiles and the kinematics of the narrow-line region in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    De Robertis, M. M.; Shaw, Richard A.

    1990-01-01

    High signal-to-noise ratio and long-slit CCD spectra at about 100 km/sec resolution have been obtained for six high-ionization Seyfert galaxies. By subtracting the stellar absorption features with the aid of continuum templates, and using deblending techniques, the asymmetry indices of a number of optical emission-line profiles were measured, spanning a wide range in both ionization potential and critical density in each galaxy. The fundamental problem of the cloud-motion direction in the narrow-line region (NLR) has been studied, using these measurements and on the assumption that the preponderance of blueward profile asymmetries requires radial motion as well as a source of extinction. Simple and spherically symmetric NLR simulations are performed to demonstrate that infall and outflow models can be distinguished by comparing asymmetry indices as a function of ionization potential and critical density.

  19. Ultraviolet observations of interstellar absorption lines toward SN 1987A

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Jenkins, Edward B.; Joseph, Charles L.; De Boer, Klass S.

    1989-01-01

    High-dispersion IUE echelle spectra of SN 1987A were averaged in order to obtain UV absorption-line profiles of the highest possible quality in the direction of SN 1987A. The profiles for Si IV and C IV are quite similar and have much less structure than the Al III profile. On relating column densities, while the C IV and Si IV ratio is relatively constant over the 0-100 km/s velocity range, the C IV to Al III and Si IV to Al III ratios vary by nearly a factor of 10. This suggests that the C IV and Si IV along this sight line in the Galaxy and its halo may have a common origin which differs from that for Al III.

  20. H I emission and absorption in nearby, gas-rich galaxies

    NASA Astrophysics Data System (ADS)

    Reeves, S. N.; Sadler, E. M.; Allison, J. R.; Koribalski, B. S.; Curran, S. J.; Pracy, M. B.

    2015-06-01

    We present the results of a targeted search for intervening H I absorption in six nearby, gas-rich galaxies using the Australia Telescope Compact Array. The sightlines searched have impact parameters of 10-20 kpc. By targeting nearby galaxies, we are also able to map their H I emission, allowing us to directly relate the absorption-line detection rate to the extended H I distribution. The continuum sightlines intersect the H I disc in four of the six galaxies, but no intervening absorption was detected. Of these four galaxies, we find that three of the non-detections are the result of the background source being too faint. In the fourth case, we find that the ratio of the spin temperature to the covering factor (TS/f) must be much higher than expected (≳5700 K) in order to explain the non-detection. We discuss how the structure of the background continuum sources may have affected the detection rate of H I absorption in our sample, and the possible implications for future surveys. Future work including an expanded sample, and very long baseline interferometry observations, would allow us to better investigate the expected detection rate, and influence of background source structure, on the results of future surveys.

  1. Non-Voigt Lyalpha Absorption Line Profiles.

    PubMed

    Outram; Carswell; Theuns

    2000-02-01

    Recent numerical simulations have lead to a paradigm shift in our understanding of the intergalactic medium and the loss of a physical justification for Voigt profile fitting of the Lyalpha forest. Many individual lines seen in simulated spectra have significant departures from the Voigt profile, yet could be well fitted by a blend of two or more such lines. We discuss the expected effect on the line profiles due to ongoing gravitational structure formation and Hubble expansion. We develop a method to detect departures from Voigt profiles of the absorption lines in a statistical way and apply this method to simulated Lyalpha forest spectra, confirming that the profiles seen do statistically differ from Voigt profiles. PMID:10622758

  2. The nature of faint emission-line galaxies

    NASA Technical Reports Server (NTRS)

    Smetanka, John J.

    1993-01-01

    One of the results of faint galaxy redshift surveys is the increased fraction of galaxies which have strong emission-line spectra. These faint surveys find that roughly 50 percent of the galaxies have an equivalent width of (OII), W sub 3727, greater than 20 A while this fraction is less than 20 percent in the DARS survey. This has been interpreted as evidence for strong evolution in the galaxy population at redshifts less than 0.5. In order to further investigate the properties of the galaxies in faint redshift surveys, two important factors must be addressed. The first is the observed correlation between color, luminosity, and W sub 3727. There is a correlation between color and the strength of emission lines, bluer galaxies having stronger emission features, as evident for Markarian galaxies and for galaxies in Kennicutt's spectrophotometric atlas. This correlation also applies galaxies in faint redshift surveys. In addition, low luminosity galaxies have a larger average W sub 3727 (and bluer colors) than higher luminosity galaxies. This is illustrated for Kennicutt's low z late-type galaxies, for the Durham Faint Surveys, and for galaxies in SA68. The second factor which must be incorporated into any interpretation of the faint emission galaxies is the different luminosity functions for galaxies depending on color. This is usually modeled by varying M* for different color classes (or morphological types); however, the shape of the luminosity function is different for galaxies with different colors. Low luminosity, blue galaxies have a much larger number density than low luminosity, red galaxies. Furthermore, the low luminosity end of the blue galaxy luminosity function is not well fit by a Schechter function. These two factors have been included in a very simple, no-evolution, model for the galaxy population. This model uses the luminosity functions from Shanks (1990) and spectral energy distributions (SED's) from Bruzual (1988). W sub 3727 is predicted using

  3. The gaseous extent of galaxies and the origin of Lyman-alpha absorption systems: A survey of galaxies in the fields of Hubble Space Telescope spectroscopic target QSOs

    NASA Technical Reports Server (NTRS)

    Lanzetta, Kenneth M.; Bowen, David B.; Tytler, David; Webb, John K.

    1995-01-01

    We present initial results of an imaging and spectroscopic survey of faint galaxies in fields of Hubble Space Telescope (HST) spectroscopic target QSOs. The primary objectives of the survey are (1) to determine the incidence, extent, and covering factor of extended gaseous envelopes of luminous galaxies and (2) to determine the fraction of Ly(alpha) absorption systems that arise in luminous galaxies. The goal of the survey is to identify in each field under construction all objects with apparent r-band magnitudes satisfying r less than 21.5 within angular distances to the QSOs satisfying 0 less thyan 1.3'. The current observations cover six fields and are 37% complete to the goal ofthe survey. These observations identify 46 galaxies at redshifts spanning z = 0.0700-0.5526 and at impact parameters to the QSOs spanning rho = 16.6-346.9/h kpc. Of these galaxies, 11 are coincident in redshift with absorption systems and 21 do not give rise to absorption to within sensitive upper limits. Nine galaxies are coincident in redshift with 'Ly(alpha)-forest' absorption systems that show Ly(alpha) absorption but no corresponding metal-line absorption, and two galaxies are coincident in redshift with C IV absorption systems that show both Ly(alpha) and C IV absorption. Various lines of evidence demonstrate that the coincident galaxies are responsible for the corresponding absorption systems and are not present as the result of chance coincidence or merely spatial correlated with the absorption systems. The most important evidence is that there exists a statistical anti-correlation between Ly(aplha) rest-frame equivalent width and the impact parameter. Each of five galaxies with rho = 70-160/h kpc give rise to Ly(alpha) absorption, and just one of nine galaxies with rho greater than 70-160/h kpc gives rise to Ly(alpha) absorption. At least eight of 23 Ly(alpha) absorption systyems arise in galaxies. On the basis of these results we reach the following conclusions: (1) At z less

  4. Shocked POststarbust Galaxy Survey. I. Candidate Post-starbust Galaxies with Emission Line Ratios Consistent with Shocks

    NASA Astrophysics Data System (ADS)

    Alatalo, Katherine; Cales, Sabrina L.; Rich, Jeffrey A.; Appleton, Philip N.; Kewley, Lisa J.; Lacy, Mark; Lanz, Lauranne; Medling, Anne M.; Nyland, Kristina

    2016-06-01

    There are many mechanisms by which galaxies can transform from blue, star-forming spirals, to red, quiescent early-type galaxies, but our current census of them does not form a complete picture. Recent observations of nearby case studies have identified a population of galaxies that quench “quietly.” Traditional poststarburst searches seem to catch galaxies only after they have quenched and transformed, and thus miss any objects with additional ionization mechanisms exciting the remaining gas. The Shocked POststarburst Galaxy Survey (SPOGS) aims to identify transforming galaxies, in which the nebular lines are excited via shocks instead of through star formation processes. Utilizing the Oh-Sarzi-Schawinski-Yi (OSSY) measurements on the Sloan Digital Sky Survey Data Release 7 catalog, we applied Balmer absorption and shock boundary criteria to identify 1067 SPOG candidates (SPOGs*) within z = 0.2. SPOGs* represent 0.2% of the OSSY sample galaxies that exceed the continuum signal-to-noise cut (and 0.7% of the emission line galaxy sample). SPOGs* colors suggest that they are in an earlier phase of transition than OSSY galaxies that meet an “E+A” selection. SPOGs* have a 13% 1.4 GHz detection rate from the Faint Images of the Radio Sky at Twenty Centimeters Survey, higher than most other subsamples, and comparable only to low-ionization nuclear emission line region hosts, suggestive of the presence of active galactic nuclei (AGNs). SPOGs* also have stronger Na i D absorption than predicted from the stellar population, suggestive of cool gas being driven out in galactic winds. It appears that SPOGs* represent an earlier phase in galaxy transformation than traditionally selected poststarburst galaxies, and that a large proportion of SPOGs* also have properties consistent with disruption of their interstellar media, a key component to galaxy transformation. It is likely that many of the known pathways to transformation undergo a SPOG phase. Studying this sample of

  5. Tracing inflows and outflows with absorption lines in circumgalactic gas

    NASA Astrophysics Data System (ADS)

    Ford, Amanda Brady; Davé, Romeel; Oppenheimer, Benjamin D.; Katz, Neal; Kollmeier, Juna A.; Thompson, Robert; Weinberg, David H.

    2014-10-01

    We examine how H I and metal absorption lines within low-redshift galaxy haloes trace the dynamical state of circumgalactic gas, using cosmological hydrodynamic simulations that include a well-vetted heuristic model for galactic outflows. We categorize inflowing, outflowing, and ambient gas based on its history and fate as tracked in our simulation. Following our earlier work, showing that the ionization level of absorbers was a primary factor in determining the physical conditions of absorbing gas, we show here that it is also a governing factor for its dynamical state. Low-ionization metal absorbers (e.g. Mg II) tend to arise in gas that will fall on to galaxies within several Gyr, while high-ionization metal absorbers (e.g. O VI) generally trace material that was deposited by outflows many Gyr ago. Inflowing gas is dominated by enriched material that was previously ejected in an outflow; hence, accretion at low redshifts is typically substantially enriched. Recycling wind material is preferentially found closer to galaxies, and is more dominant in lower mass haloes since high-mass haloes have more hot gas that is able to support itself against infall. Low-mass haloes also tend to re-eject more of their accreted material, owing to our outflow prescription that employs higher mass loading factors for lower mass galaxies. Typical H I absorbers trace unenriched ambient material that is not participating in the baryon cycle, but stronger H I absorbers arise in cool, enriched inflowing gas. Instantaneous radial velocity measures of absorbers are generally poor at distinguishing between inflowing and outflowing gas, except in the case of very recent outflows. These results suggest that probing halo gas using a range of absorbers can provide detailed information about the amount and physical conditions of material that is participating in the baryon cycle.

  6. Internal Absorption and the Luminosity of Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Boqi; Heckman, Timothy M.

    1996-02-01

    We investigate the correlation of the optical depth of dust in galactic disks with galaxy luminosity. We examine normal late-type (spiral and irregular) galaxies with measured far-ultraviolet (UV, λ ˜ 2000 Å) fluxes and compile the corresponding fluxes in the far-infrared (FIR, λ ˜ 40-120 μm) as measured by IRA S. The UV-to-FIR flux ratio is found to decrease rapidly with increasing FIR and FIR + UV luminosities. Since both the UV and FIR radiation originate mostly from the young stellar population in late-type galaxies, the UV-to-FIR flux ratio is a measure of the fraction of the light produced by young stars escaping from galaxy disks. Thus, the strong correlations above imply that the dust opacity increases with the luminosity of the young stellar population. We also find that the ratio of the UV-to-FIR flux decreases with increasing galaxy blue luminosity (a tracer of the intermediate-age stellar population) and with galaxy rotation speed (an indicator of galaxy mass). We supplement the UV sample of galaxies with an optically selected sample and find that the blue-to-FIR flux ratio declines with both FIR luminosity and galaxy rotation speed. We also examine a sample of galaxies for which the Hβ/Hα flux ratios can be obtained and find that the Hβ/Hα ratio, which also measures the extinction, decreases with the increasing FIR luminosity. We model the absorption and emission of radiation by dust to normal galactic disks with a simple model of a uniform plane-parallel slab in which the dust that radiates in the IRAS band is heated exclusively by UV light from relatively nearby hot stars. We then find that the relation between the UV-to-FIR flux ratio and the observed luminosities can be explained by the face-on extinction optical depth τ varying with the intrinsic luminosity as a power law in the intrinsic UV luminosity: τ = τ1(L/L1)β. The same scaling law may also account for the various correlations found between the blue-to-FIR flux ratio and

  7. Ly(alpha) emission and absorption features in the spectra of galaxies

    NASA Technical Reports Server (NTRS)

    Chen, W. L.; Neufeld, David A.

    1994-01-01

    The combined effects of interstellar dust absorption and of scattering by hydrogen atoms may give rise to a Ly(alpha) spectral feature of negative equivalent width, as has been observed in several star-forming galaxies. By considering the transfer of Ly(alpha) line radiation and of neighboring stellar continuum radiation within a dusty galaxy, we find that dust absorption has three effects: (1) it reduces the apparent ultraviolet continuum luminosity at all wavelengths; (2) it preferentially decreases the apparent Ly(alpha) line luminosity from H II regions; and (3) it creates an 'attenuation feature' in the continuum spectrum -- centered at the Ly(alpha) rest frequency -- which occurs because the attenuation of the stellar continuum radiation increases as the Ly(alpha) rest frequency is approached, due to the effects of scattering by hydrogen atoms. For plausible values of the galactic dust content and of the disk thickness, these effects can lead to a negative net Ly(alpha) equivalent width, even for galaxies in which the unattenuated spectrum would show a strong Ly(alpha) emission line.

  8. GALAXY CLUSTERS IN THE LINE OF SIGHT TO BACKGROUND QUASARS. III. MULTI-OBJECT SPECTROSCOPY

    SciTech Connect

    Andrews, H.; Barrientos, L. F.; Padilla, N.; Lacerna, I.; Lopez, S.; Lira, P.; Maureira, M. J.; Gilbank, D. G.; Ellingson, E.; Gladders, M. D.; Yee, H. K. C.

    2013-09-01

    We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from Lopez et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance <2 h{sub 71}{sup -1} Mpc from the QSO sight line (a {sup p}hotometric hit{sup )}. The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 A. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters, (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 {<=} z{sub gal} {<=} 1.0955, up to an impact parameter of 142 h{sub 71}{sup -1} kpc and a maximum velocity difference of 280 km s{sup -1}. (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z < 0.7. This relatively low efficiency results from the fact that we centered our observations on the QSO location, and thus occasionally some of the cluster centers were outside the instrument field of view. (3) Following from the results above, we spectroscopically confirmed of 10 out of 14 photometric hits within {approx}650 km s{sup -1} from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference {Delta}z = 0.1. The general population of our confirmed absorbing galaxies have luminosities

  9. An objective prism survey of emission line galaxies

    NASA Astrophysics Data System (ADS)

    Liu, J.-Y.; Huang, Y.-W.; Feng, X.-C.

    1986-09-01

    The first list of emission line objects detected as part of an object prism survey of emission line galaxies begun in China in 1981 is presented. The instrument and observations are described, and the identification of emission-line galaxies is discussed. The spectral structural classification of the presented objects is addressed. On a dozen plates covering some 220 square degrees of sky, 50 emission line objects were detected, 47 of which are galaxies and the other three of which are planetary nebulae. Finding charts of the objects are presented.

  10. H I emission and absorption in nearby, gas-rich galaxies - II. Sample completion and detection of intervening absorption in NGC 5156

    NASA Astrophysics Data System (ADS)

    Reeves, S. N.; Sadler, E. M.; Allison, J. R.; Koribalski, B. S.; Curran, S. J.; Pracy, M. B.; Phillips, C. J.; Bignall, H. E.; Reynolds, C.

    2016-04-01

    We present the results of a survey for intervening 21 cm H I absorption in a sample of 10 nearby, gas-rich galaxies selected from the H I Parkes All-Sky Survey (HIPASS). This follows the six HIPASS galaxies searched in previous work and completes our full sample. In this paper, we searched for absorption along 17 sightlines with impact parameters between 6 and 46 kpc, making one new detection. We also obtained simultaneous H I emission-line data, allowing us to directly relate the absorption-line detection rate to the H I distribution. From this, we find the majority of the non-detections in the current sample are because sightline does not intersect the H I disc of the galaxy at sufficiently high column density, but that source structure is also an important factor. The detected absorption-line arises in the galaxy NGC 5156 (z = 0.01) at an impact parameter of 19 kpc. The line is deep and narrow with an integrated optical depth of 0.82 km s-1. High-resolution Australia Telescope Compact Array (ATCA) images at 5 and 8 GHz reveal that the background source is resolved into two components with a separation of 2.6 arcsec (500 pc at the redshift of the galaxy), with the absorption likely occurring against a single component. We estimate that the ratio of the spin temperature and covering factor, TS/f, is approximately 950 K in the outer disc of NGC 5156, but further observations using very long baseline interferometry would allow us to accurately measure the covering factor and spin temperature of the gas.

  11. Spectral decomposition of broad-line agns and host galaxies

    SciTech Connect

    Vanden Berk, Daniel E.; Shen, Jiajian; Yip, Ching-Wa; Schneider, Donald P.; Connolly, Andrew J.; Burton, Ross E.; Jester, Sebastian; Hall, Patrick B.; Szalay, Alex S.; Brinkmann, John; /Apache Point Observ.

    2005-09-01

    Using an eigenspectrum decomposition technique, we separate the host galaxy from the broad line active galactic nucleus (AGN) in a set of 4666 spectra from the Sloan Digital Sky Survey (SDSS), from redshifts near zero up to about 0.75. The decomposition technique uses separate sets of galaxy and quasar eigenspectra to efficiently and reliably separate the AGN and host spectroscopic components. The technique accurately reproduces the host galaxy spectrum, its contributing fraction, and its classification. We show how the accuracy of the decomposition depends upon S/N, host galaxy fraction, and the galaxy class. Based on the eigencoefficients, the sample of SDSS broad-line AGN host galaxies spans a wide range of spectral types, but the distribution differs significantly from inactive galaxies. In particular, post-starburst activity appears to be much more common among AGN host galaxies. The luminosities of the hosts are much higher than expected for normal early-type galaxies, and their colors become increasingly bluer than early-type galaxies with increasing host luminosity. Most of the AGNs with detected hosts are emitting at between 1% and 10% of their estimated Eddington luminosities, but the sensitivity of the technique usually does not extend to the Eddington limit. There are mild correlations among the AGN and host galaxy eigencoefficients, possibly indicating a link between recent star formation and the onset of AGN activity. The catalog of spectral reconstruction parameters is available as an electronic table.

  12. Optical versus infrared studies of dusty galaxies and active galactic nuclei - I. Nebular emission lines

    NASA Astrophysics Data System (ADS)

    Wild, Vivienne; Groves, Brent; Heckman, Timothy; Sonnentrucker, Paule; Armus, Lee; Schiminovich, David; Johnson, Benjamin; Martins, Lucimara; Lamassa, Stephanie

    2011-01-01

    Optical nebular emission lines are commonly used to estimate the star formation rate of galaxies and the black hole accretion rate of their central active nuclei. The accuracy of the conversion from line strengths to physical properties depends upon the accuracy to which the lines can be corrected for dust attenuation. For studies of single galaxies with normal amounts of dust, most dust corrections result in the same derived properties within the errors. However, for statistical studies of populations of galaxies, or for studies of galaxies with higher dust contents, such as might be found in some classes of ‘transition’ galaxies, significant uncertainty arises from the dust attenuation correction. In this paper, we compare the strength of the predominantly unobscured mid-infrared [Ne II] λ15.5 μ m+[Ne III] λ12.8 μ m emission lines to the optical Hα emission lines in four samples of galaxies: (i) ordinary star-forming galaxies (80 galaxies); (ii) optically selected dusty galaxies (11); (iii) ultraluminous infrared galaxies (6); and (iv) Seyfert 2 galaxies (20). We show that a single dust attenuation curve applied to all samples can correct the Hα luminosity for dust attenuation to a factor better than 2. Similarly, we compare [O IV] and [O III] luminosities to find that [O III] can be corrected to a factor better than 3. This shows that the total dust attenuation suffered by the active galactic nucleus narrow-line region is not significantly different from that suffered by the star-forming H II regions in the galaxy. We provide explicit dust attenuation corrections, together with errors, for [O II], [O III] and Hα. The best-fitting average attenuation curve is slightly greyer than the Milky Way extinction law, indicating either that external galaxies have slightly different typical dust properties from those of the Milky Way or that there is a significant contribution from scattering. Finally, we uncover an intriguing correlation between silicate

  13. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-04-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disk. This is consistent with the uniformity of spin temperature measured across the Galactic disk. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in disks of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of <ν _{_TO}>≈ 5× 108 Hz, compared to <ν _{_TO}>≈ 1× 108 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  14. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-07-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disc. This is consistent with the uniformity of spin temperature measured across the Galactic disc. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in discs of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of < ν _{_TO}rangle ≈ 5× 108 Hz, compared to < ν _{_TO}rangle ≈ 1× 108 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  15. Interstellar Silicate Dust Grain Properties in Distant Galaxies Probed by Quasar Absorption Systems

    NASA Astrophysics Data System (ADS)

    Aller, Monique C.; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam

    2015-01-01

    Dust grains are a fundamental component of the interstellar medium, and significantly impact many of the physical processes driving galaxy evolution, including star formation, and the heating, cooling and ionization of interstellar material. Using the absorption features produced by dust in the spectra of luminous background quasars, it is possible to study the properties of extragalactic interstellar dust grains. We will present results from an ongoing program utilizing existing Spitzer Space Telescope infrared quasar spectra to probe silicate dust grain properties in z<1.4 quasar absorption systems. In combination with complementary ground-based data on associated gas-phase metal absorption lines, we explore connections between the interstellar dust and gas in the quasar absorption systems. Our project yields clear detections of the 10 micron silicate dust absorption feature in the studied systems, as well as detections of the 18 micron silicate dust absorption feature in sources with adequate spectral coverage. Based on measured variations in the breath, peak wavelength, and substructure of the 10 micron absorption features, there appear to be differences in the silicate dust grain properties from system-to-system. We also show indications of trends between the gas-phase metal properties, such as metallicity and gas velocity spread, with the silicate dust grain absorption properties. Support for this work is provided by NASA through an award issued by JPL/Caltech and through NASA grant NNX14AG74G, and from National Science Foundation grants AST-0908890 and AST-1108830 to the University of South Carolina.

  16. SIMPLE MODELS OF METAL-LINE ABSORPTION AND EMISSION FROM COOL GAS OUTFLOWS

    SciTech Connect

    Prochaska, J. Xavier; Rubin, Kate

    2011-06-10

    We analyze the absorption and emission-line profiles produced by a set of simple, cool gas wind models motivated by galactic-scale outflow observations. We implement Monte Carlo radiative transfer techniques that track the propagation of scattered and fluorescent photons to generate one-dimensional spectra and two-dimensional spectral images. We focus on the Mg II {lambda}{lambda}2796, 2803 doublet and Fe II UV1 multiplet at {lambda} {approx} 2600 A, but the results are applicable to other transitions that trace outflows (e.g., Na I, H I Ly{alpha}, Si II). By design, the resonance transitions show blueshifted absorption but one also predicts strong resonance and fine-structure line emission at roughly the systemic velocity. This line-emission 'fills in' the absorption, reducing the equivalent width by up to 50%, shifting the absorption-line centroid by tens of km s{sup -1}, and reducing the effective opacity near systemic. Analysis of cool gas outflows that ignores this line emission may incorrectly infer that the gas is partially covered, measure a significantly lower peak optical depth, and/or conclude that gas at systemic velocity is absent (e.g., an interstellar or slowly infalling component). Because the Fe II lines are connected by optically thin transitions to fine-structure levels, their profiles more closely reproduce the intrinsic opacity of the wind. Together these results naturally explain the absorption and emission-line characteristics observed for star-forming galaxies at z < 1. We also study a scenario promoted to describe the outflows of z {approx} 3 Lyman break galaxies and find profiles inconsistent with the observations due to scattered photon emission. Although line emission complicates the analysis of absorption-line profiles, the surface brightness profiles offer a unique means of assessing the morphology and size of galactic-scale winds. Furthermore, the kinematics and line ratios offer powerful diagnostics of outflows, motivating deep

  17. Simple Models of Metal-line Absorption and Emission from Cool Gas Outflows

    NASA Astrophysics Data System (ADS)

    Prochaska, J. Xavier; Kasen, Daniel; Rubin, Kate

    2011-06-01

    We analyze the absorption and emission-line profiles produced by a set of simple, cool gas wind models motivated by galactic-scale outflow observations. We implement Monte Carlo radiative transfer techniques that track the propagation of scattered and fluorescent photons to generate one-dimensional spectra and two-dimensional spectral images. We focus on the Mg II λλ2796, 2803 doublet and Fe II UV1 multiplet at λ ≈ 2600 Å, but the results are applicable to other transitions that trace outflows (e.g., Na I, H I Lyα, Si II). By design, the resonance transitions show blueshifted absorption but one also predicts strong resonance and fine-structure line emission at roughly the systemic velocity. This line-emission "fills in" the absorption, reducing the equivalent width by up to 50%, shifting the absorption-line centroid by tens of km s-1, and reducing the effective opacity near systemic. Analysis of cool gas outflows that ignores this line emission may incorrectly infer that the gas is partially covered, measure a significantly lower peak optical depth, and/or conclude that gas at systemic velocity is absent (e.g., an interstellar or slowly infalling component). Because the Fe II lines are connected by optically thin transitions to fine-structure levels, their profiles more closely reproduce the intrinsic opacity of the wind. Together these results naturally explain the absorption and emission-line characteristics observed for star-forming galaxies at z < 1. We also study a scenario promoted to describe the outflows of z ~ 3 Lyman break galaxies and find profiles inconsistent with the observations due to scattered photon emission. Although line emission complicates the analysis of absorption-line profiles, the surface brightness profiles offer a unique means of assessing the morphology and size of galactic-scale winds. Furthermore, the kinematics and line ratios offer powerful diagnostics of outflows, motivating deep, spatially extended spectroscopic

  18. Relation between Starlight and Nebular Emission Lines of Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Lu, Hong-Lin; Zhou, Hong-Yan; Wang, Ting-Gui; Zhuang, Zhen-Quan; Dong, Xiao-Bo; Wang, Jun-Xian; Li, Cheng

    2005-06-01

    We present an exercise that intends to establish a relationship between the strength of nebular emission lines and optical stellar features in the spectrum of a galaxy. After accurately subtracting the stellar continuum and the underlying stellar absorption, we made reliable measurements of the emission lines of all the galaxies in the Sloan Digital Sky Survey Data Release 2 (SDSS DR2). More than 4000 star-forming galaxies with high S/N ratio of both the stellar spectrum and the emission lines are selected. These galaxy spectra are fitted with the 10 PCs of Yip et al., after all the emission line regions have been filtered out. We find that the flux of hydrogen Balmer emission lines, Hα and Hβ can be well recovered from the PCs, while the metal lines are not well reproduced. The fluxes of Hα and Hβ measured from the PC-reconstructed spectra and from the observed spectra agree well with an rms scatter of only ~0.1 dex. This result suggests that, with moderate spectral resolution and S/N ratio, the optical stellar spectrum of a galaxy can serve as an indicator of star formation rate.

  19. Probing the Absorption Structures in Seyfert Galaxies with X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gelbord, J.

    2001-12-01

    The paradigm of the unified model for Seyfert galaxies has had many successes in explaining the range of phenomena observed in active galaxies. However, the structures invoked in this scenario have been difficult to observe due to their limited sizes and due to contaminating flux from other regions. As a result, some of these structures, notably the putative obscuring torus, are poorly constrained. The difficulty in isolating the emission from the central regions can be mitigated (but not eliminated!) by focusing upon high-energy radiation, which is dominated by direct and reprocessed radiation from the nuclear region. We have drawn upon the large number of X-ray spectra available in the ASCA archive in order to study the distribution of properties in a large sample of high-energy observations. Furthermore, by uniformly processing the data ourselves, we minimize systematic effects. One asset of X-rays is that they provide a sensitive probe of absorbers in the line of sight toward the central region, because photoelectric absorption cuts off the continuum at low energies. In the ASCA bandpass column densities of ~1021-23 cm-2 can be measured. This is an interesting range of densities because it allows us to distinguish between absorption in a torus or possibly a warped accretion disk (where column densities are expected to be high) and absorption taking place at larger scales in the host galaxy (where column densities are expected to be closer to Galactic values of 1020-21 cm-2). This data is then compared to data from other wavebands. Published radio studies (e.g.: Nagar & Wilson 1999, Kinney et al. 2000) have put constraints on the orientations of the accretion systems in Seyfert galaxies. We combine these and the X-ray measurements for the ~50 sources in these studies which have ASCA data in order to constrain the various possible absorption structures and test the unification scenario.

  20. Abundances in 8 QSO Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Lauroesch, James Thomas

    1995-01-01

    An analysis is given of high resolution observations of metal-absorption line systems in the spectra of 4 QSOs made with the echelle spectrograph on the Mayall 4-meter telescope at Kitt Peak National Observatory. High spectral -resolution (9 to 18 km cdot s^{ -1}) observations were obtained for the QSOs S5 0014 + 813, H 0913 + 072, B2 1225 + 317, and HS 1946 + 7658; column densities were derived for the heavy element line systems. Abundances and/or abundance ratios have been determined for 8 systems and a variety of H I column densities in the redshift range 1-3.4 are probed. The systems studies are generally relatively poor in heavy elements, and appear to be similar in heavy element abundances to the gas out of which the Galactic halo stars of similar metallicity formed. Indications of the halo star-abundance sample include the observed ratios of (N/Si), (Al/Si), and (Mn/Fe). The existence of associated H II regions is inferred for a number of damped systems, and it is suggested that the possibly significant amount of gas in H II regions in damped Lyman-alpha systems can be constrained by the comparison of the column densities of O I, N I, N II, Si II, and S II in these systems. The ratio of N(Al II)/N(Al III) is shown to be a poor indicator of the amount of ionized gas in some cases. The abundances of Si as determined from N(Si II)/N(H I) suggest that there is a relatively rapid decrease in abundances in these systems at z _sp{ ~}> 2. Such a decrease in abundances is what would be expected if the galactic (thin) disks did not form before redshifts of z {~} 2. The use of Si II is important, since the weakness of the Zn II lines at low abundances (due to the low relative abundance of Zn compared to elements such as Si) will result in few detections, and in upper limits that are difficult to interpret. The observed drop in abundances is consistent with the decrease in number of heavy-element absorption systems at high redshifts, a result that is found in

  1. Quasar Outflow Constraints using Broad Absorption Line Variability Studies

    NASA Astrophysics Data System (ADS)

    McGraw, Sean; Shields, Joseph C.; Hamann, Fred; Capellupo, Daniel M.; Gallagher, Sarah; Brandt, W. Niel; Herbst, Hanna

    2016-01-01

    Quasar outflows are plausible candidates for AGN feedback processes influencing the host galaxy and may explain the established correlations between the supermassive black hole (SMBH) and the surrounding bulge. In order to better understand feedback and the physical conditions of the outflowing gas, observational constraints on absorber kinematics and energetics are needed. We are utilizing multiple epoch, rest frame UV quasar spectra to establish limits on outflow locations and total column densities for the purpose of estimating wind kinetic energies and momenta. We are also investigating the variability patterns of broad absorption lines (BALs) and mini-BALs across a range of ionization states to probe underlying connections between the various classes of absorbers. This work employs observations from the Sloan Digital Sky Survey, Hobby Eberly Telescope, and MDM observatory. We detect BAL variability in 3 out of 12 FeLoBAL quasars over multiple year timescales and conclude that the variable absorbers lie within tens of parsecs of the SMBH based on interpretations of the Fe II and Mg II BALS. We also measure significant BAL changes across daily to yearly timescales in a sample of 71 quasars with plausible detections of the P V 1117,1128 BAL. Detecting phosphorus in absorption is notable because it traces high column density outflows and is therefore relevant for studying AGN feedback. Constraints on outflow energetics and other selected results will be presented.

  2. Multiple Velocity Components in the C IV Absorption Line of NGC 5548

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Elvis, Martin; Wilkes, Belinda

    1999-01-01

    We have observed the much-studied Seyfert 1 galaxy NGC 5548 with the Goddard High-Resolution Spectrograph (GHRS) on the Hubble Space Telescope (HST). Our 14 ks observation covers the C IV emission line at a resolution of greater than 20,000. Our purpose was to study the absorption line found at lower resolution by IUE and the HST Faint Object Spectrograph. We found that the C IV absorption line resolves into six separate doublets with equivalent widths of 0.07-0.38 Angstrom. The absorption lines have blueshifts relative to the systemic velocity of the galaxy of 380-1250 km s(exp -1), except for one, which has a redshift of 250 km s(exp -1), suggesting both inflow and outflow. The inflowing component may be related to the accretion flow into the nuclear black hole. All the doublet lines are resolved by the GHRS. Three doublets are narrow, with FWHM greater than or approximately 100 km s(exp -1), and three are broad, FWHM approximately 160-290 km s(exp -1). We find evidence of partial covering by the narrow absorption lines. Either (but not both) of the two strongest broad doublets could be from the same material that produces the X-ray ionized absorber seen in soft X-rays. The remaining five systems must be at least 10 times less ionized (and so of lower total column density) to remain consistent with the X-ray spectra.

  3. HIGH-n HYDROGEN RECOMBINATION LINES FROM THE FIRST GALAXIES

    SciTech Connect

    Rule, E.; Loeb, A.; Strelnitski, V. S.

    2013-09-20

    We investigate the prospects of blind and targeted searches in the radio domain (10 MHz to 1 THz) for high-n hydrogen recombination lines from the first generation of galaxies, at z ∼< 10. The expected optically thin spontaneous α-line luminosities are calculated as a function of the absolute AB magnitude of a galaxy at 1500 Å. For a blind search, semi-empirical luminosity functions are used to calculate the number of galaxies whose expected flux densities exceed an assumed detectability threshold. Plots of the minimum sky area, within which at least one detectable galaxy is expected at a given observing frequency, in the fiducial instantaneous passband of 10{sup 4} km s{sup –1}, allow us to assess the blind search time necessary for detection by a given facility. We show that the chances for detection are the highest in the millimeter and submillimeter domains, but finding spontaneous emission in a blind search, especially from redshifts z >> 1, is a challenge even with powerful facilities, such as the Actama Large Millimeter/Submillimeter Array and Square Kilometre Array. The probability of success is higher for a targeted search of lines with principal quantum number n ∼ 10 in Lyman-break galaxies amplified by gravitational lensing. Detection of more than one hydrogen line in such a galaxy will allow for line identification and a precise determination of the galaxy's redshift.

  4. Detection of a z=0.0515, 0.0522 absorption system in the QSO S4 0248+430 due to an intervening galaxy

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.; Junkkarinen, Vesa T.; Cohen, Ross D.; Burbidge, E. Margaret

    1990-01-01

    In some of the few cases where the line of sight to a Quasi-Stellar Object (QSO) passes near a galaxy, the galaxy redshift is almost identical to an absorption redshift in the spectrum of the QSO. Although these relatively low redshift QSO-galaxy pairs may not be typical of the majority of the narrow heavy-element QSO absorption systems, they provide a direct measure of column densities in the outer parts of galaxies and some limits on the relative abundances of the gas. Observations are presented here of the QSO S4 0248+430 and a nearby anonymous galaxy (Kuhr 1977). The 14 second separation of the line of sight to the QSO (z sub e = 1.316) and the z=0.052 spiral galaxy, (a projected separation of 20 kpc ((h sub o = 50, q sub o = 0)), makes this a particularly suitable pair for probing the extent and content of gas in the galaxy. Low resolution (6A full width half maximum), long slit charge coupled device (CCD) spectra show strong CA II H and K lines in absorption at the redshift of the galaxy (Junkkarinen 1987). Higher resolution spectra showing both Ca II H and K and Na I D1 and D2 in absorption and direct images are reported here.

  5. OUTFLOW VERSUS INFALL IN SPIRAL GALAXIES: METAL ABSORPTION IN THE HALO OF NGC 891

    SciTech Connect

    Bregman, Joel N.; Seitzer, Patrick; Cowley, C. R.; Miller, Matthew J.; Miller, Eric D.

    2013-03-20

    Gas accreting onto a galaxy will be of low metallicity while halo gas due to a galactic fountain will be of near-solar metallicity. We test these predictions by measuring the metal absorption line properties of halo gas 5 kpc above the plane of the edge-on galaxy NGC 891, using observations taken with HST/STIS toward a bright background quasar. Metal absorption lines of Fe II, Mg II, and Mg I in the halo of NGC 891 are clearly seen, and when combined with recent deep H I observations, we are able to place constraints on the metallicity of the halo gas for the first time. The H I line width defines the line broadening, from which we model opacity effects in these metal lines, assuming that the absorbing gas is continuously distributed in the halo. The gas-phase metallicities are [Fe/H] = -1.18 {+-} 0.07 and [Mg/H] = -0.23 + 0.36/ - 0.27 (statistical errors) and this difference is probably due to differential depletion onto grains. When corrected for such depletion using Galactic gas as a guide, both elements have approximately solar or even supersolar abundances. This suggests that the gas is from the galaxy disk, probably expelled into the halo by a galactic fountain, rather than from accretion of intergalactic gas, which would have a low metallicity. The abundances would be raised by significant amounts if the absorbing gas lies in a few clouds with thermal widths smaller than the rotational velocity of the halo. If this is the case, both the abundances and [Mg/Fe] would be supersolar.

  6. Properties of damped Ly α absorption systems and star-forming galaxies in semi-analytic models at z = 2

    NASA Astrophysics Data System (ADS)

    Berry, Michael; Somerville, Rachel S.; Gawiser, Eric; Maller, Ariyeh H.; Popping, Gergö; Trager, Scott C.

    2016-05-01

    We investigate predictions from semi-analytic cosmological models of galaxy formation for the properties of star-forming galaxies (SFGs) and damped Ly α absorption systems (DLAS), and the relationship between these two populations. Our models reproduce fairly well the observed distributions of redshift, stellar mass, star formation rate (SFR), and dust extinction for z ˜ 2 SFGs. We predict that DLA hosts span a broad range of properties, with broad and relatively flat distributions of stellar and halo mass, SFR, and luminosity. The photometric colours of DLA host galaxies trace the colours of galaxies with similar luminosities, but the majority are much fainter than the limits of most existing surveys of SFGs. Generally, DLA host galaxies and SFGs at z = 2 follow similar trends between stellar mass, DLA cross-section, cold gas fraction, SFR, metallicity, and dust extinction as the global population of galaxies with the same stellar mass. Since DLAS select galaxies with larger cold gas masses, they tend to have larger cold gas fractions, lower metallicities, higher SFRs, and less dust extinction than galaxies at the same stellar mass. Our models reproduce the observed relations between impact parameter, column density, and metallicity, suggesting that the sizes of the gas discs giving rise to DLAS in our models are roughly correct. We find that molecular fractions and SFRs are in general significantly lower at the location of the DLA line of sight than the galaxy-averaged value.

  7. The Mg II line profile in the Seyfert galaxy NGC 4151: A new outflowing component

    NASA Technical Reports Server (NTRS)

    Leech, Kieron J.; Penston, M. V.; Snijders, M. A. J.; Gull, T.

    1986-01-01

    The Mg II 2795, 2802A doublet in the Seyfert galaxy NGC 4151 was examined to search for velocity systems in absorption and emission. Evidence for a narrow, outflowing absorption system in Mg II having a velocity of +825 km/sec relative to the Sun, -165 km/sec relative to the systemic velocity of NGC 4151 is presented. This feature is not present in Ly alpha or C IV and possible explanations for this are considered. For the Mg II and C IV lines a model decomposition of the line profile is shown.

  8. The Mg II line profile in the Seyfert galaxy NGC 4151 - A new outflowing component

    NASA Technical Reports Server (NTRS)

    Leech, Kieron J.; Penston, M. V.; Snijders, M. A. J.; Gull, T. R.

    1987-01-01

    This paper examines the Mg II 2795-2802 A doublet in the Seyfert galaxy NGC 4151 at a higher resolution than has previously been used, searching for velocity systems in absorption and emission. Evidence is presented for a new, narrow, outflowing absorption system in Mg II having a velocity of 825 km/s relative to the sun, and -165 km/s relative to the systemic velocity of NGC 4151. This feature is not present in Ly-alpha or C IV and possible explanations for this are considered. For the Mg II and C IV lines, a model decomposition of the line profile is presented.

  9. First Connection between Cold Gas in Emission and Absorption: CO Emission from a Galaxy-Quasar Pair

    NASA Astrophysics Data System (ADS)

    Neeleman, Marcel; Prochaska, J. Xavier; Zwaan, Martin A.; Kanekar, Nissim; Christensen, Lise; Dessauges-Zavadsky, Miroslava; Fynbo, Johan P. U.; van Kampen, Eelco; Møller, Palle; Zafar, Tayyaba

    2016-04-01

    We present the first detection of molecular emission from a galaxy selected to be near a projected background quasar using the Atacama Large Millimeter/submillimeter Array (ALMA). The ALMA detection of CO(1-0) emission from the z = 0.101 galaxy toward quasar PKS 0439-433 is coincident with its stellar disk and yields a molecular gas mass of Mmol ≈ 4.2 × 109 M⊙ (for a Galactic CO-to-H2 conversion factor), larger than the upper limit on its atomic gas mass. We resolve the CO velocity field, obtaining a rotational velocity of 134 ± 11 km s-1 and a resultant dynamical mass of ≥4 × 1010 M⊙. Despite its high metallicity and large molecular mass, the z = 0.101 galaxy has a low star formation rate, implying a large gas consumption timescale, larger than that typical of late-type galaxies. Most of the molecular gas is hence likely to be in a diffuse extended phase, rather than in dense molecular clouds. By combining the results of emission and absorption studies, we find that the strongest molecular absorption component toward the quasar cannot arise from the molecular disk, but is likely to arise from diffuse gas in the galaxy’s circumgalactic medium. Our results emphasize the potential of combining molecular and stellar emission line studies with optical absorption line studies to achieve a more complete picture of the gas within and surrounding high-redshift galaxies.

  10. Galaxy evolution across the optical emission-line diagnostic diagrams?

    NASA Astrophysics Data System (ADS)

    Vitale, M.; Fuhrmann, L.; García-Marín, M.; Eckart, A.; Zuther, J.; Hopkins, A. M.

    2015-01-01

    Context. The discovery of the M - σ relation, the local galaxy bimodality, and the link between black-hole and host-galaxy properties have raised the question of whether active galactic nuclei (AGN) play a role in galaxy evolution. AGN feedback is one of the biggest observational challenges of modern extragalactic astrophysics. Several theoretical models implement AGN feedback to explain the observed galaxy luminosity function and, possibly, the color and morphological transformation of spiral galaxies into passive ellipticals. Aims: For understanding the importance of AGN feedback, a study of the AGN populations in the radio-optical domain is crucial. A mass sequence linking star-forming galaxies and AGN has already been noted in previous works, and it is now investigated as a possible evolutionary sequence. Methods: We observed a sample of 119 intermediate-redshift (0.04 ≤ z< 0.4) SDSS-FIRST radio emitters with the Effelsberg 100-m telescope at 4.85 and 10.45 GHz and obtained spectral indices. The sample includes star-forming galaxies, composite galaxies (with mixed contribution to line emission from star formation and AGN activity), Seyferts, and low ionization narrow emission region (LINER) galaxies. With these sources we search for possible evidence of spectral evolution and a link between optical and radio emission in intermediate-redshift galaxies. Results: We find indications of spectral index flattening in high-metallicity star-forming galaxies, composite galaxies, and Seyferts. This "flattening sequence" along the [NII]-based emission-line diagnostic diagram is consistent with the hardening of galaxy ionizing field, thanks to nuclear activity. After combining our data with FIRST measurements at 1.4 GHz, we find that the three-point radio spectra of Seyferts and LINERs show substantial differences, which are attributable to small radio core components and larger (arcsecond sized) jet/lobe components, respectively. A visual inspection of FIRST images

  11. Quantifying correlations between galaxy emission lines and stellar continua

    NASA Astrophysics Data System (ADS)

    Beck, Róbert; Dobos, László; Yip, Ching-Wa; Szalay, Alexander S.; Csabai, István

    2016-03-01

    We analyse the correlations between continuum properties and emission line equivalent widths of star-forming and active galaxies from the Sloan Digital Sky Survey. Since upcoming large sky surveys will make broad-band observations only, including strong emission lines into theoretical modelling of spectra will be essential to estimate physical properties of photometric galaxies. We show that emission line equivalent widths can be fairly well reconstructed from the stellar continuum using local multiple linear regression in the continuum principal component analysis (PCA) space. Line reconstruction is good for star-forming galaxies and reasonable for galaxies with active nuclei. We propose a practical method to combine stellar population synthesis models with empirical modelling of emission lines. The technique will help generate more accurate model spectra and mock catalogues of galaxies to fit observations of the new surveys. More accurate modelling of emission lines is also expected to improve template-based photometric redshift estimation methods. We also show that, by combining PCA coefficients from the pure continuum and the emission lines, automatic distinction between hosts of weak active galactic nuclei (AGNs) and quiescent star-forming galaxies can be made. The classification method is based on a training set consisting of high-confidence starburst galaxies and AGNs, and allows for the similar separation of active and star-forming galaxies as the empirical curve found by Kauffmann et al. We demonstrate the use of three important machine learning algorithms in the paper: k-nearest neighbour finding, k-means clustering and support vector machines.

  12. The SAURON project - VI. Line strength maps of 48 elliptical and lenticular galaxies

    NASA Astrophysics Data System (ADS)

    Kuntschner, Harald; Emsellem, Eric; Bacon, R.; Bureau, M.; Cappellari, Michele; Davies, Roger L.; de Zeeuw, P. T.; Falcón-Barroso, Jesús; Krajnović, Davor; McDermid, Richard M.; Peletier, Reynier F.; Sarzi, Marc

    2006-06-01

    We present absorption line strength maps of 48 representative elliptical and lenticular galaxies obtained as part of a survey of nearby galaxies using our custom-built integral-field spectrograph, SAURON, operating on the William Herschel Telescope. Using high-quality spectra, spatially binned to a constant signal-to-noise ratio, we measure four key age, metallicity and abundance ratio sensitive indices from the Lick/IDS system over a two-dimensional field extending up to approximately one effective radius. A discussion of calibrations and offsets is given, along with a description of error estimation and nebular emission correction. We modify the classical Fe5270 index to define a new index, Fe5270S, which maximizes the useable spatial coverage of SAURON. Maps of Hβ, Fe5015, Mgb and Fe5270S are presented for each galaxy. We use the maps to compute average line strengths integrated over circular apertures of one-eighth effective radius, and compare the resulting relations of index versus velocity dispersion with previous long-slit work. The metal line strength maps show generally negative gradients with increasing radius roughly consistent with the morphology of the light profiles. Remarkable deviations from this general trend exist, particularly the Mgb isoindex contours appear to be flatter than the isophotes of the surface brightness for about 40 per cent of our galaxies without significant dust features. Generally, these galaxies exhibit significant rotation. We infer from this that the fast-rotating component features a higher metallicity and/or an increased Mg/Fe ratio as compared to the galaxy as a whole. The Hβ maps are typically flat or show a mild positive outwards radial gradient, while a few galaxies show strong central peaks and/or elevated overall Hβ strength likely connected to recent star formation activity. For the most prominent post-starburst galaxies, even the metal line strength maps show a reversed gradient.

  13. MAPPING DUST THROUGH EMISSION AND ABSORPTION IN NEARBY GALAXIES

    SciTech Connect

    Kreckel, Kathryn; Groves, Brent; Schinnerer, Eva; Meidt, Sharon E.; Tabatabaei, Fatemeh S.; Johnson, Benjamin D.; Aniano, Gonzalo; Calzetti, Daniela; Croxall, Kevin V.; Draine, Bruce T.; Gordon, Karl D.; Crocker, Alison F.; Smith, J. D. T.; Dale, Daniel A.; Hunt, Leslie K.; Kennicutt, Robert C.

    2013-07-01

    Dust has long been identified as a barrier to measuring inherent galaxy properties. However, the link between dust and attenuation is not straightforward and depends on both the amount of dust and its distribution. Herschel imaging of nearby galaxies undertaken as part of the KINGFISH project allows us to map the dust as seen in emission with unprecedented sensitivity and {approx}1 kpc resolution. We present here new optical integral field unit spectroscopy for eight of these galaxies that provides complementary 100-200 pc scale maps of the dust attenuation through observation of the reddening in both the Balmer decrement and the stellar continuum. The stellar continuum reddening, which is systematically less than that observed in the Balmer decrement, shows no clear correlation with the dust, suggesting that the distribution of stellar reddening acts as a poor tracer of the overall dust content. The brightest H II regions are observed to be preferentially located in dusty regions, and we do find a correlation between the Balmer line reddening and the dust mass surface density for which we provide an empirical relation. Some of the high-inclination systems in our sample exhibit high extinction, but we also find evidence that unresolved variations in the dust distribution on scales smaller than 500 pc may contribute to the scatter in this relation. We caution against the use of integrated A{sub V} measures to infer global dust properties.

  14. Direct Insights Into Observational Absorption Line Analysis Methods of the Circumgalactic Medium Using Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher W.; Vander Vliet, Jacob R.; Trujillo-Gomez, Sebastian; Kacprzak, Glenn G.; Klypin, Anatoly

    2015-03-01

    We study the circumgalactic medium (CGM) of a z = 0.54 simulated dwarf galaxy using hydroART simulations. We present our analysis methods, which emulate observations, including objective absorption line detection, apparent optical depth (AOD) measurements, Voigt profile (VP) decomposition, and ionization modeling. By comparing the inferred CGM gas properties from the absorption lines directly to the gas selected by low ionization H i and Mg ii, and by higher ionization C iv and O vi absorption, we examine how well observational analysis methods recover the “true” properties of CGM gas. In this dwarf galaxy, low ionization gas arises in sub-kiloparsec “cloud” structures, but high ionization gas arises in multiple extended structures spread over 100 kpc; due to complex velocity fields, highly separated structures give rise to absorption at similar velocities. We show that AOD and VP analysis fails to accurately characterize the spatial, kinematic, and thermal conditions of high ionization gas. We find that H i absorption selected gas and O vi absorption gas arise in totally distinct physical gas structures, calling into question current observational techniques employed to infer metallicities and the total mass of “warm-hot” CGM gas. We present a method to determine whether C iv and O vi absorbing gas is photo or collisionally ionized and whether the assumption of ionization equilibrium is sound. As we discuss, these and additional findings have strong implications for how accurately currently employed observational absorption line methods recover the true gas properties, and ultimately, our ability to understand the CGM and its role in galaxy evolution.

  15. UNSHIFTED METASTABLE He I* MINI-BROAD ABSORPTION LINE SYSTEM IN THE NARROW-LINE TYPE 1 QUASAR SDSS J080248.18+551328.9

    SciTech Connect

    Ji, Tuo; Zhou, Hongyan; Jiang, Peng; Wang, Tinggui; Wang, Huiyuan; Liu, Wenjuan; Yang, Chenwei; Ge, Jian; Hamann, Fred; Komossa, S.; Yuan, Weimin; Zuther, Jens; Lu, Honglin; Zuo, Wenwen

    2015-02-10

    We report the identification of an unusual absorption-line system in the quasar SDSS J080248.18+551328.9 and present a detailed study of the system, incorporating follow-up optical and near-IR spectroscopy. A few tens of absorption lines are detected, including He I*, Fe II*, and Ni II*, which arise from metastable or excited levels, as well as resonant lines in Mg I, Mg II, Fe II, Mn II, and Ca II. All of the isolated absorption lines show the same profile of width Δv ∼ 1500 km s{sup –1} centered at a common redshift as that of the quasar emission lines, such as [O II], [S II], and hydrogen Paschen and Balmer series. With narrow Balmer lines, strong optical Fe II multiplets, and weak [O III] doublets, its emission-line spectrum is typical for that of a narrow-line Seyfert 1 galaxy (NLS1). We have derived reliable measurements of the gas-phase column densities of the absorbing ions/levels. Photoionization modeling indicates that the absorber has a density of n {sub H} ∼ (1.0-2.5) × 10{sup 5} cm{sup –3} and a column density of N {sub H} ∼ (1.0-3.2) × 10{sup 21} cm{sup –2} and is located at R ∼100-250 pc from the central supermassive black hole. The location of the absorber, the symmetric profile of the absorption lines, and the coincidence of the absorption- and emission-line centroid jointly suggest that the absorption gas originates from the host galaxy and is plausibly accelerated by stellar processes, such as stellar winds and/or supernova explosions. The implications for the detection of such a peculiar absorption-line system in an NLS1 are discussed in the context of coevolution between supermassive black hole growth and host galaxy buildup.

  16. The spatial and kinematic structure of QSO metal-line absorption systems

    NASA Technical Reports Server (NTRS)

    Lanzetta, Kenneth M.

    1992-01-01

    Recent attempts to infer the spatial and kinematic distributions of the material responsible for absorption lines observed in the spectra of background QSOs are presented. Current models of the absorbing regions are compared, and initial observational results are described. This research is expected to lead eventually to a detailed picture of the extended gaseous halo regions of galaxies at early evolutionary stages and to an understanding of the physical processes at work in these halos.

  17. Unidentified line in x-ray spectra of the Andromeda galaxy and Perseus galaxy cluster.

    PubMed

    Boyarsky, A; Ruchayskiy, O; Iakubovskyi, D; Franse, J

    2014-12-19

    We report a weak line at 3.52±0.02  keV in x-ray spectra of the Andromeda galaxy and the Perseus galaxy cluster observed by the metal-oxide-silicon (MOS) and p-n (PN) CCD cameras of the XMM-Newton telescope. This line is not known as an atomic line in the spectra of galaxies or clusters. It becomes stronger towards the centers of the objects; is stronger for Perseus than for M31; is absent in the spectrum of a deep "blank sky" data set. Although for each object it is hard to exclude that the feature is due to an instrumental effect or an atomic line, it is consistent with the behavior of a dark matter decay line. Future (non-)detections of this line in multiple objects may help to reveal its nature. PMID:25554871

  18. Modelling of the X-ray broad absorption features in Narrow-Line Seyfert 1s

    NASA Astrophysics Data System (ADS)

    Porquet, Delphine; Mouchet, Martine; Dumont Anne-Marie

    2000-09-01

    We investigate the origin of the broad absorption features detected near 1-1.4 keV in several Narrow-Line Seyfert 1 galaxies, by modelling the absorbing medium with various physical parameters, using the ionization code PEGAS. The observed properties of the X-ray absorption features can be reproduced by taking into account the peculiar soft X-ray excess which is well fitted by a blackbody plus an underlying power law. We equally stress that the emission coming from the absorbing medium (related to the covering factor) has a strong influence on the resulting X-ray spectrum, in particular on the apparent position and depth of the absorption features. A non-solar iron abundance may be required to explain the observed deep absorption. We also investigate the influence of an additional collisional ionization process ("hybrid case") on the predicted absorption features.

  19. EVOLUTION OF [O III] {lambda}5007 EMISSION-LINE PROFILES IN NARROW EMISSION-LINE GALAXIES

    SciTech Connect

    Wang, J.; Mao, Y. F.; Wei, J. Y.

    2011-11-01

    The active galactic nucleus (AGN)-host co-evolution issue is investigated here by focusing on the evolution of the [O III] {lambda}5007 emission-line profile. A large sample of narrow emission-line galaxies is selected from the Max-Planck Institute for Astrophysics/Johns Hopkins University Sloan Digital Sky Survey DR7 catalog to simultaneously measure both the [O III] line profile and circumnuclear stellar population in an individual spectrum. By requiring that (1) the [O III] line signal-to-noise ratio is larger than 30 and (2) the [O III] line width is larger than the instrumental resolution by a factor of two, our sample is narrowed down to 2333 Seyfert galaxies/LINERs (AGNs), 793 transition galaxies, and 190 star-forming galaxies. In addition to the commonly used profile parameters (i.e., line centroid, relative velocity shift, and velocity dispersion), two dimensionless shape parameters, skewness and kurtosis, are used to quantify the line shape deviation from a pure Gaussian function. We show that the transition galaxies are systematically associated with narrower line widths and weaker [O III] broad wings than the AGNs, which implies that the kinematics of emission-line gas are different in the two kinds of objects. By combining the measured host properties and line shape parameters, we find that the AGNs with stronger blue asymmetries tend to be associated with younger stellar populations. However, a similar trend is not identified in the transition galaxies. The failure likely results from a selection effect in which the transition galaxies are systematically associated with younger stellar populations than the AGNs. The evolutionary significance revealed here suggests that both narrow-line region kinematics and outflow feedback in AGNs co-evolve with their host galaxies.

  20. Evolution of [O III] λ5007 Emission-line Profiles in Narrow Emission-line Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, J.; Mao, Y. F.; Wei, J. Y.

    2011-11-01

    The active galactic nucleus (AGN)-host co-evolution issue is investigated here by focusing on the evolution of the [O III] λ5007 emission-line profile. A large sample of narrow emission-line galaxies is selected from the Max-Planck Institute for Astrophysics/Johns Hopkins University Sloan Digital Sky Survey DR7 catalog to simultaneously measure both the [O III] line profile and circumnuclear stellar population in an individual spectrum. By requiring that (1) the [O III] line signal-to-noise ratio is larger than 30 and (2) the [O III] line width is larger than the instrumental resolution by a factor of two, our sample is narrowed down to 2333 Seyfert galaxies/LINERs (AGNs), 793 transition galaxies, and 190 star-forming galaxies. In addition to the commonly used profile parameters (i.e., line centroid, relative velocity shift, and velocity dispersion), two dimensionless shape parameters, skewness and kurtosis, are used to quantify the line shape deviation from a pure Gaussian function. We show that the transition galaxies are systematically associated with narrower line widths and weaker [O III] broad wings than the AGNs, which implies that the kinematics of emission-line gas are different in the two kinds of objects. By combining the measured host properties and line shape parameters, we find that the AGNs with stronger blue asymmetries tend to be associated with younger stellar populations. However, a similar trend is not identified in the transition galaxies. The failure likely results from a selection effect in which the transition galaxies are systematically associated with younger stellar populations than the AGNs. The evolutionary significance revealed here suggests that both narrow-line region kinematics and outflow feedback in AGNs co-evolve with their host galaxies.

