Science.gov

Sample records for absorption line parameters

  1. AFGL atmospheric absorption line parameters compilation - 1982 edition

    NASA Astrophysics Data System (ADS)

    Rothman, L. S.; Gamache, R. R.; Barbe, A.; Goldman, A.; Gillis, J. R.; Brown, L. R.; Toth, R. A.; Flaud, J.-M.; Camy-Peyret, C.

    1983-08-01

    The latest edition of the AFGL atmospheric absorption line parameters compilation for the seven most active infrared terrestrial absorbers is described. Major modifications to the atlas for this edition include updating of water-vapor parameters from 0 to 4300 per cm, improvements to line positions for carbon dioxide, substantial modifications to the ozone bands in the middle to far infrared, and improvements to the 7- and 2.3-micron bands of methane. The atlas now contains about 181,000 rotation and vibration-rotation transitions between 0 and 17,900 per cm. The sources of the absorption parameters are summarized.

  2. AFGL atmospheric absorption line parameters compilation - 1980 version

    NASA Astrophysics Data System (ADS)

    Rothman, L. S.

    1981-03-01

    A new version of the AFGL atmospheric absorption line parameters compilation is now available. Major modifications since the last edition of 1978 include the strongest bands of water vapor, updated line positions for carbon dioxide, improved ozone parameters in the 5- and 10 micron regions, and updated and additional data for methane in the 3.5- and 7.7 micron regions. The atlas now contains over 159,000 rotational and vibration-rotation transitions from 0.3 to 17,880 per cm.

  3. Collisional Line-Shape and Line-Mixing Parameters for CO(2) Absorption near 3340 cm(-1): Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Buldyreva, Jeanna; Auwera, Jean Vander

    2014-06-01

    class="MsoNormal">The present work is focused on the determination of line-shape parameters for one of the 12C16O2 bands detectable by the SOIR (Solar Occultation in the InfraRed) instrument onboard the ESA Venus Express spacecraft, namely the 21102 - 00001 band located near 3340 cm-1. High-resolution Fourier transform spectra of this band have been recorded at sub-atmospheric pressures and analyzed to extract isolated-line intensities and collisional parameters as well as first-order line-mixing coefficients. Voigt, hard-collision Rautian and Sobel'man, and quadratic-speed-dependent Voigt profiles have been used. The retrieved parameters are compared with previous data available in the literature and with theoretical estimates obtained by an Energy-Corrected Sudden approach (generally, non-Markovian) employing a symmetric metric in the Liouville space. The same approach, supplied with additional hypotheses for basic transition rates for the hot bands, has also been used to model the complete band shapes. The need for accounting of line-narrowing effects at sub-atmospheric pressures has been evidenced from comparison with the recorded spectra, and some improvements have been introduced in the relaxation matrix model, leading to a good agreement of calculated and measured absorptions from nearly Doppler pressure regime to nearly atmospheric pressure.

  4. Line formation in Be star circumstellar disks Shear broadening, shell absorption, stellar obscuration and rotational parameter

    NASA Astrophysics Data System (ADS)

    Hummel, W.; Vrancken, M.

    2000-07-01

    We improve the theory of Horne & Marsh on shear broadening in accretion disks of CVs and adapt it to Be star circumstellar disks. Stellar obscuration and shell absorption are taken into account in detail. It is shown that shell absorption is already present in those emission lines where the central depression does not drop below the stellar continuum. The model profiles are fitted to observed symmetric Hα net emission lines with low equivalent width. The derived disk radii range from Rd = 5.3 R_* to Rd = 18 R_* and the surface emissivity varies as ~ R-m with 1.6 < m < 3.5. The comparison between model profiles of rotational parameter j>(1)/(2) with the optically thick Hα profile of HR 5440 rules out the range of j>(1)/(2). This can be understood by the lack of velocity shear in the outer disk regions. We conclude that Keplerian rotation (j=(1)/(2)) is a valid approximation. Based on observations collected at the German-Spanish Astronomical Center (DSAZ), Calar Alto, operated by the Max-Plank-Institut für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy. Based on observations collected at the Observatoire de Haute-Provence (OHP), CNRS, France.

  5. Line-Parameter Measurements and Stringent Tests of Line-Shape Models Based on Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bielska, Katarzyna; Fleisher, Adam J.; Hodges, Joseph T.; Lin, Hong; Long, David A.; Reed, Zachary D.; Sironneau, Vincent; Truong, Gar-Wing; Wójtewicz, Szymon

    2014-06-01

    Laser methods that are based on cavity-enhanced absorption spectroscopy (CEAS) are well-suited for measuring molecular line parameters under conditions of low optical density, and as such they are complementary to broadband Fourier-transform spectroscopy (FTS) techniques. Attributes of CEAS include relatively low detection limits, accurate and precise detuning axes and high fidelity measurements of line shape. In many cases these performance criteria are superior to those obtained using direct laser absorption spectroscopy and FTS-based systems. In this presentation we will survey several examples of frequency-stabilized cavity ring-down spectroscopy (FS-CRDS)1 measurements obtained with laser spectrometers developed at the National Institute of Standards and Technology (NIST) in Gaithersburg Maryland. These experiments, which are motivated by atmospheric monitoring and remote-sensing applications that require high-precision and accuracy, involve nearinfrared transitions of carbon dioxide, water, oxygen and methane. We discuss spectra with signal-to-noise ratios exceeding 106, frequency axes with absolute uncertainties in the 10 kHz to 100 kHz range and linked to a Cs clock, line parameters with relative uncertainties at the 0.2 % level and isotopic ratios measured with a precision of 0.03 %. We also present FS-CRDS measurements of CO2 line intensities which are measured at atmospheric concentration levels and linked to gravimetric standards for CO2 in air, and we quantify pressure-dependent deviations between various theoretical line profiles and measured line shapes. Finally we also present recent efforts to increase data throughput and spectral coverage in CEAS experiments. We describe three new high-bandwidth CEAS techniques including frequency-agile, rapid scanning spectroscopy (FARS)2, which enables continuous-wave measurements of cavity mode linewidth and acquisition of ringdown decays with no dead time during laser frequency tuning, heterodyne

  6. Determination of molecular line parameters for acrolein (C(3)H(4)O) using infrared tunable diode laser absorption spectroscopy.

    PubMed

    Harward, Charles N; Thweatt, W David; Baren, Randall E; Parrish, Milton E

    2006-04-01

    Acrolein (C(3)H(4)O) molecular line parameters, including infrared (IR) absorption positions, strengths, and nitrogen broadened half-widths, must be determined since they are not included in the high resolution transmission (HITRAN) molecular absorption database of spectral lines. These parameters are required for developing a quantitative analytical method for measuring acrolein in a single puff of cigarette smoke using tunable diode laser absorption spectroscopy (TDLAS). The task is complex since acrolein has many highly overlapping infrared absorption lines in the room temperature spectrum and the cigarette smoke matrix contains thousands of compounds. This work describes the procedure for estimating the molecular line parameters for these overlapping absorption lines in the wavenumber range (958.7-958.9 cm(-1)) using quantitative reference spectra taken with the infrared lead-salt TDLAS instrument at different pressures and concentrations. The nitrogen broadened half-width for acrolein is 0.0937 cm(-1)atm(-1) and to our knowledge, is the first time it has been reported in the literature.

  7. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    NASA Technical Reports Server (NTRS)

    Welty, Daniel E.

    1990-01-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  8. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    NASA Astrophysics Data System (ADS)

    Welty, Daniel E.

    1990-07-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  9. Quasistellar Objects: Intervening Absorption Lines

    NASA Astrophysics Data System (ADS)

    Charlton, J.; Churchill, C.; Murdin, P.

    2000-11-01

    Every parcel of gas along the line of sight to a distant QUASAR will selectively absorb certain wavelengths of continuum light of the quasar due to the presence of the various chemical elements in the gas. Through the analysis of these quasar absorption lines we can study the spatial distributions, motions, chemical enrichment and ionization histories of gaseous structures from REDSHIFT five unti...

  10. Experimental determination of terahertz atmospheric absorption parameters

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Goyette, Thomas M.; Giles, Robert H.; Nixon, William E.

    2015-05-01

    The terahertz frequency regime is often used as the `chemical fingerprint' region of the electromagnetic spectrum since many molecules exhibit a dense selection of rotational and vibrational transitions. Water is a major component of the atmosphere and since it has a large dipole moment the propagation of terahertz radiation will be dominated by atmospheric effects. This study will present the results of high-­-resolution broadband measurements of the terahertz atmospheric absorption and detail the technique for directly measuring the pressure broadening coefficients, absolute absorption coefficients, line positions, and continuum effects. Differences between these measured parameters and those tabulated in HITRAN will be discussed. Once the water vapor absorption was characterized, the same technique was used to measure the line parameters for methanol, a trace gas of interest within Earth's atmosphere. Methanol has a dense absorption spectrum in the terahertz frequency region and is an important molecule in fields such as environmental monitoring, security, and astrophysics. The data obtained in the present study will be of immediate use for the remote sensing community, as it is uncommon to measure this many independent parameters as well as to measure the absolute absorption of the transitions. Current models rely on tabulated databases of calculated values for the line parameters measured in this study. Differences between the measured data and those in the databases will be highlighted and discussed.

  11. Do Atoms Really "Emit" Absorption Lines?

    ERIC Educational Resources Information Center

    Brecher, Kenneth

    1991-01-01

    Presents three absorption line sources that enhance student understanding of the phenomena associated with the interaction of light with matter and help dispel the misconception that atoms "emit" absorption lines. Sources include neodymium, food coloring and other common household liquids, and fluorescent materials. (MDH)

  12. Absorption-Line Studies of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Shull, J. Michael

    We propose to undertake a "reverberation analysis" of the variable absorption lines ill two Seyfert Galaxies (NGC 4051 and Mrk 279) to help understand the origin of intrinsic absorption lines in AGNs. Stich an analysis is a powerful tool for elucidating the radial distribution of absorbing gas in the broad-line region (BLR) and narrow-line region (NLR). Only two Seyferts have previously been studied with this technique: NGC 4151 (Bromage el al. 1985; Clavel et al. 1987) and NGC 3516 (Voit, Shull, and Begelman 1987). The absorption features have been interpreted as an outflow of ionized clouds from the nuclear region or from an accretion disk affected by UV/X-ray heating. Neither the source of the absorbing gas in these Seyferts nor the "gene" which distingishes them from other Seyferts is known. Until the 1984 onset of absorption in Mrk 279, broad self-absorbed. lines had been observed only in Seyferts of low intrinsic luminosity, such as NGC 4051. Mrk 279 is intrinsically much brighter, and therefore more quasar-like, than the other three absorptionline Seyfert I's in the CfA sample. Thus, it may show how the absorption phenomenon changes at higher luminosity and could bridge the gap between the low luminosity absorption-line Seyferts and the well-studied broad absorption-line (BAL) QSO's. In addition, Mrk 279's significant redshift will allow us to study, for the first time, the Ly-alpha line in an absorption-line Seyfert. With 3 US-1 shifts for each of these two underobserved Seyferts, we can double the number of objects in which absorption-line variability has been studied and investigate why the absorption-line strengths correlate or anti-correlate with the UV continuum.

  13. A survey of ultraviolet interstellar absorption lines

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Jenkins, E. B.; Spitzer, L., Jr.; York, D. G.; Hill, J. K.; Savage, B. D.; Snow, T. P., Jr.

    1983-01-01

    A telescope-spectrometer on the Copernicus spacecraft made possible the measurement of many ultraviolet absorption lines produced by the interstellar gas. The present survey provides data on ultraviolet absorption lines in the spectra of 88 early-type stars. The stars observed are divided into four classes, including reddened stars, unreddened bright stars, moderately reddened bright stars, and unreddened and moderately reddened faint stars. Data are presented for equivalent width, W, radial velocity V, and rms line width, D, taking into account some 10 to 20 lines of N I, O I, Si II, P II, S II, Cl I, Cl II, Mn II, Fe II, Ni II, Cu II, and H2. The data are based on multiple scans for each line. Attention is given to details of observations, the data reduction procedure, and the computation of equivalent width, mean velocity, and velocity dispersion.

  14. Narrow UV Absorption Line Outflows from Quasars

    NASA Astrophysics Data System (ADS)

    Hamann, F.; Simon, L.; Rodriguez Hidalgo, P.; Capellupo, D.

    2012-08-01

    Narrow absorption line (NAL) outflows are an important yet poorly understood part of the quasar outflow phenomenon. We discuss one particular NAL outflow that has high speeds, time variability, and moderate ionizations like typical BAL flows, at an estimated location just ˜5 pc from the quasar. It also has a total column density and line widths (internal velocity dispersions) ˜100 times smaller than BALs, with no substantial X-ray absorption. We argue that radiative shielding (in the form of an X-ray/warm absorber) is not critical for the outflow acceleration and that the moderate ionizations occur in dense substructures that have an overall small volume filling factor in the flow. We also present new estimates of the overall incidence of quasar outflow lines; e.g., ˜43% of bright quasars have a C IV NAL outflow while ˜68% have a C IV outflow line of any variety (NAL, BAL, or mini-BAL).

  15. Molecular absorption in transition region spectral lines

    NASA Astrophysics Data System (ADS)

    Schmit, D. J.; Innes, D.; Ayres, T.; Peter, H.; Curdt, W.; Jaeggli, S.

    2014-09-01

    Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary. The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales and introduces a new complexity into our understanding of solar thermal structure. It lends credence to previous numerical studies that found evidence for elevated pockets of cool gas in the chromosphere. Movies associated to Figs. 1 and 2 are available in electronic form at http://www.aanda.org

  16. Spectrophotometry of six broad absorption line QSOs

    NASA Technical Reports Server (NTRS)

    Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.

    1987-01-01

    Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.

  17. Line Narrowing Parameter Measurement by Modulation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin N.

    1998-01-01

    Accurate Characterization of Oxygen A-Band Line Parameters by Wavelength Modulation Spectroscopy with tunable diode lasers is an ongoing research at Old Dominion University, under sponsorship from NASA Langley research Center. The work proposed here will be undertaken under the guidance of Dr. William Chu and Dr. Lamont Poole of the Aerosol Research Branch at NASA Langley-Research Center in Hampton, Virginia. The research was started about two years ago and utilizes wavelength modulation absorption spectroscopy with higher harmonic detection, a technique that we developed at Old Dominion University, to obtain the absorption line characteristics of the Oxygen A-band rovibronic lines. Accurate characterization of this absorption band is needed for processing of data that will be obtained in experiments such as the NASA Stratospheric Aerosol and Gas Experiment III (SAGE III) as part of the US Mission to Planet Earth. The research work for Summer Fellowship undertook a measurement of the Dicke line-narrowing parameters of the Oxygen A-Band lines by using wavelength modulation spectroscopy. Our previous theoretical results had indicated that such a measurement could be done sensitively and in a convenient fashion by using this type of spectroscopy. In particular, theoretical results had indicated that the signal magnitude would depend on pressure in a manner that was very sensitive to the narrowing parameter. One of the major tasks undertaken during the summer of 1998 was to establish experimentally that these theoretical predictions were correct. This was done successfully and the results of the work are being prepared for publication. Experimental Results were obtained in which the magnitude of the signal was measured as a function of pressure, for various harmonic detection orders (N = 1, 2, 3, 4, 5). A comparison with theoretical results was made, and it was shown that the agreement between theory and experiment was very good. More importantly, however, it was shown

  18. Sound propagation and absorption in foam - A distributed parameter model.

    NASA Technical Reports Server (NTRS)

    Manson, L.; Lieberman, S.

    1971-01-01

    Liquid-base foams are highly effective sound absorbers. A better understanding of the mechanisms of sound absorption in foams was sought by exploration of a mathematical model of bubble pulsation and coupling and the development of a distributed-parameter mechanical analog. A solution by electric-circuit analogy was thus obtained and transmission-line theory was used to relate the physical properties of the foams to the characteristic impedance and propagation constants of the analog transmission line. Comparison of measured physical properties of the foam with values obtained from measured acoustic impedance and propagation constants and the transmission-line theory showed good agreement. We may therefore conclude that the sound propagation and absorption mechanisms in foam are accurately described by the resonant response of individual bubbles coupled to neighboring bubbles.

  19. Quasar Absorption Line Survey - Cycle 4 High

    NASA Astrophysics Data System (ADS)

    Bahcall, John

    1994-01-01

    The Absorption Line Survey of bright quasars provides a homogeneous data base for studying fundamental questions about the origin and evolution of gaseous systems in the universe. The initial results determine at small redshifts the number densities of Ly-ALPHA systems, of metal-lines and extragalactic halos, of Lyman-limit systems, of associated absorption systems, and the shapes and intensities of quasar emission lines and spectral energy distributions. The survey reveals that much of the sky is covered by high or very high velocity metal-line clouds present in the Galactic halo. A larger sample, which includes the requested Cycle 3 observations, is required to answer many important questions. For example, what is the correlation function of Ly-ALPHA systems at small redshifts? What fraction of the metal, the Ly-ALPHA, and the Ly-limit systems are associated with galaxies and what are the characteristic sizes of the outer gaseous regions of different types of galaxies? Do absorbing systems show evidence of the large-scale structure seen with galaxies and clusters of galaxies? The observations requested in Cycle 3 will extend the region of coverage of the Key Project sample from the redshift range of z = 0.0 to 1.0 (Cycles 1& 2) to z = 0.0 to 1.6 (Cycles 1-3). THIS FILE CONTAINS THE HIGH PRIORITY OBSERVATIONS FROM CYCLES 2 and 3 WHICH WERE NOT COMPLETED IN THOSE CYCLES.

  20. Radiation pressure confinement - IV. Application to broad absorption line outflows

    NASA Astrophysics Data System (ADS)

    Baskin, Alexei; Laor, Ari; Stern, Jonathan

    2014-12-01

    A fraction of quasars present broad absorption lines, produced by outflowing gas with typical velocities of 3000-10 000 km s-1. If the outflowing gas fills a significant fraction of the volume where it resides, then it will be highly ionized by the quasar due to its low density, and will not produce the observed UV absorption. The suggestion that the outflow is shielded from the ionizing radiation was excluded by recent observations. The remaining solution is a dense outflow with a filling factor f < 10-3. What produces such a small f? Here, we point out that radiation pressure confinement (RPC) inevitably leads to gas compression and the formation of dense thin gas sheets/filaments, with a large gradient in density and ionization along the line of sight. The total column of ionized dustless gas is a few times 1022 cm-2, consistent with the observed X-ray absorption and detectable P V absorption. The predicted maximal columns of various ions show a small dependence on the system parameters, and can be used to test the validity of RPC as a solution for the overionization problem. The ionization structure of the outflow implies that if the outflow is radiatively driven, then broad absorption line quasars should have L/L_Eddgtrsim 0.1.

  1. Polarization and Broad Absorption Lines in Quasars

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    1990-12-01

    OI 287 is a unique extragalactic source. It appears to take one property from each class of object. It is either some kind of missing link, or a new type of activity. Because of the high optical polarization, OI 287 has been classified with the blazars. However, every other blazar is variable in optical flux, polarization, and polarization angle., while OI 287 is constant at V=17, P=8%, and theta=145 degrees. Also, every other blazar has a radio source dominated by an intense flat-spectrum core, while OI 287 has an upper limit of 2% of the total 20cm flux in the core. The only group of quasars which ever shows even moderate (2-5%) constant optical polarization is the broad absorption line (BAL) objects, e.g. PHL 5200 and H1413+113. Among the BAL quasars, PHL 5200 and H1413+113 have exceptionally smooth deep, attached absorption lines, and also the highest polarization. We want to know whether OI 287 is a BAL quasar. It would be the first definite radio loud example. If it is a BAL quasar then the high polarization is really related to (and perhaps the key to) the BAL phenomenon, and we can use the techniques of spectropolarimetry to help unlock the BAL geometry. The UV spectral shape would also provide help determining the cause of polarization.

  2. A catalogue of absorption-line systems in QSO spectra

    NASA Astrophysics Data System (ADS)

    Ryabinkov, A. I.; Kaminker, A. D.; Varshalovich, D. A.

    2003-12-01

    We present a new catalog of absorption-line systems identified in the quasar spectra. It contains data on 821 QSOs and 8558 absorption systems comprising 16 139 absorption lines with measured redshifts in the QSO spectra. The catalog includes absorption-line systems consisting of lines of heavy elements, lines of neutral hydrogen, Lyman limit systems, damped Lyα absorption systems, and broad absorption-line systems. Using the data of the present catalog we also discuss redshift distributions of absorption-line systems. Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/707

  3. Terminal Velocity Infall in QSO Absorption Line Halos

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert A.

    We explore the hypothesis that clouds detected in quasar absorption line systems are falling at a terminal velocity toward the center of high redshift gaseous galactic halos. Since both the ionization level and terminal velocity of halo clouds increase with increasing distance from the central galaxy, velocity resolved profiles of highly ionized gas are predicted to have a greater width than low ionization gas. A line of sight passing through the center of gaseous halo (an idealized damped Ly alpha system), yields low ionization absorption at the velocity of the galaxy, flanked by high ionization on either side. Reasonable halo parameters yield total velocity extents for C IV of Delta v_{C IV}=100-200 km s^{-1}, in agreement with many systems observed by Lu et al (1997). The remaining systems may better described by the rotating disk model of Prochaska & Wolfe (1998). Finally, observational tests are suggested for verifying or falsifying the terminal velocity hypothesis for these systems.

  4. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    NASA Astrophysics Data System (ADS)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Liu, Wenjuan; Pan, Xiang; Shi, Xiheng; Wang, Jianguo; Wang, Tinggui; Yang, Chenwei; Zhang, Shaohua; Miller, Lauren P.

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s‑1 relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V-band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s‑1 has a density in the range of 109 to 1010 cm‑3 and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s‑1 has a density of 103 cm‑3 and a distance of ∼1 kpc.

  5. The Early Universe Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Iye, Masanori

    2000-12-01

    High-z QSOs are valuable probes of the early universe and provide us information on the era of galaxy formation. QSOs can also be used as background sources against intervening objects such as proto-galactic clouds and faint foreground galaxies. These intervening objects produce absorption lines in the spectra of background QSOs. Gas clouds producing metal absorption lines are thought to exist in the halos of intervening galaxies and are used to evaluate the metal abundances of galaxies at high redshifts. In the course of studying the evolution of metal absorption lines, it was found that the number of absorbers per unit redshift interval increases in the vicinity of QSOs, especially of radio-loud QSOs. The reason of such an excess of metal absorption lines remains still unclear. In this paper, the authors review the absorption properties and enigmas of quasar absorption lines.

  6. Atmospheric Absorption Parameters for Laser Propagation

    DTIC Science & Technology

    2007-11-02

    high-resolution, good photometric accuracy data for numerous bands in the 3-5 Am region, using the facility at Kitt Peak National Solar Observatory. The...L49-L52 (2001). 44. A. Castrillo, G. Gagliardi, G. Casa , and L. Gianfrani, "Combined interferometric and absorption-spectroscopic technique for...from FT visible solar absorption spectra and evaluation of spectroscopic databases," JQRST 82, 133-150 (2003). 53. D. Jacquemart, R.R. Gamache, and L.S

  7. Molecular line parameters for the atmospheric trace molecule spectroscopy experiment

    NASA Technical Reports Server (NTRS)

    Brown, L. R.; Farmer, C. B.; Toth, R. A.; Rinsland, Curtis P.

    1987-01-01

    During its first mission in 1985 onboard Spacelab 3, the ATMOS (atmospheric trace molecule spectroscopy) instrument, a high speed Fourier transform spectrometer, produced a large number of high resolution infrared solar absorption spectra recorded in the occultation mode. The analysis and interpretation of these data in terms of composition, chemistry, and dynamics of the earth's upper atmosphere required good knowledge of the molecular line parameters for those species giving rise to the absorptions in the atmospheric spectra. This paper describes the spectroscopic line parameter database compiled for the ATMOS experiment and referenced in other papers describing ATMOS results. With over 400,000 entries, the linelist catalogs parameters of 46 minor and trace species in the 1-10,000/cm region.

  8. Ultraviolet interstellar absorption lines from low-z galaxies

    NASA Astrophysics Data System (ADS)

    Sahu, M. S.

    1997-05-01

    The importance of studying absorption lines from z<<0.1 galaxies are discussed. The Mg II λλ2796 and 2803 Å doublet absorption is sensitive to low column density gas and has been used to search for absorption lines from low-z galaxies. Recent studies of abundances and depletion patterns toward the Small Magellanic Cloud (Welty et al. 1997) and the NGC 1705 sightline (Sahu & Blades, 1997) are reviewed.

  9. EVIDENCE FOR PHOTOIONIZATION-DRIVEN BROAD ABSORPTION LINE VARIABILITY

    SciTech Connect

    Wang, Tinggui; Yang, Chenwei; Wang, Huiyuan; Ferland, Gary

    2015-12-01

    We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption lines are highly coordinated among different components of the same ion or the same absorption component of different ions for C iv, Si iv, and N v. Furthermore, we show that the equivalent widths (EWs) of the lines decrease or increase statistically when the continuum brightens or dims. This is further supported by the synchronized variations of emission and absorption-line EWs when the well-established intrinsic Baldwin effect for emission lines is taken into account. We find that the emergence of an absorption component is usually accompanied by the dimming of the continuum while the disappearance of an absorption-line component is accompanied by the brightening of the continuum. This suggests that the emergence or disappearance of a C iv absorption component is only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum variability the amplitude is larger. These results support the idea that absorption-line variability is driven mainly by changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and absorption-line variations.

  10. Balmer Absorption Lines in FeLoBALs

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Iwata, I.; Ohta, K.; Tamura, N.; Ando, M.; Akiyama, M.; Kiuchi, G.; Nakanishi, K.

    2007-10-01

    We discovered non-stellar Balmer absorption lines in two many-narrow-trough FeLoBALs (mntBALs) by the near-infrared spectroscopy with Subaru/CISCO. Presence of the non-stellar Balmer absorption lines is known to date only in the Seyfert galaxy NGC 4151; thus our discovery is the first cases for quasars. Since all known active galactic nuclei with Balmer absorption lines share similar characteristics, it is suggested that there is a population of BAL quasars which have unique structures at their nuclei or unique evolutionary phase.

  11. Improved input parameters for diffusion models of skin absorption.

    PubMed

    Hansen, Steffi; Lehr, Claus-Michael; Schaefer, Ulrich F

    2013-02-01

    To use a diffusion model for predicting skin absorption requires accurate estimates of input parameters on model geometry, affinity and transport characteristics. This review summarizes methods to obtain input parameters for diffusion models of skin absorption focusing on partition and diffusion coefficients. These include experimental methods, extrapolation approaches, and correlations that relate partition and diffusion coefficients to tabulated physico-chemical solute properties. Exhaustive databases on lipid-water and corneocyte protein-water partition coefficients are presented and analyzed to provide improved approximations to estimate lipid-water and corneocyte protein-water partition coefficients. The most commonly used estimates of lipid and corneocyte diffusion coefficients are also reviewed. In order to improve modeling of skin absorption in the future diffusion models should include the vertical stratum corneum heterogeneity, slow equilibration processes, the absorption from complex non-aqueous formulations, and an improved representation of dermal absorption processes. This will require input parameters for which no suitable estimates are yet available.

  12. Improved And Quality Assessed Emission And Absorption Line Measurements In Sloan Digital Sky Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, M.; Schawinski, K.; Yi, S. K.

    2011-01-01

    We have established a new database of absorption and emission line measurements from the Sloan Digital Sky Survey 7th data release for the galaxies within a redshift of 0.2. This work used publicly available codes, pPXF(penalized pixel-fitting) and GANDALF(gas and absorption line fitting), to achieve robust spectral fits and reliable measurements. The absorption line strengths measured by SDSS pipeline are seriously contaminated by emission fill-in. We effectively separate emission lines from absorption lines. For instance, this work successfully extract [NI] doublet from Mgb and it leads to more realistic result of alpha enhancement on late-type galaxies compared to the previous database. Besides accurately measuring line strengths, the database will be provided with new parameters that are indicative of line strength measurement quality. Users can build a subset of database optimal for their studies using specific cuts in the fitting quality parameters as well as empirical signal-to-noise. Applying these parameters, we found galaxies with dramatically broad line regions among the galaxies with poor fitting quality parameters. We applied a new continuum finding prescriptions to newly identified BLRs and they turned out to be Seyfert I nuclei.

  13. Broad Absorption Line Quasars and Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Wills, B. J.

    2009-12-01

    Luminous QSOs are signposts to galaxy evolution. Local supermassive black holes are the faded relics of quasars in their heyday at redshifts ˜2. Relationships between the masses of these local supermassive black holes and their host galaxy bulges reveal an intimate link, fundamental to galaxy evolution: the newly evolving galaxy fuels the seed black hole through its accretion disk and by loss of angular momentum and energy in the form of outflowing winds. As the central engine approaches Eddington luminosities, winds drive away dusty gas, revealing a luminous QSO and halting star formation in the galaxy bulge. Relativistic winds are manifested in powerful radio jets in ˜10% of quasars, and sub-relativistic winds are revealed by broad blueshifted absorption troughs in the “broad absorption line” (BAL) quasars. Historically, BALs avoid powerful radio quasars. Here we examine the BALs to investigate this inverse connection.

  14. On the identification of deuterium lines in QSO absorption systems

    NASA Astrophysics Data System (ADS)

    Levshakov, S. A.; Takahara, F.

    1996-07-01

    The ambiguity of identification of deuterium lines in QSO absorption systems is considered, under the assumption that the D I and H I absorption lines are formed in turbulent media with a finite correlation length of the stochastic velocity field. The relative shift of the D I and H I lines is shown to vary over the range +/-(4-8) km s^- 1^ for a cloud model with hydrogen column density N_HI_ = 10^17^ cm^-2^, the ratio D/H = 10^-4^, and kinetic temperature T_kin_ = 10^4^ K. The variations in the relative shift of the deuterium lines are fundamental in character and result from the stochastic nature of the formation of absorption lines in turbulent media

  15. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  16. Quasar Absorption Lines and SDSS Galaxies

    NASA Astrophysics Data System (ADS)

    Shoemaker, Emileigh Suzanne; Scott, Jennifer E.; Oldak, Katarzyna

    2017-01-01

    We present the results of a study of the sightlines of 45 low redshift quasars (0.06 < z < 0.85) observed with HST/COS that lie within the footprint of the Sloan Digital Sky Survey. We use both the SDSS DR12 galaxy photometric data, including photometric redshifts, and the measured properties of the absorbers along with the known absorption characteristics of the intergalactic medium and the circumgalactic medium of galaxies to assign the most probable galaxy matches for each absorber in the sample, using estimated galaxy luminosities and virial radii as a discriminator. We show that the scheme can recover known galaxy-absorber matches found from spectroscopic data and thus provides a method for identifying likely pairs in photometric data sets as well as targets for spectroscopic follow up.

  17. Searching for Variability of NV Intrinsic Narrow Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Charlton, Jane C.; Ganguly, Rajib

    2017-01-01

    The majority of quasar absorption line systems with NV detected are found within the associated region (within 5000km/s of the quasar redshift) and many/most are believed to be related to the quasar accretion disk wind or outflows. The most definite evidence that these NV absorbers are "intrinsic" is partial covering of the quasar continuum source and/or broad line region. Over 50 quasars containing NV narrow absorption lines have observations obtained at different times with the Keck/HIRES and the VLT/UVES spectrographs at high resolution. The interval between these observations range from months to a decade in the quasar rest frame. While variability is common for intrinsic broad and mini-broad absorption lines, intrinsic narrow absorption lines have been found to be less likely to vary, though systematic studies with large, high quality datasets have been limited. The variability timescales are useful for deriving gas densities and thus the distances from the central engines. This is important in mapping the quasar surroundings, understanding the accretion disk wind mechanism, and assessing the effect the wind has on the galaxy surroundings. We report on the results of a systematic study of variability of NV NALs, exploiting the overlap of targets for observations in the archives of Keck and VLT, and discuss the consequences for interpretation of the origin of intrinsic narrow absorption lines.

  18. PG 1411 + 442 - The nearest broad absorption line quasar

    NASA Technical Reports Server (NTRS)

    Malkan, Matthew A.; Green, Richard F.; Hutchings, John B.

    1987-01-01

    IUE observations reveal strong, moderately broad absorption troughs in the blue wings of the C IV and N V emission lines of the quasar PG 1411 + 442. No absorption from weakly ionized gas is detected. The emission-line strengths and overall shape of the ultraviolet/optical/near-infrared/far-infrared continuum of the new broad absorption line quasar are within the range normally measured in quasars. Its redshift is low enough to allow the morphology of the host galaxy to be studied in deep broad-band and intermediate-band CCD images. The galaxy appears to be a large spiral with a very long arm or tail. The inclination angle is 57 deg, which rules out the possibility that the line of sight to the nucleus intersects a large path length in a galactic disk.

  19. Outflow and hot dust emission in broad absorption line quasars

    SciTech Connect

    Zhang, Shaohua; Zhou, Hongyan; Wang, Huiyuan; Wang, Tinggui; Xing, Feijun; Jiang, Peng; Zhang, Kai E-mail: whywang@mail.ustc.edu.cn

    2014-05-01

    We have investigated a sample of 2099 broad absorption line (BAL) quasars with z = 1.7-2.2 built from the Sloan Digital Sky Survey Data Release Seven and the Wide-field Infrared Survey. This sample is collected from two BAL quasar samples in the literature and is refined by our new algorithm. Correlations of outflow velocity and strength with a hot dust indicator (β{sub NIR}) and other quasar physical parameters—such as an Eddington ratio, luminosity, and a UV continuum slope—are explored in order to figure out which parameters drive outflows. Here β{sub NIR} is the near-infrared continuum slope, which is a good indicator of the amount of hot dust emission relative to the accretion disk emission. We confirm previous findings that outflow properties moderately or weakly depend on the Eddington ratio, UV slope, and luminosity. For the first time, we report moderate and significant correlations of outflow strength and velocity with β{sub NIR} in BAL quasars. It is consistent with the behavior of blueshifted broad emission lines in non-BAL quasars. The statistical analysis and composite spectra study both reveal that outflow strength and velocity are more strongly correlated with β{sub NIR} than the Eddington ratio, luminosity, and UV slope. In particular, the composites show that the entire C IV absorption profile shifts blueward and broadens as β{sub NIR} increases, while the Eddington ratio and UV slope only affect the high and low velocity part of outflows, respectively. We discuss several potential processes and suggest that the dusty outflow scenario, i.e., that dust is intrinsic to outflows and may contribute to the outflow acceleration, is most likely.

  20. Active Galactic Nuclei Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru

    2007-07-01

    Quasars are the extremely bright nuclei found in about 10% of galaxies. A variety of absorption features (known collectively as quasar absorption lines) are detected in the rest-frame UV spectra of these objects. While absorption lines that have very broad widths originate in gas that is probably physocally related to the quasars, narrow absorption lines (NALs) were thought to arise in galaxies and/or in the intter-alacttic medium between the quasars and us. Using high-resolution spectra of quasars, it is found that a substantial fraction of NALs arise in gas in the immediate vicinity of the quasars. A dramatically variable, moderately-broad absorption line in the spectrum of the quasar HS 1603+3820l is also found. The variability of this line is monitored in a campaign with Subaru telescope. These observational results are compared to models for outflows from the quasars, specifically, models for accretion disk winds and evaporating obscuring tori. It is quite important to determine the mechanism of outflow because of its cosmological implications. The outflow could expel angular momentum from the accretion disk and enable quasars to accrete and shine. In addition, the outflow may also regulate star formation in the early stages of the assembly of the host galaxy and enrich the interstellar and intergalactic medium with metals.

  1. Broad Absorption Line Quasar catalogues with Supervised Neural Networks

    SciTech Connect

    Scaringi, Simone; Knigge, Christian; Cottis, Christopher E.; Goad, Michael R.

    2008-12-05

    We have applied a Learning Vector Quantization (LVQ) algorithm to SDSS DR5 quasar spectra in order to create a large catalogue of broad absorption line quasars (BALQSOs). We first discuss the problems with BALQSO catalogues constructed using the conventional balnicity and/or absorption indices (BI and AI), and then describe the supervised LVQ network we have trained to recognise BALQSOs. The resulting BALQSO catalogue should be substantially more robust and complete than BI-or AI-based ones.

  2. Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers

    PubMed Central

    Cheary, R. W.; Coelho, A. A.; Cline, J. P.

    2004-01-01

    The fundamental parameters approach to line profile fitting uses physically based models to generate the line profile shapes. Fundamental parameters profile fitting (FPPF) has been used to synthesize and fit data from both parallel beam and divergent beam diffractometers. The refined parameters are determined by the diffractometer configuration. In a divergent beam diffractometer these include the angular aperture of the divergence slit, the width and axial length of the receiving slit, the angular apertures of the axial Soller slits, the length and projected width of the x-ray source, the absorption coefficient and axial length of the sample. In a parallel beam system the principal parameters are the angular aperture of the equatorial analyser/Soller slits and the angular apertures of the axial Soller slits. The presence of a monochromator in the beam path is normally accommodated by modifying the wavelength spectrum and/or by changing one or more of the axial divergence parameters. Flat analyzer crystals have been incorporated into FPPF as a Lorentzian shaped angular acceptance function. One of the intrinsic benefits of the fundamental parameters approach is its adaptability any laboratory diffractometer. Good fits can normally be obtained over the whole 20 range without refinement using the known properties of the diffractometer, such as the slit sizes and diffractometer radius, and emission profile. PMID:27366594

  3. Overview of Molecular Line Parameters for the Orbiting Carbon Observatory

    NASA Astrophysics Data System (ADS)

    Brown, L.; Crisp, D.; Miller, C.; Martin-Torres, J.; Toth, R.

    2009-04-01

    The Orbiting Carbon Observatory, scheduled to launch early in 2009, will make spatially resolved measurements of the column averaged CO2 dry air mole fraction, XCO2, with precisions of 1 ppm to distinguish their spatial and temporal gradients of CO2. Achieving this goal requires implementation of non-Voigt line shape models, line mixing and improved molecular line parameters for near infrared absorption bands of O2 (near 760 nm), and CO2 (near 1600 and 2060 nm) . The first interval is dominated by the absorptions of the O2 A-band while the others contain strong CO2 features, as well as weak transitions of water and methane. The OCO linelist is composed of results from numerous new laboratory studies undertaken to improve experimental precisions and to characterize line mixing effects. The sources and accuracies of the new linelist for the three OCO channels1 will be described. The research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with The National Aeronautics and Space Administration.

  4. Line Parameters for the Oxygen a Band

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Hoo, Jiajun; Sung, Keeyoon; Hodges, Joseph T.; Long, David A.; Bui, Thinh; Rupasinghe, Priyanka Milinda; Okumura, Mitchio

    2013-06-01

    Simulation of the oxygen A band to a level that is sufficient for accurate studies of the Earth's atmosphere is complex in that not only are Doppler and Lorentz broadening important, but also Dicke narrowing, pressure shifts, line mixing and speed dependence. In addition all of these parameters except the speed dependence require temperature dependence parameters as well. To measure all of the required line parameters with the multispectrum nonlinear least squares fitting technique, spectra were acquired by the Bruker IFS125-HR Fourier Transform Spectrometer at the Jet Propulsion Laboratory in combination with various multpass cells, a cavity ring down spectrometer at NIST and a photoacoustic spectrometer at the California Institute of Technology. The combination of the data from these three very different types of spectrometers in a single simultaneous fit of the entire band enables the measurement of all of these quantities. The results to this point will be summarized. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. Atkins, JQSRT 1995;53:705-21. Support for the work at William and Mary was provided by JPL and the NIST Greenhouse Gas Measurements and Climate Research Program. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology under contracts with National Aeronautics and Space Administration. Support for the work at NIST was provided by at the NIST Greenhouse Gas Measurements and Climate Research Program and an Innovations in Measurement Sciences (IMS) award.

  5. Interstellar absorption lines in the spectrum of Gamma Velorum

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Bhavsar, S. P.

    1979-01-01

    Copernicus scans of selected interstellar absorption lines in the UV spectrum of Gamma Vel are analyzed, together with ground-based data, to obtain column densities for various ion states of C, N, O, Na, Mg, Al, Si, P, S, Cl, Ar, Ca, Mn, Fe, and CO. N I and O I are fitted to a single empirical curve of growth with a velocity parameter (b) of 8 km/s; Mg II, Si II, P II, S II, Mn II, and Fe II are fitted to another curve with b between 3 and 9 km/s. Abundance determinations relative to H I show that: (1) C, N, P, S, and Ar are probably close to their solar values; (2) O may be depleted by about a factor of 2; (3) Mg, Al, Si, Cl, Mn, and Fe are depleted by a factor of 4 or more: (4) Al is depleted by at least a factor of 10 in the H II region; and (5) both N V and O VI are present, but not C IV. The N V/O VI ratio implies that the electron temperature in the H II region is about 275,000 K.

  6. Redshifted 21cm Line Absorption by Intervening Galaxies

    NASA Astrophysics Data System (ADS)

    Briggs, F. H.

    The present generation of radio telescopes, combined with powerful new spectrometers, is opening a new age of redshifted radio absorption-line studies. Out-fitting of arrays of antennas, such as the European VLBI Network and the upgraded VLA, with flexibly tuned receivers, will measure sizes and kinematics of intervening galaxies as a function of cosmic time.

  7. A SURVEY OF ALKALI LINE ABSORPTION IN EXOPLANETARY ATMOSPHERES

    SciTech Connect

    Jensen, Adam G.; Redfield, Seth; Endl, Michael; Cochran, William D.; Koesterke, Lars; Barman, Travis S. E-mail: sredfield@wesleyan.edu E-mail: wdc@astro.as.utexas.edu E-mail: barman@lowell.edu

    2011-12-20

    We obtained over 90 hr of spectroscopic observations of four exoplanetary systems with the Hobby-Eberly Telescope. Observations were taken in transit and out of transit, and we analyzed the differenced spectra-i.e., the transmission spectra-to inspect it for absorption at the wavelengths of the neutral sodium (Na I) doublet at {lambda}{lambda}5889, 5895 and neutral potassium (K I) at {lambda}7698. We used the transmission spectrum at Ca I {lambda}6122-which shows strong stellar absorption but is not an alkali metal resonance line that we expect to show significant absorption in these atmospheres-as a control line to examine our measurements for systematic errors. We use an empirical Monte Carlo method to quantify these systematic errors. In a reanalysis of the same data set using a reduction and analysis pipeline that was derived independently, we confirm the previously seen Na I absorption in HD 189733b at a level of (- 5.26 {+-} 1.69) Multiplication-Sign 10{sup -4} (the average value over a 12 A integration band to be consistent with previous authors). Additionally, we tentatively confirm the Na I absorption seen in HD 209458b (independently by multiple authors) at a level of (- 2.63 {+-} 0.81) Multiplication-Sign 10{sup -4}, though the interpretation is less clear. Furthermore, we find Na I absorption of (- 3.16 {+-} 2.06) Multiplication-Sign 10{sup -4} at <3{sigma} in HD 149026b; features apparent in the transmission spectrum are consistent with real absorption and indicate this may be a good target for future observations to confirm. No other results (Na I in HD 147506b and Ca I and K I in all four targets) are significant to {>=}3{sigma}, although we observe some features that we argue are primarily artifacts.

  8. Oscillator strength measurements of atomic absorption lines from stellar spectra

    NASA Astrophysics Data System (ADS)

    Lobel, Alex

    2011-05-01

    Herein we develop a new method to determine oscillator strength values of atomic absorption lines with state-of-the-art detailed spectral synthesis calculations of the optical spectrum of the Sun and of standard spectral reference stars. We update the log(gf) values of 911 neutral lines observed in the KPNO-FTS flux spectrum of the Sun and high-resolution echelle spectra (R = 80 000) of Procyon (F5 IV-V) and Eps Eri (K2 V) observed with large signal-to-noise (S/N) ratios of 2000 using the new Mercator-Hermes spectrograph at La Palma Observatory (Spain). We find for 483 Fe I, 85 Ni I, and 51 Si I absorption lines in the sample a systematic overestimation of the literature log(gf) values with central line depths below 15%. We employ a curve-of-growth analysis technique to test the accuracy of the new oscillator strength values and compare calculated equivalent line widths to the Moore, Minnaert, and Houtgast atlas of the Sun. The online SpectroWeb database at http://spectra.freeshell.org interactively displays the observed and synthetic spectra and provides the new log(gf) values together with important atomic line data. The graphical database is under development for stellar reference spectra of every spectral sub-class observed with large spectral resolution and S/N ratios.

  9. New aspects of absorption line formation in intervening turbulent clouds - I. General principles

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Kegel, Wilhelm H.

    1997-07-01

    We study the formation of absorption lines in intervening clouds with stochastic velocity fields, accounting for the fact that actually only one line of sight is observed. Our results show that the introduction of the finite velocity correlation length leads to a new type of absorption line profiles which are asymmetric in general, may have different shifts of the centres of gravity, and look like barely resolved blends, i.e. could be interpreted in a standard Voigt fitting analysis as being caused by several independent clouds with different physical parameters. Numerical results are presented for the HI Lyalpha line with N_Hi=10^12,10^14,10^15 and 10^16cm^-2, T_kin=10^4 K, and different sets of turbulent parameters. The intensity fluctuations within the line profile caused by `turbulent noise' are investigated and the confidence belts for the absorption lines are calculated. We conclude that an exact measurement of the column densities of the absorbing atoms N_a from the observed values of the optical depths tau lambda is actually impossible for the case of the correlated velocity field. One can only determine a range of values within which N_a is to be found with a certain probability.

  10. Mapping of the Local Interstellar Medium using Absorption Line Spectroscopy

    NASA Astrophysics Data System (ADS)

    Penprase, Bryan Edward

    2017-01-01

    Using the Yale SMARTS 1.5-meter telescope at CTIO and the CHIRON spectrograph, we have developed a program for mapping the local interstellar medium using a sample of over 200 newly observed B stars previously unobserved using Na I absorption lines. This sample includes stars that extend out to map beyond the local bubble to 500 pc. The sample has been observed using high resolution absorption lines, and when combined with previously observed stars with Na I and Ca II data provides a more complete picture of the local ISM than previous surveys. The distances to the stars using the new GAIA database also allows for more accurate determination of distances to features in the lcoal ISM, and new maps of the structure of the ISM hav been prepared with the data.

  11. Correlation of X-Ray Absorption Parameters with Schultz index

    NASA Astrophysics Data System (ADS)

    Kekre, Pravin A.; Khatri, Sunil; Mishra, A.; Joshi, K. P.

    2012-05-01

    A novel application of topological Index in estimating some X-ray parameters is described. X-Ray Absorption parameters (Chemical Shift and Effective Charge) are correlated with Schultz index. Some Cobalt (II) complexes were used to establish this type of correlation. The result have indicated that the chemical shift and effective charge are sensitive to the topological structure of coordinating ligand moieties. The topological understanding of molecular properties can lead to the development of new areas of present and future interest. i.e. designing of new drugs, tracking the effects of pollutants in environment and the prediction of carcinogenicity of a molecule.

  12. Observational Cosmology Using Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Aghaee, A.

    2016-09-01

    Distant, highly luminous quasars are important cosmological probes for a variety of astrophysical questions: the first generation of galaxies, the star formation history and metal enrichment in the early Universe, the growth of the first super massive black holes (SMBHs), the role of feedback from quasars and SMBHs in galaxy evolution, the epoch of reionization, etc. In addition, they are used as background illuminating source that reveal any object located by chance on the line of sight. I will present our group works in these issues that can be done using absorption lines in the quasar spectra.

  13. Pressure dependence of Se absorption lines in AlSb

    SciTech Connect

    Hsu, L. |; Haller, E.E.; Ramdas, A.K.

    1996-09-01

    Using far infrared absorption spectroscopy, the authors have investigated electronic transition spectra of Se donors in AlSb as a function of hydrostatic pressure. At least two distinct ground to bound excited state transition lines, which depend quadratically on the pressure, can be seen. At pressures between 30 and 50 kbar, evidence of an anti-crossing between one of the electronic transitions and a peak which they attribute to the 2 zone center LO phonon mode can be seen.

  14. Microlensing Constraints on Broad Absorption and Emission Line Flows in the Quasar H1413+117

    NASA Astrophysics Data System (ADS)

    O'Dowd, Matthew J.; Bate, Nicholas F.; Webster, Rachel L.; Labrie, Kathleen; Rogers, Joshua

    2015-11-01

    We present new integral field spectroscopy of the gravitationally lensed broad absorption line (BAL) quasar H1413+117, covering the ultraviolet restframe spectral range. We observe strong microlensing signatures in lensed image D, and we use this microlensing to simultaneously constrain both the broad emission and broad absorption line gas. The wavelength independence of image D magnifications across the broad emission lines (BELs) indicates a lower limit on the broad emission line region (BELR) size equal to the Einstein radius (ER) of the system: ≳11 {(< M> /{M}⊙ )}0.5 lt-day for a lens redshift of 1.4 and ≳15 {(< M> /{M}⊙ )}0.5 lt-day for zL = 0.94. Lensing simulations verify that the observed wavelength independence is very unlikely for BELRs with significant velocity stratification at size scales below an ER. We perform spectral decomposition to derive the intrinsic BEL and continuum spectrum, subject to BAL absorption. We reconstruct the intrinsic BAL absorption profile, whose features allow us to constrain outflow kinematics in the context of a disk-wind model. We find a very sharp, blueshifted onset of absorption of 1500 km s-1 in both C iv and N v, which may correspond to an inner edge of a disk-wind’s radial outflow. The lower ionization Si iv and Al iii have higher-velocity absorption onsets, consistent with a decreasing ionization parameter with radius in an accelerating outflow. There is evidence of strong absorption in the BEL component, which indicates a high covering factor for absorption over two orders of magnitude in outflow radius.

  15. Variability of the broad absorption lines in the QSO UM 232

    NASA Technical Reports Server (NTRS)

    Barlow, Thomas A.; Junkkarinen, Vesa T.; Burbidge, E. Margaret

    1989-01-01

    Low-resolution spectra of UM 232 taken in 1978, 1979, and 1988 at Lick Observatory are presented. Large changes in the Si IV lambda 1397, CIV lambda 1549, and Al III lambda 1857 broad absorption lines are apparent. The decrease in column density in all three ions and an observed brightening of the QSO suggests that these changes are due to an increase in the ionization level driven by an increase in the central source luminosity. This mechanism has been proposed by Smith and Penston to explain small changes in the absorption spectrum of the QSO 1246-057. The spectra of UM 232 show that the fractional decrease in optical depth is smaller at higher outflow velocies. The structure of the broad absorption-line region (BALR) is investigted by estimating an ionization parameter for each ion species as a function of velocity.

  16. Interpreting the convergence of Lyman series absorption lines

    NASA Technical Reports Server (NTRS)

    Jenkins, Edward B.

    1990-01-01

    Spectra of quasars at high z often show absorption at the Lyman limit from intervening gas systems at intermediate z having N(H) approx. greater than 10(exp 7) cm(-2). In some circumstances, N(H) can be determined by measuring the strength of the Lyman limit absorption or the damping wings of Lyman - alpha. With a spectrum taken at low wavelength resolution, say, lambda/delta lambda approx. 10(exp 3), it is usually not possible to distinguish individual Lyman series lines near the limit, yet one can still discern how rapidly the average intensity drops off as the limit is approached from the long wavelength side. The purpose here is to point out the information which is available from measurements of this series convergence.

  17. VERY LARGE TELESCOPE SPECTROPOLARIMETRY OF BROAD ABSORPTION LINE QSOs

    SciTech Connect

    DiPompeo, M. A.; Brotherton, M. S.; De Breuck, C.

    2011-03-15

    We present spectropolarimetry of 19 confirmed and four possible bright, southern broad absorption line (BAL) quasars from the European Southern Observatory Very Large Telescope. A wide range of redshifts is covered in the sample (from 0.9 to 3.4), and both low- and high-ionization quasars are represented, as well as radio-loud and radio-quiet BALQSOs. We continue to confirm previously established spectropolarimetric properties of BALQSOs, including the generally rising continuum polarization with shorter wavelengths and comparatively large fraction with high broadband polarization (6 of 19 with polarizations >2%). Emission lines are polarized less than or similar to the continuum, except in a few unusual cases, and absorption troughs tend to have higher polarizations. A search for correlations between polarization properties has been done, identifying two significant or marginally significant correlations. These are an increase in continuum polarization with decreasing optical luminosity (increasing absolute B magnitude) and decreasing C IV emission-line polarization with increased continuum polarization.

  18. Ionospheric absorption, typical ionization, conductivity, and possible synoptic heating parameters in the upper atmosphere

    SciTech Connect

    Walker, J.K.; Bhatnagar, V.P.

    1989-04-01

    Relations for the average energetic particle heating and the typical Hall and Pedersen conductances, as functions of the ground-based Hf radio absorption, are determined. Collis and coworkers used the geosynchronous GEOS 2 particle data to relate or ''calibrate'' the auroral absorption on the same magnetic field lines with five levels of D region ionization. These ionospheric models are related to a Chapman layer that extends these models into the E region. The average energetic particle heating is calculated for each of these models using recent expressions for the effective recombination coefficient. The corresponding height-integrated heating rates are determined and related to the absorption with a quadratic expression. The average Hall and Pedersen conductivities are calculated for each of the nominal absorption ionospheric models. The corresponding height-integrated conductances for nighttime conditions are determined and related to the absorption. Expressions for these conductances during disturbed sunlit conditions are also determined. These relations can be used in conjunction with simultaneous ground-based riometric and magnetic observations to determines the average Hall and Pedersen currents and the Joule heating. The typical daily rate of temperature increase in the mesosphere for storm conditions is several 10 K for both the energetic particle and the Joule heating. The increasing importance of these parameters of the upper and middle atmospheres is discussed. It is proposed that northern hemisphere ionospheric, current, and heating synoptic models and parameters be investigated for use on a regular basis. copyright American Geophysical Union 1989

  19. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-07-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disc. This is consistent with the uniformity of spin temperature measured across the Galactic disc. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in discs of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of < ν _{_TO}rangle ≈ 5× 108 Hz, compared to < ν _{_TO}rangle ≈ 1× 108 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  20. Monitoring the variability of intrinsic absorption lines in quasar spectra , ,

    SciTech Connect

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ∼10{sup 3}-10{sup 5} cm{sup –3} and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.

  1. Polarization and Broad Absorption Lines in Quasars-Repeat

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    1990-12-01

    OI 287 is a unique extragalactic source. It appears to take one property from each class of object. It is either some kind of missing link, or a new type of activity. Because of the high optical polarization, OI 287 has been classified with the blazars. However, every other blazar is variable in optical flux, polarization, and polarization angle., while OI 287 is constant at V=17, P=8%, and theta=145 degrees. Also, every other blazar has a radio source dominated by an intense flat-spectrum core, while OI 287 has an upper limit of 2% of the total 20cm flux in the core. The only group of quasars which ever shows even moderate (2-5%) constant optical polarization is the broad absorption line (BAL) objects, e.g. PHL 5200 and H1413+113. Among the BAL quasars, PHL 5200 and H1413+113 have exceptionally smooth deep, attached absorption lines, and also the highest polarization. We want to know whether OI 287 is a BAL quasar. It would be the first definite radio loud example. If it is a BAL quasar then the high polarization is really related to (and perhaps the key to) the BAL phenomenon, and we can use the techniques of spectropolarimetry to help unlock the BAL geometry. The UV spectral shape would also provide help determining the cause of polarization.

  2. Thomson Thick X-Ray Absorption in a Broad Absorption Line Quasar, PG 0946+301.

    PubMed

    Mathur; Green; Arav; Brotherton; Crenshaw; deKool; Elvis; Goodrich; Hamann; Hines; Kashyap; Korista; Peterson; Shields; Shlosman; van Breugel W; Voit

    2000-04-20

    We present a deep ASCA observation of a broad absorption line quasar (BALQSO) PG 0946+301. The source was clearly detected in one of the gas imaging spectrometers, but not in any other detector. If BALQSOs have intrinsic X-ray spectra similar to normal radio-quiet quasars, our observations imply that there is Thomson thick X-ray absorption (NH greater, similar1024 cm-2) toward PG 0946+301. This is the largest column density estimated so far toward a BALQSO. The absorber must be at least partially ionized and may be responsible for attenuation in the optical and UV. If the Thomson optical depth toward BALQSOs is close to 1, as inferred here, then spectroscopy in hard X-rays with large telescopes like XMM would be feasible.

  3. Broad Balmer-Line Absorption in SDSS J172341.10+555340.5

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro

    2010-10-01

    We present the discovery of Balmer-line absorption from Hα to H9 in an iron low-ionizaton broad absorption line (FeLoBAL) quasar, SDSS J172341.10+555340.5, by near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) attached to the Subaru Telescope. The redshift of the Balmer-line absorption troughs is 2.0530±0.0003, and it is blueshifted by 5370 km s-1 from the Balmer emission lines. It is more than 4000 km s-1 blueshifted from the previously known UV absorption lines. We detected relatively strong (EWrest = 20 Å) [OIII] emission lines that are similar to those found in other broad absorption line quasars with Balmer-line absorption. We also derived the column density of neutral hydrogen of 5.2 × 1017 cm-2 by using the curve of growth and taking account of Lyα trapping. We searched for UV absorption lines that had the same redshift with Balmer-line absorption, and found Ali III and Fe III absorption lines at z = 2.053 that correspond to previously unidentified absorption lines, and the presence of other blended troughs that were difficult to identify.

  4. Conduction noise absorption by ITO thin films attached to microstrip line utilizing Ohmic loss

    SciTech Connect

    Kim, Sun-Hong; Kim, Sung-Soo

    2010-07-15

    For the aim of wide-band noise absorbers with a special design for low frequency performance, this study proposes conductive indium-tin oxide (ITO) thin films as the absorbent materials in microstrip line. ITO thin films were deposited on the polyimide film substrates by rf magnetron cosputtering of In{sub 2}O{sub 3} and Sn targets. The deposited ITO films show a typical value of electrical resistivity ({approx}10{sup -4} {Omega} m) and sheet resistance can be controlled in the range of 20-230 {Omega} by variation in film thickness. Microstrip line with characteristic impedance of 50 {Omega} was used for determining their noise absorbing properties. It is found that there is an optimum sheet resistance of ITO films for the maximum power absorption. Reflection parameter (S{sub 11}) is increased with decrease in sheet resistance due to impedance mismatch. On the while, transmission parameter (S{sub 21}) is decreased with decrease in sheet resistance due to larger Ohmic loss of the ITO films. Experimental results and computational prediction show that the optimum sheet resistance is about 100 {Omega}. For this film, greater power absorption is predicted in the lower frequency region than ferrite thin films of high magnetic loss, which indicates that Ohmic loss is the predominant loss parameter for power absorption in the low frequency range.

  5. THE PHYSICAL CONDITIONS OF THE INTRINSIC N V NARROW ABSORPTION LINE SYSTEMS OF THREE QUASARS

    SciTech Connect

    Wu Jian; Charlton, Jane C.; Misawa, Toru; Eracleous, Michael; Ganguly, Rajib E-mail: misawatr@shinshu-u.ac.j

    2010-10-20

    We employ detailed photoionization models to infer the physical conditions of intrinsic narrow absorption line systems found in high-resolution spectra of three quasars at z = 2.6-3.0. We focus on a family of intrinsic absorbers characterized by N V lines that are strong relative to the Ly{alpha} lines. The inferred physical conditions are similar for the three intrinsic N V absorbers, with metallicities greater than 10 times the solar value (assuming a solar abundance pattern), and with high ionization parameters (log U {approx} 0). Thus, we conclude that the unusual strength of the N V lines results from a combination of partial coverage, a high ionization state, and high metallicity. We consider whether dilution of the absorption lines by flux from the broad emission line region can lead us to overestimate the metallicities and we find that this is an unlikely possibility. The high abundances that we infer are not surprising in the context of scenarios in which metal enrichment takes place very early on in massive galaxies. We estimate that the mass outflow rate in the absorbing gas (which is likely to have a filamentary structure) is less than a few M{sub sun} yr{sup -1} under the most optimistic assumptions, although it may be embedded in a much hotter, more massive outflow.

  6. Monitoring the Variability of Intrinsic Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ~103-105 cm-3 and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage. Based on data collected at Subaru telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations obtained at the European Southern Observatory at La Silla, Chile in programs 65.O-0063(B), 65.O-0474(A), 67.A-0078(A), 68.A-0461(A), 69.A-0204(A), 70.B-0522(A), 072.A-0346(A), 076.A-0860(A), 079.B-0469(A), and 166.A-0106(A).

  7. Ultraviolet absorption lines associated with the Vela supernova remnant

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.; Wallerstein, G.; Silk, J.

    1976-01-01

    Two stars behind the Vela supernova remnant and two stars offset from the remnant have been observed with the UV spectrometer aboard the Copernicus satellite. Over 200 interstellar atomic and molecular absorption features between 1000 and 1400 A have been identified and measured for radial velocity and equivalent width. In many cases, additional information was obtained by studying the detailed shapes of the recorded profiles. Most of the stars show several absorption components, with clouds of the highest radial velocity appearing in the spectra of stars behind the remnant. For each component, column densities were derived using velocity dispersion parameters which yielded the most self-consistent results. Qualitatively, the gas toward the remnant exhibits a number of unusual properties, when compared with normal interstellar material. First, abnormally high radial velocities were evident. Second, the degree of ionization of some elements suggested the existence of ionizing processes significantly more potent than those found in general regions of space. Finally, an investigation of electron densities shows that much of the gas, especially that at high velocity, must exist in the form of relatively thin sheets or filaments. If cosmic abundances prevail, the column densities of high-velocity excited material suggest that H-alpha emission measures could be as large as 100 sq cm/cu pc.

  8. The Physical Nature of Polar Broad Absorption Line Quasars

    NASA Technical Reports Server (NTRS)

    Ghost, Kajal; Punsly, Brian

    2007-01-01

    It has been shown based on radio variability arguments that some BALQSOs (broad absorption line quasars) are viewed along the polar axis (o rthogonal to accretion disk) in the recent article of Zhou et a. Thes e arguments are based on the brightness temperature, T(sub b) exceedi ng 10(exp 12) K which leads to the well-known inverse Compton catastr ophe unless the radio jet is relativistic and is viewed along its axi s. In this letter, we expand the Zhou et al sample of polar BALQSOs u sing their techniques applied to SDSS DR5. In the process, we clarify a mistake in their calculation of brightness temperature. The expanded sample of high T(sub b) BALQSOS, has an inordinately large fraction of LoBALQSOs (low ionization BALQSOs). We consider this an important clue to understanding the nature of the polar BALQSOs. This is expec ted in the polar BALQSO analytical/numerical models of Punsly that pr edicted that LoBALQSOs occur when the line of sight is very close to the polar axis, where the outflow density is the highest.

  9. Anomalous absorption line in the magneto-optical response of graphene.

    PubMed

    Gusynin, V P; Sharapov, S G; Carbotte, J P

    2007-04-13

    The intensity as well as position in energy of the absorption lines in the infrared conductivity of graphene, both exhibit features that are directly related to the Dirac nature of its quasiparticles. We show that the evolution of the pattern of absorption lines as the chemical potential is varied encodes the information about the presence of the anomalous lowest Landau level. The first absorption line related to this level always appears with full intensity or is entirely missing, while all other lines disappear in two steps. We demonstrate that if a gap develops, the main absorption line splits into two provided that the chemical potential is greater than or equal to the gap.

  10. DISCOVERY OF THE TRANSITION OF A MINI-BROAD ABSORPTION LINE INTO A BROAD ABSORPTION LINE IN THE SDSS QUASAR J115122.14+020426.3

    SciTech Connect

    Hidalgo, Paola Rodriguez; Eracleous, Michael; Charlton, Jane; Hamann, Fred; Murphy, Michael T.; Nestor, Daniel

    2013-09-20

    We present the detection of a rare case of dramatic strengthening in the UV absorption profiles in the spectrum of the quasar J115122.14+020426.3 between observations {approx}2.86 yr apart in the quasar rest frame. A spectrum obtained in 2001 by the Sloan Digital Sky Survey shows a C IV ''mini-broad'' absorption line (FWHM = 1220 km s{sup -1}) with a maximum blueshift velocity of {approx}9520 km s{sup -1}, while a later spectrum from the Very Large Telescope shows a significantly broader and stronger absorption line, with a maximum blueshift velocity of {approx}12, 240 km s{sup -1} that qualifies as a broad absorption line. A similar variability pattern is observed in two additional systems at lower blueshifted velocities and in the Ly{alpha} and N V transitions as well. One of the absorption systems appears to be resolved and shows evidence for partial covering of the quasar continuum source (C{sub f} {approx} 0.65), indicating a transverse absorber size of, at least, {approx}6 Multiplication-Sign 10{sup 16} cm. In contrast, a cluster of narrower C IV lines appears to originate in gas that fully covers the continuum and broad emission line sources. There is no evidence for changes in the centroid velocity of the absorption troughs. This case suggests that at least some of the absorbers that produce ''mini-broad'' and broad absorption lines in quasar spectra do not belong to intrinsically separate classes. Here, the ''mini-broad'' absorption line is most likely interpreted as an intermediate phase before the appearance of a broad absorption line due to their similar velocities. While the current observations do not provide enough constraints to discern among the possible causes for this variability, future monitoring of multiple transitions at high resolution will help achieve this goal.

  11. A Kennicutt-Schmidt Law for Intervening Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Chelouche, Doron; Bowen, David V.

    2010-10-01

    We argue that most strong intervening metal absorption line systems, where the rest equivalent width of the Mg II λ2796 line is >0.5 Å, are interstellar material in, and outflowing from, star-forming disks. We show that a version of the Kennicutt-Schmidt law is readily obtained if the Mg II equivalent widths are interpreted as kinematic broadening from absorbing gas in outflowing winds originating from star-forming galaxies. Taking a phenomenological approach and using a set of observational constraints available for star-forming galaxies, we are able to account for the density distribution of strong Mg II absorbers over cosmic time. The association of intervening material with star-forming disks naturally explains the metallicity and dust content of strong Mg II systems, as well as their high H I column densities, and does not require the advection of metals from compact star-forming regions into the galaxy halos to account for the observations. We find that galaxies with a broad range of luminosities can give rise to absorption of a given rest equivalent width and discuss possible observational strategies to better quantify true galaxy-absorber associations and further test our model. We show that the redshift evolution in the density of absorbers closely tracks the star formation history of the universe and that strong intervening systems can be used to directly probe the physics of both bright and faint galaxies over a broad redshift range. In particular, in its simplest form, our model suggests that many of the statistical properties of star-forming galaxies and their associated outflows have not evolved significantly since z ~ 2. By identifying strong intervening systems with galaxy disks and quantifying a version of the Kennicutt-Schmidt law that applies to them, a new probe of the interstellar medium is found which provides complementary information to that obtained through emission studies of galaxies. Implications of our results for galaxy feedback and

  12. Spectral line parameters including line shapes in the 2ν3 Q branch of 12CH4

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.; Yu, Shanshan; Smith, Mary Ann H.; Mantz, Arlan W.; Boudon, Vincent; Ismail, Syed

    2016-07-01

    In this study, we report the first experimental measurements of spectral line shape parameters (self- and air-broadened Lorentz half-widths, pressure-shifts, and line mixing (via off-diagonal relaxation matrix elements) coefficients and their temperature dependences, where appropriate) for transitions in the 2ν3 Q branch manifolds, Q(11)-Q(1) of methane (12CH4), in the 5996.5-6007-cm-1 region. The analysis included 23 high-resolution, high signal-to-noise laboratory absorption spectra recorded with the Bruker IFS-125HR Fourier transform spectrometer (FTS) at JPL. The experimental data were obtained using 12C-enriched 12CH4 and dilute mixtures of 12CH4 in dry air in the 130-296 K range using a room-temperature long path absorption cell and, two custom-built coolable cells. In the analysis, an interactive multispectrum fitting software was employed where all the 23 spectra (11 self-broadened and 12 air-broadened) were fit simultaneously. By carefully applying reasonable constraints to the parameters for severely blended lines, we were able to determine a self-consistent set of broadening, shift and line mixing (relaxation matrix coefficients) parameters for CH4-CH4 and CH4-air collisions. In the majority of cases, a quadratic speed dependence parameter common for all transitions in each Q(J) manifold was determined. However, temperature dependences of the Q branch line mixing parameter could not be determined from the present data. Since no other experimental line shape measurements have been reported for this Q-branch, the present results are compared to available values in the HITRAN2012 database.

  13. Discovery of Hα Absorption in the Unusual Broad Absorption Line Quasar SDSS J083942.11+380526.3

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro; Iwata, Ikuru; Ohta, Kouji; Ando, Masataka; Akiyama, Masayuki; Tamura, Naoyuki

    2006-11-01

    We discovered Hα absorption in the broad Hα emission line of an unusual broad absorption line quasar, SDSS J083942.11+380526.3, at z=2.318, through near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) on the Subaru telescope. The presence of nonstellar Hα absorption is known only in the Seyfert galaxy NGC 4151 to date; thus, our discovery is the first case for quasars. The Hα absorption line is blueshifted by 520 km s-1 relative to the Hα emission line, and its redshift almost coincides with those of UV low-ionization metal absorption lines. The width of the Hα absorption (~340 km s-1) is similar to those of the UV low-ionization absorption lines. These facts suggest that the Hα and low-ionization metal absorption lines are produced by the same low-ionization gas, which has a substantial amount of neutral gas. The column density of the neutral hydrogen is estimated to be ~1018 cm-2 by assuming a gas temperature of 10,000 K from the analysis of the curve of growth. The continuum spectrum is reproduced by a reddened [E(B-V)~0.15 mag for the SMC-like reddening law] composite quasar spectrum. Furthermore, the UV spectrum of SDSS J083942.11+380526.3 shows a remarkable similarity to that of NGC 4151 in its low state, suggesting that the physical condition of the absorber in SDSS J083942.11+380526.3 is similar to that of NGC 4151 in the low state. As proposed for NGC 4151, SDSS J083942.11+380526.3 may also be seen through the edge of the obscuring torus. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  14. Probing Quasar Winds Using Intrinsic Narrow Absorption Lines

    NASA Astrophysics Data System (ADS)

    Culliton, Christopher S.; Charlton, Jane C.; Eracleous, Michael; Roberts, Amber; Ganguly, Rajib; Misawa, Toru; Muzahid, Sowgat

    2017-01-01

    Quasar outflows are important for understanding the accretion and growth processes of the central black hole. Furthermore, outflows potentially have a role in providing feedback to the galaxy, and halting star formation and infall of gas. The geometry and density of these outflows remain unknown, especially as a function of ionization and velocity. Having searched ultraviolet spectra at both high redshift (VLT/UVES; 1.4absorption lines (NALs) that are intrinsic to (physically associated with) the quasar. We identify intrinsic NALs with a wide range of properties, including ejection velocity, coverage fraction, and ionization level. We also consider the incidence of intrinsic absorbers as a function of quasar properties (optical, radio and X-ray fluxes), and find that radio properties and quasar orientation are influential in determining if a quasar is likely to host an intrinsic system. We find that there is a continuum of properties within the intrinsic NAL sample, rather than discrete families, ranging from partially covered CIV systems with black Lya and with a separate low ionization gas phase to partially covered NV systems with partially covered Lya and without detected low ionization gas. Additionally, we construct a model describing the spatial distributions, geometries, and varied ionization structures of intrinsic NALs.

  15. Large capacitor performs as a distributed parameter pulse line

    NASA Technical Reports Server (NTRS)

    Gooding, T. J.

    1966-01-01

    Capacitor of extended foil construction performs as a distributed parameter pulse line in which current, amplitude, and period are readily controlled. The capacitor is used as the energy storage element in a pulsed plasma accelerator.

  16. New aspects of absorption line formation in intervening turbulent clouds - II. Monte Carlo simulation of interstellar H+D Lyalpha absorption profiles

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Kegel, Wilhelm H.; Mazets, Igor E.

    1997-07-01

    Stochastic velocity fields with finite correlation lengths affect the formation of interstellar (intergalactic) absorption lines in a way not accounted for in the standard analysis procedure in which Voigt profiles are fitted to the observed line profiles. We investigate these effects, accounting in particular for the fact that interstellar absorption spectra reflect only one realization of the velocity field, since (i) actually only one line of sight is observed and (ii) the velocity structure of the cloud has to be considered to be `frozen' over the exposure time. This paper presents results of Monte Carlo calculations. In this technique an ensemble of line profiles is computed, each one of which corresponds to one realization of the random velocity field. The most important results are the following. (1) The individual line profiles may deviate substantially from each other and from the ensemble average. (2) Correlated velocity fields may cause complex multicomponent absorption features which in a traditional analysis would be attributed to several clouds, i.e. to density and/or kinetic temperature inhomogeneities. (3) Each line of sight has its own curve-of-growth. (4) Applying the standard analysis to such line profiles may produce misleading results concerning the physical parameters of the cloud. (5) In particular, the apparent scatter of the D/H ratio revealed in the ISM on the basis of the Copernicus, IUE, and HST observations may be caused by an inadequate analysis. Finally, we discuss under which conditions cloud characteristics may be derived from absorption lines without relying on a particular physical model.

  17. Comparison of line-by-line and band models of near-IR methane absorption applied to outer planet atmospheres

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.; Fry, P. M.; Boudon, V.; Campargue, A.; Nikitin, A.

    2012-03-01

    Recent improvements in high spectral resolution measurements of methane absorption at wavenumbers between 4800 cm-1 and 7919 cm-1 have greatly increased the number of lines with known lower state energies, the number of weak lines, and the number of lines observed at low temperatures (Campargue, A., Wang, L., Kassi, S., Mašát, M., Votava, O. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 1141-1151; Campargue, A., Wang, L., Liu, A.W., Hu, S.M., Kassi, S. [2010]. Chem. Phys. 373, 203-210; Mondelain, D., Kassi, S., Wang, L.C. [2011]. Phys. Chem. Chem. Phys. 13, 7985-7996; Nikitin, A.V. et al. [2011a]. J. Mol. Spectrosc. 268, 93-106; Nikitin, A.V. et al. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 2211-2224; Wang, L., Kassi, S., Campargue, A. [2010]. J. Quant. Spectrosc. Radiat. Trans. 111, 1130-1140; Wang, L., Kassi, S., Liu, A.W., Hu, S.M., Campargue, A. [2011]. J. Quant. Spectrosc. Radiat. Trans. 112, 937-951), making it possible to fit near-IR spectra of Titan using line-by-line calculations instead of band models (Bailey, J., Ahlsved, L., Meadows, V.S. [2011]. Icarus 213, 218-232; de Bergh, C. et al. [2011]. Planet. Space Sci. doi:10.1016/j.pss.2011.05.003). Using these new results, we compiled an improved line list relative that used by Bailey et al. by updating several spectral regions with either calculated or more recently measured line parameters, revising lower state energy estimates for lines lacking them, and adding room temperature lines to make the list applicable over a wider range of temperatures. We compared current band models with line-by-line calculations using this new line list, both to assess the behavior of band models, and to identify remaining issues with line-by-line calculations when applied to outer planet atmospheres and over a wider range of wavelengths. Comparisons were made for a selection of uniform paths representing outer planet conditions and for representative non-uniform paths within the atmospheres of Uranus, Saturn

  18. EMERGENCE OF A BROAD ABSORPTION LINE OUTFLOW IN THE NARROW-LINE SEYFERT 1 GALAXY WPVS 007

    SciTech Connect

    Leighly, Karen M.; Casebeer, Darrin A.; Hamann, Fred; Grupe, Dirk

    2009-08-10

    We report results from a 2003 Far Ultraviolet Spectroscopic Explorer (FUSE) observation and reanalysis of a 1996 Hubble Space Telescope (HST) observation of the unusual X-ray transient Narrow-line Seyfert 1 galaxy WPVS 007. The HST Faint Object Spectrograph (FOS) spectrum revealed mini-BALs (broad absorption lines) with V {sub max} {approx} 900 km s{sup -1} and FWHM {approx}550 km s{sup -1}. The FUSE spectrum showed that an additional BAL outflow with V {sub max} {approx} 6000 km s{sup -1} and FWHM {approx}3400 km s{sup -1} had appeared. WPVS 007 is a low-luminosity object in which such a high-velocity outflow is not expected; therefore, it is an outlier on the M{sub V} /v {sub max} relationship. Template spectral fitting yielded apparent ionic columns, and a Cloudy analysis showed that the presence of P V requires a high-ionization parameter log(U) {>=} 0 and high-column density log(N {sub H}) {>=} 23 assuming solar abundances and a nominal spectral energy distribution (SED) for low-luminosity NLS1s with {alpha} {sub ox} = -1.28. A recent long Swift observation revealed the first hard X-ray detection and an intrinsic (unabsorbed) {alpha} {sub ox} {approx} -1.9. Using this SED in our analysis yielded lower column density constraints (log(N {sub H}) {>=} 22.2 for Z = 1, or log(N {sub H}) {>=} 21.6 if Z = 5). The X-ray weak continuum, combined with X-ray absorption consistent with the UV lines, provides the best explanation for the observed Swift X-ray spectrum. The large column densities and velocities implied by the UV data in any of these scenarios could be problematic for radiative acceleration. We also point out that since the observed P V absorption can be explained by lower total column densities using an intrinsically X-ray weak spectrum, we might expect to find P V absorption preferentially more often (or stronger) in quasars that are intrinsically X-ray weak.

  19. What Drives the Outflows in Broad Absorption Line QSOs?

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1997-01-01

    We have made progress in the areas related to the propulsion and confinement of gas responsible for broad absorption troughts in QSOs: Radiative Acceleration in BALQSOs; The "Ghost" of Lyman (alpha); and Magnetic Confinement of Absorbing Gas.

  20. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029---Ejected or Intervening?

    NASA Astrophysics Data System (ADS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-10-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of zabs = 0.695 in the spectrum of the zem = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km s-1 is detected from C IV, N V, and O VI in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM ~ 250 km s-1) at zabs = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C IV, N V, and O VI doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by ~56,000 km s-1 to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km s-1 from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  1. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029--Ejected or Intervening?

    NASA Technical Reports Server (NTRS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-01-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of z(sub abs) = 0.695 in the spectrum of the z(sub em) = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km/s is detected from C iv, N v, and O vi in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM approx. 250 km/s) at z(sub abs) = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C iv, N v, and O vi doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by approx. 56,000 km/s to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km/s from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  2. [A line-by-line trace gas absorption model and its application in NDIR gas detection technology].

    PubMed

    Fang, Jing; Liu, Wen-qing; Zhang, Tian-shu

    2008-06-01

    An accurate line-by-line integral trace gas absorption model is presented in the present article. It is for mid-infrared band and can be used in the study on and application to detecting trace gas (or pollution gas). First of all, two algorithms of trace gas radioactive properties, line-by-line integral method and band model method, were introduced. The merits and demerits of each were compared. Several recent developed line-by-line integral calculation models were also introduced. Secondly, the basic principle of line-by-line integral trace gas absorption calculation model was described in detail. The absorption coefficient is a function of temperature, frequency (wave number), pressure, gas volume mixing ratio and constants associated with all contributing line transitions. The average monochromatic absorption coefficient at a given frequency of a given gas species can be written as the product of the number density of the molecular species to which the spectral line belongs, the line intensity and a line shape factor. Efficient calculation of the line shape factor may be required for different atmospheric conditions. In the lower atmosphere, the shape of spectral lines is dominated by pressure broadening and can be represented most simply by the Lorentz line shape factor. At high altitudes, the shape of spectral lines is governed by Doppler broadening At intermediate altitudes, they can be modeled using the Voigt line shape factor, a convolution of the Lorentz and Doppler line shape factors. Finally, in the section of experiment, the results calculated by model were compared with that measured by Fourier transform infrared spectrometer. As an instance, the model was applied to the detectors design of NDIR (non-dispersive infrared) technology and the relationship between signal intensity of detectors and concentration of CO2/CO was simulated by model. Available concentration range of detector was given by calculating the results of the model. It is based on

  3. Identification of Critical Biological Parameters Affecting Gastrointestinal Absorption

    DTIC Science & Technology

    1990-01-01

    salivary glands (parotid, submandibular, and sublingual ) and numerous minor salivary glands located throughout the oral cavity. Saliva is a watery...are parotid glands 20 to 25 percent, submandibular glands 60 to 70 percent. and sublingual glands 5 to 20 percent (Snyder et al., 1975; Ganong, 1979... sublingual region: the underside of the tongue and the floor of the mouth immediately beneath the tongue. This region is mo, conducive to absorption

  4. Absorption-line spectrum of GC 1556 + 335 - ejected or intervening material

    SciTech Connect

    Morris, S.L.; Weymann, R.J.; Foltz, C.B.; Turnshek, D.A.; Shectman, S.

    1986-11-01

    Two rich C IV absorption complexes in the radio-loud QSO GC 1556 + 335 are described. Column densities for seven of the redshift systems in these complexes are measured, and limits on the distances between the QSO and absorbing clouds are derived using ionization parameters estimated from matching photoionization models to the observations and a density estimated from an upper limit to the C II(asterisk) column density in the z = 1.65367 redshift system. These limits show that GC 1556 + 335 is not a typical member of the BALQSO class. Two alternative models are discussed in which the absorption complexes are caused by material either entrained into a radio jet from the QSO or contained in two clusters of galaxies along the line of sight. It is suggested that the emission associated with the complexes may be detectable, and that a study of the velocity field and geometry of such emission might be decisive in determining the mechanism responsible for the absorption. 40 references.

  5. Theoretical effect of various broadening parameters on ultraviolet line profiles

    NASA Technical Reports Server (NTRS)

    Peytremann, E.

    1972-01-01

    The relative importance of various damping parameters in ultraviolet lines under conditions of normal stellar atmospheres are studied. It is found that the damping by electron collisions is always much smaller than either the radiative or the classical damping, except for lines that arise from high excitation levels and do not therefore develop strong damping wings. A damping constant equal to 10 times the classical value is always much too large when compared to the more realistic (electron + radiative) damping.

  6. Is there a connection between broad absorption line quasars and narrow-line Seyfert 1 galaxies?

    SciTech Connect

    Grupe, Dirk; Nousek, John A.

    2015-02-01

    We consider whether broad absorption line quasars (BAL QSOs) and narrow-line Seyfert 1 galaxies (NLS1s) are similar, as suggested by Brandt and Gallagher and Boroson. For this purpose, we constructed a sample of 11 BAL QSOs from existing Chandra and Swift observations. We found that BAL QSOs and NLS1s both operate at high Eddington ratios L/L{sub Edd}, although BAL QSOs have slightly lower L/L{sub Edd}. BAL QSOs and NLS1s in general have high Fe ii/Hβ and low [O iii]/Hβ ratios following the classic “Boroson and Green” eigenvector 1 relation. We also found that the mass accretion rates M-dot of BAL QSOs and NLS1s are more similar than previously thought, although some BAL QSOs exhibit extreme mass accretion rates of more than 10 M{sub ⊙} yr{sup −1}. These extreme mass accretion rates may suggest that the black holes in BAL QSOs are relativistically spinning. Black hole masses in BAL QSOs are a factor of 100 larger than NLS1s. From their location on a M−σ plot, we find that BAL QSOs contain fully developed black holes. Applying a principal component analysis to our sample, we find eigenvector 1 to correspond to the Eddington ratio L/L{sub Edd}, and eigenvector 2 to black hole mass.

  7. Effect of a progressive sound wave on the profiles of spectral lines. 2: Asymmetry of faint Fraunhofer lines. [absorption spectra

    NASA Technical Reports Server (NTRS)

    Kostyk, R. I.

    1974-01-01

    The absorption coefficient profile was calculated for lines of different chemical elements in a medium with progressive sound waves. Calculations show that (1) the degree and direction of asymmetry depend on the atomic ionization potential and the potential of lower level excitation of the individual line; (2) the degree of asymmetry of a line decreases from the center toward the limb of the solar disc; and (3) turbulent motions 'suppress' the asymmetry.

  8. XMM-Newton Spectroscopy of the X-ray Detected Broad Absorption Line QSO CSO 755

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2005-01-01

    We present the results from XMM-Newton observations of the highly optically polarized broad absorption line quasar (BALQSO) CSO 755. By analyzing its X-ray spectrum with a total of approximately 3000 photons we find that this source has an X-ray continuum of "typical" radio-quiet quasars, with a photon index of Gamma=1.83, and a rather flat (X-ray bright) intrinsic optical-to-X-ray spectral slope of alpha_ox=- 1.51. The source shows evidence for intrinsic absorption, and fitting the spectrum with a neutral-absorption model gives a column density of N_H approximately 1.2x10^22 cm^{-2}; this is among the lowest X-ray columns measured for BALQSOs. We do not detect, with high significance, any other absorption features in the X-ray spectrum. Upper limits we place on the rest-frame equivalent width of a neutral (ionized) Fe K-alpha line, less than =180 eV (less than =120 eV), and on the Compton-reflection component parameter, R less than =0.2, suggest that most of the X-rays from the source are directly observed rather than being scattered or reflected; this is also supported by the relatively flat intrinsic alpha ox we measure. The possibility that most of the X-ray flux is scattered due to the high level of UV-optical polarization is ruled out. Considering data for 46 BALQSOs from the literature, including CSO 755, we have found that the UV-optical continuum polarization level of BALQSOs is not correlated with any of their X-ray properties. A lack of significant short-term and long-term X-ray flux variations in the source may be attributed to a large black-hole mass in CSO 755. We note that another luminous BALQSO, PG 2112+059, has both similar shallow C IV BALs and moderate X-ray absorption.

  9. Study of Water Absorption Lines in the Near Infrared

    DTIC Science & Technology

    1975-02-17

    the absorption coefficient is better approximated by the sum of Matcha -N«. oec short range contribution and W-BB dispersion contribution. The...and W. Byers Brown, Molecular Physics 2S, 1105 (1973). 5. R. L. Matcha and R. K. Nesbet, Phys. Rev. 1_6_0, 72 (1967). I H. B. Levine, Phys. Rev...reasurcrents of Ouren, ^eltqen Gaide, Helbing and Pauly. The dipole moment function is taken from ab initio 9 calculations of Matcha and Nesbet. With

  10. Investigation of Impact Load Absorption through Suspension Line Elongation

    DTIC Science & Technology

    1952-12-01

    16 1. Charts . . ’ . . . .. . . 16 2. glong~tion Ratin of Li; Goups . . . 163. Graphs . .. .. .. .. .. .. .. ... . 16 SECTION IV - DISCUSSION OF...Tester . ...................... z14 Figure 16 . Frazier Air Porosity Tester in Use ....... 215 Figure 17. 30 ft., Extended Skirt CsnoW’ in Deployment Bag...line than on canopies strung with high elongation line. WMADR 5&~5T 1 CONCLUSIONS; 15. Nylon is superior to fortisan in shock absorbing capacity. 16

  11. Effects of velocity averaging on the shapes of absorption lines

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.

    1980-01-01

    The velocity averaging of collision cross sections produces non-Lorentz line shapes, even at densities where Doppler broadening is not apparent. The magnitude of the effects will be described using a model in which the collision broadening depends on a simple velocity power law. The effect of the modified profile on experimental measures of linewidth, shift and amplitude will be examined and an improved approximate line shape will be derived.

  12. Probing low-redshift galaxies using quasar absorption lines with an emphasis on Ca II absorption

    NASA Astrophysics Data System (ADS)

    Sardane, Gendith M.

    2016-05-01

    We searched for intervening CaII absorption in nearly 95,000 quasar spectra with i≤20 from the Sloan Digital Sky Survey(SDSS) data releases DR7+DR9. Our identification of >400 CaII systems is the largest compilation of CaII absorbers in a blind search. (Abstract shortened by ProQuest.).

  13. Hydration shell parameters of aqueous alcohols: THz excess absorption and packing density.

    PubMed

    Matvejev, V; Zizi, M; Stiens, J

    2012-12-06

    Solvation in water requires minimizing the perturbations in its hydrogen bonded network. Hence solutes distort water molecular motions in a surrounding domain, forming a molecule-specific hydration shell. The properties of those hydration shells impact the structure and function of the solubilized molecules, both at the single molecule and at higher order levels. The size of the hydration shell and the picoseconds time-scale water dynamics retardation are revealed by terahertz (THz) absorption coefficient measurements. Room-temperature absorption coefficient at f = 0.28 [THz] is measured as a function of alcohol concentration in aqueous methanol, ethanol, 1,2-propanol, and 1-butanol solutions. Highly diluted alcohol measurements and enhanced overall measurement accuracy are achieved with a THz absorption measurement technique of nL-volume liquids in a capillary tube. In the absorption analysis, bulk and interfacial molecular domains of water and alcohol are considered. THz ideal and excess absorption coefficients are defined in accordance with thermodynamics mixing formulations. The parameter extraction method is developed based on a THz excess absorption model and hydrated solute molecule packing density representation. First, the hydration shell size is deduced from the hydrated solute packing densities at two specific THz excess absorption nonlinearity points: at infinite alcohol dilution (IAD) and at the THz excess absorption extremum (EAE). Consequently, interfacial water and alcohol molecular domain absorptions are deduced from the THz excess absorption model. The hydration shell sizes obtained at the THz excess absorption extremum are in excellent agreement with other reports. The hydration shells of methanol, ethanol, 1- and 2-propanol consist of 13.97, 22.94, 22.99, and 31.10 water molecules, respectively. The hydration shell water absorption is on average 0.774 ± 0.028 times the bulk water absorption. The hydration shell parameters might shed light on

  14. On-Line Wavelength Calibration of Pulsed Laser for CO2 Differential Absorption LIDAR

    NASA Astrophysics Data System (ADS)

    Xiang, Chengzhi; Ma, Xin; Han, Ge; Liang, Ailin; Gong, Wei

    2016-06-01

    Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO2 detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO2 concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO2 detection. The MWS conducted segmented sampling across the CO2 absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO2 can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.

  15. Conversion from constitutive parameters to dispersive transmission line parameters for multi-band metamaterials

    NASA Astrophysics Data System (ADS)

    Ozturk, Yusuf; Egemen Yilmaz, Asim; Ozbay, Ekmel

    2016-04-01

    In this study, we explain an approach including conversion from constitutive parameters to dispersive transmission line parameters using the double-band DNG (double-negative) properties of the circular type fishnet metamaterials. After designing the metamaterial structure, the numerical calculations and the composite right/left-handed (CRLH) modeling of circular-type metamaterials are realized in free space. Detailed dispersion characteristics give us the opportunity to explain the true behavior of the inclusions during the analysis stage. By combining the results coming from the standard retrieval procedure with the conventional CRLH theory, we calculate the actual values of the transmission line parameters for all frequency regimes. The constitutive parameters of an equivalent CRLH transmission line are derived and shown to be negative values. It is shown that the constitutive parameters present the same behavior for all negative refractive index regimes. The double-negative properties and the phase advance/lag behavior of metamaterials are observed based on the dispersive transmission line parameters.

  16. Estimation of parameters for the elimination of an orally administered test substance with unknown absorption.

    PubMed

    Vogt, Josef A; Denzer, Christian

    2013-04-01

    Assessment of the elimination of an oral test dose based on plasma concentration values requires correction for the effect of gastric release and absorption. Irregular uptake processes should be described 'model independently', which requires estimation of a large number of absorption parameters. To limit the associated computational effort a new approach is developed with a reduced number of unknown parameters. A marginalized and regularized absorption approach (MRA) is defined, which uses for the uptake just one parameter to control rigidity of the uptake curve. For validation, elimination and absorption were reproduced using published IVIVC data and a synthetic data set for comparison with approaches using a 'model-free'--staircase function or mechanistic models to describe absorption. MRA performed almost as accurate as well specified mechanistic models, which gave the best reproduction. MRA demonstrated a 50fold increase in computational efficiency compared to other approaches. The absorption estimated for the IVIVC study demonstrated an in vivo-in vitro correlation comparable to published values. The newly developed MRA approach can be used to efficiently and accurately estimate elimination and absorption with a restricted number of adaptive parameters and with automatic adjustment of the complexity of the uptake.

  17. Detectability of cold streams into high-redshift galaxies by absorption lines

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel

    2012-08-01

    Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.

  18. Inter-Stellar Medium Absorption Lines As Outflow Tracers - A Comparison Between AGNs And SFGs

    NASA Astrophysics Data System (ADS)

    Talia, Margherita; Cimatti, A.; Brusa, M.

    2016-10-01

    To reproduce the properties of galaxies in the local Universe, as well as the scaling relations between host galaxies and black holes properties, many galaxy formation models invoke the presence of fast and energetic winds extending over galaxy scales. These massive gas outflows can be powered either by star-formation (SF) or AGN activity, though the relative dominance and efficiency of the different mechanisms is not yet fully understoodIn the last decade much effort has been put in the search for observational evidence of such phenomena, especially at the peak of both SF and AGN activity through cosmic time (1absorption lines in the UV regime, as well as broad, blue-shifted profiles in optical emission lines have been observed in galaxies at all redshifts and are usually interpreted as evidence of fast material moving towards our line of sight. More recently, especially thanks to new facilities like ALMA, outflows are being observed also in neutral and molecular gasIn order to study the differences and possible synergy between the two main driving outflow mechanisms (AGN or SF activity) and to understand the role that outflows might play in SF quenching and galaxy evolution, we collected a large sample of AGNs and SFGs at z>1.7 from large optical spectroscopic surveys (zCOSMOS, VUDS, ESO public surveys), complemented with HST imaging, X-ray (Chandra) and IR data. The richness of available data for our sample allowed us to map a large portion of the physical parameters space. We concentrated our analysis on the ISM absorption lines in the rest-frame UV wavelength range. Through stacking tecniques we studied the relation between such lines and AGN and SFG properties. I will present our results (Talia et al

  19. Synthetic absorption lines for a clumpy medium: a spectral signature for cloud acceleration in AGN?

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Proga, Daniel; Dannen, Randall; Kallman, Timothy R.

    2017-01-01

    There is increasing evidence that the highly ionised multiphase components of AGN disc winds may be due to thermal instability. The ions responsible for forming the observed X-ray absorption lines may only exist in relatively cool clumps that can be identified with the so-called `warm absorbers'. Here we calculate synthetic absorption lines for such warm absorbers from first principles by combining 2D hydrodynamic solutions of a two-phase medium with a dense grid of photoionization models to determine the detailed ionization structure of the gas. Our calculations reveal that cloud disruption, which leads to a highly complicated velocity field (i.e. a clumpy flow), will only mildly affect line shapes and strengths when the warm gas becomes highly mixed but not depleted. Prior to complete disruption, clouds which are optically thin to the driving UV resonance lines will cause absorption at an increasingly blueshifted line of sight velocity as they are accelerated. This behavior will imprint an identifiable signature on the line profile if warm absorbers are enshrouded in an even broader absorption line produced by a high column of intercloud gas. Interestingly, we show that it is possible to develop a spectral diagnostic for cloud acceleration by differencing the absorption components of a doublet line, a result which can be qualitatively understood using a simple partial covering model. Our calculations also permit us to comment on the spectral differences between cloud disruption and ionization changes driven by flux variability. Notably, cloud disruption offers another possibility for explaining absorption line variability.

  20. Adjustment of pelvispinal parameters preserves the constant gravity line position.

    PubMed

    Geiger, Emanuel V; Müller, Otto; Niemeyer, Thomas; Kluba, Torsten

    2007-04-01

    There is a high variance in sagittal morphology and complaints between different subjects suffering from spinal disorders. Sagittal spinal alignment and clinical presentation are not closely related. Different parameters have been used to describe the pelvispinal morphology based on standing lateral radiographs. We conducted a study using radiography of the lumbar spine combined with force platform data to examine the correlation between pelvispinal parameters and the gravity line position. Fifty consecutive patients with a mean age of 55 years (18-84 years) were compared to normal controls. Among patients we found a statistically significant correlation between the following spinal parameters: lumbar lordosis and sacral slope (r=0.77; P<0.001), sacral slope and pelvic incidence (r=0.72; P<0.001) and pelvic tilt and overhang (r=-0.93; P<0.001). In patients and controls, the gravity line position was found to be located at 60 and 61%, respectively, of the foot length measured from the great toe, ranging from 53 to 69%, when corrected for the individual foot length. The results indicate that subjects with and without spinal disorders have their gravity line position localised within a very small range despite the high variability for lumbar lordosis and pelvic tilt.

  1. Gamma-Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Els, Paul

    2016-04-01

    The expected level of γγ absorption in the Broad Line Region (BLR) radiation field of γ-ray loud Flat Spectrum Radio Quasars (FSRQs) is evaluated as a function of the location of the γ-ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the γγ opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to γγ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the γ-ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the central engine and drops below unity for locations within the BLR. For locations outside the BLR, the BLR radiation energy density required for the production of GeV γ-rays rapidly increases beyond observational constraints, thus making the EC-BLR mechanism implausible. Therefore, in order to avoid significant γγ absorption by the BLR radiation field, the γ-ray emission region must therefore be located near the outer boundary of the BLR.

  2. Resonator spectrometer for precise broadband investigations of atmospheric absorption in discrete lines and water vapor related continuum in millimeter wave range.

    PubMed

    Tretyakov, M Yu; Krupnov, A F; Koshelev, M A; Makarov, D S; Serov, E A; Parshin, V V

    2009-09-01

    The instrument and methods for measuring spectral parameters of discrete atmospheric lines and water-related continuum absorption in the millimeter wave range are described. The instrument is based on measurements of the Fabry-Pérot resonance response width using fast phase continuous scanning of the frequency-synthesized radiation. The instrument allows measurement of gas absorptions at the cavity eigenfrequencies ranging from 45 to 370 GHz with the highest to date absorption variation sensitivity of 4x10(-9) cm(-1). The use of a module of two rigidly bounded maximum identical resonators differing in length by exactly a factor of two allows accurate separation of the studied gas absorption and spectrometer baseline, in particular, the absorption by water adsorbed on the resonator elements. The module is placed in a chamber with temperature controlled between -30 and +60 degrees C, which permits investigation of temperature dependence of absorption. It is shown that systematic measurement error of discrete atmospheric line parameters does not exceed the statistical one and the achieved accuracy satisfies modern demands for the atmospheric remote sensing data retrieval. Potential systematic error arising from the neglect of the effect of water adsorption on mirror surfaces is discussed. Examples of studies of water and oxygen spectral line parameters as well as continuum absorption in wet nitrogen are given.

  3. BROAD ABSORPTION LINE VARIABILITY ON MULTI-YEAR TIMESCALES IN A LARGE QUASAR SAMPLE

    SciTech Connect

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Hall, P. B.; Anderson, S. F.; Hamann, F.; Lundgren, B. F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2013-11-10

    We present a detailed investigation of the variability of 428 C IV and 235 Si IV broad absorption line (BAL) troughs identified in multi-epoch observations of 291 quasars by the Sloan Digital Sky Survey-I/II/III. These observations primarily sample rest-frame timescales of 1-3.7 yr over which significant rearrangement of the BAL wind is expected. We derive a number of observational results on, e.g., the frequency of BAL variability, the velocity range over which BAL variability occurs, the primary observed form of BAL-trough variability, the dependence of BAL variability upon timescale, the frequency of BAL strengthening versus weakening, correlations between BAL variability and BAL-trough profiles, relations between C IV and Si IV BAL variability, coordinated multi-trough variability, and BAL variations as a function of quasar properties. We assess implications of these observational results for quasar winds. Our results support models where most BAL absorption is formed within an order-of-magnitude of the wind-launching radius, although a significant minority of BAL troughs may arise on larger scales. We estimate an average lifetime for a BAL trough along our line-of-sight of a few thousand years. BAL disappearance and emergence events appear to be extremes of general BAL variability, rather than being qualitatively distinct phenomena. We derive the parameters of a random-walk model for BAL EW variability, finding that this model can acceptably describe some key aspects of EW variability. The coordinated trough variability of BAL quasars with multiple troughs suggests that changes in 'shielding gas' may play a significant role in driving general BAL variability.

  4. Line shape of 57Co sources exhibiting self absorption

    NASA Astrophysics Data System (ADS)

    Spiering, H.; Ksenofontov, V.; Leupold, O.; Kusz, J.; Deák, L.; Németh, Z.; Bogdán, C.; Bottyán, L.; Nagy, D. L.

    2016-12-01

    The effect of selfabsorption in Mössbauer sources is studied in detail. Spectra were measured using an old 57 C o/ R h source of 74 M B q activity with an original activity of ca. 3.7 G B q and a 0.15 G B q 57 C o/ α - F e source magnetized by an in-plane magnetic field of 0.2 T. The 57 C o/ α - F e source of a thickness of 25 μ was used both from the active and the inactive side giving cause to very different selfabsorption effects. The absorber was a single crystal of ferrous ammonium sulphate hexahydrate (FAS). Its absorption properties were taken over from a detailed study (Bull et al., Hyperfine Interact. 94(1-3), 1; Spiering et al. 2). FAS (space group P21/c) crystallizes as flat plates containing the (overline {2}01) plane. The γ-direction was orthogonal to the crystal plate. The 57 C o atoms of the 57 C o/ R h source were assumed to be homogeneously distributed over a 6 μ thick Rh foil and to follow a one dimensional diffusion profile in the 25 μ Fe-foil. The diffusion length was fitted to 10 μ. The theory follows the Blume-Kistner equations for forward scattering (Blume and Kistner, Phys. Rev. 171, 417, 3) by integrating over the source sampled up to 128 layers.

  5. A method for measuring magnetic fields in sunspots using Zeeman-broadened absorption lines

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2017-04-01

    We present measurements of magnetic fields in several sunspots using high-resolution spectra obtained with the ESPARTACO spectrograph at the Universidad de los Andes, with the aim to explore experimental possibilities for students. Because the Zeeman line splitting is smaller than the line width, our work only observes broadened absorption lines. This broadening, however, can be measured and suitably modeled, giving realistic quantitative results.

  6. Discovery of Broad Soft X-ray Absorption Lines from the Quasar Wind in PDS 456

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Braito, V.; Nardini, E.; Behar, E.; O'Brien, P. T.; Tombesi, F.; Turner, T. J.; Costa, M. T.

    2016-06-01

    High-resolution soft X-ray spectroscopy of the prototype accretion disk wind quasar, PDS 456, is presented. Here, the XMM-Newton reflection grating spectrometer spectra are analyzed from the large 2013-2014 XMM-Newton campaign, consisting of five observations of approximately 100 ks in length. During the last observation (OBS. E), the quasar is at a minimum flux level, and broad absorption line (BAL) profiles are revealed in the soft X-ray band, with typical velocity widths of {σ }{{v}}˜ {{10,000}} km s-1. During a period of higher flux in the third and fourth observations (OBS. C and D, respectively), a very broad absorption trough is also present above 1 keV. From fitting the absorption lines with models of photoionized absorption spectra, the inferred outflow velocities lie in the range ˜ 0.1{--}0.2c. The absorption lines likely originate from He and H-like neon and L-shell iron at these energies. A comparison with earlier archival data of PDS 456 also reveals a similar absorption structure near 1 keV in a 40 ks observation in 2001, and generally the absorption lines appear most apparent when the spectrum is more absorbed overall. The presence of the soft X-ray BALs is also independently confirmed by an analysis of the XMM-Newton EPIC spectra below 2 keV. We suggest that the soft X-ray absorption profiles could be associated with a lower ionization and possibly clumpy phase of the accretion disk wind, where the latter is known to be present in this quasar from its well-studied iron K absorption profile and where the wind velocity reaches a typical value of 0.3c.

  7. The Unusual Absorption Line System of PG 2302+029 -- Ejected or Intervening?

    NASA Astrophysics Data System (ADS)

    Jannuzi, Buell

    1997-07-01

    A high-ionization broad absorption line system {C IV, N V, and O VI doublets; FWHM 3, 000 to 5, 000 km s^-1; z_rmabs=0.7} in the HST FOS UV spectrum of PG 2302+029 {z=1.052} has unprecedented properties. A distinct narrow line system {FWHM <250 km s^-1, z_abs=0.702} is also resolved within the broad system. If produced by material intrinsic to the quasar then the absorbing gas has been ejected from the quasar at more than sim56, 000 km s^-1. This extremely large ejection velocity as well as its ``detached'' nature {the reddest extent of the broad line absorption is more than 50, 000 km s^-1 from the quasar rest frame} would be unlike any known intrinsic absorber in QSOs. Alternatively, the broad and narrow systems could be produced by gas in a foreground cluster or super-cluster of galaxies. However, previous examples of such absorption have always included absorption by low-ionization species {e.g. Mg II, Si II}, which are not detected in the PG 2302+029 systems. We will undertake STIS and WFPC2 observations designed to help to identify the cause of this absorption system and allow us to determine whether the system is an extreme example of previously known classes of quasar absorption lines or represents an entirely new phenomenon.

  8. Multi-parameter on-line coal bulk analysis

    SciTech Connect

    1999-02-01

    This was a four-year grant that was given a no cost extension for one more year. The purpose of the grant was to develop a pulsed neutron-based technique that could measure on-line all the major and minor elements in coal. Such measurements would allow the continuous monitoring of bulk parameters such as coal heating value (BTU/lb), volatile matter, moisture etc., deemed important to the coal industry. Such parameters, along with the continuous measurement of elements such as sulfur and sodium, are of major economic and environmental concern, and their measurement would assist in a more efficient use of the coal-fired boilers, as well as limiting emissions controlled by the 1990 Clean Air Act Amendments. It was hoped that this study would lead to the development of a technique able to create a marketable product, an On-Line Elemental Coal Analyzer. The study was separated in the following major parts: (1) Devise an efficient system for the detection of gamma rays; (2) Prior to experimentation, perform modeling and simulations for items such as detector shielding, coal sample configuration, and neutron tube collimation; (3) Develop a computer code for data reduction and analysis; (4) Measure the elemental composition of various coal samples; and (5) Design a prototype, on-line elemental coal analyzer, based on the PFTNA principle.

  9. A Comprehensive Study of Broad Absorption Line Quasars. I. Prevalence of HeI* Absorption Line Multiplets in Low-ionization Objects

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hongyan; Ji, Tuo; Yuan, Weimin; Wang, Ting-Gui; Jian, Ge; Shi, Xiheng; Zhang, Shaohua; Jiang, Peng; Shu, Xinwen; Wang, Huiyuan; Wang, Shu-Fen; Sun, Luming; Yang, Chenwei; Liu, Bo; Zhao, Wen

    2015-03-01

    Neutral helium multiplets, He i* λ λ 3189,3889,10830, are very useful diagnostics for the geometry and physical conditions of the absorbing gas in quasars. So far only a handful of He i* detections have been reported. Using a newly developed method, we detected the He i*λ 3889 absorption line in 101 sources of a well-defined sample of 285 Mg ii broad absorption line (BAL) quasars selected from SDSS DR5. This has increased the number of He i* BAL quasars by more than one order of magnitude. We further detected He i*λ 3189 in 50% (52/101) of the quasars in the sample. The detection fraction of He i* BALs in Mg ii BAL quasars is ∼35% as a whole, and it increases dramatically with increasing spectral signal-to-noise ratio (S/N), from ∼18% at S/N ≤slant 10 to ∼93% at S/N ≥slant 35. This suggests that He i* BALs could be detected in most Mg ii LoBAL quasars, provided the spectra S/N is high enough. Such a surprisingly high He i* BAL fraction is actually predicted from photoionization calculations based on a simple BAL model. The result indicates that He i* absorption lines can be used to search for BAL quasars at low z, which cannot be identified by ground-based optical spectroscopic surveys with commonly seen UV absorption lines. Using He i* λ3889, we discovered 19 BAL quasars at z\\lt 0.3 from the available SDSS spectral database. The fraction of He i* BAL quasars is similar to that of LoBAL objects.

  10. Molecular Line Parameters Precisely Determined by a Cavity Ring-Down Spectrometer

    NASA Astrophysics Data System (ADS)

    Hu, Shui-Ming; Tan, Yan; Wang, Jin; Lu, Yan; Cheng, Cunfeng; Sun, Yu Robert; Liu, An-Wen

    2015-06-01

    A cavity ring-down spectrometer calibrated with a set of precise atomic lines was built to retrieve precise line parameters in the near infrared.~[1,2] The spectrometer allows us to detect absorptions with a sensitivity of 10-11~cm-1 and a spectral precision up to 10-6~cm-1. Ro-vibrational lines in the second overtone of H_2 have been observed, including the extremely weak S_3(5) line with a line intensity less than 1× 10-30cm/molecule, which is among the weakest molecular lines detected by absorption in the gas phase. The absolute line positions of H_2 agree well with the high-level quantum chemical calculations including relativistic and QED corrections, with the deviation being less than 5× 10-4~cm-1.~[3,4] A quantitative study has also been carried out on the ν_1+5ν_3 band of CO_2.~[5] It was the first CO_2 band observed 80 years ago in the spectrum of Venus. We determined the line positions with an accuracy of 3× 10-5~cm-1, two orders of magnitude better than previous studies. Similar studies have been carried out to determine the line parameters of H_2O~[6] and CO~[7] in the spectral regions near 0.8~μm. The spectroscopic parameters can be used in varies studies, from the atmospheres of the earth-like planets to the test of fundamental physics. References [1] H. Pan, et al. Rev. Sci. Instrum. 82, 103110 (2011). [2] C.-F. Cheng, Opt. Expr. 20, 9956 (2012). [3] C.-F. Cheng, et al. Phys. Rev. A 85, 024501 (2012). [4] y. Tan, et al. J. Mol. Spectrosc. 300, 60 (2014). [5] Y. Lu, et al. Astrophys. J. 775, 71 (2013). [6] Y. Lu, et al. JQSRT 118, 96 (2013). [7] Y. Tan, et al. ``Ro-vibrational analysis of the fifth overtone of CO at 802~nm'', under preparation.

  11. An X-ray-absorbed radio-quiet QSO with an intervening strong metal absorption-line system

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Mittaz, J. P. D.; Carrera, F. J.

    2000-02-01

    We find evidence for significant X-ray absorption in the QSO RXJ005734.78-272827.4, along with strong absorption lines in its optical spectrum. We propose that the absorption lines are due to an intervening metal-line system at a redshift of z=0.628, and show that this intervening system is also the probable cause of the X-ray absorption. The intervening absorber is inferred to have an X-ray column of ~1022cm-2. This is the first time that an absorption-line system has been identified with an X-ray absorber in a radio-quiet object.

  12. DISENTANGLING THE CIRCUMNUCLEAR ENVIRONS OF CENTAURUS A. II. ON THE NATURE OF THE BROAD ABSORPTION LINE

    SciTech Connect

    Espada, D.; Matsushita, S.; Sakamoto, K.; Peck, A. B.; Henkel, C.; Iono, D.; Israel, F. P.; Muller, S.; Petitpas, G.; Pihlstroem, Y.; Taylor, G. B.; Trung, D. V.

    2010-09-01

    We report on atomic gas (H I) and molecular gas (as traced by CO(2-1)) redshifted absorption features toward the nuclear regions of the closest powerful radio galaxy, Centaurus A (NGC 5128). Our H I observations using the Very Long Baseline Array allow us to discern with unprecedented sub-parsec resolution H I absorption profiles toward different positions along the 21 cm continuum jet in the inner 0.''3 (or 5.4 pc). In addition, our CO(2-1) data obtained with the Submillimeter Array probe the bulk of the absorbing molecular gas with little contamination by emission, which was not possible with previous CO single-dish observations. We shed light on the physical properties of the gas in the line of sight with these data, emphasizing the still open debate about the nature of the gas that produces the broad absorption line ({approx}55 km s{sup -1}). First, the broad H I line is more prominent toward the central and brightest 21 cm continuum component than toward a region along the jet at a distance {approx}20 mas (or 0.4 pc) further from the nucleus. This indicates that the broad absorption line arises from gas located close to the nucleus, rather than from diffuse and more distant gas. Second, the different velocity components detected in the CO(2-1) absorption spectrum match well with other molecular lines, such as those of HCO{sup +}(1-0), except the broad absorption line that is detected in HCO{sup +}(1-0) (and most likely related to that of the H I). Dissociation of molecular hydrogen due to the active galactic nucleus seems to be efficient at distances r {approx}< 10 pc, which might contribute to the depth of the broad H I and molecular lines.

  13. H{beta} LINE WIDTHS AS AN ORIENTATION INDICATOR FOR LOW-IONIZATION BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Punsly, Brian; Zhang Shaohua E-mail: brian.punsly@comdev-usa.co

    2010-12-20

    There is evidence from radio-loud quasars to suggest that the distribution of the H{beta} broad emission line (BEL) gas is arranged in a predominantly planar orientation, and this result may well also apply to radio-quiet quasars. This would imply that the observed FWHM of the H{beta} BELs is dependent on the orientation of the line of sight to the gas. If this view is correct then we propose that the FWHM can be used as a surrogate, in large samples, to determine the line of sight to the H{beta} BELs in broad absorption line quasars (BALQSOs). The existence of broad UV absorption lines (BALs) means that the line of sight to BALQSOs must also pass through the BAL out-flowing gas. It is determined that there is a statistically significant excess of narrow-line profiles in the SDSS DR7 archival spectra of low-ionization broad absorption line quasars (LoBALQSOs), indicating that BAL gas flowing close to the equatorial plane does not commonly occur in these sources. We also find that the data is not well represented by random lines of sight to the BAL gas. Our best fit indicates two classes of LoBALQSOs, the majority ({approx}2/3) are polar outflows that are responsible for the enhanced frequency of narrow-line profiles, and the remainder are equatorial outflows. We further motivated the line of sight explanation of the narrow-line excess in LoBALQSOs by considering the notion that the skewed distribution of line profiles is driven by an elevated Eddington ratio in BALQSOs. We constructed a variety of control samples comprised of non-LoBALQSOs matched to a de-reddened LoBALQSO sample in redshift, luminosity, black hole mass, and Eddington ratio. It is demonstrated that the excess of narrow profiles persists within the LoBALQSO sample relative to each of the control samples with no reduction of the statistical significance. Thus, we eliminate the possibility that the excess narrow lines seen in the LoBALQSOs arise from an enhanced Eddington ratio.

  14. Low-redshift Lyman-alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1992-01-01

    Ultraviolet observations of the low-redshift quasar 3C 273 using the Hubble Space Telescope have revealed many more Lyman-alpha absorption lines than would be expected from extrapolation of the absorption systems seen toward QSOs at z about 2. It is shown here that these absorption lines can plausibly be produced by gas at large radii in the disks of spiral and irregular galaxies; the gas is confined by the dark matter halos and ionized and heated by the extragalactic radiation field. This scenario does not require the extragalactic ionizing radiation field to decline as rapidly with decreasing z as the QSO emissivity. Observations of Ly-alpha absorption through the halos of known galaxies at low redshift will constrain both the extragalactic background and the properties of galactic halos.

  15. EMPIRICAL LINE LISTS AND ABSORPTION CROSS SECTIONS FOR METHANE AT HIGH TEMPERATURES

    SciTech Connect

    Hargreaves, R. J.; Bernath, P. F.; Dulick, M.; Bailey, J.

    2015-11-01

    Hot methane is found in many “cool” sub-stellar astronomical sources including brown dwarfs and exoplanets, as well as in combustion environments on Earth. We report on the first high-resolution laboratory absorption spectra of hot methane at temperatures up to 1200 K. Our observations are compared to the latest theoretical spectral predictions and recent brown dwarf spectra. The expectation that millions of weak absorption lines combine to form a continuum, not seen at room temperature, is confirmed. Our high-resolution transmittance spectra account for both the emission and absorption of methane at elevated temperatures. From these spectra, we obtain an empirical line list and continuum that is able to account for the absorption of methane in high temperature environments at both high and low resolution. Great advances have recently been made in the theoretical prediction of hot methane, and our experimental measurements highlight the progress made and the problems that still remain.

  16. PG 1700 + 518 - a low-redshift, broad absorption line QSO

    SciTech Connect

    Pettini, M.; Boksenberg, A.

    1985-07-01

    The first high-resolution optical spectra and lower resolution UV spectra of PG 1700 + 518, the only known broad-absorption-line (BAL) QSO at low emission redshift (0.288) are presented. The optical data were obtained with the Isaac Newton Telescope on the island of La Palma and the UV data with the International Ultraviolet Explorer satellite. The outstanding feature of the optical spectrum is a strong, broad Mg II absorption trough, detached from the Mg II emission line and indicative of ejection velocities of between 7000 and 18,000 km/s. Also detected were narrow (FWHM = 350 km/s) Mg II absorption lines at absolute z = 0.2698, which are probably related to the mass ejection phenomenon. It is concluded that the emission-line spectrum is similar to that of other low-redshift QSOs although there are some obvious differences from typical BAL QSOs, most notably in the unusually low level of ionization of both emission-line and broad absorption line gas. 21 references.

  17. Relations among low ionosphere parameters and high frequency radio wave absorption

    NASA Technical Reports Server (NTRS)

    Cipriano, J. P.

    1973-01-01

    Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.

  18. Metal-line absorption at Zabs approximately Zem from associated galaxies

    NASA Astrophysics Data System (ADS)

    Ellingson, E.; Yee, H. K. C.; Bechtold, Jill; Dobrzycki, Adam

    1994-04-01

    For a preliminary study of whether C IV absorption at Zabs approximately Zem is related to associated galaxy companions, we have collected data from a sample of 10 quasars with 0.15 less than z less than 0.65 for which high-resolution optical and UV spectroscopy is available from the literature, and for which we have deep optical images and limited spectroscopy. We also present new optical spectra for two of our samples. Four of these quasars have associated C IV absorption systems. In thes four fields, there are eight galaxies with Mr less than -19.0 mag within 35 kpc of the quasar (projected distance, assuming they are at the quasar redshift), which may be candidates for the associated C IV absorption. This observed density of galaxies near quasars with associated C IV absorption is significantly greater than that for a control sample of quasars chosen from the literature. This result suggests that galaxies near the quasar line of sight may be linked with associated C IV absorption. None of these quasars show associated Mg II absorption, despite the presence of galaxies very near the line of sight, suggesting a Mg II 'proximity effect,' where ionizing flux from the quasar destroys the Mg(+) from at least the outer parts of the galaxies. Three quasars are located in rich galaxy clusters, but none of these quasars are found to have associated C IV absorption. This suggests that galaxies in rich clusters associated with quasars are less likely to be metal-line absorbers. It is plausible that the extended galaxy halos which may be responsible for the absorptions are stripped from galaxies in these dense environments. While it seems that at Z approximately 0.6 rich clusters do not cause them, associated C IV absorption systems at higher redshift may be explained by associated clusters if there has been evolution in the properties of galaxy halos in dense environments.

  19. Note: Characteristic beam parameter for the line electron gun

    SciTech Connect

    Iqbal, M.; Islam, G. U.; Zhou, Z.; Chi, Y.

    2013-11-15

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm{sup 2} at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm{sup 2}), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  20. Optimal line drop compensation parameters under multi-operating conditions

    NASA Astrophysics Data System (ADS)

    Wan, Yuan; Li, Hang; Wang, Kai; He, Zhe

    2017-01-01

    Line Drop Compensation (LDC) is a main function of Reactive Current Compensation (RCC) which is developed to improve voltage stability. While LDC has benefit to voltage, it may deteriorate the small-disturbance rotor angle stability of power system. In present paper, an intelligent algorithm which is combined by Genetic Algorithm (GA) and Backpropagation Neural Network (BPNN) is proposed to optimize parameters of LDC. The objective function proposed in present paper takes consideration of voltage deviation and power system oscillation minimal damping ratio under multi-operating conditions. A simulation based on middle area of Jiangxi province power system is used to demonstrate the intelligent algorithm. The optimization result shows that coordinate optimized parameters can meet the multioperating conditions requirement and improve voltage stability as much as possible while guaranteeing enough damping ratio.