  1. The Puzzlingly Small Ca II Triplet Absorption in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Saglia, R. P.; Maraston, Claudia; Thomas, Daniel; Bender, Ralf; Colless, Matthew

    2002-11-01

    We measure the central values (within Re/8) of the Ca II triplet line indices CaT* and CaT and the Paschen index PaT at 8600 Å for a 93% complete sample of 75 nearby early-type galaxies with BT<12 mag and Vgal<2490 km s-1. We find that the values of CaT* are constant to within 5% over the range of central velocity dispersions 100 km s-1<=σ<=340 km s-1, while the PaT (and CaT) values are mildly anticorrelated with σ. Using simple and composite stellar population models, we show the following: (1) The measured CaT* and CaT are lower than expected from simple stellar population (SSP) models with Salpeter initial mass functions (IMFs) and with metallicities and ages derived from optical Lick (Fe, Mg, and Hβ) indices. Uncertainties in the calibration, the fitting functions, and the SSP modeling taken separately cannot explain the discrepancy. On average, the observed PaT values are within the range allowed by the models and the large uncertainties in the fitting functions. (2) The steepening of the IMF at low masses required to lower the CaT* and CaT indices to the observed values is incompatible with the measured FeH index at 9916 Å and the dynamical mass-to-light ratios of elliptical galaxies. (3) Composite stellar populations with a low-metallicity component reduce the disagreement, but rather artificial metallicity distributions are needed. Another explanation may be that calcium is indeed underabundant in elliptical galaxies.

  2. Line shape studies in CW dye laser intracavity absorption

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Brink, G. O.; Spence, S.; Lakkaraju, H. S.

    1980-01-01

    The line shape of the signals observed by intracavity absorption in an atomic beam of barium is studied as a function of absorber density. Complex structure is observed consisting of both absorption and enhancement features. Comparison is made with models of intracavity absorption, and it is concluded that the rate equation model in its present form does not explain the structure. On the other hand the super-regen model does seem able to partially account for the observed structure. The complexity of the line shape will directly affect those workers who are using intracavity absorption as a spectroscopic technique.

  3. High-n Hydrogen Recombination Lines from the First Galaxies

    NASA Astrophysics Data System (ADS)

    Rule, Evan; Strelnitski, V.; Loeb, A.

    2013-01-01

    High-n Hydrogen Recombination Lines from the First Galaxies Evan Rule (John Hopkins U. & Maria Mitchell Obs.), Abraham Loeb (Harvard U.), & Vladimir Strelnitski (Maria Mitchell Obs.) We investigate the prospects of a blind search for high-n hydrogen recombination lines from the first generation of galaxies formed within cold dark matter halos at z ≤ 30. Our basic model considers optically thin spontaneous emission from a fully ionized galaxy with smooth distribution of interstellar gas and a negligible portion of the gas bound in stars. This model predicts considerable numbers of galaxies detectable in cm and mm domains with the detectability thresholds achievable by the best existing and forthcoming radio-astronomical facilities, such as ALMA and SKA. The predicted numbers can be reduced by the clumpiness of the interstellar gas, its incomplete ionization, and the finite time of the bursts of star formation, if this time is considerably shorter than the Hubble time. These downgrading factors may however be mitigated by the maser amplification of some lines. We come to the conclusion that blind searches for the first galaxies via their high-n hydrogen recombination lines, falling, after redshift, into short wavelength radio domain, are already justified for modern interferometric facilities. This project was supported by NSF/REU grant AST-0851892 and the Nantucket Maria Mitchell Association.

  4. The Subaru FMOS galaxy redshift survey (FastSound). II. The emission line catalog and properties of emission line galaxies

    NASA Astrophysics Data System (ADS)

    Okada, Hiroyuki; Totani, Tomonori; Tonegawa, Motonari; Akiyama, Masayuki; Dalton, Gavin; Glazebrook, Karl; Iwamuro, Fumihide; Ohta, Kouji; Takato, Naruhisa; Tamura, Naoyuki; Yabe, Kiyoto; Bunker, Andrew J.; Goto, Tomotsugu; Hikage, Chiaki; Ishikawa, Takashi; Okumura, Teppei; Shimizu, Ikkoh

    2016-06-01

    We present basic properties of ˜3300 emission line galaxies detected by the FastSound survey, which are mostly Hα emitters at z ˜ 1.2-1.5 in the total area of about 20 deg2, with the Hα flux sensitivity limit of ˜1.6 × 10-16 erg cm-2 s-1 at 4.5 σ. This paper presents the catalog of the FastSound emission lines and galaxies, which is open to the public. We also present basic properties of typical FastSound Hα emitters, which have Hα luminosities of 1041.8-1043.3 erg s-1, star formation rates (SFRs) of 20-500 M⊙ yr-1, and stellar masses of 1010.0-1011.3 M⊙. The 3D distribution maps for the four fields of Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) W1-4 are presented, clearly showing large scale clustering of galaxies at the scale of ˜100-600 comoving Mpc. Based on 1105 galaxies with detections of multiple emission lines, we estimate that the contamination of non-Hα lines is about 4% in the single-line emission galaxies, which is mostly [O III]λ5007. This contamination fraction is also confirmed by the stacked spectrum of all the FastSound spectra, in which Hα, [N II]λλ6548,6583, [S II]λλ6717,6731, and [O I]λλ6300,6364 are seen.

  5. High-resolution spectra of distant compact narrow emission line galaxies: Progrenitors of spheroidal galaxies

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Guzman, Rafael; Faber, S. M.; Illingworth, Garth D.; Bershady, Matthew A.; Kron, Richard G.; Takamiya, Marianne

    1995-01-01

    Emission-line velocity widths have been determined for 17 faint (B approximately 20-23) very blue, compact galaxies whose redshifts range from z = 0.095 to 0.66. The spectra have a resolution of 8 Km/s and were taken with the HIRES echelle spectrograph of the Keck 10 m telescope. The galaxies are luminous with all but two within 1 mag of M(sub B) approximately -21. Yet they exhibit narrow velocity widths between sigma = 28-157 km/s, more consistent with typical values of extreme star-forming galaxies than with those of nearby spiral galaxies of similar luminosity. In particular, objects with sigma is less than or equal to 65 km/s follow the same correlations between sigma and both blue and H beta luminosities as those of nearby H II galaxies. These results strengthen the identification of H II glaxies as thier local counterparts. The blue colors and strong emission lines suggest these compact galaxies are undergoing a recent, strong burst of star formation. Like those which characterize some H II galaxies, this burst could be a nuclear star-forming event within a much larger, older stellar population. If the burst is instead a major episode in the total star-forming history, these distant galaxies could fade enough to match the low luminosities and surface brightnesses typical of nearby spheroidals like NGC 185 or NGC 205. Together with evidence for recent star formation, exponential light profiles, and subsolar metallicities, the postfading correlations between luminosity and velocity width and bewtween luminosity and surface brightness suggest that among the low-sigma galaxies, we may be witnessing, in situ, the progenitors of today's spheroidal galaxies.

  6. Neutral hydrogen self-absorption in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Kavars, Dain William

    2006-06-01

    To develop a better understanding of the cold neutral medium phase of the interstellar medium, we present a detailed analysis of neutral hydrogen self- absorption (HISA) clouds in the Milky Way Galaxy. These HISA clouds are in the Southern Galactic Plane Survey (SGPS), spanning the region l = 253°--358° and | b | <= 1.3°, and in the VLA Galactic Plane Survey (VGPS), spanning the region l = 18°--67° and | b | <= 1.3°--2.3°. The SGPS and VGPS have an angular resolution of ~1 arcminute and a velocity channel spacing of 0.82 km s -1 . With the recent completion of these surveys, we can study HISA features across the Galaxy at a much better resolution and sensitivity than any previous work. To analyze HISA in detail, catalogs of clouds of all sizes, including those undetectable by eye alone, are required. We present an automated search routine to detect all HISA clouds in the SGPS. We compare HISA to CO data and find some HISA clouds associated with CO, but others have no associated CO. This suggests that HISA clouds are in a transition between molecular and atomic gas, bridging the gap between dense molecular clouds and warmer, diffuse atomic clouds. HISA thus plays an important role in the overall evolution of the Galaxy. To study this transition further, we present observations of the OH molecule toward a select sample of HISA clouds in the VGPS, using the Green Bank Telescope (GBT). We present an analysis of the molecular properties of this sample, including a derivation of an OH to H 2 conversion factor and H 2 to H I abundance ratios. We discuss the complex relationship between H I, OH, 12 CO, and 13 CO emission. Finally we present a statistical analysis comparing HISA with infrared data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) project. The GLIMPSE data reveal a large number of compact, dark infrared clouds believed to be in the early stages of star formation. If GLIMPSE clouds are associated with HISA, they provide

  7. Hawaii 167: A compact absorption-line object at z = 2.35

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; Songaila, A.; Hu, E. M.; Egami, E.; Huang, J.-S.; Pickles, A. J.; Ridgway, S. E.; Wainscoat, R. J.; Weymann, R. J.

    1994-01-01

    During the course of the Hawaii K-band (2.1 micrometer) survey we have detected a compact object, Hawaii 167, lying at a redshift of 2.33, in which are seen both low- and high-ionization absorption lines. In the near-infrared we see broad H alpha emission at a redshift of 2.35 but do not detect the other Balmer lines, (O II) lambda 3727, or (O III) lambda 5007. The absence of strong Mg II or C IV emission in the rest ultraviolet suggests that, at these wavelengths, we may be seeing a poststarburst galaxy rather than a quasar. Indeed, this class of object may be common enough to represent a major episode of galaxy formation, possibly the formation of the spheroids. However, Q0059-2735, the most extreme member of the class of Mg II absorbing broad absorption line quasars, is very similar to the present object, and there may be an evolutionary sequence or some other close connection between Hawaii 167 and the broad absorption line quasars.

  8. FUSE Detection of Galactic and Intrinsic Absorption in the Spectrum of the Seyfert 1 Galaxy 2MASX J21362313-6224008

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; VanDykeDixon, W.

    2003-01-01

    We present the far-ultraviolet spectrum of the Seyfert 1 galaxy 2MASX 521362313-6224008 obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). The spectrum features absorption from Galactic O VI at two velocities and redshifted H I Lyman beta and gamma, C II, C III, and O VI. The redshifted absorption features represent a single kinematic component blueshifted by approx. 310 km/s relative to the AGN. We use photoionization models to derive the physical parameters of the absorbing gas. An alternative interpretation for the absorption lines is also proposed, whereby the absorbing gas is associated with an intervening galaxy cluster.

  9. FUSE Observations of Galactic and Intrinsic Absorption in the Spectrum of the Seyfert 1 Galaxy 2MASX J21362313-6224008

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Dixon, W. Van Dyke

    2004-01-01

    We present the far-ultraviolet spectrum of the Seyfert 1 galaxy 2MASX J21362313-6224008 obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). The spectrum features absorption from Galactic O VI at two velocities and redshifted H I Ly beta and gamma, C II, CIII, and O VI. The redshifted absorption features represent a single kinematic component blueshifted by approx. 310 km/s relative to the active galactic nucleus. We use photoionization models to derive constraints on the physical parameters of the absorbing gas. An alternative interpretation for the absorption lines is also proposed, wherein the absorbing gas is associated with an intervening galaxy cluster.

  10. Iron emission line from the spiral galaxy M 101

    NASA Astrophysics Data System (ADS)

    Yamauchi, Shigeo

    2016-06-01

    Archival Suzaku data of the face-on spiral galaxy M 101 were analyzed. An intense emission line at 6.72^{+0.10}_{-0.12}keV was detected in the central region. This line is identified with a K-line from He-like iron, which indicates the existence of a thin thermal plasma with a temperature of several keV. The iron line luminosity within the central 5'-radius region is estimated to be (2-12) × 1037 erg s-1. The origin of the iron emission line is discussed.

  11. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    SciTech Connect

    Zhu, Yi-Nan; Wu, Hong E-mail: hwu@bao.ac.cn

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  12. The featureless continua and hydrogen lines of Seyfert 2 galaxies

    NASA Technical Reports Server (NTRS)

    Kinney, A. L.; Antonucci, R. R. J.; Ward, M. J.; Wilson, A. S.; Whittle, M.

    1991-01-01

    Optical and ultraviolet spectra taken in similar sized large apertures for 15 Seyfert 2 galaxies are presented. Measurements of emission-line strengths of Ly-alpha, H-alpha, and H-beta are used together with measurements of the ultraviolet slopes to estimate the ratio of recombination photons to ionizing photons. The photon ratios indicate that the ionizing continuum is being emitted anisotropically for at least six of the eight objects with UV slope measurements. The median value of the UV slope is indistinguishable from the UV slope of Seyfert 1 galaxies. This result suggests that in the occultation/reflection picture of Seyfert nuclei, the reflecting particles are free electrons and not dust. Previous observations of variability in Mrk 477 are verified, and it is shown that this galaxy exhibits characteristics of both Seyfert 1 and Seyfert 2 galaxies.

  13. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    NASA Astrophysics Data System (ADS)

    Welty, Daniel E.

    1990-07-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  14. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    NASA Technical Reports Server (NTRS)

    Welty, Daniel E.

    1990-01-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  15. Absorption line CW EPR using an amplitude modulated longitudinal field.

    PubMed

    Fedin, Matvey; Gromov, Igor; Schweiger, Arthur

    2004-11-01

    In standard continuous wave electron paramagnetic resonance (CW-EPR) experiments, the first derivative of absorption lines is detected. This type of a line shape is caused by the magnetic field modulation and is usually an undesired feature, since the sensitivity of CW-EPR drastically decreases with increasing linewidth. A new approach is introduced, which allows for the measurement of absorption line EPR spectra in systems with broad inhomogeneous lines. The method makes use of multiple-photon transitions that are induced in spin systems when a transverse microwave and a longitudinal radio frequency field are simultaneously applied. The absorption lines are obtained by using amplitude modulation of the radio frequency field and slight saturation of the spectral lines. The basics of the new approach are discussed and experimental examples are given. PMID:15504685

  16. High Resolution X-Ray Absorption Spectroscopy: Distribution of Matter in and around Galaxies

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert; MIT/CAT Team

    2015-10-01

    The chemical evolution of the Universe embraces aspects that reachdeep into modern astrophysics and cosmology. We want to know how present and past matter is affected by various levels and types of nucleo-synthesis and stellar evolution. Three major categories were be identified: 1. The study of pre-mordial star formation including periods of super-massive black hole formation, 2. The embedded evolution of the intergalactic medium IGM, 3. The status and evolution of stars and the interstellar medium ISM in galaxies. Today a fourth category relates to our understanding of dark matter in relationwith these three categories. The X-ray band is particularly sensitive to K- and L-shell absorption and scattering from high abundant elements like C, N, O, Ne, Mg, Si, S,Ar, Ca, Fe, and Ni. Like the Lyman alpha forest in the optical band, absorbers in the IGM produce an X-ray line forest along the line of sight in the X-rayspectrum of a background quasar. Similary bright X-ray sources within galaxies and the Milky Way produce a continuum, which is being absorbed by elements invarious phases of the ISM. High resolution X-ray absorption surveys are possible with technologies ready for flight within decade. == high efficiency X-ray optics with optical performance 3== high resolution X-ray gratings with R 3000 for E 1.5 keV== X-ray micro-calorimeters with R 2000 for E 1.5 keV. The vision for the next decade needs to lead to means and strategies which allows us to perform such absorption surveys as effectively as surveys are now or in very near future quite common in astronomy pursued in other wave length bands such as optical, IR, and sub-mm.

  17. QSOs and Absorption-Line Systems surrounding the Hubble Deep Field

    SciTech Connect

    Vanden Berk, Daniel E.; Stoughton, Chris; Crotts, Arlin P. S.; Tytler, David; Kirkman, David

    2000-06-01

    We have imaged a 45' x 45' area centered on the Hubble Deep Field (HDF) in UBVRI passbands, down to the limiting magnitudes of approximately 21.5, 22.5, 22.2, 22.2, and 21.2, respectively. The principal goals of the survey are to identify quasi-stellar objects (QSOs) and to map structure traced by luminous galaxies and QSO absorption line systems in a wide volume containing the HDF. The area surveyed is 400 times as large as that of the HDF, and 40 times as large as that of the HDF Flanking Fields. We have selected QSO candidates from color space and identified four QSOs and two narrow emission line galaxies not yet discovered, bringing the total number of known QSOs in the area to 19. The bright z=1.305 QSO only 12' away from the HDF raises the northern HDF to nearly the same status as the southern Hubble Deep Field, which was selected to be proximate to a bright QSO. About half of the QSO candidates remain for spectroscopic verification. Absorption-line spectroscopy has been obtained for three bright QSOs in the field, using the 10 m Keck, 3.5 m ARC, and 2.4 m MDM telescopes. Five heavy-element absorption line systems have been identified, four of which overlap the well-explored redshift range covered by deep galaxy redshift surveys toward the HDF. The two absorbers at z=0.5565 and z=0.5621 occur at the same redshift as the secondmost populated redshift peak in the galaxy distribution, but each is more than 7 h-1 Mpc (comoving, {omega}{sub m} =1, {omega}{sub {lambda}} =0) away from the HDF line of sight in the transverse dimension. This supports more indirect evidence that the galaxy redshift peaks are contained within large sheetlike structures that traverse the HDF and may be precursors to large-scale ''pancake'' structures seen in the present-day galaxy distribution. (c) 2000 The American Astronomical Society.

  18. The relativistic Doppler broadening of the line absorption profile

    NASA Astrophysics Data System (ADS)

    Kichenassamy, S.; Krikorian, R.; Nikogosian, A.

    1982-06-01

    The classical results of Doppler broadening of the line absorption profile are generalized to a relativistic gas in thermal equilibrium by taking into account the relativistic variance of the volume absorption coefficients of the gas, as derived by L. H. Thomas. This variance produces a small correction, even in the non-relativistic approximation.

  19. Discovery of carbon radio recombination lines in absorption towards Cygnus A

    NASA Astrophysics Data System (ADS)

    Oonk, J. B. R.; van Weeren, R. J.; Salgado, F.; Morabito, L. K.; Tielens, A. G. G. M.; Rottgering, H. J. A.; Asgekar, A.; White, G. J.; Alexov, A.; Anderson, J.; Avruch, I. M.; Batejat, F.; Beck, R.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Breitling, F.; Brentjens, M.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Conway, J. E.; Corstanje, A.; de Gasperin, F.; de Geus, E.; de Vos, M.; Duscha, S.; Eislöffel, J.; Engels, D.; van Enst, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Hamaker, J. P.; Hassall, T. E.; Heald, G.; Hessels, J. W. T.; Hoeft, M.; Horneffer, A.; van der Horst, A.; Iacobelli, M.; Jackson, N. J.; Juette, E.; Karastergiou, A.; Klijn, W.; Kohler, J.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Mann, G.; Markoff, S.; McKean, J. P.; Mevius, M.; Miller-Jones, J. C. A.; Mol, J. D.; Mulcahy, D. D.; Munk, H.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Scaife, A. M. M.; Schoenmakers, A.; Schwarz, D.; Shulevski, A.; Sluman, J.; Smirnov, O.; Sobey, C.; Stappers, B. W.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Veen, S. ter; Thoudam, S.; Toribio, C.; van Nieuwpoort, R.; Vermeulen, R.; Vocks, C.; Vogt, C.; Wijers, R. A. M. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, A.

    2014-02-01

    We present the first detection of carbon radio recombination line absorption along the line of sight to Cygnus A. The observations were carried out with the Low Frequency Array in the 33-57 MHz range. These low-frequency radio observations provide us with a new line of sight to study the diffuse, neutral gas in our Galaxy. To our knowledge this is the first time that foreground Milky Way recombination line absorption has been observed against a bright extragalactic background source. By stacking 48 carbon α lines in the observed frequency range we detect carbon absorption with a signal-to-noise ratio of about 5. The average carbon absorption has a peak optical depth of 2 × 10-4, a line width of 10 km s-1 and a velocity of +4 km s-1 with respect to the local standard of rest. The associated gas is found to have an electron temperature Te ˜ 110 K and density ne ˜ 0.06 cm-3. These properties imply that the observed carbon α absorption likely arises in the cold neutral medium of the Orion arm of the Milky Way. Hydrogen and helium lines were not detected to a 3σ peak optical depth limit of 1.5 × 10-4 for a 4 km s-1 channel width. Radio recombination lines associated with Cygnus A itself were also searched for, but are not detected. We set a 3σ upper limit of 1.5 × 10-4 for the peak optical depth of these lines for a 4 km s-1 channel width.

  20. Galaxy Clusters in the Line of Sight to Background Quasars. III. Multi-object Spectroscopy

    NASA Astrophysics Data System (ADS)

    Andrews, H.; Barrientos, L. F.; López, S.; Lira, P.; Padilla, N.; Gilbank, D. G.; Lacerna, I.; Maureira, M. J.; Ellingson, E.; Gladders, M. D.; Yee, H. K. C.

    2013-09-01

    We present Gemini/GMOS-S multi-object spectroscopy of 31 galaxy cluster candidates at redshifts between 0.2 and 1.0 and centered on QSO sight lines taken from López et al. The targets were selected based on the presence of an intervening Mg II absorption system at a similar redshift to that of a galaxy cluster candidate lying at a projected distance <2 h_{71}^{-1} Mpc from the QSO sight line (a "photometric hit"). The absorption systems span rest-frame equivalent widths between 0.015 and 2.028 Å. Our aim was three-fold: (1) to identify the absorbing galaxies and determine their impact parameters, (2) to confirm the galaxy cluster candidates in the vicinity of each quasar sightline, and (3) to determine whether the absorbing galaxies reside in galaxy clusters. In this way, we are able to characterize the absorption systems associated with cluster members. Our main findings are as follows. (1) We identified 10 out of 24 absorbing galaxies with redshifts between 0.2509 <= z gal <= 1.0955, up to an impact parameter of 142\\ h_{71}^{-1} kpc and a maximum velocity difference of 280 km s-1. (2) We spectroscopically confirmed 20 out of 31 cluster/group candidates, with most of the confirmed clusters/groups at z < 0.7. This relatively low efficiency results from the fact that we centered our observations on the QSO location, and thus occasionally some of the cluster centers were outside the instrument field of view. (3) Following from the results above, we spectroscopically confirmed of 10 out of 14 photometric hits within ~650 km s-1 from galaxy clusters/groups, in addition to two new ones related to galaxy group environments. These numbers imply efficiencies of 71% in finding such systems with MOS spectroscopy. This is a remarkable result since we defined a photometric hit as those cluster-absorber pairs having a redshift difference Δz = 0.1. The general population of our confirmed absorbing galaxies have luminosities L_{B} \\sim L_{B}^{\\ast } and mean rest

  1. Time variations of narrow absorption lines in high resolution quasar spectra

    NASA Astrophysics Data System (ADS)

    Boissé, P.; Bergeron, J.; Prochaska, J. X.; Péroux, C.; York, D. G.

    2015-09-01

    Aims: We have searched for temporal variations of narrow absorption lines in high resolution quasar spectra. A sample of five distant sources were assembled, for which two spectra are available, either VLT/UVES or Keck/HIRES, which were taken several years apart. Methods: We first investigate under which conditions variations in absorption line profiles can be detected reliably from high resolution spectra and discuss the implications of changes in terms of small-scale structure within the intervening gas or intrinsic origin. The targets selected allow us to investigate the time behaviour of a broad variety of absorption line systems by sampling diverse environments: the vicinity of active nuclei, galaxy halos, molecular-rich galaxy disks associated with damped Lyα systems, as well as neutral gas within our own Galaxy. Results: Intervening absorption lines from Mg ii, Fe ii, or proxy species with lines of lower opacity tracing the same kind of (moderately ionised) gas appear in general to be remarkably stable (1σ upper limits as low as 10% for some components on scales in the range 10-100 au), even for systems at zabs ≈ ze. Marginal variations are observed for Mg ii lines towards PKS 1229-021 at zabs = 0.83032; however, we detect no systems that display any change as large as those reported in low resolution SDSS spectra. The lack of clear variations for low β Mg ii systems does not support the existence of a specific population of absorbers made of swept-up gas towards blazars. In neutral or diffuse molecular media, clear changes are seen for Galactic Na i lines towards PKS 1229-02 (decrease in N by a factor of four for one of the five components over 9.7 yr), corresponding to structure on a scale of about 35 au, in good agreement with known properties of the Galactic interstellar medium. Tentative variations are detected for H2J = 3 lines towards FBQS J2340-0053 at zabs = 2.05454 (≃35% change in column density, N, over 0.7 yr in the rest frame), suggesting

  2. DISENTANGLING THE CIRCUMNUCLEAR ENVIRONS OF CENTAURUS A. II. ON THE NATURE OF THE BROAD ABSORPTION LINE

    SciTech Connect

    Espada, D.; Matsushita, S.; Sakamoto, K.; Peck, A. B.; Henkel, C.; Iono, D.; Israel, F. P.; Muller, S.; Petitpas, G.; Pihlstroem, Y.; Taylor, G. B.; Trung, D. V.

    2010-09-01

    We report on atomic gas (H I) and molecular gas (as traced by CO(2-1)) redshifted absorption features toward the nuclear regions of the closest powerful radio galaxy, Centaurus A (NGC 5128). Our H I observations using the Very Long Baseline Array allow us to discern with unprecedented sub-parsec resolution H I absorption profiles toward different positions along the 21 cm continuum jet in the inner 0.''3 (or 5.4 pc). In addition, our CO(2-1) data obtained with the Submillimeter Array probe the bulk of the absorbing molecular gas with little contamination by emission, which was not possible with previous CO single-dish observations. We shed light on the physical properties of the gas in the line of sight with these data, emphasizing the still open debate about the nature of the gas that produces the broad absorption line ({approx}55 km s{sup -1}). First, the broad H I line is more prominent toward the central and brightest 21 cm continuum component than toward a region along the jet at a distance {approx}20 mas (or 0.4 pc) further from the nucleus. This indicates that the broad absorption line arises from gas located close to the nucleus, rather than from diffuse and more distant gas. Second, the different velocity components detected in the CO(2-1) absorption spectrum match well with other molecular lines, such as those of HCO{sup +}(1-0), except the broad absorption line that is detected in HCO{sup +}(1-0) (and most likely related to that of the H I). Dissociation of molecular hydrogen due to the active galactic nucleus seems to be efficient at distances r {approx}< 10 pc, which might contribute to the depth of the broad H I and molecular lines.

  3. Interstellar Mg II and C IV absorption by 1 1/2 galaxies along the sightline to MrK 205

    NASA Technical Reports Server (NTRS)

    Bowen, David V.; Blades, J. Chris

    1993-01-01

    The first results of our HST survey designed to search for Mg 2 and C 4 absorption lines from the disks and halos of low-redshift galaxies using background QSO's and supernovae as probes are presented. Our survey utilizes the high resolution of the Goddard High Resolution Spectrograph enabling us to calculate the column densities and doppler parameters of individual components within an absorption complex, and hence determine the physical conditions of the absorbing gas. Observing the complexity of the absorption line profiles i.e., the velocity distribution and total velocity extent of the constituent components, offers an important description of the kinematics of the absorbing gas, and hence an understanding of its origin. Focus is on one sight line in particular, that towards Mrk 205, which passes 3-5 kpc from the intervening galaxy NGC 4319. Mg 2 and C 4 absorption from both local Milky Way halo gas and from NGC 4319 is detected.

  4. Surprises from a Deep ASCA Spectrum of the Broad Absorption Line Quasar PHL 5200

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Matt, G.; Green, P. J.; Elvis, M.; Singh, K. P.

    2002-01-01

    We present a deep (approx. 85 ks) ASCA observation of the prototype broad absorption line quasar (BALQSO) PHL 5200. This is the best X-ray spectrum of a BALQSO yet. We find the following: (1) The source is not intrinsically X-ray weak. (2) The line-of-sight absorption is very strong, with N(sub H) = 5 x 10(exp 23)/sq cm. (3) The absorber does not cover the source completely; the covering fraction is approx. 90%. This is consistent with the large optical polarization observed in this source, implying multiple lines of sight. The most surprising result of this observation is that (4) the spectrum of this BALQSO is not exactly similar to other radio-quiet quasars. The hard X-ray spectrum of PHL 5200 is steep, with the power-law spectral index alpha approx. 1.5. This is similar to the steepest hard X-ray slopes observed so far. At low redshifts, such steep slopes are observed in narrow-line Seyfert 1 (NLS1) galaxies, believed to be accreting at a high Eddington rate. This observation strengthens the analogy between BALQSOs and NLS1 galaxies and supports the hypothesis that BALQSOs represent an early evolutionary state of quasars. It is well accepted that the orientation to the line of sight determines the appearance of a quasar: age seems to play a significant role as well.

  5. Correlation of QSO absorption lines in universes dominated by cold dark matter

    NASA Technical Reports Server (NTRS)

    Salmon, J.; Hogan, C.

    1986-01-01

    Theoretical predictions for the redshift correlations between QSO absorption-line systems are investigated in the context of 'cold dark matter' cosmological models. Particles in 'particle-mesh' N-body simulations are interpreted as absorbing clouds at epochs corresponding to mean redshifts, z, of 0.0, 1.25, and 3.0. The velocity correlation function for absorbing clouds is found by passing lines-of-sight through the systems and computing velocity differences for those particles which lie close to the lines. It depends strongly on z and Omega but only weakly, if at all, on the number density, diameter or mass of the clouds. Two interpretations are possible: (1) the heavy element absorption systems are associated with galaxies which are an unbiased sample of the mass distribution in an Omega(0) = 0.2 universe or (2) the Lyman-alpha absorbers are an unbiased sample of the mass in an Omega(0) = 1 universe and the heavy-element absorption systems, like galaxies, are more strongly clustered than the mass.

  6. The Hubble Space Telescope quasar absorption line key project. II - Data calibration and absorption-line selection

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Saxe, David H.; Weymann, Ray J.; Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Sargent, W. L. W.

    1993-01-01

    We present the observational and data processing aspects of the Hubble Space Telescope Quasar Absorption Line Key Project. Topics discussed include the observational technique, calibration of the data, software that simulates the data, the automated procedure used to identify and characterize the absorption features, and the determination of the sensitivity limits of the survey.

  7. Intracavity absorption line shape and the super-regen model

    NASA Astrophysics Data System (ADS)

    Lewellen, L. R.; Brink, G. O.

    1981-10-01

    Intracavity absorption has been observed in a short lived excited state of helium produced in an RF discharge inside the dye laser cavity. The line shape consists of an absorption feature with two symmetric enhancement wings. The central absorption feature is considerably broadened over the natural width, and this is shown to be in agreement with the superregen model. It is also shown that under certain conditions the ICA signal inverts so that the central feature becomes enhanced and the symmetric wings appear as absorption. This result is also in agreement with predictions of the model.

  8. Quasars as the formation sites of high-redshift ellipticals: a signature in the `associated' absorption-line systems?

    NASA Astrophysics Data System (ADS)

    Franceschini, A.; Gratton, R.

    1997-03-01

    Published data on the average metallicities and abundance ratios for absorption-line systems in high-redshift quasars suggest that a dichotomy may exist between the chemical composition of damped Lyman alpha (Lyalpha) systems (interpreted as intervening galaxies in the QSO line of sight) and the z_abs~=z_em absorption- line systems associated with the quasar. Intervening systems have smaller than solar metallicities, whereas associated absorbers have solar or greater than solar metallicities and small N/C ratios. While these results have to be confirmed by more precise abundance determinations, we argue that they may be explained by an early phase of efficient metal enrichment occurring only in the close environment of high-z QSOs, and characterized by an excess type-II supernova (SNII) activity. This is reminiscent of the SNII phase required to explain the abundance ratios (favouring alpha- over Fe-group elements) observed in the intracluster (IC) medium of local galaxy clusters. We explore the following scenario, to be tested by forthcoming observations of QSO absorption lines using very large optical telescopes. (a) Well-studied damped- Lyalpha, Lyalpha and metal lines in intervening systems trace only part of the history of metal production in the Universe - the one concerning slowly star-forming discs or dwarf irregulars. (b) The complementary class of early-type and bulge-dominated galaxies formed quickly (at z>~4-5) through a huge episode of star formation favouring high-mass stars. (c) The nucleus of the latter is the site of the subsequent formation of a quasar, which partly hides from view the dimmer host galaxy. (d) The products of a galactic wind, following the violent episode of star formation in the host galaxy and metal pollution of the IC medium in the forming cluster, could be directly observable in the z_abs~=z_em associated absorption systems on the QSO line of sight.

  9. KPC-Scale Properties of Emission-line Galaxies

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; Mobasher, Bahram; Candels

    2015-01-01

    We perform a detailed -combined spectroscopic and photometric- study of resolved properties of galaxies at kpc scale and investigate how small-scale and global properties of galaxies are related. The sample consists of 119 galaxies to z~1.3 with the unique feature of having very high-resolution spectroscopic data from long exposure observations with the KECK/DEIMOS. Using HST/ACS and WFC3 data taken as part of the CANDELS project, we produce resolved rest-frame (U-V) color, stellar mass and star formation surface densities, stellar age and extinction maps and profiles along the galaxies rotation axes. We model the optical nebular emission lines using the high-resolution DEIMOS spectra and construct the optical line ratio profiles diagnostic of metallicity (R23) and nebular extinction (Ha/Hb). We find that the nebular dust extinction profile, inferred from Balmer decrement, is in agreement with the average extinction derived from the resolved SED modeling. Using the R23 metallicity profiles we examine, for the first time, the mass metallicity relation across galaxies and explore how this relation changes as a function of spatial position. We identify red and blue 'regions' of statistical significance within individual galaxies, using their rest-frame color maps. As expected, for any given galaxy, the red regions are found to have higher stellar mass surface densities and older ages compared to the blue regions. Furthermore, we quantify the spatial distribution of red and blue regions with respect to both redshift and stellar mass, finding that the stronger concentration of red regions toward the centers of galaxies is not a significant function of either redshift or stellar mass. We find that the 'main sequence' of star forming galaxies exists among both red and blue regions inside galaxies, with the median of blue regions forming a tighter relation with a slope of 1.1±0.1 and a scatter of ˜ 0.2 dex compared to red regions with a slope of 1.3 ± 0.1 and a scatter

  10. EXTREME EMISSION-LINE GALAXIES IN CANDELS: BROADBAND-SELECTED, STARBURSTING DWARF GALAXIES AT z > 1

    SciTech Connect

    Van der Wel, A.; Rix, H.-W.; Jahnke, K.; Straughn, A. N.; Finkelstein, S. L.; Salmon, B. W.; Koekemoer, A. M.; Ferguson, H. C.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; Koo, D. C.; Hathi, N. P.; Dunlop, J. S.; Newman, J. A.; Dickinson, M.; De Mello, D. F.; and others

    2011-12-01

    We identify an abundant population of extreme emission-line galaxies (EELGs) at redshift z {approx} 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). Sixty-nine EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broadband magnitudes. Supported by spectroscopic confirmation of strong [O III] emission lines-with rest-frame equivalent widths {approx}1000 A-in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with {approx}10{sup 8} M{sub Sun} in stellar mass, undergoing an enormous starburst phase with M{sub *}/ M-dot{sub *} of only {approx}15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the comoving number density (3.7 Multiplication-Sign 10{sup -4} Mpc{sup -3}) can produce in {approx}4 Gyr much of the stellar mass density that is presently contained in 10{sup 8}-10{sup 9} M{sub Sun} dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  11. KILOPARSEC-SCALE PROPERTIES OF EMISSION-LINE GALAXIES

    SciTech Connect

    Hemmati, Shoubaneh; Miller, Sarah H.; Mobasher, Bahram; Nayyeri, Hooshang; Ferguson, Henry C.; Koekemoer, Anton M.; Guo, Yicheng; Koo, David C.

    2014-12-20

    We perform a detailed study of the resolved properties of emission-line galaxies at kiloparsec scales to investigate how small-scale and global properties of galaxies are related. We use a sample of 119 galaxies in the GOODS fields. The galaxies are selected to cover a wide range in morphologies over the redshift range 0.2 < z < 1.3. High resolution spectroscopic data from Keck/DEIMOS observations are used to fix the redshift of all the galaxies in our sample. Using the HST/ACS and HST/WFC3 imaging data taken as a part of the CANDELS project, for each galaxy, we perform spectral energy distribution fitting per resolution element, producing resolved rest-frame U – V color, stellar mass, star formation rate (SFR), age, and extinction maps. We develop a technique to identify ''regions'' of statistical significance within individual galaxies, using their rest-frame color maps to select red and blue regions, a broader definition for what are called ''clumps'' in other works. As expected, for any given galaxy, the red regions are found to have higher stellar mass surface densities and older ages compared to the blue regions. Furthermore, we quantify the spatial distribution of red and blue regions with respect to both redshift and stellar mass, finding that the stronger concentration of red regions toward the centers of galaxies is not a significant function of either redshift or stellar mass. We find that the ''main sequence'' of star-forming galaxies exists among both red and blue regions inside galaxies, with the median of blue regions forming a tighter relation with a slope of 1.1 ± 0.1 and a scatter of ∼0.2 dex compared to red regions with a slope of 1.3 ± 0.1 and a scatter of ∼0.6 dex. The blue regions show higher specific SFRs (sSFRs) than their red counterparts with the sSFR decreasing since z ∼ 1, driven primarily by the stellar mass surface densities rather than the SFRs at a given resolution element.

  12. Kiloparsec-scale Properties of Emission-line Galaxies

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; Miller, Sarah H.; Mobasher, Bahram; Nayyeri, Hooshang; Ferguson, Henry C.; Guo, Yicheng; Koekemoer, Anton M.; Koo, David C.; Papovich, Casey

    2014-12-01

    We perform a detailed study of the resolved properties of emission-line galaxies at kiloparsec scales to investigate how small-scale and global properties of galaxies are related. We use a sample of 119 galaxies in the GOODS fields. The galaxies are selected to cover a wide range in morphologies over the redshift range 0.2 < z < 1.3. High resolution spectroscopic data from Keck/DEIMOS observations are used to fix the redshift of all the galaxies in our sample. Using the HST/ACS and HST/WFC3 imaging data taken as a part of the CANDELS project, for each galaxy, we perform spectral energy distribution fitting per resolution element, producing resolved rest-frame U - V color, stellar mass, star formation rate (SFR), age, and extinction maps. We develop a technique to identify "regions" of statistical significance within individual galaxies, using their rest-frame color maps to select red and blue regions, a broader definition for what are called "clumps" in other works. As expected, for any given galaxy, the red regions are found to have higher stellar mass surface densities and older ages compared to the blue regions. Furthermore, we quantify the spatial distribution of red and blue regions with respect to both redshift and stellar mass, finding that the stronger concentration of red regions toward the centers of galaxies is not a significant function of either redshift or stellar mass. We find that the "main sequence" of star-forming galaxies exists among both red and blue regions inside galaxies, with the median of blue regions forming a tighter relation with a slope of 1.1 ± 0.1 and a scatter of ~0.2 dex compared to red regions with a slope of 1.3 ± 0.1 and a scatter of ~0.6 dex. The blue regions show higher specific SFRs (sSFRs) than their red counterparts with the sSFR decreasing since z ~ 1, driven primarily by the stellar mass surface densities rather than the SFRs at a given resolution element.

  13. QSO Narrow [OIII] Line Width and Host Galaxy Luminosity

    NASA Astrophysics Data System (ADS)

    Bonning, E. W.; Shields, G. A.; Salviander, S.

    2004-05-01

    Established correlations between galaxy bulge luminosity L, black hole mass MBH, and stellar velocity dispersion sigma in galaxies suggest a close relationship between the growth of supermassive black holes and their host galaxies. Measurements of the MBH - sigma relationship as a function of cosmic time may shed light on the origin of this relationship. One approach is to derive MBH and sigma from the widths of QSO broad and narrow lines, respectively (Shields et al. 2003, ApJ, 583, 124; Nelson 2000, ApJ, 544, L91). We investigate the utility of using the velocity of the narrow line emitting gas as a surrogate for stellar velocity dispersion in QSOs by examining host magnitudes and [OIII] line widths for low redshift QSOs. For our limited range of L, the increase in sigma with L predicted by the Faber-Jackson relation is substantially obscured by scatter. However, sigma([O III]) is consistent in the mean with host galaxy luminosity. EWB is a NASA GSRP fellow. GAS and SS are supported under Texas Advanced Research Program grant 003658-0177-2001 and NSF grant AST-0098594.

  14. A comparative study of intervening and associated H I 21-cm absorption profiles in redshifted galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Duchesne, S. W.; Divoli, A.; Allison, J. R.

    2016-08-01

    The star-forming reservoir in the distant Universe can be detected through H I 21-cm absorption arising from either cool gas associated with a radio source or from within a galaxy intervening the sight-line to the continuum source. In order to test whether the nature of the absorber can be predicted from the profile shape, we have compiled and analysed all of the known redshifted (z ≥ 0.1) H I 21-cm absorption profiles. Although between individual spectra there is too much variation to assign a typical spectral profile, we confirm that associated absorption profiles are, on average, wider than their intervening counterparts. It is widely hypothesised that this is due to high velocity nuclear gas feeding the central engine, absent in the more quiescent intervening absorbers. Modelling the column density distribution of the mean associated and intervening spectra, we confirm that the additional low optical depth, wide dispersion component, typical of associated absorbers, arises from gas within the inner parsec. With regard to the potential of predicting the absorber type in the absence of optical spectroscopy, we have implemented machine learning techniques to the 55 associated and 43 intervening spectra, with each of the tested models giving a ≳80% accuracy in the prediction of the absorber type. Given the impracticability of follow-up optical spectroscopy of the large number of 21-cm detections expected from the next generation of large radio telescopes, this could provide a powerful new technique with which to determine the nature of the absorbing galaxy.

  15. ESO089-G018 and ESO089-G019: long-slit spectroscopy of emission-line galaxies

    NASA Astrophysics Data System (ADS)

    da Rocha-Poppe, P. C.; Faúndez-Abans, M.; Fernandes-Martin, V. A.; Fernandes, I. F.; de Oliveira-Abans, M.; Rodrígues-Ardila, A.

    2010-03-01

    We present the first spectroscopic observations for the galaxies ESO089-G018 (hereafter G18, an Sb(?)-type galaxy seen nearly edge-on) and ESO089-G019 (hereafter G19, an SA(s): a peculiar galaxy), extracted from the sample of ring-shaped galaxies compiled in Faúndez-Abans & de Oliveira-Abans. The main goal of this work is to investigate the spectral classification using the three line-ratio diagrams, called diagnostic diagrams, of Veilleux & Osterbrock. However, in order to separate the different types of galaxies [HII galaxies, Seyfert 2 galaxies and low-ionization nuclear emission-line region galaxies (LINERs)] we have to used empirical boundaries between them. Based on the observed spectra, we suggest G18 is a `weak-[OI] LINER' or even a `transition object' or LINER/HII. In the case of G19, we see Hβ in absorption and no [OIII] lines, impeding the [OIII]/Hβ ratio to be estimated. However, other lines ratios have been evaluated for the discussion. We classify the nature of G19 as ambiguous, because of the difficulty in determining its ionizing source (narrow-line active galactic nuclei or HII galaxies) in different diagnostic diagrams. The errors in the fluxes were mostly caused by uncertainties in the placement of the continuum level. We have estimated nuclear redshift of z = 0.034 (G18) and z = 0.039 (G19), corresponding to a heliocentric velocity of 10246 and 11734kms-1, respectively. Some other physical parameters have been derived whenever possible. All spectra were reduced and analysed in a homogeneous way with the standard IRAF procedures. Based on observations carried out at Observatório do Pico dos Dias (OPD), which operated by the LNA/MCT, Brazil-MG. E-mail: paulopoppe@gmail.com

  16. Searching for emission-line galaxies: The UCM survey

    NASA Technical Reports Server (NTRS)

    Gallego, J.; Zamorano, J.; Rego, M.; Vitores, A.

    1993-01-01

    We are carrying out a long-term project with the main purposes of finding and analyzing low metallicity galaxies. A very small number of very low metallicity galaxies is known up to now. However these ojbects are particularly interesting since they are excellent candidates to 'young galaxies' in evolutionary sense as POX186 (Kunth, Maurogordato & Vigroux, 1988). Since the interstellar matter in these objects is only weakly contaminated by stellar evolution, their study could provide valuable information about the primordial helium abundance and therefore it could place constraints on the different Big-Bang models. The instrumental set up of our survey is an objective-prism used with the Schmidt telescope at Calar Alto Observatory. By using hypersensitized IIIaF emulsion and RG630 filter low resolution spectra in the H alpha region of objects in a wide field is obtained (Rego et al. 1989, Zamorano et al. 1990). Surveys carried out in the past two decades at optical blue wavelengths have also produced large samples of emission-line galaxies (ELGs), for example MacAlpine & Willians 1981 and reference therein, Wasilewski 1983, Salzer and MacAlpine 1988, or Smith et al. 1976. Relying primarily on objective-prism plates taken in the blue, these surveys have found over 3000 blue/emission-line galaxies so far. A significant number of star-forming galaxies are missed by optical surveys in the blue because of their low-excitation spectra (MacAlpine and Willians 1981, Markarian et al. 1981 and references therein) or their low metallicity (Kunth and Sargent, 1986).

  17. Properties of Galaxies Detected in Emission and Absorption with Background Quasars

    NASA Astrophysics Data System (ADS)

    Straka, Lorrie Ann

    The question of how galaxies evolve is a difficult one to answer. By studying galaxies hosting Damped (DLA) and sub-Damped Lyman-alpha (sub-DLA) systems, we hope to shed some light on the subject. DLA and sub-DLA systems contain the vast majority of neutral gas in the universe, making them ideal candidates for studies of primordial gas. However, it is unclear how these absorption systems relate to present day galaxies. Observations of these systems detected through absorption in background quasar spectra indicate the DLAs are metal poor and slowly evolving while their counterparts, the sub-DLAs, are highly enriched. In order to determine the relationship between galaxies detected in absorption and normal galaxies, we compile a sample of low redshift quasar galaxy pairs (QGP) detected in emission in quasar spectra. These emission detected galaxies are searched for absorption features that may indicate a connection to higher redshift galaxy absorption systems, including DLAs and sub-DLAs. While the roles of spectroscopy and imaging play equal parts in determining characteristics of these systems, focus here is placed on the broad-band imaging aspect, used to locate absorption host galaxies and determine their photometric properties. These properties can then be compared to the known properties of galaxies at other epochs. The role of the Sloan Digital Sky Survey has been paramount in this study. Presented here are two sets of data: high metallicity DLA and sub-DLA absorption systems at z > 0.4 and quasar-galaxy pairs selected in emission from the Sloan Digital Sky Survey at z < 0.4. Results show that the z < 0.4 sample has low star formation rate values and a high degree of reddening which is in good agreement with higher redshift samples of quasar absorbers and our z > 0.4 sample of DLAs and sub-DLAs. Morphologically, those galaxies selected by emission naturally tend to be late-type, while our sample of DLAs and sub-DLAs appears to be primarily early-type.

  18. Line-of-sight structure toward strong lensing galaxy clusters

    SciTech Connect

    Bayliss, Matthew B.; Johnson, Traci; Sharon, Keren; Gladders, Michael D.; Oguri, Masamune

    2014-03-01

    We present an analysis of the line-of-sight structure toward a sample of 10 strong lensing cluster cores. Structure is traced by groups that are identified spectroscopically in the redshift range, 0.1 ≤ z ≤ 0.9, and we measure the projected angular and comoving separations between each group and the primary strong lensing clusters in each corresponding line of sight. From these data we measure the distribution of projected angular separations between the primary strong lensing clusters and uncorrelated large-scale structure as traced by groups. We then compare the observed distribution of angular separations for our strong lensing selected lines of sight against the distribution of groups that is predicted for clusters lying along random lines of sight. There is clear evidence for an excess of structure along the line of sight at small angular separations (θ ≤ 6') along the strong lensing selected lines of sight, indicating that uncorrelated structure is a significant systematic that contributes to producing galaxy clusters with large cross sections for strong lensing. The prevalence of line-of-sight structure is one of several biases in strong lensing clusters that can potentially be folded into cosmological measurements using galaxy cluster samples. These results also have implications for current and future studies—such as the Hubble Space Telescope Frontier Fields—that make use of massive galaxy cluster lenses as precision cosmological telescopes; it is essential that the contribution of line-of-sight structure be carefully accounted for in the strong lens modeling of the cluster lenses.

  19. A GREEN BANK TELESCOPE SURVEY FOR H I 21 cm ABSORPTION IN THE DISKS AND HALOS OF LOW-REDSHIFT GALAXIES

    SciTech Connect

    Borthakur, Sanchayeeta; Tripp, Todd M.; Yun, Min S.; Meiring, Joseph D.; Bowen, David V.; York, Donald G.; Momjian, Emmanuel

    2011-01-20

    We present an H I 21 cm absorption survey with the Green Bank Telescope (GBT) of galaxy-quasar pairs selected by combining galaxy data from the Sloan Digital Sky Survey (SDSS) and radio sources from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey. Our sample consists of 23 sight lines through 15 low-redshift foreground galaxy-background quasar pairs with impact parameters ranging from 1.7 kpc up to 86.7 kpc. We detected one absorber in the GBT survey from the foreground dwarf galaxy, GQ1042+0747, at an impact parameter of 1.7 kpc and another possible absorber in our follow-up Very Large Array (VLA) imaging of the nearby foreground galaxy UGC 7408. The line widths of both absorbers are narrow (FWHM of 3.6 and 4.8km s{sup -1}). The absorbers have sub-damped Ly{alpha} column densities, and most likely originate in the disk gas of the foreground galaxies. We also detected H I emission from three foreground galaxies including UGC 7408. Although our sample contains both blue and red galaxies, the two H I absorbers as well as the H I emissions are associated with blue galaxies. We discuss the physical conditions in the 21 cm absorbers and some drawbacks of the large GBT beam for this type of survey.

  20. Moderate-resolution spectroscopy of the lensed quasar 2237 + 0305 - A search for CA II absorption due to the interstellar medium in the foreground lensing galaxy

    NASA Astrophysics Data System (ADS)

    Hintzen, Paul; Maran, Stephen P.; Michalitsianos, Andrew G.; Foltz, Craig B.; Chaffee, Frederic H., Jr.; Kafatos, Minas

    1990-01-01

    The gravitational lens system 2237+0305 consists of a low-redshift barred spiral galaxy (z = 0.0394) centered on a more distant quasar (z = 1.695). Because the lensing galaxy is nearly face on, spectroscopy of the background quasar affords a unique opportunity to study the interstellar medium in the galaxy's center and . We report moderate-resolution spectroscopy of QSO2237+0305 yielding a 3σ upper limit of 72 mÅ for the rest equivalent width of Ca II K absorption due to gas in the intervening galaxy. Since gas in the Milky Way "thick disk" typically produces 220 mÅ Ca II lines along lines of sight at high galactic latitude, while our line of sight to QSO 2237+0305 is effectively the weighted mean of four lines of sight, each of which transects an entire halo diameter in the lensing galaxy rather than just a radius, our Ca II upper limit argues against the presence of such a thick disk near the center of the lensing galaxy. Also, published studies indicate that at 8200 Å, QSO 2237+0305 suffers roughly 0.5 mag of extinction due to the leasing galaxy. Assuming a normal gas-to-dust ratio and allowing for various sources of uncertainty, this absorption estimate combined with our Ca II K upper limit implies that calcium is depleted with respect to hydrogen by at least 2.7-3.7 dex, compared to solar abundances. This depletion is similar to the more extreme cases seen in our own galaxy, and higher-dispersion observations may further decrease the upper limit on Ca II absorption.

  1. Broad Absorption Line Quasar catalogues with Supervised Neural Networks

    NASA Astrophysics Data System (ADS)

    Scaringi, Simone; Cottis, Christopher E.; Knigge, Christian; Goad, Michael R.

    2008-12-01

    We have applied a Learning Vector Quantization (LVQ) algorithm to SDSS DR5 quasar spectra in order to create a large catalogue of broad absorption line quasars (BALQSOs). We first discuss the problems with BALQSO catalogues constructed using the conventional balnicity and/or absorption indices (BI and AI), and then describe the supervised LVQ network we have trained to recognise BALQSOs. The resulting BALQSO catalogue should be substantially more robust and complete than BI-or AI-based ones.

  2. Broad Absorption Line Quasar catalogues with Supervised Neural Networks

    SciTech Connect

    Scaringi, Simone; Knigge, Christian; Cottis, Christopher E.; Goad, Michael R.

    2008-12-05

    We have applied a Learning Vector Quantization (LVQ) algorithm to SDSS DR5 quasar spectra in order to create a large catalogue of broad absorption line quasars (BALQSOs). We first discuss the problems with BALQSO catalogues constructed using the conventional balnicity and/or absorption indices (BI and AI), and then describe the supervised LVQ network we have trained to recognise BALQSOs. The resulting BALQSO catalogue should be substantially more robust and complete than BI-or AI-based ones.

  3. A spectrophotometric atlas of Narrow-Line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Véron, P.; Gonçalves, A. C.

    2001-06-01

    We have compiled a list of 83 objects classified as Narrow-Line Seyfert 1 galaxies (NLS1s) or known to have a broad Balmer component narrower than 2 000 km s-1. Of these, 19 turned out to have been spectroscopically misidentified in previous studies; only 64 of the selected objects are genuine NLS1s. We have spectroscopically observed 59 of them and tried to characterize their Narrow and Broad-Line Regions (NLR and BLR) by fitting the emission-lines with Gaussian and/or Lorentzian profiles. In most cases, the broad Balmer components are well fitted by a single Lorentzian profile, confirming previous claims that Lorentzian rather than Gaussian profiles are better suited to reproduce the shape of the NLS1s broad emission lines. This has consequences concerning their FWHMs and line ratios: when the broad Balmer components are fitted with a Lorentzian, most narrow line regions have line ratios typical of Seyfert 2s while, when a Gaussian profile is used for fitting the broad Balmer components, the line ratios are widely scattered in the usual diagnostic diagrams (Veilleux & Osterbrock \\cite{vei87}); moreover, the FWHM of the best fitting Lorentzian is systematically smaller than the FWHM of the Gaussian. We find that, in general, the [O III] lines have a relatively narrow Gaussian profile ( ~ 200-500 km s-1 FWHM) with often, in addition, a second broad ( ~ 500-1 800 km s-1 FWHM), blueshifted Gaussian component. We do not confirm that the [O III] lines are weak in NLS1s. As previously suggested, there is a continuous transition of all properties between NLS1s and classical Broad-Line Seyfert 1 Galaxies (BLS1s) and the limit of 2000 km s-1 used to separate the two species is arbitrary; R4570, the ratio of the Fe II to the Hβ fluxes, could be a physically more meaningful parameter to distinguish them.

  4. The low-ion QSO absorption-line systems

    SciTech Connect

    Lanzetta, K.M.

    1988-01-01

    Various techniques are used to investigate the class of QSO absorption-line systems that exhibit low-ion absorption lines. Four separate investigations are conducted as follows: Spectroscopy of 32 QSOs at red wavelengths is presented and used to investigate intermediate-redshift MgII absorption. A total of 22 Mg II doublets are detected, from which properties of the Mg II absorbers are derived. Marginal evidence for intrinsic evolution of the number density of the Mg II absorbers with redshift is found. The data are combined with previous observations of C IV and C II seen in the same QSOs at blue wavelengths, and the properties of Mg II- and C IV-selected systems are compared. A sample is constructed of 129 QSOs for which are available published data suitable for detecting absorption-line systems that are optically thick to Lyman continuum radiation. A total of 53 such Lyman-limit systems are found, from which properties of the Lyman-limit systems are derived. It is found that the rate of incidence of the systems does not strongly evolved with redshift. This result is contrasted with the evolution found previously for systems selected on the basis of Mg II absorption. Spectroscopy at red wavelengths of eight QSOs with known damped Ly{alpha} absorption systems is presented. Spectroscopic and spectrophotometric observations aimed at detecting molecular hydrogen and dust in the z = 2.796 damped Ly{alpha} absorber toward Q1337 + 113 are presented.

  5. Extreme Variability in a Broad Absorption Line Quasar

    NASA Astrophysics Data System (ADS)

    Stern, Daniel; Graham, Matthew; Arav, Nahum; Djorgovski, Stanislav G.; Chamberlain, Carter; Barth, Aaron J.; Donalek, Ciro; Drake, Andrew J.; Glikman, Eilat; Jun, Hyunsung David; Mahabal, Ashish A.; Steidel, Charles C.

    2016-01-01

    We report on extreme spectral variability seen in a broad absorption line quasar over the past decade, initially identified from the Catalina Real-time Transient Survey (CRTS). Photometrically, the source had a visual magnitude of V = 17.3 between 2002 and 2008. Then, over the following 5 years, the source slowly brightened by approximately one magnitude, to V = 16.2. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line (Fe-LoBAL) quasar with extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. Absorption systems separated by several 1000 km/s in velocity show coordinated changes in the depths of their troughs, correlated with the flux changes. Therefore, we interpret the variability in the absorption troughs to be due to changes in photoionization, rather than due to motion of material into our line of sight. This source highlights the sort of rare transition objects that astronomy will now be finding through dedicated time domain surveys.

  6. Temperature-insensitive laser frequency locking near absorption lines

    NASA Astrophysics Data System (ADS)

    Kostinski, Natalie; Olsen, Ben A.; Marsland, Robert; McGuyer, Bart H.; Happer, William

    2011-03-01

    Combined magnetically induced circular dichroism and Faraday rotation of an atomic vapor are used to develop a variant of the dichroic atomic vapor laser lock that eliminates lock sensitivity to temperature fluctuations of the cell. Operating conditions that eliminate first-order sensitivity to temperature fluctuations can be determined by low-frequency temperature modulation. This temperature-insensitive gyrotropic laser lock can be accurately understood with a simple model, that is in excellent agreement with observations in potassium vapor at laser frequencies in a 2 GHz range about the 770.1 nm absorption line. The methods can be readily adapted for other absorption lines.

  7. Temperature-insensitive laser frequency locking near absorption lines

    SciTech Connect

    Kostinski, Natalie; Olsen, Ben A.; Marsland, Robert III; McGuyer, Bart H.; Happer, William

    2011-03-15

    Combined magnetically induced circular dichroism and Faraday rotation of an atomic vapor are used to develop a variant of the dichroic atomic vapor laser lock that eliminates lock sensitivity to temperature fluctuations of the cell. Operating conditions that eliminate first-order sensitivity to temperature fluctuations can be determined by low-frequency temperature modulation. This temperature-insensitive gyrotropic laser lock can be accurately understood with a simple model, that is in excellent agreement with observations in potassium vapor at laser frequencies in a 2 GHz range about the 770.1 nm absorption line. The methods can be readily adapted for other absorption lines.

  8. AFGL atmospheric absorption line parameters compilation - 1982 edition

    NASA Technical Reports Server (NTRS)

    Rothman, L. S.; Gamache, R. R.; Barbe, A.; Goldman, A.; Gillis, J. R.; Brown, L. R.; Toth, R. A.; Flaud, J.-M.; Camy-Peyret, C.