  1. Polarization and Structure of Broad Absorption Line Quasi-Stellar Objects

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick Michael

    This thesis is a spectropolarimetric survey of broad absorption line quasi-stellar objects (BAL QSO). We observed 36 BAL QSO at the Palomar and W. M. Keck Observatories. BAL QSO have higher polarization than other quasars, reinforcing the view that they are normal quasars viewed from an equatorial aspect. However, there is a wide distribution of polarization values, which may be due to intrinsic differences in the geometry or optical depth to scattering. No correlations are found among emission line or broad absorption line properties and continuum polarization, suggesting that these properties are regulated by internal differences unrelated to viewing angle. The continuum polarization of BAL QSO is weakly wavelength-dependent after correction for emission line dilution. In most objects, the polarisation rises to the blue, suggesting that dust scattering or absorption may be important. Broad emission line photons are polarized less than the continuum; and the position angle of the electric vector is rotated with respect to the continuum. The semi-forbidden C III) emission line is polarized differently than the C IV emission line, suggesting resonance scattering in the C III) emission line region. Resonantly scattered photons from the broad absorption line region are detected at high velocities red-ward and blue-ward of the C IV line center in the spectra of some objects. These photons are negatively polarized with respect to the continuum photons, showing that the broad absorption line region and the continuum scattering region are oriented perpendicular to each other. The polarization increases in the BAL troughs, due mainly to partial coverage of the central source by the broad absorption line region. The geometry of the intervening BAL clouds is skewed with respect to the continuum scattering region, which results in position angle rotations in the BAL. The variation of polarization with velocity in the BAL is consistent with a non-radial, accelerating outflow

  2. Dependence of dose coefficients for inhaled 239Pu on absorption parameters.

    PubMed

    Suzuki, K; Sekimoto, H; Ishigure, N

    2001-01-01

    With regard to dissolution of particles in the respiratory tract after inhalation, the International Commission on Radiological Protection (ICRP) has classified all radionuclides into only three types according to the chemical form of compounds, and default values of absorption parameters are proposed for each type. However, it is just a simplification to estimate doses for practical use, and there is a possibility of unfitness in such an assortment. A code has been developed to reproduce the ICRP's dose coefficients for 239Pu, which is one of the most important elements for occupational exposure. By using this code, the respective absorption parameters were modified, and the effect owing to these changes evaluated. It was shown consequently that changes of absorption parameters do not greatly influence the effective doses of 239Pu for workers.

  3. Narrow absorption lines with two observations from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei; Cao, Yue

    2015-07-01

    We assemble 3524 quasars from the Sloan Digital Sky Survey (SDSS) with repeated observations to search for variations of the narrow C IV λ λ 1548,1551 and Mg II λ λ 2796,2803 absorption doublets in spectral regions shortward of 7000 Å in the observed frame, which corresponds to time-scales of about 150-2643 d in the quasar rest frame. In these quasar spectra, we detect 3580 C IV absorption systems with zabs = 1.5188-3.5212 and 1809 Mg II absorption systems with zabs = 0.3948-1.7167. In term of the absorber velocity (β) distribution in the quasar rest frame, we find a substantial number of C IV absorbers with β < 0.06, which might be connected to absorption of quasar outflows. The outflow absorption peaks at υ ≈ 2000 km s^{-1} and drops rapidly below this peak value. Among 3580 C IV absorption systems, 52 systems (˜1.5 per cent) show obvious variations in equivalent widths in the absorber rest frame (Wr): 16 enhanced, 16 emerged, 12 weakened and 8 disappeared systems, respectively. We find that changes in Wrλ1548 are related neither to the time-scales of the two SDSS observations nor to absorber velocities in the quasar rest frame. Variable absorption in low-ionization species is important to constrain the physical conditions of the absorbing gas. There are two variable Mg II absorption systems measured from SDSS spectra detected by Hacker et al. However, in our Mg II absorption sample, we find that neither shows variable absorption with confident levels of >4σ for λ2796 lines and >3σ for λ2803 lines.

  4. A ghostly damped Ly α system revealed by metal absorption lines

    NASA Astrophysics Data System (ADS)

    Fathivavsari, H.; Petitjean, P.; Zou, S.; Noterdaeme, P.; Ledoux, C.; Krühler, T.; Srianand, R.

    2017-03-01

    We report the discovery of the first 'ghostly' damped Ly α absorption system (DLA), which is identified by the presence of absorption from strong low-ion species at zabs = 1.704 65 along the line of sight to the quasar SDSS J113341.29-005740.0 with zem = 1.704 41. No Ly α absorption trough is seen associated with these absorptions because the DLA trough is filled with the leaked emission from the broad emission-line region of the quasar. By modelling the quasar spectrum and analysing the metal lines, we derive log N(H I)(cm-2) ∼21.0 ± 0.3. The DLA cloud is small (≤0.32 pc), thus not covering entirely the broad-line region and is located at ≥39 pc from the central active galactic nucleus (AGN). Although the DLA is slightly redshifted relative to the quasar, its metallicity ([S/H] = -0.41 ± 0.30) is intermediate between what is expected from infalling and outflowing gas. It could be possible that the DLA is part of some infalling material accreting on to the quasar host galaxy through filaments, and that its metallicity is raised by mixing with the enriched outflowing gas emanating from the central AGN. Current DLA surveys miss these 'ghostly' DLAs, and it would be important to quantify the statistics of this population by searching the Sloan Digital Sky Survey (SDSS) data base using metal absorption templates.

  5. Resolution Effects on Quasar Absorption Line Studies of ΛCDM Simulations

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn; Ceverino, D.; Churchill, C. W.; Murphy, M. T.; Evans, J. L.

    2009-01-01

    The technique of using background quasars to study absorption lines produced by gaseous halos of foreground galaxies provides a uniquely powerful tool to probe the gas-galaxy and IGM interface. With absorption lines, we are capable of studying the kinematic, chemical, and ionization conditions of galactic halos over all redshifts out to projected galactocentric radii of several 100 kpc. However, interpreting these data can be difficult. We have recently begun to produce similar absorption line observations of galaxies and their gaseous halos in LCDM cosmological simulations in order to constrain the dynamic interaction of the galaxy/halo/cosmic web environment and the distribution of gas within halos. The simulations are performed using the Eulerian Gasdynamics plus N-body Adaptive Refinement Tree (ART) code, were the highest resolution gas cells are 20-100 pc. However, absorption lines are primarily produced/observed in the halos of galaxies where the resolution is lower. Here, we quantify how varying the resolution affects the measured absorption velocity spreads, number of clouds, and covering fractions of halo gas within the simulated galaxies. This is an important step toward understanding the interplay between halo gas kinematics and small scale structure. It is crucial that we understand these effects in order to correctly interpret our observations.

  6. Ca II AND Na I QUASAR ABSORPTION-LINE SYSTEMS IN AN EMISSION-SELECTED SAMPLE OF SDSS DR7 GALAXY/QUASAR PROJECTIONS. I. SAMPLE SELECTION

    SciTech Connect

    Cherinka, B.; Schulte-Ladbeck, R. E.

    2011-10-15

    The aim of this project is to identify low-redshift host galaxies of quasar absorption-line systems by selecting galaxies that are seen in projection onto quasar sightlines. To this end, we use the Seventh Data Release of the Sloan Digital Sky Survey to construct a parent sample of 97,489 galaxy/quasar projections at impact parameters of up to 100 kpc to the foreground galaxy. We then search the quasar spectra for absorption-line systems of Ca II and Na I within {+-}500 km s{sup -1} of the galaxy's velocity. This yields 92 Ca II and 16 Na I absorption systems. We find that most of the Ca II and Na I systems are sightlines through the Galactic disk, through high-velocity cloud complexes in our halo, or Virgo Cluster sightlines. Placing constraints on the absorption line rest equivalent width significance ({>=}3.0{sigma}), the local standard of rest velocity along the sightline ({>=}345 km s{sup -1}), and the ratio of the impact parameter to the galaxy optical radius ({<=}5.0), we identify four absorption-line systems that are associated with low-redshift galaxies at high confidence, consisting of two Ca II systems (one of which also shows Na I) and two Na I systems. These four systems arise in blue, {approx}L*{sub r} galaxies. Tables of the 108 absorption systems are provided to facilitate future follow-up.

  7. VizieR Online Data Catalog: QSOs narrow absorption line variability (Hacker+, 2013)

    NASA Astrophysics Data System (ADS)

    Hacker, T. L.; Brunner, R. J.; Lundgren, B. F.; York, D. G.

    2013-06-01

    Catalogues of 2,522 QAL systems and 33 variable NAL systems detected in SDSS DR7 quasars with repeat observations. The object identifiers, position coordinates, and plate-MJD-fibre designations are taken from the SpecObjAll table in the SDSS Catalogue Archive Server (CAS) while the quasar redshifts (zqso) are from Hewett & Wild (2010, Cat. J/MNRAS/405/2302). The absorption system redshift (zabs), system grade, and detected lines are outputs of the York et al. (2013, in. prep.) QAL detection pipeline. Some absorption lines are flagged based on alternate identifications (a), proximity of masked pixels (b), or questionable continuum fits (c). (3 data files).

  8. Absorption Spectra of Broadened Sodium Resonance Lines in Presence of Rare Gases

    SciTech Connect

    Chung, H-K; Shurgalin, M; Babb, J F

    2002-09-11

    The pressure broadening of alkali-metal lines is a fundamental problem with numerous applications. For example, the sodium resonance lines broadened by xenon are important in the production of broad spectra emitted in the HPS (High-Pressure Sodium) lamp and they potentially can be used for gas condition diagnostics. Broadened absorption lines of alkali-metal atoms are prominent in the optical spectra of brown dwarfs and understanding the broadening mechanism will help elucidate the chemical composition and atmospheric properties of those stars. The far-line wing spectra of sodium resonance lines broadened by rare gases are found to exhibit molecular characteristics such as satellites and hence the total absorption coefficients for vapors of Na atoms and perturbing rare gas atoms can be modeled as Na-RG (rare gas) molecular absorption spectra. In this work, using carefully chosen interatomic potentials for Na-RG molecules we carry out quantum-mechanical calculations for reduced absorption coefficients for vapors composed of Na-He, Na-Ar, and Na-Xe. Calculated spectra are compared to available experimental results and the agreement is good in the measured satellite positions and shapes.

  9. Characterization of the oral absorption of several aminopenicillins: determination of intrinsic membrane absorption parameters in the rat intestine in situ

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Amidon, G. L.

    1992-01-01

    The absorption mechanism of several penicillins was characterized using in situ single-pass intestinal perfusion in the rat. The intrinsic membrane parameters were determined using a modified boundary layer model (fitted value +/- S.E.): Jmax* = 11.78 +/- 1.88 mM, Km = 15.80 +/- 2.92 mM, Pm* = 0, Pc* = 0.75 +/- 0.04 for ampicillin; Jmax* = 0.044 +/- 0.018 mM, Km = 0.058 +/- 0.026 mM, Pm* = 0.558 +/- 0.051, Pc* = 0.757 +/- 0.088 for amoxicillin; and Jmax* = 16.30 +/- 3.40 mM, Km = 14.00 +/- 3.30 mM, Pm* = 0, Pc* = 1.14 +/- 0.05 for cyclacillin. All of the aminopenicillins studied demonstrated saturable absorption kinetics as indicated by their concentration-dependent wall permeabilities. Inhibition studies were performed to confirm the existence of a nonpassive absorption mechanism. The intrinsic wall permeability (Pw*) of 0.01 mM ampicillin was significantly lowered by 1 mM amoxicillin and the Pw* of 0.01 mM amoxicillin was reduced by 2 mM cephradine consistent with competitive inhibition.

  10. - and H_2-BROADENED Line Parameters of Carbon Monoxide in the First Overtone Band

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Esteki, Koorosh; Naseri, Hossein; Devi, V. Malathy; Smith, Mary Ann H.; Mantz, Arlan; Ivanov, Sergei V.

    2016-06-01

    In this study we have re-analyzed high-resolution spectra of pure CO and CO broadened by hydrogen recorded in the spectral range of the first overtone band. We have used four different line shapes in the multispectrum analysis (Voigt, speed dependent Voigt, Rautian, and Rautian with speed dependence) and compared the resulting line shape parameters. The line mixing coefficients have been calculated using the Exponential Power Gap and the Energy Corrected Sudden scaling laws. A classical approach was applied to calculate CO line widths in CO-H_2 and CO-CO collisions. The formulas of classical impact theory are used for calculation of dipole absorption half-widths along with exact 3D Hamilton equations for simulation of molecular motion. The calculations utilize Monte Carlo averaging over collision parameters and simple interaction potential (Tipping-Herman + electrostatic). Molecules are treated as rigid rotors. The dependences of CO half-widths on rotational quantum number J≤ 24 are computed and compared with measured data at room temperature. V. Malathy Devi et al., J. Mol. Spectrosc. 228 (2004) 580-592. R. G. Gordon, J. Chem. Phys. 44 (1966) 3083-3089; ibid., 45 (1966) 1649-1655. J.-P. Bouanich and A. Predoi-Cross, J. Molec. Structure 742 (2005) 183-190 A. Predoi-Cross, J.-P. Bouanich, D. Chris Benner, A. D. May, and J. R. Drummond, J. Chem. Phys. 113 (2000) 158-168

  11. Cross section calculations of astrophysical interest. [for theories of absorption and emission lines

    NASA Technical Reports Server (NTRS)

    Gerjuoy, E.

    1974-01-01

    Cross sections are discussed for rotational excitation associated with theories of absorption and emission lines from molecules in space with emphasis on H2CO, CO, and OH by collisions with neutral particles such H, H2, and He. The sensitivity of the Thaddeus equation for the H2CO calculation is examined.

  12. Archival research on absorption lines in violently star-forming galaxies

    NASA Technical Reports Server (NTRS)

    Gallagher, J. S.

    1989-01-01

    A computerized analysis of a starburst model is discussed. The model proposes that the absorption line equivalent width should scale with the level of star forming activity. Archival International Ultraviolet Explorer (IUE) data on IUE spectra of luminous blue galaxies were compared with previous IUE observations of extragalactic HII regions and low luminosity galaxies. The comparisons are summarized and causes for offsets are discussed.

  13. A summary of transition probabilities for atomic absorption lines formed in low-density clouds

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Smith, W. H.

    1973-01-01

    A table of wavelengths, statistical weights, and excitation energies is given for 944 atomic spectral lines in 221 multiplets whose lower energy levels lie below 0.275 eV. Oscillator strengths were adopted for 635 lines in 155 multiplets from the available experimental and theoretical determinations. Radiation damping constants also were derived for most of these lines. This table contains the lines most likely to be observed in absorption in interstellar clouds, circumstellar shells, and the clouds in the direction of quasars where neither the particle density nor the radiation density is high enough to populate the higher levels. All ions of all elements from hydrogen to zinc are included which have resonance lines longward of 912 A, although a number of weaker lines of neutrals and first ions have been omitted.

  14. Candidate Hα emission and absorption line sources in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Wevers, T.; Jonker, P. G.; Nelemans, G.; Torres, M. A. P.; Groot, P. J.; Steeghs, D.; Maccarone, T. J.; Hynes, R. I.; Heinke, C.; Britt, C.

    2017-04-01

    We present a catalogue of candidate Hα emission and absorption line sources and blue objects in the Galactic Bulge Survey (GBS) region. We use a point source catalogue of the GBS fields (two strips of (l × b) = (6° × 1°) centred at b = 1.5° above and below the Galactic Centre), covering the magnitude range 16 ≤ r΄ ≤ 22.5. We utilize (r΄ - i΄, r΄ - Hα) colour-colour diagrams to select Hα emission and absorption line candidates, and also identify blue objects (compared to field stars) using the r΄ - i΄ colour index. We identify 1337 Hα emission line candidates and 336 Hα absorption line candidates. These catalogues likely contain a plethora of sources, ranging from active (binary) stars, early-type emission line objects, cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs) to background active galactic nuclei (AGN). The 389 blue objects we identify are likely systems containing a compact object, such as CVs, planetary nebulae and LMXBs. Hot subluminous dwarfs (sdO/B stars) are also expected to be found as blue outliers. Cross-matching our outliers with the GBS X-ray catalogue yields 16 sources, including 7 (magnetic) CVs and 1 qLMXB candidate among the emission line candidates and 1 background AGN for the absorption line candidates. One of the blue outliers is a high-state AM CVn system. Spectroscopic observations combined with the multiwavelength coverage of this area, including X-ray, ultraviolet and (time-resolved) optical and infrared observations, can be used to further constrain the nature of individual sources.

  15. Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar

    NASA Astrophysics Data System (ADS)

    Sluse, D.; Hutsemékers, D.; Anguita, T.; Braibant, L.; Riaud, P.

    2015-10-01

    Testing the standard Shakura-Sunyaev model of accretion is a challenging task because the central region of quasars where accretion takes place is unresolved with telescopes. The analysis of microlensing in gravitationally lensed quasars is one of the few techniques that can test this model, yielding to the measurement of the size and of temperature profile of the accretion disc. We present spectroscopic observations of the gravitationally lensed broad absorption line quasar H1413+117, which reveal partial microlensing of the continuum emission that appears to originate from two separated regions: a microlensed region, corresponding the compact accretion disc; and a non-microlensed region, more extended and contributing to at least 30% of the total UV-continuum flux. Because this extended continuum is occulted by the broad absorption line clouds, it is not associated with the host galaxy, but rather with light scattered in the neighbourhood of the central engine. We measure the amplitude of microlensing of the compact continuum over the rest-frame wavelength range 1000-7000 Å. Following a Bayesian scheme, we confront our measurements to microlensing simulations of an accretion disc with a temperature varying as T ∝ R-1/ν. We find a most likely source half-light radius of R1/2 = 0.61 × 1016cm (i.e., 0.002 pc) at 0.18 μm, and a most-likely index of ν = 0.4. The standard disc (ν = 4/3) model is not ruled out by our data, and is found within the 95% confidence interval associated with our measurements. We demonstrate that, for H1413+117, the existence of an extended continuum in addition to the disc emission only has a small impact on the inferred disc parameters, and is unlikely to solve the tension between the microlensing source size and standard disc sizes, as previously reported in the literature. Based on observations made with ESO Telescopes at the Paranal Observatory (Chile). ESO program ID: 386.B-0337.Appendices A and B are available in electronic form

  16. Atlas of absorption lines from 0 to 17 900 cm(-1)

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Rothman, L. S.; Rinsland, C. P.; Smith, M. A. H.; Richardson, D. J.; Larsen, J. C.

    1981-01-01

    Plots of absorption line strength versus line position for wavenumbers from 0 to 17,900 cm(-1) are shown for 20 atmospheric gases (H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2, NO2, NH3, HNO3, OH, HF, HCl, HBr, HI, ClO, OCS, H2CO). Also shown are similar plots of lower-state energy values for adsorption lines for the strongly adsorbing atmospheric gases (H2O, CO2, O3, and CH4) for wavenumbers from 0 to 5000 cm(-1).

  17. SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.

    2017-01-01

    Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the intergalactic medium, and they may inject kinetic energy to the host galaxy, influencing its evolution. The traditional method of analyzing BALQSO spectra involves measuring myriad absorption lines, computing the inferred ionic column densities in each feature, and comparing with the output of photonionization models. This method is inefficient and does not handle line blending well. We introduce SimBAL, a spectral synthesis fitting method for BALQSOs, which compares synthetic spectra created from photoionization model results with continuum-normalized observed spectra using Bayesian model calibration. We find that we can obtain an excellent fit to the UV to near-IR spectrum of the low-redshift BALQSO SDSS J0850+4451, including lines from diverse ionization states such as PV, CIII*, SIII, Lyalpha, NV, SiIV, CIV, MgII, and HeI*.

  18. The Connection between Galaxies and Intergalactic Absorption Lines at Redshift 2<~z<~3

    NASA Astrophysics Data System (ADS)

    Adelberger, Kurt L.; Shapley, Alice E.; Steidel, Charles C.; Pettini, Max; Erb, Dawn K.; Reddy, Naveen A.

    2005-08-01

    Absorption-line spectroscopy of 23 background QSOs and numerous background galaxies has let us measure the spatial distribution of metals and neutral hydrogen around 1044 UV-selected galaxies at redshifts 1.8<~z<~3.3. The typical galaxy is surrounded to radii r~40 proper kpc by gas that has a large velocity spread (Δv>260 km s-1) and produces very strong absorption lines (NCIV>>1014 cm-2) in the spectra of background objects. These absorption lines are almost as strong as those produced by a typical galaxy's own interstellar gas. Absorption with an average column density of NCIV~=1014 cm-2 extends out to ~80 kpc, a radius large enough to imply that most strong intergalactic C IV absorption is associated with star-forming galaxies like those in our sample. Our measurement of the galaxy-C IV spatial correlation function shows that even the weakest detectable C IV systems are found in the same regions as galaxies; we find that the cross-correlation length increases with C IV column density and is similar to the galaxy autocorrelation length (r0~4 h-1 Mpc) for NCIV>~1012.5 cm-2. Distortions in the redshift-space galaxy-C IV correlation function on small scales may imply that some of the C IV systems have large peculiar velocities. Four of the five detected O VI absorption systems in our sample lie within 400 proper kpc of a known galaxy. Strong Lyα absorption is produced by the intergalactic gas within 1 h-1 comoving Mpc of most galaxies, but for a significant minority (~1/3) the absorption is weak or absent. This is not observed in smooth-particle hydrodynamic simulations that omit the effects of ``feedback'' from galaxy formation. We were unable to identify any statistically significant differences in age, dust reddening, environment, or kinematics between galaxies with weak nearby H I absorption and the rest, although galaxies with weak absorption may have higher star formation rates. Galaxies near intergalactic C IV systems appear to reside in relatively dense

  19. Absorption line profiles in a companion spectrum of a mass losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1990-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  20. THE COS-HALOS SURVEY: AN EMPIRICAL DESCRIPTION OF METAL-LINE ABSORPTION IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM

    SciTech Connect

    Werk, Jessica K.; Prochaska, J. Xavier; Tripp, Todd M.; O'Meara, John M.; Peeples, Molly S.

    2013-02-15

    We present the equivalent width and column density measurements for low and intermediate ionization states of the circumgalactic medium (CGM) surrounding 44 low-z, L Almost-Equal-To L* galaxies drawn from the COS-Halos survey. These measurements are derived from far-UV transitions observed in HST/COS and Keck/HIRES spectra of background quasars within an impact parameter R < 160 kpc to the targeted galaxies. The data show significant metal-line absorption for 33 of the 44 galaxies, including quiescent systems, revealing the common occurrence of a cool (T Almost-Equal-To 10{sup 4}-10{sup 5} K), metal-enriched CGM. The detection rates and column densities derived for these metal lines decrease with increasing impact parameter, a trend we interpret as a declining metal surface density profile for the CGM. A comparison of the relative column densities of adjacent ionization states indicates that the gas is predominantly ionized. The large surface density in metals demands a large reservoir of metals and gas in the cool CGM (very conservatively, M {sup cool} {sub CGM} > 10{sup 9} M {sub Sun }), which likely traces a distinct density and/or temperature regime from the highly ionized CGM traced by O{sup +5} absorption. The large dispersion in absorption strengths (including non-detections) suggests that the cool CGM traces a wide range of densities or a mix of local ionizing conditions. Lastly, the kinematics inferred from the metal-line profiles are consistent with the cool CGM being bound to the dark matter halos hosting the galaxies; this gas may serve as fuel for future star formation. Future work will leverage this data set to provide estimates on the mass, metallicity, dynamics, and origin of the cool CGM in low-z, L* galaxies.

  1. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  2. Multiple Velocity Components in the CIV Absorption Line of NGC5548

    NASA Astrophysics Data System (ADS)

    Mathur, S.; Elvis, M.; Wilkes, B. J.

    1998-12-01

    The bright, variable, Seyfert 1 galaxy NGC 5548 has been extensively studied at many wavelengths. It has been a target of reverberation mapping experiments in the optical and UV (Peterson et al. 1992, Clavel et al. 1991, Korista et al. 1995). These have led to the accurate determination of the physical size of the BELR. The UV spectrum also shows absorption lines (Shull & Sachs 1993, Mathur, Elvis & Wilkes 1995 (MEW95)). Recently, based on ASCA and HST FOS data, MEW95 showed that the ionizaed X-ray and UV absorption in NGC5548 is likely to originate in the same material. We have now obtained high resolution GHRS spectrum around the CIV line. We find that the absorption line splits into multiple velocity components. The X-ray absorber would be associated with one of these components. We also have a tentative evidence for inflow based on the redshifted absorption component. This is in accord with the radial infall in NGC 5548 found by Done & Krolik (1996) based on the kinematic model of the BELR.

  3. The Herbig AE star AB AUR - absorption along the line of sight and chromospheric emission

    NASA Astrophysics Data System (ADS)

    Felenbok, P.; Praderie, F.; Talavera, A.

    1983-11-01

    The H-alpha, He I 5876 A, Na I 5890 A, Ca II IR triplet, and P14-P16 Paschen lines of AB Aur are all brighter than the nearby continuum. The emission lines are examined with regard to their origin as either recombination or chromospheric emission. While He I and H-alpha could be formed simultaneously by recombination under certain circumstances, a deep chromosphere would account for He I 5876, for the Paschen lines in emission, and perhaps even for the Ca II IR triplet in emission. A deep chromosphere would also explain why higher Balmer lines are in absorption and why the Ca II resonance lines have only an autoreversed emission core, despite not being fully in emission.

  4. Selection of the optimal combination of water vapor absorption lines for detection of temperature in combustion zones of mixing supersonic gas flows by diode laser absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mironenko, V. R.; Kuritsyn, Yu. A.; Bolshov, M. A.; Liger, V. V.

    2016-12-01

    Determination of a gas medium temperature by diode laser absorption spectrometry (DLAS) is based on the measurement of integral intensities of the absorption lines of a test molecule (generally water vapor molecule). In case of local thermodynamic equilibrium temperature is inferred from the ratio of the integral intensities of two lines with different low energy levels. For the total gas pressure above 1 atm the absorption lines are broadened and one cannot find isolated well resolved water vapor absorption lines within relatively narrow spectral interval of fast diode laser (DL) tuning range (about 3 cm-1). For diagnostics of a gas object in the case of high temperature and pressure DLAS technique can be realized with two diode lasers working in different spectral regions with strong absorption lines. In such situation the criteria of the optimal line selection differs significantly from the case of narrow lines. These criteria are discussed in our work. The software for selection the optimal spectral regions using the HITRAN-2012 and HITEMP data bases is developed. The program selects spectral regions of DL tuning, minimizing the error of temperature determination δT/T, basing on the attainable experimental error of line intensity measurement δS. Two combinations of optimal spectral regions were selected - (1.392 & 1.343 μm) and (1.392 & 1.339 μm). Different algorithms of experimental data processing are discussed.

  5. [Laser induced breakdown spectra of coal sample and self-absorption of the spectral line].

    PubMed

    Zhang, Gui-yin; Ji, Hui; Jin, Yi-dong

    2014-12-01

    The LIBS of one kind of household fuel coal was obtained with the first harmonic output 532 nm of an Nd·YAG laser as radiation source. With the assignment of the spectral lines, it was found that besides the elements C, Si, Mg, Fe, Al, Ca, Ti, Na and K, which are reported to be contained in coal, the presented sample also contains trace elements, such as Cd, Co, Hf, Ir, Li, Mn, Ni, Rb, Sr, V, W, Zn, Zr etc, but the spectral lines corresponding to O and H elements did not appear in the spectra. This is owing to the facts that the transition probability of H and O atoms is small and the energy of the upper level for transition is higher. The results of measurement also show that the intensity of spectral line increases with the laser pulse energy and self-absorption of the spectral lines K766.493 nm and K769.921 nm will appear to some extent. Increasing laser energy further will make self-absorption more obvious. The presence of self-absorption can be attributed to two factors. One is the higher transition rate of K atoms, and the other is that the increase in laser intensity induces the enhancement of the particle number density in the plasma.

  6. Line by Line Spectral Parameters in the 4ν_3 Spectral Region of Methane

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; O'Brien, J. J.; Shaji, S.; Spickler, P. T.; Houck, C. P.; Coakley, J. A.; Dolph, J.; Rankin, K.

    2012-06-01

    The near infrared bands of methane were first observed in the outer planets and Titan where atmospheric ray paths are long. The spectrum is complex, and long absorption paths in the laboratory are difficult to cool to outer solar system temperatures. At room temperature, many significant spectral lines appear per Doppler width. The band models generally used in the 890 nm spectral region of methane do not provide transmissions that are multiplicative, so scattering and inhomogeneous atmospheres cannot be properly treated using this approach. The intracavity laser spectrometer at the University of Missouri-St. Louis was used to obtain low temperature (99-161K), low pressure (0.12-7.13 Torr), long path (3.14-5.65 km) and high resolution ( 0.01 cm-1 HWHM) spectra of methane covering the entire 890nm feature (10925-11500 cm-1), the deepest band in the CCD spectral region. At these temperatures the Doppler width is 0.01 cm-1 and the spectral lines originating from levels higher than J"=11 and excited vibrational states are not visible. The result is a dense, but manageable spectrum from which over 11,200 line positions, intensities and lower state energies are derived on a line by line basis by the College of William and Mary multispectrum nonlinear least squares fitting program Simulations of the methane spectrum for outer planet atmospheres using our positions, intensities and lower state energies reveal a surprising amount of spectral structure at high resolution. This structure carries a great deal of atmospheric information Support for the work at William and Mary was provided by NASA through grant NNX08AF06G. Support for the work at UM-St. Louis provided by NASA through grant NAG5-12013, from NSF through grant CHE-0213356 and by the University of Missouri Research Board. Partial support at Bridgewater College was provided by its Martin Science Research Institute and from an AAS Small Research Grant. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and

  7. The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines

    NASA Technical Reports Server (NTRS)

    Markowitz, Alex; Reeves, James N.; Miniutti, Giovanni; Serlemitsos, Peter; Kunieda, Hideyo; Taqoob, Tahir; Fabian, Andrew C.; Fukazawa, Yasushi; Mushotzky, Richard; Okajima, Takashi; Gallo, Luigi; Awaki, Hisamitsu; Griffiths, Richard E.

    2007-01-01

    We present results from a 150 ksec Suzaku observation of the Seyfert 1 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with partial covering by a lowly-ionized absorber with a column density near 5x10(exp 22) cm(exp -2) and with a covering fraction 96-100 percent. Narrow K-shell absorption features due to He- and H-like Fe confirm the presence of a high-ionization absorbing component as well. A broad Fe K(alpha) diskline is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad line. The narrow Fe Ka line at 6.4 keV is resolved, yielding a velocity width commensurate with the optical Broad Line Region. The strength of the Compton reflection hump suggests a contribution mainly from the broad Fe line origin. We include in our model soft band emission lines from He- and H-like ions and radiative recombination lines, consistent with photo-ionization, though a small contribution from collisional ionization is possible.

  8. Dust depletion of Ca and Ti in QSO absorption-line systems

    NASA Astrophysics Data System (ADS)

    Guber, C. R.; Richter, P.

    2016-06-01

    Aims: To explore the role of titanium- and calcium-dust depletion in gas in and around galaxies, we systematically study Ti/Ca abundance ratios in intervening absorption-line systems at low and high redshift. Methods: We investigate high-resolution optical spectra obtained by the UVES instrument at the Very Large Telescope (VLT) and spectroscopically analyze 34 absorption-line systems at z ≤ 0.5 to measure column densities (or limits) for Ca ii and Ti ii. We complement our UVES data set with previously published absorption-line data on Ti/Ca for redshifts up to z ~ 3.8. Our absorber sample contains 110 absorbers including damped Lyman α systems (DLAs), sub-DLAs, and Lyman-Limit systems (LLS). We compare our Ti/Ca findings with results from the Milky Way and the Magellanic Clouds and discuss the properties of Ti/Ca absorbers in the general context of quasar absorption-line systems. Results: Our analysis indicates that there are two distinct populations of absorbers with either high or low Ti/Ca ratios with a separation at [Ti/Ca] ≈ 1. While the calcium-dust depletion in most of the absorbers appears to be severe, the titanium depletions are mild in systems with high Ti/Ca ratios. The derived trend indicates that absorbers with high Ti/Ca ratios have dust-to-gas ratios that are substantially lower than in the Milky Way. We characterize the overall nature of the absorbers by correlating Ti/Ca with other observables (e.g., metallicity, velocity-component structure) and by modeling the ionization properties of singly-ionized Ca and Ti in different environments. Conclusions: We conclude that Ca ii and Ti ii bearing absorption-line systems trace predominantly neutral gas in the disks and inner halo regions of galaxies, where the abundance of Ca and Ti reflects the local metal and dust content of the gas. Our study suggests that the Ti/Ca ratio represents a useful measure for the gas-to-dust ratio and overall metallicity in intervening absorption-line systems.

  9. Measurement of transient gas flow parameters by diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bolshov, M. A.; Kuritsyn, Yu A.; Liger, V. V.; Mironenko, V. R.; Nadezhdinskii, A. I.; Ponurovskii, Ya Ya; Leonov, S. B.; Yarantsev, D. A.

    2015-04-01

    An absorption spectrometer based on diode lasers is developed for measuring two-dimension maps of temperature and water vapour concentration distributions in the combustion zones of two mixing supersonic flows of fuel and oxidiser in the single run regime. The method of measuring parameters of hot combustion zones is based on detection of transient spectra of water vapour absorption. The design of the spectrometer considerably reduces the influence of water vapour absorption along the path of a sensing laser beam outside the burning chamber. The optical scheme is developed, capable of matching measurement results in different runs of mixture burning. A new algorithm is suggested for obtaining information about the mixture temperature by constructing the correlation functions of the experimental spectrum with those simulated from databases. A two-dimensional map of temperature distribution in a test chamber is obtained for the first time under the conditions of plasma-induced combusion of the ethylene - air mixture.

  10. Interstellar Absorption Lines in the Spectrum of the Starburst Galaxy NGC 1705

    NASA Astrophysics Data System (ADS)

    Sahu, M. S.

    1998-09-01

    A Goddard High Resolution Spectrograph archival study of the interstellar absorption lines in the line of sight to the H i-rich, starburst dwarf galaxy NGC 1705 in the 1170 to 1740 Å range at ~120 km s^-1 resolution is presented. The absorption features arising because of photospheric lines are distinctly different from the interstellar lines: the photospheric lines are weak, broad (equivalent widths >1 Å), asymmetric, and centered around the systemic LSR velocity of NGC 1705 (~610 km s^-1). The interstellar lines consist of three relatively narrow components at LSR velocities of -20, 260, and 540 km s^-1, and include absorption by neutral atoms (N i lambda1200 triplet and O i lambda1302), singly ionized atoms (Si ii lambdalambda1190, 1193, 1260, 1304, and 1526, S ii lambda1253, C ii lambda1334, C ii^* lambda1336, Fe ii lambda1608, and Al ii lambda1670), and atoms in higher ionization states (Si iii lambda1206, Si iv lambdalambda1393, 1402, and C iv lambdalambda1548, 1550). The Si iv and C iv absorption features have both interstellar and photospheric contributions. In an earlier study, Sahu & Blades identified the absorption system at -20 km s^-1 with Milky Way disk/halo gas, and the 260 km s^-1 system with a small, isolated high-velocity cloud HVC 487, which is probably associated with Magellanic Stream gas. The 540 km s^-1 absorption system is associated with a kiloparsec-scale expanding, ionized supershell centered on the super-star cluster NGC 1705-1. The analysis presented in this paper consists of (1) a list of all interstellar absorption features with greater than 3 sigma significance and their measured equivalent widths, (2) plots of the lines in the various atomic species together with the results of nonlinear least-squares fit profiles to the observed data, and (3) unpublished 21 cm maps from the Wakker & van Woerden survey showing the large-scale H i distribution in the region near the NGC 1705 sight line and HVC 487. Furthermore, weak N i lambda1200

  11. The Hubble Space Telescope quasar absorption line key project. III - First observational results on Milky Way gas

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Lu, Limin; Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Lockman, Felix J.; Sargent, W. L. W.

    1993-01-01

    Absorption lines found near zero redshift due to Milky Way disk and halo gas in the spectra of 15 quasars observed with the Faint Object Spectrograph (FOS) of the HST at a resolution of about 230 km/s are reported. Results show that Milky Way absorption lines comprise about 44 percent of all absorption lines seen in the first group of Key Project FOS spectra. Milky Way lines were observed for 3C 273 and H1821 + 643. Limits to the Mg-to-H abundance ratio obtained for very high velocity Mg II absorption detections imply gas-phase Mg abundances for the very high velocity gas ranging from more than 0.059 to more than 0.32 times the solar abundance. In all cases where high-velocity H I emission is seen, corresponding high-velocity metal-line absorption is observed.

  12. Absorption lines from magnetically driven winds in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Chakravorty, S.; Petrucci, P.-O.; Ferreira, J.; Henri, G.; Belmont, R.; Clavel, M.; Corbel, S.; Rodriguez, J.; Coriat, M.; Drappeau, S.; Malzac, J.

    2016-05-01

    Context. High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines suggesting the presence of outflowing winds. Furthermore, observations show that the disk winds are equatorial and they occur in the Softer (disk dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. Aims: We want to test whether the self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter. This mass loading is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Thus, the physical properties of the outflow depend on and are controlled by the global structure of the disk. Methods: We studied different MHD solutions characterized by different values of the disk aspect ratio (ɛ) and the ejection efficiency (p). We also generate two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be either from dissipation of energy due to MHD turbulence in the disk or from illumination of the disk surface. Warm solutions can have large (>0.1) values of p, which would imply larger wind mass loading at the base of the outflow. We use each of these MHD solutions to predict the physical parameters (distance, density, velocity, magnetic field, etc.) of an outflow. Motivated by observational results, we have put limits on the ionization parameter (ξ), column density, and timescales. Further constraints were derived for the allowed values of ξ from thermodynamic instability considerations, particularly for the Hard SED. These physical constraints were imposed on each of these outflows to select regions within it, which are consistent with the observed winds. Results: The cold MHD solutions are found to be

  13. Line Positions, Intensities And Line Shape Parameters Of PH3 Near 4.4 µm

    NASA Astrophysics Data System (ADS)

    Venkataraman, Malathy; Benner, D. C.; Kleiner, I.; Brown, L. R.; Sams, R. L.; Fletcher, L. N.

    2012-10-01

    Accurate knowledge of spectral line parameters in the 2000 to 2400 cm-1 region of PH3 is important for the CASSINI/VIMS exploration of dynamics and chemistry of Saturn and for the correct interpretation of future Jovian observations by JUNO and ESA’s newly-selected mission JUICE. Since the available intensity information for phosphine is inconsistent, we measured line positions and intensities for over 4000 individual transitions in the 2ν2, ν2+ν4, 2ν4, ν1 and the ν3 bands from analyzing high-resolution, high S/N spectra recorded at room temperature using two Fourier transform spectrometers (FTS); the Bruker IFS 125 HR FTS at PNNL and the Kitt Peak FTS at the National Solar Observatory in Arizona. In addition to line positions and intensities, self-broadened half width and self-induced pressure-shift coefficients were also measured for about 800 transitions for the various bands. The strong Coriolis and other types of interactions occurring among the various vibrational levels result in a large number of forbidden transitions as well as cause A+A- splittings in transitions with K″ that are multiples of 3. Line mixing was detected between several A+A- pairs of transitions; and self- line mixing coefficients were measured for several such pairs of transitions by applying the off-diagonal relaxation matrix formalism of Levy et al.1 A multispectrum nonlinear least squares technique2 employing a non-Voigt line shape including line mixing and speed dependence was used in fitting all the spectra simultaneously. Present results are compared with other reported values. This research is supported by NASA’s Outer Planets Research Program. References [1] A. Lévy et al., In “Spectroscopy of the Earth’s Atmosphere and Interstellar Medium”, Ed. K, Narahari Rao and A. Weber, Boston, Academic Press; p, 261-337 (1992). [2] D. C. Benner et al., J Quant. Spectrosc. Radiat. Transfer 53, 705, 1995.

  14. Digital signal processor-based high-precision on-line Voigt lineshape fitting for direct absorption spectroscopy.

    PubMed

    Xu, Lijun; Liu, Chang; Zheng, Deyan; Cao, Zhang; Cai, Weiwei

    2014-12-01

    To realize on-line high-accuracy measurement in direct absorption spectroscopy (DAS), a system-on-chip, high-precision digital signal processor-based on-line Voigt lineshape fitting implementation is introduced in this paper. Given that the Voigt lineshape is determined by the Gauss full width at half maximum (FWHM) and Lorentz FWHM, a look-up table, which covers a range of combinations of both, is first built to achieve rapid and accurate calculation of Voigt lineshape. With the look-up table and raw absorbance data in hand, Gauss-Newton nonlinear fitting module is implemented to obtain the parameters including both the Gauss and Lorentz FWHMs, which can be used to calculate the integrated absorbance. To realize the proposed method in hardware, a digital signal processor (DSP) is adopted to fit the Voigt lineshape in a real-time DAS measurement system. In experiment, temperature and H2O concentration of a flat flame are recovered from the transitions of 7444.36 cm(-1) and 7185.6 cm(-1) by the DSP-based on-line Voigt lineshape fitting and on-line integral of the raw absorbance, respectively. The results show that the proposed method can not only fit the Voigt lineshape on-line but also improve the measurement accuracy compared with those obtained from the direct integral of the raw absorbance.

  15. High-resolution optical and ultraviolet absorption-line studies of interstellar gas

    NASA Technical Reports Server (NTRS)

    Cowie, Lennox L.; Songaila, Antoinette

    1986-01-01

    Recent progress in the characterization of the interstellar medium (ISM) by means of optical and UV spectral data is summarized. The gas is studied by focusing on background stars whose spectra can be accurately modeled to provide the light source for the absorption-line scans. The capabilities of earth- and space-based instruments which have been and are used for the surveys are delineated. The distributions of diffuse gas densities and characteristics of the cold, warm and hot gas in the Galaxy are described in terms of the elemental abundances, kinetics and distributions of the gas. Particular note is taken of gas in the solar neighborhood and around SNR, and of absorption-line data of cosmological significance.

  16. Discovery of an X-ray Violently Variable Broad Absorption Line Quasar

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Gutierrez, Carlos M.; Punsly, Brian; Chevallier, Loic; Goncalves, Anabela C.

    2006-01-01

    In this letter, we report on a quasar that is violently variable in the X-rays, XVV. It is also a broad absorption line quasar (BALQSO) that exhibits both high ionization and low ionization UV absorption lines (LoBALQSO). It is very luminous in the X-rays (approximately 10(exp 46) ergs s(sup -l) over the entire X-ray band). Surprisingly, this does not over ionize the LoBAL outflow. The X-rays vary by a factor of two within minutes in the quasar rest frame, which is shorter than 1/30 of the light travel time across a scale length equal to the black hole radius. We concluded that the X-rays are produced in a relativistic jet beamed toward earth in which variations in the Doppler enhancement produce the XVV behavior.

  17. Locking distributed feedback laser diode frequency to gas absorption lines based on genetic programming

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Li, Guanghui; Fang, Zishan; Zhai, Yueyang; Li, Xinyi; Liu, Feng

    2017-01-01

    Distributed feedback laser is widely used as the pump beam and probe beam in atomic physical and quantum experiments. As the frequency stability is a vital characteristic to the laser diode in these experiments, a saturated absorption frequency stabilization method assisted with the function of current and frequency is proposed. The relationship between the current and frequency is acquired based on the genetic programming (GP) algorithm. To verify the feasibility of the method, the frequency stabilization system is comprised of two parts that are modeling the relation between the current and frequency by GP and processing the saturated absorption signal. The results of the frequency stabilization experiment proved that this method can not only narrow the frequency searching range near the atomic line center but also compensate for the phase delay between the saturated absorption peak and the zero crossing point of the differential error signal. The reduced phase delay increases the locking probability and makes the wavelength drift only 0.015 pm/h, which converted to frequency drift is 7 MHz/h after frequency locking on the Rb absorption line.

  18. The Effect of Processing Parameters on the Microwave Absorption by Polyaniline/PMMA Composites

    DTIC Science & Technology

    2005-01-01

    conductivity σdc dc conductivity σmw microwave conductivity PAni Polyaniline PMMA poly(methyl methacrylate) pTsA para-toluene sulfonic acid RAM radar...chemicals and was distilled in vacuo prior to usage. para-toluene sulfonic acid (pTsA, 98 %), ammonium peroxydisulfate (APS) were used as purchased...Defence R&D Canada – Atlantic DEFENCE DÉFENSE & The Effect of Processing Parameters on the Microwave Absorption by Polyaniline /PMMA Composites Darren

  19. The VLBI structure of radio-loud Broad Absorption Line quasars

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Jiang, D. R.; Gu, M.

    2016-02-01

    The nature and origin of Broad Absorption Line (BAL) quasars and their relationship to non-BAL quasars are an open question. The BAL quasars are probably normal quasars seen along a particular line of sight. Alternatively, they are young or recently refueled. The high resolution radio morphology of BAL quasars is very important to understand the radio properties of BAL quasars. We present VLBA observations at L and C bands for a sample of BAL quasars. The observations will help us to explore the VLBI radio properties, and distinguish the present models of explaining BAL phenomena.

  20. Wavelength Locking to CO2 Absorption Line-Center for 2-Micron Pulsed IPDA Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong

    2016-01-01

    An airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-micron CW (Continuous Wave) laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nanometers, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.

  1. Surprises from a Deep ASCA Spectrum of the Broad Absorption Line Quasar PHL 5200

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Matt, G.; Green, P. J.; Elvis, M.; Singh, K. P.

    2002-01-01

    We present a deep (approx. 85 ks) ASCA observation of the prototype broad absorption line quasar (BALQSO) PHL 5200. This is the best X-ray spectrum of a BALQSO yet. We find the following: (1) The source is not intrinsically X-ray weak. (2) The line-of-sight absorption is very strong, with N(sub H) = 5 x 10(exp 23)/sq cm. (3) The absorber does not cover the source completely; the covering fraction is approx. 90%. This is consistent with the large optical polarization observed in this source, implying multiple lines of sight. The most surprising result of this observation is that (4) the spectrum of this BALQSO is not exactly similar to other radio-quiet quasars. The hard X-ray spectrum of PHL 5200 is steep, with the power-law spectral index alpha approx. 1.5. This is similar to the steepest hard X-ray slopes observed so far. At low redshifts, such steep slopes are observed in narrow-line Seyfert 1 (NLS1) galaxies, believed to be accreting at a high Eddington rate. This observation strengthens the analogy between BALQSOs and NLS1 galaxies and supports the hypothesis that BALQSOs represent an early evolutionary state of quasars. It is well accepted that the orientation to the line of sight determines the appearance of a quasar: age seems to play a significant role as well.

  2. VizieR Online Data Catalog: HeI* in broad absorption line QSOs (Liu+, 2015)

    NASA Astrophysics Data System (ADS)

    Liu, W.-J.; Zhou, H.; Ji, T.; Yuan, W.; Wang, T.-G.; Jian, G.; Shi, X.; Zhang, S.; Jiang, P.; Shu, X.; Wang, H.; Wang, S.-F.; Sun, L.; Yang, C.; Liu, B.; Zhao, W.

    2015-04-01

    Neutral helium multiplets, HeI*λλ3189, 3889, 10830, are very useful diagnostics for the geometry and physical conditions of the absorbing gas in quasars. So far only a handful of HeI* detections have been reported. Using a newly developed method, we detected the HeI*λ3889 absorption line in 101 sources of a well-defined sample of 285 MgII broad absorption line (BAL) quasars selected from SDSS DR5. This has increased the number of HeI* BAL quasars by more than one order of magnitude. We further detected HeI*λ3189 in 50% (52/101) of the quasars in the sample. The detection fraction of HeI* BALs in MgII BAL quasars is ~35% as a whole, and it increases dramatically with increasing spectral signal-to-noise ratio (S/N), from ~18% at S/N<=10 to ~93% at S/N>=35. This suggests that HeI* BALs could be detected in most MgII LoBAL quasars, provided the spectra S/N is high enough. Such a surprisingly high HeI* BAL fraction is actually predicted from photoionization calculations based on a simple BAL model. The result indicates that HeI* absorption lines can be used to search for BAL quasars at low z, which cannot be identified by ground-based optical spectroscopic surveys with commonly seen UV absorption lines. Using HeI*λ3889, we discovered 19 BAL quasars at z<0.3 from the available SDSS spectral database. The fraction of HeI* BAL quasars is similar to that of LoBAL objects. (7 data files).

  3. Simulation studies of multi-line line-of-sight tunable-diode-laser absorption spectroscopy performance in measuring temperature probability distribution function

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Le; Liu, Jian-Guo; Kan, Rui-Feng; Xu, Zhen-Yu

    2014-12-01

    Line-of-sight tunable-diode-laser absorption spectroscopy (LOS-TDLAS) with multiple absorption lines is introduced for non-uniform temperature measurement. Temperature binning method combined with Gauss—Seidel iteration method is used to measure temperature probability distribution function (PDF) along the line-of-sight (LOS). Through 100 simulated measurements, the variation of measurement accuracy is investigated with the number of absorption lines, the number of temperature bins and the magnitude of temperature non-uniformity. A field model with 2-T temperature distribution and 15 well-selected absorption lines are used for the simulation study. The Gauss—Seidel iteration method is discussed for its reliability. The investigation result about the variation of measurement accuracy with the number of temperature bins is different from the previous research results.

  4. [The development of acetylene on-line monitoring technology based on laser absorption spectrum].

    PubMed

    He, Ying; Zhang, Yu-jun; Kan, Rui-feng; Xia, Hui; Wang, Min; Cui, Xiao-juan; Chen, Jiu-ying; Chen, Dong; Liu, Wen-qing; Liu, Jian-guo

    2008-10-01

    As one of the materials in organic chemical industry, acetylene has been used in many aspects of chemical industry. But acetylene is a very dangerous inflammable and explosive gas, so it needs in-situ monitoring during industrial storage and production. Tunable diode laser absorption spectroscopy (TDLAS) technology has been widely used in atmospheric trace gases detection, because it has a lot of advantageous characteristics, such as high sensitivity, good selectivity, and rapid time response. The distribution characteristics of absorption lines of acetylene in near infrared band were studied, and then the system designing scheme of acetylene on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail. Moreover, the system of experiment measurement was set up and the method of signal detection and the algorithm of concentration inversion were studied. In addition, the sample cell with a path length of 10 cm, and the acetylene of different known concentrations were measured. As a result, the detection limit obtained reached 1.46 cm3 x m(-3). Finally the dynamic detection experiment was carried out, and the measurement result is stable and reliable, so the design of the system is practicable through experiment analysis. On-line acetylene leakage monitoring system was developed based on the experiment, and it is suitable for giving a leakage alarm of acetylene during its storage, transportation and use.

  5. Line parameters for CO2 broadening in the ν2 band of HD16O

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Gamache, Robert R.; Renaud, Candice L.; Smith, Mary Ann H.; Mantz, Arlan W.; Villanueva, Geronimo L.

    2017-01-01

    CO2-rich planetary atmospheres such as those of Mars and Venus require accurate knowledge of CO2 broadened HDO half-width coefficients and their temperature dependence exponents for reliable abundance determination. Although a few calculated line lists have recently been published on HDO-CO2 line shapes and their temperature dependences, laboratory measurements of those parameters are thus far non-existent. In this work, we report the first measurements of CO2-broadened half-width and pressure-shift coefficients and their temperature dependences for over 220 transitions in the ν2 band. First measurements of self-broadened half-width and self-shift coefficients at room temperature are also obtained for majority of these transitions. In addition, the first experimental determination of collisional line mixing has been reported for 11 transition pairs for HDO-CO2 and HDO-HDO systems. These results were obtained by analyzing ten high-resolution spectra of HDO and HDO-CO2 mixtures at various sample temperatures and pressures recorded with the Bruker IFS-125HR Fourier transform spectrometer at the Jet Propulsion Laboratory (JPL). Two coolable absorption cells with path lengths of 20.38 cm and 20.941 m were used to record the spectra. The various line parameters were retrieved by fitting all ten spectra simultaneously using a multispectrum nonlinear least squares fitting algorithm. The HDO transitions in the 1100-4100 cm-1 range were extracted from the HITRAN2012 database. For the ν2 and 2ν2 -ν2 bands there were 2245 and 435 transitions, respectively. Modified Complex Robert-Bonamy formalism (MCRB) calculations were made for the half-width coefficients, their temperature dependence and the pressure shift coefficients for the HDO-CO2 and HDO-HDO collision systems. MCRB calculations are compared with the measured values.

  6. - and Air-Broadened Line Shape Parameters of 12CH_4 : 4500-4620 CM-1

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda; Crawford, Timothy J.; Smith, Mary Ann H.; Mantz, Arlan; Predoi-Cross, Adriana

    2014-06-01

    Accurate knowledge of spectral line shape parameters is important for infrared transmission and radiance calculations in the terrestrial atmosphere. We report the self- and air-broadened Lorentz widths, shifts and line mixing coefficients along with their temperature dependences for methane absorption lines in the 2.2 μm spectral region. For this, we obtained a series of high-resolution, high S/N spectra of 99.99% 12C-enriched samples of pure methane and its dilute mixtures in dry air at cold temperatures down to 150 K using the Bruker IFS 125HR Fourier transform spectrometer at JPL. The coolable absorption cell had an optical path of 20.38 cm and was specially built to reside inside the sample compartment of the Bruker FTS. The 13 spectra used in the analysis consisted of seven pure 12CH_4 spectra at pressures from 4.5 to 169 Torr and six air-broadened spectra with total sample pressures of 113-300 Torr and methane volume mixing ratios between 4 and 9.7%. These 13 spectra were fit simultaneously using the multispectrum least-squares fitting technique. The results will be compared to existing values reported in the literature. K. Sung, A. W. Mantz, L. R. Brown, et al., J. Mol. Spectrosc., 162 (2010) 124-134. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. Atkins, JQSRT, 53 (1995) 705-721. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  7. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    SciTech Connect

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10{sup –5}, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10{sup –5} in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10{sup –5}, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10{sup –5}. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10{sup –5}. We conclude that spectroscopic measurements of

  8. Constraining the Variation of the Fine-structure Constant with Observations of Narrow Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10-5, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (- 0.59 ± 0.55) × 10-5 in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10-5, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (- 0.47 ± 0.53) × 10-5. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (- 0.01 ± 0.26) × 10-5. We conclude that spectroscopic measurements of quasar absorption lines are not yet capable of

  9. WAVELENGTH MEASUREMENTS OF K TRANSITIONS OF OXYGEN, NEON, AND MAGNESIUM WITH X-RAY ABSORPTION LINES

    SciTech Connect

    Liao Jinyuan; Zhang Shuangnan; Yao Yangsen

    2013-09-10

    Accurate atomic transition data are important in many astronomical research areas, especially for studies of line spectroscopy. Whereas transition data of He-like and H-like ions (i.e., ions in high-charge states) have been accurately calculated, the corresponding data of K transitions of neutral or low-ionized metal elements are still very uncertain. Spectroscopy of absorption lines produced in the interstellar medium (ISM) has been proven to be an effective way to measure the central wavelengths of these atomic transitions. In this work, we analyze 36 Chandra High Energy Transmission Grating observations to search for and measure the ISM absorption lines along sight lines to 11 low-mass X-ray binaries. We correct the Galactic rotation velocity to the rest frame for every observation and then use two different methods to merge all the corrected spectra to a co-added spectrum. However, the co-added spectra obtained by this method exhibit biases, toward to either observations with high counts or lines with high signal-to-noise ratios. We do a Bayesian analysis of several significantly detected lines to obtain the systematic uncertainty and the bias correction for other lines. Compared to previous studies, our results improve the wavelength accuracy by a factor of two to five and significantly reduce the systematic uncertainties and biases. Several weak transitions (e.g., 1s-2p of Mg IV and Mg V; 1s-3p of Mg III and Mg V) are also detected for the first time, albeit with low significance; future observations with improved accuracy are required to confirm these detections.

  10. Absorption Line Analysis to Interprete and Constrain Cosmological Simulations of Galaxy Evolution with Feedback

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher

    2011-10-01

    The mammoth challenge for contemporary studies of galaxy formation and evolution are to establish detailed models in the cosmological context in which both the few parsec scale physics within galaxies are self-consistently unified and made consistent with the observed universe of galaxies. They key diagnostics reside with the gas physics, which dictate virtually every aspect of galaxy formation and evolution. The small scale physics includes stellar feedback, gas cooling, heating, and advection and the multiphase interstellar medium; the large scale physics includes intergalactic accretion, local merging, effects of supernovae driven winds, and the development of extended metal-enriched gas halos.Absorption line data have historically proven to be {and shall in the future} virtually the most powerful tool for understanding gas physics on all spatial scales over the majority of the age of the universe- the key to success. Simply stated, absorption lines are one of astronomy's most powerful observational windows on the universe {galaxy formation, galaxy winds, IGM metal enrichment, etc.}. The high quality and vast numbers of absorption line data {obtained with HST and FUSE} probe a broad range of gas structures {ISM, HVCs, halos, IGM} over the full cosmic span when galaxies are actively evolving.We propose to use LCDM hydrodynamic cosmological simulations employing a Eulerian Gasdynamics plus N-body Adaptive Refinement Tree {ART} code to develop and refine our understanding of stellar feedback physics and its role in governing the gas physics that regulates the evolution of galaxies and the IGM. We aim to substantially progress our understanding of all possible gas phases embedded within and extending far from galaxies. Our methodology is to apply a series of quantitative observational constraints from absorption line systems to better understand extended galaxy halos and the influence of the cosmological environment of the simulated galaxies: {1} galaxy halos

  11. UNSHIFTED METASTABLE He I* MINI-BROAD ABSORPTION LINE SYSTEM IN THE NARROW-LINE TYPE 1 QUASAR SDSS J080248.18+551328.9

    SciTech Connect

    Ji, Tuo; Zhou, Hongyan; Jiang, Peng; Wang, Tinggui; Wang, Huiyuan; Liu, Wenjuan; Yang, Chenwei; Ge, Jian; Hamann, Fred; Komossa, S.; Yuan, Weimin; Zuther, Jens; Lu, Honglin; Zuo, Wenwen

    2015-02-10

    We report the identification of an unusual absorption-line system in the quasar SDSS J080248.18+551328.9 and present a detailed study of the system, incorporating follow-up optical and near-IR spectroscopy. A few tens of absorption lines are detected, including He I*, Fe II*, and Ni II*, which arise from metastable or excited levels, as well as resonant lines in Mg I, Mg II, Fe II, Mn II, and Ca II. All of the isolated absorption lines show the same profile of width Δv ∼ 1500 km s{sup –1} centered at a common redshift as that of the quasar emission lines, such as [O II], [S II], and hydrogen Paschen and Balmer series. With narrow Balmer lines, strong optical Fe II multiplets, and weak [O III] doublets, its emission-line spectrum is typical for that of a narrow-line Seyfert 1 galaxy (NLS1). We have derived reliable measurements of the gas-phase column densities of the absorbing ions/levels. Photoionization modeling indicates that the absorber has a density of n {sub H} ∼ (1.0-2.5) × 10{sup 5} cm{sup –3} and a column density of N {sub H} ∼ (1.0-3.2) × 10{sup 21} cm{sup –2} and is located at R ∼100-250 pc from the central supermassive black hole. The location of the absorber, the symmetric profile of the absorption lines, and the coincidence of the absorption- and emission-line centroid jointly suggest that the absorption gas originates from the host galaxy and is plausibly accelerated by stellar processes, such as stellar winds and/or supernova explosions. The implications for the detection of such a peculiar absorption-line system in an NLS1 are discussed in the context of coevolution between supermassive black hole growth and host galaxy buildup.