    1983-01-01

    The latest edition of the AFGL atmospheric absorption line parameters compilation for the seven most active infrared terrestrial absorbers is described. Major modifications to the atlas for this edition include updating of water-vapor parameters from 0 to 4300 per cm, improvements to line positions for carbon dioxide, substantial modifications to the ozone bands in the middle to far infrared, and improvements to the 7- and 2.3-micron bands of methane. The atlas now contains about 181,000 rotation and vibration-rotation transitions between 0 and 17,900 per cm. The sources of the absorption parameters are summarized.

  9. Dust depletion of Ca and Ti in QSO absorption-line systems

    NASA Astrophysics Data System (ADS)

    Guber, C. R.; Richter, P.

    2016-06-01

    Aims: To explore the role of titanium- and calcium-dust depletion in gas in and around galaxies, we systematically study Ti/Ca abundance ratios in intervening absorption-line systems at low and high redshift. Methods: We investigate high-resolution optical spectra obtained by the UVES instrument at the Very Large Telescope (VLT) and spectroscopically analyze 34 absorption-line systems at z ≤ 0.5 to measure column densities (or limits) for Ca ii and Ti ii. We complement our UVES data set with previously published absorption-line data on Ti/Ca for redshifts up to z ~ 3.8. Our absorber sample contains 110 absorbers including damped Lyman α systems (DLAs), sub-DLAs, and Lyman-Limit systems (LLS). We compare our Ti/Ca findings with results from the Milky Way and the Magellanic Clouds and discuss the properties of Ti/Ca absorbers in the general context of quasar absorption-line systems. Results: Our analysis indicates that there are two distinct populations of absorbers with either high or low Ti/Ca ratios with a separation at [Ti/Ca] ≈ 1. While the calcium-dust depletion in most of the absorbers appears to be severe, the titanium depletions are mild in systems with high Ti/Ca ratios. The derived trend indicates that absorbers with high Ti/Ca ratios have dust-to-gas ratios that are substantially lower than in the Milky Way. We characterize the overall nature of the absorbers by correlating Ti/Ca with other observables (e.g., metallicity, velocity-component structure) and by modeling the ionization properties of singly-ionized Ca and Ti in different environments. Conclusions: We conclude that Ca ii and Ti ii bearing absorption-line systems trace predominantly neutral gas in the disks and inner halo regions of galaxies, where the abundance of Ca and Ti reflects the local metal and dust content of the gas. Our study suggests that the Ti/Ca ratio represents a useful measure for the gas-to-dust ratio and overall metallicity in intervening absorption-line systems.

  10. Measuring H0 and q0 with X-ray lines from galaxy clusters

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Raymond, John C.

    1988-01-01

    A new method of measuring angular diameter distances, and hence H0 and q0, by means of X-ray observations of galaxy clusters is proposed. It resembles the method which combines maps of X-ray continuum emission with maps of the Suniaev-Zel'dovich effect, but substitutes measurements of X-ray absorption lines in the spectra of background quasars for the Suniaev-Zel'dovich effect. When the high resolution permitted by the AXAF microcalorimeter becomes available, this method should yield results with significantly smaller uncertainty.

  11. Synthetic Spectra of H Balmer and HE I Absorption Lines. I. Stellar Library

    NASA Astrophysics Data System (ADS)

    González Delgado, Rosa M.; Leitherer, Claus

    1999-12-01

    We present a grid of synthetic profiles of stellar H Balmer and He I lines at optical wavelengths with a sampling of 0.3 Å. The grid spans a range of effective temperature 50,000 K>=Teff>=4000 K, and gravity 0.0<=logg<=5.0 at solar metallicity. For Teff>=25,000 K, non-LTE stellar atmosphere models are computed using the code TLUSTY (Hubeny). For cooler stars, Kurucz LTE models are used to compute the synthetic spectra. The grid includes the profiles of the high-order hydrogen Balmer series and He I lines for effective temperatures and gravities that have not been previously synthesized. The behavior of H8 to H13 and He I λ3819 with effective temperature and gravity is very similar to that of the lower terms of the series (e.g., Hβ) and the other He I lines at longer wavelengths; therefore, they are suited for the determination of the atmospheric parameters of stars. These lines are potentially important to make predictions for these stellar absorption features in galaxies with active star formation. Evolutionary synthesis models of these lines for starburst and poststarburst galaxies are presented in a companion paper. The full set of the synthetic stellar spectra is available for retrieval at our website or on request from the authors.

  12. The Gaseous Extent of Galaxies and the Origin of Lyα Absorption Systems. V. Optical and Near-Infrared Photometry of Lyα-absorbing Galaxies at z<1

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen; Lanzetta, Kenneth M.; Webb, John K.; Barcons, Xavier

    2001-10-01

    We present results of a program to obtain and analyze HST WFPC2 images and ground-based images of galaxies identified in an imaging and spectroscopic survey of faint galaxies in fields of HST spectroscopic target QSOs. Considering a sample of physically correlated galaxy and absorber pairs with galaxy-absorber cross-correlation amplitude ξga(v,ρ)>1 and with galaxy impact parameter ρ<200 h-1 kpc, we confirm and improve the results presented by Lanzetta et al. and Chen et al. that (1) extended gaseous envelopes are a common and generic feature of galaxies of a wide range of luminosity and morphological type, (2) the extent of tenuous gas [N(H I)>~1014 cm-2] around galaxies scales with galaxy B-band luminosity as r~L0.39+/-0.09B, and (3) galaxy interactions do not play an important role in distributing tenuous gas around galaxies in most cases. We further demonstrate that (4) the gaseous extent of galaxies scales with galaxy K-band luminosity as r~L0.28+/-0.08K, and (5) tenuous gas around typical L* galaxies is likely to be distributed in spherical halos of radius ~180 h-1 kpc of covering factor of nearly unity. The sample consists of 34 galaxy and absorber pairs and 13 galaxies that do not produce Lyα absorption lines to within sensitive upper limits. Redshifts of the galaxy and absorber pairs range from z=0.0752 to 0.8920 with a median of z=0.3567; impact parameter separations of the galaxy and absorber pairs range from ρ=12.4 to 175.2 h-1 kpc with a median of ρ=62.2 h-1 kpc. Of the galaxies, 15 (32%) are of B-band luminosity LB<0.25 LB* and six (13%) are of low surface brightness. The galaxy sample is therefore representative of the galaxy population over a large fraction of the Hubble time. Because galaxies of all morphological types possess extended gaseous halos and because the extent of tenuous gas around galaxies scales with galaxy K-band luminosity, we argue that galaxy mass-rather than recent star formation activity-is likely to be the dominant factor

  13. Variable Iron K(alpha) Lines in Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Gelbord, J.; Yaqoob, T.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We find that variability of the iron K alpha line is common in Seyfert 1 galaxies. Using data from the ASCA archive for objects that have been observed more than once during the mission, we study the time-averaged spectra from individual observations, thereby probing variability on timescales that range from days to years. Since the statistics of the data do not warrant searches for line variability in terms of a complex physical model, we use a simple Gaussian to model the gross shape of the line and then use the centroid energy, intensity, and equivalent width as robust indicators of changes in the line profile. We find that approximately 70% of Seyfert 1 galaxies (10 out of 15) show variability in at least one of these parameters: the centroid energy, intensity, and equivalent width vary in six, four, and eight sources, respectively. Because of the low signal-to-noise ratio, limited sampling, and time averaging, we consider these results to represent lower limits to the rate of incidence of variability. In most cases changes in the line do not appear to track changes in the continuum. In particular, we find no evidence for variability of the line intensity in NGC 4151, suggesting an origin in a region larger than the putative accretion disk, where most of the iron line has been thought to originate. Mrk 279 is investigated on short timescales. The time-averaged effective line energy (as measured by the Gaussian center energy, which is weighted by emission in the entire line profile) is 6.5 keV in the galaxy rest frame. As the continuum flux increases by 20% in a few hours, the Fe K line responds within approximately 10,000 seconds with the effective line energy increasing by 0.22 keV (approximately 10,500 kilometers per second). We also examine the ROSAT PSPC spectrum of Mrk 279 but find inconsistencies with ASCA. Problems with the ASCA and ROSAT calibration that affect simultaneous spectral fits at low energies are discussed in an appendix.

  14. THE PHYSICAL CONDITIONS OF THE INTRINSIC N V NARROW ABSORPTION LINE SYSTEMS OF THREE QUASARS

    SciTech Connect

    Wu Jian; Charlton, Jane C.; Misawa, Toru; Eracleous, Michael; Ganguly, Rajib E-mail: misawatr@shinshu-u.ac.j

    2010-10-20

    We employ detailed photoionization models to infer the physical conditions of intrinsic narrow absorption line systems found in high-resolution spectra of three quasars at z = 2.6-3.0. We focus on a family of intrinsic absorbers characterized by N V lines that are strong relative to the Ly{alpha} lines. The inferred physical conditions are similar for the three intrinsic N V absorbers, with metallicities greater than 10 times the solar value (assuming a solar abundance pattern), and with high ionization parameters (log U {approx} 0). Thus, we conclude that the unusual strength of the N V lines results from a combination of partial coverage, a high ionization state, and high metallicity. We consider whether dilution of the absorption lines by flux from the broad emission line region can lead us to overestimate the metallicities and we find that this is an unlikely possibility. The high abundances that we infer are not surprising in the context of scenarios in which metal enrichment takes place very early on in massive galaxies. We estimate that the mass outflow rate in the absorbing gas (which is likely to have a filamentary structure) is less than a few M{sub sun} yr{sup -1} under the most optimistic assumptions, although it may be embedded in a much hotter, more massive outflow.

  15. On the Origin of the Wide HI Absorption Line Towards Sgr A *

    NASA Astrophysics Data System (ADS)

    Dwarakanath, K. S.; Goss, W. M.; Zhao, J. H.; Lang, C. C.

    2004-09-01

    We have imaged a region of ~5 extent surrounding Sgr A* in the HI 21 cm-line absorption using the Very Large Array. A Gaussian decomposition of the optical depth spectra at positions within ~2(~5 pcat 8.5 kpc) of Sgr A* detects a wide linw underlying the many narrow absorption lines. The wide line has a mean peak optical depth of 0.32 ± 0.12 centered at a mean velocity of Vlsr = -4 ± 15 km s-1. The mean full width half maximum is 119 ± 42 km s-1. Such a wide line is absent in the spectra at positions beyond ~2 from Sgr A*. The position-velocity diagrams do not reveal any diffuse feature which could be attributed to a large number of HI clouds along the line of sight to Sgr A*. Consequently, the wide line has no implications either to a global population of shocked HI clouds in the Galaxy or to the energetics of the interstellar medium as was earlier thought.

  16. Far-infrared spectroscopy of galaxies - The 158 micron C(+) line and the energy balance of molecular clouds

    NASA Technical Reports Server (NTRS)

    Crawford, M. K.; Genzel, R.; Townes, C. H.; Watson, D. M.

    1985-01-01

    Observations of the 158 microns fine-structure line of C(+) toward the nuclei of six gas-rich galaxies are presented. The observations are compared with observations of the CO J = 1-0 and H I 21 cm lines, observations of far-IR continuum emission, and observations of forbidden C II emission with the Galaxy. The forbidden C II line comes from dense, warm gas in UV-illuminated photodissociation regions at the surfaces of molecular clouds. This line is probably optically thin in all but the brightest of galactic sources. The variation of forbidden C II brightness from source to source and its ratio to the integrated infrared continuum intensity agree well with the theoretical prediction that UV absorption by dust controls the C(+) column density. The forbidden C II line is a tracer of molecular clouds, especially those near intense sources of UV radiation.

  17. The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission

    SciTech Connect

    Vreeswijk, Paul M.; Gal-Yam, Avishay; De Cia, Annalisa; Rubin, Adam; Yaron, Ofer; Tal, David; Ofek, Eran O.; Savaglio, Sandra; Quimby, Robert M.; Sullivan, Mark; Cenko, S. Bradley; Filippenko, Alexei V.; Clubb, Kelsey I.; Perley, Daniel A.; Cao, Yi; Taddia, Francesco; Sollerman, Jesper; Leloudas, Giorgos; Arcavi, Iair; Kasliwal, Mansi M.; and others

    2014-12-10

    We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory, iPTF 13ajg. At a redshift of z = 0.7403, derived from narrow absorption lines, iPTF 13ajg peaked at an absolute magnitude of M {sub u,} {sub AB} = –22.5, one of the most luminous supernovae to date. The observed bolometric peak luminosity of iPTF 13ajg is 3.2 × 10{sup 44} erg s{sup –1}, while the estimated total radiated energy is 1.3 × 10{sup 51} erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the Very Large Telescope. From Voigt profile fitting, we derive the column densities log N(Mg I) =11.94 ± 0.06, log N(Mg II) =14.7 ± 0.3, and log N(Fe II) =14.25 ± 0.10. These column densities, as well as the Mg I and Mg II equivalent widths of a sample of hydrogen-poor SLSNe taken from the literature, are at the low end of those derived for gamma-ray bursts (GRBs) whose progenitors are also thought to be massive stars. This suggests that the environments of hydrogen-poor SLSNe and GRBs are different. From the nondetection of Fe II fine-structure absorption lines, we derive a lower limit on the distance between the supernova and the narrow-line absorbing gas of 50 pc. The neutral gas responsible for the absorption in iPTF 13ajg exhibits a single narrow component with a low velocity width, ΔV = 76 km s{sup –1}, indicating a low-mass host galaxy. No host galaxy emission lines are detected, leading to an upper limit on the unobscured star formation rate (SFR) of SFR{sub [O} {sub II]}<0.07M{sub ⊙}yr{sup −1}. Late-time imaging shows the iPTF 13ajg host galaxy to be faint, with g {sub AB} ≈ 27.0 and R {sub AB} ≥ 26.0 mag, corresponding to M {sub B,} {sub Vega} ≳ –17.7 mag.

  18. The Hydrogen-poor Superluminous Supernova iPTF 13ajg and its Host Galaxy in Absorption and Emission

    NASA Astrophysics Data System (ADS)

    Vreeswijk, Paul M.; Savaglio, Sandra; Gal-Yam, Avishay; De Cia, Annalisa; Quimby, Robert M.; Sullivan, Mark; Cenko, S. Bradley; Perley, Daniel A.; Filippenko, Alexei V.; Clubb, Kelsey I.; Taddia, Francesco; Sollerman, Jesper; Leloudas, Giorgos; Arcavi, Iair; Rubin, Adam; Kasliwal, Mansi M.; Cao, Yi; Yaron, Ofer; Tal, David; Ofek, Eran O.; Capone, John; Kutyrev, Alexander S.; Toy, Vicki; Nugent, Peter E.; Laher, Russ; Surace, Jason; Kulkarni, Shrinivas R.

    2014-12-01

    We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory, iPTF 13ajg. At a redshift of z = 0.7403, derived from narrow absorption lines, iPTF 13ajg peaked at an absolute magnitude of M u, AB = -22.5, one of the most luminous supernovae to date. The observed bolometric peak luminosity of iPTF 13ajg is 3.2 × 1044 erg s-1, while the estimated total radiated energy is 1.3 × 1051 erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the Very Large Telescope. From Voigt profile fitting, we derive the column densities log N(Mg I) =11.94 ± 0.06, log N(Mg II) =14.7 ± 0.3, and log N(Fe II) =14.25 ± 0.10. These column densities, as well as the Mg I and Mg II equivalent widths of a sample of hydrogen-poor SLSNe taken from the literature, are at the low end of those derived for gamma-ray bursts (GRBs) whose progenitors are also thought to be massive stars. This suggests that the environments of hydrogen-poor SLSNe and GRBs are different. From the nondetection of Fe II fine-structure absorption lines, we derive a lower limit on the distance between the supernova and the narrow-line absorbing gas of 50 pc. The neutral gas responsible for the absorption in iPTF 13ajg exhibits a single narrow component with a low velocity width, ΔV = 76 km s-1, indicating a low-mass host galaxy. No host galaxy emission lines are detected, leading to an upper limit on the unobscured star formation rate (SFR) of SFR_[O \\scriptsize{II]}<0.07 {M_⊙ yr-1}. Late-time imaging shows the iPTF 13ajg host galaxy to be faint, with g AB ≈ 27.0 and R AB >= 26.0 mag, corresponding to M B, Vega >~ -17.7 mag.

  19. Fine-structure Constancy Measurements in QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Whitmore, Jonathan B.

    2013-01-01

    The ESO Large Programme 185.A-0745 has awarded 10 nights on the VLT-UVES spectrograph for the study of the possible variation in the fine structure constant. We will present the fine-structure measurements from two lines of sight and several absorption systems. We will also present updated systematic error analyses.

  20. H I-SELECTED GALAXIES AS A PROBE OF QUASAR ABSORPTION SYSTEMS

    SciTech Connect

    Okoshi, Katsuya; Nagashima, Masahiro; Gouda, Naoteru; Minowa, Yousuke

    2010-02-20

    We investigate the properties of H I-rich galaxies detected in blind radio surveys within the hierarchical structure formation scenario using a semianalytic model of galaxy formation. By drawing a detailed comparison between the properties of H I-selected galaxies and H I absorption systems, we argue a link between the local galaxy population and quasar absorption systems, particularly for damped Lyalpha absorption (DLA) systems and sub-DLA systems. First, we evaluate how many H I-selected galaxies exhibit H I column densities as high as those of DLA systems. We find that H I-selected galaxies with H I masses M{sub H{sub I}} {approx}> 10{sup 8} M{sub sun} have gaseous disks that produce H I column densities comparable to those of DLA systems. We conclude that DLA galaxies where the H I column densities are as high as those of DLA systems, contribute significantly to the population of H I-selected galaxies at M{sub H{sub I}} {approx}> 10{sup 8} M{sub sun}. Second, we find that star formation rates (SFRs) correlate tightly with H I masses (M{sub H{sub I}}) rather than B- (and J-) band luminosities: SFR {proportional_to} M {sup alpha}{sub H{sub I}}, alpha = 1.25-1.40 for 10{sup 6} <= M{sub H{sub I}}/M{sub sun} <= 10{sup 11}. In the low-mass range M{sub H{sub I}} {approx}< 10{sup 8} M{sub sun}, sub-DLA galaxies replace DLA galaxies as the dominant population. The number fraction of sub-DLA galaxies relative to galaxies reaches 40%-60% for M{sub H{sub I}} {approx} 10{sup 8} M{sub sun} and 30%-80% for M{sub H{sub I}} {approx} 10{sup 7} M{sub sun}. The H I-selected galaxies at M{sub H{sub I}} {approx} 10{sup 7} M{sub sun} are a strong probe of sub-DLA systems that place stringent constraints on galaxy formation and evolution.

  1. Lambda = 3 mm line survey of nearby active galaxies

    NASA Astrophysics Data System (ADS)

    Aladro, R.; Martín, S.; Riquelme, D.; Henkel, C.; Mauersberger, R.; Martín-Pintado, J.; Weiß, A.; Lefevre, C.; Kramer, C.; Requena-Torres, M. A.; Armijos-Abendaño, R. J.

    2015-07-01

    Aims: We aim to better understand the imprints that the nuclear activity in galaxies leaves in the molecular gas. Methods: We used the IRAM 30 m telescope to observe the frequency range ~[86-116] GHz towards the central regions of the starburst galaxies M 83, M 82, and NGC 253, the galaxies hosting an active galactic nucleus (AGN) M 51, NGC 1068, and NGC 7469, and the ultra-luminous infrared galaxies (ULIRGs) Arp 220 and Mrk 231. Assuming local thermodynamic equilibrium (LTE), we calculated the column densities of 27 molecules and 10 isotopologues (or their upper limits in case of non-detections). Results: Among others, we report the first tentative detections of CH3CHO, HNCO, and NS in M 82 and, for the first time in the extragalactic medium, HC5N in NGC 253. Hα recombination lines were only found in M 82 and NGC 253. Vibrationally excited lines of HC3N were only detected in Arp 220. CH3CCH emission is only seen in the starburst-dominated galaxies. By comparison of the fractional abundances among the galaxies, we looked for the molecules that are best suited to characterise the chemistry of each group of galaxies (starbursts, AGNs and ULIRGs), as well as the differences among galaxies within the same group. Conclusions: Suitable species for characterising and comparing starburst galaxies are CH3OH and HNCO as tracers of large-scale shocks, which dominate early to intermediate starburst stages, and CH3CCH, c-C3H2, and HCO as tracers of UV fields, which control the intermediate-to-old or post starburst phases. M 83 shows signs of a shock-dominated environment. NGC 253 is characterised by both strong shocks and some UV fields. M 82 stands out for its bright photo-dissociated region tracers, which indicate an UV field-dominated environment. Regarding AGNs, the abundances of HCN and CN (previously claimed as enhanced in AGNs) in M 51 are similar to those in starburst galaxies, while the HCN/HCO+ ratio is high in M 51 and NGC 1068, but not in NGC 7469. We did not find

  2. SPECTROPOLARIMETRY OF RADIO-SELECTED BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    DiPompeo, M. A.; Brotherton, M. S.; Becker, R. H.; Gregg, M. D.; Tran, H. D.; White, R. L.; Laurent-Muehleisen, S. A.

    2010-07-15

    We report spectropolarimetry of 30 radio-selected broad absorption line (BAL) quasars with the Keck Observatory, 25 from the sample of Becker et al. Both high- and low-ionization BAL quasars are represented, with redshifts ranging from 0.5 to 2.5. The spectropolarimetric properties of radio-selected BAL quasars are very similar to those of radio-quiet BAL quasars: a sizeable fraction (20%) shows large continuum polarization (2%-10%) usually rising toward short wavelengths; emission lines are typically less polarized than the continuum; and absorption line troughs often show large polarization jumps. There are no significant correlations between polarization properties and radio properties, including those indicative of system orientation, suggesting that BAL quasars are not simply normal quasars seen from an edge-on perspective.

  3. Measuring Redshifts of Emission-line Galaxies Using Ramp Filters

    NASA Astrophysics Data System (ADS)

    Lesser, Ryan William; Bohman, John; McNeff, Mathew; Holden, Marcus; Moody, Joseph; Joner, Michael D.; Barnes, Jonathan

    2016-01-01

    Photometric redshifts are routinely obtained for galaxies without emission using broadband photometry. It is possible in theory to derive reasonably accurate (< 200 km/sec) photometric redshift values for emission-line objects using "ramp" filters with a linearly increasing/decreasing transmission through the bandpass. To test this idea we have obtained a set of filters tuned for isolating H-alpha at a redshift range of 0-10,000 km/sec. These filters consist of two that vary close to linearly in transmission, have opposite slope, and cover the wavelength range from 655nm - 685nm, plus a Stromgren y and 697nm filter to measure the continuum. Redshifts are derived from the ratio of the ramp filters indices after the continuum has been subtracted out. We are finishing the process of obtaining photometric data on a set of about 100 galaxies with known redshift to calibrate the technique and will report on our results.

  4. Near-Infrared Coronal Lines in Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Viegas, S. M.; Pastoriza, M. G.; Prato, L.

    2002-11-01

    We report spectroscopic observations in the wavelength region 0.8-2.4 μm aimed at detecting near-infrared coronal lines in a sample of five narrow-line and one broad-line Seyfert 1 galaxies. Our measurements show that [Si VI] 1.963 μm, [S IX] 1.252 μm, and [S VIII] 0.991 μm are present in most of the objects and are useful tracers of nuclear activity. Line ratios between coronal and low-ionization forbidden lines are larger in narrow-line Seyfert 1 galaxies. A positive correlation between FHWM and ionization potential of the forbidden lines is observed. Some coronal lines have widths similar to those of lines emitted in the broad-line region (BLR), indicating that part of their flux originates in gas close to the outer portions of the BLR. Most coronal lines are blueshifted relative to the systemic velocity of the galaxy, and this shift increases with the increase in line width. Asymmetries toward the blue are observed in the profiles of high-ionization Fe lines, suggesting that the emitting gas is related to winds or outflows, most probably originating in material that is being evaporated from the torus. This scenario is supported by models that combine the effects of shock ionization and photoionization by a central continuum source in the gas clouds. The agreement between the coronal line emission predicted by the models and the observations is satisfactory; the models reproduced the whole range of coronal line intensities observed. We also report the detection of [Fe XIII] 1.074, 1.079 μm in three of our objects and the first detection of [P II] 1.188 μm and [Ni II] 1.191 μm in a Seyfert 1 galaxy, Ark 564. Using the ratio [P II]/[Fe II], we deduced that most Fe present in the outer narrow-line region of Ark 564 is locked up in grains and that the influence of shocks is negligible.

  5. The Sloan Digital Sky Survey Reverberation Mapping Project: Rapid CIV Broad Absorption Line Variability

    NASA Astrophysics Data System (ADS)

    Grier, C. J.; Hall, P. B.; Brandt, W. N.; Trump, J. R.; Shen, Yue; Vivek, M.; Filiz Ak, N.; Chen, Yuguang; Dawson, K. S.; Denney, K. D.; Green, Paul J.; Jiang, Linhua; Kochanek, C. S.; McGreer, Ian D.; Pâris, I.; Peterson, B. M.; Schneider, D. P.; Tao, Charling; Wood-Vasey, W. M.; Bizyaev, Dmitry; Ge, Jian; Kinemuchi, Karen; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey

    2015-06-01

    We report the discovery of rapid variations of a high-velocity C iv broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4σ) variability in the equivalent width (EW) of the broad (˜4000 km s-1 wide) C iv trough on rest-frame timescales as short as 1.20 days (˜29 hr), the shortest broad absorption line variability timescale yet reported. The EW varied by ˜10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of ne ≳ 3.9 × 105 cm-3. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.

  6. A SURVEY OF ALKALI LINE ABSORPTION IN EXOPLANETARY ATMOSPHERES

    SciTech Connect

    Jensen, Adam G.; Redfield, Seth; Endl, Michael; Cochran, William D.; Koesterke, Lars; Barman, Travis S. E-mail: sredfield@wesleyan.edu E-mail: wdc@astro.as.utexas.edu E-mail: barman@lowell.edu

    2011-12-20

    We obtained over 90 hr of spectroscopic observations of four exoplanetary systems with the Hobby-Eberly Telescope. Observations were taken in transit and out of transit, and we analyzed the differenced spectra-i.e., the transmission spectra-to inspect it for absorption at the wavelengths of the neutral sodium (Na I) doublet at {lambda}{lambda}5889, 5895 and neutral potassium (K I) at {lambda}7698. We used the transmission spectrum at Ca I {lambda}6122-which shows strong stellar absorption but is not an alkali metal resonance line that we expect to show significant absorption in these atmospheres-as a control line to examine our measurements for systematic errors. We use an empirical Monte Carlo method to quantify these systematic errors. In a reanalysis of the same data set using a reduction and analysis pipeline that was derived independently, we confirm the previously seen Na I absorption in HD 189733b at a level of (- 5.26 {+-} 1.69) Multiplication-Sign 10{sup -4} (the average value over a 12 A integration band to be consistent with previous authors). Additionally, we tentatively confirm the Na I absorption seen in HD 209458b (independently by multiple authors) at a level of (- 2.63 {+-} 0.81) Multiplication-Sign 10{sup -4}, though the interpretation is less clear. Furthermore, we find Na I absorption of (- 3.16 {+-} 2.06) Multiplication-Sign 10{sup -4} at <3{sigma} in HD 149026b; features apparent in the transmission spectrum are consistent with real absorption and indicate this may be a good target for future observations to confirm. No other results (Na I in HD 147506b and Ca I and K I in all four targets) are significant to {>=}3{sigma}, although we observe some features that we argue are primarily artifacts.

  7. Radial Trends in IMF-sensitive Absorption Features in Two Early-type Galaxies: Evidence for Abundance-driven Gradients

    NASA Astrophysics Data System (ADS)

    McConnell, Nicholas J.; Lu, Jessica R.; Mann, Andrew W.

    2016-04-01

    Samples of early-type galaxies show a correlation between stellar velocity dispersion and the stellar initial mass function (IMF) as inferred from gravity-sensitive absorption lines in the galaxies’ central regions. To search for spatial variations in the IMF, we have observed two early-type galaxies with Keck/LRIS and measured radial gradients in the strengths of absorption features from 4000–5500 Å and 8000–10000 Å. We present spatially resolved measurements of the dwarf-sensitive spectral indices {Na} {{I}} (8190 Å) and Wing-Ford {{FeH}} (9915 Å), as well as indices for species of H, C2, CN, Mg, Ca, {{TiO}}, and Fe. Our measurements show a metallicity gradient in both objects, and Mg/Fe consistent with a shallow gradient in α-enhancement, matching widely observed trends for massive early-type galaxies. The {Na} {{I}} index and the CN1 index at 4160 Å exhibit significantly steeper gradients, with a break at r∼ 0.1 {r}{{eff}} (r∼ 300 pc). Inside this radius, {Na} {{I}} strength increases sharply toward the galaxy center, consistent with a rapid central rise in [Na/Fe]. In contrast, the ratio of the {{FeH}} to Fe index strength decreases toward the galaxy center. This behavior cannot be reproduced by a steepening IMF inside of 0.1 {r}{{eff}} if the IMF is a single power law. While gradients in the mass function above ∼ 0.4 {M}ȯ may occur, exceptional care is required to disentangle these IMF variations from the extreme variations in individual element abundances near the galaxies’ centers.

  8. Mapping luminous blue compact galaxies with VIRUS-P. Morphology, line ratios, and kinematics

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; García Lorenzo, B.; Kelz, A.; Roth, M.; Papaderos, P.; Streicher, O.

    2012-11-01

    Context. Blue compact galaxies (BCG) are narrow emission-line systems that undergo a violent burst of star formation. They are compact, low-luminosity galaxies, with blue colors and low chemical abundances, which offer us a unique opportunity to investigate collective star formation and its effects on galaxy evolution in a relatively simple, dynamically unperturbed environment. Spatially resolved spectrophotometric studies of BCGs are essential for a better understanding of the role of starburst-driven feedback processes on the kinematical and chemical evolution of low-mass galaxies near and far. Aims: We carry out an integral field spectroscopy (IFS) study of a sample of luminous BCGs, with the aim to probe the morphology, kinematics, dust extinction, and excitation mechanisms of their warm interstellar medium (ISM). Methods: We obtained IFS data for five luminous BCGs with VIRUS-P, the prototype instrument for the Visible Integral Field Replicable Unit Spectrograph, attached to the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory. VIRUS-P consists of a square array of 247 optical fibers, which covers a 109″ × 109″ field of view, with a spatial sampling of 4farcs2 and a 0.3 filling factor. We observed in the 3550-5850 Å spectral range, with a resolution of 5 Å FWHM. From these data we built two-dimensional maps of the continuum and the most prominent emission-lines ([O ii] λ3727, Hγ, Hβ and [O iii] λ5007), and investigated the morphology of diagnostic emission-line ratios and the extinction patterns in the ISM as well as stellar and gas kinematics. Additionally, from integrated spectra we inferred total line fluxes and luminosity-weighted extinction coefficients and gas-phase metallicities. Results: All galaxies exhibit an overall regular morphology in the stellar continuum, while their warm ISM morphology is more complex: in II Zw 33 and Mrk 314, the star-forming regions are aligned along a chain-structure; Haro 1, NGC 4670 and III Zw 102

  9. Empowering line intensity mapping to study early galaxies

    NASA Astrophysics Data System (ADS)

    Comaschi, P.; Ferrara, A.

    2016-09-01

    Line intensity mapping is a superb tool to study the collective radiation from early galaxies. However, the method is hampered by the presence of strong foregrounds, mostly produced by low-redshift interloping lines. We present here a general method to overcome this problem which is robust against foreground residual noise and based on the cross-correlation function ψαL(r) between diffuse line emission and Lyα emitters (LAE). We compute the diffuse line (Lyα is used as an example) emission from galaxies in a (800Mpc)3 box at z = 5.7 and 6.6. We divide the box in slices and populate them with 14000(5500) LAEs at z = 5.7(6.6), considering duty cycles from 10-3 to 1. Both the LAE number density and slice volume are consistent with the expected outcome of the Subaru HSC survey. We add gaussian random noise with variance σN up to 100 times the variance of the Lyα emission, σα, to simulate residual foregrounds and compute ψαL(r). We find that the signal-to-noise of the observed ψαL(r) does not change significantly if σN ≤ 10σα and show that in these conditions the mean line intensity, ILyα, can be precisely recovered independently of the LAE duty cycle. Even if σN = 100σα, Iα can be constrained within a factor 2. The method works equally well for any other line (e.g. [CII], HeII) used for the intensity mapping experiment.

  10. Chandra Detection of a Parsec Scale Wind in the Broad Line Radio Galaxy 3C 382

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; Sambruna, R. M.; Braito, V.; Eracleous, Michael

    2009-01-01

    We present unambiguous evidence for a parsec scale wind in the Broad-Line Radio Galaxy (BLRG) 3C 382, the first radio-loud AGN whereby an outflow has been measured with X-ray grating spectroscopy. A 118 ks Chandra grating (HETG) observation of 3C 382 has revealed the presence of several high ionization absorption lines in the soft X-ray band, from Fe, Ne, Mg and Si. The absorption lines are blue-shifted with respect to the systemic velocity of 3C 382 by -840+/-60 km/s and are resolved by Chandra with a velocity width of sigma = 340+/-70 km/s. The outflow appears to originate from a single zone of gas of column density N(sub H) = 1.3 x 10(exp 21)/sq cm and ionization parameter log(E/erg/cm/s) = 2.45. From the above measurements we calculate that the outflow is observed on parsec scales, within the likely range from 10-1000 pc, i.e., consistent with an origin in the Narrow Line Region. Finally we also discuss the possibility of a much faster (0.1c) outflow component, based on a blue-shifted iron K(alpha) emission line in the Suzaku observation of 3C 382, which could have an origin in an accretion disk wind.

  11. Oscillator strength measurements of atomic absorption lines from stellar spectra

    NASA Astrophysics Data System (ADS)

    Lobel, Alex

    2011-05-01

    Herein we develop a new method to determine oscillator strength values of atomic absorption lines with state-of-the-art detailed spectral synthesis calculations of the optical spectrum of the Sun and of standard spectral reference stars. We update the log(gf) values of 911 neutral lines observed in the KPNO-FTS flux spectrum of the Sun and high-resolution echelle spectra (R = 80 000) of Procyon (F5 IV-V) and Eps Eri (K2 V) observed with large signal-to-noise (S/N) ratios of 2000 using the new Mercator-Hermes spectrograph at La Palma Observatory (Spain). We find for 483 Fe I, 85 Ni I, and 51 Si I absorption lines in the sample a systematic overestimation of the literature log(gf) values with central line depths below 15%. We employ a curve-of-growth analysis technique to test the accuracy of the new oscillator strength values and compare calculated equivalent line widths to the Moore, Minnaert, and Houtgast atlas of the Sun. The online SpectroWeb database at http://spectra.freeshell.org interactively displays the observed and synthetic spectra and provides the new log(gf) values together with important atomic line data. The graphical database is under development for stellar reference spectra of every spectral sub-class observed with large spectral resolution and S/N ratios.

  12. Connecting the Silicate Dust and Gas Properties of Distant Galaxies Using Quasar Absorption Systems

    NASA Astrophysics Data System (ADS)

    Aller, Monique C.; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; Morrison, Sean

    2016-01-01

    We present recent results from our program investigating the silicate dust properties in distant galaxies using quasar absorption systems. The dust and gas properties of distant galaxies can be characterized by studying the absorption features produced by them along the sightlines to luminous background quasars. Based on our prior finding that silicate dust absorption in z<1.5 quasar absorption systems exhibits a range of optical depths and absorption feature substructures, suggestive of silicate grain property variations, we are investigating silicate dust absorption in quasar absorption systems toward quasars with archival Spitzer Space Telescope Infrared Spectrograph (IRS) spectra. We present our measurements of the 10 and/or 18 micron silicate dust absorption feature(s) in these systems, and discuss constraints on the grain properties, such as composition and crystallinity, based on the shape and substructure present in these features. We also investigate the correlations between the silicate dust properties and the reddening. Connections between the silicate dust and gas phase metal absorption properties can also be probed for some of our targets with archival ground-based spectra. These relationships will yield valuable insights into the star formation history and evolution of metals and dust. This work is supported by NASA through ADAP grant NNX14AG74G and by an award issued by JPL/Caltech, and from US-NSF grant AST-1108830 to the University of South Carolina.

  13. Variability Studies of Narrow Line Seyfert 1 Galaxy

    NASA Technical Reports Server (NTRS)

    Marshall, Hermann

    1994-01-01

    I supported the data reduction and analysis. We found that the source was not as variable as other soft AGN such as the narrow line Sy 1 galaxies (NLSls). The NLSls vary on time scales of days, while the ROSAT data for this target was fairly constant over a week at a time. Thus, it was very important to have a light curve that spanned 60 days as was the case for these ROSAT observations because the power spectral distribution can be established to very low frequencies that are rarely measured.

  14. DEEP SILICATE ABSORPTION FEATURES IN COMPTON-THICK ACTIVE GALACTIC NUCLEI PREDOMINANTLY ARISE DUE TO DUST IN THE HOST GALAXY

    SciTech Connect

    Goulding, A. D.; Forman, W. R.; Jones, C.; Trichas, M.; Alexander, D. M.; Mullaney, J. R.; Bauer, F. E.; Hickox, R. C.

    2012-08-10

    We explore the origin of mid-infrared (mid-IR) dust extinction in all 20 nearby (z < 0.05) bona fide Compton-thick (N{sub H} > 1.5 Multiplication-Sign 10{sup 24} cm{sup -2}) active galactic nuclei (AGNs) with hard energy (E > 10 keV) X-ray spectral measurements. We accurately measure the silicate absorption features at {lambda} {approx} 9.7 {mu}m in archival low-resolution (R {approx} 57-127) Spitzer Infrared Spectrograph spectroscopy, and show that only a minority ( Almost-Equal-To 45%) of nearby Compton-thick AGNs have strong Si-absorption features (S{sub 9.7} = ln (f{sub int}/f{sub obs}) {approx}> 0.5) which would indicate significant dust attenuation. The majority ( Almost-Equal-To 60%) are star formation dominated (AGN:SB < 0.5) at mid-IR wavelengths and lack the spectral signatures of AGN activity at optical wavelengths, most likely because the AGN emission lines are optically extinguished. Those Compton-thick AGNs hosted in low-inclination-angle galaxies exhibit a narrow range in Si-absorption (S{sub 9.7} {approx} 0-0.3), which is consistent with that predicted by clumpy-torus models. However, on the basis of the IR spectra and additional lines of evidence, we conclude that the dominant contribution to the observed mid-IR dust extinction is dust located in the host galaxy (i.e., due to disturbed morphologies, dust lanes, galaxy inclination angles) and not necessarily a compact obscuring torus surrounding the central engine.

  15. THE COS-HALOS SURVEY: AN EMPIRICAL DESCRIPTION OF METAL-LINE ABSORPTION IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM

    SciTech Connect

    Werk, Jessica K.; Prochaska, J. Xavier; Tripp, Todd M.; O'Meara, John M.; Peeples, Molly S.

    2013-02-15

    We present the equivalent width and column density measurements for low and intermediate ionization states of the circumgalactic medium (CGM) surrounding 44 low-z, L Almost-Equal-To L* galaxies drawn from the COS-Halos survey. These measurements are derived from far-UV transitions observed in HST/COS and Keck/HIRES spectra of background quasars within an impact parameter R < 160 kpc to the targeted galaxies. The data show significant metal-line absorption for 33 of the 44 galaxies, including quiescent systems, revealing the common occurrence of a cool (T Almost-Equal-To 10{sup 4}-10{sup 5} K), metal-enriched CGM. The detection rates and column densities derived for these metal lines decrease with increasing impact parameter, a trend we interpret as a declining metal surface density profile for the CGM. A comparison of the relative column densities of adjacent ionization states indicates that the gas is predominantly ionized. The large surface density in metals demands a large reservoir of metals and gas in the cool CGM (very conservatively, M {sup cool} {sub CGM} > 10{sup 9} M {sub Sun }), which likely traces a distinct density and/or temperature regime from the highly ionized CGM traced by O{sup +5} absorption. The large dispersion in absorption strengths (including non-detections) suggests that the cool CGM traces a wide range of densities or a mix of local ionizing conditions. Lastly, the kinematics inferred from the metal-line profiles are consistent with the cool CGM being bound to the dark matter halos hosting the galaxies; this gas may serve as fuel for future star formation. Future work will leverage this data set to provide estimates on the mass, metallicity, dynamics, and origin of the cool CGM in low-z, L* galaxies.

  16. Pressure dependence of Se absorption lines in AlSb

    SciTech Connect

    Hsu, L. |; Haller, E.E.; Ramdas, A.K.

    1996-09-01

    Using far infrared absorption spectroscopy, the authors have investigated electronic transition spectra of Se donors in AlSb as a function of hydrostatic pressure. At least two distinct ground to bound excited state transition lines, which depend quadratically on the pressure, can be seen. At pressures between 30 and 50 kbar, evidence of an anti-crossing between one of the electronic transitions and a peak which they attribute to the 2 zone center LO phonon mode can be seen.

  17. Massive Emission-Line Stars in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Lim, P. L.; Holtzman, J. A.; Walterbos, R. A. M.

    2003-12-01

    The evolution of massive stars is still poorly understood because of critical effects of mass loss during the post-main sequence phase. Of particular relevance is the Luminous Blue Variable phase, during which high mass loss may occur over a brief period. It would be useful to know the mass range of stars that enter this phase, and the life time of the phase. For that, better estimates of the numbers of LBVs in different environments is crucial. In a study of M31, we detected candidate LBVs as luminous stars with strong Hα emission-lines and no nebular [SII] emission. (King, N.L., Walterbos, R.A.M., & Braun, R., 1998, ApJ, 507:210-220). HST's sensitivity offers the capability to identify these candidate LBVs in galaxies beyond the Local Group. We identify massive Hα emmision-line stars in nearby spiral galaxies within 10 Mpc, using data from the HST WFPC2 archive. We obtained stellar photometry in Hα (F656N) and various broadband filters, with methods developed for the HST Local Group Stellar Photometry archive (Holtzman, J., Afonso, C., & Dolphin, A., 2003, ApJS, submitted). We identify candidates based on the amount of Hα excess in two-color plots. We also require an absolute magnitude MV ≤ -5, and photometry fit parameters consistent with point source characteristics. Candidates are inspected visually on the images for verification purpose. We find promising candidates in several nearby galaxies. We will present a catalog of the objects, and discuss their properties and the environments in which they are found. Support for this work was provided by NASA through grant numbers AR-08372.01-97A and HST-AR-08749.01-A from the Space Telescope Science Institute, which is operated by AURA, Inc. under NASA contract NAS5-26555.

  18. Quasar Absorption Lines in the Extreme Ultraviolet: The Smoking Guns of Cosmic Feedback

    NASA Astrophysics Data System (ADS)

    Tripp, Todd

    2011-01-01

    Three years ago at the winter AAS meeting I presented a talk entitled, perhaps somewhat pretentiously, "Terra Incognita: Probing The IGM-Galaxy Interface With COS." Now that the Cosmic Origins Spectrograph (COS) has been successfully installed on the Hubble Space Telescope, this instrument is delivering data that even exceed my hopes and predictions from three years ago. This talk will demonstrate that COS is enabling investigations of aspects of the Universe that have never been seen before. Specific examples will include the following: (1) Detections of absorption lines of Ne VIII and Mg X, which probe highly-ionized and low-density plasmas that can exist at temperatures in excess of 106 K. Due to the low density of galaxy halos and the IGM, X-ray emission from these plasmas is entirely undetectable with current or future missions. (2) Detections of remarkably strong O VI absorbers spanning velocity ranges in excess of hundreds of km/s, probably arising in galactic winds. While such outflows can be seen from the ground, the extreme ultraviolet provides a much richer suite of physical conditions diagnostics. (3) Detection of molecular hydrogen in unexpected places. An unifying thems of these examples is cosmic feedback and accretion -- these observations provide important new constraints on how galaxies interact with their surroundings.

  19. NIR spectroscopy of Palomar emission-line galaxies

    NASA Astrophysics Data System (ADS)

    Mason, Rachel; Alonso-Herrero, Almudena; Bluck, Asa; Colina, Luis; Diaz, Ruben; Diaz-Santos, Tanio; Flohic, Helene; Gomez, Percy; Gonzalez-Martin, Omaira; Ho, Luis; Jorgensen, Inger; Lemoine-Busserolle, Marie; Levenson, Nancy; Lira, Paulina; McDermid, Richard; Perlman, Eric; Rodriguez-Ardila, Alberto; Riffel, Rogerio; Schiavon, Ricardo; Ramos Almeida, Cristina; Thanjavur, Karun; Winge, Claudia

    2012-02-01

    We propose GNIRS cross-dispersed spectroscopy of 60 Seyferts and LINERs from the Palomar galaxy sample. The spectra will advance our knowledge of AGN physics and lifecycles by demonstrating whether the accretion disk and nuclear dust properties change as a function of accretion rate, as predicted by theoretical models. They will be used to investigate the contribution of evolved stars to the line emission in LINERs, with implications for AGN demographics, and to make new stellar kinematic measurements for black hole mass estimates. The number and variety of spectral features that will appear in the data are expected to enable a wide range of science besides that highlighted in this proposal. For this reason, we plan a reduced proprietary period and to make the reduced spectra available to the community. We anticipate applying for time to observe the remaining emission-line galaxies in the (near-complete) Palomar sample over the next few semesters. The targets are distributed throughout the northern sky, making Gemini's queue mode ideal for this work. The fairly short observations are easily scheduled and can be carried out in suboptimal observing conditions.

  20. Long-Duration Gamma-Ray Burst Host Galaxies in Emission and Absorption

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.; Niino, Yuu; Tanvir, Nial R.; Vergani, Susanna D.; Fynbo, Johan P. U.

    2016-03-01

    The galaxy population hosting long-duration GRBs provides a means to constrain the progenitor and an opportunity to use these violent explosions to characterize the nature of the high-redshift universe. Studies of GRB host galaxies in emission reveal a population of star-forming galaxies with great diversity, spanning a wide range of masses, metallicities, and redshifts. However, as a population GRB hosts are significantly less massive and poorer in metals than the hosts of other core-collapse transients, suggesting that GRB production is only efficient at metallicities significantly below Solar. GRBs may also prefer compact galaxies, and dense and/or central regions of galaxies, more than other types of core-collapse explosion. Meanwhile, studies of hosts in absorption against the luminous GRB optical afterglow provide a unique means of unveiling properties of the ISM in even the faintest and most distant galaxies; these observations are helping to constrain the chemical evolution of galaxies and the properties of interstellar dust out to very high redshifts. New ground- and space-based instrumentation, and the accumulation of larger and more carefully-selected samples, are continually enhancing our view of the GRB host population.

  1. Near-Infrared Coronal Lines in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Portilla, J. G.; Tejeiro, J. M.; Rodríguez-Ardila, A.

    2006-06-01

    Seyfert galaxies show in their spectra coronal lines (CLs). Researchers have proposed a physical region responsible of the emission of CLs named Coronal Line Region (CLR). Some authors have suggested that CLR is well extended to the NLR; others propose its location between the BLR and NLR while others suggest that CLR is situated in the inner face of the obscuring torus. The goal of this work is contribute to the discussion about the location of the CLR. Our hypothesis is that they are emitted in the inner walls of the torus. Spectral analysis of a sample of Seyfert 1 (Sy1) and Seyfert 2 (Sy2) galaxies can give insights about the location of the CLR. We took NIR spectra of the five Sy1 and five Sy2 galaxies. Those spectra were taken in at the NASA 3-m IRTF using the SpeX spectrome-ter. CLs are observed in all the objects of the sample. [Si VI] λ1.963 μm, is present in all of them; [S VIII] λ0.991 μm, is also present (except in H1143-182 and Mrk 1066); it is frequent to observe too [S IX] λ1.252 μm, and [Si X] λ1.430 μm. [Si VI] λ1.963 μm is observed in both types of galaxies. Values for FWHM, assuming Gaussian profiles, for the [Si VI] λ1.963 μm range from 250 to 530 km/s whilst those for S [IX] λ1.252 μm and [Si X] λ1.43 μm tend to be higher: 300 to 1150 and 260 to 1320 km/s, respectively. This seems to suggest that, for CL, those species with higher ionization potential present higher bulk velocity of the emitting clouds and therefore are situated nearer to the central mass concentration. The apparent fact that CL from species of higher ionization potential (χ) are preferentially observed in Sy1 rather than Sy2 seems to be coherent with the existence of a obscuring torus required by unified models for an active galactic nucleus (AGN): the Sy1 type shows internal regions of the AGN, including the BLR and internal parts of the torus. It is feasible then, that some of the high-χ coronal emission (i.e. [Si X]) are produced in the inner wall of the

  2. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Spinoglio, Luigi; Smith, Howard A.; Gonzalez-Alfonso, Eduardo; Fisher, Jacqueline

    2005-01-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 microns) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO). In addition to the 7 expected ionic fine structure emission lines, the OH rotational lines at 79, 119 and 163 microns were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 micron line, where detected, is always in absorption. The observed line intensities were modelled together with IS0 Short Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the AGN component and the starburst component in the circumnuclear ring of approximately 3kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a big blue bump is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Br gamma equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low ionization parameter (U=10(exp -3.5)) and low densities (n=100 cm (exp -3)) are derived. Combining the AGN and starburst components, we succeed in modeling the overall UV to far-IR atomic spectrum of SGC 1068, reproducing the line fluxes to within a factor 2.0 on average with a standard deviation of 1.4. The OH 119 micron emission indicates that the line is collisionally excited, and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, non-local, non-LTE radiative transfer models. The models indicate that the bulk of the emission arises from the nuclear region, although some extended contribution from the starburst is not ruled out. The OH abundance

  3. Seyfert galaxy narrow-line regions. I - Observations of forbidden O III lambda 5007

    NASA Technical Reports Server (NTRS)

    Vrtilek, J. M.; Carleton, N. P.

    1985-01-01

    High-resolution (23 km/s) spectra of the forbidden O III emission line at 500.7 nm from the nuclear regions of 32 Seyfert galaxies and low-redshift QSOs have been obtained at the Smithsonian Institution/University of Arizona Multiple Mirror Telescope. The properties of the data are summarized by a group of measures which efficiently describe the entire line profiles, are stable in the presence of noise, and have easily visualized geometric meaning. The distributions of line profile measures are shown. In particular, typical forbidden O III FWHM values of 200-520 km/s (mean + or - 1 sigma) and a highly significant tendency for the lines to fall off more slowly on the blue than on the red side of the peak have been found, in agreement with previous work. Using galaxian system velocities obtained from absorption-line measurements, the distribution of differences between forbidden O III emission-line velocities and galaxian system velocities has been determined; in disagreement with previous work, this distribution has been found to be consistent with symmetry about zero difference velocity.

  4. A study of the structure and kinematics of the narrow-line region in Seyfert galaxies

    SciTech Connect

    Veilleux, S.

    1989-01-01

    The results of a high resolution study of the narrow emission line profiles of 16 Seyfert galaxies are presented. It is shown that the line profile parameters published in earlier low resolution studies are sometimes strongly influenced by resolution effects. In spite of these important systematic errors, many of the results derived from low resolution data are confirmed in the high resolution data. The narrow line profiles of Seyfert galaxies have a stronger base relative to core than a Gaussian. Most of the emission lines present a blueward asymmetry in the lower portion of their profile. In some galaxies, the line widths and/or line asymmetries are correlated with the ionization potential and/or critical density of the lines. There is a weak correlation between the line asymmetry and the dust content of the narrow line region (NLR). The large scatter in this relation, the absence of a similar correlation in Seyfert 1 to 1.5 galaxies, and the presence of a blue asymmetry in galaxies with dustfree line-emitting regions suggest that dust obscuration is not the only mechanism responsible for the line asymmetry in active galaxies. An optically-thick disk close to the nucleus is proposed as the other source of line asymmetry. An important result is that the host galaxy is probably playing a role in the kinematics of some of the gas in the NLR. A multicomponent model of the NLR is proposed to explain these results.

  5. The Hubble Space Telescope Quasar Absorption Line Key Project. XIV. The Evolution of Lyα Absorption Lines in the Redshift Interval z = 0-1.5

    NASA Astrophysics Data System (ADS)

    Weymann, Ray J.; Jannuzi, Buell T.; Lu, Limin; Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Hartig, George F.; Kirhakos, Sofia; Sargent, W. L. W.; Savage, Blair D.; Schneider, Donald P.; Turnshek, David A.; Wolfe, Arthur M.

    1998-10-01

    We present the results of an analysis of the rate of evolution of the Lyα absorption lines in the redshift interval 0.0 to ~1.5 based upon a sample of 987 Lyα absorption lines identified in the spectra of 63 QSOs obtained with the Faint Object Spectrograph (FOS) of the Hubble Space Telescope (HST). These spectra were obtained as part of the QSO Absorption Line Survey, an HST Key Project during the first four years of observations with the telescope. Fits to the evolution of the number of absorbers per unit redshift (dN/dz) of the form dN/dz = A × (1 + z)γ continue to yield values of γ in the range 0.1-0.3, decidedly flatter than results from ground-based data pertaining to the redshift range z > 1.7. These results are consistent with our previous results based on a much smaller sample of lines, but the uncertainties in the fit have been greatly reduced. The combination of the HST and ground-based data suggest a marked transition in the rate of evolution of the Lyα lines at a redshift of about 1.7. The 19 Lyα lines from an additional higher redshift QSO from our sample for which tentative line identifications are available (UM 18; zem = 1.89) support the suggestion of a rapid increase at around this redshift. We derive the cumulative distribution of the full sample of Lyα lines and show that the distribution in redshift can indeed be well represented by a power law of the form (1 + z)γ. For this same sample, the distribution of equivalent widths of the Lyα absorbers above a rest equivalent width of 0.1 Å is fit quite well by an exponential. Comparing samples of Lyα lines, one set of which has redshifts the same as, or very near to, the redshifts of ions from heavy elements and another set in which no ions from heavy elements have been identified, we find that the Lyα systems with heavy element detections have a much steeper slope than the high rest equivalent width portion of the Lyman-only sample. We argue that this result is not likely to be due to

  6. VERY LARGE TELESCOPE SPECTROPOLARIMETRY OF BROAD ABSORPTION LINE QSOs

    SciTech Connect

    DiPompeo, M. A.; Brotherton, M. S.; De Breuck, C.

    2011-03-15

    We present spectropolarimetry of 19 confirmed and four possible bright, southern broad absorption line (BAL) quasars from the European Southern Observatory Very Large Telescope. A wide range of redshifts is covered in the sample (from 0.9 to 3.4), and both low- and high-ionization quasars are represented, as well as radio-loud and radio-quiet BALQSOs. We continue to confirm previously established spectropolarimetric properties of BALQSOs, including the generally rising continuum polarization with shorter wavelengths and comparatively large fraction with high broadband polarization (6 of 19 with polarizations >2%). Emission lines are polarized less than or similar to the continuum, except in a few unusual cases, and absorption troughs tend to have higher polarizations. A search for correlations between polarization properties has been done, identifying two significant or marginally significant correlations. These are an increase in continuum polarization with decreasing optical luminosity (increasing absolute B magnitude) and decreasing C IV emission-line polarization with increased continuum polarization.

  7. A ground-based imaging study of galaxies causing damped Lyman α (DLA), sub-DLA and Lyman limit system absorption in quasar spectra

    NASA Astrophysics Data System (ADS)

    Rao, Sandhya M.; Belfort-Mihalyi, Michèle; Turnshek, David A.; Monier, Eric M.; Nestor, Daniel B.; Quider, Anna

    2011-09-01

    We present results from a search for galaxies that give rise to damped Lyman α (DLA), sub-DLA and Lyman limit system (LLS) absorption at redshifts 0.1 ≲z≲ 1 in the spectra of background quasars. The sample was formed from a larger sample of strong Mg II absorbers (Wλ27960≥ 0.3 Å) whose H I column densities were determined by measuring the Lyα line in Hubble Space Telescope ultraviolet spectra. Photometric redshifts, galaxy colours and proximity to the quasar sightline, in decreasing order of importance, were used to identify galaxies responsible for the absorption. Our sample includes 80 absorption systems for which the absorbing galaxies have been identified, of which 54 are presented here for the first time. In some cases a reasonable identification for the absorbing galaxy could not be made. The main results of this study are (i) the surface density of galaxies falls off exponentially with increasing impact parameter, b, from the quasar sightline relative to a constant background of galaxies, with an e-folding length of ≈46 kpc. Galaxies with b≳ 100 kpc calculated at the absorption redshift are statistically consistent with being unrelated to the absorption system, and are either background or foreground galaxies. (ii) ? is inversely correlated with b at the 3.0σ level of significance. DLA galaxies are found systematically closer to the quasar sightline, by a factor of 2, than are galaxies which give rise to sub-DLAs or LLSs. The median impact parameter is 17.4 kpc for the DLA galaxy sample, 33.3 kpc for the sub-DLA sample and 36.4 kpc for the LLS sample. We also find that the decline in ? with b can be roughly described by an exponential with an e-folding length of 12 kpc that occurs at ?. (iii) Absorber galaxy luminosity relative to L*, L/L*, is not significantly correlated with Wλ27960, ? or b. (iv) DLA, sub-DLA and LLS galaxies comprise a mix of spectral types, but are inferred to be predominantly late-type galaxies based on their spectral

  8. Common lines in the rest-frame absorption-line spectra of QSOs?

    NASA Astrophysics Data System (ADS)

    Varshni, Y. P.; Singh, D.

    1985-02-01

    Libby et al. (1984) have studied the absorption-line data for 13 QSOs in the rest-frames of the QSOs. It is shown that the number of groups in which 5 lines or more lie within a wavelength interval of 1.0 Å found by these authors is insignificantly different from that that would be expected from chance coincidences. Consequently, there is no evidence that the rest-frame wavelengths at which these groups occur have any special significance.

  9. Dense gas in nearby galaxies. XIII. CO submillimeter line emission from the starburst galaxy M 82

    NASA Astrophysics Data System (ADS)

    Mao, R. Q.; Henkel, C.; Schulz, A.; Zielinsky, M.; Mauersberger, R.; Störzer, H.; Wilson, T. L.; Gensheimer, P.

    2000-06-01

    12CO J = 1-0, 2-1, 4-3, 7-6, and 13CO 1-0, 2-1, and 3-2 line emission was mapped with angular resolutions of 13'' - 22'' toward the nuclear region of the archetypical starburst galaxy M 82. There are two hotspots on either side of the dynamical center, with the south-western lobe being slightly more prominent. Lobe spacings are not identical for all transitions: For the submillimeter CO lines, the spacing is ~ 15''; for the millimeter lines (CO J = 2-1 and 1-0) the spacing is ~ 26'', indicating the presence of a `low' and a `high' CO excitation component. A Large Velocity Gradient (LVG) excitation analysis of the submillimeter lines leads to inconsistencies, since area and volume filling factors are almost the same, resulting in cloud sizes along the lines-of-sight that match the entire size of the M 82 starburst region. Nevertheless, LVG column densities agree with estimates derived from the dust emission in the far infrared and at submillimeter wavelengths. 22'' beam averaged total column densities are N(CO) ~ 5 1018 and N(H_2) ~ 1023 \\cmsq; the total molecular mass is a few 108 \\solmass. Accounting for high UV fluxes and variations in kinetic temperature and assuming that the observed emission arises from photon dominated regions (PDRs) resolves the problems related to an LVG treatment of the radiative transfer. Spatial densities are as in the LVG case (\

  10. High-dispersion absorption-line spectroscopy of AE Aqr

    NASA Astrophysics Data System (ADS)

    Echevarría, J.; Smith, Robert Connon; Costero, R.; Zharikov, S.; Michel, R.

    2008-07-01

    High-dispersion time-resolved spectroscopy of the unique magnetic cataclysmic variable AE Aqr is presented. A radial velocity analysis of the absorption lines yields K2 = 168.7 +/- 1kms-1. Substantial deviations of the radial velocity curve from a sinusoid are interpreted in terms of intensity variations over the secondary star's surface. A complex rotational velocity curve as a function of orbital phase is detected which has a modulation frequency of twice the orbital frequency, leading to an estimate of the binary inclination angle that is close to 70°. The minimum and maximum rotational velocities are used to indirectly derive a mass ratio of q = 0.6 and a radial velocity semi-amplitude of the white dwarf of K1 = 101 +/- 3kms-1. We present an atmospheric temperature indicator, based on the absorption-line ratio of FeI and CrI lines, whose variation indicates that the secondary star varies from K0 to K4 as a function of orbital phase. The ephemeris of the system has been revised, using more than 1000 radial velocity measurements, published over nearly five decades. From the derived radial velocity semi-amplitudes and the estimated inclination angle, we calculate that the masses of the stars are M1 = 0.63 +/- 0.05Msolar M2 = 0.37 +/- 0.04Msolar, and their separation is a = 2.33 +/- 0.02Rsolar. Our analysis indicates the presence of a late-type star whose radius is larger, by a factor of nearly 2, than the radius of a normal main-sequence star of the same mass. Finally, we discuss the possibility that the measured variations in the rotational velocity, temperature and spectral type of the secondary star as functions of orbital phase may, like the radial velocity variations, be attributable to regions of enhanced absorption on the star's surface.

  11. Discovery of a Damped Lyα Absorber at z = 3.3 along a Galaxy Sight-line in the SSA22 Field

    NASA Astrophysics Data System (ADS)

    Mawatari, K.; Inoue, A. K.; Kousai, K.; Hayashino, T.; Cooke, R.; Prochaska, J. X.; Yamada, T.; Matsuda, Y.

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H i) column density is log(NH i/cm-2) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc2. Our search for a counterpart galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M⊙ yr-1, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M* ≳ 5 × 1010M⊙ or a heavily dust-obscured galaxy with E(B - V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.

  12. THE NATURE OF A GALAXY ALONG THE SIGHT LINE TO PKS 0454+039

    SciTech Connect

    Takamiya, Marianne; Chun, Mark; Kulkarni, Varsha P.; Gharanfoli, Soheila

    2012-10-01

    We report on the properties of a faint blue galaxy (G1) along the line of sight to the QSO PKS 0454+039 from spectroscopic and imaging data. We measured emission lines of H{alpha}, [S II] {lambda}{lambda}6716, 6732, and [N II] {lambda}6584 in the spectrum of G1 obtained with the Gemini/GMOS instrument. The spectroscopic redshift of G1 is z = 0.0715 {+-} 0.0002. From the extinction-corrected H{alpha} flux, we determine a modest star formation rate of SFR = 0.07 M{sub Sun} yr{sup -1} and a specific SFR of log (sSFR) -8.4. Using three different abundance indicators, we determine a nebular abundance 12 + log (O/H) ranging from 7.6 to 8.2. Based on the velocity dispersion inferred from the emission line widths and the observed surface brightness profile, we estimate the virial mass of G1 to be M{sub vir} {approx} 6.7 Multiplication-Sign 10{sup 9} M{sub Sun} with an effective radius of 2.0 kpc. We estimate the stellar mass of G1 using spectral energy distribution fitting to be M{sub *} Almost-Equal-To 1.2 Multiplication-Sign 10{sup 7} M{sub Sun} and an r'-luminosity of L{sub r'} = 1.5x10{sup 8} L{sub Sun }. Overall, G1 is a faint, low-mass, low-metallicity Im/H II galaxy. We also report on the line flux limits of another source (G3) which is the most likely candidate for the absorber system at z = 0.8596. From the spectrum of the QSO itself, we report a previously undetected Mg II {lambda}{lambda}2796, 2803 absorption line system at z = 1.245.

  13. Hydrogen line ratios in Seyfert galaxies and low redshift quasars

    NASA Technical Reports Server (NTRS)

    Kriss, G. R.

    1984-01-01

    New observations of the Lymal alpha radiation/hydrogen alpha radiation ratio in a set of X-ray selected active galactic nuclei and an archival study of International Ultraviolet Explorer (IUE) observations of Lymal alpha low redshift quasars and Seyfert galaxies have been used to form a large sample for studying the influence of soft X-rays on the enhancement of Balmer emission in the broad line region. In common models of broad line clouds, the Balmer lines are formed deep in the interior, largely by collisional excitation. Heating within the clouds is provided by soft X-ray radiation, while Lymal alpha is formed mainly by recombination after photoionization. The ratio Lymal alpha/Halpha is expected to depend weakly on the ratio of ionizing ultraviolet luminosity to X-ray luminosity (L sub UV/l sub x). If the Lymal alpha luminosity is used as a measure of L sub UV' a weak dependence of Lymal/H alpha on the X-ray luminosity is found similar to previous results.

  14. X-ray absorption/emission line spectroscopy of the Galactic hot gaseous halo

    NASA Astrophysics Data System (ADS)

    Wang, Daniel

    2016-04-01

    There is an ongoing debate as to whether or not the Milky Way is surrounded by a large-scale, massive corona. Vastly different conclusions as to its extent and mass have been drawn from existing studies based on X-ray absorption and/or emission line spectroscopy. I will discuss my assessment of this issue, focusing on various uncertainties and potential problems in the present data, analyses, results, and interpretations.In particular, I will examine how different assumptions about the temperature distribution of the corona affect the inference of its physical scale. I will also discuss the external perspectives of galactic coronae obtained form observing nearby highly-inclined disk galaxies.

  15. QSO absorption lines: The UV rest frame from 0

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher W.

    1997-05-01

    By charting the kinematic, chemical, and ionization conditions of galactic and intergalactic gas over the redshift range 0-4 with QSO absorption lines, the evolution of chemical abundances, the UV meta-galactic background, and the clustering dynamics of galactic gas can be studied. Keck/HIRES Mg II λ2796 profiles arising in z~1 galaxies are presented and the Mg II kinematic clustering function is given. The intriguing z=0.93 systems toward Q1206+459 are shown and compared to z~2 Keck/HIRES C IV profiles to illustrate how HST/STIS can be exploited for studies of the high ionization conditions in z<=1 Mg II selected systems. The scientific motives and plans for a large IR 2<=z<=4 Mg II survey with the Hobby-Eberly Telescope are presented.

  16. A variable P v broad absorption line and quasar outflow energetics

    NASA Astrophysics Data System (ADS)

    Capellupo, D. M.; Hamann, F.; Barlow, T. A.

    2014-10-01

    Broad absorption lines (BALs) in quasar spectra identify high-velocity outflows that might exist in all quasars and could play a major role in feedback to galaxy evolution. The viability of BAL outflows as a feedback mechanism depends on their kinetic energies, as derived from the outflow velocities, column densities, and distances from the central quasar. We estimate these quantities for the quasar, Q1413+1143 (redshift ze = 2.56), aided by the first detection of P V λλ1118, 1128 BAL variability in a quasar. In particular, P V absorption at velocities where the C IV trough does not reach zero intensity implies that the C IV BAL is saturated and the absorber only partially covers the background continuum source (with characteristic size <0.01 pc). With the assumption of solar abundances, we estimate that the total column density in the BAL outflow is log NH ≳ 22.3 cm-2. Variability in the P V and saturated C IV BALs strongly disfavours changes in the ionization as the cause of the BAL variability, but supports models with high column density BAL clouds moving across our lines of sight. The observed variability time of 1.6 yr in the quasar rest frame indicates crossing speeds >750 km s-1 and a radial distance from the central black hole of ≲ 3.5 pc, if the crossing speeds are Keplerian. The total outflow mass is ˜4100 M⊙, the kinetic energy ˜4 × 1054 erg, and the ratio of the outflow kinetic energy luminosity to the quasar bolometric luminosity is ˜0.02 (at the minimum column density and maximum distance), which might be sufficient for important feedback to the quasar's host galaxy.

  17. Monitoring the variability of intrinsic absorption lines in quasar spectra , ,

    SciTech Connect

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ∼10{sup 3}-10{sup 5} cm{sup –3} and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.

  18. Absorption Line Profiles for 39 Rapidly Rotating Stars

    NASA Astrophysics Data System (ADS)

    Stoeckley, T. R.; Carroll, R. W.; Miller, R. D.

    1984-05-01

    Absorption lines of He II, HeI, MgII and other ions have been measured in 169 photographic coude spectra for 39 rapidly rotating B-type stars on the main sequence. All 1500 separate line profiles have been analysed with a procedure of differential corrections by least-squares to yield the following parameters and their error estimates: half-width, central depth, equivalent width and shape parameter. The shape parameter includes Voigt profiles and also `super-Gaussian' and `super-damping' profiles. Up to 15 separately measured line profiles in each star have been superimposed to yield better composite profiles with point scatter as small as 0.5 per cent. In addition, a preliminary value of V sin i is derived for each line of each star, and a mean value (including error bars) is derived for each star. Results are compared and discussed, with reference to forthcoming work incorporating stellar distortion, gravity darkening, and other second-order effects, which will allow determinations of axial inclination and differential rotation of individual stars, using the data sets presented here and elsewhere.

  19. The orientation and polarization of broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    DiPompeo, M. A.; Brotherton, M. S.; De Breuck, C.

    2013-01-01

    We present new spectropolarimetric observations of eight radio-loud broad absorption line (BAL) quasars, and combine these new data with our previous spectropolarimetric atlases (of both radio-loud and radio-quiet objects; DiPompeo et al. 2010, DiPompeo et al. 2011a) in order to investigate the polarization properties of BAL quasars as a group. The total (radio-selected) sample includes 36 (26) high-ionization and 22 (15) low-ionization BAL quasars (HiBALs and LoBALs, respectively). On average, we confirm that broad emission lines are polarized at a level similar to or less than the continuum and broad absorption troughs are more highly polarized, but we note that these properties are not true for all individual objects. Of the whole sample, 18 (31 per cent) have high (>2 per cent) continuum polarization, including 45 per cent of the LoBALs and 22 per cent of the HiBALs. We identify a few correlations between polarization and other quasar properties, as well as some interesting non-correlations. In particular, continuum polarization does not correlate with radio spectral index, which suggests that the polarization is not due to a standard geometry and preferred viewing angle to BAL quasars. The polarization also does not correlate with the amount of intrinsic dust reddening, indicating that the polarization is not solely due to direct light attenuation either. Polarization does appear to depend on the minimum BAL outflow velocity, confirming the results of previous studies and it may correlate with the maximum outflow velocity. We also find that continuum polarization anticorrelates with the polarization in the C iv broad emission and broad absorption. These results suggest that the polarization of BAL quasars cannot be described by one simple model, and that the scatterer location and geometry can vary significantly from object to object.

  20. The gaseous galactic halo as inferred from the line spectra of the galaxies Markarian 509 and Fairall 9

    NASA Technical Reports Server (NTRS)

    York, D. G.; Songaila, A.; Blades, J. C.; Cowie, L. L.; Morton, D. C.; Wu, C.-C.

    1982-01-01

    Narrow interstellar absorption lines of S II 1259.52, Si II 1260.42, and Fe II 1608.46 due to gas in the disk and the halo of the Galaxy have been detected in the spectrum of the Seyfert galaxy Mrk 509 with the International Ultraviolet Explorer. This gas is also seen at higher resolution in the Ca II and Na I absorption lines in two components at LSR velocities of +6 and +62 km/s. In addition, narrow Ly-alpha and C IV absorption near the Seyfert redshift seem to be present in the spectrum. Si II 1260.42 absorption from the galactic disk and from the Magellanic Stream or the halo of the SMC have been detected with the IUE in the spectrum of Fairall 9. The observations of these two objects when combined with existing results are shown to be consistent with a corotating galactic halo having a height of less than 10 kpc at the sun.

  1. Relativistic Iron K Emission and Absorption in the Seyfert 1.9 Galaxy MCG-05-23-16

    NASA Technical Reports Server (NTRS)

    Braito, V.; Reeves, J. N.; Dewangan, G. C.; George, I.; Griffiths, R.; Markowitz, A.; Nandra, K.; Porquet, D.; Ptak, A.; Turner, T. J.; Yaqoob, T.; Weaver, K.

    2007-01-01

    We present the results of the simultaneous deep XMM-Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of the best known examples of a relativistically broadened iron Kalpha line. We detected a narrow sporadic absorption line at 7.7 keV which appears to be variable on a time-scale of 20 ksec. If associated with FeXXVI this absorption is indicative of a possible variable high ionization, high velocity outflow. The time averaged spectral analysis shows that the iron K-shell complex is best modeled with an unresolved narrow emission component (FWHM less than 5000 kilometers per second, EW approx. 60 eV) plus a broad component. This latter component has FWHM approx. 44000 kilometers per second, an EW approx. 50 eV and its profile is well described with an emission line originating from the accretion disk viewed with an inclination angle approx. 40 deg. and with the emission arising from within a few tens of gravitational radii of the central black hole. The time-resolved spectral analysis of the XMM-Newton EPIC-pn spectrum shows that both the narrow and broad components of the Fe K emission line appear to be constant within the errors. The analysis of the XMM-Newton/RGS spectrum reveals that the soft X-ray emission of MCG-5-23-16 is likely dominated by several emission lines superimposed on an unabsorbed scattered power-law continuum. The lack of strong Fe L shell emission together with the detection of a strong forbidden line in the O VII triplet supports a scenario where the soft X ray emission lines are produced in a plasma photoionized by the nuclear emission.

  2. Probing the interstellar medium of external galaxies using quasar absortion lines: The 3C 232/NGC 3067 system

    NASA Technical Reports Server (NTRS)

    Stocke, John T.; Case, James; Donahue, Megan; Shull, J. Michael; Snow, Theodore P.

    1990-01-01

    Quasar absorption lines offer unique opportunities to probe the interstellar medium of external galaxies. Researchers present new optical and UV absorption line spectroscopy of the quasar 3C232 (z=0.55) revealing new detail in the foreground absorption system due to the bright, spiral galaxy NGC 3067 (cz=1420 km/s). Specifically, the spectra show evidence for two and possibly three separate absorption components in CaII and Na I spanning approx. 150 km/s. The original HI detection of Haschick and Burke (1975) corresponds to the strongest of these metal systems which exhibits doublet ratios consistent with saturation in both CaII and Na I. Due to the recent detection in HI emission of a tidal tail or finger of HI extending from the western edge of NGC 3067 through the position of 3C 232 (Carilli, van Gorkom and Stocke, 1989), the morphology of the HI absorber is now known and is not either a warped disk nor a spherical halo as had been proposed. New deep continuum and H alpha imaging provides a sensitive upper limit on the the ionizing continuum impinging upon this cloud (and thus a limit on the intensity of the extragalactic ionizing radiation field). Together with the observed UV spectrum of 3C 232, the optical emission line ratios and the deep H alpha imaging set a minimum distance between the quasar and the HI cloud disregarding redshift information. This limit strains the non-cosmological redshift interpretation for 3C 232 -- and this quasar is one of the original 5 3C quasars found to be too close to NGC galaxies as if by chance (Burbidge, Burbidge, Solomon and Strittmatter, 1972).

  3. CONFIRMATION OF ENHANCED DWARF-SENSITIVE ABSORPTION FEATURES IN THE SPECTRA OF MASSIVE ELLIPTICAL GALAXIES: FURTHER EVIDENCE FOR A NON-UNIVERSAL INITIAL MASS FUNCTION

    SciTech Connect

    Van Dokkum, Pieter G.; Conroy, Charlie

    2011-07-01

    We recently found that massive cluster elliptical galaxies have strong Na I {lambda}8183, 8195 and FeH {lambda}9916 Wing-Ford band absorption, indicating the presence of a very large population of stars with masses {approx}< 0.3 M{sub sun}. Here we test this result by comparing the elliptical galaxy spectra to those of luminous globular clusters associated with M31. These globular clusters have similar metallicities, abundance ratios, and ages as massive elliptical galaxies but their low dynamical mass-to-light ratios rule out steep stellar initial mass functions (IMFs). From high-quality Keck spectra we find that the dwarf-sensitive absorption lines in globular clusters are significantly weaker than in elliptical galaxies and consistent with normal IMFs. The differences in the Na I and Wing-Ford indices are 0.027 {+-} 0.007 mag and 0.017 {+-} 0.006 mag, respectively. We directly compare the two classes of objects by subtracting the averaged globular cluster spectrum from the averaged elliptical galaxy spectrum. The difference spectrum is well fit by the difference between a stellar population synthesis model with a bottom-heavy IMF and one with a bottom-light IMF. We speculate that the slope of the IMF may vary with velocity dispersion, although it is not yet clear what physical mechanism would be responsible for such a relation.

  4. An XMM-Newton Study of the Bright Narrow-Line Seyfert 1 Galaxy Arakelian 564

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2004-01-01

    We report on two XMM-Newton observations of the bright Narrow-Line Seyfert 1 galaxy Ark 564 taken one year apart (2000 June and 2001 June). The 0.6-10 keV continuum is well described by a soft blackbody component (kT - 140-150 eV) plus a steep power law (Gamma - 2.50-2.55). No significant spectral changes are observed between the two observations, although the X-ray flux in the second observation is - 40-50 per cent lower. In both observations we detect a significant absorption edge at a rest-frame energy of - 0.73 keV, corresponding to 0 VII. The presence of the absorption feature is confirmed by a simultaneous Chandra grating observation in 2000 June, although the best-fitting edge threshold is at a slightly lower energy in the Chandra data, possibly because of a different parameterization of the underlying X-ray continuum. We find tentative evidence for a broad iron emission line in the 2000 June observation. The results from an analysis of the power spectral density (PSD) function are also presented. The present XMM-Newton data support the idea that the PSD shows two breaks, although the location of the high-frequency break requires further constraints.

  5. THE PITTSBURGH SLOAN DIGITAL SKY SURVEY Mg II QUASAR ABSORPTION-LINE SURVEY CATALOG

    SciTech Connect

    Quider, Anna M.; Nestor, Daniel B.; Turnshek, David A.; Rao, Sandhya M.; Weyant, Anja N.; Monier, Eric M.; Busche, Joseph R.

    2011-04-15

    We present a catalog of intervening Mg II quasar absorption-line systems in the redshift interval 0.36 {<=} z {<=} 2.28. The catalog was built from Sloan Digital Sky Survey Data Release Four (SDSS DR4) quasar spectra. Currently, the catalog contains {approx}17, 000 measured Mg II doublets. We also present data on the {approx}44, 600 quasar spectra which were searched to construct the catalog, including redshift and magnitude information, continuum-normalized spectra, and corresponding arrays of redshift-dependent minimum rest equivalent widths detectable at our confidence threshold. The catalog is available online. A careful second search of 500 random spectra indicated that, for every 100 spectra searched, approximately one significant Mg II system was accidentally rejected. Current plans to expand the catalog beyond DR4 quasars are discussed. Many Mg II absorbers are known to be associated with galaxies. Therefore, the combination of large size and well understood statistics makes this catalog ideal for precision studies of the low-ionization and neutral gas regions associated with galaxies at low to moderate redshift. An analysis of the statistics of Mg II absorbers using this catalog will be presented in a subsequent paper.

  6. The Pittsburgh Sloan Digital Sky Survey Mg II Quasar Absorption-line Survey Catalog

    NASA Astrophysics Data System (ADS)

    Quider, Anna M.; Nestor, Daniel B.; Turnshek, David A.; Rao, Sandhya M.; Monier, Eric M.; Weyant, Anja N.; Busche, Joseph R.

    2011-04-01

    We present a catalog of intervening Mg II quasar absorption-line systems in the redshift interval 0.36 <= z <= 2.28. The catalog was built from Sloan Digital Sky Survey Data Release Four (SDSS DR4) quasar spectra. Currently, the catalog contains ~17, 000 measured Mg II doublets. We also present data on the ~44, 600 quasar spectra which were searched to construct the catalog, including redshift and magnitude information, continuum-normalized spectra, and corresponding arrays of redshift-dependent minimum rest equivalent widths detectable at our confidence threshold. The catalog is available online. A careful second search of 500 random spectra indicated that, for every 100 spectra searched, approximately one significant Mg II system was accidentally rejected. Current plans to expand the catalog beyond DR4 quasars are discussed. Many Mg II absorbers are known to be associated with galaxies. Therefore, the combination of large size and well understood statistics makes this catalog ideal for precision studies of the low-ionization and neutral gas regions associated with galaxies at low to moderate redshift. An analysis of the statistics of Mg II absorbers using this catalog will be presented in a subsequent paper.

  7. A New Interpretation for the Variation in Starburst Galaxy Emission Line Spectra

    NASA Astrophysics Data System (ADS)

    Richardson, Chris T.; Allen, James T.; Baldwin, Jack A.; Hewett, Paul C.; Ferland, Gary J.; Meskhidze, Helen

    2015-01-01

    Starburst galaxies have been easily distinguished from AGN using diagnostic emission line ratio diagrams constraining their excitation mechanism. Previous modeling of the star forming (SF) galaxy sequence outlined on the BPT diagram has led to the interpretation that high metallicity SF galaxies and low ionization SF galaxies are synonymous. Here, we present a new interpretation. Using a large sample of low-z SDSS galaxies, we co-added similar spectra of pure star forming galaxies allowing many weaker emission lines to act as consistency checks on strong line diagnostics. For the first time, we applied a locally optimally-emitting cloud (LOC) model to understand the physical reason for the variation in starburst galaxy emission line spectra. We fit over twenty diagnostic diagrams constraining the excitation mechanism, SED, temperature, density, metallicity, and grain content, making this work far more constrained than previous studies. Our results indicate that low luminosity SF galaxies could simply have less concentrated regions of ionized gas compared to their high luminosity counterparts, but have similar metallicities, thus requiring reevaluation about underlying nature of star forming galaxies.

  8. Broad Balmer-Line Absorption in SDSS J172341.10+555340.5

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro

    2010-10-01

    We present the discovery of Balmer-line absorption from Hα to H9 in an iron low-ionizaton broad absorption line (FeLoBAL) quasar, SDSS J172341.10+555340.5, by near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) attached to the Subaru Telescope. The redshift of the Balmer-line absorption troughs is 2.0530±0.0003, and it is blueshifted by 5370 km s-1 from the Balmer emission lines. It is more than 4000 km s-1 blueshifted from the previously known UV absorption lines. We detected relatively strong (EWrest = 20 Å) [OIII] emission lines that are similar to those found in other broad absorption line quasars with Balmer-line absorption. We also derived the column density of neutral hydrogen of 5.2 × 1017 cm-2 by using the curve of growth and taking account of Lyα trapping. We searched for UV absorption lines that had the same redshift with Balmer-line absorption, and found Ali III and Fe III absorption lines at z = 2.053 that correspond to previously unidentified absorption lines, and the presence of other blended troughs that were difficult to identify.

  9. Line profile and continuum variability in the very broad-line Seyfert galaxy Mrk 926

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.; Zetzl, M.

    2010-11-01

    Aims: We present results of an intensive spectroscopic variability campaign of the very broad-line Seyfert 1 galaxy Mrk 926. Our aim is to investigate the broad-line region (BLR) by studying the intensity and line profile variations of this galaxy on short timescales. Methods: High signal-to-noise ratio (S/N) spectra were taken with the 9.2 m Hobby-Eberly Telescope (HET) in identical conditions during two observing campaigns in 2004 and 2005. After the spectral reduction and internal calibration we achieved a relative flux accuracy of better than 1%. Results: The rms profiles of the very broad Balmer lines have shapes that differ from their mean line profiles, consisting of two inner (v ≲ ± 6000 km s-1) and two outer (v ≳ ± 6000 km s-1) line components in addition to a central component (v ≲ ± 600 km s-1). These outer and inner line segments varied with different amplitudes during our campaign. The radius of the BLR is very small with an upper limit of 2 light-days for the Hβ BLR size. We derived an upper limit to the central black hole mass of M = 11.2 × 107 M⊙. The 2-D cross-correlation functions CCF(τ, v) of Hβ and Hα are flat within the error limits. The response of the Balmer line segments with respect to continuum variations is different in the outer and inner wings of Hα and Hβ. This double structure in the response curves - of two separate inner and outer components - has also been seen in the rms line profiles. We conclude that the outer and inner line segments originate in different regions and/or under different physical conditions. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  10. High-Resolution Ultraviolet Spectra of the Dwarf Seyfert 1 Galaxy NGC 4395: Evidence for Intrinsic Absorption

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Schmitt, H. R.; Filippenko, A. V.; Ho, L. C.; Shields, J. C.; Turner, T. J.

    2004-09-01

    We present ultraviolet spectra of the dwarf Seyfert 1 nucleus of NGC 4395, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Hubble Space Telescope Space Telescope Imaging Spectrograph at velocity resolutions of 7-15 km s-1. We confirm our earlier claim of C IV absorption in low-resolution UV spectra and detect a number of other absorption lines with lower ionization potentials. In addition to the Galactic lines, we identify two kinematic components of absorption that are likely to be intrinsic to NGC 4395. We consider possible origins of the absorption, including the interstellar medium (ISM) of NGC 4395, the narrow-line region, the outflowing UV absorbers, and the X-ray ``warm absorbers.'' Component 1, at a radial velocity of -770 km s-1 with respect to the nucleus, is only identified in the C IV λ1548.2 line. It most likely represents an outflowing UV absorber, similar to those seen in a majority of Seyfert 1 galaxies, although additional observations are needed to confirm the reality of this feature. Component 2, at -114 km s-1, most likely arises in the ISM of NGC 4395; its ionic column densities cannot be matched by photoionization models with a power-law continuum. Our models of the highly ionized X-ray absorbers claimed for this active galactic nucleus indicate that they would have undetectable C IV absorption, but large O VI and H I columns should be present. We attribute our lack of detection of the O VI and Lyβ absorption from the X-ray absorbers to a combination of noise and dilution of the nuclear spectrum by hot stars in the large FUSE aperture. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 these observations are associated with proposal GO-9362. Also based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer

  11. Radio Structures of Compact Quasars with Broad Absorption Lines

    NASA Astrophysics Data System (ADS)

    Kunert-Bajraszewska, Magdalena; Gawroński, Marcin P.

    2010-05-01

    Broad absorption lines (BALs), seen in a small fraction of both the radio-quiet and radio-loud quasar populations, are probably caused by the outflow of gas with high velocities and are part of the accretion process. The presence of BALs is due to a geometrical effect and/or it is connected with the quasar evolution. Using the final release of FIRST survey combined with a catalog of BAL QSOs from SDSS/DR3, we have constructed a new sample of compact radio-loud BAL QSOs, which constitutes the majority of radio-loud BAL QSOs. The main goal of this project is to study the origin of BALs by analysis of the BAL QSOs radio morphology, orientation, and jet evolution using the European VLBI Network (EVN) at 1.6 GHz and the Very Long Baseline Array (VLBA) at 5 and 8.4 GHz.

  12. The intrinsic fraction of broad-absorption line quasars

    NASA Astrophysics Data System (ADS)

    Knigge, Christian; Scaringi, Simone; Goad, Michael R.; Cottis, Christopher E.

    2008-05-01

    We carefully reconsider the problem of classifying broad-absorption line quasars (BALQSOs) and derive a new, unbiased estimate of the intrinsic BALQSO fraction from the Sloan Digital Sky Survey (SDSS) DR3 quasi-stellar object (QSO) catalogue. We first show that the distribution of objects selected by the so-called `absorption index' (AI) is clearly bimodal in logAI, with only one mode corresponding to definite BALQSOs. The surprisingly high BALQSO fractions that have recently been inferred from AI-based samples are therefore likely to be overestimated. We then present two new approaches to the classification problem that are designed to be more robust than the AI, but also more complete than the traditional `balnicity index' (BI). Both approaches yield observed BALQSO fractions around 13.5 per cent, while a conservative third approach suggests an upper limit of 18.3 per cent. Finally, we discuss the selection biases that affect our observed BALQSO fraction. After correcting for these biases, we arrive at our final estimate of the intrinsic BALQSO fraction. This is fBALQSO = 0.17 +/- 0.01(stat) +/- 0.03(sys) with an upper limit of fBALQSO ~= 0.23. We conclude by pointing out that the bimodality of the logAI distribution may be evidence that the BAL-forming region has clearly delineated physical boundaries.

  13. Quasar Broad Absorption Line Variability on Multiyear Timescales

    NASA Astrophysics Data System (ADS)

    Gibson, Robert R.; Brandt, W. N.; Schneider, Donald P.; Gallagher, S. C.

    2008-03-01

    We use quantitative metrics to characterize the variation of C IV λ1549 broad absorption lines (BALs) over 3-6 (rest-frame) years in a sample of 13 quasars at 1.7 <= z<= 2.8 and compare the results to previous studies of BAL variability on shorter timescales. The strong BALs in our study change in complex ways over 3-6 yr. Variation occurs in discrete regions only a few thousand kilometers per second wide, and the distribution of the change in absorption equivalent width broadens over time. We constrain the typical C IV BAL lifetime to be at least a few decades. While we do not find evidence to support a scenario in which the variation is primarily driven by photoionization on multiyear timescales, there is some indication that the variation is produced by changes in outflow geometry. We do not observe significant changes in the BAL onset velocity, indicating that the absorber is either far from the source or is being continually replenished and is azimuthally symmetric. It is not possible in a human lifetime to expand the timescales in our study by more than a factor of a few using optical spectroscopy. However, the strong variation we have observed in some BALs indicates that future studies of large numbers of BAL QSOs will be valuable to constrain BAL lifetimes and the physics of variation.

  14. Outflow and hot dust emission in broad absorption line quasars

    SciTech Connect

    Zhang, Shaohua; Zhou, Hongyan; Wang, Huiyuan; Wang, Tinggui; Xing, Feijun; Jiang, Peng; Zhang, Kai E-mail: whywang@mail.ustc.edu.cn

    2014-05-01

    We have investigated a sample of 2099 broad absorption line (BAL) quasars with z = 1.7-2.2 built from the Sloan Digital Sky Survey Data Release Seven and the Wide-field Infrared Survey. This sample is collected from two BAL quasar samples in the literature and is refined by our new algorithm. Correlations of outflow velocity and strength with a hot dust indicator (β{sub NIR}) and other quasar physical parameters—such as an Eddington ratio, luminosity, and a UV continuum slope—are explored in order to figure out which parameters drive outflows. Here β{sub NIR} is the near-infrared continuum slope, which is a good indicator of the amount of hot dust emission relative to the accretion disk emission. We confirm previous findings that outflow properties moderately or weakly depend on the Eddington ratio, UV slope, and luminosity. For the first time, we report moderate and significant correlations of outflow strength and velocity with β{sub NIR} in BAL quasars. It is consistent with the behavior of blueshifted broad emission lines in non-BAL quasars. The statistical analysis and composite spectra study both reveal that outflow strength and velocity are more strongly correlated with β{sub NIR} than the Eddington ratio, luminosity, and UV slope. In particular, the composites show that the entire C IV absorption profile shifts blueward and broadens as β{sub NIR} increases, while the Eddington ratio and UV slope only affect the high and low velocity part of outflows, respectively. We discuss several potential processes and suggest that the dusty outflow scenario, i.e., that dust is intrinsic to outflows and may contribute to the outflow acceleration, is most likely.

  15. Monitoring the Variability of Intrinsic Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ~103-105 cm-3 and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage. Based on data collected at Subaru telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations obtained at the European Southern Observatory at La Silla, Chile in programs 65.O-0063(B), 65.O-0474(A), 67.A-0078(A), 68.A-0461(A), 69.A-0204(A), 70.B-0522(A), 072.A-0346(A), 076.A-0860(A), 079.B-0469(A), and 166.A-0106(A).

  16. The velocity distribution of interstellar gas observed in strong UV absorption lines

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; York, D. G.

    1978-01-01

    Observations of three strong interstellar UV absorption lines of N I (1199 A), N II (1083 A), and Si III (1206 A) in 47 stars of widely varying distance and a variety of spectral types are analyzed to obtain a velocity distribution function for the interstellar gas. A technique based on the maximum and minimum velocities observed along a line of sight is adopted because of heavy line blending, and results are discussed for both power-law and exponential distribution functions. The expected distribution of radiative-phase supernova remnants (SNRs) in the interstellar medium is calculated as a function of SNR birthrate and of the interstellar density in which they evolve. The results are combined with observed distance estimates, and it is shown that an interstellar density in excess of 0.1 per cu cm would be required to keep the SNRs sufficiently confined so that their cross sections are consistent with the observed number of components. The alternative possibility is considered that SNRs do not enter the radiative phase before escaping from the Galaxy or colliding with neighboring remnants.

  17. New fully empirical calibrations for strong-line metallicity indicators in star forming galaxies

    NASA Astrophysics Data System (ADS)

    Curti, M.; Cresci, G.; Mannucci, F.; Marconi, A.; Maiolino, R.; Esposito, S.

    2016-06-01

    We derive new empirical calibrations for strong-line diagnostics of gas phase metallicity in local star forming galaxies by uniformly applying the Te method over the full metallicity range probed by the Sloan Digital Sky Survey (SDSS). To measure electron temperatures at high metallicity, where the auroral lines needed are not detected in single galaxies, we stacked spectra of more than 110000 galaxies from the SDSS in bins of log[O II]/Hβ and log[O III]/Hβ. This stacking scheme does not assume any dependence of metallicity on mass or star formation rate, but only that galaxies with the same line ratios have the same oxygen abundance. We provide calibrations which span more than 1 dex in metallicity and are entirely defined on a consistent absolute Te metallicity scale for galaxies. We apply our calibrations to the SDSS sample and find that they provide consistent metallicity estimates to within 0.05 dex.

  18. The nature and origin of Narrow Line AGN activity in a sample of isolated SDSS galaxies

    NASA Astrophysics Data System (ADS)

    Coziol, R.; Torres-Papaqui, J. P.; Plauchu-Frayn, I.; Islas-Islas, J. M.; Ortega-Minakata, R. A.; Neri-Larios, D. M.; Andernach, H.

    2011-10-01

    We discuss the nature and origin of the nuclear activity observed in a sample of 292 SDSS narrow-emission-line galaxies, considered to have formed and evolved in isolation. The fraction of Narrow Line AGNs (NLAGNs) and Transition type Objects (TOs; a NLAGN with circumnuclear star formation) amounts to 64% of the galaxies. We verify that the probability for a galaxy to show an AGN characteristic increases with the bulge mass of the galaxy (Torres-Papaqui et al. 2011), and find evidence that this trend is really a by-product of the morphology, suggesting that the AGN phenomenon is intimately connected with the formation process of the galaxies. The NLAGNs in our sample are consistent with a scaled-down or powered-down versions of quasars and Broad Line AGNs.

  19. On the origins of C IV absorption profile diversity in broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Baskin, Alexei; Laor, Ari; Hamann, Fred

    2015-05-01

    There is a large diversity in the C IV broad absorption line (BAL) profile among BAL quasars (BALQs). We quantify this diversity by exploring the distribution of the C IV BAL properties, full width at half-maximum (FWHM), maximum depth of absorption and its velocity shift (vmd), using the Sloan Digital Sky Survey DR7 quasar catalogue. We find the following: (i) Although the median C IV BAL profile in the quasar rest-frame becomes broader and shallower as the UV continuum slope (αUV at 1700-3000 Å) gets bluer, the median individual profile in the absorber rest-frame remains identical, and is narrow (FWHM = 3500 km s-1) and deep. Only 4 per cent of BALs have FWHM > 10 000 km s-1. (ii) As the He II emission equivalent width (EW) decreases, the distributions of FWHM and vmd extend to larger values, and the median maximum depth increases. These trends are consistent with theoretical models in which softer ionizing continua reduce overionization, and allow radiative acceleration of faster BAL outflows. (iii) As αUV becomes bluer, the distribution of vmd extends to larger values. This trend may imply faster outflows at higher latitudes above the accretion disc plane. (iv) For non-BALQs, the C IV emission line decreases with decreasing He II EW, and becomes more asymmetric and blueshifted. This suggests an increasing relative contribution of emission from the BAL outflow to the C IV emission line as the ionizing spectral energy distribution (SED) gets softer, which is consistent with the increasing fraction of BALQs as the ionizing SED gets softer.

  20. A HIRES Detection of NA I D Absorption in the Spectrum of the QSO PKS 2020-370 Due to the Galaxy Klemola 31A

    NASA Astrophysics Data System (ADS)

    Junkkarinen, V. T.; Barlow, T. A.

    1994-12-01

    By using the Keck telescope and HIRES spectrograph we have detected Na I D absorption lines in the spectrum of the QSO PKS 2020-370 (V = 17.5, z = 1.048) due to the galaxy Klemola 31A (z = 0.0288). The PKS 2020-370 line of sight is near an apparent spiral arm only 20" from the nucleus of Klemola 31A which corresponds to 17 kpc (H_o = 50 km s(-1) Mpc(-1) ). The spectrum of PKS 2020-370 has strong Ca II absorption lines (W_λ ~ 350 m Angstroms \\ for the K line) at the galaxy redshift (Boksenberg et al, 1980, ApJ, 242, L145), but previous attempts to detect Na I have resulted in upper limits (Boisse et al. 1988, A&A, 191, 193, Womble, 1992, thesis UCSD). We observed PKS 2020-370 with HIRES in May 1994 at a resolution of 8 km s(-1) FWHM for a total of 90 minutes. The Na I D doublet is detected with a total W_λ for the Na I 5891.6 Angstroms \\ (vac) absorption line of about 160 m Angstroms . The absorption appears as two main velocity components separated by 23 km s(-1) . The optically thin estimate for N(Na I) = 1.0 times 10(12) cm(-2) gives an estimated N(Ca II)/N(Na I) = 5. This value suggests that the gas in Klemola 31A along the QSO line of sight is ``halo like''. Along ``disk like'' lines of sight where Ca is thought to be depleted onto grains in our Galaxy, the N(Ca II)/N(Na I) ratio is usually small (<= 1). Other QSO--galaxy pairs often show disk like N(Ca II)/N(Na I) ratios when the line of sight intersects starlight at 25 mag per sq. arcsec (Womble, 1992 thesis UCSD). The PKS 2020-370 sightline is near the optical extent of Klemola 31A but the N(Ca II)/N(Na I) is consistent with the sightline passing through two clouds in the halo. This research has been supported in part by NASA NAS5--29293 and NAG5--1630.

  1. A FOURTH H I 21 cm ABSORPTION SYSTEM IN THE SIGHT LINE OF MG J0414+0534: A RECORD FOR INTERVENING ABSORBERS

    SciTech Connect

    Tanna, A.; Webb, J. K.; Curran, S. J.; Whiting, M. T.; Bignell, C.

    2013-08-01

    We report the detection of a strong H I 21 cm absorption system at z = 0.5344, as well as a candidate system at z = 0.3389, in the sight line toward the z = 2.64 quasar MG J0414+0534. This, in addition to the absorption at the host redshift and the other two intervening absorbers, takes the total to four (possibly five). The previous maximum number of 21 cm absorbers detected along a single sight line is two and so we suspect that this number of gas-rich absorbers is in some way related to the very red color of the background source. Despite this, no molecular gas (through OH absorption) has yet been detected at any of the 21 cm redshifts, although, from the population of 21 cm absorbers as a whole, there is evidence for a weak correlation between the atomic line strength and the optical-near-infrared color. In either case, the fact that so many gas-rich galaxies (likely to be damped Ly{alpha} absorption systems) have been found along a single sight line toward a highly obscured source may have far-reaching implications for the population of faint galaxies not detected in optical surveys, a possibility which could be addressed through future wide-field absorption line surveys with the Square Kilometer Array.

  2. The Physical Nature of Polar Broad Absorption Line Quasars

    NASA Technical Reports Server (NTRS)

    Ghost, Kajal; Punsly, Brian

    2007-01-01

    It has been shown based on radio variability arguments that some BALQSOs (broad absorption line quasars) are viewed along the polar axis (o rthogonal to accretion disk) in the recent article of Zhou et a. Thes e arguments are based on the brightness temperature, T(sub b) exceedi ng 10(exp 12) K which leads to the well-known inverse Compton catastr ophe unless the radio jet is relativistic and is viewed along its axi s. In this letter, we expand the Zhou et al sample of polar BALQSOs u sing their techniques applied to SDSS DR5. In the process, we clarify a mistake in their calculation of brightness temperature. The expanded sample of high T(sub b) BALQSOS, has an inordinately large fraction of LoBALQSOs (low ionization BALQSOs). We consider this an important clue to understanding the nature of the polar BALQSOs. This is expec ted in the polar BALQSO analytical/numerical models of Punsly that pr edicted that LoBALQSOs occur when the line of sight is very close to the polar axis, where the outflow density is the highest.

  3. Connecting the Interstellar Gas and Dust Properties in Distant Galaxies Using Quasar Absorption Systems

    NASA Astrophysics Data System (ADS)

    Aller, Monique Christine; Kulkarni, Varsha P.; York, Donald; Welty, Daniel; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli

    2015-08-01

    Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. Recent studies of QASs also find trends in both the gas and dust properties, such as correlations in metallicity with redshift and dust depletions. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of gas-phase element abundances based on archival high-resolution optical spectra. We also discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between absorption redshift, gas metallicity, metal depletions, and silicate dust abundance, which will yield valuable insights into the star formation history. Support is provided by NASA through grant NNX14AG74G and by an award issued by JPL/Caltech, and from US-NSF grants AST-0908890 and AST-1108830 to the U. of S. Carolina.

  4. Highly Ionized Iron Absorption Lines from Outflowing Gases in the X-ray Spectrum of NGC 1365

    NASA Technical Reports Server (NTRS)

    Risaliti, G.; Bianchi, S.; Matt, G.; Baldi, A.; Elvis, M.; Fabbiano, G.; Zezas, A.

    2006-01-01

    We present the discovery of four absorption lines in the X-ray spectrum of the Seyfert galaxy NGC 1365, at energies between 6.7 and 8.3 keV. The lines are detected with high statistical confidence (from >20 sigma for the strongest to -4 sigma for the weakest) in two XMM-Newton observations 60 ks long. We also detect the same lines, with a lower signal-to-noise ratio (but still >2 sigma for each line), in two previous shorter (-10 ks) XMM-Newton observations. The spectral analysis identifies these features as Fe XXV and Fe XXVI Kalpha and Kbeta lines, outflowing with velocities varying between -1000 and -5000 km/s among the observations. These are the highest quality detections of such lines so far. The high equivalent widths [EW (Kalpha) approximately 100 eV] and the Kalpha/Kbeta ratios imply that the lines are due to absorption of the AGN continuum by a highly ionized gas with column density NH-5?1023 cm(exp -2) at a distance of -(50-100)RS from the continuum source.

  5. VizieR Online Data Catalog: Emission line analysis of HII galaxies (Hoyos+, 2006)

    NASA Astrophysics Data System (ADS)

    Hoyos, C.; Diaz, A. I.

    2006-05-01

    We present a statistical study of a very large sample of HII galaxies taken from the literature. We focus on the differences in several properties between galaxies that show the auroral line [OIII]{lambda}4363 and those that do not present this feature in their spectra. (2 data files).

  6. Catalog of Narrow Mg II Absorption Lines in the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei

    2015-12-01

    Using the Data Release 9 Quasar spectra from the Baryonic Oscillation Spectroscopic Survey, which does not include quasar spectra from the Sloan Digital Sky Survey Data Release 7, we detect narrow Mg ii λλ2796, 2803 absorption doublets in the spectral data redward of 1250 Å (quasar rest frame) until the red wing of the Mg ii λ2800 emission line. Our survey is limited to quasar spectra with a median signal-to-noise ratio < {{S}}/{{N}}> ≥slant 4 pixel-1 in the surveyed spectral region, resulting in a sample that contains 43,260 quasars. We have detected a total of 18,598 Mg ii absorption doublets with 0.2933 ≤ zabs ≤ 2.6529. About 75% of absorbers have an equivalent width at rest frame of {W}rλ 2796≥slant 1 \\mathringA . About 75% of absorbers have doublet ratios ({DR}={W}rλ 2796/{W}rλ 2803) in the range of 1 ≤ DR ≤ 2, and about 3.2% lie outside the range of 1 - σDR ≤ DR ≤ 2 + σDR. We characterize the detection false positives/negatives by the frequency of detected Mg ii absorption doublets in the limits of the S/N of the spectral data. The S/N = 4.5 limit is assigned a completeness fraction of 53% and tends to be complete when the S/N is greater than 4.5. The redshift number densities of all of the detected Mg ii absorbers moderately increase from z ≈ 0.4 to z ≈ 1.5, which parallels the evolution of the cosmic star formation rate density. Limiting our investigation to those quasars whose emission redshift can be determined from narrow emission lines, the relative velocities (β) of Mg ii absorbers have a complex distribution which probably consists of three classes of Mg ii absorbers: (1) cosmologically intervening absorbers; (2) environmental absorbers that reside within the quasar host galaxies or galaxy clusters; (3) quasar outflow absorbers. After subtracting contributions from cosmologically intervening absorbers and environmental absorbers, the β distribution of the Mg iiabsorbers might mainly be contributed by the quasar outflow

  7. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    NASA Technical Reports Server (NTRS)

    VanDerWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; Koo, D.; Ferguson, H. C.; Scarlata, C.; Hathi, N. P.; Dunlop, J. S.; Newman, J. A.; Kocevski, D. D.; Lai, K.; Grogin, N. A.; Rodney, S. A.; Lee, K.-S.; Guo, Y.

    2011-01-01

    We identify an abundant population of extreme emission line galaxies at redshift z=1.6 - 1.8 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared, broad-band fluxes. Supported by spectroscopic confirmation of strong [OIII] emission lines - with equivalent widths approximately 1000A - in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are dwarf galaxies with approximately 10(exp 8) solar mass in stellar mass, undergoing an enormous star-burst phase with M*/M* of only approximately 10 Myr. The star formation activity and the co-moving number density (3.7 x 10(exp -4) Mpc(exp -3)) imply that strong, short-lived bursts play a significant, perhaps even dominant role in the formation and evolution of dwarf galaxies at z greater than 1. The observed star formation activity can produce in less than 5 Gyr the same amount of stellar mass density as is presently contained in dwarf galaxies. Therefore, our observations provide a strong indication that the stellar populations of present-day dwarf galaxies formed mainly in strong, short-lived bursts, mostly at z greater than 1.

  8. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    NASA Technical Reports Server (NTRS)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; Koo, D. C.; Ferguson, H. C.; Scarlata, C.; Hathi, N. P.; Dunlop, J. S.; Newman, J. A.; Dickinson, M.; Jahnke, K.; Salmon, B. W.; deMello, D. F.; Kkocevski, D. D.; Lai, K.; Grogin, N. A.; Rodney, S. A.; Guo, Yicheng

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  9. PROBING THE INTERGALACTIC MEDIUM/GALAXY CONNECTION. V. ON THE ORIGIN OF Ly{alpha} AND O VI ABSORPTION AT z < 0.2

    SciTech Connect

    Prochaska, J. Xavier; Chen, H.-W.; Mulchaey, J.; Cooksey, K. E-mail: bjw@as.arizona.edu E-mail: mulchaey@obs.carnegiescience.edu

    2011-10-20

    We analyze the association of galaxies with Ly{alpha} and O VI absorption, the most commonly detected transitions of the low-z intergalactic medium (IGM), in the fields of 14 quasars with z{sub em} = 0.06-0.57. Confirming previous studies, we observe a high covering fraction for Ly{alpha} absorption to impact parameter {rho} = 300 h{sup -1}{sub 72} kpc: 33/37 of our L > 0.01 L* galaxies show Ly{alpha} equivalent width W{sup Ly{alpha}} {>=} 50 mA. Galaxies of all luminosity L > 0.01 L* and spectral type are surrounded by a diffuse and ionized circumgalactic medium (CGM), whose baryonic mass is estimated at {approx}10{sup 10.5{+-}0.3} M{sub sun} for a constant N{sub H} = 10{sup 19} cm{sup -2}. The virialized halos and extended CGM of present-day galaxies are responsible for most strong Ly{alpha} absorbers (W{sup Ly{alpha}} > 300 mA) but cannot reproduce the majority of observed lines in the Ly{alpha} forest. We conclude that the majority of Ly{alpha} absorption with W{sup Ly{alpha}} = 30-300 mA occurs in the cosmic web predicted by cosmological simulations and estimate a characteristic width for these filaments of {approx}400 h{sup -1}{sub 72} kpc. Regarding O VI, we observe a near unity covering fraction to {rho} = 200 h{sup -1}{sub 72} kpc for L > 0.1 L* galaxies and to {rho} = 300 h{sup -1}{sub 72} kpc for sub-L* (0.1 L* < L < L*) galaxies. Similar to our Ly{alpha} results, stronger O VI systems (W{sup 1031} > 70 mA) arise in the virialized halos of L > 0.1 L* galaxies. Unlike Ly{alpha}, the weaker O VI systems (W{sup 1031} {approx} 30 mA) arise in the extended CGM of sub-L* galaxies. The majority of O VI gas observed in the low-z IGM is associated with a diffuse medium surrounding individual galaxies with L {approx} 0.3 L* and rarely originates in the so-called warm-hot IGM (predicted by cosmological simulations.

  10. A dual velocity in the highly ionized wind of the luminous narrow line Seyfert galaxy PG 1211+143

    NASA Astrophysics Data System (ADS)

    Pounds, K. A.; Lobban, A.; Reeves, J. N.; Vaughan, S.

    2016-05-01

    An extended XMM-Newton observation of the luminous narrow line Seyfert galaxy PG 1211+143 in 2014 has revealed a complex high velocity outflow, with components distinguished in velocity, ionization and short-term variability. We report here the detection of previously unseen spectral structure in Fe K absorption, finding a second velocity component of the highly ionized wind, apparently co-moving with a low ionization flow detected in the soft X-ray spectrum. Comparison with the first observation in 2001 finds a similar outflow energy rate.

  11. The determination of absorption cross sections and line profiles in vibrational overtone spectra with the use of intracavity absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bettermann, H.; Kleist, E.; Kok, R.

    1993-03-01

    This contribution presents quantitative absorption data concerning the 7 th CH overtone stretching vibrations of n-hexane and of methylcyclopentane. The transitions are adapted to Lorentzian and Gaussian line shapes. The bank shape analyses yield the spectral positions, absorption cross sections and linewidths of the investigated transitions.

  12. Broad absorption line variability in radio-loud quasars

    NASA Astrophysics Data System (ADS)

    Welling, C. A.; Miller, B. P.; Brandt, W. N.; Capellupo, D. M.; Gibson, R. R.

    2014-05-01

    We investigate C IV broad absorption line (BAL) variability within a sample of 46 radio-loud quasars (RLQs), selected from Sloan Digital Sky Survey (SDSS)/Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) data to include both core-dominated (39) and lobe-dominated (7) objects. The sample consists primarily of high-ionization BAL quasars, and a substantial fraction have large BAL velocities or equivalent widths; their radio luminosities and radio-loudness values span ˜2.5 orders of magnitude. We have obtained 34 new Hobby-Eberly Telescope spectra of 28 BAL RLQs to compare to earlier SDSS data, and we also incorporate archival coverage (primarily dual-epoch SDSS) for a total set of 78 pairs of equivalent width measurements for 46 BAL RLQs, probing rest-frame time-scales of ˜80-6000 d (median 500 d). In general, only modest changes in the depths of segments of absorption troughs are observed, akin to those seen in prior studies of BAL radio-quiet quasars (RQQs). Also similar to previous findings for RQQs, the RLQs studied here are more likely to display BAL variability on longer rest-frame time-scales. However, typical values of |{Δ}EW| and |{Δ}EW|/ are ˜40 ± 20 per cent lower for BAL RLQs when compared with those of a time-scale-matched sample of BAL RQQs. Optical continuum variability is of similar amplitude in BAL RLQs and BAL RQQs; for both RLQs and RQQs, continuum variability tends to be stronger on longer time-scales. BAL variability in RLQs does not obviously depend upon their radio luminosities or radio-loudness values, but we do find tentative evidence for greater fractional BAL variability within lobe-dominated RLQs. Enhanced BAL variability within more edge-on (lobe-dominated) RLQs supports some geometrical dependence to the outflow structure.

  13. Galaxy emission line classification using three-dimensional line ratio diagrams

    SciTech Connect

    Vogt, Frédéric P. A.; Dopita, Michael A.; Kewley, Lisa J.; Sutherland, Ralph S.; Scharwächter, Julia; Basurah, Hassan M.; Ali, Alaa; Amer, Morsi A.

    2014-10-01

    Two-dimensional (2D) line ratio diagnostic diagrams have become a key tool in understanding the excitation mechanisms of galaxies. The curves used to separate the different regions—H II-like or excited by an active galactic nucleus (AGN)—have been refined over time but the core technique has not evolved significantly. However, the classification of galaxies based on their emission line ratios really is a multi-dimensional problem. Here we exploit recent software developments to explore the potential of three-dimensional (3D) line ratio diagnostic diagrams. We introduce the ZQE diagrams, which are a specific set of 3D diagrams that separate the oxygen abundance and the ionization parameter of H II region-like spectra and also enable us to probe the excitation mechanism of the gas. By examining these new 3D spaces interactively, we define the ZE diagnostics, a new set of 2D diagnostics that can provide the metallicity of objects excited by hot young stars and that cleanly separate H II region-like objects from the different classes of AGNs. We show that these ZE diagnostics are consistent with the key log [N II]/Hα versus log [O III]/Hβ diagnostic currently used by the community. They also have the advantage of attaching a probability that a given object belongs to one class or the other. Finally, we discuss briefly why ZQE diagrams can provide a new way to differentiate and study the different classes of AGNs in anticipation of a dedicated follow-up study.

  14. Ultraviolet and optical spectra of high-ionization Seyfert galaxies with narrow lines

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. Michael; Peterson, Bradley M.; Korista, Kirk T.; Wagner, R. Mark; Aufdenberg, Jason P.

    1991-01-01

    Ultraviolet and optical spectra are presented for three unusual Seyfert galaxies (Mrk 1239, Mrk 42, and Mrk 493) that resemble Seyfert 1 galaxies in that they have strong high-ionization lines and strong nonstellar continua, but resemble Seyfert 2 galaxies in that the widths of their permitted lines are as narrow as the widths of their forbidden lines. The He II lambda 1640 and He II lambda 4686 lines are used to determine an upper limit to the reddening experienced by the emission lines. Published optical data show that these particular high-ionization narrow-line (HINL) Seyferts have low lambda 5007 H beta ratios and strong Fe II emission, which suggest the presence of high-density regions. The low Lalpha/H-beta ratios in these objects indicate that high-density clouds are indeed present, and, like the broad-line region clouds in Seyfert 1 galaxies, these clouds have large optical depths with partially ionized zones. Overall, the line ratios and continuum fluxes of these particular HINL Seyferts are indistinguishable from those of broad-lined Seyfert 1 galaxies.

  15. DISCOVERY OF THE TRANSITION OF A MINI-BROAD ABSORPTION LINE INTO A BROAD ABSORPTION LINE IN THE SDSS QUASAR J115122.14+020426.3

    SciTech Connect

    Hidalgo, Paola Rodriguez; Eracleous, Michael; Charlton, Jane; Hamann, Fred; Murphy, Michael T.; Nestor, Daniel

    2013-09-20

    We present the detection of a rare case of dramatic strengthening in the UV absorption profiles in the spectrum of the quasar J115122.14+020426.3 between observations {approx}2.86 yr apart in the quasar rest frame. A spectrum obtained in 2001 by the Sloan Digital Sky Survey shows a C IV ''mini-broad'' absorption line (FWHM = 1220 km s{sup -1}) with a maximum blueshift velocity of {approx}9520 km s{sup -1}, while a later spectrum from the Very Large Telescope shows a significantly broader and stronger absorption line, with a maximum blueshift velocity of {approx}12, 240 km s{sup -1} that qualifies as a broad absorption line. A similar variability pattern is observed in two additional systems at lower blueshifted velocities and in the Ly{alpha} and N V transitions as well. One of the absorption systems appears to be resolved and shows evidence for partial covering of the quasar continuum source (C{sub f} {approx} 0.65), indicating a transverse absorber size of, at least, {approx}6 Multiplication-Sign 10{sup 16} cm. In contrast, a cluster of narrower C IV lines appears to originate in gas that fully covers the continuum and broad emission line sources. There is no evidence for changes in the centroid velocity of the absorption troughs. This case suggests that at least some of the absorbers that produce ''mini-broad'' and broad absorption lines in quasar spectra do not belong to intrinsically separate classes. Here, the ''mini-broad'' absorption line is most likely interpreted as an intermediate phase before the appearance of a broad absorption line due to their similar velocities. While the current observations do not provide enough constraints to discern among the possible causes for this variability, future monitoring of multiple transitions at high resolution will help achieve this goal.

  16. Black Hole Masses of Active Galaxies with Double-peaked Balmer Emission Lines

    NASA Astrophysics Data System (ADS)

    Lewis, Karen T.; Eracleous, Michael

    2006-05-01

    We have obtained near-IR spectra of five AGNs that exhibit double-peaked Balmer emission lines (NGC 1097, Pictor A, PKS 0921-213, 1E 0450.30-1817, and IRAS 0236.6-3101). The stellar velocity dispersions of the host galaxies were measured from the Ca II λλ8494, 8542, 8662 absorption lines and were found to range from 140 to 200 km s-1. Using the well-known correlation between the black hole mass and the stellar velocity dispersion, the black hole masses in these galaxies were estimated to range from 4×107 to 1.2×108 Msolar. We supplement the observations presented here with estimates of the black holes masses for five additional double-peaked emitters (Arp 102B, 3C 390.3, NGC 4579, NGC 4203, and M81) obtained by other authors using similar methods. Using these black hole masses, we infer the ratio of the bolometric luminosity to the Eddington luminosity, (Lbol/LEdd). We find that two objects (Pictor A and PKS 0921-213) have Lbol/LEdd~0.2, whereas the other objects have Lbol/LEdd<~10-2 (nearby, low-luminosity double-peaked emitters are the most extreme, with Lbol/LEdd<~10-4). The physical timescales in the outer regions of the accretion disks (at r~103GM/c2) in these objects were also estimated and range from a few months for the dynamical timescale to several decades for the sound crossing timescale. The profile variability in these objects is typically an order of magnitude longer than the dynamical time, but we note that variability occurring on the dynamical timescale has not been ruled out by the observations. Based on observations carried out at Cerro Tololo Inter-American Observatory, which is operated by AURA, Inc., under a cooperative agreement with the National Science Foundation.