  12. Formation of a Giant Galactic Gaseous Halo: Metal-Absorption Lines and High-Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Li, Fan

    1992-04-01

    A Galactic gaseous halo formed through the interstellar disk-halo connection is simulated by means of a two-dimensional axisymmetric hydrodynamic code based upon the chimney model of the interstellar medium, a new version of the galactic fountain. Galactic rotation, heating processes by diffuse UV flux, and radiative cooling processes are taken into account. The resulting gaseous halo can be divided into three categories, i.e., wind-type halo, bound-type halo, and cooled-type halo. In this way, we try to reproduce the column densities of C IV, N V, O VI, and Si IV in the observed absorption lines of halo stars. Assuming that the radiatively cooled halo gas condenses into clouds due to thermal instabilities, we can calculate their distribution and ballistic motions in the Galactic gravitational field. These correspond to the high- and intermediate-velocity clouds observed at high Galactic latitudes. We find that a cooled-type halo with a gas temperature between 5 X 10^5 and 10^6 K and a density between 10^-3 and 10^-2 cm^-3 at the disk-halo interface can reproduce the observational facts about our Galaxy. Supposing that the metal-absorption-line systems of QSOs arise from the halos of intervening galaxies formed by similar processes, we calculate features of the Ca II, Mg II, C IV, and Si IV absorption lines in various stages of galactic evolution. We conclude that C IV systems which are greater than 50 kpc in size correspond to the wind-type halo. On the other hand, Mg II and Ca II systems can only be detected in a very restricted region ( Metaxa, SMALL FAINT CLUSTERS IN THE LMC This is a short review of the main results of my Ph.D. thesis concerning some important problems on the dynamical properties of the LMC star clusters. The topic of this thesis was to find and study the dynamical paramters (tidal radius r_t core radius r_c concentration parameters log (r_t/r_c), and total mass M) for a large sample of small LMC clusters and to define their location in the

  13. Made-to-measure galaxy modelling utilising absorption line strength data

    NASA Astrophysics Data System (ADS)

    Long, R. J.

    2016-12-01

    We enhance the Syer & Tremaine made-to-measure (M2M) particle method of stellar dynamical modelling to model simultaneously both kinematic data and absorption line strength data, thus creating a ‘chemo-M2M’ modelling scheme. We apply the enhanced method to four galaxies (NGC 1248, NGC 3838, NGC 4452, NGC 4551) observed using the SAURON integral-field spectrograph as part of the ATLAS3D programme. We are able to reproduce successfully the 2D line strength data achieving mean χ2 per bin values of ≈ 1 with > 95% of particles having converged weights. Because M2M uses a 3D particle system, we are also able to examine the underlying 3D line strength distributions. The extent to which these distributions are plausible representations of real galaxies requires further consideration. Overall, we consider the modelling exercise to be a promising first step in developing a ‘chemo-M2M’ modelling system and in understanding some of the issues to be addressed. While the made-to-measure techniques developed have been applied to absorption line strength data, they are in fact general and may be of value in modelling other aspects of galaxies.

  14. Composite Spectra of Broad Absorption Line Quasars in SDSS-III BOSS

    NASA Astrophysics Data System (ADS)

    Herbst, Hanna; Hamann, Fred; Paris, Isabelle; Capellupo, Daniel M.

    2017-01-01

    We present preliminary results from a study of broad absorption line (BAL) quasars in the SDSS-III BOSS survey. We’re particularly interested in BALs because they arise from quasar outflows, which may be a source of feedback to the host galaxy. We analyze median composite spectra for BOSS QSOs in the redshift range 2.1 to 3.4 sorted by the strength of the BAL absorption troughs, parameterized by the Balnicity Index (BI), to study trends in the emission and absorption properties of BAL quasars. The wavelength coverage and high number of quasars observed in the BOSS survey allow us to examine BALs in the Lyman forest. Our main preliminary results when sorting the quasars by BI are 1) doublet absorption lines such as P V 1128A show a 1:1 ratio across all BI, indicating large column densities at all BI. This suggests that weaker BAL troughs result from smaller covering fractions rather than lower column densities. 2) The He II emission line, which is a measure of the far-UV/near-UV hardness of the ionizing continuum, is weaker in the larger BI composite spectra, indicating a far-UV spectral softening correlated with BI. This is consistent with the radiatively-driven BAL outflows being helped by intrinsically weaker ionizing continuum shapes (e.g., Baskin, Laor, and Hamann 2013). We also find a trend for slightly redder continuum slopes in the larger BI composite spectra, suggesting that the slope differences in the near-UV are also intrinsic.

  15. The optical fiber monitoring system of environmental parameters using multiwavelength and differential absorption technology

    NASA Astrophysics Data System (ADS)

    Wu, Kaihua; Yan, Kuang; Huang, Zuohua; Wang, Ruirong

    2005-02-01

    Air pollution monitoring is an important aspect of environmental protection. The pollutants to be detected are usually more than one in air or smoke monitoring. Researching new techniques that can meet the demand of detecting the pollutants at the same time is important and necessary. The paper researched the method of detecting multi-parameters in one optical fiber gas sensing system. The system used multi-wavelength and time division multiplex technique to detect the concentration of SO2 and NO2 simultaneously based on gas' spectra absorption principle. The light differential absorption formula was deduced. The two strong and weak absorbing wavelengths were chosen as signal and reference relatively. To every gas, optical coupler and narrow-band optical filters were used to generate signal and reference light from a high brightness LED. The central wavelength of filters is identical to the strong or weak absorption wavelength respectively. The multi-channel signals were switched to one light beam using a 4x1 optical switch controlled by computer in designed time sequence. The output light after absorbing by gas was coupled on a high sensitivity PIN detector. To achieve high detecting sensitivity, the light source was modulated by a pulse signal. The power and temperature control circuits were also used to stabilize the output power and wavelength of light source. After differential absorption process, the concentration of different gas can be deduced in one set of common optical and electrical sensing system.

  16. Measurement of Oxygen A Band Line Parameters by Using Modulation Spectroscopy with Higher Harmonic Detection

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin

    1999-01-01

    Wavelength modulation spectroscopy is used to demonstrate that extremely weak absorption lines can be measured even when these lines suffer from interference from the wings of adjacent stronger lines. It is shown that the use of detection at several harmonics allows such interference to be examined clearly and conveniently. The results of experimental measurements on a weak magnetic dipole driven, spin-forbidden line in the oxygen A band, which experiences interference from the wings of a pair of adjacent lines towards the blue and red regions of line center, are presented. A comparison of the experimental results to theory is given.

  17. Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials.

    PubMed

    Bellmann, Susann; Carlander, David; Fasano, Alessio; Momcilovic, Dragan; Scimeca, Joseph A; Waldman, W James; Gombau, Lourdes; Tsytsikova, Lyubov; Canady, Richard; Pereira, Dora I A; Lefebvre, David E

    2015-01-01

    Many natural chemicals in food are in the nanometer size range, and the selective uptake of nutrients with nanoscale dimensions by the gastrointestinal (GI) tract is a normal physiological process. Novel engineered nanomaterials (NMs) can bring various benefits to food, e.g., enhancing nutrition. Assessing potential risks requires an understanding of the stability of these entities in the GI lumen, and an understanding of whether or not they can be absorbed and thus become systemically available. Data are emerging on the mammalian in vivo absorption of engineered NMs composed of chemicals with a range of properties, including metal, mineral, biochemical macromolecules, and lipid-based entities. In vitro and in silico fluid incubation data has also provided some evidence of changes in particle stability, aggregation, and surface properties following interaction with luminal factors present in the GI tract. The variables include physical forces, osmotic concentration, pH, digestive enzymes, other food, and endogenous biochemicals, and commensal microbes. Further research is required to fill remaining data gaps on the effects of these parameters on NM integrity, physicochemical properties, and GI absorption. Knowledge of the most influential luminal parameters will be essential when developing models of the GI tract to quantify the percent absorption of food-relevant engineered NMs for risk assessment.

  18. Measurement of the parameters of non-stationary gas flows by diode laser absorption spectroscopy in case of high temperature and high pressure

    NASA Astrophysics Data System (ADS)

    Bolshov, M. A.; Liger, V. V.; Kuritsyn, Yu. A.; Mironenko, V. R.; Ponurovskii, Ya. Ya.; Kolesnikov, O. M.

    2016-12-01

    Experimental version of diode laser absorption spectrometer (DLAS) for contactless measurements of temperature and water vapor concentration in supersonic gas flows is developed. The spectrometer can be used for the measurements of temperature up to 2500 K and total pressure up to 3 atm. The technique is based on the registration of the transient absorption spectra of a target molecules and fitting of the experimental spectra by the simulated ones constructed using the spectroscopic databases. The temperature is inferred from the ratio of the intensities of the absorption lines with different low energy levels. In gas media with the above parameters the absorption lines are broadened which demands the use of two diode lasers (DL) working in different spectral ranges. The software for selection of the optimal line combinations was developed. The combination of two strong lines in the spectral ranges 1.39 μ and 1.34 μ was selected as the optimal one. The efficiency of the developed technique was exemplified in the first set of the experiments in conditions of real propulsion in Zhukovsky Central Aerohydrodynamic Institute (TsAGI) for the temperatures within (500-2200) K range and total pressure up to 3 atm.

  19. X-ray-selected broad absorption line quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Carrera, F. J.; Ceballos, M.; Corral, A.; Ebrero, J.; Esquej, P.; Krumpe, M.; Mateos, S.; Rosen, S.; Schwope, A.; Streblyanska, A.; Symeonidis, M.; Tedds, J. A.; Watson, M. G.

    2017-02-01

    We study a sample of six X-ray-selected broad absorption line (BAL) quasi-stellar objects (QSOs) from the XMM-Newton Wide Angle Survey. All six objects are classified as BALQSOs using the classic balnicity index, and together they form the largest sample of X-ray-selected BALQSOs. We find evidence for absorption in the X-ray spectra of all six objects. An ionized absorption model applied to an X-ray spectral shape that would be typical for non-BAL QSOs (a power law with energy index α = 0.98) provides acceptable fits to the X-ray spectra of all six objects. The optical to X-ray spectral indices, αOX, of the X-ray-selected BALQSOs, have a mean value of <αOX> = 1.69 ± 0.05, which is similar to that found for X-ray-selected and optically selected non-BAL QSOs of a similar ultraviolet luminosity. In contrast, optically selected BALQSOs typically have much larger αOX and so are characterized as being X-ray weak. The results imply that X-ray selection yields intrinsically X-ray bright BALQSOs, but their X-ray spectra are absorbed by a similar degree to that seen in optically selected BALQSO samples; X-ray absorption appears to be ubiquitous in BALQSOs, but X-ray weakness is not. We argue that BALQSOs sit at one end of a spectrum of X-ray absorption properties in QSOs related to the degree of ultraviolet absorption in C IV 1550 Å.

  20. Evidence for active galactic nucleus feedback in the broad absorption lines and reddening of MRK 231 {sup ,}

    SciTech Connect

    Leighly, Karen M.; Baron, Eddie; Lucy, Adrian B.; Terndrup, Donald M.; Dietrich, Matthias; Gallagher, Sarah C.

    2014-06-20

    We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly full coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ∼100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.

  1. Atlas of Absorption Lines from 0 to 17900 Cm (sup)-1

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Rothman, L. S.; Rinsland, C. P.; Pickett, H. M.; Richardson, D. J.; Namkung, J. S.

    1987-01-01

    Plots of logarithm (base 10) of absorption line strength versus wavenumber from 0 to 17900/cm(sup)-1 are shown for the 28 atmospheric gases (H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2, NO2, NH3, HNO3, OH, HF, HCl, HBr, HI, ClO, OCS, H2CO, HOCl, N2, HCN, CH3Cl, H2O2, C2H2, C2H6, PH3), which appear in the 1986 Air Force Geophysics Laboratory high-resolution transmission molecular absorption data base (HITRAN) compilation, and for O(P-3), O-18 isotopic ozone, and HO2 from the 1984 JPL compilation in the 0- to 200/cm(sup)-1 region, and infrared solar CO lines at 4500 K. Also shown are plots of logarithm (base 10) of approximate infrared absorption cross sections of 11 heavy molecules versus wavenumber. The cross-section data cover 700 to 1800/cm(sup)-1 and are included as a separate data file in the 1986 HITRAN database.

  2. Radiation Pressure-Driven Magnetic Disk Winds in Broad Absorption Line Quasi-Stellar Objects

    NASA Technical Reports Server (NTRS)

    DeKool, Martin; Begelman, Mitchell C.

    1995-01-01

    We explore a model in which QSO broad absorption lines (BALS) are formed in a radiation pressure-driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.

  3. Radiation Pressure--driven Magnetic Disk Winds in Broad Absorption Line Quasi-stellar Objects

    NASA Astrophysics Data System (ADS)

    de Kool, Martijn; Begelman, Mitchell C.

    1995-12-01

    We explore a model in which QSO broad absorption lines (BALs) are formed in a radiation pressure- driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.

  4. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Yaqoob, T.; Braito, V.; Dadina, M.

    2010-10-01

    Context. Blue-shifted Fe K absorption lines have been detected in recent years between 7 and 10 keV in the X-ray spectra of several radio-quiet AGNs. The derived blue-shifted velocities of the lines can often reach mildly relativistic values, up to 0.2-0.4c. These findings are important because they suggest the presence of a previously unknown massive and highly ionized absorbing material outflowing from their nuclei, possibly connected with accretion disk winds/outflows. Aims: The scope of the present work is to statistically quantify the parameters and incidence of the blue-shifted Fe K absorption lines through a uniform analysis on a large sample of radio-quiet AGNs. This allows us to assess their global detection significance and to overcome any possible publication bias. Methods: We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. A simple uniform model composed by an absorbed power-law plus Gaussian emission and absorption lines provided a good fit for all the data sets. We derived the absorption lines parameters and calculated their detailed detection significance making use of the classical F-test and extensive Monte Carlo simulations. Results: We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies higher than 7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3 × 10-8, and their detection have been independently confirmed by a spectral analysis of the MOS data, with associated random probability <10-7. We identify the lines as Fe XXV and Fe XXVI K-shell resonant absorption. They are systematically blue-shifted, with a velocity distribution ranging from zero up to ~0.3c, with a peak and mean value at ~0.1c. We detect variability of the lines on both EWs and blue-shifted velocities among different XMM-Newton observations

  5. Randic and Schultz molecular topological indices and their correlation with some X-ray absorption parameters

    NASA Astrophysics Data System (ADS)

    Khatri, Sunil; Kekre, Pravin A.; Mishra, Ashutosh

    2016-10-01

    The properties of a molecular system are affected by the topology of molecule. Therefore many studies have been made where the various physic-chemical properties are correlated with the topological indices. These studies have shown a very good correlation demonstrating the utility of the graph theoretical approach. It is, therefore, very natural to expect that the various physical properties obtained by the X-ray absorption spectra may also show correlation with the topological indices. Some complexes were used to establish correlation between topological indices and some X-ray absorption parameters like chemical shift. The chemical shift is on the higher energy side of the metal edge in these complexes. The result obtained in these studies shows that the topological indices of organic molecule acting as a legands can be used for estimating edge shift theoretically.

  6. Spectroscopic Line Parameters in the Infrared Bands of CH3CN and C2H6

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy

    2010-10-01

    In this paper, measurements of critical spectroscopic line parameters such as positions, absolute intensities and pressure broadened (self- and N2) half-width coefficients for transitions in the ν4 band of CH3CN (acetonitile, ethanenitrile, methyl cyanide) and the ν9 band of C2H6 (ethane) are presented. CH3CN has been measured by remote sensing in the earth's atmosphere, in comets and in interstellar molecular clouds. It is also a constituent in the atmospheres of Titan, Saturn's largest moon. Likewise, C2H6 is also an important constituent in the atmosphere of earth, the giant planets and comets. The 12- μm(˜720-850 cm-1) emission features of this molecule have been observed in spectra from outer solar system bodies of Jupiter, Saturn, Neptune and Titan. Because of their importance in remote sensing measurements, we recently recorded and analyzed a large number of laboratory infrared absorption spectra of pure and N2-broadened spectra of both these molecular bands. Spectra used in these analyses were recorded using either the Bruker IFS 125HR or the Bruker IFS 120HR FTS located at the Pacific Northwest National Laboratory (PNNL), in Richland Washington. To retrieve the various spectral line parameters, a multispectrum nonlinear least squares fitting algorithm was employed and all spectra belonging to each band were fitted simultaneously. Using this fitting technique, the same spectral regions from multiple spectra were fit all at once to maximize the accuracy of the retrieved parameters. The results obtained from present analyses are briefly discussed. In the case of C2H6 both room- and low temperature (˜210-296 K) spectra were recorded, but results from analyzing only room-temperature spectra will be discussed in this work.

  7. Low redshift Lyman alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1993-01-01

    Recent observations using the Hubble Space Telescope of the z = 0.156 QSO 3C 273 have discovered a surprisingly large number of Ly-alpha absorption lines. In particular, Morris et al. found 9 certain and 7 possible Ly-alpha lines with equivalent widths above 25 mA. This is much larger (by a factor of 5-10) than the number expected from extrapolation of the high-redshift behavior of the Ly-alpha forest. Within the context of pressure-confined models for the Ly-alpha clouds, this behavior can be understood if the ionizing background declines sharply between z is approximately 2 and z is approximately 0. However, this requires that the ionizing photon flux drop as rapidly as the QSO volume emissivity; moreover, the absorbers must have a space density n(sub O) is approximately 2.6(N/10)h/((D/100 kpc)(sup 2)) Mpc(sup -3) where D is the present-day diameter of the absorbers. It is somewhat surprising that such necessarily fragile objects could have survived in such numbers to the present day. It is shown that it is plausible that the atomic hydrogen extents of spiral and irregular galaxies are large enough to produce the observed number of Ly-alpha absorption lines toward 3C 273, and that the neutral column densities and doppler b-values expected under these conditions fall in the range found by Morris et al. (1991).

  8. Quasar Absorption Lines from Radiative Shocks: Implications for Multiphase Outflows and Feedback

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, C.-A.

    2012-08-01

    Photoionization modeling of certain low-ionization broad absorption lines in quasars implies very compact (ΔR ˜0.01 pc), galaxy-scale (R˜ kpc) absorbers blueshifted by several 1000 km s-1. While these are likely signatures of quasar outflows, the lifetimes of such compact absorbers are too short for them to be direct ejecta from a nuclear wind. Instead, I argue that the absorbing clouds must be transient and created in situ. Following arguments detailed by Faucher-Giguère, Quataert, & Murray (2011), I show that a model in which the cool absorbers form in radiative shocks arising when a quasar blast wave impacts an interstellar cloud along the line of sight successfully explains the key observed properties. Using this radiative shock model, the outflow kinetic luminosities for three luminous quasars are estimated to be Ėk ≍ 2-5% LAGN (with corresponding momentum fluxes Ṗ ≍2-15 LAGN/c), consistent with feedback models of the M-σ relation. These energetics are similar to those recently inferred of molecular outflows in local ultra-luminous infrared galaxies and in post-starburt winds, suggesting that active galactic nuclei (AGN) are capable of driving such outflows. Radiative shocks probably affect the multiphase structure of outflows in a range of other systems, potentially including narrower and higher-ionization quasar absorption lines, and compact intergalactic absorbers ejected by star formation and/or AGN activity.

  9. When galaxies collide: understanding the broad absorption-line radio galaxy 4C +72.26

    NASA Astrophysics Data System (ADS)

    Smith, D. J. B.; Simpson, C.; Swinbank, A. M.; Rawlings, S.; Jarvis, M. J.

    2010-05-01

    We present a range of new observations of the `broad absorption-line radio galaxy' 4C +72.26 (z ~ 3.5), including sensitive rest-frame ultraviolet integral field spectroscopy using the Gemini/GMOS-N instrument and Subaru/CISCO K-band imaging and spectroscopy. We show that 4C +72.26 is a system of two vigorously star-forming galaxies superimposed along the line of sight separated by ~1300 +/- 200 km s-1 in velocity, with each demonstrating spectroscopically resolved absorption lines. The most active star-forming galaxy also hosts the accreting supermassive black hole which powers the extended radio source. We conclude that the star formation is unlikely to have been induced by a shock caused by the passage of the radio jet, and instead propose that a collision is a more probable trigger for the star formation. Despite the massive starburst, the ultraviolet-mid-infrared spectral energy distribution suggests that the pre-existing stellar population comprises ~1012Msolar of stellar mass, with the current burst only contributing a further ~2 per cent, suggesting that 4C +72.26 has already assembled most of its final stellar mass.

  10. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Astrophysics Data System (ADS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-08-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  11. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-01-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  12. Instabilities in line-driven stellar winds. III - Wave propagation in the case of pure line absorption

    NASA Technical Reports Server (NTRS)

    Owocki, S. P.; Rybicki, G. B.

    1986-01-01

    The spatial and temporal evolution of small-amplitude velocity perturbations is examined in the idealized case of a stellar wind that is driven by pure line absorption of the star's continuum radiation. It is established that the instability in the supersonic region is of the advective type relative to the star, but of the absolute type relative to the wind itself. It is also shown that the inward propagation of information in such a wind is limited to the sound speed, in contrast to the theory of Abbott, which predicts inward propagation faster than sound. This apparent contradiction is resolved through an extensive discussion of the analytically soluble case of zero sound speed.

  13. Quasar Absorption Lines: The Evolution of Galactic Gas Over Cosmic Time

    NASA Astrophysics Data System (ADS)

    Charlton, J.

    1996-12-01

    A view of the formation and evolution of galaxies and structure over the whole history of the Universe requires observations both of stars and of gas. From the stars in galaxies, now observed in deep images back in time to less than a billion years past the Big Bang, we can study the evolution of galaxy morphology and of star formation rates. Direct observation of gas in the Universe at all epochs is also possible, using absorption spectra of quasars as a probe of intervening material. This absorption arises not only from the gas in developed galaxies and in their environments, but also from the clumps of gas that will eventually combine to form galaxies, and from the gas spread through the Universe that is gradually flowing into the galaxies. This study of gas through quasar absorption lines has opened the possibility of observing directly the formation of galaxies through the assembly of their gas over time. Furthermore, with high resolution spectroscopy, the substructures observed in absorption profiles provide information about the internal workings of galaxies. This talk will present an overview of progress toward a comprehensive picture of the formation and evolution of galaxies through quasar absorption line studies. The absorption profiles that are observed due to the passage of the quasar light through a given structure are a convolution of several properties of the gas, including its spatial and kinematic distribution, its chemical composition, and its state of ionization. Illustrative models will be utilized to show how these various factors affect the appearance of synthetic spectra. Beginning with the philosophy ``what you see is what you get'', the kinematic spectral signatures of higher redshift absorbers will be modeled by familiar components of nearby galaxies: a rotating disk, an isothermal halo, and gas in radial inflow. A combination of these basic models goes a long way toward producing a variety of complex absorption profiles which are in fact

  14. 'Diamondlike' carbon films - Optical absorption, dielectric properties, and hardness dependence on deposition parameters

    NASA Technical Reports Server (NTRS)

    Natarajan, V.; Lamb, J. D.; Woollam, J. A.; Liu, D. C.; Gulino, D. A.

    1985-01-01

    An RF plasma deposition system was used to prepare amorphous 'diamondlike' carbon films. The source gases for the RF system include methane, ethylene, propane, and propylene, and the parameters varied were power, dc substrate bias, and postdeposition anneal temperature. Films were deposited on various substrates. The main diagnostics were optical absorption in the visible and in the infrared, admittance as a function of frequency, hardness, and Auger and ESCA spectroscopy. Band gap is found to depend strongly on RF power level and band gaps up to 2.7 eV and hardness up to 7 Mohs were found. There appears to be an inverse relationship between hardness and optical band gap.

  15. Improved and Quality-assessed Emission and Absorption Line Measurements in Sloan Digital Sky Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, Marc; Schawinski, Kevin; Yi, Sukyoung K.

    2011-08-01

    We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting (pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionized gas emission. In order to check for systematic departures from the rather standard set of assumptions that enters our models, we provide a quality assessment for our fit to the SDSS spectra in our sample, for both the stellar continuum and the nebular emissions and across different wavelength regions. This quality assessment also allows the identification of objects with either problematic data or peculiar features. We hope to foster the discovery potential of our database; therefore, our spectral fit is available to the community. For example, based on the quality assessment around the Hα and [N II] λ6584 lines, approximately 1% of the SDSS spectra classified as "galaxies" by the SDSS pipeline do in fact require additional broad lines to be matched, even though they do not show a strong continuum from an active nucleus, as

  16. IMPROVED AND QUALITY-ASSESSED EMISSION AND ABSORPTION LINE MEASUREMENTS IN SLOAN DIGITAL SKY SURVEY GALAXIES

    SciTech Connect

    Oh, Kyuseok; Yi, Sukyoung K.; Sarzi, Marc; Schawinski, Kevin

    2011-08-01

    We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting (pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionized gas emission. In order to check for systematic departures from the rather standard set of assumptions that enters our models, we provide a quality assessment for our fit to the SDSS spectra in our sample, for both the stellar continuum and the nebular emissions and across different wavelength regions. This quality assessment also allows the identification of objects with either problematic data or peculiar features. We hope to foster the discovery potential of our database; therefore, our spectral fit is available to the community. For example, based on the quality assessment around the H{alpha} and [N II] {lambda}6584 lines, approximately 1% of the SDSS spectra classified as 'galaxies' by the SDSS pipeline do in fact require additional broad lines to be matched, even though they do not show a strong continuum from an active

  17. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: RAPID C iv BROAD ABSORPTION LINE VARIABILITY

    SciTech Connect

    Grier, C. J.; Brandt, W. N.; Trump, J. R.; Schneider, D. P.; Hall, P. B.; Shen, Yue; Vivek, M.; Dawson, K. S.; Ak, N. Filiz; Chen, Yuguang; Denney, K. D.; Kochanek, C. S.; Peterson, B. M.; Green, Paul J.; Jiang, Linhua; McGreer, Ian D.; Pâris, I.; Tao, Charling; Bizyaev, Dmitry; and others

    2015-06-10

    We report the discovery of rapid variations of a high-velocity C iv broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4σ) variability in the equivalent width (EW) of the broad (∼4000 km s{sup −1} wide) C iv trough on rest-frame timescales as short as 1.20 days (∼29 hr), the shortest broad absorption line variability timescale yet reported. The EW varied by ∼10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n{sub e} ≳ 3.9 × 10{sup 5} cm{sup −3}. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.

  18. A Survey for Intervening CIV Absorption-Line Systems Using SDSS Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Monier, Eric M.; Nestor, D. B.; Daino, M. M.; Quider, A. M.; Rao, S. M.; Turnshek, D. A.

    2006-06-01

    Intervening CIV absorption-line systems are readily found in Sloan Digital Sky Survey (SDSS) quasar spectra at redshifts z > 1.5. Given the large number of absorbers, high statistical accuracy is possible in comparison to what was possible in the past. Here we present preliminary results on the incidence and evolution of the CIV systems as a function of CIV rest equivalent width. The absorber incidence is proportional to the product of gas cross-section and co-moving number density of absorbers, while the rest equivalent width is related to their kinematic spread. We discuss the interpretation of our results.

  19. Chemical effect on the K shell absorption parameters of some selected cerium compounds

    NASA Astrophysics Data System (ADS)

    Akman, F.; Kaçal, M. R.; Durak, R.

    2016-08-01

    In this study, the photoelectric cross section values of Ce, CeCl3.7H2O, Ce2(SO4)3, Ce(OH)4 and Ce2O3 samples were measured in the energy range from 31.82 keV up to 51.70 keV by adopting in narrow beam geometry. Using these photoelectric cross sections, the K shell photoelectric cross sections at the K-edge, the K shell absorption jump ratios and jump factors, the Davisson-Kirchner ratios and K shell oscillator strength values were estimated experimentally. The measured parameters were compared with the theoretical calculated values. It is observed that the K shell photoelectric cross section at the K-edge and K shell oscillator strength values of an element are affected by the chemical environment of material while the K shell absorption jump ratio, K shell absorption jump factor and Davisson-Kirchner ratio are not affected by the chemical environment of material for the present samples. To the best of our knowledge, the chemical effects on the Davisson-Kirchner ratio and K shell oscillator strength have not been discussed for any element by now.

  20. Measurement of transient gas flow parameters by diode laser absorption spectroscopy

    SciTech Connect

    Bolshov, M A; Kuritsyn, Yu A; Liger, V V; Mironenko, V R; Nadezhdinskii, A I; Ponurovskii, Ya Ya; Leonov, S B; Yarantsev, D A

    2015-04-30

    An absorption spectrometer based on diode lasers is developed for measuring two-dimension maps of temperature and water vapour concentration distributions in the combustion zones of two mixing supersonic flows of fuel and oxidiser in the single run regime. The method of measuring parameters of hot combustion zones is based on detection of transient spectra of water vapour absorption. The design of the spectrometer considerably reduces the influence of water vapour absorption along the path of a sensing laser beam outside the burning chamber. The optical scheme is developed, capable of matching measurement results in different runs of mixture burning. A new algorithm is suggested for obtaining information about the mixture temperature by constructing the correlation functions of the experimental spectrum with those simulated from databases. A two-dimensional map of temperature distribution in a test chamber is obtained for the first time under the conditions of plasma-induced combusion of the ethylene – air mixture. (laser applications and other topics in quantum electronics)

  1. Electrical parameters of bone substrate in microstrip line configuration.

    PubMed

    Ray, S; Behari, J

    1988-03-01

    Techniques of microstrip line are extended to study the dielectric properties of bone at 4.5 GHz. The method is based on time domain technique and is applicable to higher frequency ranges where other conventional methods of dielectric measurements are not suitable. It is found that this method serves well for the determination of dielectric constants of bone in two orthogonal directions.

  2. Simulation of carbon dioxide absorption by sodium hydroxide solution in a packed bed and studying the effect of operating parameters on absorption

    SciTech Connect

    Yazdanbakhsh, Farzad; Soltani Goharrizi, Ata'ollah; Hashemipour Rafsanjani, Hassan

    2007-07-01

    Available in abstract form only. Full text of publication follows: In this study. simulation of carbon dioxide absorption by Sodium Hydroxide solution in a packed bed has been investigated. At first, mass and energy balances were applied around a differential height of the bed. So, the governing equations were obtained. Surface renewal theory by Danckwerts was used to represent the mass transfer operation Finally, by changing the operating parameters like solvent temperature, inlet gas composition pressure and height of the bed, the effect of these parameters on the absorption and the composition of carbon dioxide in exit stream have been investigated. (authors)

  3. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    NASA Technical Reports Server (NTRS)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  4. THE JHU-SDSS METAL ABSORPTION LINE CATALOG: REDSHIFT EVOLUTION AND PROPERTIES OF Mg II ABSORBERS

    SciTech Connect

    Zhu Guangtun; Menard, Brice

    2013-06-20

    We present a generic and fully automatic method aimed at detecting absorption lines in the spectra of astronomical objects. The algorithm estimates the source continuum flux using a dimensionality reduction technique and nonnegative matrix factorization, and then detects and identifies metal absorption lines. We apply it to a sample of {approx}10{sup 5} quasar spectra from the Sloan Digital Sky Survey and compile a sample of {approx}40,000 Mg II- and Fe II-absorber systems, spanning the redshift range 0.4 < z < 2.3. The corresponding catalog is publicly available. We study the statistical properties of these absorber systems and find that the rest equivalent width distribution of strong Mg II absorbers follows an exponential distribution at all redshifts, confirming previous studies. Combining our results with recent near-infrared observations of Mg II absorbers, we introduce a new parameterization that fully describes the incidence rate of these systems up to z {approx} 5. We find the redshift evolution of strong Mg II absorbers to be remarkably similar to the cosmic star formation history over 0.4 < z < 5.5 (the entire redshift range covered by observations), suggesting a physical link between these two quantities.

  5. High-resolution absorption spectroscopy of the OH 2Π3/2 ground state line

    NASA Astrophysics Data System (ADS)

    Wiesemeyer, H.; Güsten, R.; Heyminck, S.; Jacobs, K.; Menten, K. M.; Neufeld, D. A.; Requena-Torres, M. A.; Stutzki, J.

    2012-06-01

    The chemical composition of the interstellar medium is determined by gas phase chemistry, assisted by grain surface reactions, and by shock chemistry. The aim of this study is to measure the abundance of the hydroxyl radical (OH) in diffuse spiral arm clouds as a contribution to our understanding of the underlying network of chemical reactions. Owing to their high critical density, the ground states of light hydrides provide a tool to directly estimate column densities by means of absorption spectroscopy against bright background sources. We observed onboard the SOFIA observatory the 2Π3/2, J = 5/2 ← 3/2 2.5 THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius spiral arm. OH column densities in the spiral arm clouds along the sightlines to W49N, W51 and G34.26+0.15 were found to be of the order of 1014 cm-2, which corresponds to a fractional abundance of 10-7 to 10-8, which is comparable to that of H2O. The absorption spectra of both species have similar velocity components, and the ratio of the derived H2O to OH column densities ranges from 0.3 to 1.0. In W49N we also detected the corresponding line of 18OH.

  6. Improved spectroscopic line parameters for the ozone molecule

    NASA Technical Reports Server (NTRS)

    Flaud, J. M.; Rinsland, C. P.

    1991-01-01

    Recently the authors made a comprehensive compilation of improved line positions, intensities, and lower state energies of ozone between 0 and 3400/cm. Examples of improvement brought by these data and progress achieved in remote sensing using them are given. Areas for future study include hot bands in the higher wavenumber range, spectral regions above 3400/cm, the O-17 isotopic variants of ozone, broadening coefficients, and emission from high-lying vibrational levels of ozone in the upper atmosphere.

  7. Absorption-Line Probes of Gas and Dust in Galactic Superwinds

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy M.; Lehnert, Matthew D.; Strickland, David K.; Armus, Lee

    2000-08-01

    We have obtained moderate resolution (R=few thousand) spectra of the Na I λλ5890, 5896 (Na D) absorption line in a sample of 32 far-IR-bright starburst galaxies. In 18 cases, the Na D line in the nucleus is produced primarily by interstellar gas, while cool stars contribute significantly in the others. In 12 of the 18 ``interstellar-dominated'' cases the Na D line is blueshifted by over 100 km s-1 relative to the galaxy systemic velocity (the ``outflow sources''), while no case shows a net redshift of more than 100 km s-1. The absorption-line profiles in these outflow sources span the range from near the galaxy systemic velocity to a maximum blueshift of ~400-600 km s-1. The outflow sources are galaxies systematically viewed more nearly face-on than the others. We therefore argue that the absorbing material consists of ambient interstellar material that has been entrained and accelerated along the minor axis of the galaxy by a hot starburst-driven superwind. The Na D lines are optically thick, but indirect arguments imply total hydrogen column densities of NH~few×1021 cm-2. This implies that the superwind is expelling matter at a rate comparable to the star formation rate. This outflowing material is evidently very dusty: we find a strong correlation between the depth of the Na D profile and the line-of-sight reddening. Typical implied values are E(B-V)=0.3-1 over regions several-to-10 kpc in size. We briefly consider some of the potential implications of these observations. The estimated terminal velocities of superwinds inferred from the present data and extant X-ray data are typically 400-800 km-1, are independent of the galaxy rotation speed, and are comparable to (substantially exceed) the escape velocities for L* (dwarf) galaxies. The resulting selective loss of metals from shallower potential wells can establish the mass-metallicity relation in spheroids, produce the observed metallicity in the intracluster medium, and enrich a general IGM to of order 10

  8. Probing the interstellar medium in Puppis-Vela through optical absorption line spectroscopy

    NASA Astrophysics Data System (ADS)

    Cha, Alexandra Nicole Stuehler

    2000-06-01

    The interstellar medium (ISM) toward Puppis-Vela (l = 245° to 275°, b = -15° to +5°) has been studied using high resolution, R ~ 75,000-90,000, high signal-to-noise, S/N ~ 100, optical Na I and Ca II absorption spectra along several hundred lines of sight. The distance of the Vela supernova remnant was found to be at d ~ 250 pc, a factor of two less than the canonical value. Lines of sight passing through the Vela supernova remnant were seen to have optical spectra that varied over epochs of a few years, including those toward HD 72089, HD 72127, HD 72997, HD 73658, HD 74455, HD 75309, and HD 75821. The variability of the first three lines of sight had been previously documented, but variability in the spectra toward the latter four stars had not been observed. An analysis of the Local ISM (d < 200 pc) toward Puppis-Vela is presented, and using both Na I absorption features and accurate distances to the stars, courtesy of Hipparcos trigonometric parallax data, spatially compact, homogeneous velocity components were mapped. In the Local ISM, the Puppis-Vela region abuts the apparent extension of the Local Bubble (or Cavity) known as the β CMa tunnel, and the compiled Na I lines of sight suggest that within 200 pc, the extent of the tunnel is confined to a region smaller than was previously thought. The technique of identifying and mapping individual velocity components in three dimensions was extended to the Puppis-Vela ISM out to d ~ 1 kpc, and a total of 7 velocity components were identified. Gas with velocities higher than that expected in the ambient ISM combined with higher than normal reddening was detected toward two regions, (l ~ 254°, b ~ -1°) and (l ~ 251°, b ~ -7°), suggesting the presence of previously unidentified structures. Nearby, gas associated with the IRAS Vela Shell was detected in Na I at distances >~ 300 pc. The Na I velocity components from IRAS Vela Shell sight lines were fit with a model of a spherically expanding filled sphere with

  9. VARIABLE REDDENING AND BROAD ABSORPTION LINES IN THE NARROW-LINE SEYFERT 1 GALAXY WPVS 007: AN ORIGIN IN THE TORUS

    SciTech Connect

    Leighly, Karen M.; Cooper, Erin; Grupe, Dirk; Terndrup, Donald M.; Komossa, S.

    2015-08-10

    We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddening increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable.

  10. Multi-Sightline Observation of Narrow Absorption Lines in Lensed Quasar SDSS J1029+2623

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Saez, Cristian; Charlton, Jane C.; Eracleous, Michael; Chartas, George; Bauer, Franz E.; Inada, Naohisa; Uchiyama, Hisakazu

    2016-07-01

    We exploit the widely separated images of the lensed quasar SDSS J1029+2623 ({z}{em} = 2.197, θ = 22.″5) to observe its outflowing wind through two different sightlines. We present an analysis of three observations, including two with the Subaru telescope in 2010 February and 2014 April, separated by four years, and one with the Very Large Telescope, separated from the second Subaru observation by ˜2 months. We detect 66 narrow absorption lines (NALs), of which 24 are classified as intrinsic NALs that are physically associated with the quasar based on partial coverage analysis. The velocities of intrinsic NALs appear to cluster around values of {v}{ej} ˜ 59,000, 43,000, and 29,000 km s-1, which is reminiscent of filamentary structures obtained by numerical simulations. There are no common intrinsic NALs at the same redshift along the two sightlines, implying that the transverse size of the NAL absorbers should be smaller than the sightline distance between two lensed images. In addition to the NALs with large ejection velocities of {v}{ej} > 1000 km s-1, we also detect broader proximity absorption lines (PALs) at {z}{abs} ˜ {z}{em}. The PALs are likely to arise in outflowing gas at a distance of r ≤ 620 pc from the central black hole with an electron density of n e ≥8.7 × 103 cm-3. These limits are based on the assumption that the variability of the lines is due to recombination. We discuss the implications of these results on the three-dimensional structure of the outflow.

  11. The Hubble Space Telescope quasar absorption line key project. 6: Properties of the metal-rich systems

    NASA Technical Reports Server (NTRS)

    Bergeron, Jacqueline; Petitjean, Patrick; Sargent, W. L. W.; Bahcall, John N.; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Savage, Blair D.; Schneider, Donald P.

    1994-01-01

    , as is also probably the case at high redshift. These O VI absorbers can be ionized by the UV metagalactic field if their density is low, nH approximately less than 3 x 10(exp -4)/cc. The O VI phase would then be a homogeneous region of large extent, r approximately greater than 50 kpc. A detailed photoionization model of the z(sub abs) = 0.791 absorber toward PKS 2145+06 confirms the properties derived from the Mg II, C IV, O VI, and Lyman-limit samples. The galaxy causing this extensive metal-line absorption system has been identified, and its possible contribution to the UV ionizing flux does not substantially modify the value of the derived parameters. The heavy element abundances are about half the solar values. The O VI region has a density about 20 times lower than the Mg II clouds and a size of approximately 70 kpc. Alternatively, the high-ionization phase could be collisionally ionized and trace gas associated with a possible group of galaxies at the absorber redshift.

  12. Cavity ring-down spectroscopy of Doppler-broadened absorption line with sub-MHz absolute frequency accuracy.

    PubMed

    Cheng, C-F; Sun, Y R; Pan, H; Lu, Y; Li, X-F; Wang, J; Liu, A-W; Hu, S-M

    2012-04-23

    A continuous-wave cavity ring-down spectrometer has been built for precise determination of absolute frequencies of Doppler-broadened absorption lines. Using a thermo-stabilized Fabry-Pérot interferometer and Rb frequency references at the 780 nm and 795 nm, 0.1 - 0.6 MHz absolute frequency accuracy has been achieved in the 775-800 nm region. A water absorption line at 12579 cm(-1) is studied to test the performance of the spectrometer. The line position at zero-pressure limit is determined with an uncertainty of 0.3 MHz (relative accuracy of 0.8 × 10(-9)).

  13. Time-Variable Complex Metal Absorption Lines in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Eracleous, Michael; Charlton, Jane C.; Tajitsu, Akito

    2005-08-01

    We present a new spectrum of the quasar HS 1603+3820 taken 1.28 yr (0.36 yr in the quasar rest frame) after a previous observation with Subaru+HDS. The new spectrum enables us to search for time variability as an identifier of intrinsic narrow absorption lines (NALs). This quasar shows a rich complex of C IV NALs within 60,000 km s-1 of the emission redshift. On the basis of covering factor analysis, Misawa et al. found that the C IV NAL system at zabs=2.42-2.45 (system A, at a shift velocity of vsh=8300-10,600 km s-1 relative to the quasar) was intrinsic to the quasar. With our new spectrum, we perform time variability analysis, as well as covering factor analysis, to separate intrinsic NALs from intervening NALs for eight C IV systems. Only system A, which was identified as an intrinsic system in the earlier paper by Misawa et al., shows a strong variation in line strength (Wobs~10.4-->19.1 Å). We speculate that a broad absorption line (BAL) could be forming in this quasar (i.e., many narrower lines will blend together to make a BAL profile). We illustrate the plausibility of this suggestion with the help of a simulation in which we vary the column densities and covering factors of the NAL complex. Under the assumption that a change of ionization state causes the variability, a lower limit can be placed on the electron density (ne>~3×104cm-3) and an upper limit on the distance from the continuum source (r<=6 kpc). On the other hand, if the motion of clumpy gas causes the variability (a more likely scenario), the crossing velocity and the distance from the continuum source are estimated to be vcross>8000 km s-1 and r<3 pc. In this case, the absorber does not intercept any flux from the broad emission line region, but only flux from the UV continuum source. If we adopt the dynamical model of Murray et al., we can obtain a much more strict constraint on the distance of the gas parcel from the continuum source, r<0.2 pc. Based on data collected at the Subaru

  14. Asymptotic expansions of the kernel functions for line formation with continuous absorption

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.

    1991-01-01

    Asymptotic expressions are obtained for the kernel functions M2(tau, alpha, beta) and K2(tau, alpha, beta) appearing in the theory of line formation with complete redistribution over a Voigt profile with damping parameter a, in the presence of a source of continuous opacity parameterized by beta. For a greater than 0, each coefficient in the asymptotic series is expressed as the product of analytic functions of a and eta. For Doppler broadening, only the leading term can be evaluated analytically.

  15. The velocity distribution of interstellar gas observed in strong UV absorption lines

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; York, D. G.

    1978-01-01

    Observations of three strong interstellar UV absorption lines of N I (1199 A), N II (1083 A), and Si III (1206 A) in 47 stars of widely varying distance and a variety of spectral types are analyzed to obtain a velocity distribution function for the interstellar gas. A technique based on the maximum and minimum velocities observed along a line of sight is adopted because of heavy line blending, and results are discussed for both power-law and exponential distribution functions. The expected distribution of radiative-phase supernova remnants (SNRs) in the interstellar medium is calculated as a function of SNR birthrate and of the interstellar density in which they evolve. The results are combined with observed distance estimates, and it is shown that an interstellar density in excess of 0.1 per cu cm would be required to keep the SNRs sufficiently confined so that their cross sections are consistent with the observed number of components. The alternative possibility is considered that SNRs do not enter the radiative phase before escaping from the Galaxy or colliding with neighboring remnants.

  16. Optimisation of external cavity parameters of a weak absorption laser spectrometer

    SciTech Connect

    Korolenko, P V; Lagunov, V V; Nikolaev, I V; Ochkin, V N; Tskhai, S N; Yatskevich, A N

    2016-03-31

    We consider some peculiar features of the optimisation procedure of external optical cavity parameters of a laser spectrometer, caused by the use of a three-beam measurement scheme and the presence of losses in the mirrors. It is found that the maximum sensitivity to the absorption of an intracavity medium can be achieved only at a certain choice of the value and the ratio of the reflection coefficients of the mirrors. For example, registration of the spectra of the methane impurity in the atmosphere shows that in accordance with the calculation model, for the same resonator Q-factor the use of an input mirror with a smaller reflection coefficient allows the measurement sensitivity to be increased by approximately two times. (laser spectroscopy)

  17. Spectropolarimetry of PKS 0040-005 and the orientation of broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Brotherton, M. S.; De Breuck, C.; Schaefer, J. J.

    2006-10-01

    We have used the Very Large Telescope (VLT) to obtain spectropolarimetry of the radio-loud, double-lobed broad absorption line (BAL) quasar PKS 0040-005. We find that the optical continuum of PKS 0040-005 is intrinsically polarized at 0.7 per cent with an electric vector position angle nearly parallel to that of the large-scale radio axis. This result is naturally explained in terms of an equatorial scattering region seen at a small inclination, building a strong case that the BAL outflow is not equatorial. In conjunction with other recent results concerning BAL quasars, the era of simply characterizing these sources as `edge-on' is over. Based on observations collected at the European Southern Observatory, Paranal, project 71.B-0121(A). E-mail: mbrother@uwyo.edu (MSB); cdbreuc@eso.org (CDB); schaefjj@ufl.edu (JJS) ‡ ESO Visitor.

  18. FR-II Broad Absorption Line Quasars and the Life Cycle of Quasars

    SciTech Connect

    Gregg, M D; Becker, R H; de Vries, W

    2006-01-05

    By combining the Sloan Digitized Sky Survey Third Data Release quasar list with the VLA FIRST survey, we have identified five objects having both broad absorption lines in their optical spectra and FR-II radio morphologies. We identify an additional example of this class from the FIRST Bright Quasar Survey, J1408+3054. Including the original FR-II-BAL object, J1016+5209, brings the number of such objects to eight. These quasars are relatively rare; finding this small handful has required the 45,000-large quasar sample of SDSS. The FR-II-BAL quasars exhibit a significant anti-correlation between radio-loudness and the strength of the BAL features. This is easily accounted for by the evolutionary picture in which quasars emerge from cocoons of BAL-producing material which stifle the development of radio jets and lobes. There is no such simple explanation for the observed properties of FR-II-BALs in the unification-by-orientation model of quasars. The rarity of the FR-II-BAL class implies that the two phases do not coexist for very long in a single quasar, perhaps less than 10{sup 5} years, with the combined FR-II, high ionization broad absorption phase being even shorter by another factor of 10 or more.

  19. THE INTRINSIC FRACTIONS AND RADIO PROPERTIES OF LOW-IONIZATION BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Dai Xinyu; Shankar, Francesco; Sivakoff, Gregory R.

    2012-10-01

    Low-ionization (Mg II, Fe II, and Fe III) broad absorption line quasars (LoBALs) probe a relatively obscured quasar population and could be at an early evolutionary stage for quasars. We study the intrinsic fractions of LoBALs using the Sloan Digital Sky Survey (SDSS), Two Micron All Sky Survey, and Faint Images of the Radio Sky at Twenty cm survey. We find that the LoBAL fractions of the near-infrared (NIR) and radio samples are approximately 5-7 times higher than those measured in the optical sample. This suggests that the fractions measured in the NIR and radio bands are closer to the intrinsic fractions of the populations, and that the optical fractions are significantly biased due to obscuration effects, similar to high-ionization broad absorption line quasars (HiBALs). Considering a population of obscured quasars that do not enter the SDSS, which could have a much higher LoBAL fraction, we expect that the intrinsic fraction of LoBALs could be even higher. We also find that the LoBAL fractions decrease with increasing radio luminosities, again, similarly to HiBALs. In addition, we find evidence for increasing fractions of LoBALs toward higher NIR luminosities, especially for FeLoBALs with a fraction of {approx}18% at M{sub K{sub s}}< -31 mag. This population of NIR-luminous LoBALs may be at an early evolutionary stage of quasar evolution. To interpret the data, we use a luminosity-dependent model for LoBALs that yields significantly better fits than those from a pure geometric model.

  20. A variable P v broad absorption line and quasar outflow energetics

    NASA Astrophysics Data System (ADS)

    Capellupo, D. M.; Hamann, F.; Barlow, T. A.

    2014-10-01

    Broad absorption lines (BALs) in quasar spectra identify high-velocity outflows that might exist in all quasars and could play a major role in feedback to galaxy evolution. The viability of BAL outflows as a feedback mechanism depends on their kinetic energies, as derived from the outflow velocities, column densities, and distances from the central quasar. We estimate these quantities for the quasar, Q1413+1143 (redshift ze = 2.56), aided by the first detection of P V λλ1118, 1128 BAL variability in a quasar. In particular, P V absorption at velocities where the C IV trough does not reach zero intensity implies that the C IV BAL is saturated and the absorber only partially covers the background continuum source (with characteristic size <0.01 pc). With the assumption of solar abundances, we estimate that the total column density in the BAL outflow is log NH ≳ 22.3 cm-2. Variability in the P V and saturated C IV BALs strongly disfavours changes in the ionization as the cause of the BAL variability, but supports models with high column density BAL clouds moving across our lines of sight. The observed variability time of 1.6 yr in the quasar rest frame indicates crossing speeds >750 km s-1 and a radial distance from the central black hole of ≲ 3.5 pc, if the crossing speeds are Keplerian. The total outflow mass is ˜4100 M⊙, the kinetic energy ˜4 × 1054 erg, and the ratio of the outflow kinetic energy luminosity to the quasar bolometric luminosity is ˜0.02 (at the minimum column density and maximum distance), which might be sufficient for important feedback to the quasar's host galaxy.

  1. Investigating the radio-loud phase of broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Bruni, G.; González-Serrano, J. I.; Pedani, M.; Benn, C. R.; Mack, K.-H.; Holt, J.; Montenegro-Montes, F. M.; Jiménez-Luján, F.

    2014-09-01

    Context. Broad absorption lines (BALs) are present in the spectra of ~20% of quasars (QSOs); this indicates fast outflows (up to 0.2c) that intercept the observer's line of sight. These QSOs can be distinguished again into radio-loud (RL) BAL QSOs and radio-quiet (RQ) BAL QSOs. The first are very rare, even four times less common than RQ BAL QSOs. The reason for this is still unclear and leaves open questions about the nature of the BAL-producing outflows and their connection with the radio jet. Aims: We explored the spectroscopic characteristics of RL and RQ BAL QSOs with the aim to find a possible explanation for the rarity of RL BAL QSOs. Methods: We identified two samples of genuine BAL QSOs from SDSS optical spectra, one RL and one RQ, in a suitable redshift interval (2.5 < z < 3.5) that allowed us to observe the Mg ii and Hβ emission lines in the adjacent near-infrared (NIR) band. We collected NIR spectra of the two samples using the Telescopio Nazionale Galileo (TNG, Canary Islands). By using relations known in the literature, we estimated the black-hole mass, the broad-line region radius, and the Eddington ratio of our objects and compared the two samples. Results: We found no statistically significant differences from comparing the distributions of the cited physical quantities. This indicates that they have similar geometries, accretion rates, and central black-hole masses, regardless of whether the radio-emitting jet is present or not. Conclusions: These results show that the central engine of BAL QSOs has the same physical properties with and without a radio jet. The reasons for the rarity of RL BAL QSOs must reside in different environmental or evolutionary variables. Figure 3 is available in electronic form at http://www.aanda.org

  2. A new perspective on the interstellar cloud surrounding the Sun from UV absorption line results

    NASA Astrophysics Data System (ADS)

    Gry, Cecile; Jenkins, Edward B.

    2015-01-01

    We offer a new, more inclusive, picture of the local interstellar medium, where it is composed of a single, monolithic cloud that surrounds the Sun in all directions. Our study of velocities based on Mg II and Fe II ultraviolet absorption lines indicates that the cloud has an average motion consistent with the velocity vector of gas impacting the heliosphere and does not behave like a rigid body: gas within the cloud is being differentially decelerated in the direction of motion, and the cloud is expanding in directions perpendicular to this flow, much like the squashing of a balloon. The outer boundary of the cloud is in average 10 pc away from us but is highly irregular, being only a few parsecs away in some directions, with possibly a few extensions up to 20 pc. Average H I volume densities vary between 0.03 and 0.1 cm3 over different sight lines. Metals appear to be significantly depleted onto grains, and there is a steady increase in this effect from the rear of the cloud to the apex of motion. There is no evidence that changes in the ionizing radiation influence the apparent abundances. Additional, secondary velocity components are detected in 60% of the sight lines. Almost all of them appear to be interior to the volume holding the gas that we identify with the main cloud. Half of the sight lines exhibit a secondary component moving at about - 7.2 km/s with respect to the main component, which may be the signature of an implosive shock propagating toward the cloud's interior.

  3. Time-dependent excitation and ionization modelling of absorption-line variability due to GRB 080310

    NASA Astrophysics Data System (ADS)

    Vreeswijk, P. M.; Ledoux, C.; Raassen, A. J. J.; Smette, A.; De Cia, A.; Woźniak, P. R.; Fox, A. J.; Vestrand, W. T.; Jakobsson, P.

    2013-01-01

    We model the time-variable absorption of Fe II, Fe III, Si II, C II and Cr II detected in Ultraviolet and Visual Echelle Spectrograph (UVES) spectra of gamma-ray burst (GRB) 080310, with the afterglow radiation exciting and ionizing the interstellar medium in the host galaxy at a redshift of z = 2.42743. To estimate the rest-frame afterglow brightness as a function of time, we use a combination of the optical VRI photometry obtained by the RAPTOR-T telescope array, which is presented in this paper, and Swift's X-Ray Telescope (XRT) observations. Excitation alone, which has been successfully applied for a handful of other GRBs, fails to describe the observed column density evolution in the case of GRB 080310. Inclusion of ionization is required to explain the column density decrease of all observed Fe II levels (including the ground state 6D9/2) and increase of the Fe III 7S3 level. The large population of ions in this latter level (up to 10% of all Fe III) can only be explained through ionization of Fe II, as a large fraction of the ionized Fe II ions (we calculate 31% using the Flexible Atomic and Cowan codes) initially populate the 7S3 level of Fe III rather than the ground state. This channel for producing a significant Fe III 7S3 level population may be relevant for other objects in which absorption lines from this level, the UV34 triplet, are observed, such as broad absorption line (BAL) quasars and η Carinae. This provides conclusive evidence for time-variable ionization in the circumburst medium, which to date has not been convincingly detected. However, the best-fit distance of the neutral absorbing cloud to the GRB is 200-400 pc, i.e. similar to GRB-absorber distance estimates for GRBs without any evidence for ionization. We find that the presence of time-varying ionization in GRB 080310 is likely due to a combination of the super-solar iron abundance ([Fe/H] = +0.2) and the low H I column density (log N(H i) = 18.7) in the host of GRB 080310. Finally

  4. Metal-line absorption at Z(sub abs) approximately Z(sub em) from associated galaxies

    NASA Technical Reports Server (NTRS)

    Ellingson, E.; Yee, H. K. C.; Bechtold, Jill; Dobrzycki, Adam

    1994-01-01

    For a preliminary study of whether C IV absorption at Z(sub abs) approximately Z(sub em) is related to associated galaxy companions, we have collected data from a sample of 10 quasars with 0.15 less than z less than 0.65 for which high-resolution optical and UV spectroscopy is available from the literature, and for which we have deep optical images and limited spectroscopy. We also present new optical spectra for two of our samples. Four of these quasars have associated C IV absorption systems. In thes four fields, there are eight galaxies with M(sub r) less than -19.0 mag within 35 kpc of the quasar (projected distance, assuming they are at the quasar redshift), which may be candidates for the associated C IV absorption. This observed density of galaxies near quasars with associated C IV absorption is significantly greater than that for a control sample of quasars chosen from the literature. This result suggests that galaxies near the quasar line of sight may be linked with associated C IV absorption. None of these quasars show associated Mg II absorption, despite the presence of galaxies very near the line of sight, suggesting a Mg II 'proximity effect,' where ionizing flux from the quasar destroys the Mg(+) from at least the outer parts of the galaxies. Three quasars are located in rich galaxy clusters, but none of these quasars are found to have associated C IV absorption. This suggests that galaxies in rich clusters associated with quasars are less likely to be metal-line absorbers. It is plausible that the extended galaxy halos which may be responsible for the absorptions are stripped from galaxies in these dense environments. While it seems that at Z approximately 0.6 rich clusters do not cause them, associated C IV absorption systems at higher redshift may be explained by associated clusters if there has been evolution in the properties of galaxy halos in dense environments.

  5. A novel control system for automatically locking a diode laser frequency to a selected gas absorption line

    NASA Astrophysics Data System (ADS)

    Dong, Lei; Yin, Wangbao; Ma, Weiguang; Jia, Suotang

    2007-05-01

    A novel control system has been developed for avoiding manual operation during traditional frequency locking. The control system uses a computer with a commercial data acquisition card. This accomplishes the whole operation of frequency locking, including generating ramp, searching locking point, engaging a proportional-integral-differential (PID) regulator at the proper time and outputting PID compensation signal. Moreover, a new method has also been employed to make the novel control system accurately identify the locking points of all absorption lines within the scanning range, so that the laser frequency can be automatically firmly brought onto any selected absorption line centre without any adjusting time. The operation of the system, the ability to identify absorption lines and the performance of the frequency locking were discussed in detail. Successful tests were made with two different lasers: external cavity diode lasers and distributed feedback diode lasers.

  6. High-resolution IUE observations of interstellar absorption lines in the Vela supernova remnant

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.; Wallerstein, G.; Silk, J.

    1984-01-01

    Ultraviolet spectra of 45 stars in the vicinity of the Vela supernova remnant were recorded by the short-wavelength echelle spectrograph aboard the International Ultraviolet Explorer (IUE). Over one-third of the stars show interstellar absorption lines at large radial velocities (greater than 60 km/s). The mapping of these high-velocity components in the sky suggests the motions are chaotic, rather than from a coherent expansion of the remnant material. In accord with earlier conclusions from Copernicus data, the gas at high velocity exhibits higher than normal ionization and shows substantially less depletion of nonvolatile elements than normal interstellar material at low velocities. Relatively strong lines from neutral carbon in the two excited fine-structure states indicate that the neutral clouds within the remnant have had their pressures enhanced by the passage of the blast wave from the supernova. Also, the remnant seems to show a significant enhancement in the abundances of low-velocity Si IV, C IV, and N V over those found in the general interstellar medium.