  17. Erratum: ``CO Line Width Differences in Early Universe Molecular Emission-Line Galaxies: Submillimeter Galaxies versus QSO Hosts'' (AJ, 131, 2763 [2006])

    NASA Astrophysics Data System (ADS)

    Carilli, C. L.; Wang, Ran

    2006-11-01

    It has been pointed out to us that in three dimensions the mean angle of randomly oriented disks with respect to the sky plane is <θ>=30deg, and not the 45° assumed in the original paper. This lower angle for the (assumed) random distribution of submillimeter galaxies, coupled with the factor of 2.3 lower mean CO line width for high-z, far-IR-luminous QSO host galaxies relative to the submillimeter galaxies, implies a mean angle with respect to the sky plane for the QSO host galaxies of <θ>QSO=13deg, as opposed to the 18° quoted in the original paper. We thank Pat Hall for bringing this to our attention.

  18. (12)CO (3-2) & (1-0) emission line observations of nearby starburst galaxy nuclei

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas; Taniguchi, Yoshiaki; Sanders, D. B.; Nakai, N.; Young, J. S.

    1994-01-01

    New measurements of the (12)CO (1-0) and (12)CO (3-2) line emission are presented for the nuclei of seven nearby starburst galaxies selected from a complete sample of 21 nearby starburst galaxies for which the nuclear star formation rates are measured to be comparable to the archetype starburst galaxies M82 and NGC 253. The new observations capitalize on the coincidence between the beam size of the 45 m Nobeyama telescope at 115 GHz and that of the 15 m James Clerk Maxwell Telescope at 345 GHz to measure the value of the (12)CO (3-2)/(1-0) emission line ratio in a 15 sec (less than or equal to 2.5 kpc) diameter region centered on the nuclear starburst. In principle, the (12)CO (3-2)/(1-0) emission line ratio provides a measure of temperature and optical depth for the (12)CO gas. The error weighted mean value of the (12)CO (3-2)/(1-0) emission line ratio measured for the seven starburst galaxy nuclei is -0.64 +/- 0.06. The (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is significantly higher than the average value measured for molecular gas in the disk of the Galaxy, implying warmer temperatures for the molecular gas in starburst galaxy nuclei. On the other hand, the (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is not as high as would be expected if the molecular gas were hot, greater than 20 K, and optically thin, tau much less than 1. The total mass of molecular gas contained within the central 1.2-2.8 kpc diameter region of the starburst galaxy nuclei ranges from 10(exp 8) to 10(exp 9) solar mass. While substantial, the molecular gas mass represents only a small percentage, approximately 9%-16%, of the dynamical mass in the same region.

  19. Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch

    NASA Astrophysics Data System (ADS)

    Inoue, Akio K.; Tamura, Yoichi; Matsuo, Hiroshi; Mawatari, Ken; Shimizu, Ikkoh; Shibuya, Takatoshi; Ota, Kazuaki; Yoshida, Naoki; Zackrisson, Erik; Kashikawa, Nobunari; Kohno, Kotaro; Umehata, Hideki; Hatsukade, Bunyo; Iye, Masanori; Matsuda, Yuichi; Okamoto, Takashi; Yamaguchi, Yuki

    2016-06-01

    The physical properties and elemental abundances of the interstellar medium in galaxies during cosmic reionization are important for understanding the role of galaxies in this process. We report the Atacama Large Millimeter/submillimeter Array detection of an oxygen emission line at a wavelength of 88 micrometers from a galaxy at an epoch about 700 million years after the Big Bang. The oxygen abundance of this galaxy is estimated at about one-tenth that of the Sun. The nondetection of far-infrared continuum emission indicates a deficiency of interstellar dust in the galaxy. A carbon emission line at a wavelength of 158 micrometers is also not detected, implying an unusually small amount of neutral gas. These properties might allow ionizing photons to escape into the intergalactic medium.

  20. Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch.

    PubMed

    Inoue, Akio K; Tamura, Yoichi; Matsuo, Hiroshi; Mawatari, Ken; Shimizu, Ikkoh; Shibuya, Takatoshi; Ota, Kazuaki; Yoshida, Naoki; Zackrisson, Erik; Kashikawa, Nobunari; Kohno, Kotaro; Umehata, Hideki; Hatsukade, Bunyo; Iye, Masanori; Matsuda, Yuichi; Okamoto, Takashi; Yamaguchi, Yuki

    2016-06-24

    The physical properties and elemental abundances of the interstellar medium in galaxies during cosmic reionization are important for understanding the role of galaxies in this process. We report the Atacama Large Millimeter/submillimeter Array detection of an oxygen emission line at a wavelength of 88 micrometers from a galaxy at an epoch about 700 million years after the Big Bang. The oxygen abundance of this galaxy is estimated at about one-tenth that of the Sun. The nondetection of far-infrared continuum emission indicates a deficiency of interstellar dust in the galaxy. A carbon emission line at a wavelength of 158 micrometers is also not detected, implying an unusually small amount of neutral gas. These properties might allow ionizing photons to escape into the intergalactic medium. PMID:27312046

  1. Molecular Hydrogen Absorption from the Halo of a z ˜ 0.4 Galaxy

    NASA Astrophysics Data System (ADS)

    Muzahid, Sowgat; Kacprzak, Glenn G.; Charlton, Jane C.; Churchill, Christopher W.

    2016-05-01

    Lyman- and Werner-band absorption of molecular hydrogen ({{{H}}}2) is detected in ˜50% of low-redshift (z\\lt 1) DLAs/sub-DLAs with N({{{H}}}2) \\gt {10}14.4 cm‑2. However, the true origin(s) of the {{{H}}}2-bearing gas remain elusive. Here we report a new detection of an {{{H}}}2 absorber at {z}{{abs}} = 0.4298 in the Hubble Space Telescope (HST)/Cosmic Origins Spectrograph spectra of quasar PKS 2128–123. The total N({{H}} {{i}}) of {10}19.50+/- 0.15 cm‑2 classifies the absorber as a sub-DLA. {{{H}}}2 absorption is detected up to the J = 3 rotational level with a total {log}N({{{H}}}2) = 16.36 ± 0.08, corresponding to a molecular fraction of {log}{f}{{{H}}2} = ‑2.84 ± 0.17. The excitation temperature of {T}{{ex}} = 206 ± 6 K indicates the presence of cold gas. Using detailed ionization modeling, we obtain a near-solar metallicity (i.e., [O/H] = ‑0.26 ± 0.19) and a dust-to-gas ratio of {log}κ ˜ -0.45 for the {{{H}}}2-absorbing gas. The host galaxy of the sub-DLA is detected at an impact parameter of ρ ˜ 48 kpc with an inclination angle of i ˜ 48° and an azimuthal angle of Φ ˜ 15° with respect to the QSO sightline. We show that corotating gas in an extended disk cannot explain the observed kinematics of Mg ii absorption. Moreover, the inferred high metallicity is not consistent with the scenario of gas accretion. An outflow from the central region of the host galaxy, on the other hand, would require a large opening angle (i.e., 2θ \\gt 150^\\circ ), much larger than the observed outflow opening angles in Seyfert galaxies, in order to intercept the QSO sightline. We thus favor a scenario in which the {{{H}}}2-bearing gas is stemming from a dwarf-satellite galaxy, presumably via tidal and/or ram pressure stripping. Detection of a dwarf galaxy candidate in the HST/WFPC2 image at an impact parameter of ˜12 kpc reinforces such an idea.

  2. C IV Broad Absorption Line Acceleration in Sloan Digital Sky Survey Quasars

    NASA Astrophysics Data System (ADS)

    Grier, C. J.; Brandt, W. N.; Hall, P. B.; Trump, J. R.; Filiz Ak, N.; Anderson, S. F.; Green, Paul J.; Schneider, D. P.; Sun, M.; Vivek, M.; Beatty, T. G.; Brownstein, Joel R.; Roman-Lopes, Alexandre

    2016-06-01

    We present results from the largest systematic investigation of broad absorption line (BAL) acceleration to date. We use spectra of 140 quasars from three Sloan Digital Sky Survey programs to search for global velocity offsets in BALs over timescales of ≈2.5–5.5 years in the quasar rest frame. We carefully select acceleration candidates by requiring monolithic velocity shifts over the entire BAL trough, avoiding BALs with velocity shifts that might be caused by profile variability. The C iv BALs of two quasars show velocity shifts consistent with the expected signatures of BAL acceleration, and the BAL of one quasar shows a velocity-shift signature of deceleration. In our two acceleration candidates, we see evidence that the magnitude of the acceleration is not constant over time; the magnitudes of the change in acceleration for both acceleration candidates are difficult to produce with a standard disk-wind model or via geometric projection effects. We measure upper limits to acceleration and deceleration for 76 additional BAL troughs and find that the majority of BALs are stable to within about 3% of their mean velocities. The lack of widespread acceleration/deceleration could indicate that the gas producing most BALs is located at large radii from the central black hole and/or is not currently strongly interacting with ambient material within the host galaxy along our line of sight.

  3. A new method for the identification of non-Gaussian line profiles in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Van Der Marel, Roeland P.; Franx, Marijn

    1993-01-01

    A new parameterization for the line profiles of elliptical galaxies, the Gauss-Hermite series, is proposed. This approach expands the line profile as a sum of orthogonal functions which minimizes the correlations between the errors in the parameters of the fit. This method also make use of the fact that Gaussians provide good low-order fits to observed line profiles. The method yields measurements of the line strength, mean radial velocity, and the velocity dispersion as well as two extra parameters, h3 and h4, that measure asymmetric and symmetric deviations of the line profiles from a Gaussian, respectively. The new method was used to derive profiles for three elliptical galaxies which all have asymmetric line profiles on the major axis with symmetric deviations from a Gaussian. Results confirm that elliptical galaxies have complex structures due to their complex formation history.

  4. Emission Line Assimetry in Active Galaxies: Mrk 533 and Mrk 110

    NASA Astrophysics Data System (ADS)

    Gavrilovic, N.

    2009-09-01

    In this work emission line asymmetries detected in two different types of Active Galactic Nuclei (AGN) - Seyfert 1 galaxy Mrk 110 and Seyfert 2 galaxy Mrk 533 were analyzed. Since emission lines in two galaxies arise in different emitting regions, detailed spectrum analysis gave the insight into kinematical properties of the Narrow Line and the Broad Line region (NLR and BLR) of this galaxies. We used several methods in the analysis procedure: (a) in order to analyse line profiles we performed profile decomposition into Gaussian components, (b) to study kinematical properties of the gas in the stellar disk, we used the model of "tilted-rings" (Begeman 1989), (c) to determine the sources of ionization of emitting region, we used the Veilleux and Osterbrock diagnostic diagram (Veilleux and Osterbrock 1987), (d) thermodynamical properties of the BLR were determined using the Boltzman plot method (Popović 2003). We showed that the red-shift and asymmetry of emission lines in Mrk 110 are probable caused by the strong gravitational field of the super massive black hole in the center of this galaxy. On the other hand, detailed analysis of 3D spectrophotometric observation of Mrk 533 made possible to map the outflow velocities from the very center of this galaxy, as well as shock waves in the circum-nuclear region, and to analyse the increase of the blue asymmetry with the increase of the outflow velocity (in more details see Smirnova et al. 2007).

  5. Star formation rates and chemical abundances of emission-line galaxies in intermediate-redshift clusters

    NASA Astrophysics Data System (ADS)

    Mouhcine, M.; Bamford, S. P.; Aragón-Salamanca, A.; Nakamura, O.; Milvang-Jensen, B.

    2006-06-01

    We examine the evolutionary status of luminous, star-forming galaxies in intermediate-redshift clusters by considering their star formation rates (SFRs) and the chemical and ionization properties of their interstellar emitting gas. Our sample consists of 17 massive, star-forming, mostly disc galaxies with MB<~-20, in clusters with redshifts in the range 0.31 <~z<~ 0.59, with a median of = 0.42. We compare these galaxies with the identically selected and analysed intermediate-redshift field sample of Mouhcine et al., and with local galaxies from the Nearby Field Galaxy Survey of Jansen et al. From our optical spectra, we measure the equivalent widths of [OII]λ3727, Hβ and [OIII]λ5007 emission lines to determine diagnostic line ratios, oxygen abundances and extinction-corrected SFRs. The star-forming galaxies in intermediate-redshift clusters display emission-line equivalent widths which are, on average, significantly smaller than measured for field galaxies at comparable redshifts. However, a contrasting fraction of our cluster galaxies have equivalent widths similar to the highest observed in the field. This tentatively suggests a bimodality in the SFRs per unit luminosity for galaxies in distant clusters. We find no evidence for further bimodalities, or differences between our cluster and field samples, when examining additional diagnostics and the oxygen abundances of our galaxies. This maybe because no such differences exist, perhaps because the cluster galaxies which still display signs of star formation have recently arrived from the field. In order to examine this topic with more certainty, and to further investigate the way in which any disparity varies as a function of cluster properties, larger spectroscopic samples are needed.

  6. THE VIEWING ANGLES OF BROAD ABSORPTION LINE VERSUS UNABSORBED QUASARS

    SciTech Connect

    DiPompeo, M. A.; Brotherton, M. S.; De Breuck, C.

    2012-06-10

    It was recently shown that there is a significant difference in the radio spectral index distributions of broad absorption line (BAL) quasars and unabsorbed quasars, with an overabundance of BAL quasars with steeper radio spectra. This result suggests that source orientation does play into the presence or absence of BAL features. In this paper, we provide more quantitative analysis of this result based on Monte Carlo simulations. While the relationship between viewing angle and spectral index does indeed contain a lot of scatter, the spectral index distributions are different enough to overcome that intrinsic variation. Utilizing two different models of the relationship between spectral index and viewing angle, the simulations indicate that the difference in spectral index distributions can be explained by allowing BAL quasar viewing angles to extend about 10 Degree-Sign farther from the radio jet axis than non-BAL sources, though both can be seen at small angles. These results show that orientation cannot be the only factor determining whether BAL features are present, but it does play a role.

  7. Absolute absorption on the potassium D lines: theory and experiment

    NASA Astrophysics Data System (ADS)

    Hanley, Ryan K.; Gregory, Philip D.; Hughes, Ifan G.; Cornish, Simon L.

    2015-10-01

    We present a detailed study of the absolute Doppler-broadened absorption of a probe beam scanned across the potassium D lines in a thermal vapour. Spectra using a weak probe were measured on the 4S \\to 4P transition and compared to the theoretical model of the electric susceptibility detailed by Zentile et al (2015 Comput. Phys. Commun. 189 162-74) in the code named ElecSus. Comparisons were also made on the 4S \\to 5P transition with an adapted version of ElecSus. This is the first experimental test of ElecSus on an atom with a ground state hyperfine splitting smaller than that of the Doppler width. An excellent agreement was found between ElecSus and experimental measurements at a variety of temperatures with rms errors ˜ {10}-3. We have also demonstrated the use of ElecSus as an atomic vapour thermometry tool, and present a possible new measurement technique of transition decay rates which we predict to have a precision of ˜3 {kHz}.

  8. X-Ray Continua of Broad Absorption Line Quasars

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    The targets for this program, PG1416-129 and LBQS 2212-1759 were known to be Broad Absorption Line Quasars (BALQSOs). BALQSOs are highly absorbed in soft X-rays. Good high energy response of Rossi-XTE made them ideal targets for observation. We observed LBQS 2212-1759 with PCA. We have now analyzed the data and found that the source was not detected. Since our target was expected to be faint, reliable estimate of background was very important. With the release of new FTOOLS (version 4.1) we were able to do so. We also analyzed a well known bright object and verified our results with the published data. This gave us confidence in the non-detection of our target LBQS 2212-1759. We are currently investigating the implications of this non-detection. Due to some scheduling problems, our second target PG1416-129 was not observed in A01. It was observed on 06/26/98. This target was detected with RXTE. We are now working on the spectral analysis with XSPEC.

  9. The [CII] 158 micron line: A new window on galaxy formation

    NASA Astrophysics Data System (ADS)

    Carilli, Christopher; Walter, Fabian

    2015-08-01

    The [CII] 158um fine structure line is a key diagnostic of the ISM of galaxies. This line is the dominant cooling line of cool interstellar gas, and is typically the brightest (by far) of emission lines from FIR through meter wavelengths from star forming galaxies, comprising up to 1% of the FIR luminosity. With an ionization potential of 11.2eV, [CII] 158um emission arises from many components of the ISM, ranging from relatively diffuse gas in the warm and cold neutral ISM and the warm ionized ISM, and denser gas in photon-dominated regions directly associated with star formation. Early space and airborne observatories, and most recently Herschel and Sofia, have imaged [CII] emission from low redshift galaxies in ever improving detail (Pineda et al. A&A, 554, 103).At z > 1, the [CII] 158um line shifts into the submm band observable from the ground (Carilli & Walter, ARAA, 2013, 51, 105). The first detection of [CII] at z > 1 was in in the host galaxy of the z=6.42 quasar, J1148+5251 (Maiolino et al. 2005 A&A, 440, L41), with subsequent by imaging (Walter et al. 2009, 457, 699). The recent advent of ALMA has spurred a revolution in [CII] studies of distant galaxies, including broad band, sensitive searches, and kpc-scale imaging of galaxy dynamics. To date, about 50 galaxies have been detected in [CII] emission at z ~ 1 to 7.1, with roughly half of these detections coming in just the last year or so with ALMA. These include luminous starburst ‘submm’ galaxies, quasar host galaxies, and more typical ‘main sequence’ galaxies (eg. LBGs and LAEs).I will present the latest results of detection and imaging of [CII] 158um emission from galaxies at z > 1, including:- Imaging of gas dynamics in forming groups of galaxies within 2Gyr of the Big Bang, including luminous starbursts, AGN, and ‘main sequence’ disk galaxies.- The [CII]/FIR ratio: Although the scatter is two orders of magnitude, there are indications of decreasing metalicity, and low dust-to-gas ratios

  10. HST WFC3 Early Release Science: Emission-line Galaxies from IR Grism Observations

    NASA Astrophysics Data System (ADS)

    Straughn, Amber; Kuntschner, H.; Kuemmel, M.; Walsh, J.; Cohen, S.; Gardner, J. P.; Windhorst, R. A.; O'Connell, R. W.; Pirzkal, N.; Meurer, G.; McCarthy, P. J.; Hathi, N. P.; Malhotra, S.; Rhoads, J.; SOC, WFC3

    2011-01-01

    The Early Release Science II program for HST WFC3 includes one pointing observed with the G102 (0.8-1.1 microns; R 210) and G141 (1.1-1.6 microns; R 130) infrared grisms at a depth of 2 orbits/grism. From this data we detect 48 actively star-forming emission-line galaxies and measure the galaxies' redshifts, line fluxes, star-formation rates, and masses. In particular, the prominent emission lines Ha, [OII], and [OIII] fall into the two infrared grism bandpasses over a redshift range z=0.2-3.6, and the majority of galaxies have at least two lines in the observable wavelength range resulting in secure line identification and redshift determination. We detect galaxies with line fluxes to 3 x 10-17 erg/s/cm2 as well as several sources with very high EW lines. The higher spectral resolution and sensitivity of the WFC3 grisms over previous instrumentation also allows detection of other emission lines in some galaxies. The average magnitude of the emission-line galaxy sample is mAB(F098M)=23.6 mag with more than 20% of the sample fainter than mAB(F098M)=25 mag, demonstrating the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes and intermediate redshifts. Our results point to the promising potential for future science with WFC3 grism spectroscopy, as well as upcoming missions such as JWST and WFIRST. This paper is based on Early Release Science observations made by the WFC3 Scientific Oversight Committee. We are grateful to the Director of the Space Telescope Science Institute for awarding Director's Discretionary time for this program. This research was supported in part by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA (ANS).

  11. Line by Line Analysis of Carbon Dioxide Absorption for Predicting Global Warming

    NASA Astrophysics Data System (ADS)

    Smith, D. C.

    2010-12-01

    The anthropologic cause of global warming rests on the impact of CO2 on the green house effect. Previous derivations of the increase in the CO2 Forcing Function caused by doubling of atmospheric CO2 from 320 ppm to 640 ppm reported a value of 4 W/M2( Ramananathan,V,et al, J.of Geophysical Research Vol 84, C8,p4949, Aug.1979) This value leads to a calculated temperature rise of 1 deg.K (Charney,J. et al,”Carbon Dioxide and Climate: A Scientific Assessment”, National Academy of Science, Washington D.C., 1979). This increase in global temperature leads to an increase in water vapor if it is assumed that the relative humidity is constant. This ampflication leads to a calculated temperature rise of an additional 2 deg.K. Different arguments as to the effects of the earth’s albido change, clouds, and the oceans also impact the earths global warming with predictions of total temperature rise of as high as 6 deg.K { IPCC,2007 Summary for Policymakers. In: Climate Change 2007: The Physical Sciences Basis. Contributions of Working Group 1 to the Fourth Assessment Report of the IPCC [ Solomon,S,D. et al (eds)] Cambridge University Press, NY,USA}. Regardless of the other effects, the only way that man can be held responsible for global warming is by CO2 emissions and the resulting increase in the Forcing Function. This paper challenges the magnitude of the 4 W/M2 Forcing Function. The earth radiates in the 4 to 30 micron wavelength range. CO2 has absorption bands in the 4, 10, and 15 micron wavelengths (Hertzberg G. Molecular Spectra & Molecular Structure,Norstrand Co.,1960). McClatchey has tabulated the line stengths for all CO2 transitions and they are used to calculate the atmospheric absorption (McClatchey,R, et al “AFCRL Atmospheric Absorption Line Parameter Compilation”,AFCRL-TR-0096,1973). Detailed calculations of the CO2 line absorption in the 8 to 12 micron atmospheric window shows an increase of 0.3 W/M2 for CO2 doubling. The increase in absorbed fluence in

  12. Subaru High-Resolution Spectroscopy of Complex Metal Absorption Lines of the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Yamada, Toru; Takada-Hidai, Masahide; Wang, Yiping; Kashikawa, Nobunari; Iye, Masanori; Tanaka, Ichi

    2003-03-01

    We present a high-resolution spectrum of the quasar HS 1603+3820 (zem=2.542), observed with the High Dispersion Spectrograph on the Subaru Telescope. This quasar, first discovered in the Hamburg/CfA Quasar Survey, has 11 C IV lines at 1.96lines at zabs>2.29 and resolves some of them into multiple narrow components with b<25 km s-1 because of the high spectral resolution R=45,000, while other lines show broad profiles (b>65 km s-1). We use three properties of C IV lines, specifically, time variability, covering factor, and absorption-line profile, to classify them into quasar intrinsic absorption lines (QIALs) and spatially intervening absorption lines (SIALs). The C IV lines at 2.42lines at 2.48lines at zabs~2.54 and 2.55, because their velocity shifts, 430 km s-1 blueward and 950 km s-1 redward of the quasar, are very small. The C IV line at zabs~2.48 consists of many narrow components and also has corresponding low-ionization metal lines (Al II, Si II, and Fe II). The velocity distribution of these low-ionization ions is concentrated at the center of the system compared with that of the high-ionization C IV ion. Therefore we ascribe this system of absorption lines to an intervening galaxy. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  13. The line-emitting regions of the exceptional Seyfert galaxy Markarian 359

    SciTech Connect

    Veilleux, S. )

    1991-02-01

    The results of a kinematic study of the narrow- and broad-line regions in Mrk 359 are presented. The emission-line profiles between 4600 and 7500 A are used to derive the physical characteristics of the line-emitting gas. Many aspects of the emission-line profiles of Mrk 359 make this object an exceptional Seyfert galaxy: extremely small widths of both the forbidden lines and the broad component of the permitted lines, absence of profile substructure, large blueward asymmetry of the high-ionization forbidden lines despite the apparent absence of reddening in the narrow-line region. Various scenarios are proposed to explain these results. 65 refs.

  14. Multiple Velocity Components of Narrow-lined Absorption Arising from the Ejecta of AG Car, P Cyg, and Eta Car.

    NASA Astrophysics Data System (ADS)

    Vieira Kober, Gladys; Gull, T. R.; Bruhweiler, F.; Nielsen, K. E.; Hill, G.

    2007-12-01

    Luminous Blue Variables (LBVs) are a small group of massive objects, with a past characterized by occasional outbursts. Well known members in our galaxy are Eta Car, AG Car, HR Car and P Cyg. HST/STIS observations of Eta Car show a very complex and rich circumstellar absorption spectrum. Of the 20 distinct absorption systems, the ionized strong absorber at -146 km/s (Little Homunculus) shows lines from transitions originating from mainly singly ionized iron-group elements. Curve-of-growth analysis for Fe II lines plus photo-ionization and statistical equilibrium modeling indicated a temperature Te = 6400 K and density n 5x107 cm-3. AG Car and P Cyg have, like Eta Car, circumstellar nebulae which likely are remnants of typical LBV mass loss events. Spectral analysis of high resolution VLT/UVES data for AG Car and Keck/HIRES data for P Cyg also reveal multiple narrow absorption components with excitation and velocities similar to Eta Car's Little Homunculus. In this poster we present curve-of-growth analysis for Fe II lines for the narrow components around AG Car and P Cyg, and temperature estimates based on level populations for these absorbers. We compare the absorbing features around these three LBVs, providing clues to wind structures and ejections for these massive stars. We thank NASA, STScI, Keck and ESO for providing resources and spectra analyzed in this poster, recorded with HST/STIS, Keck/HIRES and VLT/UVES.

  15. Abell 262 and RXJ0341: Two Brightest Cluster Galaxies with Line Emission Blanketing a Cool Core

    NASA Astrophysics Data System (ADS)

    Edwards, Louise O. V.; Heng, Renita

    2014-08-01

    Over the last decade, integral field (IFU) analysis of the brightest cluster galaxies (BCGs) in several cool core clusters has revealed the central regions of these massive old red galaxies to be far from dead. Bright line emission alongside extended X-ray emission links nearby galaxies, is superposed upon vast dust lanes and extends out in long thin filaments from the galaxy core. Yet, to date no unifying picture has come into focus, and the activity across systems is currently seen as a grab-bag of possibile emission line mechanisms. Our primary goal is to work toward a consistent picture for why the BCGs seem are undergoing a renewed level of activity. One problem is most of the current data remains focused on mapping the very core of the BCG, but neglects surrounding galaxies. We propose to discover the full extent of line emission in a complementary pair of BCGs. In Abell 262, an extensive dust patch screens large portions of an otherwise smooth central galaxy, whereas RXJ0341 appears to be a double-core dust free BCG. We will map the full extent of the line emission in order to deduce whether the line emission is a product of local interactions, or the large-scale cluster X-ray gas. The narrow band filter set and large FOV afforded by the the Mayall MOSAIC-1 (MOSA) imager allows us to concurrently conduct an emission line survey of both clusters, locating all line emitting members and beginning a search for the effect of the environment of the different regions (outskirts vs. cluster core) out to the virial radius. We will combine our results with publically available data from 2MASS to determine the upper limits on specific star formation in the BCG and other cluster galaxies within the cluster virial radius.

  16. Spectral classification indicators of emission-line galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Shi, Fei; Liu, Yu-Yan; Li, Pei-Yu; Yu, Ming; Lei, Yu-Ming; Wang, Jian

    2015-07-01

    To find efficient spectral classification diagrams to classify emission-line galaxies, especially in large surveys and huge data bases, an artificial neural network (ANN) supervised learning algorithms is applied to a sample of emission-line galaxies from the Sloan Digital Sky Survey data release 9 provided by the Max Planck Institute and the Johns Hopkins University (MPA/JHU) (http://www.sdss3.org/dr9/spectro/spectroaccess.php). A two-step approach is adopted. (i) The ANN network must be trained with a subset of objects that are known to be active galactic nuclei (AGNs) hosts, composites or star-forming galaxies, treating the strong emission-line flux measurements as input feature vectors in n-dimensional space, where n is the number of strong emission-line flux ratios. (ii) After the network is trained on a sample of galaxies, the remaining galaxies are classified in the automatic test analysis as AGN hosts, composites or star-forming galaxies. We show that the classification diagrams based on the [N II]/Hα versus other emission-line ratio, such as [O III]/Hβ, [Ne III]/[O II], ([O III]λ4959 + [O III]λ5007)/[O III]λ4363, [O II]/Hβ, [Ar III]/[O III], [S II]/Hα, and [O I]/Hα, plus colour, allows us to separate unambiguously AGN hosts, composites or star-forming galaxies. Among them, the diagram of [N II]/Hα versus [O III]/Hβ achieved an accuracy of 98 per cent for classification of AGN hosts, composites or star-forming galaxies. The other diagrams above except the diagram of [N II]/Hα versus [O III]/Hβ give an accuracy of ˜90 per cent. The code in the paper is available on the web (http://fshi5388.blog.163.com).

  17. Infra-red absorption lines by molecules in grain mantles

    NASA Astrophysics Data System (ADS)

    Hagen, W.; Allamandola, L. J.; Greenberg, J. M.

    1980-06-01

    The laboratory spectrum of a solid mixture of H2O, CO, CH3OH, and NH3 at a temperature of 10 K reproduces the shape and peak positions of interstellar features. It is shown that the broad absorption features evident in the MIR spectra of some astronomical objects associated with interstellar dust can be explained by absorptions of molecules in grain mantles.

  18. The broad emission line and continuum variations of Seyfert galaxies. I - Time scales and amplitudes

    NASA Technical Reports Server (NTRS)

    Rosenblatt, Edward I.; Malkan, Matthew A.; Sargent, Wallace L. W.; Readhead, Anthony C. S.

    1992-01-01

    Spectroscopic observations of 13 Seyfert 1 galaxies made from 1979 to 1984 at Palomar and Steward Observatories were analyzed for Balmer-line and optical continuum variability. The majority of the galaxies showed significant variations, particularly in the continuum. Typical peak-to-peak changes for H-beta and H-gamma integrated line fluxes were 100-200 percent, while the continua varied by 200-350 percent. In several cases, Balmer-line and continuum variations were found to be strongly correlated, as expected for photoionization by a central continuum source. However, these correlations were found to be highly nonlinear. Significant correlations were found between variability amplitude and global AGN properties such as luminosity. Moreover, a significant number of variations occurring on short time scales constrains the size of the broad-line region in Seyfert galaxies to about 90 lt-days across or less.

  19. Fast outflows in broad absorption line quasars and their connection with CSS/GPS sources

    NASA Astrophysics Data System (ADS)

    Bruni , G.; Mack, K.-H.; Montenegro-Montes, F. M.; Brienza, M.; González-Serrano, J. I.

    2016-02-01

    Broad absorption line quasars are among the objects presenting the fastest outflows. The launching mechanism itself is not completely understood. Models in which they could be launched from the accretion disk, and then curved and accelerated by the effect of the radiation pressure, have been presented. We conducted an extensive observational campaign, from radio to optical band, to collect information about their nature and test the models present in the literature, the main dichotomy being between a young scenario and an orientation one. We found a variety of possible orientations, morphologies, and radio ages, not converging to a particular explanation for the BAL phenomenon. From our latest observations in the m- and mm-band, we obtained an indication of a lower dust abundance with respect to normal quasars, thus suggesting a possible feedback process on the host galaxy. Also, in the low-frequency regime we confirmed the presence of CSS components, sometime in conjunction with a GPS one already detected at higher frequencies. Following this, about 70 % of our sample turns out to be in a GPS or CSS+GPS phase. We conclude that fast outflows, responsible for the BAL features, can be more easily present among objects going through a restarting or just-started radio phase, where radiation pressure can substantially contribute to their acceleration.

  20. Alternative diagnostic diagrams and the `forgotten' population of weak line galaxies in the SDSS

    NASA Astrophysics Data System (ADS)

    Cid Fernandes, R.; Stasińska, G.; Schlickmann, M. S.; Mateus, A.; Vale Asari, N.; Schoenell, W.; Sodré, L.

    2010-04-01

    A numerous population of weak line galaxies (WLGs) is often left out of statistical studies on emission-line galaxies (ELGs) due to the absence of an adequate classification scheme, since classical diagnostic diagrams, such as [OIII]/Hβ versus [NII]/Hα (the BPT diagram), require the measurement of at least four emission lines. This paper aims to remedy this situation by transposing the usual divisory lines between star-forming (SF) galaxies and active galactic nuclei (AGN) hosts and between Seyferts and LINERs to diagrams that are more economical in terms of line quality requirements. By doing this, we rescue from the classification limbo a substantial number of sources and modify the global census of ELGs. More specifically, (1) we use the Sloan Digital Sky Survey Data Release 7 to constitute a suitable sample of 280000 ELGs, one-third of which are WLGs. (2) Galaxies with strong emission lines are classified using the widely applied criteria of Kewley et al., Kauffmann et al. and Stasińska et al. to distinguish SF galaxies and AGN hosts and Kewley et al. to distinguish Seyferts from LINERs. (3) We transpose these classification schemes to alternative diagrams keeping [NII]/Hα as a horizontal axis, but replacing Hβ by a stronger line (Hα or [OII]), or substituting the ionization-level sensitive [OIII]/Hβ ratio with the equivalent width of Hα (WHα). Optimized equations for the transposed divisory lines are provided. (4) We show that nothing significant is lost in the translation, but that the new diagrams allow one to classify up to 50 per cent more ELGs. (5) Introducing WLGs in the census of galaxies in the local Universe increases the proportion of metal-rich SF galaxies and especially LINERs. In the course of this analysis, we were led to make the following points. (i) The Kewley et al. BPT line for galaxy classification is generally ill-used. (ii) Replacing [OIII]/Hβ by WHα in the classification introduces a change in the philosophy of the distinction

  1. High-velocity blueshifted Fe II absorption in the dwarf star-forming galaxy PHL 293B: evidence for a wind driven supershell?

    NASA Astrophysics Data System (ADS)

    Terlevich, Roberto; Terlevich, Elena; Bosch, Guillermo; Díaz, Ángeles; Hägele, Guillermo; Cardaci, Mónica; Firpo, Verónica

    2014-12-01

    X-shooter and WHT-ISIS spectra of the star-forming galaxy PHL 293B also known as A2228-00 and SDSS J223036.79-000636.9 are presented in this paper. We find broad (FWHM = 1000 km s-1) and very broad (FWZI = 4000 km s-1) components in the Balmer lines, narrow absorption components in the Balmer series blueshifted by 800 km s-1, previously undetected Fe II multiplet (42) absorptions also blueshifted by 800 km s-1, IR Ca II triplet stellar absorptions consistent with [Fe/H] < -2.0 and no broad components or blueshifted absorptions in the He I lines. Based on historical records, we found no optical variability at the 5σ level of 0.02 mag between 2005 and 2013 and no optical variability at the level of 0.1 mag for the past 24 yr. The lack of variability rules out transient phenomena like luminous blue variables or Type IIn supernovae as the origin of the blueshifted absorptions of H I and Fe II. The evidence points to either a young and dense expanding supershell or a stationary cooling wind, in both cases driven by the young cluster wind.

  2. Time-dependent excitation and ionization modelling of absorption-line variability due to GRB 080310

    NASA Astrophysics Data System (ADS)

    Vreeswijk, P. M.; Ledoux, C.; Raassen, A. J. J.; Smette, A.; De Cia, A.; Woźniak, P. R.; Fox, A. J.; Vestrand, W. T.; Jakobsson, P.

    2013-01-01

    We model the time-variable absorption of Fe II, Fe III, Si II, C II and Cr II detected in Ultraviolet and Visual Echelle Spectrograph (UVES) spectra of gamma-ray burst (GRB) 080310, with the afterglow radiation exciting and ionizing the interstellar medium in the host galaxy at a redshift of z = 2.42743. To estimate the rest-frame afterglow brightness as a function of time, we use a combination of the optical VRI photometry obtained by the RAPTOR-T telescope array, which is presented in this paper, and Swift's X-Ray Telescope (XRT) observations. Excitation alone, which has been successfully applied for a handful of other GRBs, fails to describe the observed column density evolution in the case of GRB 080310. Inclusion of ionization is required to explain the column density decrease of all observed Fe II levels (including the ground state 6D9/2) and increase of the Fe III 7S3 level. The large population of ions in this latter level (up to 10% of all Fe III) can only be explained through ionization of Fe II, as a large fraction of the ionized Fe II ions (we calculate 31% using the Flexible Atomic and Cowan codes) initially populate the 7S3 level of Fe III rather than the ground state. This channel for producing a significant Fe III 7S3 level population may be relevant for other objects in which absorption lines from this level, the UV34 triplet, are observed, such as broad absorption line (BAL) quasars and η Carinae. This provides conclusive evidence for time-variable ionization in the circumburst medium, which to date has not been convincingly detected. However, the best-fit distance of the neutral absorbing cloud to the GRB is 200-400 pc, i.e. similar to GRB-absorber distance estimates for GRBs without any evidence for ionization. We find that the presence of time-varying ionization in GRB 080310 is likely due to a combination of the super-solar iron abundance ([Fe/H] = +0.2) and the low H I column density (log N(H i) = 18.7) in the host of GRB 080310. Finally

  3. The distribution of emission-line galaxies in selected areas of the sky

    NASA Technical Reports Server (NTRS)

    Moody, J. Ward

    1988-01-01

    The spatial distribution of emission-line galaxies (ELGs) relative to normal galaxies in several areas of the sky is discussed. Current evidence supports the notion that ELGs trace a low-density population in all the surveyed areas with the possible exception of the CfA 'Slice of the Universe' survey. Based on this and other survey data in the north galactic cap, it is suggested that the ELGs inside the Bootes void may actually define the edge of a totally empty volume within an underdense distribution of normal galaxies.

  4. Nebular Line Emission in z 1 Spitzer Infrared-Luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Krause, John; Papovich, C.; Finkelstein, S.; Willmer, C.; Egami, E.; Conselice, C.; Huang, J.; Koo, D.; Laird, E.; Le Floc'h, E.; Lotz, J.; Maia, M.; Marcillac, D.; Nandra, K.; Webb, T.; Weiner, B.

    2010-01-01

    We present near-infrared (IR) spectroscopic observations from the Multi-Object IR Camera and Spectrograph (MOIRCS) on the Subaru telescope of a sample of 21 IR-luminous galaxies in the approximate range 1 < z < 1.5. These galaxies were selected based on their Spitzer 24-micron flux densities (S(24 micron) > 0.1 mJy) and known spectroscopic redshifts from the All-Wavelength Extended Groth Strip International Survey (AEGIS). We measure rest-frame optical emission line fluxes for H-alpha and [NII], and also [OIII] and H-beta, where available. We use emission-line diagnostics to constrain the origin of the ionization in these objects: processes associated with star formation or AGN (including Seyferts and LINERs). The high-redshift galaxies in our sample have similar [NII] / H-alpha flux ratios compared to low-redshift (z 0.1) IR-luminous galaxies (Kim et al., 1995; Veilleux et al., 1995) for galaxies with implied IR luminosities of 11 < Log L(8-1000 micron) / L sol < 12. However, we find evidence that the IR-luminous galaxies in our sample with implied Log L(8-1000 micron) / L sol > 12 have lower [NII] / H-alpha ratios than low-redshift galaxies with comparable IR luminosity, implying the higher redshift IR-luminous galaxies may have a higher fraction of systems dominated by star formation. We also study the relation of our rest-frame optical emission-line diagnostics to other indicators of AGN activity, including the mid-IR colors and X-ray luminosities. In addition, we compare star-formation-rate indicators from our dust-corrected H-alpha emission line luminosities to those from the mid-to-far IR and compare these as a function of IR luminosity against the low-redshift sample.

  5. Studying Velocity Turbulence from Doppler-broadened Absorption Lines: Statistics of Optical Depth Fluctuations

    SciTech Connect

    Lazarian, A.; Pogosyan, D.

    2008-10-10

    We continue our work on developing techniques for studying turbulence with spectroscopic data. We show that Doppler-broadened absorption spectral lines, in particular, saturated absorption lines, can be used within the framework of the previously introduced technique termed the velocity coordinate spectrum (VCS). The VCS relates the statistics of fluctuations along the velocity coordinate to the statistics of turbulence; thus, it does not require spatial coverage by sampling directions in the plane of the sky. We consider lines with different degree of absorption and show that for lines of optical depth less than one, our earlier treatment of the VCS developed for spectral emission lines is applicable, if the optical depth is used instead of intensity. This amounts to correlating the logarithms of absorbed intensities. For larger optical depths and saturated absorption lines, we show that only wings of the line are available for the analysis. In terms of the VCS formalism, this results in introducing an additional window, whose size decreases with the increase of the optical depth. As a result, strongly saturated absorption lines only carry the information about the small-scale turbulence. Nevertheless, the contrast of the fluctuations corresponding to the small-scale turbulence increases with the increase of the optical depth, which provides advantages for studying turbulence by combining lines with different optical depths. By combining different absorption lines one can develop a tomography of the turbulence in the interstellar gas in all its complexity.

  6. Broad Balmer Absorption Line Variability: Evidence of Gas Transverse Motion in the QSO SDSS J125942.80+121312.6

    NASA Astrophysics Data System (ADS)

    Shi, Xiheng; Zhou, Hongyan; Shu, Xinwen; Zhang, Shaohua; Ji, Tuo; Pan, Xiang; Sun, Luming; Zhao, Wen; Hao, Lei

    2016-03-01

    We report on the discovery of broad Balmer absorption lines variability in the QSO SDSS J125942.80+121312.6, based on the optical and near-infrared spectra taken from the SDSS-I, SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), and TripleSpec observations over a timescale of 5.8 years in the QSO's rest-frame. The blueshifted absorption profile of Hβ shows a variation of more than 5σ at a high velocity portion (\\gt 3000 {km} {{{s}}}-1) of the trough. We perform a detailed analysis for the physical conditions of the absorber using Balmer lines as well as metastable He i and optical Fe ii absorptions (λ4233 from b4P5/2 level and λ5169 from a6S5/2) at the same velocity. These Fe ii lines are identified in the QSO spectra for the first time. According to the photoionization simulations, we estimate a gas density of n({{H}})≈ {10}9.1 {{cm}}-3 and a column density of {N}{col}({{H}})≈ {10}23 {{cm}}-2 for the BOSS data, but the model fails to predict the variations of ionic column densities between the SDSS and BOSS observations if changes in ionizing flux are assumed. We thus propose transverse motion of the absorbing gas being the cause of the observed broad Balmer absorption line variability. In fact, we find that the changes in covering factors of the absorber can well-reproduce all of the observed variations. The absorber is estimated ∼0.94 pc away from the central engine, which is where the outflow likely experiences deceleration due to the collision with the surrounding medium. This scheme is consistent with the argument that LoBAL QSOs may represent the transition from obscured star-forming galaxies to classic QSOs.

  7. The Nuclear Regions of the Seyfert Galaxy NGC 4151: Parsec-Scale H I Absorption and a Remarkable Radio Jet

    NASA Astrophysics Data System (ADS)

    Mundell, C. G.; Wrobel, J. M.; Pedlar, A.; Gallimore, J. F.

    2003-01-01

    Sensitive high angular and linear resolution radio images of the 240 pc radio jet in NGC 4151, imaged at linear resolutions of 0.3-2.6 pc using the VLBA and phased VLA at λ21 cm, are presented and reveal for the first time a faint, highly collimated jet (diameter <~1.4 pc) underlying discrete components, seen in lower resolution MERLIN and VLA images, that appear to be shocklike features associated with changes in direction as the jet interacts with small gas clouds within the central ~100 pc of the galaxy. In addition, λ21 cm spectral line imaging of the neutral hydrogen in the nuclear region reveals the spatial location, distribution, and kinematics of the neutral gas detected previously in a lower resolution MERLIN study. Neutral hydrogen absorption is detected against component C4W (E+F) as predicted by Mundell et al, but the absorption, extending over 3 pc, is spatially and kinematically complex on subparsec scales, suggesting the presence of small, dense gas clouds with a wide range of velocities and column densities. The main absorption component matches that detected in the MERLIN study, close to the systemic velocity (998 km s-1) of the galaxy, and is consistent with absorption through a clumpy neutral gas layer in the putative obscuring torus, with higher velocity blue- and redshifted systems with narrow line widths also detected across E+F. In this region, average column densities are high, lying in the range 2.7×1019TS

  8. What Drives the Outflows in Broad Absorption Line QSOs?

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1997-01-01

    We have made progress in the areas related to the propulsion and confinement of gas responsible for broad absorption troughts in QSOs: Radiative Acceleration in BALQSOs; The "Ghost" of Lyman (alpha); and Magnetic Confinement of Absorbing Gas.

  9. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029--Ejected or Intervening?

    NASA Technical Reports Server (NTRS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-01-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of z(sub abs) = 0.695 in the spectrum of the z(sub em) = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km/s is detected from C iv, N v, and O vi in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM approx. 250 km/s) at z(sub abs) = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C iv, N v, and O vi doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by approx. 56,000 km/s to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km/s from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  10. Formation of a Giant Galactic Gaseous Halo: Metal-Absorption Lines and High-Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Li, Fan

    1992-04-01

    A Galactic gaseous halo formed through the interstellar disk-halo connection is simulated by means of a two-dimensional axisymmetric hydrodynamic code based upon the chimney model of the interstellar medium, a new version of the galactic fountain. Galactic rotation, heating processes by diffuse UV flux, and radiative cooling processes are taken into account. The resulting gaseous halo can be divided into three categories, i.e., wind-type halo, bound-type halo, and cooled-type halo. In this way, we try to reproduce the column densities of C IV, N V, O VI, and Si IV in the observed absorption lines of halo stars. Assuming that the radiatively cooled halo gas condenses into clouds due to thermal instabilities, we can calculate their distribution and ballistic motions in the Galactic gravitational field. These correspond to the high- and intermediate-velocity clouds observed at high Galactic latitudes. We find that a cooled-type halo with a gas temperature between 5 X 10^5 and 10^6 K and a density between 10^-3 and 10^-2 cm^-3 at the disk-halo interface can reproduce the observational facts about our Galaxy. Supposing that the metal-absorption-line systems of QSOs arise from the halos of intervening galaxies formed by similar processes, we calculate features of the Ca II, Mg II, C IV, and Si IV absorption lines in various stages of galactic evolution. We conclude that C IV systems which are greater than 50 kpc in size correspond to the wind-type halo. On the other hand, Mg II and Ca II systems can only be detected in a very restricted region ( Metaxa, SMALL FAINT CLUSTERS IN THE LMC This is a short review of the main results of my Ph.D. thesis concerning some important problems on the dynamical properties of the LMC star clusters. The topic of this thesis was to find and study the dynamical paramters (tidal radius r_t core radius r_c concentration parameters log (r_t/r_c), and total mass M) for a large sample of small LMC clusters and to define their location in the

  11. Multi-harmonic measurements of line shape under low absorption conditions

    NASA Astrophysics Data System (ADS)

    Lan, L. J.; Ding, Y. J.; Peng, Z. M.; Du, Y. J.; Liu, Y. F.; Li, Z.

    2014-06-01

    We propose a method that employs the ratios of the 2nd and 4th harmonics at the line center to measure line shape under low absorption conditions. To verify this method, the transition of CO2 at 6,982.0678 cm-1 is selected to measure line shape by using the proposed method and direct absorption spectroscopy in laboratory conditions. The results from both methods have a high degree of consistency. This satisfactory agreement indicates the validity of the proposed method.

  12. CHANDRA DETECTION OF A PARSEC SCALE WIND IN THE BROAD-LINE RADIO GALAXY 3C 382

    SciTech Connect

    Reeves, J. N.; Sambruna, R. M.; Eracleous, Michael

    2009-09-10

    We present unambiguous evidence for a parsec scale wind in the broad-line radio galaxy 3C 382, the first radio-loud active galactic nucleus, with R{sub L} = log{sub 10}(f{sub 5GHz}/f{sub 4400})>1, whereby an outflow has been measured with X-ray grating spectroscopy. A 118 ks Chandra grating (HETG) observation of 3C 382 has revealed the presence of several high ionization absorption lines in the soft X-ray band, from Fe, Ne, Mg, and Si. The absorption lines are blueshifted with respect to the systemic velocity of 3C 382 by -840 {+-} 60 km s{sup -1} and are resolved by Chandra with a velocity width of {sigma} = 340 {+-} 70 km s{sup -1}. The outflow appears to originate from a single zone of gas of column density N{sub H} = 1.3 x 10{sup 21} cm{sup -2} and ionization parameter log({xi}/erg cm s{sup -1}) = 2.45. From the above measurements we calculate that the outflow is observed on parsec scales, within the likely range from 10to1000 pc, i.e., consistent with an origin in the narrow-line region.

  13. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    SciTech Connect

    Schirmer, M.; Diaz, R.; Levenson, N. A.; Winge, C.; Holhjem, K.

    2013-01-20

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc{sup -3} at z {approx} 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 Multiplication-Sign 44 kpc and is surrounded by an extended NLR. With a total [O III] {lambda}5008 luminosity of (5.7 {+-} 0.9) Multiplication-Sign 10{sup 43} erg s{sup -1}, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 {mu}m luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.

  14. CaII in Luminous Narrow-line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Leighly, Karen; Dietrich, M.

    2009-01-01

    FeII emission is an important component of the low-ionization broad-line emission in quasars, comprising up to 1/3 of the total line emission, and performing as a primary coolant. In addition, FeII potentially can be used as a probe of gas metallicity (i.e., preceding stellar evolution). However, FeII is difficult to study because the Fe+ ion yields a complex spectrum of several hundred-thousand emission lines. CaII has been shown to be a valuable surrogate for FeII, with the H&K lines analogous to the UV FeII, and the IR triplet analogous to optical FeII. The advantage of studying CaII compared with FeII is that while the gross atomic structure is similar, the number of lines is dramatically reduced (five versus thousands). CaII H&K (3934, 3968Å) has rarely been identified in emission in quasars and AGN, possibly because the gas is very optically thick and the emission has been converted to the CaII IR triplet (8498, 85442, 8662Å), or because of absorption in the host galaxy. An exception is the luminous narrow-line quasar PHL 1811, and examination of quasars in the SDSS reveals a number of others that show CaII H&K as well, along with other objects that appear otherwise similar but do not have CaII H&K in their spectra. We present preliminary results from observations using SpeX on the IRTF, NASA's 3m telescope on Mauna Kea, to study CaII IR triplet emission in a sample of quasars both with and without CaII H&K. The sample has a range of optical FeII/Hα914 ratios, and the IR CaII triplet/OI (8446Å) ratio follows roughly the same pattern. This behavior is expected if the IR CaII triplet is analogous to optical FeII, and the OI is produced by Bowen fluorescence. A range of CaII H&K/CaII IR triplet ratios is found. Additional results will be presented.

  15. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  16. THE RADIAL AND AZIMUTHAL PROFILES OF Mg II ABSORPTION AROUND 0.5 < z < 0.9 zCOSMOS GALAXIES OF DIFFERENT COLORS, MASSES, AND ENVIRONMENTS

    SciTech Connect

    Bordoloi, R.; Lilly, S. J.; Knobel, C.; Kampczyk, P.; Carollo, C. M.; Bolzonella, M.; Zucca, E.; Zamorani, G.; Bardelli, S.; Iovino, A.; Contini, T.; Kneib, J.-P.; Le Fevre, O.; Renzini, A.; Scodeggio, M.; Balestra, I.; Bongiorno, A.; Caputi, K.; Cucciati, O.; and others

    2011-12-10

    We map the radial and azimuthal distribution of Mg II gas within {approx} 200 kpc (physical) of {approx} 4000 galaxies at redshifts 0.5 < z < 0.9 using co-added spectra of more than 5000 background galaxies at z > 1. We investigate the variation of Mg II rest-frame equivalent width (EW) as a function of the radial impact parameter for different subsets of foreground galaxies selected in terms of their rest-frame colors and masses. Blue galaxies have a significantly higher average Mg II EW at close galactocentric radii as compared to the red galaxies. Among the blue galaxies, there is a correlation between Mg II EW and galactic stellar mass of the host galaxy. We also find that the distribution of Mg II absorption around group galaxies is more extended than that for non-group galaxies, and that groups as a whole have more extended radial profiles than individual galaxies. Interestingly, these effects can be satisfactorily modeled by a simple superposition of the absorption profiles of individual member galaxies, assuming that these are the same as those of non-group galaxies, suggesting that the group environment may not significantly enhance or diminish the Mg II absorption of individual galaxies. We show that there is a strong azimuthal dependence of the Mg II absorption within 50 kpc of inclined disk-dominated galaxies, indicating the presence of a strongly bipolar outflow aligned along the disk rotation axis. There is no significant dependence of Mg II absorption on the apparent inclination angle of disk-dominated galaxies.

  17. Mapping kiloparsec-scale structures in the extended H I disc of the galaxy UGC 000439 by H I 21-cm absorption

    NASA Astrophysics Data System (ADS)

    Dutta, R.; Gupta, N.; Srianand, R.; O'Meara, J. M.

    2016-03-01

    We study the properties of H I gas in the outer regions (˜2r25) of a spiral galaxy, UGC 00439 (z = 0.017 69), using H I 21-cm absorption towards different components of an extended background radio source, J0041-0043 (z = 1.679). The radio source exhibits a compact core coincident with the optical quasar and two lobes separated by ˜7 kpc, all at an impact parameter ˜25 kpc. The H I 21-cm absorption detected towards the southern lobe is found to extend over ˜2 kpc2. The absorbing gas shows sub-kpc-scale structures with the line-of-sight velocities dominated by turbulent motions. Much larger optical depth variations over 4-7 kpc scale are revealed by the non-detection of H I 21-cm absorption towards the radio core and the northern lobe, and the detection of Na I and Ca II absorption towards the quasar. This could reflect a patchy distribution of cold gas in the extended H I disc. We also detect H I 21-cm emission from UGC 00439 and two other galaxies within ˜150 kpc to it, that probably form an interacting group. However, no H I 21-cm emission from the absorbing gas is detected. Assuming a linear extent of ˜4 kpc, as required to cover both the core and the southern lobe, we constrain the spin temperature ≲ 300 K for the absorbing gas. The kinematics of the gas and the lack of signatures of any ongoing in situ star formation are consistent with the absorbing gas being at the kinematical minor axis and corotating with the galaxy. Deeper H I 21-cm observations would help to map in greater detail both the large- and small-scale structures in the H I gas associated with UGC 00439.

  18. Galaxies on Top of Quasars: Probing Dwarf Galaxies in the SDSS

    NASA Astrophysics Data System (ADS)

    Straka, Lorrie; York, D. G.; Noterdaeme, P.; Srianand, R.; Bowen, D. V.; Khare, P.; Bishof, M.; Whichard, Z.; Kulkarni, V. P.

    2013-07-01

    Absorption lines from galaxies at intervening redshifts in quasar spectra are sensitive probes of metals and gas that are otherwise invisible due to distance or low surface brightness. However, in order to determine the environments these absorption lines arise in, we must detect these galaxies in emission as well. Galaxies on top of quasars (GOTOQs) are low-z galaxies found intervening with background quasars in the SDSS. These galaxies have been flagged for their narrow galactic emission lines present in quasar spectra in the SDSS. Typically, the low-z nature of these galaxies allows them to be easily detected in SDSS imaging. However, a number of GOTOQs (about 10%), despite being detected in spectral emission, are NOT seen in SDSS imaging. This implies that these may be dark galaxies, dwarf galaxies, or similarly low surface brightness galaxies. Additionally, about 25% of those detected in imaging are dwarf galaxies according to their L* values. Dwarf galaxies have long been underrepresented in observations compared to theory and are known to have large extents in dark matter. Given their prevalence here in our sample we must ask what role they play in quasar absorption line systems (QSOALS). Recent detections of 21-cm galaxies with few stars imply that aborted star formation in dark matter sub halos may produce QSOALS. Thus, this sub sample of galaxies offers a unique technique for probing dark and dwarf galaxies. The sample and its properties will be discussed, including star formation rates and dust estimates, as well as prospects for the future.

  19. Invisible Active Galactic Nuclei. II. Radio Morphologies and Five New H i 21cm Absorption Line Detectors

    NASA Astrophysics Data System (ADS)

    Yan, Ting; Stocke, John T.; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2016-03-01

    This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5 and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by

  20. Infrared Imaging of the Galaxies Responsible for z ~ 0.5O VI Absorption Systems

    NASA Astrophysics Data System (ADS)

    Prochaska, Jason X.; Chen, Hsiao-Wen; Mulchaey, John

    2001-02-01

    A comparison of the baryonic mass density inferred from BBN with a census of visible baryonic components (i.e. galaxies, clusters, HI gas) indicates a significant fraction of the universe's baryons are hidden in a dark component. Theoretical investigations into these 'missing' baryons suggest the majority lie in a hot (T ~ 10^6 K), low density medium which can only be efficiently detected through surveys for O VI absorption. Interestingly, recent STIS and FUSE searches for O VI are consistent with this gas comprising a significant fraction of the missing baryons. Establishing the physical nature of these O VI absorbers, therefore, may have large impact on our understanding of the distribution of baryons in the universe. In particular, it is important to determine if these systems arise in individual galactic halos, the intragroup or intracluster medium, the low density 'cosmic web' which connects collapsed objects, or a different region of the universe altogether. We are currently pursuing a program to search for galaxies associated with O VI absorbers at moderate redshift (z ~ 0.5). To accomplish this project, we must estimate photometric redshifts of the galaxies in the field (~ 8' × 8') surrounding the O VI absorbers in order to efficiently select candidates for follow-up spectroscopy. To this end, near-IR images are essential. With this proposal, we intend to obtain J and H band images of three fields surrounding four O VI absorbers in one night of observation with the Flamingos instrument. The results of this pilot program will help us to refine and focus our survey as well as double the number of O VI systems previously observed at z > 0.5.

  1. Luminosity Dependence and Redshift Evolution of Strong Emission-Line Diagnostics in Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Cowie, L. L.; Barger, A. J.; Songaila, A.

    2016-01-01

    We examine the redshift evolution of standard strong emission-line diagnostics for Hβ-selected star-forming galaxies using the local SDSS sample and a new z=0.2{--}2.3 sample obtained from Hubble Space Telescope WFC3 grism and Keck DEIMOS and MOSFIRE data. We use the SDSS galaxies to show that there is a systematic dependence of the strong emission-line properties on Balmer-line luminosity, which we interpret as showing that both the N/O abundance and the ionization parameter increase with increasing line luminosity. Allowing for the luminosity dependence tightens the diagnostic diagrams and the metallicity calibrations. The combined SDSS and high-redshift samples show that there is no redshift evolution in the line properties once the luminosity correction is applied, i.e., all galaxies with a given L({{H}}β ) have similar strong emission-line distributions at all the observed redshifts. We argue that the best metal diagnostic for the high-redshift galaxies may be a luminosity-adjusted version of the [N ii]6584/Hα metallicity relation. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  2. A CENSUS OF BROAD-LINE ACTIVE GALACTIC NUCLEI IN NEARBY GALAXIES: COEVAL STAR FORMATION AND RAPID BLACK HOLE GROWTH

    SciTech Connect

    Trump, Jonathan R.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-15

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  3. A Census of Broad-line Active Galactic Nuclei in Nearby Galaxies: Coeval Star Formation and Rapid Black Hole Growth

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Hsu, Alexander D.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-01

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  4. The discovery of an O VII emission line in the ASCA spectrum of the Seyfert galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    George, I. M.; Turner, T. J.; Netzer, H.

    1995-01-01

    We report the first observation of an O VII 0.57 keV emission line in a Seyfert 1 galaxy. NGC 3783 was observed by ASCA twice over a period of 4 days in 1993 December. The source exhibited a approximately 30% change in intensity between the two observations, with most of the variability taking place as a result of steepening of the continuum less than or approximately equal to 1 keV. Spectra from both observations show intense absorption features in the 0.5-1.5 keV band, which can be well fitted by an ionized absorber model of solar composition, column density of 10(exp 22.2)/sq cm and ionization parameter of approximately 7-8; the strongest absorption features being due to O VII and O VIII. Two emission features are also seen in the spectra which we identify as O VII 0.57 keV (equivalent width approximately equals 36 eV) and O VIII 0.65 keV (equivalent width approximately equals 11 eV). We also show that the 3-6 keV continuum of the source is well fitted by a Gamma = 1.3-1.4 power-law continuum, a narrow neutral iron K-shell fluorescence line and a strong iron K-shell absorption edge, possibly corresponding to highly ionized iron.

  5. Evidence for Active Galactic Nucleus Feedback in the Broad Absorption Lines and Reddening of Mrk 231

    NASA Astrophysics Data System (ADS)

    Leighly, Karen M.; Terndrup, Donald M.; Baron, Eddie; Lucy, Adrian B.; Dietrich, Matthias; Gallagher, Sarah C.

    2014-06-01

    We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly full coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ~100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.

  6. Foreign-gas broadening of nitrous oxide absorption lines.

    NASA Technical Reports Server (NTRS)

    Tubbs, L. D.; Williams, D.

    1972-01-01

    We have measured the foreign-gas broadening coefficients for collisional broadening of lines in the nu-3 fundamental of N2O by He, Ne, Ar, Kr, Xe, H2, D2, and CH4. These coefficients, which give the ratio of the line-broadening ability of these gases to the line-broadening ability of N2, can be used with recent measurements and calculations of N2 broadening to obtain optical collision cross sections.

  7. SDSS J163459.82+204936.0: A Ringed Infrared-luminous Quasar with Outflows in Both Absorption and Emission Lines

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hong-Yan; Jiang, Ning; Wu, Xufen; Lyu, Jianwei; Shi, Xiheng; Shu, Xinwen; Jiang, Peng; Ji, Tuo; Wang, Jian-Guo; Wang, Shu-Fen; Sun, Luming

    2016-05-01

    SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L IR = 1011.91 {L}ȯ . We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR ≈ 140 {M}ȯ yr‑1, estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in Hβ, He i λλ5876, 10830, and other emission lines consistently with an offset velocity of ≈900 {km} {{{s}}}-1, as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He i λ10830 and the bulk blueshifting of [O iii]λ5007), while there exist blueshifted broad absorption lines (BALs) in Na i D and He i λλ3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 104 < n H ≲ 105 cm‑3, ionization parameter 10‑1.3 ≲ U ≲ 10‑0.7 , and column density 1022.5 ≲ N H ≲ 1022.9 cm‑2, which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of ∼48–65 pc from the nucleus and that the kinetic luminosity of the outflow is 1044–1046 {erg} {{{s}}}-1. J1634+2049 has a off-centered galactic ring on the scale of ∼30 kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the co-evolution scenario invoking

  8. SDSS J163459.82+204936.0: A Ringed Infrared-luminous Quasar with Outflows in Both Absorption and Emission Lines

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hong-Yan; Jiang, Ning; Wu, Xufen; Lyu, Jianwei; Shi, Xiheng; Shu, Xinwen; Jiang, Peng; Ji, Tuo; Wang, Jian-Guo; Wang, Shu-Fen; Sun, Luming

    2016-05-01

    SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L IR = 1011.91 {L}ȯ . We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR ≈ 140 {M}ȯ yr‑1, estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in Hβ, He i λλ5876, 10830, and other emission lines consistently with an offset velocity of ≈900 {km} {{{s}}}-1, as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He i λ10830 and the bulk blueshifting of [O iii]λ5007), while there exist blueshifted broad absorption lines (BALs) in Na i D and He i λλ3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 104 < n H ≲ 105 cm‑3, ionization parameter 10‑1.3 ≲ U ≲ 10‑0.7 , and column density 1022.5 ≲ N H ≲ 1022.9 cm‑2, which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of ˜48–65 pc from the nucleus and that the kinetic luminosity of the outflow is 1044–1046 {erg} {{{s}}}-1. J1634+2049 has a off-centered galactic ring on the scale of ˜30 kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the co-evolution scenario invoking galaxy

  9. Interpreting the ionization sequence in star-forming galaxy emission-line spectra

    NASA Astrophysics Data System (ADS)

    Richardson, Chris T.; Allen, James T.; Baldwin, Jack A.; Hewett, Paul C.; Ferland, Gary J.; Crider, Anthony; Meskhidze, Helen

    2016-05-01

    High-ionization star-forming (SF) galaxies are easily identified with strong emission-line techniques such as the BPT diagram, and form an obvious ionization sequence on such diagrams. We use a locally optimally emitting cloud model to fit emission-line ratios that constrain the excitation mechanism, spectral energy distribution, abundances and physical conditions along the star formation ionization sequence. Our analysis takes advantage of the identification of a sample of pure SF galaxies, to define the ionization sequence, via mean field independent component analysis. Previous work has suggested that the major parameter controlling the ionization level in SF galaxies is the metallicity. Here we show that the observed SF sequence could alternatively be interpreted primarily as a sequence in the distribution of the ionizing flux incident on gas spread throughout a galaxy. Metallicity variations remain necessary to model the SF sequence, however, our best models indicate that galaxies with the highest and lowest observed ionization levels (outside the range -0.37 < log [O III]/Hβ <-0.09) require the variation of an additional physical parameter other than metallicity, which we determine to be the distribution of ionizing flux in the galaxy.

  10. Direct determination of oxygen abundances in line-emitting star-forming galaxies at intermediate redshift

    NASA Astrophysics Data System (ADS)

    Pérez, José M.; Hoyos, Carlos; Díaz, Ángeles I.; Koo, David C.; Willmer, Christopher N. A.

    2016-01-01

    We present a sample of 22 blue [(B - V)AB < 0.45], luminous (MB,AB < -18.9), metal-poor galaxies in the 0.69 < z < 0.88 redshift range, selected from the DEEP2 galaxy redshift survey. Their spectra contain the [O III] λ4363 auroral line, the [O II] λλ3726, 3729 doublet and the strong nebular [O III] λλ4959, 5007 emission lines. The ionized gas-phase oxygen abundances of these galaxies lie between 7.62 < 12 + log O/H < 8.19, i.e., between 1/10 Z⊙ and 1/3 Z⊙. We find that galaxies in our sample have comparable metallicities to other intermediate-redshift samples, but are more metal poor than local systems of similar B-band luminosities and star formation activity. The galaxies here show similar properties to the green peas discovered at z ≃ 0.2-0.3, though our galaxies tend to be slightly less luminous.

  11. The nature of the emission-line nebulae in powerful far-infrared galaxies

    NASA Technical Reports Server (NTRS)

    Armus, Lee; Heckman, Timothy M.; Miley, George K.

    1990-01-01

    The authors discuss their program of narrow-band (H alpha + (NII)) imaging of a sample of 30 powerful far-infrared galaxies (FIRG's) chosen to have far-infrared spectral energy distributions similar to the prototype FIRG's Arp 220, NGC 3690, NGC 6240, and M82. The emission-line nebulae of these IR color-selected sample (ICSS) galaxies as a class are both impressively large (mean half light radius, r approx. 1.3 Kpc, and mean diameter, D approx. 16 Kpc) and luminous (L sub TOT approx. 10(exp 8) solar lumninosity; uncorrected for internal extinction). The mean total H alpha + (NII) luminosity of the FIRG's is comparable to that found for pairs of optically selected interacting galaxies (Bushouse, Lamb, and Werner 1988), but is a factor of approx. 5 greater than that of isolated spirals (Kennicutt and Kent 1983). Only approx. 25 percent of the nearby (z approx. less than 0.10) FIRG's have morphologies suggesting that large HII-regions contribute significantly to their emission-line appearance. The broad-band morphologies of our IR color-selected galaxies fall into three major categories. Nearly 75 percent are single galaxy systems, with the remaining FIRG's being either multiple nuclei systems, or members of interacting pairs. Since the authors saw few (10 percent) currently interacting FIRG's, yet many (80 percent) with highly distorted continuum morphologies, their IR color criteria may be preferentially selecting galaxies that have undergone highly inelastic, rapidly merging interactions.

  12. The Hα Line Emission Contribution to Star Formation History Determination in Galaxies

    NASA Astrophysics Data System (ADS)

    Durán, E.; Magris, G.; Mateu, J.

    2009-05-01

    Recently, Mateu, Bruzual, & Magris (2006) developed a non parametric algorithm called GASPEX (GAlaxy Spectrum Parameter EXtraction) to recover a galaxy star formation history (SFH) and chemical evolution from its spectral energy distribution (SED). Nevertheless, in late type galaxies the youngest population contribution to the SED could be hidden in the optical continuum, which is mainly dominated by old and evolved stars; therefore the SFH obtained from an optical SED may not include an important fraction of the recent star formation events in the galaxy. In this work we show that imposing restrictions on the calculations, based on the H α line emission as a tracer of recent star formation events, we improve the determination of the SFR in the last 100 Myr.

  13. Effect of a progressive sound wave on the profiles of spectral lines. 2: Asymmetry of faint Fraunhofer lines. [absorption spectra

    NASA Technical Reports Server (NTRS)

    Kostyk, R. I.

    1974-01-01

    The absorption coefficient profile was calculated for lines of different chemical elements in a medium with progressive sound waves. Calculations show that (1) the degree and direction of asymmetry depend on the atomic ionization potential and the potential of lower level excitation of the individual line; (2) the degree of asymmetry of a line decreases from the center toward the limb of the solar disc; and (3) turbulent motions 'suppress' the asymmetry.

  14. CH+(1-0) Line Detection in a High-z Hyper-Luminous Galaxy SDP17b: the First Probe of a Massive Turbulent Region

    NASA Astrophysics Data System (ADS)

    Falgarone, E.; Zwaan, M.; Godard, B.; Bussmann, S.; Bergin, E.; Omont, A.; Bournaud, F.; Elbaz, D.; Andreani, P.

    2015-12-01

    We illustrate the power of CH+ spectroscopy at high spectral resolution with the first detection by ALMA of a CH+(J=1-0) line in an hyper-luminous galaxy, SDP17b at z=2.3. Unlike other molecular tracers, the unique chemical and spectroscopic properties of the CH+ cation make it a tracer of the turbulent energy trail, from its scale of injection to that of dissipation at which CH+ forms. In SDP17b, CH+ emission and absorption are detected. The emission line is broad and the absorption is seen against the dust continuum and the emission. The absorption probes a massive turbulent region of low density, while the emission may arise in a large number of irradiated shocks that could be located in the large turbulent region or in the star-forming disk.

  15. Far-infrared line emission from the galaxy. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.

    1985-01-01

    The diffuse 157.74 micron (CII) emission from the Galaxy was sampled at several galactic longitudes near the galactic plane including complete scan across the plane at (II) = 2.16 deg and (II) = 7.28 deg. The observed (CII) emission profiles follow closely the nearby (12)CO (J=1to0) emission profiles. The (CII) emission probably arises in neutral photodissociation regions near the edges of giant moleclar clouds (GMC's). These regions have densities of approximately 350 cm(-3) and temperatures of approximately 300 K, and amount to 4x10(8) solar mass of hydrogen in the inner Galaxy. The total 157.74 micron luminosity of the Galaxy is estimated to be 6x10(7) solar luminosity. Estimates were also made of the galactic emission in other far-infrared (FIR) cooling lines. The (CII) line was found to be the dominant FIR emission line from the galaxy and the primary coolant for the warm neutral gas near the galactic plane. Other cooling lines predicted to be prominent in the galactic spectrum are discussed. The 145.53 micron (OI) emission line from the Orion nebula was also measured.

  16. Broad Hβ Emission-line Variability in a Sample of 102 Local Active Galaxies

    NASA Astrophysics Data System (ADS)

    Runco, Jordan N.; Cosens, Maren; Bennert, Vardha N.; Scott, Bryan; Komossa, S.; Malkan, Matthew A.; Lazarova, Mariana S.; Auger, Matthew W.; Treu, Tommaso; Park, Daeseong

    2016-04-01

    A sample of 102 local (0.02 ≤ z ≤ 0.1) Seyfert galaxies with black hole masses MBH > 107M⊙ was selected from the Sloan Digital Sky Survey (SDSS) and observed using the Keck 10 m telescope to study the scaling relations between MBH and host galaxy properties. We study profile changes of the broad Hβ emission line within the three to nine year time frame between the two sets of spectra. The variability of the broad Hβ emission line is of particular interest, not only because it is used to estimate MBH, but also because its strength and width are used to classify Seyfert galaxies into different types. At least some form of broad-line variability (in either width or flux) is observed in the majority (∼66%) of the objects, resulting in a Seyfert-type change for ∼38% of the objects, likely driven by variable accretion and/or obscuration. The broad Hβ line virtually disappears in 3/102 (∼3%) extreme cases. We discuss potential causes for these changing look active galactic nuclei. While similar dramatic transitions have previously been reported in the literature, either on a case-by-case basis or in larger samples focusing on quasars at higher redshifts, our study provides statistical information on the frequency of Hβ line variability in a sample of low-redshift Seyfert galaxies.

  17. Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar

    NASA Astrophysics Data System (ADS)

    Sluse, D.; Hutsemékers, D.; Anguita, T.; Braibant, L.; Riaud, P.

    2015-10-01

    Testing the standard Shakura-Sunyaev model of accretion is a challenging task because the central region of quasars where accretion takes place is unresolved with telescopes. The analysis of microlensing in gravitationally lensed quasars is one of the few techniques that can test this model, yielding to the measurement of the size and of temperature profile of the accretion disc. We present spectroscopic observations of the gravitationally lensed broad absorption line quasar H1413+117, which reveal partial microlensing of the continuum emission that appears to originate from two separated regions: a microlensed region, corresponding the compact accretion disc; and a non-microlensed region, more extended and contributing to at least 30% of the total UV-continuum flux. Because this extended continuum is occulted by the broad absorption line clouds, it is not associated with the host galaxy, but rather with light scattered in the neighbourhood of the central engine. We measure the amplitude of microlensing of the compact continuum over the rest-frame wavelength range 1000-7000 Å. Following a Bayesian scheme, we confront our measurements to microlensing simulations of an accretion disc with a temperature varying as T ∝ R-1/ν. We find a most likely source half-light radius of R1/2 = 0.61 × 1016cm (i.e., 0.002 pc) at 0.18 μm, and a most-likely index of ν = 0.4. The standard disc (ν = 4/3) model is not ruled out by our data, and is found within the 95% confidence interval associated with our measurements. We demonstrate that, for H1413+117, the existence of an extended continuum in addition to the disc emission only has a small impact on the inferred disc parameters, and is unlikely to solve the tension between the microlensing source size and standard disc sizes, as previously reported in the literature. Based on observations made with ESO Telescopes at the Paranal Observatory (Chile). ESO program ID: 386.B-0337.Appendices A and B are available in electronic form

  18. Line Survey Project of External Galaxies with NRO 45-m Telescope

    NASA Astrophysics Data System (ADS)

    Nakajima, T.; Takano, S.; Kohno, K.; Inoue, H.

    2011-05-01

    Molecular line observations of different galaxies allow us to study the effects of these different properties/activities on the molecular medium. In fact, some groups have suggested that it is possible to diagnose power sources in dusty galaxies using molecular line ratios. The observation of the molecular gas chemistry of the active galactic nucleus (AGN) toward NGC 1068, one of the nearest galaxies with an AGN, has already been reported. However, further systematic observations of molecular lines are indispensable to study the impact of AGN on the interstellar medium. Therefore, we started a project to conduct a line survey in the 3-mm band of NGC 1068 using the new receiver in the 45-m telescope at Nobeyama Radio Observatory. The beam size of this telescope (18'' at 86 GHz) is smaller than the size of the circumnuclear starburst ring in NGC 1068 (d ˜ 30''), and it is therefore essential to study the impact of the AGN on the surrounding molecules; this will enable us to mitigate the contamination of the molecular lines from the circumnuclear starburst region in NGC 1068. We conduct a spectral line survey in the 3-mm band (85.1--98.4 GHz) toward NGC 1068 and the prototypical starburst galaxy NGC 253. We detected rotational transitions of C2H, cyclic-C3H2 and H13CN in NGC 1068. In addition, the C2H N = 1--0 lines were detected in NGC 253 [10]. We calculated the abundances of these molecules relative to CS for both NGC 1068 and NGC 253, and found that there were no significant differences in the abundances between the two galaxies. This result suggests that the basic carbon-containing molecules are either insusceptible to AGN, or are tracing cold (Trot ˜ 10 K) molecular gas rather than X-ray irradiated hot gas.

  19. CO Spectral Line Energy Distributions of Infrared-Luminous Galaxies and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padeli P.; van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M.

    2010-06-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L IR(8-1000 μm) >~ 1011 L sun), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L IR>1012 L sun), and two powerful local active galactic nuclei (AGNs)—the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293—using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C+ line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these high-redshift starbursts, with genuinely low

  20. Effects of velocity averaging on the shapes of absorption lines

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.

    1980-01-01

    The velocity averaging of collision cross sections produces non-Lorentz line shapes, even at densities where Doppler broadening is not apparent. The magnitude of the effects will be described using a model in which the collision broadening depends on a simple velocity power law. The effect of the modified profile on experimental measures of linewidth, shift and amplitude will be examined and an improved approximate line shape will be derived.

  1. FE K EMISSION AND ABSORPTION FEATURES IN THE XMM-EPIC SPECTRUM OF THE SEYFERT GALAXY IC 4329A

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Reeves, J. N.; Braito, V.

    2001-01-01

    We present a re-analysis of the XMM-Newton long-look of the X-ray bright Seyfert galaxy IC 4329a. The Fe K bandpass is dominated by two peaks, consistent with emission from neutral or near-neutral Fe Ka and KP. A relativistic diskline model whereby both peaks are the result of one doubly-peaked diskline profile is found to be a poor description of the data. Models using two relativistic disklines are found to describe the emission profile well. A low-inclination, moderately-relativistic dual-diskline model is possible if the contribution from narrow components, due to distant material, is small or absent. A high-inclination, moderately relativistic profile for each peak is possible if there are roughly equal contributions from both the broad and narrow components. Upper limits on Fe XXV and Fe XXVI emission and absorption at the systemic velocity of IC 4329a are obtained. We also present the results of RXTE monitoring of this source obtained so far; the combined XMM-Newton and RXTE data sets allow us to explore the time-resolved spectral behavior of this source on time scales ranging from hours to 2 years. We find no strong evidence for variability of the Fe Ka emission line on any time scale probed, likely due to the minimal level of continuum variability. We detect a narrow absorption line, at a energy of 7.68 keV in the rest frame of the source; its significance has been confirmed using Monte Carlo simulations. This feature is most likely due to absorption from Fe XXVI blueshifted to approximately 0.1c relative to the systemic velocity, making IC 4329a the lowest-redshift AGN known with a high-velocity, highly-ionized outflow component. As is often the case with similar outflows seen in high-luminosity quasars, the estimated mass outflow rate is larger than the inflow accretion rate, signaling that the outflow represents a substantial portion of the total energy budget of the AGN. The outflow could arise from a radiatively-driven disk wind, or it may be in the

  2. Emission line galaxy pairs up to z=1.5 from the WISP survey

    NASA Astrophysics Data System (ADS)

    Teplitz, Harry I.; Dai, Yu Sophia; Malkan, Matthew Arnold; Scarlata, Claudia; Colbert, James W.; Atek, Hakim; Bagley, Micaela B.; Baronchelli, Ivano; Bedregal, Alejandro; Beck, Melanie; Bunker, Andrew; Dominguez, Alberto; Hathi, Nimish P.; Henry, Alaina L.; Mehta, Vihang; Pahl, Anthony; Rafelski, Marc; Ross, Nathaniel; Rutkowski, Michael J.; Siana, Brian D.; WISPs Team

    2016-01-01

    We present a sample of spectroscopically identified emission line galaxy pairs up to z=1.5 from WISPs (WFC3 Infrared Spectroscopic Parallel survey) using high resolution direct and grism images from HST. We searched ~150 fields with a covered area of ~600 arcmin^2, and a comoving volume of > 400 Gpc^3 at z=1-2, and found ~80 very close physical pairs (projected separation Dp < 50 h^{-1}kpc, relative velocity d_v < 500 kms^{-1}), and ~100 close physical pairs (50 < Dp < 100 h^{-1}kpc, d_v < 1000 kms^{-1}) of emission line galaxies, including two dozen triplets and quadruples. In this poster we present the multi-wavelength data, star formation rate (SFR), mass ratio, and study the merger rate evolution with this special galaxy pair sample.

  3. The line-emitting gas in active galaxies - A probe of the nuclear engine

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain

    1993-01-01

    This paper reviews some of the basic questions regarding the structure of the engine powering active galactic nuclei (AGN), the nature of the interaction between the AGN and the host galaxy, and the origin and evolution of AGN. The study of the dynamics and physical characteristics of the line-emitting gas in these objects has proven fruitful in addressing many of these issues. Recent advances in optical and infrared detector technology combined with the development of superior ground-based instruments have produced efficient new tools for the study of the line-emitting gas on nuclear and Galactic scales. Programs which take advantage of two of these new techniques, Fabry-Perot imaging spectroscopy and infrared spectroscopy, are described in this paper. The origin of nuclear activity in galaxies is also addressed in a third project which aims at determining the nature of luminous infrared galaxies.

  4. X-ray Emission and Absorption Lines During the SSS Phase of RS Ophiuchi

    NASA Astrophysics Data System (ADS)

    Schönrich, R. A.; Ness, J.-U.

    2008-12-01

    The high-resolution X-ray spectra of the sixth outburst of RS Ophiuchi revealed P Cygni-like line profiles. We use the column densities of selected isolated absorption lines to derive the nitrogen-to-oxygen abundance ratio. We next discuss the origin of the emission lines, which may originate from the shock, and the absorption and emission lines may thus have a different formation history. Finally, we discuss the correlation of high-amplitude variability detected during the early SSS phase with variability in the hardness ratio that follows the same pattern but is shifted by 1000~sec.

  5. X-ray heating and ionization of broad-emission-line regions in QSO's and active galaxies

    SciTech Connect

    Weisheit, J.C.; Shields, G.A.; Tarter, C.B.

    1980-07-01

    Absorption of x-rays deep within the broad-line emitting clouds in QSO's and the nuclei of active galaxies creates extensive zones of warm (T approx. 10/sup 4/K), partially ionized N/sub e//N approx. 0.1) gas. Because Lyman alpha photons are trapped in these regions, the x-ray energy is efficiently channeled into Balmer lines collisionally excited from the n = 2 level. The HI regions plus the HII regions created by ultraviolet photons illuminating the surfaces of the clouds give rise to integrated L..cap alpha../H..cap alpha.. line emission ratios between 1 and 2. Enhanced MgII line emission from the HI regions gives rise to integrated MgII/H..cap alpha.. ratios near 0.5. The OI line lambda 8446 is efficiently pumped by trapped H..cap alpha.. photons and in the x-ray heated zone an intensity ratio I (lambda 8446)/I(H..cap alpha..) approx. < 0.1 is calculated. All of these computed ratios now are in agreement with observations.

  6. The Host Galaxy and the Extended Emission-Line Region of the Radio Galaxy 3C 79

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Stockton, Alan

    2008-04-01

    We present extensive ground-based spectroscopy and HST imaging of 3C 79, an FR II radio galaxy associated with a luminous extended emission-line region (EELR). Surface brightness modeling of an emission-line-free HST R-band image reveals that the host galaxy is a massive elliptical with a compact companion 0.8'' away and 4 mag fainter. The host galaxy spectrum is best described by an intermediate-age (1.3 Gyr) stellar population (4% by mass), superimposed on a 10 Gyr old population and a power law (αλ = - 1.8); the stellar populations are consistent with supersolar metallicities, with the best fit given by the 2.5 Z⊙ models. We derive a dynamical mass of 4 × 1011 M⊙ within the effective radius from the velocity dispersion. The EELR spectra clearly indicate that the EELR is photoionized by the hidden central engine. Photoionization modeling shows evidence that the gas metallicity in both the EELR and the nuclear narrow-line region is mildly subsolar (0.3-0.7 Z⊙), significantly lower than the supersolar metallicities deduced from typical active galactic nuclei in the Sloan Digital Sky Survey. The more luminous filaments in the EELR exhibit a velocity field consistent with a common disk rotation. Fainter clouds, however, show high approaching velocities that are uncoupled from this apparent disk rotation. The striking similarities between this EELR and the EELRs around steep-spectrum radio-loud quasars provide further evidence for the orientation-dependent unification schemes. The metal-poor gas is almost certainly not native to the massive host galaxy. We suggest that the close companion galaxy could be the tidally stripped bulge of a late-type galaxy that is merging with the host galaxy. The interstellar medium of such a galaxy is probably the source for the low-metallicity gas in 3C 79. Based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative

  7. Molecular Gas Kinematics and Line Diagnostics in Early-type Galaxies: NGC 4710 & NGC 5866

    NASA Astrophysics Data System (ADS)

    Topal, Selçuk; Bureau, Martin; Davis, Timothy A.; Krips, Melanie; Young, Lisa M.; Crocker, Alison F.

    2016-09-01

    We present interferometric observations of CO lines (12CO(1-0, 2-1) and 13CO(1-0, 2-1)) and dense gas tracers (HCN(1-0), HCO+(1-0), HNC(1-0) and HNCO(4-3)) in two nearby edge-on barred lenticular galaxies, NGC 4710 and NGC 5866, with most of the gas concentrated in a nuclear disc and an inner ring in each galaxy. We probe the physical conditions of a two-component molecular interstellar medium in each galaxy and each kinematic component by using molecular line ratio diagnostics in three complementary ways. First, we measure the ratios of the position-velocity diagrams of different lines, second we measure the ratios of each kinematic component's integrated line intensities as a function of projected position, and third we model these line ratios using a non-local thermodynamic equilibrium radiative transfer code. Overall, the nuclear discs appear to have a tenuous molecular gas component that is hotter, optically thinner and with a larger dense gas fraction than that in the inner rings, suggesting more dense clumps immersed in a hotter more diffuse molecular medium. This is consistent with evidence that the physical conditions in the nuclear discs are similar to those in photo-dissociation regions. A similar picture emerges when comparing the observed molecular line ratios with those of other galaxy types. The physical conditions of the molecular gas in the nuclear discs of NGC 4710 and NGC 5866 thus appear intermediate between those of spiral galaxies and starbursts, while the star formation in their inner rings is even milder.

  8. Metallicity Determinations from Optical Emission Line Gas in X-ray Galaxies

    NASA Astrophysics Data System (ADS)

    Athey, A.; Bregman, J.

    2001-05-01

    In the study of the hot interstellar medium in elliptical galaxies, one of the most contentious issues is the metallicity of the gas. The metallicity is an important parameter in the ISM because it provides insight to the origin of the gas, its mass and eventual evolution. Currently, the metallicity measurements are being determined from X-ray telescopes, such as Chandra and XMM. We conducted a program to obtain an independent determination of this critical quantity with ground based optical spectra from the 2.4m Hilter Telescope at MDM. Trinchieri & Alighieri (1991) investigated a sample of X-ray emitting galaxies through narrow-band optical imaging and found a large fraction (<85%) of X-ray bright galaxies to have optical emission lines (H-alpha and [N II]). Because the structure of this emission line gas is similar to the X-ray emission, it is likely tracing the cooling of the X-ray gas or possibly the injection of mass into the ISM from dying stars. We present optical spectra of 14 elliptical galaxies with wavelength coverage from 3200 Å - 5100 Å and 5600 Å - 7150 Å (NGC720, NGC1407, NGC1600, NGC2768, NGC3377, NGC3379, NGC3607, NGC4125, NGC4472, NGC4494, NGC4552, NGC4636, NGC5846). This wavelength coverage allows us to detect major lines for metallicity determinations, including [O I] 6300 Å, [O II] 3727 Å, [O III] 4363, 5007 Å, [N II] 6583Å, [S II] 6725 Å, as well as H-alpha and H-beta. In 6 of these 14 galaxies we detect emission line gas. In 4 of these galaxies we have complete information to determine metallicites.

  9. Radio-loud narrow-line Seyfert 1 galaxies with high-velocity outflows

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Xu, D.; Zensus, J. A.

    2016-02-01

    We have studied four radio-loud Narrow-line Seyfert 1 (NLS1) galaxies with extreme optical emission-line shifts, indicating radial outflow velocities of up 2450 km s-1. The shifts are accompanied by strong line broadening, up to 2270 km s-1 in [NeV]. A significant ionization stratification (higher line shift at higher ionization potential) of most ions implies that we see a large-scale wind rather than single, localized jet-cloud interactions. The observations are consistent with a scenario, where the signatures of outflows are maximized because of a pole-on view into the central engine of these radio-loud NLS1 galaxies.

  10. Understanding the Physical Conditions that Drive Line Emission in Nebular Regions of High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Zeimann, Gregory; Gebhardt, H.; Ciardullo, R.; Gronwall, C.; Hagen, A.

    2014-01-01

    We use the 3D-HST near-IR grism survey to study the physical conditions of the nebular regions within a statistically complete sample of ~ 300 emission-line selected star forming galaxies in the redshift range of 2.0 < z < 2.3. These spectra include the emission lines of oxygen ([O II] 3727, [O III] 5007), neon ([Ne III] 3869), and hydrogen (H-beta, H-gamma); when coupled with constraints on reddening and stellar mass derived from the objects' spectral energy distributions, these data allow us to explore parameters such as the systems' alpha-element abundances and ionization parameters. We try to reproduce these line ratios using theoretical models, such as CLOUDY, and compare line ratios with that of possible local analogs like Green Pea galaxies and Blue Compact Dwarfs. With our sample we can study any possible evolution in the physical conditions of star formation regions.

  11. What sort of standard candle is Orion for studying molecular hydrogen line emission in galaxies

    NASA Technical Reports Server (NTRS)

    Burton, Michael; Puxley, Phil J.

    1990-01-01

    The total shocked and fluorescent molecular hydrogen 1-0 S(1) line luminosities from Orion have been measured to be about 2.5 solar luminosity and about 2.0 solar luminosity, respectively. The implications for using Orion to study the interstellar medium in galaxies is discussed.

  12. Hubble space telescope emission line galaxies at z ∼ 2: the Lyα escape fraction

    SciTech Connect

    Ciardullo, Robin; Zeimann, Gregory R.; Gronwall, Caryl; Gebhardt, Henry; Schneider, Donald P.; Hagen, Alex; Malz, A. I. E-mail: grzeimann@psu.edu E-mail: gebhardt@psu.edu E-mail: hagen@psu.edu; and others

    2014-11-20

    We compare the Hβ line strengths of 1.90 < z < 2.35 star-forming galaxies observed with the near-IR grism of the Hubble Space Telescope with ground-based measurements of Lyα from the HETDEX Pilot Survey and narrow-band imaging. By examining the line ratios of 73 galaxies, we show that most star-forming systems at this epoch have a Lyα escape fraction below ∼6%. We confirm this result by using stellar reddening to estimate the effective logarithmic extinction of the Hβ emission line (c {sub Hβ} = 0.5) and measuring both the Hβ and Lyα luminosity functions in a ∼100, 000 Mpc{sup 3} volume of space. We show that in our redshift window, the volumetric Lyα escape fraction is at most 4.4{sub −1.2}{sup +2.1}%, with an additional systematic ∼25% uncertainty associated with our estimate of extinction. Finally, we demonstrate that the bulk of the epoch's star-forming galaxies have Lyα emission line optical depths that are significantly greater than that for the underlying UV continuum. In our predominantly [O III] λ5007-selected sample of galaxies, resonant scattering must be important for the escape of Lyα photons.

  13. Brackett- Line Emission Maps of Four Galaxies

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Helou, G.; Beichman, C. A.

    1993-01-01

    Observatons of the Br hydrogen recombination line have been made in a sample of four galaxies. The data were acquired with the new Palomar Prime-Focus Infrared Camers (PFIRCAM) mounted at the prime focus (f/3.3) of the Hale 5-m telescope.

  14. Emission Line Galaxies in the STIS Parallel Survey. 1; Observations and Data Analysis

    NASA Technical Reports Server (NTRS)

    Teplitz, Harry I.; Collins, Nicholas R.; Gardner, Jonathan P.; Hill, Robert S.; Heap, Sara R.; Lindler, Don J.; Rhodes, Jason; Woodgate, Bruce E.

    2002-01-01

    In the first three years of operation STIS obtained slitless spectra of approximately 2500 fields in parallel to prime HST observations as part of the STIS Parallel Survey (SPS). The archive contains approximately 300 fields at high galactic latitude (|b| greater than 30) with spectroscopic exposure times greater than 3000 seconds. This sample contains 220 fields (excluding special regions and requiring a consistent grating angle) observed between 6 June 1997 and 21 September 2000, with a total survey area of approximately 160 square arcminutes. At this depth, the SPS detects an average of one emission line galaxy per three fields. We present the analysis of these data, and the identification of 131 low to intermediate redshift galaxies detected by optical emission lines. The sample contains 78 objects with emission lines that we infer to be redshifted [OII]3727 emission at 0.43 < z < 1.7. The comoving number density of these objects is comparable to that of Halpha-emitting galaxies in the NICMOS parallel observations. One quasar and three probable Seyfert galaxies are detected. Many of the emission-line objects show morphologies suggestive of mergers or interactions. The reduced data are available upon request from the authors.

  15. An ISO far-infrared survey of line and continuum emission for 227 galaxies

    NASA Technical Reports Server (NTRS)

    Brauher, J. R.

    2002-01-01

    Far-infrared line and continuum fluxes are presented for a sample of 227 galaxies observed with the Long Wavelength Spectrometer on the Infrared Space Observatory, selected from the ISO Data Archive and having an IRAS 60/100 mu m color ration of 0.2-1.4 and IRAS 60 mu m flux density between 0.1 Jy and 1300 Jy.

  16. Broad-line region at the center of the Galaxy

    SciTech Connect

    Geballe, T.R.; Wade, R.; Krisciunas, K.; Gatley, I.; Bird, M.C.

    1987-09-01

    The high-velocity wings of the Br-alpha (405 micron) line at the Galactic center have been mapped with a 2.5 arcsec beam and at a velocity resolution of 400 km/s. The peak intensity of the high-velocity line emission is coincident with the position of the source IRS 16 Center. It is suggested that the broad-line emission either is from more than one compact wind source or is the result of an interaction between an ultrahigh velocity wind and slower moving ionized gas in the bar whose trajectory brings it close to the wind source. 31 references.

  17. The structure of the broad-line region in the Seyfert galaxy Markarian 590

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Ali, Babar; Horne, Keith; Bertram, Ray; Lame, Nancy J.; Pogge, Richard W.; Wagner, R. M.

    1993-01-01

    We have undertaken a nine-month study of continuum and emission-line variability in the Seyfert galaxy Mrk 590 in order to determine the structure of the broad-line region. The H-beta variations are found to lag behind those of the optical continuum by about 19 days. We apply a maximum entropy method to solve for the transfer function which relates the line and continuum variability. This analysis suggests that there is a deficit of emission-line response due to gas along the line of sight to the continuum source, as in the case of NGC 5548, although these data do not allow us to reject with confidence models with significant line-of-sight response. We also show that the H-beta line variability is apparently confined to the core of the emission line, as suggested previously by Ferland, Korista, and Peterson (1990).

  18. New candidates for extremely metal-poor emission-line galaxies in the SDSS/BOSS DR10

    NASA Astrophysics Data System (ADS)

    Guseva, N. G.; Izotov, Y. I.; Fricke, K. J.; Henkel, C.

    2015-07-01

    We present a spectroscopic study of eight extremely low-metallicity candidate emission-line galaxies with oxygen abundances possibly below 12 + log O/H = 7.35. These galaxies were selected from data release 10 of the Sloan Digital Sky Survey/Baryon Oscillation Spectroscopic Survey (SDSS/BOSS DR10). We will call these extremely metal-deficient (XMD) galaxies. The electron temperature-sensitive emission line [O iii] λ4363 is detected in three galaxies and marginally detected in two galaxies, allowing for abundance determination by a "direct" method. Because of large uncertainties in the [O iii]λ4363 Å line fluxes, we also calculated oxygen abundance in these galaxies together with the remaining three galaxies using a strong-line semi-empirical method. This method gives oxygen abundances higher than 7.35 for three galaxies with detected [O iii]λ4363 Å line and lower than 7.35 for the remaining five objects of the sample. The newly-discovered galaxies represent excellent targets for follow-up spectroscopic observations with the largest telescopes to improve the oxygen abundance determination and to increase the number of these very rare low-metallicity objects. The extreme location of the most massive and luminous XMD galaxies and XMD candidates in the stellar mass-metallicity diagram implies that these galaxies may be genuine young objects. With stellar masses of up to ~107-108M⊙, the galaxies are not chemically enriched and strongly deviate to lower metallicity as compared to the relation obtained for a large sample of low-redshift, star-forming galaxies. Tables 2-4 are available in electronic form at http://www.aanda.org

  19. SUPERMASSIVE BLACK HOLES, PSEUDOBULGES, AND THE NARROW-LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Mathur, Smita; Peterson, Bradley M.; Fields, Dale; Grupe, Dirk E-mail: peterson@astronomy.ohio-state.edu E-mail: grupe@astro.psu.edu

    2012-08-01

    We present Hubble Space Telescope Advanced Camera for Surveys (ACS) observations of 10 galaxies that host narrow-line Seyfert 1 (NLS1) nuclei, believed to contain relatively smaller mass black holes accreting at high Eddington ratios. We deconvolve each ACS image into a nuclear point source (AGN), a bulge, and a disk, and fitted the bulge with a Sersic profile and the disk with an exponential profile. We find that at least five galaxies can be classified as having pseudobulges. All 10 galaxies lie below the M{sub BH}-L{sub bulge} relation, confirming earlier results. Their locus is similar to that occupied by pseudobulges. This leads us to conclude that the growth of BHs in NLS1s is governed by secular processes rather than merger driven. Active galaxies in pseudobulges point to an alternative track of black hole-galaxy co-evolution. Because of the intrinsic scatter in black hole mass-bulge properties scaling relations caused by a combination of factors such as the galaxy morphology, orientation, and redshift evolution, application of scaling relations to determine BH masses may not be as straightforward as has been hoped.

  20. CRIRES spectroscopy and empirical line-by-line identification of FeH molecular absorption in an M dwarf

    NASA Astrophysics Data System (ADS)

    Wende, S.; Reiners, A.; Seifahrt, A.; Bernath, P. F.

    2010-11-01

    Molecular FeH provides a large number of sharp and isolated absorption lines that can be used to measure radial velocity, rotation, or magnetic field strength with high accuracy. Our aim is to provide an FeH atlas for M-type stars in the spectral region from 986 nm to 1077 nm (Wing-Ford band). To identify these lines in CRIRES spectra of the magnetically inactive, slowly rotating, M5.5 dwarf GJ1002, we calculated model spectra for the selected spectral region with theoretical FeH line data. In general this line list agrees with the observed data, but several individual lines differ significantly in position or in line strength. After identification of as many as possible FeH lines, we corrected the line data for position and line strength to provide an accurate atlas of FeH absorption lines for use in high precision spectroscopy of low mass stars. For all lines, we used a Voigt function to obtain their positions and equivalent widths. Identification with theoretical lines was done by hand. For confirmation of the identified lines, we used statistical methods, cross-correlation techniques, and line intensities. Eventually, we were able to identify FeH lines from the (0,0), (1,0), (1,1), (2,1), (2,2), (3,2), and (4,3) vibrational bands in the observed spectra and correct the positions of the lines if necessary. The deviations between theoretical and observed positions follow a normal distribution approximately around zero. In order to empirically correct the line strength, we determined Teff, instrumental broadening (rotational broadening) and a van der Waals enhancement factor for the FeH lines in GJ1002. We also give the scaling factors for the Einstein A values to correct the line strengths. With the identified lines, we derived rotational temperatures from the line intensities for GJ1002. We conclude that FeH lines can be used for a wide variety of applications in astrophysics. With the identified lines it will be possible for example to characterize magnetically

  1. On-Line Wavelength Calibration of Pulsed Laser for CO2 Differential Absorption LIDAR

    NASA Astrophysics Data System (ADS)

    Xiang, Chengzhi; Ma, Xin; Han, Ge; Liang, Ailin; Gong, Wei

    2016-06-01

    Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO2 detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO2 concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO2 detection. The MWS conducted segmented sampling across the CO2 absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO2 can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.

  2. The host galaxy of the gamma-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    SciTech Connect

    León Tavares, J.; Chavushyan, V.; Puerari, I.; Patiño-Alvarez, V.; Carramiñana, A.; Carrasco, L.; Guichard, J.; Olguín-Iglesias, A.; Valdes, J.; Kotilainen, J.; Añorve, C.; Antón, S.; Karhunen, K.; Sanghvi, J.

    2014-11-01

    We present optical and near-infrared (NIR) imaging data of the radio-loud, narrow-line Seyfert 1 galaxy 1H 0323+342, which shows intense and variable gamma-ray activity discovered by the Fermi satellite with the Large Area Telescope. Near-infrared and optical images are used to investigate the structural properties of the host galaxy of 1H 0323+342; this together with optical spectroscopy allows us to examine its black hole mass. Based on two-dimensional (2D) multiwavelength surface-brightness modeling, we find that statistically, the best model fit is a combination of a nuclear component and a Sérsic profile (n ∼ 2.8). However, the presence of a disk component (with a small bulge n ∼ 1.2) also remains a possibility and cannot be ruled out with the present data. Although at first glance a spiral-arm-like structure is revealed in our images, a 2D Fourier analysis of the imagery suggests that this structure corresponds to an asymmetric ring, likely associated with a recent violent dynamical interaction. We discuss our results in the context of relativistic jet production and galaxy evolution.

  3. Luminosity function of [OII] emission-line galaxies in the MassiveBlack-II simulation

    DOE PAGESBeta

    Park, KwangHo; Khandai, Nishikanta; Matteo, Tiziana Di; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M.; Feng, Yu

    2015-09-18

    We examine the luminosity function (LF) of [OII] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [OII] emission line luminosity L([OII]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [OII] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([OII]) = 1043.0 erg s–1 while the low redshifts (z ≤ 0.3) show an excessmore » in the prediction of bright [OII] galaxies, but still displaying a good match with observations below L([OII]) = 1041.6 erg s–1. Based on the validity in reproducing the properties of [OII] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [OII] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from –3 to –2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)–1 at z ≤ 2 while the faint end evolves as ~3(z + 1)–1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [OIII] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. As a result, we show that the auto-correlation function of [OII] and [OIII] emitting galaxies shows a rapid evolution from z = 2 to 1.« less

  4. Luminosity function of [O II] emission-line galaxies in the MassiveBlack-II simulation

    NASA Astrophysics Data System (ADS)

    Park, KwangHo; Di Matteo, Tiziana; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M.; Feng, Yu; Khandai, Nishikanta

    2015-11-01

    We examine the luminosity function (LF) of [O II] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [O II] emission line luminosity L([O II]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [O II] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([O II]) = 1043.0 erg s-1 while the low redshifts (z ≤ 0.3) show an excess in the prediction of bright [O II] galaxies, but still displaying a good match with observations below L([O II]) = 1041.6 erg s-1. Based on the validity in reproducing the properties of [O II] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [O II] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from -3 to -2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)-1 at z ≤ 2 while the faint end evolves as ˜3(z + 1)-1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [O III] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. Finally, we show that the auto-correlation function of [O II] and [O III] emitting galaxies shows a rapid evolution from z = 2 to 1.

  5. Space Telescope and Optical Reverberation Mapping Project VI. Variations of the Intrinsic Absorption Lines in NGC 5548

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard A.; Agn Storm Team

    2015-01-01

    The AGN STORM collaboration monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, with observations spanning the hard X-ray to mid-infrared wavebands. The core of this campaign was an intensive HST COS program, which obtained 170 far-ultraviolet spectra at approximately daily intervals, with twice-per-day monitoring of the X-ray, near-UV, and optical bands during much of the same period using Swift. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow associated absorption lines in the UV spectrum of NGC 5548 remain strong. The lower-ionization transitions that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. Their depths over the longer term, however, also respond to the strength of the soft X-ray obscuration, indicating that the soft X-ray obscurer has a significant influence on the ionizing UV continuum that is not directly tracked by the observable UV continuum itself.

  6. Ages and Metallicities of Early-Type Void Galaxies from Line Strength Measurements

    NASA Astrophysics Data System (ADS)

    Wegner, Gary; Grogin, Norman A.

    2008-07-01

    We present spectroscopic observations of 26 galaxies of type E and S0, based on their blue morphologies, located in voids by the study of Grogin & Geller in 1999. Measurements of redshift, velocity dispersion, and four Lick line indices, Mg b , Fe5270, Fe5335, and Hβ with their errors are given for all of these galaxies, along with Hβ, [O III], Hα, and [N II] emission line strengths for a subset of these objects. These sources are brighter than M* for low-density regions and tend to be bluer than their counterpart early-type objects in high-density regions. Using the models of Thomas et al., developed in 2003, gives metal abundances and ages with a median α enhancement, [α/Fe] = +0.13, and median metal abundance, [Z/H] = +0.22, values comparable to those found for E and S0 galaxies in clusters, but with a wider spread in [Z/H] toward low values. If the emission line subsample is interpreted as younger, the proportion of young objects is higher than for early types in higher-density regions. There is a significant incidence of sources in the sample with emission lines in their spectra (46% with Hβ and [O III] and 69% with Hα or [N II]) as well as shells and rings in their morphologies (19%). The diagnostic log [{N\\,\\mathsc{ii}}]/ H\\alpha, log [{O\\,\\mathsc{iii}}]/ H\\beta diagram places 10 of 12 emission line galaxies in or near the star-forming and liner region and two among the Seyferts. The Hα fluxes indicate star-formation rates of 0.2-1.0 M sun yr-1. The percentage of these early-type void galaxies undergoing star formation appears to be higher compared to their cluster counterparts and the range of ages wider.

  7. SPATIALLY RESOLVED HST GRISM SPECTROSCOPY OF A LENSED EMISSION LINE GALAXY AT z {approx} 1

    SciTech Connect

    Frye, Brenda L.; Hurley, Mairead; Bowen, David V.; Meurer, Gerhardt; Sharon, Keren; Straughn, Amber; Coe, Dan; Broadhurst, Tom; Guhathakurta, Puragra

    2012-07-20

    We take advantage of gravitational lensing amplification by A1689 (z 0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i{sub 775} = 27.3 via slitless grism spectroscopy. One ELG (at z = 0.7895) is very bright owing to lensing magnification by a factor of Almost-Equal-To 4.5. Several Balmer emission lines (ELs) detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M{sub *} Almost-Equal-To 2 Multiplication-Sign 10{sup 9} M{sub Sun }) with a high specific star formation rate ( Almost-Equal-To 20 Gyr{sup -1}). From the blue ELs we measure a gas-phase oxygen abundance consistent with solar (12+log(O/H) = 8.8 {+-} 0.2). We break the continuous line-emitting region of this giant arc into seven {approx}1 kpc bins (intrinsic size) and measure a variety of metallicity-dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by {approx}1 kpc have a placement on the blue H II region excitation diagram with f ([O III])/f (H{beta}) and f ([Ne III])/f (H{beta}) that can be fitted by an active galactic nucleus (AGN). This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxy's extended tail, possibly instigated by a recent galaxy interaction.

  8. Predicting the Redshift 2 H-Alpha Luminosity Function Using [OIII] Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.; Bagley, Micaela; Beck, Melanie; Ross, Nathaniel R.; Rutkowski, Michael; Wang, Yun

    2015-01-01

    Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H-alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8 - 1.65 micrometers wavelength range and allowing the detection of H-alpha emitters up to z approximately equal to 1.5 and [OIII] emitters to z approximately equal to 2.3. We derive the H-alpha-[OIII] bivariate line luminosity function for WISP galaxies at z approximately equal to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the H-alpha luminosity function from exclusively fitting [OIII] data. Using the z approximately equal to 2 [OIII] line luminosity function, and assuming that the relation between H-alpha and [OIII] luminosity does not change significantly over the redshift range, we predict the H-alpha number counts at z approximately equal to 2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7 less than z less than 2, we expect approximately 3000 galaxies per sq deg for a flux limit of 3 x 10(exp -16) ergs per sec per sq cm (the proposed depth of Euclid galaxy redshift survey) and approximately 20,000 galaxies per sq deg for a flux limit of approximately 10(exp -16) ergs per sec per sq cm (the baseline depth of WFIRST galaxy redshift survey).

  9. VLT spectroscopy of low-metallicity emission-line galaxies: abundance patterns and abundance discrepancies

    NASA Astrophysics Data System (ADS)

    Guseva, N. G.; Izotov, Y. I.; Stasińska, G.; Fricke, K. J.; Henkel, C.; Papaderos, P.

    2011-05-01

    Context. We present deep spectroscopy of a large sample of low-metallicity emission-line galaxies. Aims: The main goal of this study is to derive element abundances in these low-metallicity galaxies. Methods: We analyze 121 VLT spectra of H ii regions in 46 low-metallicity emission-line galaxies. Of these spectra 83 are archival VLT/FORS1+UVES spectra of H ii regions in 31 low-metallicity emission-line galaxies that are studied for the first time with standard direct methods to determine the electron temperatures, the electron number densities, and the chemical abundances. Results: The oxygen abundance of the sample lies in the range 12 + log O/H = 7.2-8.4. We confirm previous findings that Ne/O increases with increasing oxygen abundance, likely because of a higher depletion of oxygen in higher-metallicity galaxies. The Fe/O ratio decreases from roughly solar at the lowest metallicities to about one tenth of solar, indicating that the degree of depletion of iron into dust grains depends on metallicity. The N/O ratio in extremely low-metallicity galaxies with 12 + log O/H < 7.5 shows a slight increase with decreasing oxygen abundance, which could be the signature of enhanced production of primary nitrogen by rapidly rotating stars at low metallicity. We present the first empirical relation between the electron temperature derived from [S iii]λ6312/λ9069 or [N ii]λ5755/λ6583 and the one derived from [O iii]λ4363/λ(4959+5007) in low-metallicity galaxies. We also present an empirical relation between te derived from [O ii]λ3727/(λ7320 + λ7330) or [S ii]λ4068/(λ6717 + λ6730) and [O iii]λ4363/λ(4959+5007). The electron number densities Ne(Cl iii) and Ne(Ar iv) were derived in a number of objects and are found to be higher than Ne(O ii) and Ne(S ii). This has potential implications for the derivation of the pregalactic helium abundance. In a number of objects, the abundances of C++ and O++ could be derived from recombination lines. Our study confirms the

  10. DISCOVERY OF ULTRA-FAST OUTFLOWS IN A SAMPLE OF BROAD-LINE RADIO GALAXIES OBSERVED WITH SUZAKU

    SciTech Connect

    Tombesi, F.; Sambruna, R. M.; Mushotzky, R. F.; Braito, V.; Ballo, L.; Cappi, M.

    2010-08-10

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v {approx_equal} 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log {xi} {approx_equal} 4-5.6 erg s{sup -1} cm and column densities of N {sub H} {approx_equal} 10{sup 22}-10{sup 23} cm{sup -2}. These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within {approx}0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  11. Discovery of Ultra-fast Outflows in a Sample of Broad-line Radio Galaxies Observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Ballo, L.; Gofford, J.; Cappi, M.; Mushotzky, R. F.

    2010-08-01

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ~= 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ~= 4-5.6 erg s-1 cm and column densities of N H ~= 1022-1023 cm-2. These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ~0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  12. The interstellar absorption-line spectrum of Mu Ophiuchi

    NASA Technical Reports Server (NTRS)

    Cardelli, J.; Boehm-Vitense, E.

    1982-01-01

    UV interstellar lines have been measured on high-resolution, long- and short-wavelength IUE spectra of the B8 V star Mu Oph. Column densities for the observed atoms and ions have been determined as well as turbulent velocities. The interstellar spectrum of Mu Oph is similar to the ones for Rho Oph and Zeta Oph. The ionization equilibria of several elements give consistent limits for the electron density. The C I line arising from different fine-structure levels are studied to yield estimates on the physical conditions in the cloud. Relative depletion of elements in the cloud seen in the interstellar spectrum of Mu Oph follows the same pattern as seen in the interstellar spectra of Zeta Oph and six other stars in the Rho Oph cloud complex.

  13. Broadening of infrared absorption lines at reduced temperatures - Carbon dioxide.

    NASA Technical Reports Server (NTRS)

    Tubbs, L. D.; Williams, D.

    1972-01-01

    An evacuated high-resolution Czerny-Turner spectrograph, which is described in this paper, has been used to determine the strengths S and self-broadening parameters for lines in the R branch of the nu (sub 3) fundamental of carbon dioxide at 298 and at 207 K. The values of self-broadening parameters at 207 K are greater than those to be expected on the basis of a fixed collision cross section.

  14. INTEGRAL and RXTE Observations of Broad-Line Radio Galaxy 3C 111

    NASA Astrophysics Data System (ADS)

    Chernyakova, M.; Favre, P.; Courvoisier, T. J.-L.; Lutovinov, A.; Molkov, S.; Beckmann, V.; Gros, A.; Gehrels, N.; Prodiut, N.; Walter, R.; Zdziarski, A.

    2004-10-01

    3C 111 is an X-ray bright broad-line radio galaxy which is classified as a Fanaroff-Riley type II source with a double-lobe/single jet morphology, and re- ported superluminal motion. It is a well-known X- ray source, and was observed by every major X-ray observatory since HEAO-1. In this paper we present the results of the RXTE and INTEGRAL data anal- ysis and compare them with the results of the previ- ous observations. Key words: X rays: radio galaxies; X rays: individ- uals: 3C 111.

  15. OXYGEN METALLICITY DETERMINATIONS FROM OPTICAL EMISSION LINES IN EARLY-TYPE GALAXIES

    SciTech Connect

    Athey, Alex E.; Bregman, Joel N. E-mail: jbregman@umich.edu

    2009-05-01

    We measured the oxygen abundances of the warm (T {approx} 10{sup 4} K) phase of gas in seven early-type galaxies through long-slit observations. A template spectra was constructed from galaxies void of warm gas and subtracted from the emission-line galaxies, allowing for a clean measurement of the nebular lines. The ratios of the emission lines are consistent with photoionization, which likely originates from the ultraviolet flux of postasymototic giant branch stars. We employ H II region photoionization models to determine a mean oxygen metallicity of 1.01 {+-} 0.50 solar for the warm interstellar medium (ISM) in this sample. This warm ISM 0.5-1.5 solar metallicity is consistent with modern determinations of the metallicity in the hot (T {approx} 10{sup 6}-10{sup 7} K) ISM and the upper range of this warm ISM metallicity is consistent with stellar population metallicity determinations. A solar metallicity of the warm ISM favors an internal origin for the warm ISM such as asymptotic giant branch mass loss within the galaxy.

  16. The Milky Way's Hot Gas Kinematics: Signatures in Current and Future OVII Absorption Line Observations

    NASA Astrophysics Data System (ADS)

    Miller, Matthew J.; Hodges-Kluck, Edmund J.; Bregman, Joel N.

    2016-02-01

    Detections of z ≈ 0 oxygen absorption and emission lines indicate the Milky Way hosts a hot (˜ {10}6 K), low-density plasma extending ≳ 50 {{kpc}} into the Mily Way’s halo. Current X-ray telescopes cannot resolve the line profiles, but the variation of their strengths on the sky constrains the radial gas distribution. Interpreting the O vii Kα absorption line strengths has several complications, including optical depth and line of sight velocity effects. Here, we present model absorption line profiles accounting for both of these effects to show the lines can exhibit asymmetric structures and be broader than the intrinsic Doppler width. The line profiles encode the hot gas rotation curve, the net inflow or outflow of hot gas, and the hot gas angular momentum profile. We show how line of sight velocity effects impact the conversion between equivalent width and the column density, and provide modified curves of growth accounting for these effects. As an example, we analyze the LMC sight line pulsar dispersion measure and O vii equivalent width to show the average gas metallicity is ≳ 0.6{Z}⊙ and b ≳ 100 km s-1. Determining these properties offers valuable insights into the dynamical state of the Milky Way’s hot gas, and improves the line strength interpretation. We discuss future strategies to observe these effects with an instrument that has a spectral resolution of about 3000, a goal that is technically possible today.

  17. Scattering of emission lines in galaxy cluster cores: measuring electron temperature

    NASA Astrophysics Data System (ADS)

    Khedekar, S.; Churazov, E.; Sazonov, S.; Sunyaev, R.; Emsellem, E.

    2014-06-01

    The central galaxies of some clusters can be strong emitters in the Lyα and Hα lines. This emission may arise either from the cool/warm gas located in the cool core of the cluster or from the bright AGN within the central galaxy. The luminosities of such lines can be as high as 1042-1044 erg s-1. This emission originating from the core of the cluster will get Thomson scattered by hot electrons of the intra-cluster medium with an optical depth ˜0.01 giving rise to very broad (Δλ/λ ˜ 15 per cent) features in the scattered spectrum. We discuss the possibility of measuring the electron density and temperature using information on the flux and width of the highly broadened line features.

  18. Absorption variability as a probe of the multiphase interstellar media surrounding active galaxies

    NASA Astrophysics Data System (ADS)

    Macquart, Jean-Pierre; Tingay, Steven

    2016-08-01

    We examine a model for the variable free-free and neutral hydrogen absorption inferred towards the cores of some compact radio galaxies in which a spatially fluctuating medium drifts in front of the source. We relate the absorption-induced intensity fluctuations to the statistics of the underlying opacity fluctuations. We investigate models in which the absorbing medium consists of either discrete clouds or a power-law spectrum of opacity fluctuations. We examine the variability characteristics of a medium comprised of Gaussian-shaped clouds in which the neutral and ionized matter are co-located, and in which the clouds comprise spherical constant-density neutral cores enveloped by ionized sheaths. The cross-power spectrum indicates the spatial relationship between neutral and ionized matter, and distinguishes the two models, with power in the Gaussian model declining as a featureless power-law, but that in the ionized sheath model oscillating between positive and negative values. We show how comparison of the HI and free-free power spectra reveals information on the ionization and neutral fractions of the medium. The background source acts as a low-pass filter of the underlying opacity power spectrum, which limits temporal fluctuations to frequencies $\\omega < \\dot{\\theta}_v / \\theta_{\\rm src}$, where $\\dot{\\theta}_v$ is the angular drift speed of the matter in front of the source, and it quenches the observability of opacity structures on scales smaller than the source size $\\theta_{\\rm src}$. For drift speeds of $\\sim 10^3\\,$km s$^{-1}$ and source brightness temperatures $\\sim 10^{12}\\,$K, this limitation confines temporal opacity fluctuations to timescales of order several months to decades.