  7. Magnetic Turbulence and Line Broadening in Simulations of Lyman-Alpha Absorption

    NASA Astrophysics Data System (ADS)

    Gurvich, Alex; Burkhart, Blakesley K.; Bird, Simeon

    2016-01-01

    We use the Illustris cosmological AREPO simulations to study the effects of gas turbulence and magnetic fields on measurements from the Lyman-Alpha forest. We generate simulated Lyman-Alpha spectra and plot the distributions of Column Density (CDD) and Doppler Width (b) both by adhering to the canonical method of fitting Voigt profiles to absorption lines and by directly measuring the column density and equivalent widths from snapshot data .We investigate the effects of additional unresolved gas turbulence in Illustris by adding an additional broadening term to the line profiles to mimic turbulent broadening. When we do this, we find a measurable effect in the CDD and an offset in the mean of the b distribution corresponding to the additional turbulence. We also compare different MHD runs in AREPO we find that the CDD can measurably differentiate between magnetic seed field at redshifts as low as z=0.1, but we do not find that the b distribution is affected at a detectable level. Our work suggests that the effects of turbulence and magnetic fields from z=2-0.1 can potentially be measured with these diagnostics. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  8. C IV Broad Absorption Line Acceleration in Sloan Digital Sky Survey Quasars

    NASA Astrophysics Data System (ADS)

    Grier, C. J.; Brandt, W. N.; Hall, P. B.; Trump, J. R.; Filiz Ak, N.; Anderson, S. F.; Green, Paul J.; Schneider, D. P.; Sun, M.; Vivek, M.; Beatty, T. G.; Brownstein, Joel R.; Roman-Lopes, Alexandre

    2016-06-01

    We present results from the largest systematic investigation of broad absorption line (BAL) acceleration to date. We use spectra of 140 quasars from three Sloan Digital Sky Survey programs to search for global velocity offsets in BALs over timescales of ≈2.5-5.5 years in the quasar rest frame. We carefully select acceleration candidates by requiring monolithic velocity shifts over the entire BAL trough, avoiding BALs with velocity shifts that might be caused by profile variability. The C iv BALs of two quasars show velocity shifts consistent with the expected signatures of BAL acceleration, and the BAL of one quasar shows a velocity-shift signature of deceleration. In our two acceleration candidates, we see evidence that the magnitude of the acceleration is not constant over time; the magnitudes of the change in acceleration for both acceleration candidates are difficult to produce with a standard disk-wind model or via geometric projection effects. We measure upper limits to acceleration and deceleration for 76 additional BAL troughs and find that the majority of BALs are stable to within about 3% of their mean velocities. The lack of widespread acceleration/deceleration could indicate that the gas producing most BALs is located at large radii from the central black hole and/or is not currently strongly interacting with ambient material within the host galaxy along our line of sight.

  9. The radio core and jet in the broad absorption-line quasar PG 1700+518

    NASA Astrophysics Data System (ADS)

    Yang, J.; Wu, F.; Paragi, Z.; An, T.

    2012-01-01

    The blueshifted broad absorption lines (BAL) or troughs are observed in active galactic nuclei (AGNs) when our line of sight is intercepted by a high-speed outflow (wind), likely originating in the accretion disc. The outflow or wind can shed light on the internal structure obscured by the AGN torus. Recently, it has been shown that this outflow is rotating in the BAL quasar PG 1700+518, further supporting the accretion disc origin of the wind. With the purpose of giving independent constraints on the wind geometry, we performed high-resolution European very long baseline interferometry (VLBI) Network (EVN) observations at 1.6 GHz in 2010. Combining the results with the Very Large Array (VLA) archival data at 8.4 GHz, we present its jet structure on scales of parsec (pc) to kiloparsec (kpc) for the first time. The source shows two distinct jet features in east-west direction with a separation of around 4 kpc. The eastern feature, which has so far been assumed to hide the core, is a kpc-scale hotspot, which is completely resolved out in the EVN image. In the western jet feature, we find a compact jet component, which pinpoints the position of the central black hole in the galaxy. Jet components on both sides of the core are additionally detected in the north-west-south-east direction, and they show a symmetric morphology on scale of <1 kpc. This two-sided jet feature is not common in the known BAL quasars and indicates that the jet axis is far away from the line of sight. Furthermore, it is nearly parallel to the scattering plane revealed earlier by optical polarimetry. By analogy to polar-scattered Seyfert 1 galaxies, we conclude that the jet likely has a viewing angle around 45°. The analogy is further supported by the recent report of significant cold absorption in the soft X-rays, a nearly unique feature to polar-scattered Seyfert galaxies. Finally, our observations have confirmed the earlier finding that the majority of radio emission in this galaxy arises

  10. Line parameters including temperature dependences of air- and self-broadened line shapes of 12C16O2: 2.06-μm region

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Sung, Keeyoon; Brown, Linda R.; Miller, Charles E.; Payne, Vivienne H.; Drouin, Brian J.; Yu, Shanshan; Crawford, Timothy J.; Mantz, Arlan W.; Smith, Mary Ann H.; Gamache, Robert R.

    2016-08-01

    This study reports the results from analyzing a number of high resolution, high signal-to-noise ratio (S/N) spectra in the 2.06-μm spectral region for pure CO2 and mixtures of CO2 in dry air. A multispectrum nonlinear least squares curve fitting technique has been used to retrieve the various spectral line parameters. The dataset includes 27 spectra: ten pure CO2, two 99% 13C-enriched CO2 and fifteen spectra of mixtures of 12C-enriched CO2 in dry air. The spectra were recorded at various gas sample temperatures between 170 and 297 K. The absorption path lengths range from 0.347 to 49 m. The sample pressures for the pure CO2 spectra varied from 1.1 to 594 Torr; for the two 13CO2 spectra the pressures were ∼10 and 146 Torr. For the air-broadened spectra, the pressures of the gas mixtures varied between 200 and 711 Torr with CO2 volume mixing ratios ranging from 0.014% to 0.203%. The multispectrum fitting technique was applied to fit simultaneously all these spectra to retrieve consistent set of line positions, intensities, and line shape parameters including their temperature dependences; for this, the Voigt line shape was modified to include line mixing (via the relaxation matrix formalism) and quadratic speed dependence. The new results are compared to select published values, including recent ab initio calculations. These results are required to retrieve the column averaged dry air mole fraction (XCO2) from space-based observations, such as the Orbiting Carbon Observatory-2 (OCO-2) satellite mission that NASA launched in July 2014.

  11. Phytoplankton absorption, photosynthetic parameters, and primary production off Baja California: summer and autumn 1998

    NASA Astrophysics Data System (ADS)

    Aguirre-Hernández, Elsa; Gaxiola-Castro, Gilberto; Nájera-Martínez, Sila; Baumgartner, Timothy; Kahru, Mati; Greg Mitchell, B.

    2004-03-01

    To estimate ocean primary production at large space and time scales, it is necessary to use models combined with ocean-color satellite data. Detailed estimates of primary production are typically done at only a few representative stations. To get survey-scale estimates of primary production, one must introduce routinely measured Chlorophyll-a (Chl-a) into models. For best precision, models should be based on accurate parameterizations developed from optical and photosynthesis data collected in the region of interest. To develop regional model parameterizations 14C-bicarbonate was used to estimate in situ primary production and photosynthetic parameters (α* ,Pm* , and Ek) derived from photosynthesis-irradiance (P-E) experiments from IMECOCAL cruises to the southern California Current during July and October 1998. The P-E experiments were done for samples collected from the 50% surface light depth for which we also determined particle and phytoplankton absorption coefficients (ap, aφ, and aφ*). Physical data collected during both surveys indicated that the 1997-1998 El Niño was abating during the summer of 1998, with a subsequent transition to the typical California Current circulation and coastal upwelling conditions. Phytoplankton chl-a and in situ primary production were elevated at coastal stations for both surveys, with the highest values during summer. Phytoplankton specific absorption coefficients in the blue peak (aφ* (440)) ranged from 0.02 to 0.11 m2 (mg Chl-a)-1 with largest values in offshore surface waters. In general aφ* was lower at depth compared to the surface. P-E samples were collected at the 50% light level that was usually in the surface mixed layer. Using α* and spectral absorption, we estimated maximum photosynthetic quantum yields (φmax; mol C/mol quanta). φmax values were lowest in offshore surface waters, with a total range of 0.01-0.07. Mean values of φmax for July and October were 0.011 and 0.022, respectively. In July Pm* was

  12. A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1992-01-01

    The far wing line shape theory developed previously and applied to the calculation of the continuum absorption of pure water vapor is extended to foreign-broadened continua. Explicit results are presented for H2O-N2 and H2O-CO2 in the frequency range from 0 to 10,000/cm. For H2O-N2 the positive and negative resonant frequency average line shape functions and absorption coefficients are computed for a number of temperatures between 296 and 430 K for comparison with available laboratory data. In general the agreement is very good.

  13. Spatial and temporal characterization of a distilled water plasma using Laser-Induced Breakdown Spectroscopy (LIBS) - Effect of self-absorption on plasma parameters

    SciTech Connect

    Boussaiedi, S.; Hannachi, R.; Ghalila, H.; BenLakhdar, Z.; Taieb, G.

    2007-09-19

    The spatio-temporal evolution of the plasma induced by interaction of a Nd-YAG laser pulse with the surface of distilled water is described. The temporal evolution from 200 ns after the plasma creation to 2200 ns of the H{sub {alpha}} and H{sub {beta}} lines are reported. Supposing the Local Themodynamic Equilibrium (LTE), the two plasma parameters: electron density and temperature are determined, including the influence of the self-absorption on its measurements. The spatial evolution of the H{sub {beta}} intensity and of the electron density are given.

  14. Spectroscopic line parameters for the nu6 band of carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    Goldman, Aaron; Blatherwick, Ronald D.; Bonomo, Francis S.; Rinsland, Curtis P.

    1990-01-01

    New measurements and analysis of high-resolution (0.0025/cm) laboratory spectra of the carbonyl fluoride nu6 band are described. The data are used to generate line parameters suitable for high-resolution atmospheric studies.

  15. No Evidence for Variability of Intervening Absorption Lines toward GRB 060206: Implications for the MgII Incidence Problem

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro; Totani, Tomonori; Hattori, Takashi; Ohta, Kouji; Kawabata, Koji S.; Kobayashi, Naoto; Iye, Masanori; Nomoto, Ken'ichi; Kawai, Nobuyuki

    2009-02-01

    We examined the variability of absorption line strength of intervening systems along the line of sight to GRB 060206 at z = 4.05, utilizing low-resolution optical spectra obtained by the Subaru telescope from six to ten hours after the burst. Strong variabilities of FeII and MgII lines at z = 1.48 during t = 5--8hr have been reported for this GRB, and those have been used to support the idea of clumpy MgII cloudlets, which was originally proposed to explain the anomalously high incidence of MgII absorbers in the GRB spectra compared to quasars. However, our spectra with a higher signal-to-noise ratio do not show any evidence for variability in t = 6--10hr. There is a clear discrepancy between our data and those of Hao et al. (2007, ApJ, 659, L99) in the overlapping time interval. Furthermore, the line strengths in our data are in agreement with those observed at t ˜ 2hr by Thöne et al. (2008, A&A, 489, 37). We also detected FeII and MgII absorption lines for a system at z = 2.26; these lines do not show evidence for variability either. Therefore, we conclude that there is no strong evidence for the variability in the intervening absorption lines toward GRB 060206, offering poor support for the MgII cloudlet hypothesis by the GRB 060206 data.

  16. Field test of spectral line intensity parameters for tropospheric water vapor

    NASA Astrophysics Data System (ADS)

    Sierk, B.; Solomon, S.; Daniel, J. S.; Portmann, R. W.; Gutman, S. I.; Langford, A. O.; Eubank, C. S.; Holub, K. H.; Florek, S. V.

    2003-06-01

    We report the results of a field experiment designed to study atmospheric water vapor absorption in the visible and near-infrared spectral regions between 550 and 1000 nm. We carried out spectroscopic ground measurements of direct solar radiation under clear-sky conditions in Boulder, Colorado. The data with a spectral resolution of approximately 1 nm were analyzed using the differential optical absorption spectroscopy (DOAS) technique in five different absorption bands of water vapor. We show that this technique can reveal the broadband effects of errors and inconsistencies in absorption spectra information for the water molecule. Retrievals of column tropospheric water vapor from the field spectra were compared to simultaneous independent estimates from Global Positioning System (GPS) data and radiosonde soundings. The data set is used to critically assess the widely used High-Resolution Transmission Molecular Absorption Database (HITRAN) [, 1998]. The results indicate that line intensities in the 3ν + δ polyad centered at 820 nm are underestimated by 21% with respect to the strong 3ν polyad centered at 940 nm, while the 4ν polyad at 720 nm shows agreement within the measurement accuracy of 3%. Two weaker bands centered at 650 and 590 nm were found to be overestimated by about 8-10%. The effect of the proposed corrections on the absorption of incoming solar flux for a clear-sky atmosphere is estimated to be 0.6 W/m2 for an overhead Sun.

  17. A Variable Energy, Redshifted, Iron Absorption Line in a recoiling Black Hole

    NASA Astrophysics Data System (ADS)

    Civano, Francesca

    The aim of this proposal is to maximize the scientific return of a medium deep (123 ksec) XMM-Newton observation, awarded during the AO10 call for proposal, to obtain a high quality X-ray spectrum of CID-42, a very peculiar source discovered in the COSMOS survey. CID-42 is exceptional in many respects showing a redshifted, variable energy absorption line plus an emission line at ~ 6 keV forming an inverted P-Cygni profile. These features were never observed before in the X-rays. The peculiar nature of CID-42 extends well beyond the X-ray spectrum. First, two optical sources in a common envelope are clearly seen in the HST data. They are separated by about 2.45 kpc. Thanks to the unrivaled Chandra HRC resolution it was possible to unambiguously associate the X-ray emission to only one of the two optical sources. Second, a high velocity (1100 km/s) offset, between the broad and narrow component of the H-beta line is measured in the VLT/Magellan/Keck optical spectra. The velocity offset observed is unlikely to be due to a ongoing merger because too high. Third, the above mentioned inverted P-Cygni profile in the hard X-ray spectrum would be naturally explained by an high velocity (v~0.02-0.14c) gas infall in the innermost region of the accreting Black Hole. All together the observed properties support the interpretation of a Black Hole kicked from the center of the galaxy by asymmetric emission of gravitational waves produced during a major merger. The Black Hole is caught while still active, at ~10^6 yrs after the kick and at a substantial distance from the center of the galaxy. The theoretical expectations suggest that they are extremely rare and just 1 or 2 gravitational wave recoiling Black Holes are expected in a survey like COSMOS. CID- 42 thus represents a ``Rosetta stone'' for the study of SMBH mergers that are believed to occur during galaxy-galaxy mergers, and their fate after the merging. The detailed study of the hard X-ray XMM-Newton spectrum, in the

  18. Variable Reddening and Broad Absorption Lines in the Narrow-line Seyfert 1 Galaxy WPVS 007: An Origin in the Torus

    NASA Astrophysics Data System (ADS)

    Leighly, Karen M.; Cooper, Erin; Grupe, Dirk; Terndrup, Donald M.; Komossa, S.

    2015-08-01

    We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddening increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11733, 13015, and 14058.

  19. Nitric Oxide Line Parameters: Review of 1996 HITRAN Update and New Results

    NASA Technical Reports Server (NTRS)

    Goldmant, A.; Giver, L. P.; Brown, L. R.; Risland, C. P.; Spencer, M. N.; Coudert, L. H.; Chackerian, C.; Dana, V.; Mandin, J. Y.

    1997-01-01

    The 1996 HITRAN database incorporated an extensive update of NO line parameters in the 5.3 mue region. Hyperfine lines associated with the 0-1 band up to J=46.5 were included and accuracies were greatly imporved.

  20. Development of a Software Tool for Calculating Transmission Line Parameters and Updating Related Databases

    NASA Astrophysics Data System (ADS)

    Xiu, Wanjing; Liao, Yuan

    2014-12-01

    Transmission lines are essential components of electric power grids. Diverse power system applications and simulation based studies require transmission line parameters including series resistance, reactance, and shunt susceptance, and accurate parameters are pivotal in ensuring the accuracy of analyses and reliable system operation. Commercial software packages for performing power system studies usually have their own databases that store the power system model including line parameters. When there is a physical system model change, the corresponding component in the database of the software packages will need to be modified. Manually updating line parameters are tedious and error-prone. This paper proposes a solution for streamlining the calculation of line parameters and updating of their values in respective software databases. The algorithms used for calculating the values of line parameters are described. The software developed for implementing the solution is described, and typical results are presented. The proposed solution is developed for a utility and has a potential to be put into use by other utilities.

  1. Absorption and emission line shapes in the O2 atmospheric bands - Theoretical model and limb viewing simulations

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Bucholtz, A.; Hays, P. B.; Ortland, D.; Skinner, W. R.

    1989-01-01

    A multiple scattering radiative transfer model has been developed to carry out a line-by-line calculation of the absorption and emission limb measurements that will be made by the High Resolution Doppler Imager to be flown on the Upper Atmosphere Research Satellite. The multiple scattering model uses the doubling and adding methods to solve the radiative transfer equation, modified to take into account a spherical inhomogeneous atmosphere. Representative absorption and emission line shapes in the O2 1Sigma(+)g - 3Sigma(-)g atmospheric bands (A,B, and gamma) and their variation with altitude are presented. The effects of solar zenith angle, aerosol loading, surface albedo, and cloud height on the line shapes are also discussed.

  2. First detection of ionized helium absorption lines in infrared K band spectra of O-type stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Block, David L.; Geballe, T. R.; Hanson, Margaret M.

    1993-01-01

    We have obtained high SNR, moderate-resolution K band spectra of two early O-type main sequence stars, HD 46150 O5 V, and HD 46223 O4 V, in the Rosette Nebula. We report the detection, for the first time, of the 2.189 micron He II line in O-type stars. Also detected is the 2.1661 micron Br-gamma line in absorption. The 2.058 micron He I line appears to be present in absorption in both stars, although its appearance at our resolution is complicated by atmospheric features. These three lines can form the basis for a spectral classification system for hot stars in the K band that may be used at infrared wavelengths to elucidate the nature of those luminous stars in otherwise obscured H II and giant H II regions.

  3. Probing the Circumgalactic Medium of Submillimeter Galaxies with QSO Absorption Line Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Hennawi, Joseph F.; Prochaska, Jason X.; Stockton, Alan N.; Mutel, Robert Lucien; Casey, Caitlin; Cooray, Asantha R.; Keres, Dusan

    2017-01-01

    We present first results from an ongoing survey to characterize the circumgalactic medium (CGM) of the massive high-redshift galaxieds detected as submillimeter galaxies (SMGs). By cross-matching far-infrared-selected galaxies from Herschel with spectroscopically confirmed quasars, we constructed a sample of 163 SMG-QSO pairs with separations less than 36". We observed 62 SMG-QSO pairs with the Very Large Array (VLA) and the Atacama Large Millimeter Array (ALMA). These observations obtained sub-arcsecond positions of 31 SMGs and identified seven previously-thought SMG-QSO pairs as submillimeter-luminous QSOs. We are currently conducting a redshift survey of the VLA/ALMA-confirmed SMGs and acquiring high S/N UV-optical specrtoscopy of the background QSOs. For the small sample of three VLA-confirmed SMG-QSO pairs that we have the complete data set, absorption line spectra of the background QSOs allow us to analyze the CGM of SMGs for the first time, providing insight into the fuel-supply ultimately powering their tremendous starbursts. Our observations reveal strong HI Ly-alpha absorption (rest-frame equivalent widths about 2-3 A) around all three SMGs; however, none exhibit compelling evidence for strong neutral absorbers (NHI > 1017.2 cm-2) or metal absorption, allowing us to place an 1-sigma upper limit on the covering factor of optically thick HI gas around SMGs of fC < 36.9%. This is significantly lower than the covering factor around the co-eval population of luminous QSOs. Theoretical models predict that the structure of the CGM is entirely determined by dark matter halo mass. Given that that SMGs are believed to inhabit massive dark matter halos comparable to those hosting quasars, this difference in covering factor is unexpected. Therefore, our results tentatively indicate that SMGs may not have substantial cool gas reservoirs in their halos and that they may inhabit much less massive halos than previously thought.

  4. Dependence of the Broad Absorption Line Quasar Fraction on Radio Luminosity

    NASA Astrophysics Data System (ADS)

    Shankar, Francesco; Dai, Xinyu; Sivakoff, Gregory R.

    2008-11-01

    We find that the fraction of classical broad absorption line quasars (BALQSOs) among the FIRST radio sources in the Sloan Data Release 3, is 20.5+ 7.3-5.9% at the faintest radio powers detected (L1.4 GHz ~ 1032 erg s-1), and rapidly drops to lesssim8% at L1.4 GHz ~ 3 × 1033 erg s-1. Similarly, adopting the broader absorption index (AI) definition of Trump et al., we find the fraction of radio BALQSOs to be 44+ 8.1-7.8%, reducing to 23.1+ 7.3-6.1% at high luminosities. While the high fraction at low radio power is consistent with the recent near-IR estimates by Dai et al., the lower fraction at high radio powers is intriguing and confirms previous claims based on smaller samples. The trend is independent of the redshift range, the optical and radio flux selection limits, or the exact definition of a radio match. We also find that at fixed optical magnitude, the highest bins of radio luminosity are preferentially populated by non-BALQSOs, consistent with the overall trend. We do find, however, that those quasars identified as AI-BALQSOs but not under the classical definition do not show a significant drop in their fraction as a function of radio power, further supporting independent claims that these sources, characterized by lower equivalent width, may represent an independent class from the classical BALQSOs. We find the balnicity index, a measure of the absorption trough in BALQSOs, and the mean maximum wind velocity to be roughly constant at all radio powers. We discuss several plausible physical models which may explain the observed fast drop in the fraction of the classical BALQSOs with increasing radio power, although none is entirely satisfactory. A strictly evolutionary model for the BALQSO and radio emission phases requires a strong fine-tuning to work, while a simple geometric model, although still not capable of explaining polar BALQSOs and the paucity of FRII BALQSOs, is statistically successful in matching the data if part of the apparent radio

  5. Results of Monitoring the Dramatically Variable C IV Mini-Broad Absorption Line System in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Eracleous, Michael; Charlton, Jane C.; Kashikawa, Nobunari

    2007-05-01

    We present six new and two previously published high-resolution spectra of the quasar HS 1603+3820 (zem=2.542) taken over an interval of 4.2 yr (1.2 yr in the quasar rest frame). The observations were made with the High Dispersion Spectrograph on the Subaru telescope and the Medium Resolution Spectrograph on the Hobby-Eberly Telescope. The purpose was to study the narrow absorption lines (NALs). We use time variability and coverage fraction analysis to separate intrinsic absorption lines, which are physically related to the quasar, from intervening absorption lines. By fitting models to the line profiles, we derive the parameters of the respective absorbers as a function of time. Only the mini-BAL system at zabs~2.43 (vshift~9500 km s-1) shows both partial coverage and time variability, although two NAL systems possibly show evidence of partial coverage. We find that all the troughs of the mini-BAL system vary in concert and its total equivalent width variations resemble those of the coverage fraction. However, no other correlations are seen between the variations of different model parameters. Thus, the observed variations cannot be reproduced by a simple change of ionization state or by motion of a homogeneous parcel of gas across the cylinder of sight. We propose that the observed variations are a result of rapid continuum fluctuations, coupled with coverage fraction fluctuations caused by a clumpy screen of variable optical depth located between the continuum source and the mini-BAL gas. An alternative explanation is that the observed partial coverage signature is the result of scattering of continuum photons around the absorber, thus the equivalent width of the mini-BAL can vary as the intensity of the scattered continuum changes. Based on data collected at the Subaru telescope, which is operated by the National Astronomical Observatory of Japan.

  6. Broad absorption line variability on multi-year timescales in a large quasar sample

    NASA Astrophysics Data System (ADS)

    Filiz Ak, Nurten

    Outflows launched near the central supermassive black holes (SMBHs) are a common and important component of active galactic nuclei (AGNs). Outflows in luminous AGNs (i.e., quasars) play a key role in mass accretion onto SMBH as well as in the feedback into host galaxies. The most prominent signature of such outflows appears as broad absorption lines (BALs) that are blueshifted from the emission line with a few thousands km s--1 velocities. In this dissertation, I place further constrains upon the size scale, internal structure, dynamics, and evolution of the outflows investigating profiles, properties, and variation characteristics of BAL troughs. I present observational results on BAL troughs in a large quasar sample utilizing spectroscopic observations from the Sloan Digital Sky Survey spanning on multi-year timescales. The results presented here, for the first time, provide a large and well-defined variability data base capable of discriminating between time-dependent hydrodynamic wind calculations in a statistically powerful manner. In a study of 582 quasars, I present 21 examples of BAL trough disappearance. Approximately 3.3% of BAL quasars show disappearing C IV trough on rest-frame timescales of 1.1--3.9 yr. BAL disappearance appears to occur mainly for shallow and weak or moderate-strength absorption troughs but not the strongest ones. When one BAL trough in a quasar spectrum disappears, the other present troughs usually weaken. Possible causes of such coordinated variations could be disk-wind rotation or variations of shielding gas that lead to variations of ionizing-continuum radiation. I present a detailed study on the variability of 428 C IV and 235 Si IV BAL troughs using a systematically observed sample of 291 BAL quasars. BAL variation distributions indicate that BAL disappearance is an extreme type of general BAL variability, rather than a qualitatively distinct phenomenon. The high observed frequency of BAL variability on multi-year timescales is

  7. Crystal-field analysis and calculation of two-photon absorption line strengths of dicesium sodium hexachlorogadolinate(III).

    PubMed

    Duan, Chang-Kui; Tanner, Peter A

    2010-03-31

    The crystal-field energy level calculation of the 4f(7) ion Gd(3+) in the crystal Cs(2)NaGdCl(6) has fitted 45 levels with standard deviation 12 cm(-1), with the energy parameters being consistent with those from other studies. The resulting eigenvectors have been employed in the calculation of two-photon absorption (TPA) intensities of transitions from the electronic ground state (8)S(7/2) to the crystal-field levels of excited (6)P, (6)I and (6)D multiplet terms. The TPA line strengths are highly polarization dependent and exhibit striking differences for linearly polarized incident radiation compared with circularly polarized radiation. The relative intensities are compared with those available from previous experimental studies and some reassignments have been made. Good agreement of calculated and experimental TPA spectra is found, except for the intensity ratio of the transitions to (6)P(7/2) or (6)P(5/2) compared with that to (6)P(3/2), for linear and circular polarizations, where the calculation overestimates the ratio. Reasons for this disagreement are presented.

  8. On-line Parameter Estimation of Time-varying Systems by Radial Basis Function Networks

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhide; Tanaka, Shinichi; Okita, Tsuyoshi

    This paper proposes a new on-line parameter estimation method with radial basis function networks for time-varying linear discrete-time systems. The time-varying parameters of the system are expressed with the radial basis function networks. These parameters are estimated by the nonlinear optimization technique, and the setting rules of the initial values in the optimization are proposed. The system parameters are usually unknown because they are changed by the circumstance conditions. Then, it is reasonable that the structures of the radial basis function networks are regulated according to the change of parameters. The minimum description length criterion studied in the encoding theory is applied to select the network structures. It is demonstrated in digital simulation that the proposed on-line estimation method succeeded to reduce the computaion time extremely, for time-varying parameters system.

  9. Isotopic ratios at z = 0.68 from molecular absorption lines toward B 0218+357

    NASA Astrophysics Data System (ADS)

    Wallström, S. H. J.; Muller, S.; Guélin, M.

    2016-11-01

    Isotopic ratios of heavy elements are a key signature of the nucleosynthesis processes in stellar interiors. The contribution of successive generations of stars to the metal enrichment of the Universe is imprinted on the evolution of isotopic ratios over time. We investigate the isotopic ratios of carbon, nitrogen, oxygen, and sulfur through millimeter molecular absorption lines arising in the z = 0.68 absorber toward the blazar B 0218+357. We find that these ratios differ from those observed in the Galactic interstellar medium, but are remarkably close to those in the only other source at intermediate redshift for which isotopic ratios have been measured to date, the z = 0.89 absorber in front of PKS 1830-211. The isotopic ratios in these two absorbers should reflect enrichment mostly from massive stars, and they are indeed close to the values observed toward local starburst galaxies. Our measurements set constraints on nucleosynthesis and chemical evolution models. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A96

  10. Fast outflows in broad absorption line quasars and their connection with CSS/GPS sources

    NASA Astrophysics Data System (ADS)

    Bruni , G.; Mack, K.-H.; Montenegro-Montes, F. M.; Brienza, M.; González-Serrano, J. I.

    2016-02-01

    Broad absorption line quasars are among the objects presenting the fastest outflows. The launching mechanism itself is not completely understood. Models in which they could be launched from the accretion disk, and then curved and accelerated by the effect of the radiation pressure, have been presented. We conducted an extensive observational campaign, from radio to optical band, to collect information about their nature and test the models present in the literature, the main dichotomy being between a young scenario and an orientation one. We found a variety of possible orientations, morphologies, and radio ages, not converging to a particular explanation for the BAL phenomenon. From our latest observations in the m- and mm-band, we obtained an indication of a lower dust abundance with respect to normal quasars, thus suggesting a possible feedback process on the host galaxy. Also, in the low-frequency regime we confirmed the presence of CSS components, sometime in conjunction with a GPS one already detected at higher frequencies. Following this, about 70 % of our sample turns out to be in a GPS or CSS+GPS phase. We conclude that fast outflows, responsible for the BAL features, can be more easily present among objects going through a restarting or just-started radio phase, where radiation pressure can substantially contribute to their acceleration.

  11. MOSFIRE ABSORPTION LINE SPECTROSCOPY OF z > 2 QUIESCENT GALAXIES: PROBING A PERIOD OF RAPID SIZE GROWTH

    SciTech Connect

    Belli, Sirio; Ellis, Richard S.; Konidaris, Nick P.; Newman, Andrew B.

    2014-06-20

    Using the MOSFIRE near-infrared multi-slit spectrograph on the Keck 1 Telescope, we have secured high signal-to-noise ratio absorption line spectra for six massive galaxies with redshift 2 < z < 2.5. Five of these galaxies lie on the red sequence and show signatures of passive stellar populations in their rest-frame optical spectra. By fitting broadened spectral templates we have determined stellar velocity dispersions and, with broad-band Hubble Space Telescope and Spitzer photometry and imaging, stellar masses and effective radii. Using this enlarged sample of galaxies, we confirm earlier suggestions that quiescent galaxies at z > 2 have small sizes and large velocity dispersions compared to local galaxies of similar stellar mass. The dynamical masses are in very good agreement with stellar masses (log M {sub *}/M {sub dyn} = –0.02 ± 0.03), although the average stellar-to-dynamical mass ratio is larger than that found at lower redshift (–0.23 ± 0.05). By assuming evolution at fixed velocity dispersion, not only do we confirm a surprisingly rapid rate of size growth but we also consider the necessary evolutionary track on the mass-size plane and find a slope α = dlog R{sub e} /dlog M {sub *} ≳ 2 inconsistent with most numerical simulations of minor mergers. Both results suggest an additional mechanism may be required to explain the size growth of early galaxies.

  12. The intervening and associated O VI absorption-line systems in the ultraviolet spectrum of H1821+643

    NASA Astrophysics Data System (ADS)

    Savage, Blair D.; Tripp, Todd M.; Lu, Limin

    1998-02-01

    GHRS and FOS ultraviolet spectra of the bright QSO H1821+643 reveal the presence of strong O VI 1031.93, 1037.62 A absorption systems at z(abs) = 0.225 and 0.297, the latter being at the redshift of the QSO itself. Ground-based galaxy redshift measurements by us and others reveal two emission-line galaxies near the redshift of the intervening system at z(abs) = 0.225, suggesting the existence of a galaxy group at this redshift. The intervening O VI absorption system is also detected in H I but is not detected in the lines of Si II, Si IV, C IV, or N V. These ionization characteristics can be explained by a low-density, extended diffuse gas distribution that is photoionized by the metagalactic UV background if the gas has a metallicity of 0.1 times solar. Such a photoionized gas may be associated with the extended halo of the luminous intervening spiral galaxy at a projected distance of 100 h kpc, or with an intragroup medium. Alternatively, the absorption may be produced in hot collisionally ionized halo gas or in a hot intragroup medium. The associated system with z(abs) = 0.297 contains narrow and broad O VI absorption. The narrow absorption, which is also detected in H I, C III, C IV, and Si IV, can be modeled as gas photoionized by H1821+643 with roughly solar abundances. This gas is probably situated close to H1821+643. The broad O VI absorption that is centered at the emission redshift of H1821+643 may represent a weak and narrow example of the broad absorption line phenomena.

  13. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    SciTech Connect

    Pascucci, I.; Simon, M. N.; Edwards, S.; Heyer, M.; Rigliaco, E.; Hillenbrand, L.; Gorti, U.; Hollenbach, D.

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.

  14. Derivation of the physical parameters for strong and weak flares from the Hα line

    NASA Astrophysics Data System (ADS)

    Semeida, M. A.; Rashed, M. G.

    2016-06-01

    The two flares of 19 and 30 July 1999 were observed in the Hα line using the multichannel flare spectrograph (MFS) at the Astronomical Institute in Ondřejov, Czech Republic. We use a modified cloud method to fit the Hα line profiles which avoids using the background profile. We obtain the four parameters of the two flares: the source function, the optical thickness at line center, the line-of-sight velocity and the Doppler width. The observed asymmetry profiles have been reproduced by the theoretical ones based on our model. A discussion is made about the results of strong and weak flares using the present method.

  15. Effect of absorption parameters on calculation of the dose coefficient: example of classification of industrial uranium compounds.

    PubMed

    Chazel, V; Houpert, P; Paquet, F; Ansoborlo, E

    2001-01-01

    In the Human Respiratory Tract Model (HRTM) described in ICRP Publication 66, time-dependent dissolution is described by three parameters: the fraction dissolved rapidly, fr, and the rapid and slow dissolution rates sr and ss. The effect of these parameters on the dose coefficient has been studied. A theoretical analysis was carried out to determine the sensitivity of the dose coefficient to variations in the values of these absorption parameters. Experimental values of the absorption parameters and the doses per unit intake (DPUI) were obtained from in vitro dissolution tests, or from in vivo experiments with rats, for five industrial uranium compounds UO2, U3O8, UO4, UF4 and a mixture of uranium oxides. These compounds were classified in terms of absorption types (F, M or S) according to ICRP. The overall result was that the factor which has the greatest influence on the dose coefficient was the slow dissolution rate ss. This was verified experimentally, with a variation of 20% to 55% for the DPUI according to the absorption type of the compound. In contrast, the rapid dissolution rate sr had little effect on the dose coefficient, excepted for Type F compounds.

  16. Impact of broadened laser line-shape on retrievals of atmospheric species from lidar sounding absorption spectra.

    PubMed

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2015-02-09

    We examine the impact of broadened laser line-shape on retrievals of atmospheric species from lidar-sounding absorption spectra. The laser is assumed to be deterministically modulated into a stable, nearly top-hat frequency comb to suppress the stimulated Brillouin scattering, allowing over 10-fold pulse energy increase without adding measurement noise. Our model remains accurate by incorporating the laser line-shape factor into the effective optical depth. Retrieval errors arising from measurement noise and model bias are analyzed parametrically and numerically to provide deeper insight. The stable laser line-shape broadening minimally degrades the column-averaged retrieval, but can significantly degrade the multiple-layer retrievals.

  17. Highly Ionized Iron Absorption Lines from Outflowing Gases in the X-ray Spectrum of NGC 1365

    NASA Technical Reports Server (NTRS)

    Risaliti, G.; Bianchi, S.; Matt, G.; Baldi, A.; Elvis, M.; Fabbiano, G.; Zezas, A.

    2006-01-01

    We present the discovery of four absorption lines in the X-ray spectrum of the Seyfert galaxy NGC 1365, at energies between 6.7 and 8.3 keV. The lines are detected with high statistical confidence (from >20 sigma for the strongest to -4 sigma for the weakest) in two XMM-Newton observations 60 ks long. We also detect the same lines, with a lower signal-to-noise ratio (but still >2 sigma for each line), in two previous shorter (-10 ks) XMM-Newton observations. The spectral analysis identifies these features as Fe XXV and Fe XXVI Kalpha and Kbeta lines, outflowing with velocities varying between -1000 and -5000 km/s among the observations. These are the highest quality detections of such lines so far. The high equivalent widths [EW (Kalpha) approximately 100 eV] and the Kalpha/Kbeta ratios imply that the lines are due to absorption of the AGN continuum by a highly ionized gas with column density NH-5?1023 cm(exp -2) at a distance of -(50-100)RS from the continuum source.

  18. Line parameters including temperature dependences of self- and air-broadened line shapes of 12C16O2: 1.6-μm region

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.; Miller, Charles E.; Drouin, Brian J.; Payne, Vivienne H.; Yu, Shanshan; Smith, Mary Ann H.; Mantz, Arlan W.; Gamache, Robert R.

    2016-07-01

    Pressure-broadened line shapes in the 30013←00001 (ν1+4 ν20 +ν3) band of 12C16O2 at 6228 cm-1 are reanalyzed using new spectra recorded with sample temperatures down to 170 K. High resolution, high signal-to-noise (S/N) laboratory measurements of line shapes (Lorentz air- and self-broadened half-width coefficients, pressure-shift coefficients and off-diagonal relaxation matrix element coefficients) as a function of gas sample temperatures for various pressures and volume mixing ratios are presented. The spectra were recorded using two different Fourier transform spectrometers (FTS): (1) the McMath-Pierce FTS located at the National Solar Observatory on Kitt Peak, Arizona (and reported in Devi et al., J Mol Spectrosc 2007;245:52-80) and, (2) the Bruker IFS-125HR FTS at the Jet Propulsion Laboratory in Pasadena, California. The 19 spectra taken at Kitt Peak were all recorded near room temperature while the 27 Bruker spectra were acquired both at room temperature and colder temperatures (170-296 K). Various spectral resolutions (0.004-0.011 cm-1), absorption path lengths (2.46-121 m) and CO2 samples (natural and 12C-enriched) were included in the dataset. To maximize the accuracies of the various retrieved line parameters, a multispectrum nonlinear least squares spectrum fitting software program was used to adjust the ro-vibrational constants (G,B,D etc.) and intensity parameters (including Herman-Wallis terms) instead of directly measuring the individual line positions and intensities. To minimize systematic residuals, line mixing (via off-diagonal relaxation matrix elements) and quadratic speed dependence parameters were included in the analysis. Contributions from other weakly absorbing bands: the 30013←00001 and 30012←00001 bands of 13C16O2, the 30013←00001 band of 12C16O18O, hot bands 31113←01101 and 32212←02201 of 12C16O2, as well as the 40013←10001 and the 40014←10002 bands of 12C16O2, present within the fitted interval were also measured

  19. Influence of saturation of diode pump radiation absorption in YAG:Yb+3 crystal on parameters of planar waveguide lasers

    NASA Astrophysics Data System (ADS)

    Galushkin, M. G.; Yakunin, V. P.; Dyachkov, R. G.

    2017-01-01

    A method has been devised for calculating the energy parameters of generation of planar YAG:Yb3+ lasers, with regard to saturation of the absorption of pump diode laser radiation with a wavelength λ  =  940 nm. It has been shown that nonlinearity of the pump absorption coefficient can substantially reduce the small-signal gain at the transition with a wavelength λ  =  1030 nm. It has been found that pump saturation influence on the energy efficiency of planar lasers and power amplifiers is considerably weakened in the field of intense laser radiation.

  20. The Nature of Low-ionization Broad Absorption Line Quasi-stellar Objects

    NASA Astrophysics Data System (ADS)

    Lazarova, Mariana Spasova

    The tight correlations between properties of galaxy bulges and their central supermassive black holes have been reproduced successfully in simulations of galaxy collisions if feedback processes are invoked. Mergers of gas-rich galaxies of comparable size have been shown to trigger starbursts, fuel the central black holes, and transform disks into ellipticals. Feedback from the black hole accretion in the form of extreme outflows has need suggested as the mechanism by which the black hole stop its own growth and quenches the star formation in the galaxy by expelling the gas supply. Such winds have been detected in Broad Absorption Line (BAL) QSOs. However, observational evidence that BAL QSOs may be an evolutionary link between mergers and QSO is missing. In this thesis, we provide the first detailed study of the spectral energy distributions and host galaxy morphologies of a statistically significant volume-limited sample of 22 optically-selected low-ionization Broad Absorption Line QSOs (LoBALs) at 0.5 < z < 0.6. By comparing their mid-IR spectral properties and far-IR SEDs with those of a control sample of 35 non-LoBALs (non-LoBALs) matched in Mi, we investigate the differences between the two populations in terms of their infrared emission and star formation activity. We model the SEDs and decouple the AGN and starburst contributions to the far-infrared luminosity in LoBALs and in non-LoBALs. We estimate star formation rates (SFRs) corrected for the AGN contribution to the FIR flux and find that LoBALs have comparable levels of star formation activity to non-LoBALs when considering the entire samples. Overall, our results show that there is no strong evidence from the mid- and far-IR properties that LoBALs are drawn from a different parent population than non-LoBALs. We conducted the first high-resolution morphological analysis of LoBALs using observations obtained with the Hubble Space Telescope Wide Field Camera 3 in two channels. Signs of recent or ongoing

  1. Variation of Ionizing Continuum: The Main Driver of Broad Absorption Line Variability

    NASA Astrophysics Data System (ADS)

    He, Zhicheng; Wang, Tinggui; Zhou, Hongyan; Bian, Weihao; Liu, Guilin; Yang, Chenwei; Dou, Liming; Sun, Luming

    2017-04-01

    We present a statistical analysis of the variability of broad absorption lines (BALs) in quasars using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 12 (SDSS DR12). We divide the sample into two groups according to the pattern of the variation of C iv BAL with respect to that of a continuum: the equivalent widths (EW) of the BAL decreases (increases) when the continuum brightens (dims) as group T1; and the variation of the EW and the continuum in the opposite relation of group T2. We find that T2 has significantly ({P}{{T}}< {10}-6, Students T Test) higher EW ratios (R) of Si iv to C iv BAL than T1. Our result agrees with the prediction of photoionization models that {C}+3 column density increases (decreases) if there is a (or no) {C}+3 ionization front, while R decreases with the incident continuum. We show that BAL variabilities in at least 80% of quasars are driven by the variation of an ionizing continuum, while other models that predict uncorrelated BAL and continuum variability contribute less than 20%. Considering large uncertainty in the continuum flux calibration, the latter fraction may be much smaller. When the sample is binned into different time intervals between the two observations, we find significant difference in the distribution of R between T1 and T2 in all time-bins down to {{Δ }}T< 6 days, suggesting that the BAL outflow in a fraction of quasars has a recombination timescale of only a few days.

  2. Melting Line Parameters and Thermodynamic Properties of Methane at High Pressures

    NASA Astrophysics Data System (ADS)

    Yakub, L. N.; Bodiul, E. S.

    2017-04-01

    The location of the melting line in the phase diagram of methane was predicted using two theoretical equations of state: for solid and fluid phases. The equations of state for both phases are constructed in the framework of thermodynamic perturbation theory, considering the octupole-octupole interaction of methane molecules as a perturbation. The results of calculations of the melting line parameters are compared with experimental and computer simulation data.

  3. SDSS J163459.82+204936.0: A Ringed Infrared-luminous Quasar with Outflows in Both Absorption and Emission Lines

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hong-Yan; Jiang, Ning; Wu, Xufen; Lyu, Jianwei; Shi, Xiheng; Shu, Xinwen; Jiang, Peng; Ji, Tuo; Wang, Jian-Guo; Wang, Shu-Fen; Sun, Luming

    2016-05-01

    SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L IR = 1011.91 {L}⊙ . We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR ≈ 140 {M}⊙ yr-1, estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in Hβ, He i λλ5876, 10830, and other emission lines consistently with an offset velocity of ≈900 {km} {{{s}}}-1, as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He i λ10830 and the bulk blueshifting of [O iii]λ5007), while there exist blueshifted broad absorption lines (BALs) in Na i D and He i λλ3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 104 < n H ≲ 105 cm-3, ionization parameter 10-1.3 ≲ U ≲ 10-0.7 , and column density 1022.5 ≲ N H ≲ 1022.9 cm-2, which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of ˜48-65 pc from the nucleus and that the kinetic luminosity of the outflow is 1044-1046 {erg} {{{s}}}-1. J1634+2049 has a off-centered galactic ring on the scale of ˜30 kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the co-evolution scenario invoking galaxy merger (or

  4. New aspects of absorption-line formation in intervening turbulent clouds - III. The inverse problem in the study of H+D profiles

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Kegel, Wilhelm H.; Takahara, Fumio

    1999-02-01

    A new method, based on a reverse Monte Carlo technique and aimed at the inverse problem in the analysis of intergalactic (interstellar) H+D absorption profiles, is presented. We consider the process of line formation in media with a stochastic velocity field accounting for correlation effects (mesoturbulence). This approach generalizes the standard microturbulent approximation, which is commonly used to model the formation of absorption spectra in turbulent media. The method allows one to estimate, from an observed spectrum, both the physical parameters of the absorbing gas and an appropriate structure of the distribution of the velocity component parallel to the line of sight. The validity of the computational procedure is demonstrated using a series of synthetic spectra that emulate the up-to-date best quality data. The H+D Lyα, Lyβ and H I Ly-14 lines were fitted simultaneously. The confidence regions calculated for the `NH i-D/H' plane show that the difference between the recovered and adopted values does not exceed the 3σ level.

  5. The Redshifted Hydrogen Balmer and Metastable He 1 Absorption Line System in Mini-FeLoBAL Quasar SDSS J112526.12+002901.3: A Parsec-scale Accretion Inflow?

    NASA Astrophysics Data System (ADS)

    Shi, Xi-Heng; Jiang, Peng; Wang, Hui-Yuan; Zhang, Shao-Hua; Ji, Tuo; Liu, Wen-Juan; Zhou, Hong-Yan

    2016-10-01

    The accretion of the interstellar medium onto central super-massive black holes is widely accepted as the source of the gigantic energy released by the active galactic nuclei. However, few pieces of observational evidence have been confirmed directly demonstrating the existence of the inflows. The absorption line system in the spectra of quasar SDSS J112526.12+002901.3 presents an interesting example in which the rarely detected hydrogen Balmer and metastable He i absorption lines are found redshifted to the quasar's rest frame along with the low-ionization metal absorption lines Mg ii, Fe ii, etc. The repeated SDSS spectroscopic observations suggest a transverse velocity smaller than the radial velocity. The motion of the absorbing medium is thus dominated by infall. The He i* lines present a powerful probe to the strength of ionizing flux, while the Balmer lines imply a dense environment. With the help of photoionization simulations, we find that the absorbing medium is exposed to the radiation with ionization parameter U ≈ 10-1.8, and the density is n({{H}})≈ {10}9 {{cm}}-3. Thus the absorbing medium is located ˜4 pc away from the central engine. According to the similarity in the distance and physical conditions between the absorbing medium and the torus, we strongly propose the absorption line system as a candidate for the accretion inflow, which originates in the inner surface of the torus.

  6. The Near Infrared Absorption Spectrum of Water by CRDS Between 1.26-1.70 µm:Complete Empirical Line List and Continuum Absorption

    NASA Astrophysics Data System (ADS)

    Mondelain, Didier; Campargue, Alain; Kassi, Samir; Mikhailenko, Semen

    2014-06-01

    Due to the increasing performances of Airborne- and ground-based spectrometers, a more and more accurate characterization of the water vapor absorption is required. This is especially true in the transparency windows, corresponding to low absorption spectral regions widely used for probing the Earth's atmosphere. State-of-the-art experimental developments are required to fulfill the needs in terms of accuracy of the spectroscopic data. For that purpose, we are using high-sensitivity Continuous Wave Cavity Ring Down Spectroscopy (CW-CRDS) allowing reproducing in laboratory conditions comparable to the atmospheric ones in terms of absorption path length (tens of kilometers), temperature and pressure. From extensive analysis of our CRDS spectra, we have constructed an empirical line list for "natural" water vapor at 296 K in the 5850 7920 cm-1 region including 38 318 transitions of four major water isotopologues (H2 16O, H218O, H217O and HD16O) with an intensity cut-off of 1·10-29 cm/molecule. The list is made mostly complete over the whole spectral region by including a large number of unobserved weak lines with positions calculated using experimentally determined energy levels and intensities obtained from variational calculations. In addition, we provide HD18O and HD 17O lists in the same region for transitions with intensities larger than 1·10-29 cm/molecule. The HD18O and HD17O lists (1 972 lines in total) were obtained using empirical energy levels available in the literature and variational intensities. The global list (40 290 transitions) including the contribution of the six major isotopologues has been adopted for the new edition of the GEISA database in the region. The advantages and drawbacks of our list will be discussed in comparison with the list provided for the same region in the 2012 edition of the HITRAN database. Separate experiments were dedicated to the measurement of the water vapor self-continuum crosssections in the 1.6 µm window by CW

  7. INVISIBLE ACTIVE GALACTIC NUCLEI. II. RADIO MORPHOLOGIES AND FIVE NEW H i 21 cm ABSORPTION LINE DETECTORS

    SciTech Connect

    Yan, Ting; Stocke, John T.; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2016-03-15

    This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5 and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by

  8. Influence of plasma parameters on the absorption coefficient of alpha particles to lower hybrid waves in tokamaks

    SciTech Connect

    Wang, J.; Zhang, X. Yu, L.; Zhao, X.

    2014-12-15

    In tokamaks, fusion generated α particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient γ{sub α} of LH waves due to α particles changing with some typical parameters is calculated in this paper. Results show that γ{sub α} increases with the parallel refraction index n{sub ‖}, while decreases with the frequency of LH waves ω over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient γ{sub α} increases with n{sub e} when n{sub e} ≤ 8 × 10{sup 19} m{sup −3}, while decreases with n{sub e} when n{sub e} becomes larger, and there is a peak value of γ{sub α} when n{sub e} ≈ 8 × 10{sup 19} m{sup −1} for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of γ{sub α} with n{sub ‖} being 2.5 is almost two times larger than that with n{sub ‖} being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.

  9. [Analysis and comparison of intestinal absorption of components of Gegenqinlian decoction in different combinations based on pharmacokinetic parameters].

    PubMed

    Zhang, Yi-Zhu; An, Rui; Yuan, Jin; Wang, Yue; Gu, Qing-Qing; Wang, Xin-Hong

    2013-10-01

    To analyse and compare the characteristics of the intestinal absorption of puerarin, baicalin, berberine and liquiritin in different combinations of Gegenqinlian decoction based on pharmacokinetic parameters, a sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was applied for the quantification of four components in rat's plasma. And pharmacokinetic parameters were determined from the plasma concentration-time data with the DAS software package. The influence of different combinations on pharmacokinetics of four components was studied to analyse and compare the absorption difference of four components, together with the results of the in vitro everted gut model and the rat single pass intestinal perfusion model. The results showed that compared with other combinations, the AUC values of puerarin, baicalin and berberine were increased significantly in Gegenqinlian decoction group, while the AUC value of liquiritin was reduced. Moreover, the absorption of four components was increased significantly supported by the results from the in vitro everted gut model and the rat single pass intestinal perfusion model, which indicated that the Gegenqinlian decoction may promote the absorption of four components and accelerate the metabolism of liquiritin by the cytochrome P450.

  10. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  11. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  12. Higher-order mode absorption measurement of X-band choke-mode cavities in a radial line structure

    NASA Astrophysics Data System (ADS)

    Zha, Hao; Shi, Jiaru; Wu, Xiaowei; Chen, Huaibi

    2016-04-01

    An experiment is presented to study the higher-order mode (HOM) suppression of X-band choke-mode structures with a vector network analyzer (VNA). Specific radial line disks were built to test the reflection from the corresponding damping load and different choke geometries. The mismatch between the radial lines and the VNA was calibrated through a special multi-short-load calibration method. The measured reflections of different choke geometries showed good agreement with the theoretical calculations and verified the HOM absorption feature of each geometric design.

  13. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    PubMed

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  14. On-line physical parameter identification and adaptive control of a launch vehicle

    NASA Astrophysics Data System (ADS)

    Keller, Brian Scott

    Physical parameter identification is useful in many applications, especially in aerospace where much analysis goes into developing accurate physical system models for control. A number of off-line physical parameter identification methods exist; however, the choice of on-line methods is more limited. On-line identification methods are required for adaptive control. New on-line physical parameter identification methods are developed in this work as motivated by the problem of launch vehicle adaptive control. Launch vehicles vary from launch to launch due to differences in payloads and fuel loading. Based on the known variations, launch vehicle control laws are reanalyzed and modified if necessary; this process is expensive and adds to recurring launch vehicle costs. This reanalysis is performed despite the fact that changes in the launch vehicle are relatively minor. A trustworthy adaptive control system could eliminate this expensive redesign cycle. An adaptive control system could also provide better performance than a controller redesigned off-line. However, adaptive control is still considered too risky to use with unstable systems, primarily due to limitations in the identification methods currently available for use in adaptive control. This problem is addressed with the development of new identification algorithms. A philosophy of identification is described which uses physical parameters for identification. A technique is developed to convert existing on-line methods to a form capable of identifying physical parameters. New methods include physical parameter versions of normalized least mean squares (NLMS), research least squares (RLS), extended least squares (ELS), recursive maximum likelihood (RML), and the extended Kalman filter (EKF). Compared to transfer function identification, physical parameter identification reduces the order of the problem and speeds up convergence. Compared to the extended Kalman filter, the new methods have a faster iteration

  15. No Evidence for Variability of Intervening Absorption Lines toward GRB 060206: Implications for the Mg II Incidence Problem

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Totani, T.; Hattori, T.; Ohta, K.; Kawabata, K. S.; Kobayashi, N.; Iye, M.; Nomoto, K.; Kawai, N.

    2009-05-01

    We examine variability of absorption line strength of intervening systems along the line of sight to GRB 060206 at z = 4.05, by the low-resolution optical spectra obtained by the Subaru telescope from six to ten hours after the burst. Strong variabilities of Fe II and Mg II lines at z = 1.48 during t = 5-8 hours have been reported for this GRB [8], and this has been used to support the idea of clumpy Mg II cloudlets that was originally proposed to explain the anomalously high incidence of Mg II absorbers in GRB spectra compared with quasars. However, our spectra with higher signal-to-noise ratio do not show any evidence for variability in t = 6-10 hours. There is a clear discrepancy between our data and Hao et al. data in the overlapping time interval. Furthermore, the line strengths in our data are in good agreement with those observed at t~2 hours by Thone et al. [22]. Therefore we conclude that there is no strong evidence for variability of intervening absorption lines toward GRB 060206, significantly weakening the support to the Mg II cloudlet hypothesis by the GRB 060206 data.

  16. Wavelength locking to CO2 absorption line-center for 2-μm pulsed IPDA lidar application

    NASA Astrophysics Data System (ADS)

    Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong

    2016-05-01

    An airborne 2-m triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-μm CW laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nm, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.

  17. Recovery of acetylene absorption line profile basing on tunable diode laser spectroscopy with intensity modulation and photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Li; Thursby, Graham; Stewart, George; Arsad, Norhana; Uttamchandani, Deepak; Culshaw, Brian; Wang, Yiding

    2010-04-01

    A novel and direct absorption line recovery technique based on tunable diode laser spectroscopy with intensity modulation is presented. Photoacoustic spectroscopy is applied for high sensitivity, zero background and efficient acoustic enhancement at a low modulation frequency. A micro-electromechanical systems (MEMS) mirror driven by an electrothermal actuator is used for generating laser intensity modulation (without wavelength modulation) through the external reflection. The MEMS mirror with 10μm thick structure material layer and 100nm thick gold coating is formed as a circular mirror of 2mm diameter attached to an electrothermal actuator and is fabricated on a chip that is wire-bonded and placed on a PCB holder. Low modulation frequency is adopted (since the resonant frequencies of the photoacoustic gas cell and the electrothermal actuator are different) and intrinsic high signal amplitude characteristics in low frequency region achieved from measured frequency responses for the MEMS mirror and the gas cell. Based on the property of photoacoustic spectroscopy and Beer's law that detectable sensitivity is a function of input laser intensity in the case of constant gas concentration and laser path length, a Keopsys erbium doped fibre amplifier (EDFA) with opto-communication C band and high output power up to 1W is chosen to increase the laser power. High modulation depth is achieved through adjusting the MEMS mirror's reflection position and driving voltage. In order to scan through the target gas absorption line, the temperature swept method is adopted for the tunable distributed feed-back (DFB) diode laser working at 1535nm that accesses the near-infrared vibration-rotation spectrum of acetylene. The profile of acetylene P17 absorption line at 1535.39nm is recovered ideally for ~100 parts-per-million (ppm) acetylene balanced by nitrogen. The experimental signal to noise ratio (SNR) of absorption line recovery for 500mW laser power was ~80 and hence the

  18. Broad Balmer Absorption Line Variability: Evidence of Gas Transverse Motion in the QSO SDSS J125942.80+121312.6

    NASA Astrophysics Data System (ADS)

    Shi, Xiheng; Zhou, Hongyan; Shu, Xinwen; Zhang, Shaohua; Ji, Tuo; Pan, Xiang; Sun, Luming; Zhao, Wen; Hao, Lei

    2016-03-01

    We report on the discovery of broad Balmer absorption lines variability in the QSO SDSS J125942.80+121312.6, based on the optical and near-infrared spectra taken from the SDSS-I, SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), and TripleSpec observations over a timescale of 5.8 years in the QSO's rest-frame. The blueshifted absorption profile of Hβ shows a variation of more than 5σ at a high velocity portion (\\gt 3000 {km} {{{s}}}-1) of the trough. We perform a detailed analysis for the physical conditions of the absorber using Balmer lines as well as metastable He i and optical Fe ii absorptions (λ4233 from b4P5/2 level and λ5169 from a6S5/2) at the same velocity. These Fe ii lines are identified in the QSO spectra for the first time. According to the photoionization simulations, we estimate a gas density of n({{H}})≈ {10}9.1 {{cm}}-3 and a column density of {N}{col}({{H}})≈ {10}23 {{cm}}-2 for the BOSS data, but the model fails to predict the variations of ionic column densities between the SDSS and BOSS observations if changes in ionizing flux are assumed. We thus propose transverse motion of the absorbing gas being the cause of the observed broad Balmer absorption line variability. In fact, we find that the changes in covering factors of the absorber can well-reproduce all of the observed variations. The absorber is estimated ∼0.94 pc away from the central engine, which is where the outflow likely experiences deceleration due to the collision with the surrounding medium. This scheme is consistent with the argument that LoBAL QSOs may represent the transition from obscured star-forming galaxies to classic QSOs.

  19. The hydration dependence of CaCO3 absorption lines in the Far IR

    NASA Astrophysics Data System (ADS)

    Powell, Johnny; Emery, Logan P

    2014-06-01

    The far infrared (FIR) absorption lines of CaCO3 have been measured at a range of relative humidities (RH) between 33 and 92% RH using a Bruker 66v/S spectrometer. Hydration measurements on CaCO3 have been made in the mid-infrared (MIR) by [Al-Hosney, H.A. and Grassian, V.H., 2005, Phys. Chem. Chem. Phys., 7, 1266], and astrophysically-motivated temperature-dependent FIR measurements of CaCO3 in vacuum have also been reported [Posch, T., et al., 2007, Ap. J., 668, 993]. The custom sample cell constructed for these hydrated-FIR spectra is required because the 66v/S bench is under vacuum (3 mbar) during typical measurements. Briefly, the sample cell consists of two Thalium Bromoiodide (KRS-5) windows, four O-rings, a plastic ring for separating the windows and providing a volume for the saturated atmosphere. CaCO3 was deposited on KRS-5 windows using doubly-distilled water as an intermediary. The KRS-5 window with sample and assembled sample cell were placed in a desiccator with the appropriated saturated salt solution [Washburn, E.W. (Ed.), International Critical Tables of Numerical Data, Physics Chemistry and Technology, Vol. 1, (McGraw-Hill, New York, 1926), p. 67-68] and allowed to hydrate for 23 hours. For spectroscopy the desiccator was quickly opened and the second KRS-5 window placed in the cell to seal the chamber. A spectrum was then taken of the sample at the appropriate RH. The spectra taken characterize the adsorption of water vapor and CaCO3 that might occur in circumstellar environments [Melnick, G.J., et al. 2001, Nature, 412, 160].The MIR and FIR reflectance spectra of calcite (CaCO3) have been thoroughly studied by [Hellwege, K.H., et al., 1970, Z. Physik, 232, 61]. Five Lorentzian curves were fit to our data in the range from 378-222 cm-1/SUP> and each was able to be assigned to a known mode of CaCO3. The data does not support the conclusion of a hydration effect on these modes of CaCO3, but it does suggest a possible broadening of three modes

  20. X-ray Weak Broad-line Qquasars: Absorption or Intrinsic X-ray Weakness

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Risaliti, Guida

    2005-01-01

    XMM observations of X-ray weak quasars have been performed during 2003 and 2004. The data for all the observations have become available in 2004 (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed all the data, and obtained interesting scientific results. Out of the eight sources, 4 are confirmed to be extremely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confined to be highly variable both in flux (by factor 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects we are completing a publication: 1) For the X-ray weak sources, a paper is submitted with a complete analysis of the X-ray spectra both from Chandra and XMM-Newton, and a comparison with optical and near-IR photometry obtained from all-sky surveys. Possible models for the unusual spectral energy distribution of these sources are also presented. 2) For the variable sources, a paper is being finalized where the X-ray spectra obtained with XMM-Newton are compared with previous X-ray observations and with observations at other wavelengths. It is shown that these sources are high luminosity and extreme cases of the highly variable class of narrow-line Seyfert Is. In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations have been performed in early 2004. They will complement the XMM data and will lead to understanding of whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circum-nuclear material. The infrared spectra of the variable sources have been already

  1. On-Line Water Quality Parameters as Indicators of Distribution System Contamination

    EPA Science Inventory

    At a time when the safety and security of services we have typically taken for granted are under question, a real-time or near real-time method of monitoring changes in water quality parameters could provide a critical line of defense in protecting public health. This study was u...

  2. NEW PERSPECTIVE ON GALAXY OUTFLOWS FROM THE FIRST DETECTION OF BOTH INTRINSIC AND TRAVERSE METAL-LINE ABSORPTION

    SciTech Connect

    Kacprzak, Glenn G.; Cooke, Jeff; Martin, Crystal L.; Ho, Stephanie H.; Bouché, Nicolas; LeReun, Audrey; Schroetter, Ilane; Churchill, Christopher W.; Klimek, Elizabeth

    2014-09-01

    We present the first observation of a galaxy (z = 0.2) that exhibits metal-line absorption back-illuminated by the galaxy (down-the-barrel) and transversely by a background quasar at a projected distance of 58 kpc. Both absorption systems, traced by Mg II, are blueshifted relative to the galaxy systemic velocity. The quasar sight line, which resides almost directly along the projected minor axis of the galaxy, probes Mg I and Mg II absorption obtained from the Keck/Low Resolution Imaging Spectrometer as well as Lyα, Si II, and Si III absorption obtained from the Hubble Space Telescope/Cosmic Origins Spectrograph. For the first time, we combine two independent models used to quantify the outflow properties for down-the-barrel and transverse absorption. We find that the modeled down-the-barrel deprojected outflow velocities range between V {sub dtb} = 45-255 km s{sup –1}. The transverse bi-conical outflow model, assuming constant-velocity flows perpendicular to the disk, requires wind velocities V {sub outflow} = 40-80 km s{sup –1} to reproduce the transverse Mg II absorption kinematics, which is consistent with the range of V {sub dtb}. The galaxy has a metallicity, derived from Hα and N II, of [O/H] = –0.21 ± 0.08, whereas the transverse absorption has [X/H] = –1.12 ± 0.02. The galaxy star formation rate is constrained between 4.6-15 M {sub ☉} yr{sup –1} while the estimated outflow rate ranges between 1.6-4.2 M {sub ☉} yr{sup –1} and yields a wind loading factor ranging between 0.1-0.9. The galaxy and gas metallicities, the galaxy-quasar sight-line geometry, and the down-the-barrel and transverse modeled outflow velocities collectively suggest that the transverse gas originates from ongoing outflowing material from the galaxy. The ∼1 dex decrease in metallicity from the base of the outflow to the outer halo suggests metal dilution of the gas by the time it reached 58 kpc.

  3. Determination of vibration-rotation lines intensities from absorption Fourier spectra

    NASA Technical Reports Server (NTRS)

    Mandin, J. Y.

    1979-01-01

    The method presented allows the line intensities to be calculated from either their equivalent widths, heights, or quantities deduced from spectra obtained by Fourier spectrometry. This method has proven its effectiveness in measuring intensities of 60 lines of the molecule H2O with a precision of 10%. However, this method cannot be applied to isolated lines.

  4. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    SciTech Connect

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Trump, J. R.; Hall, P. B.; Anderson, S. F.; Hamann, F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for C IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.

  5. The relationship between "BET" and "free volume"-derived parameters for water vapor absorption into amorphous solids.

    PubMed

    Zhang, J; Zografi, G

    2000-08-01

    Water vapor absorption isotherms for amorphous solids with the same chemical composition but differing in molecular weight (i.e., PVP-90, PVP-30, and PVP-12), and for glucose, trehalose, and two molecular weight grades of dextran were obtained at 30 degrees C and analyzed using the Brunauer-Emmett-Teller (BET) equation to obtain the parameters, W(m) and C(B). Similar analyses were carried out for the same molecule (e.g., glucose or fructose) at -10 and 40 degrees C. Within each chemical group, W(m), the apparent BET-like parameter that is generally referred to as the "monolayer-limit of absorption", changed very little. In contrast, C(B), a measure of the free energy of absorption, significantly increased with increasing molecular weight or decreasing temperature, leading to a shift from a Type III to a Type II isotherm. The shift in isotherm shape correlates directly with the glass transition temperature, T(g), of the dry sample relative to the operating temperature, T (i.e., Type III when T > T(g) and Type II when T < T(g). These results are shown to be consistent with the combined Flory-Huggins solution model and Vrentas structural relaxation model; wherein Type II isotherm behavior, observed for T < T(g), reflects nonideal volumetric contributions to the overall free energy of absorption due to plasticization by water, as described by Vrentas, whereas Type III behavior only reflects the Flory-Huggins solution model. These volumetric free energy changes within each chemical group are shown to be correlated to the values of the "BET" parameter C(B).

  6. X-ray absorption lines suggest matter infalling onto the central black-hole of Mrk 509

    NASA Astrophysics Data System (ADS)

    Dadina, M.; Cappi, M.; Malaguti, G.; Ponti, G.; de Rosa, A.

    2005-11-01

    Evidence for both red- and blue-shifted absorption lines due to ionized Fe in the X-ray spectrum of the Seyfert 1 galaxy Mrk 509 is reported. These features appear to be transient on time-scales as short as ~20 ks, and have been observed with two different satellites, BeppoSAX and XMM-Newton. The red- and blue-shifted lines are found at E˜5.5 keV and ~8.1-8.3 keV (rest-frame), respectively. The first is seen in one out of six BeppoSAX observations, the latter is seen by both satellites. Under the assumption that the absorption is due to either H- or He-like Iron, the implied velocities for the absorbing matter are v˜0.15-0.2 c, in both outward and inward directions. An alternative explanation in terms of gravitational red-shift for the ~5.5 keV line cannot be ruled out with the current data. We argue, however, that the temporal patterns and sporadic nature of the lines are more easily reconciled with models that predict important radial motions close to the central black hole, such as the "aborted jet" model, the "thundercloud" model, or magneto-hydrodynamical models of jets and accretion-disks.

  7. The physicochemical parameters of marker compounds and vehicles for use in in vitro percutaneous absorption studies.

    PubMed

    Kaca, Monika; Bock, Udo; Tawfik Jalal, Mohamed; Harms, Meike; Hoffmann, Christine; Müller-Goymann, Christel; Netzlaff, Frank; Schäfer, Ulrich; Lehr, Claus-Michael; Haltner-Ukomadu, Eleonore

    2008-05-01

    In order to prepare for a validation study to compare percutaneous absorption through reconstructed human epidermis with ex vivo skin absorption through human and animal skin, nine test compounds, covering a wide range of physicochemical properties were selected, namely: benzoic acid; caffeine; clotrimazole; digoxin; flufenamic acid; ivermectin; mannitol; nicotine; and testosterone. The donor and receptor media for the test substances, the addition of a solubiliser for the lipophilic compounds, as well as the stability and solubility of the test substances in the vehicles, were systematically analysed. Hydrophilic molecules, being freely soluble in water, were applied in buffered saline solutions. In order to overcome solubility restrictions for lipophilic compounds, the non-ionic surfactant, Igepal CA-630, was added to the donor vehicle, and, in the case of clotrimazole and ivermectin, also to the receptor fluid. The model molecules showed a suitable solubility and stability in the selected donor and receptor media throughout the whole duration of the test.

  8. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines.

    PubMed

    Ma, Q; Tipping, R H; Leforestier, C

    2008-03-28

    It is well known that the water-vapor continuum plays an important role in the radiative balance in the Earth's atmosphere. This was first discovered by Elsasser almost 70 years ago, and since that time there has been a large body of work, both experimental and theoretical, on this topic. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H(2)O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: Far wings of allowed transitions, water dimers, and collision-induced absorption. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the absorption. The first mechanism proposed was the accumulation of the far-wing absorption of the strong allowed transitions. Later, absorption by water dimers was proposed and this mechanism provides a qualitative explanation for the strong, negative T dependence. Recently, some atmospheric modelers have proposed that collision-induced absorption is one of the major contributors. However, based on improvements in the theoretical calculation of accurate far-wing line shapes, ab initio dimer calculations, and theoretical collision-induced absorptions, it is now generally accepted that the dominant mechanism for the absorption in the infrared (IR) windows is that due to the far wings. Whether this is true for other spectral regions is not presently established. Although all these three mechanisms have a negative T dependence, their T dependences will be characterized by individual features. To analyze the characteristics of the latter will enable one to assess their roles with more certainty. In this paper, we present a detailed study of the T dependence of the far-wing absorption mechanism. We will then compare our theoretical calculations with the most recent and accurate

  9. An Fe XXIV Absorption Line in the Persistent Spectrum of the Dipping Low-Mass X-Ray Binary 1A 1744-361

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2012-01-01

    We report on Chandra X-ray Observatory (Chandra) High Energy Transmission Grating spectra of the dipping low-mass X-ray binary 1A 1744-361 during its 2008 July outburst. We find that its persistent emission is well modeled by a blackbody (kT approx. 1.0 keV) plus power law (Gamma approx. 1.7) with an absorption edge. In the residuals of the combined spectrum, we find a significant absorption line at 6.961 +/- 0.002 keV, consistent with the Fe xxvi (hydrogen-like Fe) 2-1 transition.We place an upper limit on the velocity of a redshifted flow of nu < 221 km/s. We find an equivalent width for the line of 27+2/-3 eV, from which we determine a column density of (7 +/- 1)×10(exp 17) /sq. cm via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of >103.6 erg cm/s. We discuss what implications the feature has on the system and its geometry. We also present Rossi X-ray Timing Explorer data accumulated during this latest outburst and, via an updated color-color diagram, clearly show that 1A 1744-361 is an "atoll" source

  10. Line Parameters of the PH_3 Pentad in the 4-5 μm Region

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Kleiner, I.; Sams, R. L.; Blake, T. A.; Brown, Linda R.; Fletcher, L. N.

    2012-06-01

    Line positions, intensities and line shape parameters are reported for four bands of phosphine between 2150 and 2400 cm-1 in order to improve the spectroscopic database for remote sensing of the giant planets. Knowledge of PH_3 in this spectral region is important for Cassini/VIMS exploration of dynamics and chemistry on Saturn, as well as for interpreting the near-IR data from Juno and ESA's proposed Jupiter mission. For this study, five high-resolution (0.0023 cm-1), high signal-to-noise (>2000) spectra of pure PH_3 were recorded at room temperature (298.2 K) with the Bruker IFS 125HR Fourier transform spectrometer at Pacific Northwest National Laboratory. Individual line parameters were retrieved by multispectrum fitting of all five spectra simultaneously. Positions and intensities were measured for over 3100 transitions. The rotational quantum numbers of measured lines go as high as J''=16 and K''=15 in the ν_3 and ν_1 bands; some lines of the weaker bands 2ν_4 and ν_2+ν_4 are also reported. The measured positions and intensities are compared to new theoretical calculations of the pentad. Lorentz self-broadened width and pressure-induced shift coefficients of many transitions were also obtained, along with speed dependence parameters. Line mixing coefficients were determined for several A+A- pairs of transitions for K''=3, 6, and 9. Research described in this paper was performed at the College of William and Mary and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. L. Fletcher acknowledges support from a Glasstone Science Fellowship. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. A. Atkins, JQSRT 53 (1995) 705-721.

  11. Time-averaging approximation in the interaction picture: absorption line shapes for coupled chromophores with application to liquid water.

    PubMed

    Yang, Mino; Skinner, J L

    2011-10-21

    The time-averaging approximation (TAA), originally developed to calculate vibrational line shapes for coupled chromophores using mixed quantum/classical methods, is reformulated. In the original version of the theory, time averaging was performed for the full one-exciton Hamiltonian, while herein the time averaging is performed on the coupling (off-diagonal) Hamiltonian in the interaction picture. As a result, the influence of the dynamic fluctuations of the transition energies is more accurately described. We compare numerical results of the two versions of the TAA with numerically exact results for the vibrational absorption line shape of the OH stretching modes in neat water. It is shown that the TAA in the interaction picture yields theoretical line shapes that are in better agreement with exact results.

  12. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the

  13. Determination of spectral parameters for lines targeted by the Tunable Laser Spectrometer (TLS) on the Mars Curiosity rover

    NASA Astrophysics Data System (ADS)

    Manne, Jagadeeshwari; Webster, Christopher R.

    2016-03-01

    Molecular line parameters of line strengths, self- and foreign-broadening by nitrogen, carbon dioxide and helium gas have been experimentally determined for infrared ro-vibrational spectral lines of water and carbon dioxide at 2.78 μm targeted by the Tunable Laser Spectrometer (TLS) in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover. Good agreement is found by comparison with the line parameters reported in the HITRAN-2012 database.

  14. Line Parameters of Carbon Dioxide in the 4850 CM-1 Region

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Nugent, Emily; Sung, Keeyoon; Brown, Linda R.; Miller, Charles E.; Toth, Robert A.

    2011-06-01

    The spectral region near 4850 Cm-1 is used to monitor atmospheric carbon dioxide, but current accuracies of the line intensities and line shape coefficients do not permit carbon dioxide mixing ratios to be obtained to 1 ppm (about one part in 400). To improve the line parameters, we are remeasuring the prominent CO2 bands in this region specifically to characterize the non-Voigt effects of line mixing and speed dependence at room temperature. The laboratory spectra of air- and self-broadened CO2 have been recorded at a variety of pressures, path lengths, mixing ratios and resolutions (0.005 to 0.01 Cm-1) with two different Fourier transform spectrometers (the McMath-Pierce FTS at Kitt Peak and a Bruker 125 HR FTS at JPL). The line parameters of some 2000 transitions are being derived by simultaneous multispectrum fitting using a few dozen spectra encompassing a 230 Cm-1 wide spectral interval. The rovibrational constants for line positions and the band intensities and Herman-Wallis coefficients are being retrieved directly from the spectra, rather than floating positions and intensities individually. Self and foreign Lorentz widths and pressure shifts are being determined for the stronger bands while non-Voigt coefficients describing line mixing and speed dependence are being obtained for at least one of the strongest bands. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. A. Atkins, JQSRT 1995;53:705-21. V. M. Devi, D. Chris Benner, L. R. Brown, C. E. Miller, and R. A. Toth, J. Mol. Spectrosc. 2007;245:52-80. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. Support for the work at William and Mary was provided by contracts with JPL.

  15. Line Parameters of Ethane (12C_2H_6) at 12 μm with Constrained Multispectrum Fitting

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Rinsland, C. P.; Smith, M. A. H.; Sams, R. L.; Blake, T. A.; Flaud, J.-M.; Sung, K.; Brown, L. R.; Mantz, A. W.

    2010-06-01

    A multispectrum nonlinear least squares technique was applied to simultaneously fit 43 infrared absorption spectra of C_2H_6 between 795 and 850 cm-1. The high resolution (0.0016-0.005 cm-1) spectra were recorded with two different Bruker Fourier transform spectrometers at PNNL and JPL to support Earth and planetary atmosphere studies, e.g. Titan's cold stratosphere. Accurate line positions and absolute intensities at room temperature were retrieved for over 1750 transitions of ν_9. N_2- and self-broadened halfwidth coefficients with their temperature dependences were obtained for over 1330 lines using sample temperatures between ˜150 and 298 K. Constraints to intensity ratios, torsional splittings, halfwidth coefficients and their temperature dependence exponents were incorporated in the analysis to determine these parameters for both torsional split components. The variations of the observed halfwidth coefficients and their temperature dependences with respect to J, K quanta are discussed. No pressure-induced shifts were measured or even required to fit the spectra to their noise levels. Present results are compared with previously reported measurements and predictions. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. A. Atkins, JQSRT 1995;53:705-21. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, the College of William and Mary, Connecticut College, and NASA Langley Research Center under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  16. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.

    2016-01-01

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.

  17. Ratio of Dust to Metal Abundance in Quasar Absorption Line Systems from 1.9 < z < 3.3

    NASA Astrophysics Data System (ADS)

    Stawinski, Stephanie; Malhotra, Sangeeta

    2017-01-01

    Measuring the ratio of dust to metal abundance in quasar absorption line systems will provide insight to the chemical evolution of galaxies, dust formation, and dust properties in the early universe. Quasar absorption systems allow us to study the abundance of dust from many different redshifts, in this project up to z ~ 3.3 for absorber redshift. The absorption bump at 2175 Å is a broad, but strong, dust feature within the UV-optical wavelength range. This feature, if detected, can be directly related to the optical depth of the dust in the absorbing systems. However, the 2175 Å bump is very broad, having a full-width half-maximum approximately 350 * (1 + z) Å, and therefore hard to distinguish from a single spectrum. To find this bump, it is important to co-add many quasar spectra. In this project, we look at how the abundance of dust compares to that of metals for 105 quasar spectra with strong damped Lyman alpha systems with absorber redshifts ranging from 1.9 < z < 3.3. From these spectra, we created a composite spectrum to analyze the 2175 Å bump and the absorption of heavy elements. We will present the results including the strength of the 2175 Å feature found in our composite spectrum.

  18. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.

    2009-01-01

    We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the C02 measurement from the NASA Glenn Lear 25 aircraft. The airborne lidar steps the pulsed laser's wavelength across a selected C02 line with 20 steps per scan. The line scan rate is 450 Hz and laser pulse widths are I usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric C02 column measurements using the 1571.4, 1572.02 and 1572.33 nm C02 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These nights were coordinated with DOE investigators who Hew an in-situ C02 sensor on a Cessna aircraft under the path. The increasing C02 line absorptions with

  19. Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Hasselbrack, W. E.; Sun, X.

    2009-12-01

    We have developed a lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA’s planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the CO2 line and an O2 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser’s wavelength across a selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, laser pulse energy is 25 uJ and laser pulse widths are 1 usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric CO2 column measurements using the 1571.4, 1572.02 and 1572.33 nm CO2 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The

  20. Study on EM-parameters and EM-wave absorption properties of materials with bio-flaky particles added

    NASA Astrophysics Data System (ADS)

    Zhang, Wenqiang; Zhang, Deyuan; Xu, Yonggang; McNaughton, Ryan

    2016-01-01

    Bio-flaky particles, fabricated through deposition of carbonyl iron on the surface of disk shaped diatomite, demonstrated beneficial performance on electromagnetic parameters. This paper will detail the improvements to the electromagnetic parameters and absorbing properties of traditional absorbing material generated by the addition of bio-flaky particles. Composites' electromagnetic parameters were measured using the transmission method. Calculated test results confirmed with bio-flaky particles were added, composites' permittivity increased due to the high permeability of bio-flaky particles. Secondly, the permeability of composites increased as a result of the increased volume content of iron particles. Composites with bio-flaky particles added exhibited superlative absorption properties at 0.5 mm thickness, with a maximum reflection loss of approximately -5.1 dB at 14.4 GHz.

  1. On-line estimation of error covariance parameters for atmospheric data assimilation

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.

    1995-01-01

    A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including

  2. Stratospheric HNO3 measurements from 0.002/cm resolution solar occultation spectra and improved spectroscopic line parameters in the 5.8-micron region

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, D. G.; Rinsland, C. P.; Flaud, J.-M.; Camy-Peyret, C.

    1992-02-01

    Very-high-resolution FWHM solar-occultation spectra are investigated with a balloon-borne interferometer using revised spectroscopic line parameters for HNO3, O3, and H2O. The O3 and H2O data are evaluated to determine their capacity for interference in the HNO3 line which is studied in the nu sub 2 band at 5.8 microns. The line parameters developed with the stratospheric data are compared to data based on a HITRAN compilation as well as laboratory spectra with a 0.002/cm resolution. The line list is calculated and shown to include J and Ka transitions which improve the line parameters for HNO3 by accounting for the weaker absorption features in the stratospheric spectra. The stratospheric HNO3 profile developed analytically is compared to those based on reported measurements, and the one developed with the stratospheric solar spectra is found to be consistent with the measurements and confirm inherent measurement biases.

  3. Stratospheric HNO3 measurements from 0.002/cm resolution solar occultation spectra and improved spectroscopic line parameters in the 5.8-micron region

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, D. G.; Rinsland, C. P.; Flaud, J.-M.; Camy-Peyret, C.

    1992-01-01

    Very-high-resolution FWHM solar-occultation spectra are investigated with a balloon-borne interferometer using revised spectroscopic line parameters for HNO3, O3, and H2O. The O3 and H2O data are evaluated to determine their capacity for interference in the HNO3 line which is studied in the nu sub 2 band at 5.8 microns. The line parameters developed with the stratospheric data are compared to data based on a HITRAN compilation as well as laboratory spectra with a 0.002/cm resolution. The line list is calculated and shown to include J and Ka transitions which improve the line parameters for HNO3 by accounting for the weaker absorption features in the stratospheric spectra. The stratospheric HNO3 profile developed analytically is compared to those based on reported measurements, and the one developed with the stratospheric solar spectra is found to be consistent with the measurements and confirm inherent measurement biases.

  4. Origins of optical absorption and emission lines in AlN

    SciTech Connect

    Yan, Qimin; Janotti, Anderson; Van de Walle, Chris G.; Scheffler, Matthias

    2014-09-15

    To aid the development of AlN-based optoelectronics, it is essential to identify the defects that cause unwanted light absorption and to minimize their impact. Using hybrid functional calculations, we investigate the role of native defects and their complexes with oxygen, a common impurity in AlN. We find that Al vacancies are the source of the absorption peak at 3.4 eV observed in irradiated samples and of the luminescence signals at 2.78 eV. The absorption peak at ∼4.0 eV and higher, and luminescence signals around 3.2 and 3.6 eV observed in AlN samples with high oxygen concentrations are attributed to complexes of Al vacancies and oxygen impurities. We also propose a transition involving Al and N vacancies and oxygen impurities that may be a cause of the absorption band peaked at 2.9 eV.

  5. VizieR Online Data Catalog: QSO B0218+357 molecular absorption lines (Wallstroem+, 2016)

    NASA Astrophysics Data System (ADS)

    Wallstroem, S. H. J.; Muller, S.; Guelin, M.

    2016-08-01

    ASCII files of the absorption spectra presented in Figure 2. The files are named after the molecule or isotopologue. Column 1 is velocity, column 2 is intensity (normalized to 1), Velocities are in a heliocentric frame, with zabs=0.68466 (11 data files).

  6. Physiological parameters in broiler lines divergently selected for the incidence of ascites.

    PubMed

    Druyan, S; Shinder, D; Shlosberg, A; Cahaner, A; Yahav, S

    2009-09-01

    Ascites syndrome (AS) is manifested in flocks of contemporary broilers that are allowed to fully manifest their genetic potential for rapid growth. After successful selection, a pair of divergent lines was established, AS-susceptible (AS-S) and AS-resistant (AS-R). These lines facilitate comparisons between genetically resistant and susceptible healthy young broilers when reared under standard brooding conditions (SBC). The aim of the present study was to look for predictive indicators for AS susceptibility by comparing relevant physiological parameters in the AS-S and AS-R lines under SBC and after exposure to extreme ascites-inducing conditions (AIC). In this design, a trait differing significantly between the 2 lines under SBC is expected to be a reliable indicator for selection against AS susceptibility in breeding stocks when reared under noninducing conditions. Males from the AS-S and AS-R lines were reared together under SBC to 19 d of age, then under the AIC protocol. Cumulative incidence of AS mortality was 93.2% in the AS-S line and only 9% in the AS-R line, confirming the genetic divergence between the lines. Exposure to AIC enhanced the imbalance between oxygen demands and supply in the AS-S birds and induced differences in blood parameter level between the 2 lines. The AS-S birds exhibited elevated hematocrit and red blood cell counts and a decline in oxygen saturation in the arterial blood. No difference in hemoglobin concentration was found, but calculation of hemoglobin content per 1,000 red blood cells revealed a significant reduction in hemoglobin content in the AS-S birds. Under SBC, there were no significant differences between the lines for hematocrit, red blood cell count, hemoglobin concentration, hemoglobin count per 1,000 red cells, and blood oxygen saturation. However, heart rate during the first week of life was significantly higher in the AS-S birds than in the AS-R birds on d 1 and 7, suggesting that high heart rate may potentially

  7. On spectral line Stark broadening parameters needed for stellar and laboratory plasma investigations.

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.

    1995-03-01

    This paper presents a review of semiclassical calculations of Stark broadening parameters and a comparison of different semiclassical procedures is discussed, as well as the agreement with critically selected experimental data and more sophisticated, close coupling calculations. Approximate methods for the calculation of Stark broadening parameters, useful especially in such astrophysical problems where large scale calculations and analyses must be performed and where a good average accuracy is expected, have also been discussed. The beginning and development of line shapes investigations in Yugoslavia has been described as well.

  8. Broadening of the infrared absorption lines at reduced temperatures. II - Carbon monoxide in an atmosphere of carbon dioxide.

    NASA Technical Reports Server (NTRS)

    Tubbs, L. D.; Williams, D.

    1972-01-01

    The strengths of the rotational lines in the R branch of the CO fundamental have been determined at temperatures of 298, 202, and 132 K by means of a high-resolution spectrograph. The results can be used to determine line strengths at other temperatures by means of the Herman-Wallis relation or by considerations of the populations of the rotational levels in the ground vibrational state. Parameters describing the self-broadening and carbon dioxide broadening of CO lines have been determined at 298 and 202 K. The results are compared with other recent experimental and theoretical studies.

  9. Beam Losses in the NLC Extraction Line for High Luminosity Beam Parameters (LCC-0049)

    SciTech Connect

    Nosochkov, Y

    2004-03-19

    In this note we present results of beam tracking in the NLC extraction line for the NLC option with high luminosity beam parameters (option H). Particle losses for 0.5 TeV and 1 TeV cms energy beams have been computed and examined as a function of beam offset at the interaction point (IP). Updated tracking results for the NLC option A are presented as well.

  10. Impact of Spectroscopic Line Parameters on Carbon Monoxide Column Density Retrievals from Shortwave Infrared Nadir Observations

    NASA Astrophysics Data System (ADS)

    Schmidt, Denise; Gimeno Garcia, Sebastian; Schreier, Franz; Lichtenberg, Gunter

    2015-11-01

    Among the various input data required for the retrieval of atmospheric state parameters from infrared remote sensing observations molecular spectroscopy line data have a central role, because their quality is critical for the quality of the final product. Here we discuss the impact of the line parameters on vertical column densities (VCD) estimated from short wave infrared nadir observations. Using BIRRA (the Beer InfraRed Retrieval Algorithm) comprising a line-by-line radiative transfer code (forward model) and a separable nonlinear least squares solver for inversion we retrieve carbon monoxide from observations of SCIAMACHY aboard Envisat. Retrievals using recent versions of HITRAN und GEISA have been performed and the results are compared in terms of residual norms, molecular density scaling factors, their corresponding errors, and the final VCD product. The retrievals turn out to be quite similar for all three databases, so a definite recommendation in favor of one of these databases is difficult for the considered spectral range around 2.3 μm. Nevertheless, HITRAN 2012 appears to be advantageous when evaluating the different quality criteria.

  11. Detection of High Velocity Absorption Components in the He I Lines of Eta Carinae near the Time of Periastron

    NASA Technical Reports Server (NTRS)

    Richardson, Noel D.; St-Jean, Lucas; Gull, Theodore R.; Madura, Thomas; Hillier, D. John; Teodoro, Mairan; Moffat, Anthony; Corcoran, Michael; Damineli, Augusto

    2014-01-01

    We have obtained a total of 58 high spectral resolution (R90,000) spectra of the massive binary star eta Carinae since 2012 in an effort to continue our orbital and long-term echelle monitoring of this extreme binary (Richardson et al. 2010, AJ, 139, 1534) with the CHIRON spectrograph on the CTIO 1.5 m telescope (Tokovinin et al. 2013, PASP, 125, 1336) in the 45507500A region. We have increased our monitoring efforts and observation frequency as the periastron event of 2014 has approached. We note that there were multiple epochs this year where we observe unusual absorption components in the P Cygni troughs of the He I triplet lines. In particular, we note high velocity absorption components related to the following epochs for the following lines: He I 4713: HJD 2456754- 2456795 (velocity -450 to -560 kms) He I 5876: HJD 2456791- 2456819 (velocity -690 to -800 kms) He I 7065: HJD 2456791- 2456810 (velocity -665 to -730 kms) Figures: Note that red indicates a high-velocity component noted above. He I 4713: http:www.astro.umontreal.carichardson4713.png He I 5876: http:www.astro.umontreal.carichardson5876.png He I 7065: http:www.astro.umontreal.carichardson7065.png These absorptions are likely related to the wind-wind collision region and bow shock, as suggested by the high-velocity absorption observed by Groh et al. (2010, AA, 519, 9) in the He I 10830 Atransition. In these cases, we suspect that we look along an arm of the shock cone and that we will see a fast absorption change from the other collision region shortly after periastron. We suspect that this is related to the multiple-components of the He II 4686 line that was noted by Walter (ATel6334), and is confirmed in our data. Further, high spectral resolution data are highly encouraged,especially for resolving powers greater than 50,000.These observations were obtained with the CTIO 1.5 m telescope, operated by the SMARTS Consortium, and were obtained through both SMARTS and NOAO programs 2012A-0216,2012B-0194

  12. Applications of a new set of methane line parameters to the modeling of Titan’s spectrum in the 1.58 μm window

    NASA Astrophysics Data System (ADS)

    de Bergh, Catherine; Courtin, Régis; Bézard, Bruno; Coustenis, Athéna; Lellouch, Emmanuel; Hirtzig, Mathieu; Rannou, Pascal; Drossart, Pierre; Campargue, Alain; Kassi, Samir; Wang, Le; Boudon, Vincent; Nikitin, Andrei; Tyuterev, Vladimir

    2012-02-01

    In this paper we apply a recently released set of methane line parameters (Wang et al., 2011) to the modeling of Titan spectra in the 1.58 μm window at both low and high spectral resolution. We first compare the methane absorption based on this new set of methane data to that calculated from the methane absorption coefficients derived in situ from DISR/Huygens (Tomasko et al., 2008a; Karkoschka and Tomasko, 2010) and from the band models of Irwin et al. (2006) and Karkoschka and Tomasko (2010). The Irwin et al. (2006) band model clearly underestimates the absorption in the window at temperature-pressure conditions representative of Titan’s troposphere, while the Karkoschka and Tomasko (2010) band model gives an acceptable agreement in the whole window, overestimating the absorption by about 15% in the range 6300-6500 cm-1. We also find that the transmittance of Titan’s atmosphere is in excellent agreement with that calculated from the Tomasko et al. (2008a) coefficients after reducing them by about 7%. Synthetic spectra computed with spectral resolutions of 1.2 cm-1 (R∼5400) and 0.35 cm-1 (R∼18000) are then compared with two high-resolution Earth-based measurements of Titan’s albedo obtained in 1982 and 1993 (with KPNO/FTS and IRTF/CSHELL). The new set of methane line parameters leads to an excellent match of all the CH3D and CH4 absorption features in these spectra, and permits us to derive a ratio of CH3D/CH4=(4.5±1.0)×10-4 - hence a D/H ratio in methane for Titan of (1.13±0.25)×10-4 - and a CO mole fraction of 40±10 ppm (from the KPNO/FTS dataset) and 51±7 ppm (from the IRTF/CSHELL dataset). We also infer constraints on the far-wing lineshape of methane lines of the 2ν3 band. We finally present two other examples of models of Titan’s spectrum using the new line parameters, one potentially useful for future higher-resolution (R=40,000) observations, another one applicable to the ongoing low-resolution (R∼100) observations by Cassini VIMS. We

  13. Theoretical study on the photofragment branching ratios and anisotropy parameters of ICl in the second absorption band

    NASA Astrophysics Data System (ADS)

    Matsuoka, Takahide; Yabushita, Satoshi

    2014-01-01

    Potential energy curves, transition dipole moments, and non-adiabatic coupling terms of the excited states of ICl molecule have been obtained by the spin-orbit configuration interaction method to examine the branching ratios and the anisotropy parameters of the photodissociation process in the second absorption band. The calculation of the branching ratios with the time-dependent coupled Schrödinger equations, including the quantum interference effect between the 0+(III) and 0+(IV) states, shows good agreement with recent experiments, thus resolves the long standing disagreement. The contribution of the quantum interference effect to the photodissociation process is discussed based on a time-dependent perturbation treatment.

  14. The magnetic field of an isolated neutron star from X-ray cyclotron absorption lines.

    PubMed

    Bignami, G F; Caraveo, P A; De Luca, A; Mereghetti, S

    2003-06-12

    Isolated neutron stars are highly magnetized, fast-rotating objects that form as an end point of stellar evolution. They are directly observable in X-ray emission, because of their high surface temperatures. Features in their X-ray spectra could in principle reveal the presence of atmospheres, or be used to estimate the strength of their magnetic fields through the cyclotron process, as is done for X-ray binaries. Almost all isolated neutron star spectra observed so far appear as featureless thermal continua. The only exception is 1E1207.4-5209 (refs 7-9), where two deep absorption features have been detected, but with insufficient definition to permit unambiguous interpretation. Here we report a long X-ray observation of the same object in which the star's spectrum shows three distinct features, regularly spaced at 0.7, 1.4 and 2.1 keV, plus a fourth feature of lower significance, at 2.8 keV. These features vary in phase with the star's rotation. The logical interpretation is that they are features from resonant cyclotron absorption, which allows us to calculate a magnetic field strength of 8 x 10(10) G, assuming the absorption arises from electrons.

  15. Time resolved metal line profile by near-ultraviolet tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vitelaru, C.; de Poucques, L.; Minea, T. M.; Popa, G.

    2011-03-01

    Pulsed systems are extensively used to produce active species such as atoms, radicals, excited states, etc. The tunable diode laser absorption spectroscopy (TD-LAS) is successfully used to quantify the density of absorbing species, but especially for stationary or slow changing systems. The time resolved-direct absorption profile (TR-DAP) measurement method by TD-LAS, with time resolution of μs is proposed here as an extension of the regular use of diode laser absorption spectroscopy. The spectral narrowness of laser diodes, especially in the blue range (˜0.01 pm), combined with the nanosecond fast trigger of the magnetron pulsed plasma and long trace recording on the oscilloscope (period of second scale) permit the detection of the sputtered titanium metal evolution in the afterglow (˜ms). TR-DAP method can follow the time-dependence of the temperature (Doppler profile) and the density (deduced from the absorbance) of any medium and heavy species in a pulsed system.

  16. Deriving precise parameters for cool solar-type stars. Optimizing the iron line list

    NASA Astrophysics Data System (ADS)

    Tsantaki, M.; Sousa, S. G.; Adibekyan, V. Zh.; Santos, N. C.; Mortier, A.; Israelian, G.

    2013-07-01

    Context. Temperature, surface gravity, and metallicitity are basic stellar atmospheric parameters necessary to characterize a star. There are several methods to derive these parameters and a comparison of their results often shows considerable discrepancies, even in the restricted group of solar-type FGK dwarfs. Aims: We want to check the differences in temperature between the standard spectroscopic technique based on iron lines and the infrared flux method (IRFM). We aim to improve the description of the spectroscopic temperatures especially for the cooler stars where the differences between the two methods are higher, as presented in a previous work. Methods: Our spectroscopic analysis was based on the iron excitation and ionization balance, assuming Kurucz model atmospheres in LTE. The abundance analysis was determined using the code MOOG. We optimized the line list using a cool star (HD 21749) with high resolution and high signal-to-noise spectrum, as a reference in order to check for weak, isolated lines. Results: We test the quality of the new line list by re-deriving stellar parameters for 451 stars with high resolution and signal-to-noise HARPS spectra, that were analyzed in a previous work with a larger line list. The comparison in temperatures between this work and the latest IRFM for the stars in common shows that the differences for the cooler stars are significantly smaller and more homogeneously distributed than in previous studies for stars with temperatures below 5000 K. Moreover, a comparison is presented between interferometric temperatures with our results that shows good agreement, even though the sample is small and the errors of the mean differences are large. We use the new line list to re-derive parameters for some of the cooler stars that host planets. Finally, we present the impact of the new temperatures on the [Cr i/Cr ii] and [Ti i/Ti ii] abundance ratios that previously showed systematic trends with temperature. We show that the slopes

  17. Experimental and Theoretical He-BROADENED Line Parameters of Carbon Monoxide in the Fundamental Band

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Rosario, Hoimonti; Esteki, Koorosh; Latif, Shamria; Naseri, Hossein; Thibault, Franck; Devi, V. Malathy; Smith, Mary Ann H.; Mantz, Arlan

    2016-06-01

    We report experimental measurements and theoretical calculations for He-broadened Lorentz half-width coefficients and He- pressure-shift coefficients of 45 carbon monoxide transitions in the 1-0 band. The high-resolution spectra analyzed in this study were recorded over a range of sample temperatures between 296 and 80 K. The He-broadened line parameters and their temperature dependences were retrieved using a multispectrum nonlinear least squares analysis program. A previous analysis of these spectra used only the Voigt line shape. In the present study four line shape models were compared including Voigt, speed dependent Voigt, Rautian (to take into account confinement narrowing) and Rautian with speed dependence. The line mixing coefficients have been calculated using the Exponential Power Gap scaling law. We were unable to retrieve the temperature dependence of the line mixing coefficients. The current measurements and theoretical results are compared with other published results, where appropriate. A. W. Mantz et al., J. Molec. Structure 742 (2005) 99-110

  18. An Fe XXVI Absorption Line in the Persistent Spectrum of the Dipping Low Mass X-ray Binary 1A 1744-361

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2009-01-01

    We report on Chandra X-ray Observatory (CXO) High-Energy Transmission Grating (HETG) spectra of the dipping Low Mass X-ray Binary (LMXB) 1A 1744-361 during its July 2008 outburst. We find that its persistent emission is well modeled by a blackbody (kT approx. 1.0 keV) plus power-law (Gamma approx. 1.7) with an absorption edge at 7.6 keV. In the residuals of the combined spectrum we find a significant absorption line at 6.961+/-0.002 keV, consistent with the Fe XXVI (hydrogen-like Fe) 2 - 1 transition. We place an upper limit on the velocity of a redshifted flow of v < 221 km/s. We find an equivalent width for the line of 27+2/-3 eV, from which we determine a column density of 7+/-1 x 10(exp 17)/sq cm via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of > 10(exp 3.6) erg cm/s. The properties of this line are consistent with those observed in other dipping LMXBs. Using Rossi X-ray Timing Explorer (RXTE) data accumulated during this latest outburst we present an updated color-color diagram which clearly shows that IA 1744-361 is an "atoll" source. Finally, using additional dips found in the RXTE and CXO data we provide an updated orbital period estimate of 52+/-5 minutes.

  19. The Features of the Frequency-Modulation Method When Studying the Shapes of the Spectral Lines of Nonlinear Absorption

    NASA Astrophysics Data System (ADS)

    Golubiatnikov, G. Yu.; Belov, S. P.; Lapinov, A. V.

    2017-01-01

    We briefly consider the method of the frequency (phase) modulation and signal detection at the second harmonic of the modulation frequency for recording and analyzing the spectral-line shapes. The precision sub-Doppler spectrometer in the millimeter- and submillimeter-wave ranges, which operated in the regime of nonlinear saturation of the spectral transitions in a standing wave (the Lamb-dip method), was used during the measurements. The influence of the saturation degree on the value and shape of the recorded frequency-modulated signals in the quadrature channels during the synchronous detection is demonstrated. Variation in the relationships among the signals determined by dispersion and absorption was observed. The necessity of allowance for the influence of the group-velocity dispersion and coherent effects on the shape of the recorded spectral lines is experimentally shown.

  20. FUSE and STIS Observations of Intervening O VI Absorption Line Systems in the Spectrum of PG 0953+415

    NASA Astrophysics Data System (ADS)

    Savage, B. D.; Sembach, K. R.; Tripp, T. M.; Richter, P.; Jenkins, E. B.

    2000-12-01

    We analyze Far Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph (STIS) observations of the intergalactic O VI absorption line systems in the direction of the bright QSO PG 0953+415 (z = 0.239). The FUSE observations cover the wavelength range from 905 to 1187 Å with a velocity resolution of 20 km/s. The STIS observations obtained with the E140M echelle spectrograph extend from 1150 to 1730 Å with a resolution of 8 km/s. These are supplemented with STIS G140M and G230M observations from 1145-1201 Å and from 1724-1814 A with a resolution of 30 km/s. We detect a strong O VI system at z = 0.06807 in the lines of H I Ly alpha, beta, and gamma, O VI 1031.93, 1037.62, N V 1238.80, 1242.80, C IV 1548.20, 1550.77, and C III 977.02 Å. We confirm the detection of the z = 0.14232 O VI system studied previously by Tripp and Savage (2000). The new FUSE observations of this system record Ly beta , O VI 1031.93, 1037.62, and C III 977.02 Å. We derive column densities for the absorption lines detected in both O VI systems using curve of growth and profile fitting techniques. We study the physical conditions in each system and attempt to determine the origin(s) of the ionization. Both detected O VI systems occur at redshifts where there are peaks in the number density of intervening galaxies along the line of sight based on a WIYN redshift survey of galaxies in the one degree field centered on PG 0953+415. We discuss the implications of these observations for the baryonic content of O VI absorption line systems. Financial support has been provided by NASA contract NAS-532985 and STSCI Grants GO 06499.02 and GO 08165.02.

  1. An accelerated line-by-line option for MODTRAN combining on-the-fly generation of line center absorption within 0.1 cm-1 bins and pre-computed line tails

    NASA Astrophysics Data System (ADS)

    Berk, Alexander; Conforti, Patrick; Hawes, Fred

    2015-05-01

    A Line-By-Line (LBL) option is being developed for MODTRAN6. The motivation for this development is two-fold. Firstly, when MODTRAN is validated against an independent LBL model, it is difficult to isolate the source of discrepancies. One must verify consistency between pressure, temperature and density profiles, between column density calculations, between continuum and particulate data, between spectral convolution methods, and more. Introducing a LBL option directly within MODTRAN will insure common elements for all calculations other than those used to compute molecular transmittances. The second motivation for the LBL upgrade is that it will enable users to compute high spectral resolution transmittances and radiances for the full range of current MODTRAN applications. In particular, introducing the LBL feature into MODTRAN will enable first-principle calculations of scattered radiances, an option that is often not readily available with LBL models. MODTRAN will compute LBL transmittances within one 0.1 cm-1 spectral bin at a time, marching through the full requested band pass. The LBL algorithm will use the highly accurate, pressure- and temperature-dependent MODTRAN Padé approximant fits of the contribution from line tails to define the absorption from all molecular transitions centered more than 0.05 cm-1 from each 0.1 cm-1 spectral bin. The beauty of this approach is that the on-the-fly computations for each 0.1 cm-1 bin will only require explicit LBL summing of transitions centered within a 0.2 cm-1 spectral region. That is, the contribution from the more distant lines will be pre-computed via the Padé approximants. The status of the LBL effort will be presented. This will include initial thermal and solar radiance calculations, validation calculations, and self-validations of the MODTRAN band model against its own LBL calculations.

  2. The ultraviolet spectrum of the gravitational lens candidate UM 425 = QSO 1120+019: Evidence for broad absorption line (BAL) structure

    NASA Technical Reports Server (NTRS)

    Michelitsianos, A. G.; Oliversen, R. J.

    1995-01-01

    The UV line profile structure of high-ionization resonance lines found with the International Ultraviolet Explorer (IUE) in the brightest of four multiply imaged sources (images-A) in the candidate gravitational lens UM 425 = QSO 1120+019 indicates broad absorption line (BAL) structure. The deep-broad trough associated with the O IV line extends to velocities approiximately -12,000 km/s, and contains disrete features that suggest multicomponent velocity structure. This structure may include contributions from C IV absorption from the early-type galaxy that is believed to lens UM 425. A strong absorption feature in the blue wing of the Lyman-alpha lambda 1216 emission line may be a Lyman alpha absorption system at a Z(sub Ly alpha) = 1.437 +/- 0.003, or it may be formed by the superposition of the broad N V lambda lambda 1238, 1242 absorption trough on the extended blue emission wing of the QSO Lyman-alpha line. We obtained a redshift of Z(sub QSO) = 1.471 +/- 0.003 from Lyman-alpha lambda 1215, consistent with the redshift found by Meylan and Djorgovski in the optical. The Lyman-alpha line appears unusally weak due to the presence of N V lambda 1240 BAL absorption. A Lyman-limit absorption system at lambda 912 was not observed in the QSO rest frame. The detection of BAL structure in the other weaker ground-state resonance lines of N II (l) and S IV (l) was not found, suggesting these lines are formed in a region that is distinct from the BAL component. Detection of BAL structure in the other fainter images in this system with Hubble Space Telescope (HST) instrumentation, similar to structure observed here in image A, could provide evidence that UM 425 is a gravitational lens.

  3. HIGHLY IONIZED Fe-K ABSORPTION LINE FROM CYGNUS X-1 IN THE HIGH/SOFT STATE OBSERVED WITH SUZAKU

    SciTech Connect

    Yamada, S.; Yoshikawa, A.; Makishima, K.; Torii, S.; Noda, H.; Mineshige, S.; Ueda, Y.; Kubota, A.; Gandhi, P.; Done, C.

    2013-04-20

    We present observations of a transient He-like Fe K{alpha} absorption line in Suzaku observations of the black hole binary Cygnus X-1 on 2011 October 5 near superior conjunction during the high/soft state, which enable us to map the full evolution from the start to the end of the episodic accretion phenomena or dips for the first time. We model the X-ray spectra during the event and trace their evolution. The absorption line is rather weak in the first half of the observation, but instantly deepens for {approx}10 ks, and weakens thereafter. The overall change in equivalent width is a factor of {approx}3, peaking at an orbital phase of {approx}0.08. This is evidence that the companion stellar wind feeding the black hole is clumpy. By analyzing the line with a Voigt profile, it is found to be consistent with a slightly redshifted Fe XXV transition, or possibly a mixture of several species less ionized than Fe XXV. The data may be explained by a clump located at a distance of {approx}10{sup 10-12} cm with a density of {approx}10{sup (-13)-(-11)} g cm{sup -3}, which accretes onto and/or transits the line of sight to the black hole, causing an instant decrease in the observed degree of ionization and/or an increase in density of the accreting matter. Continued monitoring for individual events with future X-ray calorimeter missions such as ASTRO-H and AXSIO will allow us to map out the accretion environment in detail and how it changes between the various accretion states.

  4. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    NASA Technical Reports Server (NTRS)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; Fabian, A. C.; Farrah, D.; Fiore, F.; Fuerst, F.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R.; Madsen, K. K.; Matt, G.; Ogle, P.; Risaliti, G.; Saez, C.; Teng, S. H.; Walton, D. J.; Zhang, W. W.

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  5. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    SciTech Connect

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Hickox, R.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fabian, A. C.; Farrah, D.; Fiore, F.; Hailey, C. J.; Matt, G.; Ogle, P.; and others

    2013-08-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  6. [Study on effects of bioelectric parameters of rats in electromagnetic radiation of HV transmission line].

    PubMed

    Zhang, Anying; Pang, Xiaofeng; Yuan, Ping

    2007-02-01

    With the development of economy and coming of information era, the chance of exposure to electromagnetic fields with various frequencies has been increased for every human. The effects of electromagnetic radiattion on human being's health are versatile. To study the effects of bioelctronic parameters of rats in the electromagnetic radiations of HV transmission line, EEG, ECG and CMAP were measured in rats exposed to simulating high-voltage transmission line electromagnetic radiation for over one year. Brain tissues were studied by Fourier transform infrared spectroscopy. The results showed that no significant difference between exposed group and control group in EEG; however the FT-infrared spectra of brain tissues were different; the ECG of the exposed animals was considerably altered. Significant slowing of heart rate was observed in those rates exposed to EMFs; the latent period of CMAP in exposed group were not different compared with those of control group however there was a significant difference in wave amplitude of CMAP between the exposed group and control group. All results indicated that there must be some effects on bioelectric parameters of rats exposed to electromagnetic radiation of high-voltage transmission line for a long time.

  7. Chromosome Specific Substitution Lines of Aegilops geniculata Alter Parameters of Bread Making Quality of Wheat

    PubMed Central

    Tsujimoto, Hisashi; Gupta, Raj Kumar; Kumar, Aman; Kaur, Navneet; Kumar, Rohit; Chunduri, Venkatesh; Sharma, Nand Kishor; Chawla, Meenakshi; Sharma, Saloni; Mundey, Jaspreet Kaur

    2016-01-01

    Wheat cultivars with wide introgression have strongly impacted global wheat production. Aegilops geniculata (MgUg) is an important wild relative with several useful traits that can be exploited for wheat improvement. Screening of Ae. geniculata addition lines indicated a negative effect of 1Ug and the positive effect of 1Mg chromosome on wheat dough strength. Negative effect of 1Ug is probably associated with variation in number and position of the tripeptide repeat motif in the high molecular weight glutenin (HMW-G) gene. To utilize the positive potential of 1Mg chromosome, three disomic substitution lines (DSLs) 1Mg(1A), 1Mg(1B) and 1Mg(1D) were created. These lines were characterized for morphological, cytogenetic properties and biochemical signatures using FISH, 1D-, 2D-PAGE and RP-HPLC. Contribution of wheat 1A, 1B and 1D chromosomes towards dough mixing and baking parameters, chapatti quality, Fe/Zn content and glume color were identified. Observed order of variation in the dough mixing and baking parameters {1Mg(1D) ≤wheat ≤1Mg(1B) ≤1Mg(1A)} indicated that chromosome specific introgression is desirable for best utilization of wild species’ potential. PMID:27755540

  8. Optimization of electrothermal atomization parameters for simultaneous multielement atomic absorption spectrometry

    USGS Publications Warehouse

    Harnly, J.M.; Kane, J.S.

    1984-01-01

    The effect of the acid matrix, the measurement mode (height or area), the atomizer surface (unpyrolyzed and pyrolyzed graphite), the atomization mode (from the wall or from a platform), and the atomization temperature on the simultaneous electrothermal atomization of Co, Cr, Cu, Fe, Mn, Mo, Ni, V, and Zn was examined. The 5% HNO3 matrix gave rise to severe irreproducibility using a pyrolyzed tube unless the tube was properly "prepared". The 5% HCl matrix did not exhibit this problem, and no problems were observed with either matrix using an unpyrolized tube or a pyrolyzed platform. The 5% HCl matrix gave better sensitivities with a pyrolyzed tube but the two matrices were comparable for atomization from a platform. If Mo and V are to be analyzed with the other seven elements, a high atomization temperature (2700??C or greater) is necessary regardless of the matrix, the measurement mode, the atomization mode, or the atomizer surface. Simultaneous detection limits (peak height with pyrolyzed tube atomization) were comparable to those of conventional atomic absorption spectrometry using electrothermal atomization above 280 nm. Accuracies and precisions of ??10-15% were found in the 10 to 120 ng mL-1 range for the analysis of NBS acidified water standards.

  9. Chemometrics quality assessment of wastewater treatment plant effluents using physicochemical parameters and UV absorption measurements.

    PubMed

    Platikanov, S; Rodriguez-Mozaz, S; Huerta, B; Barceló, D; Cros, J; Batle, M; Poch, G; Tauler, R

    2014-07-01

    Chemometric techniques like Principal Component Analysis (PCA) and Partial Least Squares Regression (PLS) are used to explore, analyze and model relationships among different water quality parameters in wastewater treatment plants (WWTP). Different data sets generated by laboratory analysis and by an automatic multi-parametric monitoring system with a new designed optical device have been investigated for temporal variations on water quality parameters measured in the water influent and effluent of a WWTP over different time scales. The obtained results allowed the discovery of the more important relationships among the monitored parameters and of their cyclic dependence on time (daily, monthly and annual cycles) and on different plant management procedures. This study intended also the modeling and prediction of concentrations of several water components and parameters, especially relevant for water quality assessment, such as Dissolved Organic Matter (DOM), Total Organic Carbon (TOC) nitrate, detergent, and phenol concentrations. PLS models were built to correlate target concentrations of these constituents with UV spectra measured in samples collected at (1) laboratory conditions (in synthetic water mixtures); and at (2) WWTP conditions (in real water samples from the plant). Using synthetic water mixtures, specific wavelengths were selected with the aim to establish simple and reliable prediction models, which gave good relative predictions with errors of around 3-4% for nitrates, detergent and phenols concentrations and of around 15% for the DOM in external validation. In the case of nitrate and TOC concentrations modeling in real water samples from the effluent of the WWTP using the reduced spectral data set, results were also promising with low prediction errors (less than 20%).

  10. Interstellar H I and H2 in the Magellanic Clouds: An Expanded Sample Based on Ultraviolet Absorption-line Data

    NASA Astrophysics Data System (ADS)

    Welty, Daniel E.; Xue, Rui; Wong, Tony

    2012-02-01

    We have determined column densities of H I and/or H2 for sight lines in the Magellanic Clouds from archival Hubble Space Telescope and Far-Ultraviolet Spectroscopic Explorer spectra of H I Lyα and H2 Lyman-band absorption. Together with some similar data from the literature, we now have absorption-based N(H I) and/or N(H2) for 285 Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) sight lines (114 with a detection or limit for both species)—enabling more extensive, direct, and accurate determinations of molecular fractions, gas-to-dust ratios, and elemental depletions in these two nearby, low-metallicity galaxies. For sight lines where the N(H I) estimated from 21 cm emission is significantly higher than the value derived from Lyα absorption (presumably due to emission from gas beyond the target stars), integration of the 21 cm profile only over the velocity range seen in Na I or H2 absorption generally yields much better agreement. Conversely, N(21 cm) can be lower than N(Lyα) by factors of 2-3 in some LMC sight lines—suggestive of small-scale structure within the 21 cm beam(s) and/or some saturation in the emission. The mean gas-to-dust ratios obtained from N(Htot)/E(B - V) are larger than in our Galaxy, by factors of 2.8-2.9 in the LMC and 4.1-5.2 in the SMC—i.e., factors similar to the differences in metallicity. The N(H2)/E(B - V) ratios are more similar in the three galaxies, but with considerable scatter within each galaxy. These data may be used to test models of the atomic-to-molecular transition at low metallicities and predictions of N(H2) based on comparisons of 21 cm emission and the IR emission from dust. ), the MAST archive at STScI (FUSE data), and the University of Bonn (LAB and GASS 21 cm surveys).

  11. Genetic parameters and genetic trends in the Chinese × European Tiameslan composite pig line. I. Genetic parameters

    PubMed Central

    Zhang, Siqing; Bidanel, Jean-Pierre; Burlot, Thierry; Legault, Christian; Naveau, Jean

    2000-01-01

    Genetic parameters of body weight at 4 (W4 w), 8 (W8 w) and 22 (W22 w) weeks of age, days from 20 to 100 kg (DT), average backfat thickness at 100 kg (ABT), teat number (TEAT), number of good teats (GTEAT), total number of piglets born (TNB), born alive (NBA) and weaned (NW) per litter, and birth to weaning survival rate (SURV) were estimated in the Chinese × European Tiameslan composite line using restricted maximum likelihood methodology applied to a multiple trait animal model. Performance data from a total of 4 881 males and 4 799 females from 1 341 litters were analysed. Different models were fitted to the data in order to estimate the importance of maternal effects on production traits, as well as genetic correlations between male and female performance. The results showed the existence of significant maternal effects on W4w, W8w and ABT and of variance heterogeneity between sexes for W22w, DT, ABT and GTEAT. Genetic correlations between sexes were 0.79, 0.71 and 0.82, respectively, for W22w, DT and ABT and above 0.90 for the other traits. Heritability estimates were larger than (ABT and TEAT) or similar to (other traits) average literature values. Some genetic antagonism was evidenced between production traits, particularly W4w, W8w and ABT, and reproductive traits. PMID:14736406

  12. Ultraviolet interstellar absorption lines in the LMC: Searching for hidden SNRs

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Wakker, Bart; Low, Mordecai-Mark Mac; Garcia-Segura, Guillermo

    1994-01-01

    Strong x-ray emission detected in Large Magellanic Cloud (LMC) superbubbles has been explained as the result of interior supernova remnants (SNRs) hitting the dense superbubble shell. Such SNRs cannot be found using conventional criteria. We thus investigate the possibility of using the interstellar absorption properties in the ultraviolet (UV) as a diagnostic of hidden SNR shocks. The International Ultraviolet Explorer (IUE) archives provide the database for this pilot study. They contain high-dispersion spectra of several stars in x-ray bright superbubbles. To distinguish the effects of SNR shocks from those of local stellar winds and a global hot halo around the LMC, we included control objects in different environments. We find that almost all interstellar absorption properties can be explained by the interstellar environment associated with the objects. Summarizing the two most important results of this study: (1) a large velocity shift between the high-ionization species (C IV and Si IV) and the low-ionization species (S II, Si II, and C II*) is a diagnostic of hidden SNR shocks; however, the absence of a velocity shift does not preclude the existence of SNR shocks; (2) there is no evidence that the LMC is uniformly surrounded by hot gas; hot gas is preferentially found associated with large interstellar structures like superbubbles and supergiant shells, which may extend to large distances from the plane.