  19. Absorption variability as a probe of the multiphase interstellar media surrounding active galaxies

    NASA Astrophysics Data System (ADS)

    Macquart, Jean-Pierre; Tingay, Steven

    2016-08-01

    We examine a model for the variable free-free and neutral hydrogen absorption inferred towards the cores of some compact radio galaxies in which a spatially fluctuating medium drifts in front of the source. We relate the absorption-induced intensity fluctuations to the statistics of the underlying opacity fluctuations. We investigate models in which the absorbing medium consists of either discrete clouds or a power-law spectrum of opacity fluctuations. We examine the variability characteristics of a medium comprised of Gaussian-shaped clouds in which the neutral and ionized matter are co-located, and in which the clouds comprise spherical constant-density neutral cores enveloped by ionized sheaths. The cross-power spectrum indicates the spatial relationship between neutral and ionized matter, and distinguishes the two models, with power in the Gaussian model declining as a featureless power-law, but that in the ionized sheath model oscillating between positive and negative values. We show how comparison of the H I and free-free power spectra reveals information on the ionization and neutral fractions of the medium. The background source acts as a low-pass filter of the underlying opacity power spectrum, which limits temporal fluctuations to frequencies ω ≲ dot{θ }_v/θ _src, where dot{θ }_v is the angular drift speed of the matter in front of the source, and it quenches the observability of opacity structures on scales smaller than the source size θsrc. For drift speeds of ˜103 km s-1 and source brightness temperatures ˜1012 K, this limitation confines temporal opacity fluctuations to time-scales of order several months to decades.

  20. Damped Lyman-alpha absorption by disk galaxies with large redshifts. IV - More intermediate-resolution spectroscopy

    NASA Technical Reports Server (NTRS)

    Wolfe, Arthur M.; Turnshek, David A.; Lanzetta, Kenneth M.; Lu, Limin

    1993-01-01

    Intermediate-resolution spectra of six QSOs exhibiting seven Ly-alpha absorption troughs that are candidates for damped Ly-alpha absorption lines are presented. The metal content of the confirmed damped systems is investigated by examining the metal-line velocity profiles, and by performing curve-of-growth analyses for four of the six confirmed damped systems. The low-ionization lines associated with the z(metals) = 2.0399 damped system toward Q0458-020 have velocity widths up to 10 times wider than the width of the 21-cm absorption feature found at the same redshift. Since the 21-cm absorption arises in a low velocity dispersion layer of H I that extends more than 8/h kpc transverse to the line of sight, the H I absorption cannot arise from the same clouds responsible for the bulk of the metal-line absorption. This is strong evidence for a two-component model consisting of high column density 'quiescent' gas which gives rise to damped Ly-alpha and 21-cm absorption, and low column density 'turbulent' gas which dominates equivalent widths of saturated metal lines.

  1. Broad-line region structure and kinematics in the radio galaxy 3C 120

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.; Ulbrich, K.; Zetzl, M.; Kaspi, S.; Haas, M.

    2014-06-01

    Context. Broad emission lines originate in the surroundings of supermassive black holes in the centers of active galactic nuclei (AGN). These broad-line emitting regions are spatially unresolved even for the nearest AGN. The origin and geometry of broad-line region (BLR) gas and their connection with geometrically thin or thick accretion disks is of fundamental importance for the understanding of AGN activity. Aims: One method to investigate the extent, structure, and kinematics of the BLR is to study the continuum and line profile variability in AGN. We selected the radio-loud Seyfert 1 galaxy 3C 120 as a target for this study. Methods: We took spectra with a high signal-to-noise ratio of 3C 120 with the 9.2 m Hobby-Eberly Telescope between Sept. 2008 and March 2009. In parallel, we photometrically monitored the continuum flux at the Wise observatory. We analyzed the continuum and line profile variations in detail (1D and 2D reverberation mapping) and modeled the geometry of the line-emitting regions based on the line profiles. Results: We show that the BLR in 3C 120 is stratified with respect to the distance of the line-emitting regions from the center with respect to the line widths (FWHM) of the rms profiles and with respect to the variability amplitude of the emission lines. The emission line wings of Hα and Hβ respond much faster than their central region. This is explained by accretion disk models. In addition, these lines show a stronger response in the red wings. However, the velocity-delay maps of the helium lines show a stronger response in the blue wing. Furthermore, the He ii λ4686 line responds faster in the blue wing in contradiction to observations made one and a half years later when the galaxy was in a lower state. The faster response in the blue wing is an indication for central outflow motions when this galaxy was in a bright state during our observations. The vertical BLR structure in 3C 120 coincides with that of other AGN. We confirm the

  2. Integrated Ultraviolet Spectra and Line Indices of M31 Globular Clusters and the Cores of Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Ponder, Jerry M.; Burstein, David; O'Connell, Robert W.; Rose, James A.; Frogel, Jay A.; Wu, Chi-Chao; Crenshaw, D. Michael; Rieke, Marcia J.; Tripicco, Michael

    1998-11-01

    We present observations of the integrated light of four M31 globular clusters (MIV, MII, K280, and K58) and of the cores of six elliptical galaxies (NGC 3605, 3608, 5018, 5831, 6127, and 7619) made with the Faint Object Spectrograph on the Hubble Space Telescope. The spectra cover the range 2200-4800 Å at a resolution of 8 Å with signal-to-noise ratio of more than 20 and flux accuracy of ~5%. To these data we add from the literature IUE observations of the dwarf elliptical galaxy M32, Galactic globular clusters, and Galactic stars. The stellar populations in these systems are analyzed with the aid of mid-UV and near-UV colors and absorption line strengths. Included in the measured indices is the key NH feature at 3360 Å. We compare these line index measures with the 2600 - 3000 colors of these stars and stellar populations. We find that the M31 globular clusters, Galactic globular clusters/Galactic stars, and elliptical galaxies represent three distinct stellar populations, based on their behavior in color-line strength correlations involving Mg II, NH, CN, and several UV metallic blends. In particular, the M31 globular cluster MIV, as metal-poor as the Galactic globular M92, shows a strong NH 3360 Å feature. Other line indices, including the 3096 Å blend that is dominated by lines of Mg I and Al I, show intrinsic differences as well. We also find that the broadband line indices often employed to measure stellar population differences in faint objects, such as the 4000 Å and the Mg 2800 breaks, are disappointingly insensitive to these stellar population differences. We find that the hot (T > 20,000 K) stellar component responsible for the ``UV upturn'' at shorter wavelengths can have an important influence on the mid-UV spectral range (2400-3200 Å) as well. The hot component can contribute over 50% of the flux at 2600 Å in some cases and affects both continuum colors and line strengths. Mid-UV spectra of galaxies must be corrected for this effect before

  3. Line shape of 57Co sources exhibiting self absorption

    NASA Astrophysics Data System (ADS)

    Spiering, H.; Ksenofontov, V.; Leupold, O.; Kusz, J.; Deák, L.; Németh, Z.; Bogdán, C.; Bottyán, L.; Nagy, D. L.

    2016-12-01

    The effect of selfabsorption in Mössbauer sources is studied in detail. Spectra were measured using an old 57 C o/ R h source of 74 M B q activity with an original activity of ca. 3.7 G B q and a 0.15 G B q 57 C o/ α - F e source magnetized by an in-plane magnetic field of 0.2 T. The 57 C o/ α - F e source of a thickness of 25 μ was used both from the active and the inactive side giving cause to very different selfabsorption effects. The absorber was a single crystal of ferrous ammonium sulphate hexahydrate (FAS). Its absorption properties were taken over from a detailed study (Bull et al., Hyperfine Interact. 94(1-3), 1; Spiering et al. 2). FAS (space group P21/c) crystallizes as flat plates containing the (overline {2}01) plane. The γ-direction was orthogonal to the crystal plate. The 57 C o atoms of the 57 C o/ R h source were assumed to be homogeneously distributed over a 6 μ thick Rh foil and to follow a one dimensional diffusion profile in the 25 μ Fe-foil. The diffusion length was fitted to 10 μ. The theory follows the Blume-Kistner equations for forward scattering (Blume and Kistner, Phys. Rev. 171, 417, 3) by integrating over the source sampled up to 128 layers.

  4. [C II] LINE EMISSION IN MASSIVE STAR-FORMING GALAXIES AT z = 4.7

    SciTech Connect

    Wagg, J.; Aravena, M.; Martin, S.; Wiklind, T.; Peck, A.; Barkats, D.; Cortes, J. R.; Hills, R.; Hodge, J.; Impellizzeri, C. M V.; Rawlings, M. G.; Carilli, C. L.; Espada, D.; Iono, D.; Riechers, D.; Walter, F.; Wootten, A.; Leroy, A.; Maiolino, R.; McMahon, R. G.; and others

    2012-06-20

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C II] 157.7 {mu}m fine structure line and thermal dust continuum emission from a pair of gas-rich galaxies at z = 4.7, BR1202-0725. This system consists of a luminous quasar host galaxy and a bright submillimeter galaxy (SMG), while a fainter star-forming galaxy is also spatially coincident within a 4'' (25 kpc) region. All three galaxies are detected in the submillimeter continuum, indicating FIR luminosities in excess of 10{sup 13} L{sub Sun} for the two most luminous objects. The SMG and the quasar host galaxy are both detected in [C II] line emission with luminosities L{sub [CII]} = (10.0 {+-} 1.5) Multiplication-Sign 10{sup 9} L{sub Sun} and L{sub [CII]} = (6.5 {+-} 1.0) Multiplication-Sign 10{sup 9} L{sub Sun }, respectively. We estimate a luminosity ratio L{sub [CII]}/L{sub FIR} = (8.3 {+-} 1.2) Multiplication-Sign 10{sup -4} for the starburst SMG to the north and L{sub [CII]}/L{sub FIR} = (2.5 {+-} 0.4) Multiplication-Sign 10{sup -4} for the quasar host galaxy, in agreement with previous high-redshift studies that suggest lower [C II]-to-FIR luminosity ratios in quasars than in starburst galaxies. The third fainter object with a flux density S{sub 340GHz} = 1.9 {+-} 0.3 mJy is coincident with a Ly{alpha} emitter and is detected in HST ACS F775W and F814W images but has no clear counterpart in the H band. Even if this third companion does not lie at a redshift similar to BR1202-0725, the quasar and the SMG represent an overdensity of massive, infrared luminous star-forming galaxies within 1.3 Gyr of the big bang.

  5. Discovery of Broad Soft X-ray Absorption Lines from the Quasar Wind in PDS 456

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Braito, V.; Nardini, E.; Behar, E.; O’Brien, P. T.; Tombesi, F.; Turner, T. J.; Costa, M. T.

    2016-06-01

    High-resolution soft X-ray spectroscopy of the prototype accretion disk wind quasar, PDS 456, is presented. Here, the XMM-Newton reflection grating spectrometer spectra are analyzed from the large 2013–2014 XMM-Newton campaign, consisting of five observations of approximately 100 ks in length. During the last observation (OBS. E), the quasar is at a minimum flux level, and broad absorption line (BAL) profiles are revealed in the soft X-ray band, with typical velocity widths of {σ }{{v}}˜ {{10,000}} km s‑1. During a period of higher flux in the third and fourth observations (OBS. C and D, respectively), a very broad absorption trough is also present above 1 keV. From fitting the absorption lines with models of photoionized absorption spectra, the inferred outflow velocities lie in the range ˜ 0.1{--}0.2c. The absorption lines likely originate from He and H-like neon and L-shell iron at these energies. A comparison with earlier archival data of PDS 456 also reveals a similar absorption structure near 1 keV in a 40 ks observation in 2001, and generally the absorption lines appear most apparent when the spectrum is more absorbed overall. The presence of the soft X-ray BALs is also independently confirmed by an analysis of the XMM-Newton EPIC spectra below 2 keV. We suggest that the soft X-ray absorption profiles could be associated with a lower ionization and possibly clumpy phase of the accretion disk wind, where the latter is known to be present in this quasar from its well-studied iron K absorption profile and where the wind velocity reaches a typical value of 0.3c.

  6. DOUBLE-PEAKED NARROW EMISSION-LINE GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY. I. SAMPLE AND BASIC PROPERTIES

    SciTech Connect

    Ge Junqiang; Hu Chen; Wang Jianmin; Zhang Shu; Bai Jinming

    2012-08-01

    Recently, much attention has been paid to double-peaked narrow emission-line (NEL) galaxies, some of which are suggested to be related to merging galaxies. We make a systematic search to build the largest sample of these sources from Data Release 7 of the Sloan Digital Sky Survey (SDSS). With reasonable criteria for fluxes, FWHMs of the emission lines, and separations of the peaks, we select 3030 double-peaked NEL galaxies. In light of the existence of broad Balmer lines and the locations of the two components of double-peaked NELs distinguished by the Kauffmann et al. criteria in the Baldwin-Phillips-Terlevich diagram, we find that there are 81 Type I active galactic nuclei (AGNs), 837 double Type II AGNs (2-Type II), 708 galaxies with double star-forming components (2-SF), 400 with mixed star-forming and Type II AGN components (Type II + SF), and 1004 unknown-type objects. As a by-product, a sample of galaxies (12,582) with asymmetric or top-flat profiles of emission lines is established. After visually inspecting the SDSS images of the two samples, we find 54 galaxies with dual cores. The present samples can be used to study the dynamics of merging galaxies, the triggering mechanism of black hole activity, the hierarchical growth of galaxies, and the dynamics of narrow line regions driven by outflows and a rotating disk.

  7. Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    SciTech Connect

    Jouvel, S.; et al.

    2015-09-23

    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a mean redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6galaxy bias averaged on scales of 1 and 10~Mpc/h of 1.72 \\pm 0.1 for the bright sample and of 1.78 \\pm 0.12 for the faint sample. The error on the galaxy bias have been obtained propagating the errors in the correlation function to the fitted parameters. This redshift evolution for the galaxy bias is in agreement with theoretical expectations for a galaxy population with MB-5\\log h < -21.0. We note that biasing is derived from the galaxy clustering relative to a model for the mass fluctuations. We investigate the quality of the DES photometric redshifts and find that the outlier fraction can be reduced using a comparison between template fitting and neural network, or using a random forest algorithm.

  8. Damped Lyman-alpha absorption by disk galaxies with large redshifts. III. Intermediate-resolution spectroscopy

    SciTech Connect

    Turnshek, D.A.; Wolfe, A.M.; Lanzetta, K.M.; Briggs, F.H.; Cohen, R.D.; Multiple Mirror Telescope Observatory, Tucson, AZ; Pittsburgh Univ., PA; California Univ., La Jolla )

    1989-09-01

    New intermediate-resolution spectroscopy for six members of a sample of 68 moderate- to high-redshift QSOs is presented. Evidence is reported which indicates that seven strong absorption features in the QSO spectra are due to damped Ly-alpha absorption. A standard curve-of-growth analysis on five of the damped systems is performed, and relevant properties are tabulated and discussed. Six of the seven damped Ly-alpha systems have H I column densities of 2 x 10 to the 20th/sq cm or larger, while the remaining system has an H I column density of about 10 to the 20th/sq cm. It is suggested that damped Ly-alpha systems arise when a sight line intercepts a high-redshift protogalaxy disk containing a quiescent cloud component characterized by high column density and low effective velocity dispersion. At the same time, the sight line usually intercepts a broader turbulent component, which is identified as the halo, characterized by much lower column density and higher effective velocity dispersion. 42 refs.

  9. Radio continuum detection in blue early-type weak-emission-line galaxies

    NASA Astrophysics Data System (ADS)

    Paswan, A.; Omar, A.

    2016-06-01

    The star formation rates (SFRs) in weak-emission-line (WEL) galaxies in a volume-limited (0.02 < z < 0.05) sample of blue early-type galaxies (ETGs) identified from the Sloan Digital Sky Survey, are constrained here using 1.4-GHz radio continuum emission. The direct detection of 1.4-GHz radio continuum emission is made in eight WEL galaxies and a median stacking is performed on 57 WEL galaxies using Very Large Array (VLA) Faint Images of Radio Sky at Twenty-cm (FIRST) images. The median stacked 1.4-GHz flux density and luminosity are estimated as 79 ± 19 μJy and 0.20 ± 0.05 × 1021 W Hz-1, respectively. The radio far-infrared correlation in four WEL galaxies suggests that the radio continuum emission from WEL galaxies is most likely a result of star formation activities. The median SFR for WEL galaxies is estimated as 0.23 ± 0.06 M⊙ yr-1, which is much less than SFRs (0.5-50 M⊙ yr-1) in purely star-forming blue ETGs. The SFRs in blue ETGs are found to be correlated with their stellar velocity dispersions (σ) and decreasing gradually beyond σ of ˜100 km s-1. This effect is most likely linked to the growth of a black hole and the suppression of star formation via active galactic nucleus (AGN) feedback. The colour differences between star-forming and WEL subtypes of blue ETGs appear to be driven to a large extent by the level of current star formation activities. In a likely scenario of an evolutionary sequence between subtypes, the observed colour distribution in blue ETGs can be explained best in terms of fast evolution through AGN feedback.

  10. Neutral hydrogen in elliptical galaxies with nuclear radio sources and optical emission lines

    NASA Technical Reports Server (NTRS)

    Dressel, L. L.; Bania, T. M.; Oconnell, R. W.

    1982-01-01

    An H I detection survey of eleven elliptical galaxies with powerful nuclear radio sources was conducted, using the 305 m antenna of Arecibo Observatory, to test the hypothesis that large H I mass is conductive to the formation of nuclear radio sources in elliptical galaxies. The H I was detected in emission in UGC 09114 and was possibly detected in absorption in UGC 06671. Observations of the remaining galaxies were not sensitive enough to support or refute the hypothesis. Data was combined from other H I surveys and spectroscopic surveys to search for correlations of H I mass with other galactic properties and environmental conditions. Strong correlations of (O II) lambda 3727 emission with H I content and with nuclear radio power were found. The latter two properties may simply indicate, respectively, whether a significant amount of gas is available to be ionized and whether energy is provided by nuclear activity for ionization. No dependence of H I content on optical luminosity or on degree of isolation from other galaxies was found.

  11. Chemical abundances in high-redshift galaxies: a powerful new emission line diagnostic

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Kewley, Lisa J.; Sutherland, Ralph S.; Nicholls, David C.

    2016-02-01

    This Letter presents a new, remarkably simple diagnostic specifically designed to derive chemical abundances for high redshift galaxies. It uses only the Hα, [N ii] and [S ii] emission lines, which can usually be observed in a single grating setting, and is almost linear up to an abundance of 12+log (O/H) = 9.05. It can be used over the full abundance range encountered in high redshift galaxies. By its use of emission lines located close together in wavelength, it is also independent of reddening. Our diagnostic depends critically on the calibration of the N/O ratio. However, by using realistic stellar atmospheres combined with the N/O vs. O/H abundance calibration derived locally from stars and H ii regions, and allowing for the fact that high-redshift H ii regions have both high ionisation parameters and high gas pressures, we find that the observations of high-redshift galaxies can be simply explained by the models without having to invoke arbitrary changes in N/O ratio, or the presence of unusual quantities of Wolf-Rayet stars in these galaxies.

  12. The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-06-01

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ˜ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ˜ 0 to ‑3.2 ≲ log U ≲ ‑3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  13. H{beta} LINE WIDTHS AS AN ORIENTATION INDICATOR FOR LOW-IONIZATION BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Punsly, Brian; Zhang Shaohua E-mail: brian.punsly@comdev-usa.co

    2010-12-20

    There is evidence from radio-loud quasars to suggest that the distribution of the H{beta} broad emission line (BEL) gas is arranged in a predominantly planar orientation, and this result may well also apply to radio-quiet quasars. This would imply that the observed FWHM of the H{beta} BELs is dependent on the orientation of the line of sight to the gas. If this view is correct then we propose that the FWHM can be used as a surrogate, in large samples, to determine the line of sight to the H{beta} BELs in broad absorption line quasars (BALQSOs). The existence of broad UV absorption lines (BALs) means that the line of sight to BALQSOs must also pass through the BAL out-flowing gas. It is determined that there is a statistically significant excess of narrow-line profiles in the SDSS DR7 archival spectra of low-ionization broad absorption line quasars (LoBALQSOs), indicating that BAL gas flowing close to the equatorial plane does not commonly occur in these sources. We also find that the data is not well represented by random lines of sight to the BAL gas. Our best fit indicates two classes of LoBALQSOs, the majority ({approx}2/3) are polar outflows that are responsible for the enhanced frequency of narrow-line profiles, and the remainder are equatorial outflows. We further motivated the line of sight explanation of the narrow-line excess in LoBALQSOs by considering the notion that the skewed distribution of line profiles is driven by an elevated Eddington ratio in BALQSOs. We constructed a variety of control samples comprised of non-LoBALQSOs matched to a de-reddened LoBALQSO sample in redshift, luminosity, black hole mass, and Eddington ratio. It is demonstrated that the excess of narrow profiles persists within the LoBALQSO sample relative to each of the control samples with no reduction of the statistical significance. Thus, we eliminate the possibility that the excess narrow lines seen in the LoBALQSOs arise from an enhanced Eddington ratio.

  14. Laboratory verification of on-line lithium analysis using ultraviolet absorption spectrometry

    SciTech Connect

    Beemster, B.J.; Schlager, K.J.; Schloegel, K.M.; Kahle, S.J.; Fredrichs, T.L.

    1992-12-31

    Several laboratory experiments were performed to evaluate the capability of absorption spectrometry in the ultraviolet-visible wavelength range with the objective of developing methods for on-line analysis of lithium directly in the primary coolant of Pressurized Water Reactors using optical probes. Although initial laboratory tests seemed to indicate that lithium could be detected using primary absorption (detection of natural spectra unassisted by reagents), subsequent field tests demonstrated that no primary absorption spectra existed for lithium in the ultraviolet-visible wavelength range. A second series of tests that were recently conducted did, however, confirm results reported in the literature to the effect that reagents were available that will react with lithium to form chelates that possess detectable absorption and fluorescent signatures. These results point to the possible use of secondary techniques for on-line analysis of lithium.

  15. FAR-INFRARED LINE SPECTRA OF SEYFERT GALAXIES FROM THE HERSCHEL-PACS SPECTROMETER

    SciTech Connect

    Spinoglio, Luigi; Pereira-Santaella, Miguel; Busquet, Gemma; Dasyra, Kalliopi M.; Calzoletti, Luca; Malkan, Matthew A.; Tommasin, Silvia

    2015-01-20

    We observed the far-IR fine-structure lines of 26 Seyfert galaxies with the Herschel-PACS spectrometer. These observations are complemented with Spitzer Infrared Spectrograph and Herschel SPIRE spectroscopy. We used the ionic lines to determine electron densities in the ionized gas and the [C I] lines, observed with SPIRE, to measure the neutral gas densities, while the [O I] lines measure the gas temperature, at densities below ∼10{sup 4} cm{sup –3}. Using the [O I]145 μm/63 μm and [S III]33/18 μm line ratios, we find an anti-correlation of the temperature with the gas density. Various fine-structure line ratios show density stratifications in these active galaxies. On average, electron densities increase with the ionization potential of the ions. The infrared lines arise partly in the narrow line region, photoionized by the active galactic nucleus (AGN), partly in H II regions photoionized by hot stars, and partly in photo-dissociated regions. We attempt to separate the contributions to the line emission produced in these different regions by comparing our observed emission line ratios to theoretical values. In particular, we tried to separate the contribution of AGNs and star formation by using a combination of Spitzer and Herschel lines, and we found that besides the well-known mid-IR line ratios, the line ratio of [O III]88 μm/[O IV]26 μm can reliably discriminate the two emission regions, while the far-IR line ratio of [C II]157 μm/[O I]63 μm is only able to mildly separate the two regimes. By comparing the observed [C II]157 μm/[N II]205 μm ratio with photoionization models, we also found that most of the [C II] emission in the galaxies we examined is due to photodissociation regions.

  16. PG 1700 + 518 - a low-redshift, broad absorption line QSO

    SciTech Connect

    Pettini, M.; Boksenberg, A.

    1985-07-01

    The first high-resolution optical spectra and lower resolution UV spectra of PG 1700 + 518, the only known broad-absorption-line (BAL) QSO at low emission redshift (0.288) are presented. The optical data were obtained with the Isaac Newton Telescope on the island of La Palma and the UV data with the International Ultraviolet Explorer satellite. The outstanding feature of the optical spectrum is a strong, broad Mg II absorption trough, detached from the Mg II emission line and indicative of ejection velocities of between 7000 and 18,000 km/s. Also detected were narrow (FWHM = 350 km/s) Mg II absorption lines at absolute z = 0.2698, which are probably related to the mass ejection phenomenon. It is concluded that the emission-line spectrum is similar to that of other low-redshift QSOs although there are some obvious differences from typical BAL QSOs, most notably in the unusually low level of ionization of both emission-line and broad absorption line gas. 21 references.

  17. Studying Cosmic Dawn and Emission Line Galaxies with WFIRST-AFTA

    NASA Astrophysics Data System (ADS)

    Rhoads, James

    WFIRST-AFTA will provide a wealth of near-infrared spectra and imaging for 100s of millions of galaxies at redshifts z=1-3. While the primary aim of the WFIRST spectroscopic survey is to determine the geometry of the universe, these data will revolutionize our understanding of galaxy evolution at the peak epoch of star formationactivity. Understanding the galaxy spectra will not only help us address major issues in galaxy formation and evolution, but will also reduce random and systematic errors in the redshift determination for BAO and weak lensing experiments. We offer extensive experience of studying line emitters from z=0.3-7, using both slitless spectroscopy on HST and narrow-band imaging from the ground, together with higher resolution ground-based spectroscopic followup. The HST slitless spectrographs are the best analogs to the WFIRST-AFTA spectrograph in spectral and spatial resolution, and in operations mode. There are unique challenges in slitless spectroscopy, and our extensive experience will help to meet them. The three top-level science goals given by the "New Worlds, New Horizons" decadal survey report are Cosmic Dawn, New Worlds, and the Physics of the Universe. WFIRST's core mission objectives explicitly include the Physics of the Universe (through dark energy surveys) and New Worlds (through microlensing and perhaps coronographic observations). WFIRST-AFTA can make equally powerful contributions to the study of Cosmic Dawn. Its sensitivity, spatial resolution, and wide field of view make it uniquely powerful for studying the first faint, highly redshifted galaxies. We propose to: 1) Apply this accumulated expertise, software and existing HST data to help with the predictions, simulations, and detailed planning and possible optimization of spectroscopic observations. 2) Detail how studies of Emission Line Galaxies (ELGs) between z=1-3 will address outstanding questions in galaxy evolution and assembly at the peak of star-formation and AGN activity

  18. Formaldehyde in Absorption: Tracing Molecular Gas in Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Dollhopf, Niklaus M.; Donovan Meyer, Jennifer

    2016-01-01

    Early-Type Galaxies (ETGs) have been long-classified as the red, ellipsoidal branch of the classic Hubble tuning fork diagram of galactic structure. In part with this classification, ETGs are thought to be molecular and atomic gas-poor with little to no recent star formation. However, recent efforts have questioned this ingrained classification. Most notably, the ATLAS3D survey of 260 ETGs within ~40 Mpc found 22% contain CO, a common tracer for molecular gas. The presence of cold molecular gas also implies the possibility for current star formation within these galaxies. Simulations do not accurately predict the recent observations and further studies are necessary to understand the mechanisms of ETGs.CO traces molecular gas starting at densities of ~102 cm-3, which makes it a good tracer of bulk molecular gas, but does little to constrain the possible locations of star formation within the cores of dense molecular gas clouds. Formaldehyde (H2CO) traces molecular gas on the order of ~104 cm-3, providing a further constraint on the location of star-forming gas, while being simple enough to possibly be abundant in gas-poor ETGs. In cold molecular clouds at or above ~104 cm-3 densities, the structure of formaldehyde enables a phenomenon in which rotational transitions have excitation temperatures driven below the temperature of the cosmic microwave background (CMB), ~2.7 K. Because the CMB radiates isotropically, formaldehyde can be observed in absorption, independent of distance, as a tracer of moderately-dense molecular clouds and star formation.This novel observation technique of formaldehyde was incorporated for observations of twelve CO-detected ETGs from the ATLAS3D sample, including NGC 4710 and PGC 8815, to investigate the presence of cold molecular gas, and possible star formation, in ETGs. We present images from the Very Large Array, used in its C-array configuration, of the J = 11,0 - 11,1 transition of formaldehyde towards these sources. We report our

  19. X-ray bumps, iron K-alpha lines, and X-ray suppression by obscuring tori in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Madau, Piero; Zycki, Piotr T.

    1994-01-01

    We investigate the X-ray spectral properties of unobscured type 1 and obscured type 2 Seyferts as predicted by the unified Seyfert scheme. We consider the reprocessing of X-ray photons by photoelectric absorption, iron fluorescence, and Compton downscattering in the obscuring tori surrounding these active nuclei, and compute by Monte Carlo methods the reprocessed spectra as a function of the viewing angle. Depending on the optical depth and shape of the torus, and on the viewing angle, the X-ray flux can be suppressed by substantial factors when our line of sight is obscured. We show that an immediate consequence of the existence of an obscuring thick torus is the production in the spectra of type 1 Seyfert galaxies of a bump in the continuum above 10-20 keV and an Fe K-alpha line with significant equivalent width. In those type 2 Seyferts for which the hard X-ray spectrum has been substantially suppressed, the equivalent width of the Fe K-alpha line in the transmitted spectrum can be very large.

  20. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  1. Warm ionized gas in CALIFA early-type galaxies. 2D emission-line patterns and kinematics for 32 galaxies

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Kehrig, C.; Vílchez, J. M.; Lehnert, M. D.; Sánchez, S. F.; Ziegler, B.; Breda, I.; Dos Reis, S. N.; Iglesias-Páramo, J.; Bland-Hawthorn, J.; Galbany, L.; Bomans, D. J.; Rosales-Ortega, F. F.; Cid Fernandes, R.; Walcher, C. J.; Falcón-Barroso, J.; García-Benito, R.; Márquez, I.; Del Olmo, A.; Masegosa, J.; Mollá, M.; Marino, R. A.; González Delgado, R. M.; López-Sánchez, Á. R.; Califa Collaboration

    2016-04-01

    Context. The morphological, spectroscopic, and kinematical properties of the warm interstellar medium (wim) in early-type galaxies (ETGs) hold key observational constraints to nuclear activity and the buildup history of these massive, quiescent systems. High-quality integral field spectroscopy (IFS) data with a wide spectral and spatial coverage, such as those from the CALIFA survey, offer an unprecedented opportunity for advancing our understanding of the wim in ETGs. Aims: This article centers on a 2D investigation of the wim component in 32 nearby (≲150 Mpc) ETGs from CALIFA, complementing a previous 1D analysis of the same sample. Methods: The analysis presented here includes Hα intensity and equivalent width (EW) maps and radial profiles, diagnostic emission-line ratios, and ionized-gas and stellar kinematics. It is supplemented by τ-ratio maps, which are a more efficient means to quantify the role of photoionization by the post-AGB stellar component than alternative mechanisms (e.g., AGN, low-level star formation). Results: Confirming and strengthening our previous conclusions, we find that ETGs span a broad continuous sequence in the properties of their wim, exemplified by two characteristic classes. The first (type i) comprises systems with a nearly constant EW(Hα) in their extranuclear component, which quantitatively agrees with (but is no proof of) the hypothesis that photoionization by the post-AGB stellar component is the main driver of extended wim emission. The second class (type ii) stands for virtually wim-evacuated ETGs with a very low (≤0.5 Å), outwardly increasing EW(Hα). These two classes appear indistinguishable from one another by their LINER-specific emission-line ratios in their extranuclear component. Here we extend the tentative classification we proposed previously by the type i+, which is assigned to a subset of type i ETGs exhibiting ongoing low-level star-forming activity in their periphery. This finding along with faint

  2. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. V. NONLINEAR ABSORPTION-LINE INDEX VERSUS METALLICITY RELATIONS AND BIMODAL INDEX DISTRIBUTIONS OF M31 GLOBULAR CLUSTERS

    SciTech Connect

    Kim, Sooyoung; Yoon, Suk-Jin; Chung, Chul; Lee, Young-Wook; Caldwell, Nelson; Schiavon, Ricardo P.; Kang, Yongbeom; Rey, Soo-Chang

    2013-05-10

    Recent spectroscopy on the globular cluster (GC) system of M31 with unprecedented precision witnessed a clear bimodality in absorption-line index distributions of old GCs. Such division of extragalactic GCs, so far asserted mainly by photometric color bimodality, has been viewed as the presence of merely two distinct metallicity subgroups within individual galaxies and forms a critical backbone of various galaxy formation theories. Given that spectroscopy is a more detailed probe into stellar population than photometry, the discovery of index bimodality may point to the very existence of dual GC populations. However, here we show that the observed spectroscopic dichotomy of M31 GCs emerges due to the nonlinear nature of metallicity-to-index conversion and thus one does not necessarily have to invoke two separate GC subsystems. We take this as a close analogy to the recent view that metallicity-color nonlinearity is primarily responsible for observed GC color bimodality. We also demonstrate that the metallicity-sensitive magnesium line displays non-negligible metallicity-index nonlinearity and Balmer lines show rather strong nonlinearity. This gives rise to bimodal index distributions, which are routinely interpreted as bimodal metallicity distributions, not considering metallicity-index nonlinearity. Our findings give a new insight into the constitution of M31's GC system, which could change much of the current thought on the formation of GC systems and their host galaxies.

  3. Monochromatic calculations of atmospheric radiative transfer due to molecular line absorption

    NASA Technical Reports Server (NTRS)

    Chou, M.-D.; Kouvaris, L.

    1986-01-01

    Sensitivity studies related to the effects of line cutoff, spectral resolution, and temperature and pressure interpolations in radiative transfer have been performed so that a data set of absorption coefficients for water vapor, CO2, and O3 may be created efficiently. Results show that computations of absorption coefficients are affected only slightly by cutting a line off at a wave number 190 times the Lorentz half width from the center, or equivalently, cutting off 0.33 percent of the line intensity from the wings. To achieve a relative cooling rate error smaller than 2 percent, it is sufficient to precompute the absorption coefficient at three temperatures (210, 250, and 290 K) and 19 pressures with Delta (log 10 p) = 0.2. The absorption coefficient at other conditions can be interpolated linearly with pressure and exponentially with a quadratic in temperature. For the spectral resolution the absorption coefficients can be adequately computed at 0.01, 0.002, 0.005, and 0.025/cm intervals in the thermal water vapor, the CO2 and O3 bands, and the solar water vapor bands, respectively, which limits the error to only a few percent in the cooling and heating rates. Using the precomputed absorption coefficients, repeated monochromatic calculations of atmospheric heating/cooling rates for radiation model developments and for comparison with less detailed calculations are no longer difficult.

  4. The η Car Campaign with UVES at the ESO VLT II. Interstellar and circumstellar absorption lines

    NASA Astrophysics Data System (ADS)

    Weis, K.; Bomans, D. J.; Stahl, O.; Davidson, K.; Humphreys, R. M.; Gull, T. R.

    2005-09-01

    We monitored η Car and the Homunculus using the ESO VLT UVES spectrograph between 2002 and 2004 (see Weis et al., this proceedings). In these high dispersion spectra practically all interstellar absorption features known in the 3000 Å to 10000 Å regime are present (e.g. 4 Ti II lines, 3 Fe I lines, the Ca I line, both Na I doublets, the two K I doublets, and the Ca II doublets, several molecular lines, and a number of diffuse interstellar bands). Near-UV STIS spectra show many low ionization absorption lines (e.g. Gull et al., this proceedings), but there are several differences in the velocity structure and line strengths between these lines of sight, e.g. we do not detect multiple absorption components between -350 to -550 km s-1 in the UVES spectra. Changes over time are present in e.g. the Ca II lines, with small column density changes in the (probably interstellar) +80 km s-1 component and large changes in the -510 km s-1 component, which is most probably located in the outer shell of the Homunculus (see e.g. Nielsen et al., this proceedings). Similar changes in the Ti II 3384 Å component at -147 km s-1 are present, too. With the data set, we not only follow the temporal evolution of the circumstellar absorption components (presumably originating near η Car and in the Homunculus) before, during and after the event, but also search for changes along our long-slits centered on the star and on FOS4. Indeed, the -147 km s-1 component of the Ti II 3384 Å lines shows line strength variations over the southeast lobe of the Homunculus. A preliminary search for very high velocity absorption lines from the outer ejected using only one of our spectra already yielded a possible detection at -1500 km s-1. Clearly a detailed analysis of the absorption lines in the UVES data will provide many new insights into the structure and physics of η Car's ejecta.

  5. Narrow absorption lines with two observations from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei; Cao, Yue

    2015-07-01

    We assemble 3524 quasars from the Sloan Digital Sky Survey (SDSS) with repeated observations to search for variations of the narrow C IV λ λ 1548,1551 and Mg II λ λ 2796,2803 absorption doublets in spectral regions shortward of 7000 Å in the observed frame, which corresponds to time-scales of about 150-2643 d in the quasar rest frame. In these quasar spectra, we detect 3580 C IV absorption systems with zabs = 1.5188-3.5212 and 1809 Mg II absorption systems with zabs = 0.3948-1.7167. In term of the absorber velocity (β) distribution in the quasar rest frame, we find a substantial number of C IV absorbers with β < 0.06, which might be connected to absorption of quasar outflows. The outflow absorption peaks at υ ≈ 2000 km s^{-1} and drops rapidly below this peak value. Among 3580 C IV absorption systems, 52 systems (˜1.5 per cent) show obvious variations in equivalent widths in the absorber rest frame (Wr): 16 enhanced, 16 emerged, 12 weakened and 8 disappeared systems, respectively. We find that changes in Wrλ1548 are related neither to the time-scales of the two SDSS observations nor to absorber velocities in the quasar rest frame. Variable absorption in low-ionization species is important to constrain the physical conditions of the absorbing gas. There are two variable Mg II absorption systems measured from SDSS spectra detected by Hacker et al. However, in our Mg II absorption sample, we find that neither shows variable absorption with confident levels of >4σ for λ2796 lines and >3σ for λ2803 lines.

  6. HI Absorption Lines Detected from the Arecibo Legacy Fast ALFA Survey Data

    NASA Astrophysics Data System (ADS)

    Zhong-zu, Wu; Martha P, Haynes; Riccardo, Giovanelli; Ming, Zhu; Ru-rong, Chen

    2015-10-01

    We present some preliminary results of an on-going study of HI 21-cm absorption lines based on the 40% survey data released by the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA). (1) Ten HI candidate absorbers have been detected. Five of them are previously published in the literature, and the rest of them are new detections that need further confirmation. (2) For those sources with no detected absorptions, we have calculated the upper limit of their foreground HI column density NHI. The statistical result of the NHI distribution indicates that the ratio Ts/f between the averaged spin temperature and coverage factor for DLAs (the damped Lyα systems) might be larger than 500 K. The radio frequency interference (RFI) and standing wave are the main factors affecting the detection of HI absorption lines, which have been analyzed and discussed as well in order to find a method of solution. Our study can serve as a pathfinder for the future large-scale search of HI 21-cm absorption lines using the Five-Hundred-Meter Aperture Spherical Radio Telescope (FAST), which is an Arecibo-type radio telescope currently under construction in China with greatly increased sensitivity, bandwidth, and observational sky area. As prospects, we have discussed two types of observational studies of HI absorption lines toward extragalactic sources using the FAST telescope.

  7. Relativistic Fe Kα line study in Seyfert 1 galaxies observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Mantovani, G.; Nandra, K.; Ponti, G.

    2016-06-01

    We present an analysis of a sample of Seyfert 1 galaxies observed with Suzaku. The aim of this work is to examine critically the evidence for a relativistic Fe Kα line in the X-ray spectra of these active galactic nuclei. The sample was compiled from those sources in which a relativistic component was missing in at least one XMM-Newton observation. We analysed the Suzaku spectra of these objects in order to have more constraints on the high-energy emission, including the Compton reflection hump. The results show that the relativistic Fe Kα line is detected (at >95 per cent confidence) in all sources observed with high-signal-to-noise ratio (e.g. where the counts in the 5-7 keV energy band are ≳4 × 104). This is in agreement with the idea that relativistic lines are a ubiquitous feature in the spectra of Seyfert galaxies, but are often difficult to detect without very high-quality data. We also investigate the relation between the Fe Kα line and the reflection continuum at high energies. For most of the sample, the strength of the reflection component is consistent with that of the line. There are exceptions in both senses, however i.e. where the reflection continuum is strong but with weak line emission, and vice versa. These observations present a challenge for standard reflection models.

  8. Fe-K Line Time Variability and Ni Abundance of Distant Reflectors in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Fukazawa, Yasushi; Furui, Shun’ya; Hayashi, Kazuma; Ohno, Masanori; Hiragi, Kazuyoshi; Noda, Hirofumi

    2016-04-01

    We have performed systematic studies of narrow Fe–K line (6.4 keV) flux variability and Ni–K line intensity for Seyfert galaxies, using Suzaku and XMM-Newton archival data. Significant Fe–K line variability of several tens of percent was detected for a pair of observations separated by 1000–2000 days (Cen A, IC 4329 A, NGC 3516, and NGC 4151) and 158 days (NGC 3516). These timescales are larger by a factor of 10–100 than the inner radius of the torus, consistent with the view that X-ray reflection by a torus is a main origin for a narrow Fe–K line. The Ni–K line was detected with a >2σ level for the Circinus galaxy, Cen A, MRK 3, NGC 4388, and NGC 4151. A mean and variance of the Ni–Kα to Fe–Kα line intensity ratios are 0.066 and 0.026, respectively. Comparing this with the Monte-Carlo simulation of reflection, the Ni to Fe abundance ratio is 1.9 ± 0.8 solar. We discuss the results and the possibility of Ni abundance enhancement.

  9. The Hubble Space Telescope quasar absorption line key project. 6: Properties of the metal-rich systems

    NASA Technical Reports Server (NTRS)

    Bergeron, Jacqueline; Petitjean, Patrick; Sargent, W. L. W.; Bahcall, John N.; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Savage, Blair D.; Schneider, Donald P.

    1994-01-01

    , as is also probably the case at high redshift. These O VI absorbers can be ionized by the UV metagalactic field if their density is low, nH approximately less than 3 x 10(exp -4)/cc. The O VI phase would then be a homogeneous region of large extent, r approximately greater than 50 kpc. A detailed photoionization model of the z(sub abs) = 0.791 absorber toward PKS 2145+06 confirms the properties derived from the Mg II, C IV, O VI, and Lyman-limit samples. The galaxy causing this extensive metal-line absorption system has been identified, and its possible contribution to the UV ionizing flux does not substantially modify the value of the derived parameters. The heavy element abundances are about half the solar values. The O VI region has a density about 20 times lower than the Mg II clouds and a size of approximately 70 kpc. Alternatively, the high-ionization phase could be collisionally ionized and trace gas associated with a possible group of galaxies at the absorber redshift.

  10. Bayesian Identification of Emission-Line Galaxies with Photometric Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Leung, Andrew S.; Gawiser, Eric J.; Acquaviva, Viviana; HETDEX Collaboration

    2015-01-01

    We present a Bayesian approach to the classification of emission-line galaxies as an alternative to the traditional limit of requiring Lyman-alpha emitting (LAE) galaxies to have rest-frame equivalent width (EW) > 20Å. The Bayesian method relies on known distributions of line luminosities and equivalent widths as prior probabilities and returns the probability that an object is an LAE given the observed characteristics. This will be directly relevant for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), which seeks to classify more than a million emission-line galaxies into LAEs and low-redshift [O II] emitters. For a simulated HETDEX catalog with realistic measurement noise, the Bayesian method recovers a majority of the LAEs missed by the EW > 20 Angstroms cutoff over 2 < z < 3. The method is robust, performing at least as well as the EW > 20Å cut in contamination (false positives) and incompleteness (false negatives). Trade-off between contamination and incompleteness can be achieved by adjusting the stringency of the probability requirement for classifying an observed object as an LAE. A basic implementation of the Bayesian reduces errors in cosmological parameters by ~22%, which is equivalent to obtaining ~40% more data. The inclusion of the color of the galaxies, contingent on the availability of this information, increases the discriminating power of Bayesian separation and results in further reductions in errors. The Bayesian method is also being used to determine which single broadband filter produces the best performance. This method would enable large-scale structure analyses to be performed directly on emission-line objects labeled with probabilities of being LAEs rather than splitting the sample into LAEs and [O II] emitters.We gratefully acknowledge support from NSF through grant AST-1055919.

  11. VizieR Online Data Catalog: QSOs narrow absorption line variability (Hacker+, 2013)

    NASA Astrophysics Data System (ADS)

    Hacker, T. L.; Brunner, R. J.; Lundgren, B. F.; York, D. G.

    2013-06-01

    Catalogues of 2,522 QAL systems and 33 variable NAL systems detected in SDSS DR7 quasars with repeat observations. The object identifiers, position coordinates, and plate-MJD-fibre designations are taken from the SpecObjAll table in the SDSS Catalogue Archive Server (CAS) while the quasar redshifts (zqso) are from Hewett & Wild (2010, Cat. J/MNRAS/405/2302). The absorption system redshift (zabs), system grade, and detected lines are outputs of the York et al. (2013, in. prep.) QAL detection pipeline. Some absorption lines are flagged based on alternate identifications (a), proximity of masked pixels (b), or questionable continuum fits (c). (3 data files).

  12. A support vector machine for spectral classification of emission-line galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Shi, Fei; Liu, Yu-Yan; Sun, Guang-Lan; Li, Pei-Yu; Lei, Yu-Ming; Wang, Jian

    2015-10-01

    The emission-lines of galaxies originate from massive young stars or supermassive blackholes. As a result, spectral classification of emission-line galaxies into star-forming galaxies, active galactic nucleus (AGN) hosts, or compositions of both relates closely to formation and evolution of galaxy. To find efficient and automatic spectral classification method, especially in large surveys and huge data bases, a support vector machine (SVM) supervised learning algorithm is applied to a sample of emission-line galaxies from the Sloan Digital Sky Survey (SDSS) data release 9 (DR9) provided by the Max Planck Institute and the Johns Hopkins University (MPA/JHU). A two-step approach is adopted. (i) The SVM must be trained with a subset of objects that are known to be AGN hosts, composites or star-forming galaxies, treating the strong emission-line flux measurements as input feature vectors in an n-dimensional space, where n is the number of strong emission-line flux ratios. (ii) After training on a sample of emission-line galaxies, the remaining galaxies are automatically classified. In the classification process, we use a 10-fold cross-validation technique. We show that the classification diagrams based on the [N II]/Hα versus other emission-line ratio, such as [O III]/Hβ, [Ne III]/[O II], ([O III]λ4959+[O III]λ5007)/[O III]λ4363, [O II]/Hβ, [Ar III]/[O III], [S II]/Hα, and [O I]/Hα, plus colour, allows us to separate unambiguously AGN hosts, composites or star-forming galaxies. Among them, the diagram of [N II]/Hα versus [O III]/Hβ achieved an accuracy of 99 per cent to separate the three classes of objects. The other diagrams above give an accuracy of ˜91 per cent.

  13. Ca II and Na I absorption in the QSO S4 0248 + 430 due to an intervening galaxy

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.; Junkkarinen, Vesa T.; Cohen, Ross D.; Burbidge, E. Margaret

    1990-01-01

    Observations of the QSO S4 0248 + 430 and a nearby anonymous galaxy are presented. Two absorption components are found in both Ca II H and K and Na I D1 and D2 at z(a) = 0.0515, 0.0523. Column densities of log N(Ca II) = 13.29, 13.50, and log N(Na I) = 13.79, 14.18 are found for z(a) = 0.0515, 0.0523 absorption systems, respectively. The column density ratios imply considerable calcium depletion and disk-type absorbing gas. At least one and possibly both absorption components are produced by high-velocity gas. A broadband image of the field shows an asymmetrical armlike feature or possible tidal tail covering and extending past the position of the QSO. The presence of this extended feature and the apparent difference between the absorption velocities and galaxy rotation velocity suggest that the absorbing gas is not ordinary disk gas, but rather is a result of tidal disruption.

  14. The Ly(alpha) Line Profiles of Ultraluminous Infrared Galaxies: Fast Winds and Lyman Continuum Leakage

    NASA Technical Reports Server (NTRS)

    Martin, Crystal L.; Dijkstra, Mark; Henry, Alaina L.; Soto, Kurt T.; Danforth, Charles W.; Wong, Joseph

    2015-01-01

    We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Ly(alpha) emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Ly(alpha) profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km/s in three H II-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Ly(alpha) line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Ly(alpha) attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Ly(alpha) photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Ly(alpha) and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Ly(alpha) emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H II-dominated ULIRGs.

  15. HST WFC3 Early Release Science: Emission-Line Galaxies from IR Grism Observations

    NASA Technical Reports Server (NTRS)

    Straughn, A. N.; Kuntschner, H.; Kuemmel, M.; Walsh, J. R.; Cohen, S. H.; Gardner, J. P.; Windhorst, R. A.; O'Connell, R. W.; Pirzkal, N.; Meurer, G.; McCarthy, P. J.; Hathi, N. P.; Malhotra, S.; Rhoads, J.; Balick, B.; Bond, H. E.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; Holtzman, J. A.; Kimlbe, R. A.; Trauger, J. T.; Young, E. T.

    2010-01-01

    We present grism spectra of emission line galaxies (ELGs) from 0.6-1.6 microns from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). These new infrared grism data augment previous optical Advanced Camera for Surveys G800L (0.6-0.95 micron) grism data in GOODS South, extending the wavelength coverage well past the G800L red cutoff. The ERS grism field was observed at a depth of 2 orbits per grism, yielding spectra of hundreds of faint objects, a subset of which are presented here. ELGs are studied via the Ha, [O III ], and [OII] emission lines detected in the redshift ranges 0.2 less than or equal to z less than or equal to 1.6, 1.2 less than or equal to z less than or equal to 2.4 and 2.0 less than or equal to z less than or equal to 3.6 respectively in the G102 (0.8-1.1 microns; R approximately 210) and C141 (1.1-1.6 microns; R approximately 130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [S II] and [S III] lines). From these relatively shallow observations, line luminosities, star formation rates, and grism spectroscopic redshifts are determined for a total of 25 ELGs to M(sub AB)(F098M) approximately 25 mag. The faintest source in our sample with a strong but unidentified emission line--is MAB(F098M)=26.9 mag. We also detect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample, indicative of downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes.

  16. CO SPECTRAL LINE ENERGY DISTRIBUTIONS OF INFRARED-LUMINOUS GALAXIES AND ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Papadopoulos, Padeli P.; Van der Werf, Paul; Isaak, Kate; Xilouris, Emmanuel M. E-mail: pvdwerf@strw.leidenuniv.n E-mail: xilouris@astro.noa.g

    2010-06-01

    We report on new sensitive CO J = 6-5 line observations of several luminous infrared galaxies (LIRGs; L {sub IR}(8-1000 {mu}m) {approx}> 10{sup 11} L {sub sun}), 36% (8/22) of them ultraluminous infrared galaxies (ULIRGs) (L {sub IR}>10{sup 12} L {sub sun}), and two powerful local active galactic nuclei (AGNs)-the optically luminous QSO PG 1119+120 and the powerful radio galaxy 3C 293-using the James Clerk Maxwell Telescope on Mauna Kea in Hawaii. We combine these observations with existing low-J CO data and dust emission spectral energy distributions in the far-infrared-submillimeter from the literature to constrain the properties of the star-forming interstellar medium (ISM) in these systems. We then build the first local CO spectral line energy distributions (SLEDs) for the global molecular gas reservoirs that reach up to high J-levels. These CO SLEDs are neither biased by strong lensing (which affects many of those constructed for high-redshift galaxies), nor suffer from undersampling of CO-bright regions (as most current high-J CO observations of nearby extended systems do). We find: (1) a significant influence of dust optical depths on the high-J CO lines, suppressing the J = 6-5 line emission in some of the most IR-luminous LIRGs, (2) low global CO line excitation possible even in vigorously star-forming systems, (3) the first case of a shock-powered high-excitation CO SLED in the radio galaxy 3C 293 where a powerful jet-ISM interaction occurs, and (4) unusually highly excitated gas in the optically powerful QSO PG 1119+120. In Arp 220 and possibly other (U)LIRGs very faint CO J = 6-5 lines can be attributed to significant dust optical depths at short submillimeter wavelengths immersing those lines in a strong dust continuum, and also causing the C{sup +} line luminosity deficit often observed in such extreme starbursts. Re-analysis of the CO line ratios available for submillimeter galaxies suggests that similar dust opacities also may be present in these

  17. A Sample of Seyfert-2 Galaxies with Ultraluminous Galaxy-wide Narrow-line Regions: Quasar Light Echoes?

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Diaz, R.; Holhjem, K.; Levenson, N. A.; Winge, C.

    2013-01-01

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc-3 at z ~ 0.3, these "green beans" (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 × 44 kpc and is surrounded by an extended NLR. With a total [O III] λ5008 luminosity of (5.7 ± 0.9) × 1043 erg s-1, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 μm luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. Based on observations

  18. The molecular gas in luminous infrared galaxies - I. CO lines, extreme physical conditions and their drivers

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; van der Werf, Paul P.; Xilouris, E. M.; Isaak, K. G.; Gao, Yu; Mühle, S.

    2012-11-01

    We report results from a large molecular line survey of luminous infrared galaxies (LIRGs; L IR ≳1011 L) in the local Universe (z ≤ 0.1), conducted during the last decade with the James Clerk Maxwell Telescope and the IRAM 30-m telescope. This work presents the CO and 13CO line data for 36 galaxies, further augmented by multi-J total CO line luminosities available for other infrared (IR) bright galaxies from the literature. This yields a combined sample of N = 70 galaxies with the star formation (SF) powered fraction of their IR luminosities spanning L IR (*)˜(1010-2×1012) L and a wide range of morphologies. Simple comparisons of their available CO spectral line energy distributions (SLEDs) with local ones, as well as radiative transfer models, discern a surprisingly wide range of average interstellar medium (ISM) conditions, with most of the surprises found in the high-excitation regime. These take the form of global CO SLEDs dominated by a very warm (Tkin ≳100 K) and dense (n ≥ 104 cm-3) gas phase, involving galaxy-sized (˜(few) × 109 M⊙) gas mass reservoirs under conditions that are typically found only for ˜(1-3) per cent of mass per typical SF molecular cloud in the Galaxy. Furthermore, some of the highest excitation CO SLEDs are found in ultraluminous infrared galaxies (ULIRGs; LIR ≥ 1012 L⊙) and surpass even those found solely in compact SF-powered hot spots in Galactic molecular clouds. Strong supersonic turbulence and high cosmic ray energy densities rather than far-ultraviolet/optical photons or supernova remnant induced shocks from individual SF sites can globally warm the large amounts of dense gas found in these merger-driven starbursts and easily power their extraordinary CO line excitation. This exciting possibility can now be systematically investigated with Herschel and the Atacama Large Milimeter Array (ALMA). As expected for an IR-selected (and thus SF rate selected) galaxy sample, only few 'cold' CO SLEDs are found, and for

  19. BeppoSAX detection of the Fe K line in the starburst galaxy NGC53

    NASA Astrophysics Data System (ADS)

    Mariani, S.; Cappi, M.; Persic, M.; Bassani, L.; Palumbo, G. G. C.; Danese, L.; Dean, A. J.; Di Cocco, G.; Franceschini, A.; Hunt, L. K.; Matteucci, F.; Palazzi, E.; Rephaeli, Y.; Salucci, P.; Spizzichino, A.

    1999-01-01

    Preliminary results obtained from BeppoSAX observation of the starburst galaxy NGC53 are presented. X-ray emission from the object is clearly extended but most of the emission is concentrated on the optical nucleus. Preliminary analysis of the LECS and MECS data obtained using the central 4' region indicates that the continuum is well fitted by two thermal components at 0.9keV and 7keV. Fe K line at 6.7keV is detected for the first time in this galaxy; the line has an equivalent width of ~300eV. The line energy and the shape of the 2-10keV continuum strongly support thermal origin of the hard X-ray emission of NGC53. From the measurement of the Fe K line the abundances can be unambiguously constrained to ~0.25 the solar value. Other lines clearly detected are Si, S and FeXVIII/Ne, in agreement with ASCA results.

  20. Completing the CO spectral line energy distribution for luminous starburst galaxies discovered with the SPT

    NASA Astrophysics Data System (ADS)

    Aravena, Manuel; Weiss, Axel; de Breuck, Carlos; Stark, Antony A.; Marrone, Dan; McIntyre, Vince; Vieira, Joaquin; Greve, Thomas; Chapman, Scott; Murphy, Eric; Aguirre, James; Bothwell, Matt; Gullberg, Bitten

    2013-04-01

    We propose to use ATCA to observe the CO J=3-2 line emission in three gravitationally lensed, highly magnified dusty star-forming galaxies at z~2.5 discovered by the South Pole Telescope (SPT) millimeter survey. The redshifts of all targets were identified by the detection of several J>6 CO emission lines with APEX/Z-Spec and confirmed with VLT optical spectroscopy. Two of the sources have significant detections of the CO 1-0 line with ATCA, while CO 1-0 observations of the other source are being requested in a companion proposal. The proposed observations are critical to complete the CO spectral energy distribution (SLED) of these sources and thus "fill the gap" between the high-J CO observed with APEX/Z-Spec and the CO 1-0 line detected with ATCA. This will allow us to constrain the physical conditions of the interstellar medium by comparing the line strengths with large velocity gradient models. The strong magnification is key, allowing us to characterize the CO emission in galaxies that would be otherwise hard to detect.

  1. Luminosity function of [OII] emission-line galaxies in the MassiveBlack-II simulation

    SciTech Connect

    Park, KwangHo; Khandai, Nishikanta; Matteo, Tiziana Di; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M.; Feng, Yu

    2015-09-18

    We examine the luminosity function (LF) of [OII] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [OII] emission line luminosity L([OII]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [OII] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([OII]) = 1043.0 erg s–1 while the low redshifts (z ≤ 0.3) show an excess in the prediction of bright [OII] galaxies, but still displaying a good match with observations below L([OII]) = 1041.6 erg s–1. Based on the validity in reproducing the properties of [OII] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [OII] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from –3 to –2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)–1 at z ≤ 2 while the faint end evolves as ~3(z + 1)–1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [OIII] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. As a result, we show that the auto-correlation function of [OII] and [OIII] emitting galaxies shows a rapid evolution from z = 2 to 1.