  13. Near infrared spectroscopy (NIRS) for on-line determination of quality parameters in intact olives.

    PubMed

    Salguero-Chaparro, Lourdes; Baeten, Vincent; Fernández-Pierna, Juan A; Peña-Rodríguez, Francisco

    2013-08-15

    The acidity, moisture and fat content in intact olive fruits were determined on-line using a NIR diode array instrument, operating on a conveyor belt. Four sets of calibrations models were obtained by means of different combinations from samples collected during 2009-2010 and 2010-2011, using full-cross and external validation. Several preprocessing treatments such as derivatives and scatter correction were investigated by using the root mean square error of cross-validation (RMSECV) and prediction (RMSEP), as control parameters. The results obtained showed RMSECV values of 2.54-3.26 for moisture, 2.35-2.71 for fat content and 2.50-3.26 for acidity parameters, depending on the calibration model developed. Calibrations for moisture, fat content and acidity gave residual predictive deviation (RPD) values of 2.76, 2.37 and 1.60, respectively. Although, it is concluded that the on-line NIRS prediction results were acceptable for the three parameters measured in intact olive samples in movement, the models developed must be improved in order to increase their accuracy before final NIRS implementation at mills.

  14. Off-line tracking of series parameters in distribution systems using AMI data

    SciTech Connect

    Williams, Tess L.; Sun, Yannan; Schneider, Kevin

    2016-05-01

    Electric distribution systems have historically lacked measurement points, and equipment is often operated to its failure point, resulting in customer outages. The widespread deployment of sensors at the distribution level is enabling observability. This paper presents an off-line parameter value tracking procedure that takes advantage of the increasing number of measurement devices being deployed at the distribution level to estimate changes in series impedance parameter values over time. The tracking of parameter values enables non-diurnal and non-seasonal change to be flagged for investigation. The presented method uses an unbalanced Distribution System State Estimation (DSSE) and a measurement residual-based parameter estimation procedure. Measurement residuals from multiple measurement snapshots are combined in order to increase the effective local redundancy and improve the robustness of the calculations in the presence of measurement noise. Data from devices on the primary distribution system and from customer meters, via an AMI system, form the input data set. Results of simulations on the IEEE 13-Node Test Feeder are presented to illustrate the proposed approach applied to changes in series impedance parameters. A 5% change in series resistance elements can be detected in the presence of 2% measurement error when combining less than 1 day of measurement snapshots into a single estimate.

  15. The SLUGGS survey: globular cluster stellar population trends from weak absorption lines in stacked spectra

    NASA Astrophysics Data System (ADS)

    Usher, Christopher; Forbes, Duncan A.; Brodie, Jean P.; Romanowsky, Aaron J.; Strader, Jay; Conroy, Charlie; Foster, Caroline; Pastorello, Nicola; Pota, Vincenzo; Arnold, Jacob A.

    2015-01-01

    As part of the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey, we stack 1137 Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) spectra of globular clusters from 10 galaxies to study their stellar populations in detail. The stacked spectra have median signal-to-noise ratios of ˜90 Å-1. Besides the calcium triplet, we study weaker sodium, magnesium, titanium and iron lines as well as the Hα and higher order Paschen hydrogen lines. In general, the stacked spectra are consistent with old ages and a Milky Way-like initial mass function. However, we see different metal line index strengths at fixed colour and magnitude, and differences in the calcium triplet-colour relation from galaxy to galaxy. We interpret this as strong evidence for variations in the globular cluster colour-metallicity relation between galaxies. Two possible explanations for the colour-metallicity relation variations are that the average ages of globular clusters vary from galaxy to galaxy or that the average abundances of light elements (i.e. He, C, N and O) differ between galaxies. Stacking spectra by magnitude, we see that the colours become redder and metal line indices stronger with brighter magnitudes. These trends are consistent with the previously reported `blue tilts' being mass-metallicity relations.

  16. A Two-Line Absorption Instrument for Scramjet Temperature and Water Vapor Concentration Measurement in HYPULSE

    NASA Technical Reports Server (NTRS)

    Tsai, C. Y.

    1998-01-01

    A three beam water vapor sensor system has been modified to provide for near simultaneous temperature measurement. The system employs a tunable diode laser to scan spectral line of water vapor. The application to measurements in a scramjet combustor environment of a shock tunnel facility is discussed. This report presents and discusses die initial calibration of the measurement system.

  17. Influence of process parameters on the weld lines formation in rapid heat cycle molding

    NASA Astrophysics Data System (ADS)

    Fiorotto, Marco; Lucchetta, Giovanni

    2011-05-01

    The insufficient entanglement of the molecular chains at the v-notch of a weld line impairs the mechanical strength and the surface quality of a plastic product. The rapid heat cycle molding technology (RHCM) has been recently used to enhance surface appearance of the parts, by thermally cycling the mold surface temperature. The mold temperature is the key of RHCM technology because it significantly affects productivity, energy efficiency and the quality of the final polymer part. In this work the influence of mold temperature on the weld lines depth and roughness were studied. Three different materials were tested. To investigate the influence of process parameters, a special mold insert was designed and manufactured. Weld lines geometry and roughness were quantitatively characterized by means of a profilometer. Experimental results show that is possible to increase the temperature to 10° C lower than the glass transition to obtain a high-gloss parts without weld lines with a significant reduction of cycle time and energy consumption.

  18. Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines.

    PubMed

    Ibáñez-Escriche, N; Magallón, E; Gonzalez, E; Tejeda, J F; Noguera, J L

    2016-01-01

    The aim of this study was to estimate the genetic and environmental parameters and crossbreeding effects on fatty acid and fat traits in the Iberian pig. Our final goal is to explore target selection traits and define crossbreeding strategies. The phenotypes were obtained under intensive management from 470 animals in a diallelic experiment involving Retinto, Torbiscal, and Entrepelado lines. The data set was composed of backfat thickness at the fourth rib (BFT), intramuscular fat (IMF) in the longissimus thoracis (LT), and the fatty acid profile for IMF and subcutaneous fat (SCF) traits. Data were analyzed through a Bayesian bivariate animal model by using a reparameterization of Dickerson's model. The results obtained showed an important genetic determinism for all traits analyzed with heritability ranging from 0.09 to 0.67. The common environment litter effect also had an important effect on IMF (0.34) and its fatty acid composition (0.06-0.53) at slaughter. The additive genetic correlation between BFT and IMF (additive genetic correlation [] = 0.31) suggested that it would be possible to improve lean growth independent of the IMF with an appropriate selection index. Furthermore, the high additive genetic correlation ( = 0.68) found between MUFA tissues would seem to indicate that either the LT or SCF could be used as the reference tissue for MUFA selection. The relevance of the crossbreeding parameters varied according to the traits analyzed. Backfat thickness at the fourth rib and the fatty acid profile of the IMF showed relevant differences between crosses, mostly due to line additive genetic effects associated with the Retinto line. On the contrary, those for IMF crosses were probably mainly attributable to heterosis effects. Particularly, heterosis effects were relevant for the Retinto and Entrepelado crosses (approximately 16% of the trait), which could be valuable for a crossbreeding system involving these lines.

  19. Measurement of the ozone absorption cross-section at the 253. 7 nm Mercury line

    SciTech Connect

    Mauersberger, K.; Barnes, J.; Hanson, D.; Morton, J.

    1986-07-01

    The absorption cross-section of ozone at 253.7 nm is frequently used as a standard for the entire UV wavelength range. The presently accepted value is 1.147 x 10/sup -17/ cm/sup 2/, known with an uncertainty of about 2%. The cross-section has been recently measured by simultaneously monitoring the ozone pressure, the impurities in the ozone gas, the gas temperature and the UV beam intensity. The cross-section at room temperature was found to be 1.137 x 10/sup -17/ cm/sup 2/, having an uncertainty of +- .7%. The improved accuracy will aid a number of ozone experiments including the i-italicn-italic s-italici-italict-italicu-italic photometers and Solar Backscatter Ultraviolet instruments.

  20. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere.

    PubMed

    Konopacky, Quinn M; Barman, Travis S; Macintosh, Bruce A; Marois, Christian

    2013-03-22

    Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging--spatially resolving the planet from its parent star--which enables high-resolution spectroscopy of self-luminous planets in jovian-like orbits. Here, we present a spectrum with numerous, well-resolved molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 astronomical units from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygen ratio that is greater than that of the host star, providing hints about the planet's formation.

  1. On-line sequential injection dispersive liquid-liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples.

    PubMed

    Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G

    2009-06-30

    A simple, sensitive and powerful on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system was developed as an alternative approach for on-line metal preconcentration and separation, using extraction solvent at microlitre volume. The potentials of this novel schema, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace copper and lead determination in water samples. The stream of methanol (disperser solvent) containing 2.0% (v/v) xylene (extraction solvent) and 0.3% (m/v) ammonium diethyldithiophosphate (chelating agent) was merged on-line with the stream of sample (aqueous phase), resulting a cloudy mixture, which was consisted of fine droplets of the extraction solvent dispersed entirely into the aqueous phase. By this continuous process, metal chelating complexes were formed and extracted into the fine droplets of the extraction solvent. The hydrophobic droplets of organic phase were retained into a microcolumn packed with PTFE-turnings. A portion of 300 microL isobutylmethylketone was used for quantitative elution of the analytes, which transported directly to the nebulizer of FAAS. All the critical parameters of the system such as type of extraction solvent, flow-rate of disperser and sample, extraction time as well as the chemical parameters were studied. Under the optimum conditions the enhancement factor for copper and lead was 560 and 265, respectively. For copper, the detection limit and the precision (R.S.D.) were 0.04 microg L(-1) and 2.1% at 2.0 microg L(-1) Cu(II), respectively, while for lead were 0.54 microg L(-1) and 1.9% at 30.0 microg L(-1) Pb(II), respectively. The developed method was evaluated by analyzing certified reference material and applied successfully to the analysis of environmental water samples.

  2. Definition of a parameter for a typical specific absorption rate under real boundary conditions of cellular phones in a GSM networkd

    NASA Astrophysics Data System (ADS)

    Gerhardt, D.

    2003-05-01

    Using cellular phones the specific absorption rate (SAR) as a physical value must observe established and internationally defined levels to guarantee human protection. To assess human protection it is necessary to guarantee safety under worst-case conditions (especially maximum transmitting power) using cellular phones. To evaluate the exposure to electromagnetic fields under normal terms of use of cellular phones the limitations of the specific absorption rate must be pointed out. In a mobile radio network normal terms of use of cellular phones, i.e. in interconnection with a fixed radio transmitter of a mobile radio network, power control of the cellular phone as well as the antenna diagram regarding a head phantom are also significant for the real exposure. Based on the specific absorption rate, the antenna diagram regarding a head phantom and taking into consideration the power control a new parameter, the typical absorption rate (SARtyp), is defined in this contribution. This parameter indicates the specific absorption rate under average normal conditions of use. Constant radio link attenuation between a cellular phone and a fixed radio transmitter for all mobile models tested was assumed in order to achieve constant field strength at the receiving antenna of the fixed radio transmitter as a result of power control. The typical specific absorption rate is a characteristic physical value of every mobile model. The typical absorption rate was calculated for 16 different mobile models and compared with the absorption rate at maximum transmitting power. The results confirm the relevance of the definition of this parameter (SARtyp) as opposed to the specific absorption rate as a competent and applicable method to establish the real mean exposure from a cellular phone in a mobile radio network. The typical absorption rate provides a parameter to assess electromagnetic fields of a cellular phone that is more relevant to the consumer.

  3. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains.

    PubMed

    Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2015-04-10

    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.

  4. Vehicle Dynamic Prediction Systems with On-Line Identification of Vehicle Parameters and Road Conditions

    PubMed Central

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-01-01

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231

  5. A Census of Intrinsic Narrow Absorption Lines in the Spectra of Quasars at z = 2-4

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael; Ganguly, Rajib; Tytler, David; Kirkman, David; Suzuki, Nao; Lubin, Dan

    2007-07-01

    We use Keck HIRES spectra of 37 optically bright quasars at z=2-4 to study narrow absorption lines that are intrinsic to the quasars (intrinsic NALs, produced in gas that is physically associated with the quasar central engine). We identify 150 NAL systems, which contain 124 C IV, 12 N V, and 50 Si IV doublets, of which 18 are associated systems (within 5000 km s-1 of the quasar redshift). We use partial coverage analysis to separate intrinsic NALs from NALs produced in cosmologically intervening structures. We find 39 candidate intrinsic systems (28 reliable determinations and 11 that are possibly intrinsic). We estimate that 10%-17% of C IV systems at blueshifts of 5000-70,000 km s-1 relative to quasars are intrinsic. At least 32% of quasars contain one or more intrinsic C IV NALs. Considering N V and Si IV doublets showing partial coverage as well, at least 50% of quasars host intrinsic NALs. This result constrains the solid angle subtended by the absorbers to the background source(s). We identify two families of intrinsic NAL systems, those with strong N V absorption and those with negligible absorption in N V but with partial coverage in the C IV doublet. We discuss the idea that these two families represent different regions or conditions in accretion disk winds. Of the 26 intrinsic C IV NAL systems, 13 have detectable low-ionization absorption lines at similar velocities, suggesting that these are two-phase structures in the wind rather than absorbers in the host galaxy. We also compare possible models for quasar outflows, including radiatively accelerated disk-driven winds, magnetocentrifugally accelerated winds, and pressure-driven winds, and we discuss ways of distinguishing between these models observationally. The data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration

  6. Study of the Many Fluorescent Lines and the Absorption Variability in GX 301-2 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Fuerst, F.; Suchy, S.; Kreykenbohm, I.; Barragan, L.; Wilms, J.; Pottschmidt, K.; Caballero, I.; Kretschmar, P.; Ferrigno, C.; Rothschild, R. E.

    2011-01-01

    We present an in-depth study of the High Mass X-ray Binary (HMXB) GX 301-2 during its pre-periastron flare using data from the XMM-Newton satellite. The energy spectrum shows a power law continuum absorbed by a large equivalent hydrogen column on the order of 10(exp 24)/ sq cm and a prominent Fe K-alpha fluorescent emission line. Besides the Fe K-alpha line, evidence for Fe K-Beta, Ni K-alpha, Ni K-Beta, S K-alpha, Ar K-alpha, Ca K-alpha, and Cr K-alpha fluorescent lines is found. The observed line strengths are consistent with fluorescence in a cold absorber. This is the first time that Cr K-alpha is seen in emission in the X-ray spectrum of a HMXB. In addition to the modulation by the strong pulse period of approx 685 sec the source is highly variable and shows different states of activity. We perform time-resolved as well as pulse-to-pulse resolved spectroscopy to investigate differences between these states of activity. We find that fluorescent line fluxes are strongly variable and generally follow the overall flux. The N-H value is variable by a factor of 2, but not correlated to continuum normalization. We find an interval of low flux in the light curve in which the pulsations cease almost completely, without any indication of an increasing absorption column. We investigate this dip in detail and argue that it is most likely that during the dip the accretion ceased and the afterglow of the fluorescent iron accounted for the main portion of the X-ray flux. A similar dip was found earlier in RXTE data, and we compare our findings to these results.

  7. Intersstellar absorption lines between 2000 and 3000 A in nearby stars observed with BUSS. [Balloon Borne Ultraviolet Spectrophotometer

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Lenhart, H.; Van Der Hucht, K. A.; Kamperman, T. M.; Kondo, Y.

    1986-01-01

    Spectra obtained between 2000 and 3000 A with the Balloon Borne Ultraviolet Spectrophotometer (BUSS) payload were examined for interstellar absorption lines. In bright stars, with spectral types between O9V and F5V, such lines were measured of Mg I, Mg II, Cr II, Mn II, Fe II and Zn II, with Cr II and Zn II data of especially high quality. Column densities were derived and interstellar abundances were determined for the above species. It was found that metal depletion increases with increasing E(B-V); Fe was most affected and Zn showed a small depletion for E(B-V) greater than 0.3 towards Sco-Oph. The metal column densities, derived for Alpha-And, Kappa-Dra, Alpha-Com, Alpha-Aql, and 29 Cyg were used to infer N(H I). It was shown that the ratio of Mg I to Na I is instrumental in determining the ionization structure along each line of sight. The spectra of Aql stars confirms the presence of large gas densities near Alpha-Oph. Moreover, data indicated that the Rho-Oph N(H I) value needs to be altered to 35 x 10 to the 20th/sq cm, based on observed ion ratios and analysis of the Copernicus L-alpha profile.

  8. Atmospheric Profiling Combining the Features of GPS ro & Mls: Satellite to Satellite Occultations Near Water & Ozone Absorption Lines

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Ward, D.; Otarola, A. C.; McGhee, J.; Reed, H.; Erickson, D.

    2015-12-01

    Assessing climate models & their predictions requires observations that determine the state of the real climate system precisely and unambiguously, independently from models. For this purpose, we have been developing a new orbiting remote sensing system called the Active Temperature, Ozone & Moisture Microwave Spectrometer (ATOMMS) which is a cross between GPS RO and the Microwave Limb Sounder. ATOMMS actively probes water vapor, ozone & other absorption lines at cm & mm wavelengths in a satellite to satellite occultation geometry to simultaneously profile temperature, pressure, water vapor and ozone as well as other important constituents. Individual profiles of water vapor, temperature & pressure heights will extend from near the surface into the mesosphere with ~1%, 0.4K and 10 m precision respectively and still better accuracy, with 100 m vertical resolution. Ozone profiles will extend upward from the upper troposphere. Line of sight wind profiles will extend upwards from the mid-stratosphere. ATOMMS is a doubly differential absorption system which eliminates drift and both sees clouds and sees thru them, to deliver performance in clouds within a factor of 2 of the performance in clear skies. This all-weather sampling combined with insensitivity to surface emissivity avoids sampling biases that limit most existing satellite records. ATOMMS will profile slant liquid water in clouds & rain and as well as turbulence via scintillations ("twinkling of a star"). Using prototype ATOMMS instrumentation that we developed with funding from NSF, several ATOMMS ground field campaigns precisely measured water vapor, cloud amount, rainfall, turbulence and absorption line spectroscopy. ATOMMS's dynamic range was demonstrated as water vapor was derived to 1% precision in optical depths up to 17. We are developing high altitude aircraft to aircraft instrumentation to further demonstrate ATOMMS performance, refine spectroscopy & support future field campaigns. Our vision is a

  9. LINE PARAMETERS OF THE 782 nm BAND OF CO{sub 2}

    SciTech Connect

    Lu, Y.; Liu, A.-W.; Li, X.-F.; Wang, J.; Cheng, C.-F.; Sun, Y. R.; Lambo, R.; Hu, S.-M.

    2013-09-20

    The 782 nm band of CO{sub 2}, in a transparent window of Earth's atmosphere, was the first CO{sub 2} band observed 80 yr ago in the spectra of Venus. The band is very weak and therefore not saturated by the thick atmosphere of Venus, but its spectral parameters are still very limited due to the difficulty of detecting it in the laboratory. It is the highest overtone (ν{sub 1} + 5ν{sub 3}) of CO{sub 2} given in widely used spectroscopy databases such as HITRAN and GEISA. In the present work, the band is studied using a cavity ring-down spectrometer with ultra-high sensitivity as well as high precision. The positions of 55 lines in the band were determined with an absolute accuracy of 3 × 10{sup –5} cm{sup –1}, two orders of magnitude better than previous studies. The line intensities, self-induced pressure broadening coefficients, and the shift coefficients were also derived from the recorded spectra. The obtained spectral parameters can be applied to model the spectra of the CO{sub 2}-rich atmospheres of planets like Venus and Mars.

  10. Limits on variations in fundamental constants from 21-cm and ultraviolet Quasar absorption lines.

    PubMed

    Tzanavaris, P; Webb, J K; Murphy, M T; Flambaum, V V; Curran, S J

    2005-07-22

    Quasar absorption spectra at 21-cm and UV rest wavelengths are used to estimate the time variation of x [triple-bond] alpha(2)g(p)mu, where alpha is the fine structure constant, g(p) the proton g factor, and m(e)/m(p) [triple-bond] mu the electron/proton mass ratio. Over a redshift range 0.24 < or = zeta(abs) < or = 2.04, (Deltax/x)(weighted)(total) = (1.17 +/- 1.01) x 10(-5). A linear fit gives x/x = (-1.43 +/- 1.27) x 10(-15) yr(-1). Two previous results on varying alpha yield the strong limits Deltamu/mu = (2.31 +/- 1.03) x 10(-5) and Deltamu/mu=(1.29 +/- 1.01) x10(-5). Our sample, 8 x larger than any previous, provides the first direct estimate of the intrinsic 21-cm and UV velocity differences 6 km s(-1).

  11. In-Line Capacitance Sensor for Real-Time Water Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Perusich, Stephen A.

    2010-01-01

    A capacitance/dielectric sensor was designed, constructed, and used to measure in real time the in-situ water concentration in a desiccant water bed. Measurements were carried out with two experimental setups: (1) passing nitrogen through a humidity generator and allowing the gas stream to become saturated at a measured temperature and pressure, and (2) injecting water via a syringe pump into a nitrogen stream. Both water vapor generating devices were attached to a downstream vertically-mounted water capture bed filled with 19.5 g of Moisture Gone desiccant. The sensor consisted of two electrodes: (1) a 1/8" dia stainless steel rod placed in the middle of the bed and (2) the outer shell of the stainless steel bed concentric with the rod. All phases of the water capture process (background, heating, absorption, desorption, and cooling) were monitored with capacitance. The measured capacitance was found to vary linearly with the water content in the bed at frequencies above 100 kHz indicating dipolar motion dominated the signal; below this frequency, ionic motion caused nonlinearities in the water concentration/capacitance relationship. The desiccant exhibited a dielectric relaxation whose activation energy was lowered upon addition of water indicating either a less hindered rotational motion or crystal reorientation.

  12. X-Ray Weak Broad-Line Quasars: Absorption or Intrinsic X-Ray Weakness

    NASA Technical Reports Server (NTRS)

    Risaliti, Guido; Mushotzky, Richard F. (Technical Monitor)

    2004-01-01

    XMM observations of X-ray weak quasars have been performed during 2003. The data for all but the last observation are now available (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed these data, and obtained interesting preliminary scientific results. Out of the eight sources, 4 are confirmed to be extrimely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confirmed to be highly variable both in flux (by factors 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects, an article is in preparation. Preliminary results have been presented at an international workshop on AGN surveys in December 2003, in Cozumel (Mexico). In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations, and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations will be performed in early 2004, and will complement the XMM data, in order to understand whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circumnuclear material.

  13. Excitation ahead of shock fronts in krypton measured by single line laser absorption

    NASA Astrophysics Data System (ADS)

    Boetticher, W.; Kilpin, D.

    1984-12-01

    The absorption of single-mode radiation (from a dye laser tuned to 587.25 and 557.18 nm) by Kr in front of shock waves with Mach numbers 12-21 in a 50-mm-diameter 4.4-m-long free-position driver shock tube at preshock pressures 0.7-2.7 kPa is measured to determine the number densities of the metastable 5s(1 1/2)2 and 5s(1 1/2)1 precursor states (1s5 and 1s4 in Paschen notation, respectively). The measurement technique and calculations follow those of Ernst (1982). The results are presented in tables and graphs and characterized in comparison with previous findings. The time constant of the exponential rise of the precursor is found to be about 8 microsec, and the concentration of 1s5 + 1s4 for Mach 20 is calculated as about 10 ppm, in agreement (to within a factor of 5) with model predictions for Ar and Xe.

  14. A Bayesian Method For Finding Galaxies That Cause Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Shoemaker, Emileigh Suzanne; Laubner, David Andrew; Scott, Jennifer E.

    2016-01-01

    We present a study of candidate absorber-galaxy pairs for 39 low redshift quasar sightlines (0.06 < z < 0.85) using a statistical approach to match absorbers with galaxies near the quasar lines of sight. Of the 75 quasars observed with HST/Cosmic Origins Spectrograph (COS) and archived on the Mikulski Archive for Space Telescopes (MAST), 39 overlap with the footprint of the Sloan Digital Sky Survey (SDSS). We downloaded the COS linelists for these quasar spectra from MAST and queried the SDSS DR12 database for photometric data on all galaxies within 1 Mpc of each of these quasar lines of sight. We calculated photometric redshifts for all the SDSS galaxies using the Bayesian Photometric Redshift code. We used all these absorber and galaxy data as input into an absorber-galaxy matching code which also employs a Bayesian scheme, along with known statistics of the intergalactic medium and circumgalactic media of galaxies, for finding the most probable galaxy match for each absorber. We compare our candidate absorber-galaxy matches to existing studies in the literature and explore trends in the absorber and galaxy properties among the matched and non-matched populations. This method of matching absorbers and galaxies can be used to find targets for follow up spectroscopic studies.

  15. An X-ray Absorption Edge Detector for High-Resolution Measurement of Undulator Effective K-Parameter

    SciTech Connect

    Yang, B.; Galayda, J.N.; /SLAC

    2007-03-07

    The spectrum of angle-integrated undulator radiation displays a sharp edge at every harmonic photon energy. A technique utilizing this feature to measure minute changes in K-parameters of an undulator in a free-electron laser has been proposed. To date, this technique requires the use of crystal monochromators as bandpass filters whose energy centroid depends on the incident angle of the x-ray beam. In this work we propose to use the absorption edge of an appropriate element as an energy-selective detector whose response is truly independent of the angle of the x-ray beam, and hence independent of electron beam direction and emittance. We will discuss the basic design concept of the detection system and illustrate its projected performance with computer simulations.

  16. Automatic On-line Solid-phase Extraction-Electrothermal Atomic Absorption Spectrometry Exploiting Sequential Injection Analysis for Trace Vanadium, Cadmium and Lead Determination in Human Urine Samples.

    PubMed

    Giakisikli, Georgia; Ayala Quezada, Alejandro; Tanaka, Junpei; Anthemidis, Aristidis N; Murakami, Hiroya; Teshima, Norio; Sakai, Tadao

    2015-01-01

    A fully automated sequential injection column preconcentration method for the on-line determination of trace vanadium, cadmium and lead in urine samples was successfully developed, utilizing electrothermal atomic absorption spectrometry (ETAAS). Polyamino-polycarboxylic acid chelating resin (Nobias chelate PA-1) packed into a handmade minicolumn was used as a sorbent material. Effective on-line retention of chelate complexes of analytes was achieved at pH 6.0, while the highest elution effectiveness was observed with 1.0 mol L(-1) HNO3 in the reverse phase. Several analytical parameters, like the sample acidity, concentration and volume of the eluent as well as the loading/elution flow rates, have been studied, regarding the efficiency of the method, providing appropriate conditions for the analysis of real samples. For a 4.5 mL sample volume, the sampling frequency was 27 h(-1). The detection limits were found to be 3.0, 0.06 and 2.0 ng L(-1) for V(V), Cd(II) and Pb(II), respectively, with the relative standard deviations ranging between 1.9 - 3.7%. The accuracy of the proposed method was evaluated by analyzing a certified reference material (Seronorm(TM) trace elements urine) and spiked urine samples.

  17. Experimental air-broadened line parameters in the nu(2) band of CH3D

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Brawley-Tremblay, Shannon; Povey, Chad; Smith, Mary Ann H.

    2007-02-01

    In this study, we report the first experimental measurements of air-broadening and air-induced pressure-shift coefficients for approximately 378 transitions in the nu(2) fundamental band of CH3D. These results were obtained from analysis of 17 room-temperature laboratory absorption spectra recorded at 0.0056 cm(-1) resolution using the McMath-Pierce Fourier transform spectrometer located on Kitt Peak, Ariz. Three absorption cells with path lengths of 10.2, 25, and 150 cm were used to record the spectra. The total sample pressures ranged from 0.129 x 10(-2) to 52.855 x 10(-2) atm with CH3D volume mixing ratios of approximately 0.0109 in air. The spectra were analyzed using a multispectrum nonlinear least-squares fitting technique. We report measurements for air pressure-broadening coefficients for transitions with quantum numbers as high as J'' D 20 and K D 15, where K'' D K' equivalent to K (for a parallel band). The measured air-broadening coefficients range from 0.0205 to 0.0835 cm(-1)atm(-1) at 296 K. All the measured pressure-shift coefficients are negative and are found to vary from about -0.0005 to -0.0080 cm(-1) atm(-1) at the temperature of the spectra. We have examined the dependence of the measured broadening and shift parameters on the J'', and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m D -J'', J'', and J'' + 1 in the P-Q-, (Q)Q-, and R-Q-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%.

  18. Optical frequency standard by using a 1560 nm diode laser locked to saturated absorption lines of rubidium vapor

    SciTech Connect

    Masuda, Shin; Seki, Atsushi; Niki, Shoji

    2007-07-20

    A robust, compact, highly accurate rubidium optical frequency standard module was developed to overcome the delicate performance of conventional frequency stabilized lasers. A frequency doubled1560 nm distributed feedback diode laser locked to a rubidium D2 saturated absorption line without using an optical amplifier was demonstrated, and dithering-free optical output was obtained. In addition, the sensitivity of the developed optical frequency standard to magnetic fields was investigated. We confirmed that the influence of the magnetic fields on the optical frequency standard can be almost negligible when using appropriate magnetic-shield films. As a result, the magnetic-field-insensitive optical frequency standard, which can be embedded in optical systems,exhibiting uncertainty less than at least 100 kHz, was successfully realized for the first time to the best of our knowledge.

  19. Dramatically Variable C IV Mini-Broad Absorption Line System in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, T.; Eracleous, M.; Charlton, J. C.; Chartas, G.; Kashikawa, N.

    2008-10-01

    We observed the quasar HS 1603+3820 (z_{em} = 2.542, first discovered by Dobrzycki et al. 1996) six times over an interval of 4.2 yrs (1.2 yrs in the quasar rest frame) using the High Dispersion Spectrograph on Subaru telescope. The purpose was to study the mini-broad absorption line (mini-BAL; FWHM ˜ 1,000 km s^{-1}) that is blue-shifted from the quasar by ˜ 9,500 km s^{-1}. We found significant time variability, which supported the physical association of the mini-BAL gas with an outflow from the quasar. We have narrowed down the cause of the variability to two possible scenarios. We also used archival Chandra x-ray data to study the x-ray properties of this quasar. The results constrain the location of the absorbing gas relative to the overall outflow.

  20. A study of double exposure process design with balanced performance parameters for line/space applications

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Wu, Peng; Wu, Qiang; Ding, Hua; Li, Xin; Sun, Changjiang

    2007-03-01

    As the semiconductor fabrication groundrule has reached the 32nm node, in general there are several possible approaches for the photolithography solution such as the double exposure with 1.35 NA immersion, the high refractive index immersion, the extremely ultra violet (EUV) lithography, nanoimprint lithography etc. Among the four, the easiest approach seems to be the double exposure method at an effective numerical aperture (NA) of 1.35. However, there are still challenges in the design and optimization of the process, such as, the use of appropriate illumination condition, the choice of a good photoresist, and the design of an optical proximity correction (OPC) strategy. Besides these considerations, there is a question as whether we really need the double etch process. To study the double exposure mechanism, we have used a 248 nm deep-UV exposure tool and several well chosen photoresist (one is for Space application and the other is for Line application) to study the photo performance parameters in the merge of two photo exposures. At a numerical aperture (NA) around 0.7, the minimum groundrule we can achieve is the one for a 75 nm logic process with minimum pitch around 220 nm. One approach will be that the features with pitches wider than 440 nm are completed in a single exposure, which includes various isolated lines and spaces, line and space ends, two-dimensional structures, etc. This strategy essentially puts the single exposure pattern under the 0.18 um logic like pitches where mild conventional illumination can produce a balanced performance. Under typical illumination conditions, the photolithographic process under 0.18 um like ground rule is well understood and the optical proximity correction is not complicated. The remaining issues are in the dense pitches, where the double exposure kicks in. We have demonstrated that the double exposure with single development can achieve a process window large enough for a 75 nm logic like process and the OPC

  1. Detection of copper in water using on-line plasma-excited atomic absorption spectroscopy (AAS).

    PubMed

    Porento, Mika; Sutinen, Veijo; Julku, Timo; Oikari, Risto

    2011-06-01

    A measurement method and apparatus was developed to measure continuously toxic metal compounds in industrial water samples. The method was demonstrated by using copper as a sample metal. Water was injected into the sample line and subsequently into a nitrogen plasma jet, in which the samples comprising the metal compound dissolved in water were decomposed. The transmitted monochromatic light was detected and the absorbance caused by copper atoms was measured. The absorbance and metal concentration were used to calculate sensitivity and detection limits for the studied metal. The sensitivity, limit of detection, and quantification for copper were 0.45 ± 0.02, 0.25 ± 0.01, and 0.85 ± 0.04 ppm, respectively.

  2. A Fourth H I 21 cm Absorption System in the Sight Line of MG J0414+0534: A Record for Intervening Absorbers

    NASA Astrophysics Data System (ADS)

    Tanna, A.; Curran, S. J.; Whiting, M. T.; Webb, J. K.; Bignell, C.

    2013-08-01

    We report the detection of a strong H I 21 cm absorption system at z = 0.5344, as well as a candidate system at z = 0.3389, in the sight line toward the z = 2.64 quasar MG J0414+0534. This, in addition to the absorption at the host redshift and the other two intervening absorbers, takes the total to four (possibly five). The previous maximum number of 21 cm absorbers detected along a single sight line is two and so we suspect that this number of gas-rich absorbers is in some way related to the very red color of the background source. Despite this, no molecular gas (through OH absorption) has yet been detected at any of the 21 cm redshifts, although, from the population of 21 cm absorbers as a whole, there is evidence for a weak correlation between the atomic line strength and the optical-near-infrared color. In either case, the fact that so many gas-rich galaxies (likely to be damped Lyα absorption systems) have been found along a single sight line toward a highly obscured source may have far-reaching implications for the population of faint galaxies not detected in optical surveys, a possibility which could be addressed through future wide-field absorption line surveys with the Square Kilometer Array.

  3. Using ISM abundances in the SMC to Correct for Element Depletions by Dust in QSO Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Jenkins, Edward

    2014-10-01

    The availability of 10-m class telescopes with high resolution echelle spectrographs has enabled astronomers to measure accurately the gas-phase abundances of various elements in QSO absorption line systems at high redshifts. These systems offer insights on the chemical evolution of galaxies (and their nearby environments) in their early stages of development. However, in order to obtain total abundances the observations need to be corrected for the depletions caused by the formation of dust, and traditionally people have done so by using the depletion patterns seen in our own Galaxy. There is now evidence that indicates that such patterns in low-metallicity systems differ from those of our Galaxy and thus the corrections may be misleading. The aim of our proposed HST observations is to measure the gas-phase abundances toward stars in the Small Magellanic Cloud, which is a low-metallicity dwarf galaxy where there exist good measurements of stellar comparison abundances. We plan to record ISM absorption features from STIS medium-resolution echelle spectra for 14 stars in the SMC that are known to have varying levels of depletion, so that we can derive the gas-phase abundance patterns of the elements Ni, Fe, Cr, Mn, Si, Mg, Ge, Kr, Zn, and perhaps P.

  4. Atmospheric profiling via satellite to satellite occultations near water and ozone absorption lines for weather and climate

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Ward, D.; Otarola, A. C.; McGhee, J.; Stovern, M.; Sammler, K.; Reed, H.; Erickson, D.; McCormick, C.; Griggs, E.

    2016-05-01

    Significantly reducing weather and climate prediction uncertainty requires global observations with substantially higher information content than present observations provide. While GPS occultations have provided a major advance, GPS observations of the atmosphere are limited by wavelengths chosen specifically to minimize interaction with the atmosphere. Significantly more information can be obtained via satellite to satellite occultations made at wavelengths chosen specifically to characterize the atmosphere. Here we describe such a system that will probe cm- and mmwavelength water vapor absorption lines called the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS). Profiling both the speed and absorption of light enables ATOMMS to profile temperature, pressure and humidity simultaneously, which GPS occultations cannot do, as well as profile clouds and turbulence. We summarize the ATOMMS concept and its theoretical performance. We describe field measurements made with a prototype ATOMMS instrument and several important capabilities demonstrated with those ground based measurements including retrieving temporal variations in path-averaged water vapor to 1%, in clear, cloudy and rainy conditions, up to optical depths of 17, remotely sensing turbulence and determining rain rates. We conclude with a vision of a future ATOMMS low Earth orbiting satellite constellation designed to take advantage of synergies between observational needs for weather and climate, ATOMMS unprecedented orbital remote sensing capabilities and recent cubesat technological innovations that enable a constellation of dozens of very small spacecraft to achieve many critical, but as yet unfulfilled, monitoring and forecasting needs.

  5. XMM-NEWTON OBSERVATIONS OF THE RADIO-LOUD BROAD ABSORPTION LINE QUASAR FBQS J131213.5+231958

    SciTech Connect

    Mathur, Smita; Dai Xinyu E-mail: dai@nhn.ou.ed

    2010-12-15

    We present XMM-Newton observations of the broad absorption line (BAL) quasar FBQS J131213.5+231958. The X-ray spectrum of the source can be well described by an absorbed power-law model in which the absorber is either ionized or only partially covers the continuum source. This can explain the apparent lack of absorption observed in the Chandra spectrum with low signal-to-noise ratio. While the power-law slope of the spectrum is similar to that of non-BAL radio-loud quasars, the Eddington luminosity ratio is likely to be significantly higher than the mean. This shows that in high-mass black holes (BHs), high Eddington accretion may not result in as steep of a spectrum as in lower-mass BHs. This provides important constraints for accretion disk models. It also provides support to the idea that BAL quasars, at least their radio-loud subclass, represent an early evolutionary stage of quasars.

  6. Comparison of serum biochemical parameters between two broiler chicken lines divergently selected for abdominal fat content.

    PubMed

    Dong, J-Q; Zhang, H; Jiang, X-F; Wang, S-Z; Du, Z-Q; Wang, Z-P; Leng, L; Cao, Z-P; Li, Y-M; Luan, P; Li, H

    2015-07-01

    In humans, obesity is associated with increased or decreased levels of serum biochemical indicators. However, the relationship is not as well understood in chickens. Due to long-term intense selection for fast growth rate, modern broilers have the problem of excessive fat deposition, exhibiting biochemical or metabolic changes. In the current study, the Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) were used to identify differences in serum biochemical parameters between the 2 lines. A total of 18 serum biochemical indicators were investigated in the 16th, 17th, and 18th generation populations of NEAUHLF, and the genetic parameters of these serum biochemical indicators were estimated. After analyzing the data from these 3 generations together, the results showed that the levels of 16 of the tested serum biochemical parameters were significantly different between the lean and fat birds. In the fat birds, serum concentrations of high-density lipoprotein cholesterol (HDL-C), HDL-C:low-density lipoprotein cholesterol (LDL-C), total bile acid, total protein, albumin, globulin, aspartate transaminase (AST):alanine transaminase (ALT), γ-glutamyl transpeptidase (GGT), uric acid, and creatinine were very significantly higher (P < 0.01), whereas LDL-C, albumin:globulin, glucose, AST, ALT, and free fatty acids concentrations in serum were very significantly lower than those in the lean birds (P < 0.01). Of these 16 serum biochemical parameters, 5 (LDL-C, HDL-C:LDL-C, total bile acid, albumin, and albumin:globulin) had high heritabilities (0.58 ≤ h2 ≤ 0.89), 6 (HDL-C, total protein, globulin, AST:ALT, GGT, and creatinine) had moderate heritabilities (0.29 ≤ h2 ≤ 0.48), and the remaining 5 had low heritabilities (h2 < 0.20). Serum HDL-C, HDL-C:LDL-C, and glucose had higher positive genetic correlation coefficients (rg) with abdominal fat traits (0.30 ≤ rg ≤ 0.80), whereas serum globulin, AST, and uric acid

  7. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements.

    PubMed

    Koch, Grady J; Beyon, Jeffrey Y; Gibert, Fabien; Barnes, Bruce W; Ismail, Syed; Petros, Mulugeta; Petzar, Paul J; Yu, Jirong; Modlin, Edward A; Davis, Kenneth J; Singh, Upendra N

    2008-03-01

    A 2 microm wavelength, 90 mJ, 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 2.9 GHz from the center of a CO(2) absorption line. Once detuned from the line center the laser wavelength is actively locked to keep the wavelength within 1.9 MHz standard deviation about the setpoint. This wavelength control allows optimization of the optical depth for a differential absorption lidar (DIAL) measuring atmospheric CO(2) concentrations. The laser transmitter has been coupled with a coherent heterodyne receiver for measurements of CO(2) concentration using aerosol backscatter; wind and aerosols are also measured with the same lidar and provide useful additional information on atmospheric structure. Range-resolved CO(2) measurements were made with <2.4% standard deviation using 500 m range bins and 6.7 min? (1000 pulse pairs) integration time. Measurement of a horizontal column showed a precision of the CO(2) concentration to <0.7% standard deviation using a 30 min? (4500 pulse pairs) integration time, and comparison with a collocated in situ sensor showed the DIAL to measure the same trend of a diurnal variation and to detect shorter time scale CO(2) perturbations. For vertical column measurements the lidar was setup at the WLEF tall tower site in Wisconsin to provide meteorological profiles and to compare the DIAL measurements with the in situ sensors distributed on the tower up to 396 m height. Assuming the DIAL column measurement extending from 153 m altitude to 1353 m altitude should agree with the tower in situ sensor at 396 m altitude, there was a 7.9 ppm rms difference between the DIAL and the in situ sensor using a 30 min? rolling average on the DIAL measurement.

  8. [Study on the characteristic UV absorption parameters of dissolved organic matter extracted from chicken manure during composting].

    PubMed

    Li, Ming-xiao; He, Xiao-song; Liu, Jun; Xi, Bei-dou; Zhao, Yue; Wei, Zi-min; Jiang, Yong-hai; Su, Jing; Hu, Chun-ming

    2010-11-01

    The characteristic parameters obtained from UV-Visible spectra of dissolved organic matter (DOM) during composting were studied in the present paper. The results showed that, during composting progress, the non-humic substances were translated into humus substances, and the aromatization, humification degree and molecular weight of the humus substances increased, while the fatty chains linked with the benzene ring structure were cleavaged into carbonyl, carboxyl and other functional groups. The correlation analysis showed that, when DOM concentration (DOC) from all samples was the same, the specific ultraviolet absorbance values at 254 and 280 nm (SUVA254 and SUVA280, respectively), and the area of a spectrum obtained from 226 to 400 nm (A(226-400)) showed significant positive correlation, furthermore, they were all significantly negatively correlated with the concentration of DOM (DOC), but the correlation between A(226-400) and DOC was the best; The ratio between the absorbance value at 253 nm and that at 203 nm (E253/E203) was significantly correlative with SUVA254, SUVA280 and A 226-400, though the correlation between E253/E203 and DOC was not as good as the other three characteristic parameters; The ratio between the absorbance value at 250 nm and that at 365 nm (E250/E365) and the ratio between the absorbance value at 465 nm and that at 665 nm(E250/E365) were not correlated with the other parameters. The results showed that, the stability of DOM extracted from chicken manure increased during composting, and the complex ability between DOM and heavy metals enhanced as well; A(226-400) reflects the changes of compost maturity best in all UV-Visible spectral absorption parameters studied in this paper.

  9. AN STIS ATLAS OF Ca II TRIPLET ABSORPTION LINE KINEMATICS IN GALACTIC NUCLEI

    SciTech Connect

    Batcheldor, D.; Mandalou, J.; Axon, D.; Valluri, M.; Merritt, D.

    2013-09-15

    The relations observed between supermassive black holes and their host galaxies suggest a fundamental link in the processes that cause these two objects to evolve. A more comprehensive understanding of these relations could be gained by increasing the number of supermassive black hole mass (M{sub .}) measurements. This can be achieved, in part, by continuing to model the stellar dynamics at the centers of galactic bulges using data of the highest possible spatial resolution. Consequently, we present here an atlas of galaxies in the Space Telescope Imaging Spectrograph (STIS) data archive that may have spectra suitable for new M{sub .} estimates. Archived STIS G750M data for all non-barred galactic bulges are co-aligned and combined, where appropriate, and the radial signal-to-noise ratios calculated. The line-of-sight velocity distributions from the Ca II triplet are then determined using a maximum penalized likelihood method. We find 19 out of 42 galaxies may provide useful new M{sub .} estimates since they are found to have data that is comparable in quality with data that has been used in the past to estimate M{sub .}. However, we find no relation between the signal-to-noise ratio in the previously analyzed spectra and the uncertainties of the black hole masses derived from the spectra. We also find that there is a very limited number of appropriately observed stellar templates in the archive from which to estimate the effects of template mismatching.

  10. Diurnal and Interannual Variation in Absorption Lines of Isotopic Carbon Dioxide in Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Kostiuk, Theodor; Hewagama, Tilak; Kolasinski, John R.; Henning, Wade G.

    2015-11-01

    Groundbased observations of Mars in 2003, 2007, 2012, and 2014 have detected transitions of carbon dioxide containing the stable minor isotopes of oxygen and carbon as well as the primary isotopes, using the ultrahigh resolution spectrometer HIPWAC at the NASA Infrared Telescope Facility. The most well characterized minor isotope is O-18, due to strong lines and observational opportunities. The average estimated O-18/O-16 isotope ratio is roughly consistent with other in situ and remote spectroscopic measurements but demonstrates an additional feature in that the retrieved ratio appears to increase with greater ground surface temperature. These conclusions primarily come from analyzing a subset of the 2007 data. Additional observations have been acquired over a broad range of local time and meridional position to evaluate variability with respect to ground surface temperature. These additional observations include one run of measurements with C-13. These observations can be compared to local in situ measurements by the Curiosity rover to narrow the uncertainty in absolute isotope ratio and extend isotopic measurements to other regions and seasons on Mars. The relative abundance of carbon dioxide heavy isotopes on Mars is central to estimating the primordial atmospheric inventory on Mars. Preferential freeze-distillation of heavy isotopes means that any measurement of the isotope ratio can be only a lower limit on heavy isotope enrichment due to past and current loss to space.

  11. Determination of Spectral Line Parameters in Selected Portions of the Infrared Spectrum of Water Vapor

    NASA Technical Reports Server (NTRS)

    Albert, Karen Keppler

    1999-01-01

    Pressure broadening and pressure-induced shift coefficients due to water and nitrogen have been determined for water vapor transitions in the CO2 region of interest to Project HALOE. The temperature dependences of the widths and shifts have also been determined for selected transitions in this region. Results have been compared with values available in the literature. The line parameters have been obtained from the analysis of room temperature recordings of the spectrum of pure water and recordings of the spectra of heated water/nitrogen mixtures. The recordings of the water vapor spectrum were obtained with Fourier Transform Spectrometers at Kitt Peak and at the Justus-Liebig-Universitat Giessen. Up to eighteen spectra have been fitted simultaneously with a multispectrum nonlinear least-squares fitting technique developed by Dr. D. Chris Benner and colleagues.

  12. An STIS Atlas of Ca II Triplet Absorption Line Kinematics in Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Batcheldor, D.; Axon, D.; Valluri, M.; Mandalou, J.; Merritt, D.

    2013-09-01

    The relations observed between supermassive black holes and their host galaxies suggest a fundamental link in the processes that cause these two objects to evolve. A more comprehensive understanding of these relations could be gained by increasing the number of supermassive black hole mass (M •) measurements. This can be achieved, in part, by continuing to model the stellar dynamics at the centers of galactic bulges using data of the highest possible spatial resolution. Consequently, we present here an atlas of galaxies in the Space Telescope Imaging Spectrograph (STIS) data archive that may have spectra suitable for new M • estimates. Archived STIS G750M data for all non-barred galactic bulges are co-aligned and combined, where appropriate, and the radial signal-to-noise ratios calculated. The line-of-sight velocity distributions from the Ca II triplet are then determined using a maximum penalized likelihood method. We find 19 out of 42 galaxies may provide useful new M • estimates since they are found to have data that is comparable in quality with data that has been used in the past to estimate M •. However, we find no relation between the signal-to-noise ratio in the previously analyzed spectra and the uncertainties of the black hole masses derived from the spectra. We also find that there is a very limited number of appropriately observed stellar templates in the archive from which to estimate the effects of template mismatching. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  13. X-RAYS FROM A RADIO-LOUD COMPACT BROAD ABSORPTION LINE QUASAR 1045+352 AND THE NATURE OF OUTFLOWS IN RADIO-LOUD BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Kunert-Bajraszewska, Magdalena; Katarzynski, Krzysztof; Siemiginowska, Aneta; Janiuk, Agnieszka

    2009-11-10

    We present new results on X-ray properties of radio-loud broad absorption line (BAL) quasars and focus on broadband spectral properties of a high-ionization BAL (HiBAL) compact steep spectrum (CSS) radio-loud quasar 1045+352. This HiBAL quasar has a very complex radio morphology indicating either strong interactions between a radio jet and the surrounding interstellar medium or a possible re-start of the jet activity. We detected 1045+352 quasar in a short 5 ksec Chandra ACIS-S observation. We applied theoretical models to explain spectral energy distribution of 1045+352 and argue that non-thermal, inverse-Compton (IC) emission from the innermost parts of the radio jet can account for a large fraction of the observed X-ray emission. In our analysis, we also consider a scenario in which the observed X-ray emission from radio-loud BAL quasars can be a sum of IC jet X-ray emission and optically thin corona X-ray emission. We compiled a sample of radio-loud BAL quasars that were observed in X-rays to date and report no correlation between their X-ray and radio luminosity. However, the radio-loud BAL quasars show a large range of X-ray luminosities and absorption columns. This is consistent with the results obtained earlier for radio-quiet BAL quasars and may indicate an orientation effect in BAL quasars or more complex dependence between X-ray emission, radio emission, and an orientation based on the radio morphology.

  14. A distributed fault-detection and diagnosis system using on-line parameter estimation

    NASA Technical Reports Server (NTRS)

    Guo, T.-H.; Merrill, W.; Duyar, A.

    1991-01-01

    The development of a model-based fault-detection and diagnosis system (FDD) is reviewed. The system can be used as an integral part of an intelligent control system. It determines the faults of a system from comparison of the measurements of the system with a priori information represented by the model of the system. The method of modeling a complex system is described and a description of diagnosis models which include process faults is presented. There are three distinct classes of fault modes covered by the system performance model equation: actuator faults, sensor faults, and performance degradation. A system equation for a complete model that describes all three classes of faults is given. The strategy for detecting the fault and estimating the fault parameters using a distributed on-line parameter identification scheme is presented. A two-step approach is proposed. The first step is composed of a group of hypothesis testing modules, (HTM) in parallel processing to test each class of faults. The second step is the fault diagnosis module which checks all the information obtained from the HTM level, isolates the fault, and determines its magnitude. The proposed FDD system was demonstrated by applying it to detect actuator and sensor faults added to a simulation of the Space Shuttle Main Engine. The simulation results show that the proposed FDD system can adequately detect the faults and estimate their magnitudes.

  15. Effects of dispersion on electromagnetic parameters of tape-helix Blumlein pulse forming line of accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, J. L.; Feng, J. H.

    2012-02-01

    In this paper, the tape-helix model is firstly introduced in the field of intense electron beam accelerator to analyze the dispersion effects on the electromagnetic parameters of helical Blumlein pulse forming line (PFL). Work band and dispersion relation of the PFL are analyzed, and the normalized coefficients of spatial harmonics are calculated. Dispersion effects on the important electromagnetic parameters of PFL, such as phase velocity, slow-wave coefficient, electric length and pulse duration, are analyzed as the central topic. In the PFL, electromagnetic waves with different frequencies in the work band of PFL have almost the same phase velocity. When de-ionized water, transformer oil and air are used as the PFL filling dielectric, respectively, the pulse duration of the helical Blumlein PFL is calculated as 479.6 ns, 81.1 ns and 53.1 ns in order. Electromagnetic wave simulation and experiments are carried out to demonstrate the theoretical calculations of the electric length and pulse duration which directly describe the phase velocity and dispersion of the PFL. Simulation results prove the theoretical analysis and calculation on pulse duration. Experiment is carried out based on the tape-helix Blumlein PFL and magnetic switch system. Experimental results show that the pulse durations are tested as 460 ns, 79 ns and 49 ns in order when de-ionized water, transformer oil and air are used respectively. Experimental results basically demonstrate the theoretical calculations and the analyses of dispersion.

  16. Diagnostics of recombining laser plasma parameters based on He-like ion resonance lines intensity ratios

    NASA Astrophysics Data System (ADS)

    Ryazantsev, S. N.; Skobelev, I. Yu; Faenov, A. Ya; Pikuz, T. A.; Grum-Grzhimailo, A. N.; Pikuz, S. A.

    2016-11-01

    While the plasma created by powerful laser expands from the target surface it becomes overcooled, i.e. recombining one. Improving of diagnostic methods applicable for such plasma is rather important problem in laboratory astrophysics nowadays because laser produced jets are fully scalable to young stellar objects. Such scaling is possible because of the plasma hydrodynamic equations invariance under some transformations. In this paper it is shown that relative intensities of the resonance transitions in He-like ions can be used to measure the parameters of recombining plasma. Intensity of the spectral lines corresponding to these transitions is sensitive to the density in the range of 1016-1020 cm-3 while the temperature ranges from 10 to 100 eV for ions with nuclear charge Zn ∼ 10. Calculations were carried out for F VIII ion and allowed to determine parameters of plasma jets created by nanosecond laser system ELFIE (Ecole Polytechnique, France) for astrophysical phenomenon modelling. Obtained dependencies are quite universal and can be used for any recombining plasma containing He-like fluorine ions.

  17. Spectroscopic measurements of SO(2) line parameters in the 9.2 mum atmospheric region and theoretical determination of self-broadening coefficients.

    PubMed

    Tasinato, Nicola; Charmet, Andrea Pietropolli; Stoppa, Paolo; Giorgianni, Santi; Buffa, Giovanni

    2010-01-28

    Sulfur dioxide is still the subject of numerous spectroscopic studies since it plays an active role in the chemistry of Earth's atmosphere and it is a molecule of proven astrophysical importance. In the present work we have determined the self-broadening and integrated absorption coefficients for several lines in the nu(1) band spectral region around 9.2 mum. Besides the parameters of the lines belonging to the nu(1) fundamental of (32)SO(2), also those for some rovibrational lines of the nu(1)+nu(2)-nu(2) hot band of the (32)SO(2) isotopologue and the nu(1) band of the (34)SO(2) isotopic species have been determined. The measurements have been carried out at 297 K using a tunable diode laser spectrometer. The self-broadening parameters have also been theoretically determined employing a semiclassical formalism based on the Anderson-Tsao-Curnutte approximation. The study has been completed with the determination of the vibrational cross sections of the three fundamental bands measured from the spectra recorded at a resolution of 0.2 cm(-1) using a Fourier transform infrared spectrometer.

  18. The 13CH4 absorption spectrum in the Icosad range (6600-7692 cm-1) at 80 K and 296 K: Empirical line lists and temperature dependence

    NASA Astrophysics Data System (ADS)

    Campargue, A.; Béguier, S.; Zbiri, Y.; Mondelain, D.; Kassi, S.; Karlovets, E. V.; Nikitin, A. V.; Rey, M.; Starikova, E. N.; Tyuterev, Vl. G.

    2016-08-01

    The 13CH4 absorption spectrum has been recorded at 296 K and 80 K in the Icosad range between 6600 and 7700 cm-1. The achieved noise equivalent absorption of the spectra recorded by differential absorption spectroscopy (DAS) is about αmin ≈ 1.5 × 10-7 cm-1. Two empirical line lists were constructed including 17,792 and 24,139 lines at 80 K and 296 K, respectively. For comparison, the HITRAN database provides only 1040 13CH4 lines in the region determined from methane spectra with natural isotopic abundance. Empirical values of the lower state energy level, Eemp, were systematically derived from the intensity ratios of the lines measured at 80 K and 296 K. Overall 10,792 Eemp values were determined providing accurate temperature dependence for most of the 13CH4 absorption in the region (93% and 82% at 80 K and 296 K, respectively). The quality of the derived empirical values of the lower state rotational quantum number, Jemp, is illustrated by their clear propensity to be close to an integer. A good agreement is achieved between our small Jemp values, with previous accurate determinations obtained by applying the 2T method to jet and 80 K spectra. The line lists at 296 K and 80 K which are provided as Supplementary material will be used for future rovibrational assignments based on accurate variational calculations.

  19. Stark parameters irregularities of Xe II lines obtained by transitions from ({sup 3}P{sub 1})6plevels

    SciTech Connect

    Mar, S.; Pelaez, R. J.; Rodriguez, F.; Aparicio, J. A.

    2008-10-22

    Stark widths and shifts of some Xe II lines belonging to the supermultiplets with upper levels ({sup 3}P{sub 1})6p were measured using a pulsed discharge lamp. Plasma parameters, i.e. electron density and temperature, in this experiment were in the range from 0.2 to 1.4x10{sup 23} m{sup -3} and from 18000 to 23000 K, respectively. Lines obtained by transitions from levels ({sup 3}P{sub 1})6p show some strong intra-supermultiplet irregularities in their Stark widths and shifts. These results and the measurements obtained in previous works were used here to analyse the main irregularities that can appear in the case of Xe II. This study may be very useful for obtaining Stark parameters of non-measured lines, using the known parameters of other lines belonging to similar transitions.

  20. Unveiling the Intrinsic X-Ray Properties of Broad Absorption Line Quasars with a Relatively Unbiased Sample

    NASA Astrophysics Data System (ADS)

    Morabito, Leah K.; Dai, Xinyu; Leighly, Karen M.; Sivakoff, Gregory R.; Shankar, Francesco

    2014-05-01

    There is growing evidence of a higher intrinsic fraction of broad absorption line quasars (BALQSOs) than that obtained in optical surveys, on which most previous X-ray studies of BALQSOs have focused. Here we present Chandra observations of 18 BALQSOs at z ~ 2, selected from a near-infrared (Two Micron All Sky Survey) sample, where the BALQSO fraction is likely to be close to the intrinsic fraction. We measure photon indices using the stacked spectra of the optically faint (i - Ks >= 2.3 mag) and optically bright (i - Ks < 2.3 mag) samples to be Γ ~= 1.5-2.1. We constrain their intrinsic column density by modeling the X-ray fractional hardness ratio, finding a mean column density of 3.5 × 1022 cm-2 assuming neutral absorption. We incorporate Sloan Digital Sky Survey optical measurements (rest frame UV) to study the broadband spectral index between the X-ray and UV bands, and compare this to a large sample of normal quasars. We estimate that the optically faint BALQSOs are X-ray weaker than the optically bright ones, and the entire sample of BALQSOs are intrinsically X-ray weak when compared to normal active galactic nuclei (AGNs). Correcting for magnification of X-ray emission via gravitational lensing by the central black hole viewed at large inclination angles makes these BALQSOs even more intrinsically X-ray weak. Finally, we estimate AGN kinetic feedback efficiencies of a few percent for an X-ray wind of 0.3c in high-ionization BALQSOs. Combined with energy carried by low-ionization BALQSOs and UV winds, the total kinetic energy in BALQSOs can be sufficient to provide AGN kinetic feedback required to explain the co-evolution between black holes and host galaxies.

  1. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    SciTech Connect

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.; and others

    2014-10-10

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  2. Self-, N2-, O2-broadening coefficients and line parameters of HFC-32 for ν7 band and ground state transitions from infrared and microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Tasinato, Nicola; Turchetto, Arianna; Puzzarini, Cristina; Stoppa, Paolo; Pietropolli Charmet, Andrea; Giorgianni, Santi

    2014-09-01

    Hydrofluorocarbons have been used as replacement gases of chlorofluorocarbons, since the latter have been phased out by the Montreal Protocol due to their environmental hazardous ozone-depleting effects. This is also the case of difluoromethane (CH2F2, HFC-32), which nowadays is widely used in refrigerant mixtures together with CF3CH3, CF3CH2F, and CF3CHF2. Due to its commercial use, in the last years, the atmospheric concentration of HFC-32 has increased significantly. However, this molecule presents strong absorptions within the 8-12 μm atmospheric window, and hence it is a greenhouse gas which contributes to global warming. Although over the years several experimental and theoretical investigations dealt with the spectroscopic properties of CH2F2, up to now pressure broadening coefficients have never been determined. In the present work, the line-by-line parameters of CH2F2 are retrieved for either ground state or ν7 band transitions by means of microwave (MW) and infrared (IR) absorption spectroscopy, respectively. In particular, laboratory experiments are carried out on 9 pure rotational transitions of the ground state and 26 ro-vibrational transitions belonging to the ν7 band lying around 8.2 μm within the atmospheric region. Measurements are carried out at room temperature on self-perturbed CH2F2 as well as on CH2F2 perturbed by N2 and O2. The line shape analysis leads to the first determination of self-, N2-, O2-, and air-broadening coefficients, and also of line intensities (IR). Upon comparison, broadening coefficients of ground state transitions are larger than those of the ν7 band, and no clear dependence on the rotational quantum numbers can be reported. The obtained results represent basic information for the atmospheric modelling of this compound as well as for remote sensing applications.