  2. Hubble Space Telescope WFC3 Early Release Science: Emission-line Galaxies from Infrared Grism Observations

    NASA Astrophysics Data System (ADS)

    Straughn, Amber N.; Kuntschner, Harald; Kümmel, Martin; Walsh, Jeremy R.; Cohen, Seth H.; Gardner, Jonathan P.; Windhorst, Rogier A.; O'Connell, Robert W.; Pirzkal, Norbert; Meurer, Gerhardt; McCarthy, Patrick J.; Hathi, Nimish P.; Malhotra, Sangeeta; Rhoads, James; Balick, Bruce; Bond, Howard E.; Calzetti, Daniela; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; Mutchler, Max; Paresce, Francesco; Saha, Abhijit; Silk, Joseph I.; Trauger, John T.; Walker, Alistair R.; Whitmore, Bradley C.; Young, Erick T.; Xu, Chun

    2011-01-01

    We present grism spectra of emission-line galaxies (ELGs) from 0.6 to 1.6 μm from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 μm grism data in GOODS-South from the PEARS program, extending the wavelength coverage well past the G800L red cutoff. The Early Release Science (ERS) grism field was observed at a depth of two orbits per grism, yielding spectra of hundreds of faint objects, a subset of which is presented here. ELGs are studied via the Hα, [O III], and [O II] emission lines detected in the redshift ranges 0.2 <~ z <~ 1.4, 1.2 <~ z <~ 2.2, and 2.0 <~ z <~ 3.3, respectively, in the G102 (0.8-1.1 μm R ~= 210) and G141 (1.1-1.6 μm R ~= 130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [S II] and [S III] lines). From these relatively shallow observations, line luminosities, star formation rates, and grism spectroscopic redshifts are determined for a total of 48 ELGs to m AB(F098M) ~= 25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts (Δz ~= 0.3-0.5). Additionally, one galaxy had no previously measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude m AB(F098M)= 26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes and redshifts to z >~ 2.

  3. HUBBLE SPACE TELESCOPE WFC3 EARLY RELEASE SCIENCE: EMISSION-LINE GALAXIES FROM INFRARED GRISM OBSERVATIONS

    SciTech Connect

    Straughn, Amber N.; Gardner, Jonathan P.; Kuntschner, Harald; Kuemmel, Martin; Walsh, Jeremy R.; Cohen, Seth H.; Windhorst, Rogier A.; Malhotra, Sangeeta; Rhoads, James; O'Connell, Robert W.; Pirzkal, Norbert; Bond, Howard E.; Meurer, Gerhardt; McCarthy, Patrick J.; Hathi, Nimish P.; Balick, Bruce; Calzetti, Daniela; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.

    2011-01-15

    We present grism spectra of emission-line galaxies (ELGs) from 0.6 to 1.6 {mu}m from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 {mu}m grism data in GOODS-South from the PEARS program, extending the wavelength coverage well past the G800L red cutoff. The Early Release Science (ERS) grism field was observed at a depth of two orbits per grism, yielding spectra of hundreds of faint objects, a subset of which is presented here. ELGs are studied via the H{alpha}, [O III], and [O II] emission lines detected in the redshift ranges 0.2 {approx}< z {approx}< 1.4, 1.2 {approx}< z {approx}< 2.2, and 2.0 {approx}< z {approx}< 3.3, respectively, in the G102 (0.8-1.1 {mu}m; R {approx_equal} 210) and G141 (1.1-1.6 {mu}m; R {approx_equal} 130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [S II] and [S III] lines). From these relatively shallow observations, line luminosities, star formation rates, and grism spectroscopic redshifts are determined for a total of 48 ELGs to m A{sub B(F098M)} {approx_equal} 25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts ({Delta}z {approx_equal} 0.3-0.5). Additionally, one galaxy had no previously measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude m{sub AB(F098M)}= 26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the

  4. HERSCHEL OBSERVATIONS OF FAR-INFRARED COOLING LINES IN INTERMEDIATE REDSHIFT (ULTRA)-LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rigopoulou, D.; Magdis, G. E.; Thatte, N.; Hopwood, R.; Clements, D.; Swinyard, B. M.; Pearson, C.; Farrah, D.; Huang, J.-S.; Alonso-Herrero, A.; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Smith, A.; Wang, L.; Riechers, D.; Scott, D.; Vaccari, M.; Valtchanov, I.

    2014-01-20

    We report the first results from a spectroscopic survey of the [C II] 158 μm line from a sample of intermediate redshift (0.2 galaxies, (U)LIRGs (L {sub IR} > 10{sup 11.5} L {sub ☉}), using the Spectral and Photometric Imaging REceiver-Fourier Transform Spectrometer on board the Herschel Space Observatory. This is the first survey of [C II] emission, an important tracer of star formation, at a redshift range where the star formation rate density of the universe increases rapidly. We detect strong [C II] 158 μm line emission from over 80% of the sample. We find that the [C II] line is luminous, in the range (0.8-4) × 10{sup –3} of the far-infrared continuum luminosity of our sources, and appears to arise from photodissociation regions on the surface of molecular clouds. The L{sub [C} {sub II]}/L {sub IR} ratio in our intermediate redshift (U)LIRGs is on average ∼10 times larger than that of local ULIRGs. Furthermore, we find that the L{sub [C} {sub II]}/L {sub IR} and L{sub [CII]}/L{sub CO(1-0)} ratios in our sample are similar to those of local normal galaxies and high-z star-forming galaxies. ULIRGs at z ∼ 0.5 show many similarities to the properties of local normal and high-z star-forming galaxies. Our findings strongly suggest that rapid evolution in the properties of the star-forming regions of (U)LIRGs is likely to have occurred in the last 5 billion years.

  5. Laser plasma diagnostics and self-absorption measurements of the Hβ Balmer series line

    NASA Astrophysics Data System (ADS)

    Gautam, Ghaneshwar; Parigger, Christian G.; Surmick, David M.; EL Sherbini, Ashraf M.

    2016-02-01

    In this work, the peak-separation of the Balmer series hydrogen beta line was measured to determine the electron density of laser-induced plasma from spatially and temporally resolved spectra collected in laboratory air at standard ambient temperature and pressure. The self-absorption phenomenon is investigated by using a mirror that retro-reflects the emitted radiation through the plasma. The experimental data with and without the mirror were analyzed with available hydrogen beta computer simulations. Hardly any self-absorption was found as indicated by the correction factors that only marginally differ from unity. The obtained electron density values are also compared with the electron densities from nearby nitrogen lines. The hydrogen beta Hβ peak-separation method yields reliable results for an electron density of the order of 1 ×1017cm-3 for time delays of 5 μs from plasma generation, which confirms that self-absorption is insignificant for such electron densities.

  6. High-Resolution Spectroscopy of Quasars and Quasar Absorption-Line Systems

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael

    1995-01-01

    Topic cover in this paper included new observations of QSO absorption lines by the Keck Telescope HIRES spectrometer and the Hubble Space Telescope. An overview of the major scientific issues in this field is followed by a brief summary of a panel discussion that addressed future instrumental possibilities that could answer some of these questions.

  7. Modeling the double-trough structure observed in broad absorption line QSOs using radiative acceleration

    NASA Technical Reports Server (NTRS)

    Arav, Nahum; Begelman, Mitchell C.

    1994-01-01

    We present a model explaining the double trough, separated by delta v approximately = 5900 km/s, observed in the C IV lambda-1549 broad absorption line (BAL) in a number of BALQSOs. The model is based on radiative acceleration of the BAL outflow, and the troughs result from modulations in the radiative force. Specifically, where the strong flux from the Lyman-alpha lambda-1215 broad emission line is redshifted to the frequency of the N V lambda-1240 resonance line, in the rest frame of the accelerating N V ions, the acceleration increases and the absorption is reduced. At higher velocities the Lyman-alpha emission is redshifted out of the resonance and the N V ions experience a declining flux which causes the second absorption trough. A strongly nonlinear relationship between changes in the flux and the optical depth in the lines is shown to amplify the expected effect. This model produces double troughs for which the shallowest absorption between the two troughs occurs at v approximately = 5900 km/s. Indeed, we find that a substantial number of the observed objects show this feature. A prediction of the model is that all BALQSOs that show a double-trough signature will be found to have an intrinsic sharp drop in their spectra shortward of approximately 1200 A.

  8. Cross section calculations of astrophysical interest. [for theories of absorption and emission lines

    NASA Technical Reports Server (NTRS)

    Gerjuoy, E.

    1974-01-01

    Cross sections are discussed for rotational excitation associated with theories of absorption and emission lines from molecules in space with emphasis on H2CO, CO, and OH by collisions with neutral particles such H, H2, and He. The sensitivity of the Thaddeus equation for the H2CO calculation is examined.

  9. P Cygni profiles in zeta Ophiuchi and zeta Puppis. [far UV absorption lines

    NASA Technical Reports Server (NTRS)

    Morton, D. C.

    1976-01-01

    Detailed P Cygni profiles are plotted using data from selected regions of the far-UV spectra of zeta OPh and zeta Pup obtained by the Copernicus satellite. Equivalent widths and velocity shifts of both emission and absorption features are also presented. For zeta Oph, it is found that only the C IV and N V resonance lines exhibit the P Cygni phenomenon; for zeta Pup, the resonance lines of C III, N III, Si IV, C IV, P V, S VI, N V, and O VI all show strong P Cygni lines, although the emission component seems to be absent in N III. For both stars, it is shown that parts of most absorption profiles exceed the escape velocity, indicating mass ejection. The short-wavelength edges of the resonance lines are found to average about -1590 km/s in zeta Oph and about -2660 km/s in zeta Pup, with no significant dependence on ionization potential. It is noted that the equivalent width of the emission component is always considerably less than that of the absorption component, suggesting that absorption occurs close to the stellar surface.

  10. Spectro web: oscillator strength measurements of atomic absorption lines in the sun and procyon

    NASA Astrophysics Data System (ADS)

    Lobel, A.

    2008-10-01

    We update the online SpectroWeb database of spectral standard reference stars with 1178 oscillator strength values of atomic absorption lines observed in the optical spectrum of the Sun and Procyon (α CMi A). The updated line oscillator strengths are measured with best fits to the disk-integrated KPNO-FTS spectrum of the Sun observed between 4000 Å and 6800 Å using state-of-the-art detailed spectral synthesis calculations. A subset of 660 line oscillator strengths is validated with synthetic spectrum calculations of Procyon observed with ESO-UVES between 4700 Å and 6800 Å. The new log(gf)-values in SpectroWeb are improvements upon the values offered in the online Vienna Atomic Line Database (VALD). We find for neutral iron-group elements, such as Fe I, Ni I, Cr I, and Ti I, a statistically significant over-estimation of the VALD log((gf)-values for weak absorption lines with normalized central line depths below 15 %. For abundant lighter elements (e.g. Mg I and Ca I) this trend is statistically not significantly detectable, with the exception of Si I for which the log(gf)-values of 60 weak and medium-strong lines are substantially decreased to best fit the observed spectra. The newly measured log(gf)-values are available in the SpectroWeb database at http://spectra.freeshell.org, which interactively displays the observed and computed stellar spectra, together with corresponding atomic line data.

  11. A summary of transition probabilities for atomic absorption lines formed in low-density clouds

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Smith, W. H.

    1973-01-01

    A table of wavelengths, statistical weights, and excitation energies is given for 944 atomic spectral lines in 221 multiplets whose lower energy levels lie below 0.275 eV. Oscillator strengths were adopted for 635 lines in 155 multiplets from the available experimental and theoretical determinations. Radiation damping constants also were derived for most of these lines. This table contains the lines most likely to be observed in absorption in interstellar clouds, circumstellar shells, and the clouds in the direction of quasars where neither the particle density nor the radiation density is high enough to populate the higher levels. All ions of all elements from hydrogen to zinc are included which have resonance lines longward of 912 A, although a number of weaker lines of neutrals and first ions have been omitted.

  12. A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255. II. Emission- and absorption-line variability time lags

    NASA Astrophysics Data System (ADS)

    Saturni, F. G.; Trevese, D.; Vagnetti, F.; Perna, M.; Dadina, M.

    2016-03-01

    Context. The study of high-redshift bright quasars is crucial to gather information about the history of galaxy assembly and evolution. Variability analyses can provide useful data on the physics of quasar processes and their relation with the host galaxy. Aims: In this study, we aim to measure the black hole mass of the bright lensed BAL QSO APM 08279+5255 at z = 3.911 through reverberation mapping, and to update and extend the monitoring of its C IV absorption line variability. Methods: We perform the first reverberation mapping of the Si IV and C IV emission lines for a high-luminosity quasar at high redshift with the use of 138 R-band photometric data and 30 spectra available over 16 years of observations. We also cross-correlate the C IV absorption equivalent width variations with the continuum light curve to estimate the recombination time lags of the various absorbers and infer the physical conditions of the ionised gas. Results: We find a reverberation-mapping time lag of ~900 rest-frame days for both Si IV and C IV emission lines. This is consistent with an extension of the BLR size-to-luminosity relation for active galactic nuclei up to a luminosity of ~1048 erg s-1, and implies a black hole mass of 1010 M⊙. Additionally, we measure a recombination time lag of ~160 days in the rest frame for the C IV narrow absorption system, which implies an electron density of the absorbing gas of ~2.5 × 104 cm-3. Conclusions: The measured black hole mass of APM 08279+5255 indicates that the quasar resides in an under-massive host-galaxy bulge with Mbulge ~ 7.5MBH, and that the lens magnification is lower than ~8. Finally, the inferred electron density of the narrow-line absorber implies a distance of the order of 10 kpc of the absorbing gas from the quasar, placing it within the host galaxy.

  13. Suzaku observations of two narrow-line radio galaxies (3C 403 and IC 5063)

    NASA Astrophysics Data System (ADS)

    Tazaki, Fumie; Ueda, Yoshihiro; Terashima, Yuichi; Mushotzky, Richard F.

    2012-03-01

    We report the results of Suzaku broad band X-ray observations of the two narrow-line radio galaxies (NLRGs), 3C 403 and IC 5063. Combined with the Swift/BAT spectra averaged for 58 months, we are able to accurately constrain their spectral properties over the 0.5-200 keV band. The spectra from the nucleus are well represented with an absorbed cut-off power law, a mildly absorbed reflection component from cold matter with an iron-K emission line, and an unabsorbed soft component, which gives a firm upper limit for the scattered emission. The reflection strength normalized to the averaged BAT flux is R(≡Ω/2π)~0:6 in both targets, implying that their tori have a sufficiently large solid angle to produce the reprocessed emission. The numerical torus model with an opening angle of ~50 degrees by Ikeda et al. (2009, ApJ, 692, 608) well reproduces the observed spectra. We discuss the possibility that the amount of the normal gas responsible for Thomson scattering is systematically smaller in radio galaxies compared with Seyfert galaxies. This difference may be due to gas being expelled by jet activity. The details of this work are given in Tazaki et al. (2011, ApJ, 738, 70).

  14. The emission line galaxy TV Reticuli. Evidence for an ultraluminous supernova

    NASA Astrophysics Data System (ADS)

    Schmidtobreick, L.; Tappert, C.; Horst, H.; Saviane, I.; Lidman, C.

    2007-01-01

    Aims:TV Ret was classified as a cataclysmic variable due to an outburst observed in 1977. We intended to confirm this classification and derive some basic properties of the system. Methods: Low resolution optical spectra were obtained for a spectral classification of the object. Results: We find that the object is not a cataclysmic variable but an emission line galaxy with a redshift z=0.0964. An R-image taken in very good seeing conditions shows that the object is extended. Conclusions: .We show that TV Ret is a blue dwarf galaxy, probably compact, with an absolute magnitude of MB = -17.5, a metallicity of 0.12 solar, and an average temperature of 1.3 × 104 K. The line ratios place it among the H II galaxies, although close to the border of the Seyfert 2s. The outburst, which was observed in 1977, could thus be explained by a supernova explosion. However, with an absolute magnitude around MB = -21, it was an extremely bright one.

  15. Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars

    NASA Astrophysics Data System (ADS)

    Honnappa, Vijayakumar; Prabhakar, Vedavvathi

    Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars Vijayakumar H. Doddamani*and P. Vedavathi Department of Physics, Bangalore University, Bangalore-560056, *Corresponding author:drvkdmani@gmail.com, Abstract The line and continuum flux variability is a hallmark phenomenon of Seyfert 1 galaxies and quasars. Large amplitude luminosity variability is observed in AGNs from x-rays through radio waves over a wide-ranging timescales from minutes to years. The combinations of high luminosity and short variability time scales suggests, that the power of AGN is produced by a phenomena more efficient in terms of energy release per unit mass than ordinary stellar processes. The basic structure of AGNs thus developed based on the variability studies consists of a central super massive black hole surrounded by an accretion disk or more generally optically thick plasma radiating brightly at UV and soft X-ray wavelengths. The variability studies have been important tools of understanding the physics of the central regions of AGNs, which in general cannot be resolved with the existing or planned ground and space telescopes. Therefore, we have undertaken a study of the simultaneous ultraviolet line and continuum flux variability studies in MRK501, ESOB113-IG45 (also called as Fairall 9), MRK1506, MRK1095 V*GQCOM, PG1211+143, MRK205, PG1226+023 (also known as 3C273), PG1351+640, MRK 1383, MRK876 and QSO2251-178 as these objects have been repeatedly observed by IUE satellite over several years.. It is observed that Fairall 9, MRK 1095 and 3C273 exhibit the large amplitude variability (» 30 times) over the observed timescale, which spans several years. The remaining nine objects exhibit small amplitude (» 5 times) variability over the long time scale of observations. The highest amplitude variability is observed in Lya with a least in the MgII line. The amplitude of variability decreases in the order of Lya, CIV and Mg II, lines. These

  16. Helium-Like Iron Line Temperature Diagnostics in Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Sulkanen, Martin E.

    1993-01-01

    The emission complex around 6.7 keV, arising from He-like Fe lines and their dielectronic satellites, has been observed at low resolution in a number of clusters of galaxies. With sufficient spectral resolution as in, e.g., solar flare observations, the ratio, G = (x + y + z)/w, of the intercombination (x and y) and forbidden (z) to the resonance (w) lines arising from the n = 2 level of the He-like ion, is a sensitive temperature diagnostic. We examine this role for G in the context of spatially and spectrally resolved observations of clusters of galaxies. The temperature behavior of this ratio is strongly dependent on the spectral resolution. We introduce an alternative definition for G that includes the contribution of satellite lines and improves the temperature fidelity of this diagnostic. We find that deprojection of the observed value of G along a line of sight through the cluster can yield accurate temperature profiles for temperatures in the range 10(exp 7)-10(exp 8) K that do not suffer from the cluster model uncertainties inherent in deconvolution of broad-band X-ray surface brightness profiles.

  17. Atlas of absorption lines from 0 to 17 900 cm(-1)

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Rothman, L. S.; Rinsland, C. P.; Smith, M. A. H.; Richardson, D. J.; Larsen, J. C.

    1981-01-01

    Plots of absorption line strength versus line position for wavenumbers from 0 to 17,900 cm(-1) are shown for 20 atmospheric gases (H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2, NO2, NH3, HNO3, OH, HF, HCl, HBr, HI, ClO, OCS, H2CO). Also shown are similar plots of lower-state energy values for adsorption lines for the strongly adsorbing atmospheric gases (H2O, CO2, O3, and CH4) for wavenumbers from 0 to 5000 cm(-1).

  18. Parent population of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Berton, M.; Foschini, L.; Ciroi, S.; Cracco, V.; La Mura, G.; Lister, M. L.; Mathur, S.; Peterson, B. M.; Richards, J. L.; Rafanelli, P.

    2015-06-01

    Flat-spectrum radio-loud narrow-line Seyfert 1 galaxies (NLS1s) are a recently discovered class of γ-ray emitting active galactic nuclei (AGN), that exhibit some blazar-like properties which are explained with the presence of a relativistic jet viewed at small angles. When blazars are observed at larger angles they appear as radio-galaxies, and we expect to observe an analogue parent population for beamed NLS1s. However, the number of known NLS1s with the jet viewed at large angles is not enough. Therefore, we tried to understand the origin of this deficit. Current hypotheses about the nature of parent sources are steep-spectrum radio-loud NLS1s, radio-quiet NLS1s and disk-hosted radio-galaxies. To test these hypotheses we built three samples of candidate sources plus a control sample, and calculated their black hole mass and Eddington ratio using their optical spectra. We then performed a Kolmogorov-Smirnov statistical test to investigate the compatibility of our different samples with a beamed population. Our results indicate that, when the inclination angle increases, a beamed source appears as a steep-spectrum radio-loud NLS1, or possibly even as a disk-hosted radio-galaxy with low black hole mass and high Eddington ratio. Further investigations, involving larger complete samples and observations at radio frequency, are needed to understand the incidence of disk-hosted radio-galaxies in the parent population, and to assess whether radio-quiet NLS1s can play a role, as well. Appendix A is available in electronic form at http://www.aanda.org

  19. Warp of the ionized gas layer in the outer Galaxy, traced by recombination line observations

    NASA Astrophysics Data System (ADS)

    Azcárate, I. N.; Cersosimo, J. C.

    We report results of H166α recombination line observations from the outer Galaxy in both the Northern and Southern Galactic Plane. The Southern observations were made with the 30 m antenna of the Instituto Argentino de Radioastronomía in Villa Elisa, Buenos Aires, Argentina, and the Northern ones ( more sensitive, high quality observations, performed with an ``state of the art'' receiver) with the 43 m antenna of the National Radio Astronomy Observatory, in Green Bank, West Virginia, USA. >From the two sets of observations we obtain evidence of the warp of the low-density ionized gas layer, traced by the H166α emission in the outer Milky Way, towards positive galactic latitudes in the Northern and towards negative latitudes in the Southern Galaxy. The warp of this tracer qualitatively agrees with that of the HI.

  20. A Morphological Study of Compact Narrow Emission Line Galaxies In The COSMOS Field

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne; Feldman, D.; Greenbaum, A.; Hasan, I.; Mahalchick, S.; Liu, C.; COSMOS Team

    2010-01-01

    We present a morphological study of 139 spectroscopically selected compact narrow emission line galaxies (CNELGs) from the COSMOS HST Treasury Survey, using a comparison sample of field galaxies of similar magnitude obtained from the COSMOS field. The CNELGs range in magnitude from 18.13 < V < 21.95 and in redshift from 0 < z < 0.9. Preliminary results indicate that, whereas statistically the CNELGs are clearly morphologically distinct from our comparison sample, at HST resolution they are also clearly not all - or even predominantly - "compact." This work was supported by an NSF REU Site grant to The City University of New York and American Museum of Natural History; an NSF STEAM grant to the College of Staten Island; the NASA New York Space Grant program; Barnard College; and the CUNY Macaulay Honors College.

  1. Optical monitoring observations of two γ-ray narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Wu, Chao; Wang, Jing; Wei, Jianyan

    2016-04-01

    1H 0323+342 is a rather radio-loud narrow-line Seyfert 1 galaxy (NLS1) with γ-ray emission. Optical observations were carried out in B and R bands which covered 6 nights in 2011 to obtain light curves of 1H 0323+342. The difference image subtraction method was used to deal with the data of 1H 0323+342 because of the existence of extended host galaxy. Optical variability on day timescale was reported here. We also monitored the first γ-ray NLS1 SDSS J094857.3+002225 and confirmed the existence of intranight optical variability (INOV). These indicated the existence of a relativistic jet in these NLS1s.

  2. Near-infrared line-strengths in elliptical galaxies: evidence for initial mass function variations?

    NASA Astrophysics Data System (ADS)

    Cenarro, A. J.; Gorgas, J.; Vazdekis, A.; Cardiel, N.; Peletier, R. F.

    2003-02-01

    We present new relations between recently defined line-strength indices in the near-infrared (CaT*, CaT, PaT, MgI and sTiO) and central velocity dispersion (σ0) for a sample of 35 early-type galaxies, showing evidence for significant anti-correlations between CaII triplet indices (CaT* and CaT) and log σ0. These relations are interpreted in the light of our recent evolutionary synthesis model predictions, suggesting the existence of important Ca underabundances with respect to Fe and/or an increase of the dwarf to giant stars ratio along the mass sequence of elliptical galaxies.

  3. Color gradients in cooling flow cluster central galaxies and the ionization of cluster emission line systems

    NASA Technical Reports Server (NTRS)

    Romanishin, W.

    1988-01-01

    Preliminary results are given for a program to measure color gradients in the central galaxies in clusters with a variety of cooling flow rates. The objectives are to search for extended blue continuum regions indicative of star formation, to study the spatial distribution of star formation, and to make a quantitative measure of the amount of light from young stars, which can lead to a measure of the star formation rate (for an assumed initial mass function). Four clusters with large masses and large cluster H-alpha emission fluxes are found to have an excess of blue light concentrated to the centers of the cluster central galaxy. Assumption of a disk IMF leads to the conclusion that the starlight might play a major role in ionizing the emission line gas in these clusters.

  4. Search for gamma-ray lines towards galaxy clusters with the Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Anderson, B.; Zimmer, S.; Conrad, J.; Gustafsson, M.; Sánchez-Conde, M.; Caputo, R.

    2016-02-01

    We report on a search for monochromatic γ-ray features in the spectra of galaxy clusters observed by the Fermi Large Area Telescope. Galaxy clusters are the largest structures in the Universe that are bound by dark matter (DM), making them an important testing ground for possible self-interactions or decays of the DM particles. Monochromatic γ-ray lines provide a unique signature due to the absence of astrophysical backgrounds and are as such considered a smoking-gun signature for new physics. An unbinned joint likelihood analysis of the sixteen most promising clusters using five years of data at energies between 10 and 400 GeV revealed no significant features. For the case of self-annihilation, we set upper limits on the monochromatic velocity-averaged interaction cross section. These limits are compatible with those obtained from observations of the Galactic Center, albeit weaker due to the larger distance to the studied clusters.

  5. NGC 4051 and the Nature of Narrow-Line Seyfert I Galaxies

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; McHardy, I. M.; Wilkes, B. J.

    2004-01-01

    We report on the results of a three-year program of coordinated X-ray and optical monitoring of the narrow-line Seyfert 1 galaxy NGC 4051. The principal results of this program are: (1) The H-beta emission line time lag and Doppler width yield a virial mass estimate of about 1.1 mission solar masses, at the extreme low end of AGN masses. A plausible adjustment for inclination effects increases this mass slightly to about 1.4 mission solar masses. (2) During the third year of this campaign, both the X-ray continuum and the He II 4686 line went into extremely low states, although the optical continuum and the H-beta broad line were both still present and variable. We suggest that the inner part of the accretion disk may have gone into an advection-dominated state, yielding little radiation from the hotter inner disk. (3) The He II 4686 line is almost five times as broad as H-beta, and it is strongly blueward asymmetric, as are the high-ionization UV lines recorded in archive spectra of NGC 4051. The data are consistent with the Balmer lines arising in a low-inclination disk-like configuration, and the high-ionization lines arising in an outflowing wind, of which we observe preferentially the near side.

  6. Broad [C II] Line Wings as Tracer of Molecular and Multi-phase Outflows in Infrared Bright Galaxies

    NASA Astrophysics Data System (ADS)

    Janssen, A. W.; Christopher, N.; Sturm, E.; Veilleux, S.; Contursi, A.; González-Alfonso, E.; Fischer, J.; Davies, R.; Verma, A.; Graciá-Carpio, J.; Genzel, R.; Lutz, D.; Sternberg, A.; Tacconi, L.; Burtscher, L.; Poglitsch, A.

    2016-05-01

    We report a tentative correlation between the outflow characteristics derived from OH absorption at 119 μm and [C ii] emission at 158 μm in a sample of 22 local and bright ultraluminous infrared galaxies (ULIRGs). For this sample, we investigate whether [C ii] broad wings are a good tracer of molecular outflows, and how the two tracers are connected. Fourteen objects in our sample have a broad wing component as traced by [C ii], and all of these also show OH119 absorption indicative of an outflow (in one case an inflow). The other eight cases, where no broad [C ii] component was found, are predominantly objects with no OH outflow or a low-velocity (≤100 km s‑1) OH outflow. The FWHM of the broad [C ii] component shows a trend with the OH119 blueshifted velocity, although with significant scatter. Moreover, and despite large uncertainties, the outflow masses derived from OH and broad [C ii] show a 1:1 relation. The main conclusion is therefore that broad [C ii] wings can be used to trace molecular outflows. This may be particularly relevant at high redshift, where the usual tracers of molecular gas (like low-J CO lines) become hard to observe. Additionally, observations of blueshifted Na i D λλ 5890, 5896 absorption are available for 10 of our sources. Outflow velocities of Na i D show a trend with OH velocity and broad [C ii] FWHM. These observations suggest that the atomic and molecular gas phases of the outflow are connected.

  7. THE DIFFERENCE IN NARROW Fe K{alpha} LINE EMISSION BETWEEN SEYFERT 1 AND SEYFERT 2 GALAXIES

    SciTech Connect

    Liu Teng; Wang Junxian E-mail: jxw@ustc.edu.c

    2010-12-20

    We compile a sample of 89 Seyfert galaxies with both [O IV] 25.89 {mu}m line luminosities observed by Spitzer IRS and X-ray spectra observed by XMM-Newton EPIC. Using [O IV] emission as a proxy for active galactic nucleus (AGN) intrinsic luminosity, we find that although type 2 AGNs have higher line equivalent widths, the narrow Fe K{alpha} lines in Compton-thin and Compton-thick Seyfert 2 galaxies are 2.9{sup +0.8}{sub -0.6} and 5.6{sup +1.9}{sub -1.4} times weaker in terms of luminosity than Seyfert 1 galaxies, respectively. This indicates that different correction factors need to be applied for various types of AGNs before the narrow Fe K{alpha} line luminosity could serve as an intrinsic AGN luminosity indicator. We also find that Seyfert 1 galaxies in our sample have on average marginally larger line widths and higher line centroid energies, suggesting contamination from highly ionized Fe line or broader line emission from much smaller radius, but this effect is too weak to explain the large difference in narrow Fe K{alpha} line luminosity between type 1 and type 2 AGNs. This is the first observational evidence showing that the narrow Fe K{alpha} line emission in AGNs is anisotropic. The observed difference is consistent with theoretical calculations assuming a smoothly distributed obscuring torus and could provide independent constraints on the clumpiness of the torus.

  8. Absorption-line profiles in a companion spectrum of a mass-losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1992-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10 (exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  9. Absorption line profiles in a companion spectrum of a mass losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1990-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  10. Gamma-ray Bright Narrow Line Seyfert 1s: Their Host Galaxies and Origin

    NASA Astrophysics Data System (ADS)

    Hamilton, Timothy S.; Foschini, L.

    2012-05-01

    In the last few years a new class of radio-loud AGN has emerged: gamma-ray bright Narrow Line Seyfert 1s (g-NLS1). The broader class of NLS1s (characterized by their narrow permitted lines) are usually radio-quiet, have small black holes, high Eddington ratios, and are hosted in spiral galaxies. While a few NLS1s are radio-loud, the evidence for relativistic jets was ambiguous until the discovery of strong gamma-ray emission from five of these. As NLS1s are hosted by spirals, this may break the paradigm that associates relativistic jets with elliptical galaxies. Of these five, only the nearest one has been imaged at high resolution, and it is the only one whose host galaxy can be seen. We present our analysis of archival HST images of 1H 0312+341. While we clearly see spiral arms, we find no evidence for a separate bulge and disk_in fact, no evidence for a disk at all. The best fit follows a de Vaucouleurs profile, characteristic of elliptical galaxies. Comparing with our studies of quasar hosts, we believe this combination may indicate a recent merger. The structure of 1H 0312+341 may also distinguish it from “normal” NLS1, which have pseudobulges and are fueling by secular processes, rather than mergers. But 1H 0323+341 may be an unusual g-NLS1. It shows strong disk emission, unlike its cohorts. With so few of these to study, an approach is to image the hosts of the more common radio-loud NLS1s these are drawn from.

  11. Physical Properties of Emission-Line Galaxies at 2 from Near-Infrared Spectroscopy with Magellan FIRE

    NASA Astrophysics Data System (ADS)

    Masters, Daniel C.; McCarthy, P. J.; Malkan, M. A.; Siana, B. D.; Scarlata, C.; Hathi, N. P.; Atek, H.; Henry, A. L.; WISP Team

    2014-01-01

    We present results from near-infrared spectroscopy with Magellan FIRE of 26 strong emission-line galaxies at 2.2 and 1.5. The sample was selected from the WFC3 Infrared Spectroscopic Parallels (WISP) survey, which uses the near-infrared grism capability of the Hubble Space Telescope Wide Field Camera 3 to detect emission-line galaxies over 0.5 < z < 2.3. High-resolution ( 5000) follow-up spectroscopy with Magellan FIRE over 1.0--2.5 microns resolves important rest-frame optical emission lines, allowing us to measure physical properties such as dust obscuration, metal abundance, star formation rate, ionization parameter, and emission line kinematics. We also analyze the properties of composite spectra derived from the FIRE-observed sample. With this relatively large sample of rest-frame optical spectra we can make statistical inferences about the population of emission-line galaxies at 2. We find that the galaxies are low metallicity ( 1/5-1/2 Z_solar) as determined from the R23 calibration. The galaxies are low dust extinction on average (E(B-V 0.2) but with significant scatter. The dust-corrected H-alpha star formation rates range from ~10--150 M_sun yr^-1 with a mean of 50 M_su yr^-1. The average ionization parameter for the sample, log U ~ -2.5, is higher than typically found for star-forming galaxies in the local universe but consistent with those found in more intense starbursting regions in galaxies such as M82. Emission line velocity dispersions are measured to be 71 +- 38 km s^-1, in good agreement with other studies that have probed the H-alpha kinematics of star-forming galaxies at similar redshift. The galaxies are compact, with half-light radii of < 2 kpc, and ~50% show evidence for multiple structures or asymmetries in the WFC3 imaging. Based on the line velocity dispersions and the location of the galaxies on BPT diagnostic plots, there is little evidence for significant AGN contribution to most emission-line galaxies at 2.

  12. Emission-Line Galaxies from the PEARS Hubble Ultra Deep Field: A 2-D Detection Method and First Results

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, james; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; Xu, Chun; Gronwall, Caryl; Koekemoer, Anton M.; Walsh, Jeremy; diSeregoAlighieri, Sperello

    2007-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) grism PEARS (Probing Evolution And Reionization Spectroscopically) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS North and South fields. One important subset of objects in these data are emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [0 1111 emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [0 1111 emitters having rest-frame EW> 100A). There are 12 galaxies with multiple emitting knots; several show evidence of variations in H-alpha flux in the knots, suggesting that the differing star formation properties across a single galaxy can in general be probed at redshifts approximately greater than 0.2 - 0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  13. AN STIS ATLAS OF Ca II TRIPLET ABSORPTION LINE KINEMATICS IN GALACTIC NUCLEI

    SciTech Connect

    Batcheldor, D.; Mandalou, J.; Axon, D.; Valluri, M.; Merritt, D.

    2013-09-15

    The relations observed between supermassive black holes and their host galaxies suggest a fundamental link in the processes that cause these two objects to evolve. A more comprehensive understanding of these relations could be gained by increasing the number of supermassive black hole mass (M{sub .}) measurements. This can be achieved, in part, by continuing to model the stellar dynamics at the centers of galactic bulges using data of the highest possible spatial resolution. Consequently, we present here an atlas of galaxies in the Space Telescope Imaging Spectrograph (STIS) data archive that may have spectra suitable for new M{sub .} estimates. Archived STIS G750M data for all non-barred galactic bulges are co-aligned and combined, where appropriate, and the radial signal-to-noise ratios calculated. The line-of-sight velocity distributions from the Ca II triplet are then determined using a maximum penalized likelihood method. We find 19 out of 42 galaxies may provide useful new M{sub .} estimates since they are found to have data that is comparable in quality with data that has been used in the past to estimate M{sub .}. However, we find no relation between the signal-to-noise ratio in the previously analyzed spectra and the uncertainties of the black hole masses derived from the spectra. We also find that there is a very limited number of appropriately observed stellar templates in the archive from which to estimate the effects of template mismatching.

  14. CONSTRAINING JET PRODUCTION SCENARIOS BY STUDIES OF NARROW-LINE RADIO GALAXIES

    SciTech Connect

    Sikora, Marek; Stasinska, Grazyna; Koziel-Wierzbowska, Dorota; Madejski, Greg M.; Asari, Natalia V.

    2013-03-01

    We study a large sample of narrow-line radio galaxies (NLRGs) with extended radio structures. Using 1.4 GHz radio luminosities L {sub 1.4}, narrow optical emission line luminosities L {sub [OIII]} and L{sub H{sub {alpha}}}, as well as black hole masses M {sub BH} derived from stellar velocity dispersions measured from the optical spectra obtained with the Sloan Digital Sky Survey, we find that (1) NLRGs cover about four decades of the Eddington ratio, {lambda} {identical_to} L {sub bol}/L {sub Edd}{proportional_to}L {sub line}/M {sub BH}; (2) L {sub 1.4}/M {sub BH} strongly correlates with {lambda}; and (3) radio loudness, R{identical_to}L{sub 1.4}/L{sub line}, strongly anti-correlates with {lambda}. A very broad range of the Eddington ratio indicates that the parent population of NLRGs includes both radio-loud quasars (RLQs) and broad-line radio galaxies (BLRGs). The correlations they obey and their high jet production efficiencies favor a jet production model which involves the so-called magnetically choked accretion scenario. In this model, production of the jet is dominated by the Blandford-Znajek mechanism, and the magnetic fields in the vicinity of the central black hole are confined by the ram pressure of the accretion flow. Since large net magnetic flux accumulated in central regions of the accretion flow required by the model can take place only via geometrically thick accretion, we speculate that the massive, 'cold' accretion events associated with luminous emission-line active galactic nucleus can be accompanied by an efficient jet production only if preceded by a hot, very sub-Eddington accretion phase.

  15. The anisotropic line correlation function as a probe of anisotropies in galaxy surveys

    NASA Astrophysics Data System (ADS)

    Eggemeier, A.; Battefeld, T.; Smith, R. E.; Niemeyer, J.

    2015-10-01

    We propose an anisotropic generalization of the line correlation function (ALCF) to separate and quantify phase information in the large-scale structure of galaxies. The line correlation function probes the strictly non-linear regime of structure formation and since phase information drops out of the power spectrum, the line correlation function provides a complementary tool to commonly used techniques based on two-point statistics. Furthermore, it is independent of linear bias as well as the Gaussian variance on the modulus of the density field and thus may also prove to be advantageous compared to the bispectrum or similar higher order statistics for certain cases. For future applications, it is vital, though, to be able to account for observational effects that cause anisotropies in the distribution of galaxies. Based on a number of numerical studies, we find that our ALCF is well suited to accomplish this task and we demonstrate how the Alcock-Paczyński effect and kinematical redshift-space distortions can in principle be measured via the ALCF.

  16. The X-ray spectrum and time variability of narrow emission line galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1981-01-01

    X-ray spectral and temporal observations are reported for six narrow emission line galaxies (NELGs), all of which are fitted by power-law X-ray spectra of energy slope 0.8 and have column densities in the line of sight greater than 1 x 10 to the 22nd atoms/sq cm. Three of the objects, NGC 526a, NGC 2110 and MCG-5-23-16 are variable in their X-ray flux, and the latter two, along with NGC 5506 and NGC 7582, showed detectable variability in at least one observation. The measured X-ray properties of these NELGs, which also included NGC 2992, strongly resemble those of previously-measured type 1 Seyferts of the same X-ray luminosity and lead to the conclusion of great similarity between the NELGs and low-luminosity type 1 Seyferts. The implications of these observations for the optical line-emitting region structure of these galaxies are discussed.

  17. [Laser induced breakdown spectra of coal sample and self-absorption of the spectral line].

    PubMed

    Zhang, Gui-yin; Ji, Hui; Jin, Yi-dong

    2014-12-01

    The LIBS of one kind of household fuel coal was obtained with the first harmonic output 532 nm of an Nd·YAG laser as radiation source. With the assignment of the spectral lines, it was found that besides the elements C, Si, Mg, Fe, Al, Ca, Ti, Na and K, which are reported to be contained in coal, the presented sample also contains trace elements, such as Cd, Co, Hf, Ir, Li, Mn, Ni, Rb, Sr, V, W, Zn, Zr etc, but the spectral lines corresponding to O and H elements did not appear in the spectra. This is owing to the facts that the transition probability of H and O atoms is small and the energy of the upper level for transition is higher. The results of measurement also show that the intensity of spectral line increases with the laser pulse energy and self-absorption of the spectral lines K766.493 nm and K769.921 nm will appear to some extent. Increasing laser energy further will make self-absorption more obvious. The presence of self-absorption can be attributed to two factors. One is the higher transition rate of K atoms, and the other is that the increase in laser intensity induces the enhancement of the particle number density in the plasma. PMID:25881446

  18. KILOPARSEC-SCALE RADIO STRUCTURES IN NARROW-LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Doi, Akihiro; Kino, Motoki; Nagira, Hiroshi; Kawakatu, Nozomu; Nagai, Hiroshi; Asada, Keiichi

    2012-11-20

    We report the finding of kiloparsec (kpc)-scale radio structures in three radio-loud narrow-line Seyfert 1 (NLS1) galaxies from the Faint Images of the Radio Sky at Twenty-centimeters of the Very Large Array, which increases the number of known radio-loud NLS1s with kpc-scale structures to six, including two {gamma}-ray-emitting NLS1s (PMN J0948+0022 and 1H 0323+342) detected by the Fermi Gamma-ray Space Telescope. The detection rate of extended radio emissions in NLS1s is lower than that in broad-line active galactic nuclei (AGNs) with a statistical significance. We found both core-dominated (blazar-like) and lobe-dominated (radio-galaxy-like) radio structures in these six NLS1s, which can be understood in the framework of the unified scheme of radio-loud AGNs that considers radio galaxies as non-beamed parent populations of blazars. Five of the six NLS1s have (1) extended radio luminosities suggesting jet kinetic powers of {approx}> 10{sup 44} erg s{sup -1}, which is sufficient to make jets escape from hosts' dense environments; (2) black holes of {approx}> 10{sup 7} M {sub Sun }, which can generate the necessary jet powers from near-Eddington mass accretion; and (3) two-sided radio structures at kpc scales, requiring expansion rates of {approx}0.01c-0.3c and kinematic ages of {approx}> 10{sup 7} years. On the other hand, most typical NLS1s would be driven by black holes of {approx}< 10{sup 7} M {sub Sun} in a limited lifetime of {approx}10{sup 7} years. Hence, the kpc-scale radio structures may originate in a small window of opportunity during the final stage of the NLS1 phase just before growing into broad-line AGNs.

  19. The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines

    NASA Technical Reports Server (NTRS)

    Markowitz, Alex; Reeves, James N.; Miniutti, Giovanni; Serlemitsos, Peter; Kunieda, Hideyo; Taqoob, Tahir; Fabian, Andrew C.; Fukazawa, Yasushi; Mushotzky, Richard; Okajima, Takashi; Gallo, Luigi; Awaki, Hisamitsu; Griffiths, Richard E.

    2007-01-01

    We present results from a 150 ksec Suzaku observation of the Seyfert 1 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with partial covering by a lowly-ionized absorber with a column density near 5x10(exp 22) cm(exp -2) and with a covering fraction 96-100 percent. Narrow K-shell absorption features due to He- and H-like Fe confirm the presence of a high-ionization absorbing component as well. A broad Fe K(alpha) diskline is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad line. The narrow Fe Ka line at 6.4 keV is resolved, yielding a velocity width commensurate with the optical Broad Line Region. The strength of the Compton reflection hump suggests a contribution mainly from the broad Fe line origin. We include in our model soft band emission lines from He- and H-like ions and radiative recombination lines, consistent with photo-ionization, though a small contribution from collisional ionization is possible.

  20. A 21-cm line study of NGC 5963, an SC galaxy with a low-surface brightness disk

    NASA Astrophysics Data System (ADS)

    Bosma, A.; Athanassoula, E.; van der Hulst, J. M.

    1988-06-01

    Results are presented from a detailed 21-cm line study of the Sc galaxy NGC 5963. The extent of the H I emission is found to be roughly coincident with the optical image, the latter being of much lower surface brightness than normal for Sc galaxies. The velocity field shows little deviation from axial symmetry, and the derived rotation curve is typical for Sc galaxies about twice as bright as NGC 5963. A composite mass model is presented using the observed light distribution to calculate a rotation curve for the luminous part of the galaxy (assuming a constant M/L-ratio with radius); this calculated rotation curve is compared to the observed one to derive a rotation law for a dark halo. Comparison with Sc galaxies having normal disk surface brightnesses suggests that the halo in NGC 5963 is more concentrated than in normal Scs with similar rotation curves. The origin of the low surface brightness of the disk is discussed.

  1. The Wasilewski sample of emission-line galaxies - Follow-up CCD imaging and spectroscopic and IRAS observations

    NASA Technical Reports Server (NTRS)

    Bothun, Gregory D.; Schmitz, Mark; Halpern, Jules P.; Lonsdale, Carol J.; Impey, Chris

    1989-01-01

    The results of an extensive imaging and spectroscopic follow-up of the objective prism-selected emission line galaxy (ELG) sample of Wasilewski (1982) are presented. Fluxes at 12, 25, 60, and 100 microns were also obtained from the coadded IRAS survey data. ELGs found by objective prism surveys are found to be generally small and underluminous galaxies which usually have higher than average optical surface brightness. The Seyfert detection rate in objective prism surveys is roughly 10 percent and the ratio of the space densities of Seyfert 2 to Seyfert 1 galaxies is significantly larger than unity. Most of the galaxies selected by objective prism surveys are star-forming, late-type spirals which often show disturbed morphology. About 25 percent of the galaxies detected by the surveys are faint, high-excitation metal-poor compact H II regions.

  2. The HETDEX Pilot Survey. I. Survey Design, Performance, and Catalog of Emission-line Galaxies

    NASA Astrophysics Data System (ADS)

    Adams, Joshua J.; Blanc, Guillermo A.; Hill, Gary J.; Gebhardt, Karl; Drory, Niv; Hao, Lei; Bender, Ralf; Byun, Joyce; Ciardullo, Robin; Cornell, Mark E.; Finkelstein, Steven L.; Fry, Alex; Gawiser, Eric; Gronwall, Caryl; Hopp, Ulrich; Jeong, Donghui; Kelz, Andreas; Kelzenberg, Ralf; Komatsu, Eiichiro; MacQueen, Phillip J.; Murphy, Jeremy; Odoms, P. Samuel; Roth, Martin; Schneider, Donald P.; Tufts, Joseph R.; Wilkinson, Christopher P.

    2011-01-01

    We present a catalog of emission-line galaxies selected solely by their emission-line fluxes using a wide-field integral field spectrograph. This work is partially motivated as a pilot survey for the upcoming Hobby-Eberly Telescope Dark Energy Experiment. We describe the observations, reductions, detections, redshift classifications, line fluxes, and counterpart information for 397 emission-line galaxies detected over 169 squ' with a 3500-5800 Å bandpass under 5 Å full-width-half-maximum (FWHM) spectral resolution. The survey's best sensitivity for unresolved objects under photometric conditions is between 4 and 20× 10-17 erg s-1 cm-2 depending on the wavelength, and Lyα luminosities between 3 × 1042 and 6 × 1042 erg s-1 are detectable. This survey method complements narrowband and color-selection techniques in the search of high-redshift galaxies with its different selection properties and large volume probed. The four survey fields within the COSMOS, GOODS-N, MUNICS, and XMM-LSS areas are rich with existing, complementary data. We find 105 galaxies via their high-redshift Lyα emission at 1.9 < z < 3.8, and the majority of the remainder objects are low-redshift [O II]3727 emitters at z < 0.56. The classification between low- and high-redshift objects depends on rest-frame equivalent width (EW), as well as other indicators, where available. Based on matches to X-ray catalogs, the active galactic nuclei fraction among the Lyα emitters is 6%. We also analyze the survey's completeness and contamination properties through simulations. We find five high-z, highly significant, resolved objects with FWHM sizes >44 squ' which appear to be extended Lyα nebulae. We also find three high-z objects with rest-frame Lyα EW above the level believed to be achievable with normal star formation, EW0>240 Å. Future papers will investigate the physical properties of this sample. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  3. THE HETDEX PILOT SURVEY. I. SURVEY DESIGN, PERFORMANCE, AND CATALOG OF EMISSION-LINE GALAXIES

    SciTech Connect

    Adams, Joshua J.; Blanc, Guillermo A.; Gebhardt, Karl; Hao, Lei; Byun, Joyce; Fry, Alex; Jeong, Donghui; Komatsu, Eiichiro; Hill, Gary J.; Cornell, Mark E.; MacQueen, Phillip J.; Drory, Niv; Bender, Ralf; Hopp, Ulrich; Kelzenberg, Ralf; Ciardullo, Robin; Gronwall, Caryl; Finkelstein, Steven L.; Gawiser, Eric; Kelz, Andreas

    2011-01-15

    We present a catalog of emission-line galaxies selected solely by their emission-line fluxes using a wide-field integral field spectrograph. This work is partially motivated as a pilot survey for the upcoming Hobby-Eberly Telescope Dark Energy Experiment. We describe the observations, reductions, detections, redshift classifications, line fluxes, and counterpart information for 397 emission-line galaxies detected over 169 {open_square}' with a 3500-5800 A bandpass under 5 A full-width-half-maximum (FWHM) spectral resolution. The survey's best sensitivity for unresolved objects under photometric conditions is between 4 and 20x 10{sup -17} erg s{sup -1} cm{sup -2} depending on the wavelength, and Ly{alpha} luminosities between 3 x 10{sup 42} and 6 x 10{sup 42} erg s{sup -1} are detectable. This survey method complements narrowband and color-selection techniques in the search of high-redshift galaxies with its different selection properties and large volume probed. The four survey fields within the COSMOS, GOODS-N, MUNICS, and XMM-LSS areas are rich with existing, complementary data. We find 105 galaxies via their high-redshift Ly{alpha} emission at 1.9 < z < 3.8, and the majority of the remainder objects are low-redshift [O II]3727 emitters at z < 0.56. The classification between low- and high-redshift objects depends on rest-frame equivalent width (EW), as well as other indicators, where available. Based on matches to X-ray catalogs, the active galactic nuclei fraction among the Ly{alpha} emitters is 6%. We also analyze the survey's completeness and contamination properties through simulations. We find five high-z, highly significant, resolved objects with FWHM sizes >44 {open_square}' which appear to be extended Ly{alpha} nebulae. We also find three high-z objects with rest-frame Ly{alpha} EW above the level believed to be achievable with normal star formation, EW{sub 0}>240 A. Future papers will investigate the physical properties of this sample.

  4. Radio spectra of intermediate-luminosity broad-line radio galaxies .

    NASA Astrophysics Data System (ADS)

    Angelakis, E.; Kadler, M.; Lewis, K.; Sambruna, R. M.; Eracleous, M.; Zensus, J. A.

    Within the context of investigating possible differences between the mechanisms at play in Radio Loud AGN and those in Radio Quiet ones, we study the spectral characteristics of a selected sample of Intermediate-Luminosity Broad-Line Radio Galaxies in X-rays, optical, IR and radio. Here, we present the radio spectra acquired with the 100-m radio telescope in Effelsberg between 2.6 and 32 GHz. These measurements reveal a large variety of spectral shapes urging for radio imaging that would disclose the source morphology. Such studies could potentially discriminate between different mechanisms.

  5. Mid Infrared H2 lines- a new direct tracer for total molecular gas content in galaxies

    NASA Astrophysics Data System (ADS)

    Togi, Aditya; Smith, John-David T.

    2016-01-01

    Robust knowledge of the molecular hydrogen (H2) gas distribution is necessary to understand star formation in galaxies. Since H2 is not readily observable in the cold interstellar medium (ISM), the molecular gas content has traditionally been inferred using indirect tracers like carbon-monoxide (CO), dust emission, gamma ray interactions, and star formation efficiency. Physical processes resulting in enhancement and reduction of these indirect tracers can result in misleading estimates of molecular gas masses. My dissertation work is based on devising a new temperature power law distribution model for warm H2, a direct tracer, to calculate the total molecular gas mass in galaxies. The model parameters are estimated using mid infrared (MIR) H2 rotational line fluxes, obtained from IRS- Spitzer (InfraRed Spectrograph- Spitzer) instrument, and the model can be extrapolated to a suitable lower temperature to recover the total molecular gas mass. The power law model is able to recover the dark molecular gas, undetected by CO, in low metallicity galaxies. Using the power law model in the coming era of James Webb Space Telescope (JWST) with the high sensitivity MIR Instrument (MIRI) spectrograph we will be able to understand the properties of molecular gas at low and high redshifts.

  6. Near-infrared emission-line spectra of the Orion Nebula, NGC 4151, and other Seyfert galaxies

    SciTech Connect

    Osterbrock, D.E.; Shaw, R.A.; Veilleux, S. )

    1990-04-01

    Near-IR CCD moderate-resolution spectra in the 7000-11,000 wavelength range were obtained for NGC 1976 and NGC 4151 in three overlapping segments. The strongest three lines in both objects are forbidden S III 9531, He I 10830, and forbidden S III 9069. Also, lower resolution spectra of 14 additional Seyfert galaxies were obtained. In all but two of these spectra, the strongest line is forbidden S III 9531. The line strengths among these galaxies are compared to trace ionization behavior. 59 refs.

  7. The Hubble Space Telescope quasar absorption line key project. III - First observational results on Milky Way gas

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Lu, Limin; Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Lockman, Felix J.; Sargent, W. L. W.

    1993-01-01

    Absorption lines found near zero redshift due to Milky Way disk and halo gas in the spectra of 15 quasars observed with the Faint Object Spectrograph (FOS) of the HST at a resolution of about 230 km/s are reported. Results show that Milky Way absorption lines comprise about 44 percent of all absorption lines seen in the first group of Key Project FOS spectra. Milky Way lines were observed for 3C 273 and H1821 + 643. Limits to the Mg-to-H abundance ratio obtained for very high velocity Mg II absorption detections imply gas-phase Mg abundances for the very high velocity gas ranging from more than 0.059 to more than 0.32 times the solar abundance. In all cases where high-velocity H I emission is seen, corresponding high-velocity metal-line absorption is observed.

  8. Green Pea Galaxies and Cohorts: Luminous Compact Emission-line Galaxies in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Izotov, Yuri I.; Guseva, Natalia G.; Thuan, Trinh X.

    2011-02-01

    We present a large sample of 803 star-forming luminous compact galaxies (LCGs) in the redshift range z = 0.02-0.63, selected from Data Release 7 of the Sloan Digital Sky Survey (SDSS). The global properties of these galaxies are similar to those of the so-called green pea star-forming galaxies in the redshift range z = 0.112-0.360 and selected from the SDSS on the basis of their green color and compact structure. In contrast to green pea galaxies, our LCGs are selected on the basis of both their spectroscopic and photometric properties, resulting in a ~10 times larger sample, with galaxies spanning a redshift range gsim2 times larger. We find that the oxygen abundances and the heavy element abundance ratios in LCGs do not differ from those of nearby low-metallicity blue compact dwarf galaxies. The median stellar mass of LCGs is ~109 M sun. However, for galaxies with high EW(Hβ), >= 100 Å, it is only ~7 × 108 M sun. The star formation rate in LCGs varies in the large range of 0.7-60 M sun yr-1, with a median value of ~4 M sun yr-1, a factor of ~3 lower than in high-redshift star-forming galaxies at z >~ 3. The specific star formation rates in LCGs are extremely high and vary in the range ~10-9-10-7 yr-1, comparable to those derived in high-redshift galaxies.

  9. Interstellar absorption in the Mg II resonance line k2 and h2 emissions

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1981-01-01

    High-resolution (0.2 A) IUE spectra for the long wavelength range (1800-3000 A) have been studied. It is shown that narrow interstellar Mg II lines are seen in the center of the k2 and h2 emissions from nearby stars with large rotational velocities. For all observed stars, the radial velocity of the central k3 absorption component in the rest system of the star is strongly correlated with the mirror image of the radial velocity of the stars; this shows that a major fraction if not all of the k3 absorption is due to interstellar absorption in the solar neighborhood. The violet to red asymmetry of the k2 emission also correlates with the radial velocities of the star; this shows that the shift of k3 is due to the velocity shift of the local interstellar cloud with respect to the star.

  10. Intranight optical variability of γ-ray-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Stalin, C. S.; Kumar, Brijesh; Kumar, Brajesh; Bhatt, V. K.; Pandey, S. B.; Yadav, R. K. S.

    2013-01-01

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope has detected γ-ray emission in about half a dozen narrow-line Seyfert 1 (NLSy1) galaxies. This indicates the presence of relativistic jets in these sources similar to blazars and radio galaxies. In an attempt to have an idea of the intranight optical variability (INOV) characteristics of these γ-ray-loud NLSy1 galaxies, we have carried out optical flux monitoring observations of three NLSy1 galaxies detected by Fermi/LAT: 1H 0323+342, PMN J0948+0022 and PKS 1502+036. These optical monitoring observations in RC band carried out during 2012 January-May showed the presence of rapid optical flux variations in these sources. The intranight differential light curves of these sources have revealed flux variations on time-scales of hours with amplitudes of variability >3 per cent for most of the time. However, for one source, PMN J0948+0022, we observed amplitude of variability as large as 52 per cent. On using the F-statistics to classify the variability nature of these sources, we obtained a duty cycle (DC) of INOV of ˜85 per cent. Alternatively, the more commonly used C-statistics gave a DC of INOV of ˜57 per cent. Such high DC of INOV is characteristics of the BL Lac class of active galactic nucleus. The results of our monitoring observations thus indicate that there is similarity in the INOV nature of γ-ray-loud NLSy1 galaxies and BL Lac objects, arguing strongly for the presence of relativistic jets aligned closely to the observers line of sight in γ-ray-loud NLSy1s. Moreover, our dense monitoring observations on some of the nights have led to the clear detection of some miniflares superimposed on the flux variations during the night over time-scales as short as 12 min. The detection of short time-scale flux variability in the sources studied here is clearly due to stronger time compression leading to the jets in these sources having large Doppler factors, similar to that of the inner

  11. High-Resolution Emission-Line Imaging of Seyfert Galaxies. II. Evidence for Anisotropic Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew S.; Ward, Martin J.; Haniff, Christopher A.

    1988-11-01

    In the preceding paper, we describe a direct imaging survey of Seyfert galaxies with "linear" radio structures and find that the major axes and spatial scales of the circumnuclear emission-line gas are very similar to those of the radio continuum sources. In the present paper, the nature of this close connection between thermal and relativistic gases is assessed in detail. Models in which the kinetic energy of the radio jets or plasmoids powers shock waves, which ionize the gas, seem energetically feasible but disagree with the off-nuclear line intensity ratios. Ionization by relativistic electrons is negligible, but they may contribute to the heating of the gas. We favor a scenario in which the radio jets and plasmoids shock, accelerate, and compress ambient and entrained gas, but the dominant source of ionization is the nonstellar nuclear ultraviolet continuum. This ultraviolet source appears to be partially beamed along the axis of the radio jet. Photoionization by ultraviolet synchrotron radiation generated via shocks in the ejecta may also contribute, especially in Seyfert 2 galaxies. A comparison between the number of ionizing photons, N_i_, inferred by extrapolation of the directly observed continuum, and the number of ionizing photons, N_Hβ_, required to generate the Hβ emission has been made for six galaxies in our sample. In at least two galaxies, we find N_i_ << N_Hβ_, suggesting that the gas is exposed to a higher ionizing flux than inferred from direct observations of the nucleus, and supporting the idea of partial beaming. Similarly, the energy in the continuum between 100 A and 1 micron, if emitted isotropically, is inadequate to fuel the thermal nuclear infrared sources, implying that the radiating dust is heated by a more luminous optical-ultraviolet source. We speculate that the nuclear infrared emission of Seyfert 2 galaxies arises from dust in molecular clouds exposed to the partially beamed