  3. Nustar Reveals an Intrinsically X-ray Weak Broad Absorption Line Quasar in the Ultraluminous Infrared Galaxy Markarian 231

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Brandt. W. N.; Harrison, F. A.; Luo, B.; Alexander, D. M.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Fabian, A. C.; Farrah, D.; Fiore, F.; Gandhi, P.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R. C.; Madsen, K. K.; Ptak, A. F.; Rigby, Jane Rebecca; Risaliti, G.; Saz, C.; Stern, D.; Veilleux, S.; Walton, D. J.; Wik, D. R.; Zhang, W. W.

    2014-01-01

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin N(sub H) approx. 1.2(sup +0.3) sub-0.3) x 10(exp 23) / sq cm) column. The intrinsic X-ray luminosity L(sub 0.5-30 Kev) approx. 1.0 x 10(exp 43) erg /s) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is approx. 0.03% compared to the typical values of 2-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope alpha(sub 0X) approx. -1.7. It is a local example of a low-ionization broad absorption line (LoBAL) quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  4. Effect of buffer gases on broadening of the Iodine-127 resonance absorption line at a 633-nm He-Ne laser wavelength

    SciTech Connect

    Kireev, S.V.; Shnyrev, S.L.; Zaspa, Yu.P.

    1995-04-01

    Collisional broadening coefficients are measured for iodine-127 resonance absorption lines in several rare cases of atmospheric air and CO{sub 2}. The results obtained are used to determine the optimum pressure of a gaseous mixture in a measuring cell for detecting iodine-127 by a helium-neon (633 nm) laser-induced fluorescence technique of monitoring iodine in atmospheric air.

  5. Improved Experimental Line Positions for the (1,1) Band of the b 1Σ+ - X 3Σ- Transition of O2 by Intracavity Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, Leah C.; O'Brien, Emily C.; O'Brien, James J.

    2012-06-01

    We report improved experimental line positions for the (1,1) band of the b 1Σ+ - X 3Σ- transition of O2. Results are comparised with previous experimental measurements and predicted values. Additionally, a new method of producing vibrationally hot molecules for use in absorption spectroscopy of stable gas phase molecules is described.

  6. The KMOS GTO Cluster Program: Absorption Line Spectroscopy of Cluster Galaxies at z˜1.5

    NASA Astrophysics Data System (ADS)

    Houghton, R. C. W.; Davies, R. L.; Bender, R.; Beifiori, A.; Chan, J.; Cappellari, M.; Galametz, A.; Lewis, I.; Mendel, J. T.; Prichard, L.; Saglia, R. P.; Sharples, R.; Smith, R.; Stott, J.; Wilman, D.; Wegner, M.

    2016-10-01

    The GTO KMOS cluster program (P.I.s Davies & Bender) is investigating the absorption line spectra of individual cluster galaxies during the peak epoch of star formation at 1.3< z<2. The multiplexed nature of KMOS increases the observing efficiency by more than an order-of-magnitude compared to single integral field units, which is essential for obtaining deep spectra of many faint targets. Furthermore, the NIR capabilities of KMOS produce observations of the well understood rest-frame V-band indices at these redshifts, providing reliable measures of age and composition for the stellar populations. The kinematics coupled with archival HST photometry allow us to construct the fundamental plane and study the evolution in size and mass-to-light when the Universe was less than 5 Gyrs old. The program has already obtained spectra of ˜60 galaxies in three clusters with on-source exposure times of 15-20 hrs per galaxy. We present early results from these data and provide an overview of the project.

  7. Parameter Identification and On-line Estimation of a Reduced Kinetic Model

    SciTech Connect

    Dellorco, P.C.; Flesner, R.L.; Le, L.A.; Littell, J.D.; Muske, K.R.

    1999-02-01

    In this work, we present the estimation techniques used to update the model parameters in a reduced kinetic model describing the oxidation-reduction re- actions in a hydrothermal oxidation reactor. The model is used in a nonlinear model-based controller that minimizes the total aqueous nitrogen in the reac- tor effluent. Model reduction is accomplished by com- bining similar reacting compounds into one of four component groups and considering the global reac- tion pathways for each of these groups. The reduced kinetic model developed for thk reaction system pro- vides a means to characterize the complex chemical reaction system without considering each chemicaJ species present and the reaction kinetics of every pos- sible reaction pathway. For the reaction system under study, model reduction is essential in order to reduce the computational requirement so that on-line imple- mentation of the nonlinear model-based controller is possible and also to reduce the amount of a priori information required for the model.

  8. Absolute parameters of the early-type double-lined eclipsing binary AL SCULPTORIS (HD 224113)

    NASA Astrophysics Data System (ADS)

    Haefner, R.; Skillen, I.; de Groot, M.

    1987-06-01

    Orbital elements have been determined from measurements of forty-six high-dispersion spectrograms obtained between 1970 and 1980 of the double-lined eclipsing binary AL Scl, and the published radial-velocity data of Archer and Feast (1958) have been rediscussed. The orbit is confirmed to be non-circular (e = 0.074), and the components are shown to be rotating non-synchronously. The possibility of a third body is discussed but not firmly established. Approximately 2800 uvby observations, obtained between 1978 and 1981, form the basis of a photometric solution using the synthesis code LIGHT (Hill, 1979). The absolute dimensions derived for the B6 V primary component are in good agreement with the compilation of empirical data for early-type binaries given by Popper (1980), but the mass (1.71 M_sun;) derived for the B9 V secondary is lower than expected. A comparison of the absolute parameters with evolutionary tracks (Hejlesen, 1980) indicates the age of the system to be 1.6×108yr.

  9. Line parameters measurements and modeling for the ν6 band of CH3F: Generation of a complete line list for atmospheric databases

    NASA Astrophysics Data System (ADS)

    Jacquemart, D.; Guinet, M.

    2016-12-01

    The 8.5 μm-spectral region of methyl fluoride was studied in terms of line positions, intensities and self-broadening coefficients at room temperature. A multispectrum fitting was used to retrieve from 7 high-resolution Fourier transform spectra line parameters for 787 transitions belonging to the ν6 band between 1078 and 1240 cm-1. The accuracy of line intensities and widths measurements were estimated to be around 5% and 5-10% respectively. J- and K-rotational dependences of the transition dipole moment squared and the self-broadening coefficients were observed and modeled from the measurements. A complete line list of almost 1500 transitions was generated for atmospheric or industrial detection of CH3F. Comparisons with previous studies from the literature were also performed.

  10. Redox speciation analysis of dissolved iron in estuarine and coastal waters with on-line solid phase extraction and graphite furnace atomic absorption spectrometry detection.

    PubMed

    Chen, Yaojin; Feng, Sichao; Huang, Yongming; Yuan, Dongxing

    2015-05-01

    An automatic on-line solid phase extraction (SPE) system employing the flow injection (FI) technique directly coupled to a graphite furnace atomic absorption spectrometer (GFAAS) was established for speciation and determination of dissolved iron in estuarine and coastal waters. Fe(II) was mixed with ferrozine solution in a sample stream to form the Fe(II)-ferrozine complex which was extracted onto a C18 SPE cartridge, eluted with eluent and detected with GFAAS. In a parallel flow channel, Fe(III) was reduced to Fe(II) with ascorbic acid and then detected in the same way as Fe(II). The home-made interface between FI-SPE and GFAAS efficiently realized the sample introduction to the furnace in a semi-automated way. Parameters of the FI-SPE system and graphite furnace program were optimized based on a univariate experimental design and an orthogonal array design. The salinity effect on the method sensitivity was investigated. The proposed method provided a detection limit of 1.38 nmol L(-1) for Fe(II) and 1.87 nmol L(-1) for Fe(II+III). With variation of the sample loading volume, a broadened determination range of 2.5-200 nmol L(-1) iron could be obtained. The proposed method was successfully applied to analyze iron species in samples collected from the Jiulongjiang Estuary, Fujian, China. With the 2-cartridge FI-SPE system developed, on-line simultaneous determination of Fe species with GFAAS was achieved for the first time.

  11. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs. 2; Detailed Photoionization Modeling of Fe K-Shell Absorption Lines

    NASA Technical Reports Server (NTRS)

    Tombesi, Francesco; Clapp, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blue shifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\siml00,000kmis (\\sim0.3c), with a peak and mean value of\\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6 erg s/cm, with a mean value of log\\xi 4.2 erg s/cm. The associated column densities are also large, in the range N_H\\siml0(exp 22)-10(exp 24)/sq cm, with a mean value of N_H\\siml0(exp23)/sq cm. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds and jets.

  12. Evidence for Ultra-fast Outflows in Radio-quiet Active Galactic Nuclei. II. Detailed Photoionization Modeling of Fe K-shell Absorption Lines

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-11-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet active galactic nuclei (AGNs). These have been detected essentially through blueshifted Fe XXV/XXVI K-shell transitions. In the previous paper of this series we defined UFOs as those highly ionized absorbers with an outflow velocity higher than 10,000 km s-1 and assessed the statistical significance of the associated blueshifted absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. The present paper is an extension of that work. First, we report a detailed curve of growth analysis of the main Fe XXV/XXVI transitions in photoionized plasmas. Then, we estimate an average spectral energy distribution for the sample sources and directly model the Fe K absorbers in the XMM-Newton spectra with the detailed Xstar photoionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35% and that the majority of the Fe K absorbers are indeed associated with UFOs. The outflow velocity distribution spans from ~10,000 km s-1 (~0.03c) up to ~100,000 km s-1 (~0.3c), with a peak and mean value of ~42,000 km s-1 (~0.14c). The ionization parameter is very high and in the range log ξ ~ 3-6 erg s-1 cm, with a mean value of log ξ ~ 4.2 erg s-1 cm. The associated column densities are also large, in the range N H ~ 1022-1024 cm-2, with a mean value of N H ~ 1023 cm-2. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7 keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton-thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can

  13. Determination of cobalt in biological samples by line-source and high-resolution continuum source graphite furnace atomic absorption spectrometry using solid sampling or alkaline treatment

    NASA Astrophysics Data System (ADS)

    Ribeiro, Anderson Schwingel; Vieira, Mariana Antunes; da Silva, Alessandra Furtado; Borges, Daniel L. Gallindo; Welz, Bernhard; Heitmann, Uwe; Curtius, Adilson José

    2005-06-01

    Two procedures for the determination of Co in biological samples by graphite furnace atomic absorption spectrometry (GF AAS) were compared: solid sampling (SS) and alkaline treatment with tetramethylammonium hydroxide (TMAH) using two different instruments for the investigation: a conventional line-source (LS) atomic absorption spectrometer and a prototype high-resolution continuum source atomic absorption spectrometer. For the direct introduction of the solid samples, certified reference materials (CRM) were ground to a particle size ≤50 μm. Alkaline treatment was carried out by placing about 250 mg of the sample in polypropylene flasks, adding 2 mL of 25% m/v tetramethylammonium hydroxide and de-ionized water. Due to its unique capacity of providing a 3-D spectral plot, a high-resolution continuum source (HR-CS) graphite furnace atomic absorption spectrometry was used as a tool to evaluate potential spectral interferences, including background absorption for both sample introduction procedures, revealing that a continuous background preceded the atomic signal for pyrolysis temperatures lower than 700 °C. Molecular absorption bands with pronounced rotational fine structure appeared for atomization temperatures >1800 °C probably as a consequence of the formation of PO. After optimization had been carried out using high resolution continuum source atomic absorption spectrometry, the optimized conditions were adopted also for line-source atomic absorption spectrometry. Six biological certified reference materials were analyzed, with calibration against aqueous standards, resulting in agreement with the certified values (according to the t-test for a 95% confidence level) and in detection limits as low as 5 ng g -1.

  14. Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph Observations of Intervening O VI Absorption Line Systems in the Spectrum of PG 0953+415

    NASA Astrophysics Data System (ADS)

    Savage, B. D.; Sembach, K. R.; Tripp, T. M.; Richter, P.

    2002-01-01

    We present Far Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph (STIS) observations of the intergalactic medium toward the bright QSO PG 0953+415 (zem=0.239). The FUSE spectra extend from 905 to 1187 Å and have a resolution of 25 km s-1, while the STIS spectra cover 1150-1730 Å and have a resolution of 7 km s-1. Additional STIS observations at 30 km s-1 are obtained in selected wavelength ranges. An O VI system at z=0.06807 is detected in H I Lyα, Lyβ, Lyγ, O VI λλ1031.93, 1037.62, N V λλ1238.82, 1242.80, C IV λλ1548.20, 1550.77, and C III λ977.02. The observed column densities can be modeled as a low-density intervening gas with a metallicity of 0.4+0.6-0.2 times solar in photoionization equilibrium with the ionizing extragalactic background radiation. The best fit is achieved with an ionization parameter, logU=-1.35, which implies nH~10-5 cm-3 and a path length of ~80 kpc through the absorbing gas. H I Lyα absorption at z=0.14232 spans a velocity range of 410 km s-1 with the strongest components near 0 and 80 km s-1 in the z=0.14232 rest frame. In this system, O VI λλ1031.93, 1037.62 absorption is strong near 0 km s-1 and not detected at 80 km s-1. C III λ977.02 absorption is marginally detected at 80 km s-1 but is not detected at 0 km s-1. The observations place constraints on the properties of the z=0.14232 system but do not discriminate between collisional ionization in hot gas versus photoionization in a very low density medium with an ionization parameter logU>-0.74. The z=0.06807 and 0.14232 O VI systems occur at redshifts where there are peaks in the number density of intervening galaxies along the line of sight determined from WIYN redshift measurements of galaxies in the ~1° field centered on PG 0953+415. We combine our observations of PG 0953+415 with those for other QSOs to update the estimate of the low-redshift number density of intervening O VI systems. Over a total unobscured redshift path of Δz=0

  15. Absorption cross sections for HF laser lines due to traces of CO/sub 2/, N/sub 2/O, and CH/sub 4/ in air

    SciTech Connect

    Agroskin, V.Ya.; Vasil'ev, G.K.; Gur'ev, V.I.; Tatarinova, E.E.

    1986-12-01

    The emission from an HF (DF) laser is spread over a large number of vibrational-rotational lines in the range 2.7-4.2 ..mu..m, which contains absorption bands of virtually all substances of interesting quantitative gas analysis, and in particular, detecting atmospheric pollutants, determining discharges from industrial plants, locating deposits of certain minerals, forecasting volcanic activity, and so on. Pulsed chemical HF (DF) lasers can be based on the chain reaction of fluorine with hydrogen (deuterium), which is promising for these purposes because the number of lines is large by comparison with any other type of laser (about 100 lines). These lasers also have high efficiency in converting the pumping energy to radiation and high beam power with relatively small dimensions and the same laser cell can be used to obtain the emission from carbon dioxide in the range 9.6-10.6 ..mu..m by energy transfer from DF to carbon dioxide. It is necessary to know the absorption characteristics of the substances at the lines of the HF (DF) laser. In this paper, the authors report measured cross sections for carbon dioxide, nitrogen oxide, and carbon hydrogenate, in the form of minor impurities in the air (about 1-10%) for various lines from an HF laser. The authors compare the data with published values, while the available spectroscopic characteristics are used in theoretical calculations of the absorption cross section and compared with the experiment.

  16. Radiometric observations of the 752.033-GHz rotational absorption line of H2O from a laboratory jet. [simulation of rocket plumes

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T.-S.; Fetterman, H. R.; Litvak, M. M.

    1980-01-01

    With the aid of a high-resolution two-stage heterodyne radiometer, spectral absorption measurements of the 752.033 GHz line of water vapor were carried out, using a blackbody continuum as a background radiation source for investigating the absorptive properties of the H2O content of high altitude rocket plumes. To simulate this physical situation in a laboratory environment, a small steam jet was operated within a large high-vacuum chamber, with the H2O jet plume traversing the radiometer line of sight. The experiments verified that this rotational line is optically thick, with excitation temperatures below 100 K, in the downstream part of the plume, as predicted by theoretical modelling.

  17. Abundances of O, Mg, S, Cr, Mn, Ti, Ni and Zn from absorption lines of neutral gas in the Large Magellanic Cloud in front of R136

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Fitzpatrick, E. L.; Savage, B. D.

    1985-01-01

    Weak absorption lines of C I, O I, Mg I, Mg II, Si I, Si II, P I, Cl I, Cr II, Mn II, Fe I, Ni II, Zn II, CO and C2 are detected in neutral gas in front of the 30 Doradus H II region by IUE spectra of R 136. The Large Magellanic Cloud abundances from the absorption lines are a factor of 2 or 3 below those of the Milky Way, in agreement with emission line study results. Neutral gas density and temperature are estimated from the observed excitation and ionization to be about 300/cu cm and 100 K, respectively; this implies a gas pressure of 30,000/cu cm K.

  18. A CHANDRA SURVEY OF THE X-RAY PROPERTIES OF BROAD ABSORPTION LINE RADIO-LOUD QUASARS

    SciTech Connect

    Miller, B. P.; Brandt, W. N.; Garmire, G. P.; Gibson, R. R.; Shemmer, O. E-mail: niel@astro.psu.edu E-mail: rgibson@astro.washington.edu

    2009-09-10

    This work presents the results of a Chandra study of 21 broad absorption line (BAL) radio-loud quasars (RLQs). We conducted a Chandra snapshot survey of 12 bright BAL RLQs selected from Sloan Digital Sky Survey Data/Faint Images of the Radio Sky data and possessing a wide range of radio and C IV absorption properties. Optical spectra were obtained nearly contemporaneously with the Hobby-Eberly Telescope; no strong flux or BAL variability was seen between epochs. In addition to the snapshot targets, we include in our sample nine additional BAL RLQs possessing archival Chandra coverage. We compare the properties of (predominantly high-ionization) BAL RLQs to those of non-BAL RLQs as well as to BAL radio-quiet quasars (RQQs) and non-BAL RQQs for context. All 12 snapshots and 8/9 archival BAL RLQs are detected, with observed X-ray luminosities less than those of non-BAL RLQs having comparable optical/UV luminosities by typical factors of 4.1-8.5. (BAL RLQs are also X-ray weak by typical factors of 2.0-4.5 relative to non-BAL RLQs having both comparable optical/UV and radio luminosities.) However, BAL RLQs are not as X-ray weak relative to non-BAL RLQs as are BAL RQQs relative to non-BAL RQQs. While some BAL RLQs have harder X-ray spectra than typical non-BAL RLQs, some have hardness ratios consistent with those of non-BAL RLQs, and there does not appear to be a correlation between X-ray weakness and spectral hardness, in contrast to the situation for BAL RQQs. RLQs are expected to have X-ray continuum contributions from both accretion-disk corona and small-scale jet emission. While the entire X-ray continuum in BAL RLQs cannot be obscured to the same degree as in BAL RQQs, we calculate that the jet is likely partially covered in many BAL RLQs. We comment briefly on implications for geometries and source ages in BAL RLQs.

  19. Estimate of beryllium critical point on the basis of correspondence between the critical and the Zeno-line parameters.

    PubMed

    Apfelbaum, E M

    2012-12-20

    The critical-point coordinates of Beryllium have been calculated by means of recently found similarity relations between the Zeno-line and the critical-point parameters. We have used the NVT MC simulations and pseudopotential theory to calculate the Zeno-line parameters together with the data of isobaric measurements to construct the liquid branch of Beryllium binodal. The critical-point coordinates, determined this way, are lower than earlier estimates. We have shown that these previous estimates are in evident contradiction with available measurements data. Present investigation can resolve this contradiction if the measurements data are supposed to be reliable.

  20. CHANDRA VIEW OF THE WARM-HOT INTERGALACTIC MEDIUM TOWARD 1ES 1553+113: ABSORPTION-LINE DETECTIONS AND IDENTIFICATIONS. I

    SciTech Connect

    Nicastro, F.; Zappacosta, L.; Elvis, M.; Krongold, Y.; Mathur, S.; Gupta, A.; Danforth, C.; Shull, J. M.; Barcons, X.; Borgani, S.; Branchini, E.; Cen, R.; Dave, R.; Kaastra, J.; Paerels, F.; Piro, L.; Takei, Y.

    2013-06-01

    We present the first results from our pilot 500 ks Chandra Low Energy Transmission Grating Large Program observation of the soft X-ray brightest source in the z {approx}> 0.4 sky, the blazar 1ES 1553+113, aimed to secure the first uncontroversial detections of the missing baryons in the X-rays. We identify a total of 11 possible absorption lines, with single-line statistical significances between 2.2{sigma} and 4.1{sigma}. Six of these lines are detected at high single-line statistical significance (3.6 {<=} {sigma} {<=} 4.1), while the remaining five are regarded as marginal detections in association with either other X-ray lines detected at higher significance and/or far-ultraviolet (FUV) signposts. Three of these lines are consistent with metal absorption at z {approx_equal} 0, and we identify them with Galactic O I and C II. The remaining eight lines may be imprinted by intervening absorbers and are all consistent with being high-ionization counterparts of FUV H I and/or O VI intergalactic medium signposts. In particular, five of these eight possible intervening absorption lines (single-line statistical significances of 4.1{sigma}, 4.1{sigma}, 3.9{sigma}, 3.8{sigma}, and 2.7{sigma}), are identified as C V and C VI K{alpha} absorbers belonging to three WHIM systems at z{sub X} = 0.312, z{sub X} = 0.237, and (z{sub X} ) = 0.133, which also produce broad H I (and O VI for the z{sub X} = 0.312 system) absorption in the FUV. For two of these systems (z{sub X} = 0.312 and 0.237), the Chandra X-ray data led the a posteriori discovery of physically consistent broad H I associations in the FUV (for the third system the opposite applies), so confirming the power of the X-ray-FUV synergy for WHIM studies. The true statistical significances of these three X-ray absorption systems, after properly accounting for the number of redshift trials, are 5.8{sigma} (z{sub X} = 0.312; 6.3{sigma} if the low-significance O V and C V K{beta} associations are considered), 3.9{sigma} (z

  1. Line intensities and collisional-broadening parameters for the nu4 and nu6 bands of carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1992-01-01

    Line intensities, air- and self-broadening parameters have been measured for selected lines in the nu4 (1243/cm) and nu6 (774/cm) bands of carbonyl fluoride at 296 and 215 K using a tunable diode-laser spectrometer. Measured line intensities are in good agreement +/- 6 percent with recently reported values derived from rotational analyses of the nu4 and nu6 bands. The measured average air-broadening coefficient at 296 K also agrees well (+/- 5 percent) with N2-broadening coefficients determined from microwave studies, while the average self-broadening coefficient reported here is smaller than a previously reported value by 45 percent.

  2. High Dust Depletion in two Intervening Quasar Absorption Line Systems with the 2175 Å Extinction Bump at z ~ 1.4

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ge, Jian; Prochaska, J. Xavier; Wang, Junfeng; Zhou, Hongyan; Wang, Tinggui

    2010-12-01

    We present the column densities of heavy elements and dust depletion studies in two strong Mg II absorption systems at z ~ 1.4 displaying the 2175 Å dust extinction feature. Column densities are measured from low-ionization absorption lines using an Apparent Optical Depth Method on the Keck/ESI spectra. We find that the dust depletion patterns resemble that of cold diffuse clouds in the Milky Way (MW). The values, [Fe/Zn] ≈-1.5 and [Si/Zn]<-0.67, are among the highest dust depletion measured for quasar absorption line systems. In another 2175 Å absorber at z = 1.64 toward the quasar SDSS J160457.50+220300.5, Noterdaeme et al. reported a similar dust depletion measurement ([Fe/Zn] = -1.47 and [Si/Zn] = -1.07) and detected C I and CO absorption lines on its VLT/UVES spectrum. We conclude that heavy dust depletion (i.e., a characteristic of cold dense clouds in MW) is required to produce a pronounced 2175 Å extinction bump. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  3. Discovery of two broad absorption line quasars at redshift about 4.75 using the Lijiang 2.4 m telescope

    NASA Astrophysics Data System (ADS)

    Yi, WeiMin; Wu, XueBing; Wang, FeiGe; Yang, JinYi; Yang, Qian; Bai, JinMing

    2015-09-01

    The ultraviolet broad absorption lines have been seen in the spectra of quasars at high redshift, and are generally considered to be caused by outflows with velocities from thousands kilometers per second to one tenth of the speed of light. They provide crucial implications for the cosmological structures and physical evolutions related to the feedback of active galactic nuclei (AGNs). Recently, through a dedicated program of optically spectroscopic identifications of selected quasar candidates at redshift 5 by using the Lijiang 2.4 m telescope, we discovered two luminous broad absorption line quasars (BALQSOs) at redshift about 4.75. One of them may even have the potentially highest absorption Balnicity Index (BI) ever found to date, which is remarkably characterized by its deep, broad absorption lines and sub-relativistic outflows. Further physical properties, including the metal abundances, variabilities, evolutions of the supermassive black holes (SMBH) and accretion disks associated with the feedback process, can be investigated with multi-wavelength follow-up observations in the future.

  4. A Candidate for an Intrinsic Dusty Absorber with a Metal-rich Damped Lyα Absorption Line System in the Quasar J170542.91+354340.2

    NASA Astrophysics Data System (ADS)

    Pan, Xiang; Zhou, Hongyan; Ge, Jian; Jiang, Peng; Yang, Bin; Lu, Honglin; Ji, Tuo; Zhang, Shaohua; Shi, Xiheng

    2017-02-01

    We present a detailed analysis of the unusual damped Lyα absorption line system (DLA) toward the quasar SDSS J170542.91+354340.2 at a redshift of 2, previously reported by Noterdaeme et al. as one of the very few CO absorbers known to date at high z. This DLA is exceptional in that: (1) its extinction curve is similar to peculiar Milky Way sightlines penetrating star formation regions; (2) its absorption components are redshifted at a speed of several hundred km s‑1 compared to broad Balmer emission lines; (3) its gas-phase metallicity is super-solar as evaluated from more than 30 absorption lines; (4) detection of residual flux in the DLA trough and variability of {{C}} {{IV}} absorption is possible. Based on these facts, we argue that this dusty DLA is a good candidate for an intrinsic quasar 2175 Å absorber, and can originate from star formation regions of the quasar’s host galaxy. We discuss in detail the gas and dust properties, and the dust depletion. Follow-up observations, such as spectropolarimetry and optical/infrared spectroscopy, will help to confirm the system’s intrinsic nature and to explore how dust grains behave in the extreme environments proximate to quasars.

  5. Absorption-line Spectroscopy of Gravitationally Lensed Galaxies: Further Constraints on the Escape Fraction of Ionizing Photons at High Redshift

    NASA Astrophysics Data System (ADS)

    Leethochawalit, Nicha; Jones, Tucker A.; Ellis, Richard S.; Stark, Daniel P.; Zitrin, Adi

    2016-11-01

    The fraction of ionizing photons escaping from high-redshift star-forming galaxies is a key obstacle in evaluating whether galaxies were the primary agents of cosmic reionization. We previously proposed using the covering fraction of low-ionization gas, measured via deep absorption-line spectroscopy, as a proxy. We now present a significant update, sampling seven gravitationally lensed sources at 4 < z < 5. We show that the absorbing gas in our sources is spatially inhomogeneous, with a median covering fraction of 66%. Correcting for reddening according to a dust-in-cloud model, this implies an estimated absolute escape fraction of ≃19% ± 6%. With possible biases and uncertainties, collectively we find that the average escape fraction could be reduced to no less than 11%, excluding the effect of spatial variations. For one of our lensed sources, we have sufficient signal-to-noise ratio to demonstrate the presence of such spatial variations and scatter in its dependence on the Lyα equivalent width, consistent with recent simulations. If this source is typical, our lower limit to the escape fraction could be reduced by a further factor ≃2. Across our sample, we find a modest anticorrelation between the inferred escape fraction and the local star formation rate, consistent with a time delay between a burst and leaking Lyman continuum photons. Our analysis demonstrates considerable variations in the escape fraction, consistent with being governed by the small-scale behavior of star-forming regions, whose activities fluctuate over short timescales. This supports the suggestion that the escape fraction may increase toward the reionization era when star formation becomes more energetic and burst-like.

  6. Parameter identifiability and Extended Multiple Studies Analysis of a compartmental model for human vitamin A kinetics: fixing fractional transfer coefficients for the initial steps in the absorptive process.

    PubMed

    Park, Hyunjin; Green, Michael H

    2014-03-28

    In the existing compartmental models of human vitamin A metabolism, parameters related to the absorption of the isotopic oral dose have not been well identified. We hypothesised that fixing some poorly identified parameters related to vitamin A absorption would improve parameter identifiability and add statistical certainty to such models. In the present study, data for serum vitamin A kinetics in nine subjects given [2H8]retinyl acetate orally and a model with absorption fixed at 75 % were used to test this hypothesis. In addition to absorption efficiency, we fixed two other fractional transfer coefficients: one representing the initial processing of the ingested dose and the other representing the direct secretion of retinol bound to retinol-binding protein (RBP) from enterocytes into the plasma. The Windows version of Simulation, Analysis and Modeling software (WinSAAM) was used to fit serum tracer data v. time for each subject. Then, a population model was generated by WinSAAM's Extended Multiple Studies Analysis. All the parameters had fractional standard deviations < 0·5, and none of the pairs of parameters had a correlation coefficient >0·8 (accepted criteria for well-identified parameters). Similar to the values predicted by the original model, total traced mass for retinol was 1160 (sd 468) μmol, and the time for retinol to appear in the plasma bound to RBP was 31·3 (sd 4·4) h. In conclusion, we suggest that this approach holds promise for advancing compartmental modelling of vitamin A kinetics in humans when the dose must be administered orally.

  7. Influence of the cavity parameters on the output intensity in incoherent broadband cavity-enhanced absorption spectroscopy.

    PubMed

    Fiedler, Sven E; Hese, Achim; Heitmann, Uwe

    2007-07-01

    The incoherent broadband cavity-enhanced absorption spectroscopy is a technique in measuring small absorptions over a broad wavelength range. The setup consists of a conventional absorption spectrometer using an incoherent lamp and a charge coupled device detector, as well as a linear optical cavity placed around the absorbing sample, which enhances the effective path length through the sample. In this work the consequences of cavity length, mirror curvature, reflectivity, different light injection geometries, and spot size of the light source on the output intensity are studied and the implications to the signal-to-noise ratio of the absorption measurement are discussed. The symmetric confocal resonator configuration is identified as a special case with optimum imaging characteristics but with higher requirements for mechanical stability. Larger spot sizes of the light source were found to be favorable in order to reduce the negative effects of aberrations on the intensity.

  8. Extensions to the quasi-static expressions for the line parameters of coplanar waveguide with relatively thick conductors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Co-planar waveguide (CPW) transmission line can be configured as a sensor to measure the complex permittivity of biological materials. By placing a material with unknown permittivity on the CPW and measuring the scattering parameters with a vector network analyzer, the characteristic impedance and e...

  9. Development of a Probabilistic Technique for On-line Parameter and State Estimation in Non-linear Dynamic Systems

    SciTech Connect

    Tunc Aldemir; Don W. Miller; Brian k. Hajek; Peng Wang

    2002-04-01

    The DSD (Dynamic System Doctor) is a system-independent, interactive software under development for on-line state/parameter estimation in dynamic systems (1), partially supported through a Nuclear Engineering Education (NEER) grant during 1998-2001. This paper summarizes the recent accomplishments in improving the user-friendliness and computational capability of DSD

  10. Statistical Properties of the Stokes V-Parameter Spatial Distribution of Some Spectral Lines Across the Solar DisK

    NASA Astrophysics Data System (ADS)

    Peshcherov, V. S.; Demidov, M. L.; Zhigalov, V. V.; Grigoryev, V. M.

    The measurements of the Stokes parameters distribution in spectral lines (the more number of lines, the better) is the most powerful and promising tool of magnetic fields and termodynamical conditions diagnostics in solar plasma. Sometimes [1] it is very important to know such mean values of V-parameter distribution over the line profile as amplitude and area asymmetries, and what is espicially valuable, - on the different positions on the solar disc. At the present paper, using the CCD stokesmeter of the Sayan observatory [2], we study the properties of these parameters as a function of center-to-limb distance and the strength of magnetic fields. A great number of data (dozens of stokesgrames of the whole solar disc) with low-spatial resolution observation (two arc minutes) are used in the investigation. Some questions of theoretical interpretation of the founded properties are discussed. References 1. O.Steiner. Flux Tube Dynamic. - 3rd Advances in Solar Physics Euroconference: Magnetic Fields and Oscillations. (Eds. B.Schmieder, A.Hofmann, J,Staude). ASP Confernce Series. Vol.184, 1999, p.38-54. 2. V.S.Peshcherov, V.V.Zhigalov, M.L.Demidov, V.M. Grigoryev. Large -Scale Solar Magnetic Fields: the Stokes V-Parameter Distribution in the Line FeI 525.0 nm. - JOSO Annual Report, 1998, p.87-88.

  11. CHARACTERIZING THE CIRCUMGALACTIC MEDIUM OF NEARBY GALAXIES WITH HST/COS AND HST/STIS ABSORPTION-LINE SPECTROSCOPY

    SciTech Connect

    Stocke, John T.; Keeney, Brian A.; Danforth, Charles W.; Shull, J. Michael; Froning, Cynthia S.; Green, James C.; Penton, Steven V.; Savage, Blair D.

    2013-02-15

    The circumgalactic medium (CGM) of late-type galaxies is characterized using UV spectroscopy of 11 targeted QSO/galaxy pairs at z {<=} 0.02 with the Hubble Space Telescope Cosmic Origins Spectrograph (COS) and {approx}60 serendipitous absorber/galaxy pairs at z {<=} 0.2 with the Space Telescope Imaging Spectrograph. CGM warm cloud properties are derived, including volume filling factors of 3%-5%, cloud sizes of 0.1-30 kpc, masses of 10-10{sup 8} M {sub Sun }, and metallicities of {approx}0.1-1 Z {sub Sun }. Almost all warm CGM clouds within 0.5 R {sub vir} are metal-bearing and many have velocities consistent with being bound, 'galactic fountain' clouds. For galaxies with L {approx}> 0.1 L*, the total mass in these warm CGM clouds approaches 10{sup 10} M {sub Sun }, {approx}10%-15% of the total baryons in massive spirals and comparable to the baryons in their parent galaxy disks. This leaves {approx}> 50% of massive spiral-galaxy baryons 'missing'. Dwarfs (<0.1 L*) have smaller area covering factors and warm CGM masses ({<=}5% baryon fraction), suggesting that many of their warm clouds escape. Constant warm cloud internal pressures as a function of impact parameter (P/k {approx} 10 cm{sup -3} K) support the inference that previous COS detections of broad, shallow O VI and Ly{alpha} absorptions are of an extensive ({approx}400-600 kpc), hot (T Almost-Equal-To 10{sup 6} K), intra-cloud gas which is very massive ({>=}10{sup 11} M {sub Sun }). While the warm CGM clouds cannot account for all the 'missing baryons' in spirals, the hot intra-group gas can, and could account for {approx}20% of the cosmic baryon census at z {approx} 0 if this hot gas is ubiquitous among spiral groups.

  12. Genetic parameters of fertility in two lines of rabbits with different reproductive potential.

    PubMed

    Piles, M; Rafel, O; Ramon, J; Varona, L

    2005-02-01

    A Bayesian analysis with a threshold model was performed for fertility defined as a binary trait (1 = successful mating, 0 = unsuccessful mating) in two populations of rabbits of different reproductive potential and different genetic origin: Line P selected for litter size and Line C selected for growth rate. There were 20,793 records of natural mating (86.2% successful) in Line C between 1983 and 2003, and 17,548 records (80.5% successful) in Line P, between 1992 and 2003. Data related to 5,388 and 3,848 females and 1,021 and 685 males in Lines C and P, respectively. The pedigree included 6,409 and 4,533 individuals in Lines C and P, respectively. The binary response was modeled under a probit approach. The model for the latent variable included male and female additive genetic effects, male and female permanent environmental effects, and the year-season and physiological status of the female (nulliparous, multiparous lactating, or multiparous nonlactating) as systematic effects. Means (standard deviation in parentheses) of the estimated marginal posterior distribution (EMPD) of male heritability were 0.013 (0.006) and 0.010 (0.008) in Lines C and P, respectively, and those of EMPD of female heritability were 0.056 (0.013) and 0.062 (0.018) in Lines C and P, respectively. Means of the EMPD of the proportion of the phenotypic variance due to environmental male and female effects were, respectively, 0.031 (0.007) and 0.128 (0.018) in Line C and 0.053 (0.010) and 0.231 (0.024) in Line P. Means (standard deviations in parentheses) of the EMPD of genetic correlation between male and female fertility were 0.733 (0.197) in Line C and 0.434 (0.381) in Line P. The posterior distribution of genetic correlations presents a huge dispersion, and the estimates should be taken with caution because of the almost negligible estimate of the male genetic component. Results indicate that little genetic variation exists for female fertility, and practically none for male fertility. It

  13. INFRARED ABSORPTION LINES TOWARD NGC 7538 IRS 1: ABUNDANCES OF H{sub 2}, H{sub 3}{sup +}, AND CO

    SciTech Connect

    Goto, Miwa; Geballe, T. R.; Usuda, Tomonori E-mail: tgeballe@gemini.edu

    2015-06-10

    We report high-resolution near-infrared absorption spectroscopy of H{sub 2}, H{sub 3}{sup +}, and CO toward the young high mass object NGC 7538 IRS 1. The v = 1–0 H{sub 2} S(0) line and lines in the CO v = 2–0 band were detected; the v = 1–0 H{sub 2} S(1) line and the v = 1–0 H{sub 3}{sup +} lines [R(1, 1){sup l}, R(1, 0), R(1, 1){sup u}] were not detected. The line of sight traverses two clouds, with temperatures 45 and 259 K and with roughly equal column densities of CO. Assuming that H{sub 2} is at the same temperature as CO and that the two species are uniformly mixed, [H{sub 2}]/[CO] = 3600 ± 1200. NGC 7538 is the most distant object from the Galactic center for which [H{sub 2}]/[CO] has been directly measured using infrared absorption spectroscopy.

  14. MIPAS database: new HNO3 line parameters at 7.6  µm validated with MIPAS satellite measurements

    NASA Astrophysics Data System (ADS)

    Perrin, Agnès; Flaud, Jean-Marie; Ridolfi, Marco; Vander Auwera, Jean; Carlotti, Massimo

    2016-05-01

    Improved line positions and intensities have been generated for the 7.6 µm spectral region of nitric acid. They were obtained relying on a recent reinvestigation of the nitric acid band system at 7.6 µm and comparisons of HNO3 volume mixing ratio profiles retrieved from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) limb emission radiances in the 11 and 7.6 µm domains. This has led to an improved database called MIPAS-2015. Comparisons with available laboratory information (individual line intensities, integrated absorption cross sections, and absorption cross sections) show that MIPAS-2015 provides an improved description of the 7.6 µm region of nitric acid. This study should help to improve HNO3 satellite retrievals by allowing measurements to be performed simultaneously in the 11 and 7.6 µm micro-windows. In particular, it should be useful to analyze existing MIPAS and IASI spectra as well as spectra to be recorded by the forthcoming Infrared Atmospheric Sounding Interferometer - New Generation (IASI-NG) instrument.

  15. A SURVEY OF METAL LINES AT HIGH REDSHIFT. II. SDSS ABSORPTION LINE STUDIES-O VI LINE DENSITY, SPACE DENSITY, AND GAS METALLICITY AT z{sub abs} {approx} 3.0

    SciTech Connect

    Frank, S.; Mathur, S.; Pieri, M.; York, D. G.

    2010-09-15

    studies. These results demonstrate that large spectroscopic data sets such as SDSS can play an important role in QSO absorption line studies, in spite of the relatively low resolution.

  16. Spectral anomalies of the light-induced drift effect caused by the velocity dependence of the collision broadening and shift of the absorption line

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. I.; Shalagin, Anatolii M.

    2013-02-01

    We have theoretically investigated the spectral features of the light-induced drift (LID) effect, arising due to the dependence of the collision broadening γ and shift Δ of the absorption line on the velocity of resonance particles, ν. It is shown that under certain conditions, account of this dependence can radically change the spectral shape of the LID signal, up to the appearance of additional zeros in the dependence of the drift velocity on the radiation frequency.

  17. Spectral anomalies of the light-induced drift effect caused by the velocity dependence of the collision broadening and shift of the absorption line

    SciTech Connect

    Parkhomenko, A I; Shalagin, Anatolii M

    2013-02-28

    We have theoretically investigated the spectral features of the light-induced drift (LID) effect, arising due to the dependence of the collision broadening {gamma} and shift {Delta} of the absorption line on the velocity of resonance particles, {nu}. It is shown that under certain conditions, account of this dependence can radically change the spectral shape of the LID signal, up to the appearance of additional zeros in the dependence of the drift velocity on the radiation frequency. (nonlinear optical phenomena)

  18. Air-Broadened Line Parameters for the 2←0 Bands of 13C16O and 12C18O at 2.3 μm

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.

    2012-06-01

    Air-broadened line shape parameters were determined for the first time in the 2←0 bands of 13C16O near 4166.8 cm-1 and 12C18O near 4159.0 cm-1. Spectra were recorded at 0.005 cm-1 resolution using a coolable absorption cell in the sample compartment of the Bruker IFS 125HR Fourier transform spectrometer at Jet Propulsion Laboratory. Gas temperatures and pressures ranged from 150 to 298 K and 20 to 700 Torr, respectively. Line parameters were determined by broad-band multispectrum least-squares fitting of the 4000-4360 cm-1 region in 16 spectra simultaneously; each set included 4 isotope-enriched pure sample scans and 12 air+CO samples (13CO or C18O, as appropriate). The air-broadened parameters measured were Lorentz half-width coefficients, their temperature dependence exponents; pressure-induced shift coefficients, their temperature dependences; and off-diagonal relaxation matrix elements. Speed dependence parameters were included to minimize the fit residuals. For both isotopologues the individual line positions and intensities were constrained to their theoretical relationships in order to obtain the rovibrational (G, B, D, and H) and band intensity parameters, including Herman-Wallis coefficients. The results for 13C16O and 12C18O are compared with those for the 12C16O 2←0 band and discussed. K. Sung, A. W. Mantz, M. A. H. Smith, et al., JMS 262 (2010) 122-134. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. A. Atkins, JQSRT 53 (1995) 705-721. V. Malathy Devi, D. C. Benner, L. R. Brown, C. E. Miller and R. A. Toth, JMS 242 (2007) 90-117. V. Malathy Devi, D. C. Benner, M. A. H. Smith, et al., JQSRT (2012) in press. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  19. Line-feature-based calibration method of structured light plane parameters for robot hand-eye system

    NASA Astrophysics Data System (ADS)

    Qi, Yuhan; Jing, Fengshui; Tan, Min

    2013-03-01

    For monocular-structured light vision measurement, it is essential to calibrate the structured light plane parameters in addition to the camera intrinsic parameters. A line-feature-based calibration method of structured light plane parameters for a robot hand-eye system is proposed. Structured light stripes are selected as calibrating primitive elements, and the robot moves from one calibrating position to another with constraint in order that two misaligned stripe lines are generated. The images of stripe lines could then be captured by the camera fixed at the robot's end link. During calibration, the equations of two stripe lines in the camera coordinate system are calculated, and then the structured light plane could be determined. As the robot's motion may affect the effectiveness of calibration, so the robot's motion constraints are analyzed. A calibration experiment and two vision measurement experiments are implemented, and the results reveal that the calibration accuracy can meet the precision requirement of robot thick plate welding. Finally, analysis and discussion are provided to illustrate that the method has a high efficiency fit for industrial in-situ calibration.

  20. Pressure sounding of the middle atmosphere from ATMOS solar occultation measurements of atmospheric CO(2) absorption lines.

    PubMed

    Abrams, M C; Gunson, M R; Lowes, L L; Rinsland, C P; Zander, R

    1996-06-01

    A method for retrieving the atmospheric pressure corresponding to the tangent point of an infrared spectrum recorded in the solar occultation mode is described and applied to measurements made by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier-transform spectrometer. Tangent pressure values are inferred from measurements of isolated CO(2) lines with temperature-insensitive strengths by measuring the slant-column CO(2) amount and by adjusting the viewing geometry until the calculated column matches the observed column. Tangent pressures are determined with a spectroscopic precision of l%-3%, corresponding to a tangent-point height precision of 70-210 m. The total uncertainty is limited primarily by the quality of the spectra and ranges between 4% and 6% (280-420 m) for spectra with signal-to-noise ratios of 300:1 and between 4% and 10% for spectra with signal-to-noise ratios of 100:1. The retrieval of atmospheric pressure increases the accuracy of the retrieved-gas concentrations by minimizing the effect of systematic errors introduced by climatological pressure data, ephemeris parameters, and the uncertainties in instrumental pointing.

  1. Extremely sensitive detection of NO₂ employing off-axis integrated cavity output spectroscopy coupled with multiple-line integrated absorption spectroscopy.

    PubMed

    Rao, Gottipaty N; Karpf, Andreas

    2011-05-01

    We report on the development of a new sensor for NO₂ with ultrahigh sensitivity of detection. This has been accomplished by combining off-axis integrated cavity output spectroscopy (OA-ICOS) (which can provide large path lengths of the order of several kilometers in a small volume cell) with multiple-line integrated absorption spectroscopy (MLIAS) (where we integrate the absorption spectra over a large number of rotational-vibrational transitions of the molecular species to further improve the sensitivity). Employing an external cavity quantum cascade laser operating in the 1601-1670 cm⁻¹ range and a high-finesse optical cavity, the absorption spectra of NO₂ over 100 transitions in the R band have been recorded. From the observed linear relationship between the integrated absorption versus concentration of NO₂ and the standard deviation of the integrated absorption signal, we report an effective sensitivity of detection of approximately 28 ppt (parts in 10¹²) for NO₂ To the best of our knowledge, this is among the most sensitive levels of detection of NO₂ to date.

  2. Theoretical and revisited experimentally retrieved He-broadened line parameters of carbon monoxide in the fundamental band

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, A.; Esteki, K.; Rozario, H.; Naseri, H.; Latif, S.; Thibault, F.; Malathy Devi, V.; Smith, M. A. H.; Mantz, A. W.

    2016-11-01

    We report revisited experimentally retrieved and theoretically calculated He-broadened Lorentz half-width coefficients and He- pressure-shift coefficients of 45 carbon monoxide transitions in the 1←0 band. The spectra analyzed in this study were recorded over a range of temperatures between 79 and 296 K. The He-broadened line parameters and their temperature dependences were retrieved using a multispectrum nonlinear least squares analysis program. The line shape models used in this study include Voigt, speed dependent Voigt, Rautian (to take into account confinement narrowing) and Rautian with speed dependence, all with an asymmetric component added to account for weak line mixing effects. We were unable to retrieve the temperature dependence of line mixing coefficients. A classical method was used to determine the He-narrowing parameters while quantum dynamical calculations were performed to determine He-broadening and He-pressure shifts coefficients at different temperatures. The line mixing coefficients were also derived from the exponential power gap law and the energy corrected sudden approximation. The current measurements and theoretical results are compared with other published results, where appropriate.

  3. An on-line calibration algorithm for external parameters of visual system based on binocular stereo cameras

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Liu, Zhen; Zhang, Zhonghua

    2014-11-01

    Stereo vision is the key in the visual measurement, robot vision, and autonomous navigation. Before performing the system of stereo vision, it needs to calibrate the intrinsic parameters for each camera and the external parameters of the system. In engineering, the intrinsic parameters remain unchanged after calibrating cameras, and the positional relationship between the cameras could be changed because of vibration, knocks and pressures in the vicinity of the railway or motor workshops. Especially for large baselines, even minute changes in translation or rotation can affect the epipolar geometry and scene triangulation to such a degree that visual system becomes disabled. A technology including both real-time examination and on-line recalibration for the external parameters of stereo system becomes particularly important. This paper presents an on-line method for checking and recalibrating the positional relationship between stereo cameras. In epipolar geometry, the external parameters of cameras can be obtained by factorization of the fundamental matrix. Thus, it offers a method to calculate the external camera parameters without any special targets. If the intrinsic camera parameters are known, the external parameters of system can be calculated via a number of random matched points. The process is: (i) estimating the fundamental matrix via the feature point correspondences; (ii) computing the essential matrix from the fundamental matrix; (iii) obtaining the external parameters by decomposition of the essential matrix. In the step of computing the fundamental matrix, the traditional methods are sensitive to noise and cannot ensure the estimation accuracy. We consider the feature distribution situation in the actual scene images and introduce a regional weighted normalization algorithm to improve accuracy of the fundamental matrix estimation. In contrast to traditional algorithms, experiments on simulated data prove that the method improves estimation

  4. Anatomical parameters of cardiopulmonary system in three different lines of chickens: further evidence for involvement in ascites syndrome.

    PubMed

    Hassanzadeh, Mohammad; Gilanpour, Hassan; Charkhkar, Saied; Buyse, Johan; Decuypere, Eddy

    2005-06-01

    The present study was designed to compare the anatomical parameters of the cardiopulmonary system in three different lines of chickens with different susceptibility to ascites syndrome. Eggs from three different genetic lines-commercial broiler and layer lines and one native to Iran--were incubated and hatched, and 1-day-old chicks used. The relative heart and lung weights, the volumes of the heart, lung and thorax cavity, the incidence of ascites, and the related physiological parameters in these chickens were followed. Lung weight as a percentage of body weight, the relative lung and heart volume, and the volumes of the thorax cavity, before and after removing heart and lung tissues, were lower in fast-growing broiler chickens compared with the layer and native chickens. Additionally, most of these parameters (e.g. relative lung weight, lung volume and thorax cavity) were significantly decreased with age in broiler chickens but were increased in layer and native chickens, which was concomitant with the incidence of ascites in broiler chickens. Our data indicate that all cardiopulmonary parameters investigated are extremely unfavourable to broiler chickens and suggest a reduction in gas exchange area in broilers, and therefore higher susceptibility to pulmonary hypertension and ascites.

  5. Extruded whole grain diets based on brown, soaked and germinated rice. Effects on cecum health, calcium absorption and bone parameters of growing Wistar rats. Part I.

    PubMed

    Albarracín, Micaela; Weisstaub, Adriana R; Zuleta, Angela; Drago, Silvina R

    2016-06-15

    The influence of diets with whole rice processed ingredients on cecum health, calcium absorption and bone parameters was studied using an animal model. Thirty-two male Wistar rats were fed with Control (C), extruded Brown rice (B), extruded Soaked whole rice (S) and extruded Germinated whole rice (G) diets for 60 days. The cecum weight, cecal content pH, cecal sIgA content, and β-glucosidase and β-glucuronidase activities were determined. Calcium apparent absorption, total bone mineral content and density and right femur parameters (ashes, organic content, calcium and P) were evaluated. The results showed that animals fed with whole grain diets have lower food intake in comparison with the C diet, and decreased cecal content pH (7.06 vs. 6.33) and β-glucosidase activity (1.66 vs. 0.21 μmol p-nitrophenol g(-1) cc h(-1)). Even though calcium apparent absorption was not different among treatments (∼70%), none of the whole grain diets improved calcium related bone parameters over the control fed rats (cellulose as dietary fibre).

  6. Annealing-induced optical and sub-band-gap absorption parameters of Sn-doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Tripathi, S. K.

    2016-01-01

    Thin films of Sn-doped CdSe were prepared by thermal evaporation onto glass substrates in an argon gas atmosphere and annealed at different temperatures. Structural evaluation of the films was carried out using X-ray diffraction and their stoichiometry studied by energy-dispersive X-ray analysis. The films exhibit a preferred orientation along the hexagonal direction of CdSe. The optical transmittance of the films shows a red shift of the absorption edge with annealing. The fundamental absorption edge corresponds to a direct energy gap with a temperature coefficient of 3.34 × 10-3 eV K-1. The refractive index, optical conductivity and real and imaginary parts of the dielectric constants were found to increase after annealing. The sub-band gap absorption coefficient was evaluated using the constant photocurrent method. It varies exponentially with photon energy. The Urbach energy, the density of defect states, and the steepness of the density of localized states were evaluated from the sub-band-gap absorption.

  7. Argon-broadened line parameters in the ν3 band of 12CH4.

    NASA Astrophysics Data System (ADS)

    Gabard, T.

    1997-02-01

    Prompted by improved measurements of collisional line shapes in the ν3 band P, Q and R branches of 12CH4, The author has performed semi-classical line broadening calculations for methane perturbed by argon. He has used the theoretical approach developed by Robert and Bonamy (1979) as an extension of the well-known Anderson-Tsao-Curnutte theory. The semi-classical theory as reformulated here is shown to fully account for the tetrahedral symmetry of methane type molecules. The variation of argon-broadened linewidth coefficients in the ν3 band of 12CH4 with the branch, J, symmetry and energy level fine structure is discussed.

  8. Temporal variations in gas temperature in an atomization stage of cadmium and tellurium evaluated by using the two-line method in graphite furnace atomic absorption spectrometry.

    PubMed

    Shimabukuro, Haruki; Ashino, Tetsuya; Wagatsuma, Kazuaki

    2008-09-01

    In order to discuss the atomization process of an analyte element occurring in a graphite furnace for atomic absorption spectrometry, we measured variations in the characteristic temperature with the progress of an atomization stage, by using a two-line method under the assumption of a Boltzmann distribution. For this purpose, iron was chosen as the analyte element. Also, the atomic absorption of two iron atomic lines, Fe I 372.0 nm and Fe I 373.7 nm, was simultaneously monitored as a probe for the temperature determination. This method enables variations in the gas temperature to be directly traced, yielding a temperature distribution closely related to the diffusion behavior of the probe element in the furnace. This temperature variation was very different from the furnace wall temperatures, which were monitored in conventional temperature control for atomic absorption spectrometry. Correlations between the gas temperature and the charring/atomizing temperatures in the heating program of the furnace were investigated. The atomization of cadmium and tellurium was also investigated by a comparison between the gas temperature with the wall temperature of the furnace. The atomic absorption of cadmium or tellurium appeared to be apart from the absorption of iron while the gas temperature was still low. Therefore, the analyte atoms could be atomized through direct contact with the wall of the graphite furnace, which has a much higher temperature compared to the gas atmosphere during atomization. Their atomization would be caused by conductive heating from the furnace wall rather than by radiant heating in the furnace.

  9. Development of a Laboratory Synchrophasor Network and an Application to Estimate Transmission Line Parameters in Real Time

    NASA Astrophysics Data System (ADS)

    Almiron Bonnin, Rubens Eduardo

    The development of an experimental synchrophasors network and application of synchrophasors for real-time transmission line parameter monitoring are presented in this thesis. In the laboratory setup, a power system is simulated in a RTDS real-time digital simulator, and the simulated voltages and currents are input to hardware phasor measurement units (PMUs) through the analog outputs of the simulator. Time synchronizing signals for the PMU devices are supplied from a common GPS clock. The real time data collected from PMUs are sent to a phasor data concentrator (PDC) through Ethernet using the TCP/IP protocol. A real-time transmission line parameter monitoring application program that uses the synchrophasor data provided by the PDC is implemented and validated. The experimental synchrophasor network developed in this thesis is expected to be used in research on synchrophasor applications as well as in graduate and undergraduate teaching.

  10. The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (I) Rovibrational lines

    NASA Astrophysics Data System (ADS)

    Vasilchenko, S.; Konefal, M.; Mondelain, D.; Kassi, S.; Čermák, P.; Tashkun, S. A.; Perevalov, V. I.; Campargue, A.

    2016-11-01

    The absorption of carbon dioxide is very weak near 2.3 μm which makes this transparency window of particular interest for the study of Venus' lower atmosphere. As a consequence of the weakness of the transitions located in this region, previous experimental data are very scarce and spectroscopic databases provide calculated line lists which should be tested and validated by experiment. In this work, we use the Cavity Ring Down Spectroscopy (CRDS) technique for a high sensitivity characterization of the CO2 absorption spectrum in two spectral intervals of the 2.3 μm window: 4248-4257 and 4295-4380 cm-1 which were accessed using a Distributed Feed Back (DFB) diode laser and a Vertical External Cavity Surface Emitting Laser (VECSEL) as light sources, respectively. The achieved sensitivity (noise equivalent absorption, αmin, on the order of 5×10-10 cm-1) allowed detecting numerous new transitions with intensity values down to 5×10-30 cm/molecule. The rovibrational assignments were performed by comparison with available theoretical line lists in particular those obtained at IAO Tomsk using the global effective operator approach. Hot bands of the main isotopologue and 16O12C18O bands were found to be missing in the HITRAN database while they contribute importantly to the absorption in the region. Additional CRDS spectra of a CO2 sample highly enriched in 18O were recorded in order to improve the spectroscopy of this isotopologue. As a result about 700 lines of 16O12C18O, 16O12C17O, 17O12C18O, 12C18O2 and 13C18O2 were newly measured. The status of the different databases (HITRAN, CDSD, variational calculations) in the important 2.3 μm transparency window is discussed. Possible improvements to correct evidenced deficiencies are suggested.

  11. Spectral aspects of the determination of Si in organic and aqueous solutions using high-resolution continuum source or line source flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia; Pilarczyk, Janusz; Gościniak, Łukasz

    2016-06-01

    High-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) was applied to reveal and investigate spectral interference in the determination of Si. An intensive structured background was observed in the analysis of both aqueous and xylene solutions containing S compounds. This background was attributed to absorption by the CS molecule formed in the N2O-C2H2 flame. The lines of the CS spectrum at least partially overlap all five of the most sensitive Si lines investigated. The 251.611 nm Si line was demonstrated to be the most advantageous. The intensity of the structured background caused by the CS molecule significantly depends on the chemical form of S in the solution and is the highest for the most-volatile CS2. The presence of O atoms in an initial S molecule can diminish the formation of CS. To overcome this S effect, various modes of baseline fitting and background correction were evaluated, including iterative background correction (IBC) and utilization of correction pixels (WRC). These modes were used either independently or in conjunction with least squares background correction (LSBC). The IBC + LSBC mode can correct the extremely strong interference caused by CS2 at an S concentration of 5% w:w in the investigated solution. However, the efficiency of this mode depends on the similarity of the processed spectra and the correction spectra in terms of intensity and in additional effects, such as a sloping baseline. In the vicinity of the Si line, three lines of V were recorded. These lines are well-separated in the HR-CS FAAS spectrum, but they could be a potential source of overcorrection when using line source flame atomic absorption spectrometry (LS FAAS). The expected signal for the 251.625 nm Fe line was not registered at 200 mg L- 1 Fe concentration in the solution, probably due to the diminished population of Fe atoms in the high-temperature flame used. The observations made using HR-CS FAAS helped to establish a "safe" level

  12. Parameter investigation with line-implicit lower-upper symmetric Gauss-Seidel on 3D stretched grids

    NASA Astrophysics Data System (ADS)

    Otero, Evelyn; Eliasson, Peter

    2015-03-01

    An implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solver has been implemented as a multigrid smoother combined with a line-implicit method as an acceleration technique for Reynolds-averaged Navier-Stokes (RANS) simulation on stretched meshes. The computational fluid dynamics code concerned is Edge, an edge-based finite volume Navier-Stokes flow solver for structured and unstructured grids. The paper focuses on the investigation of the parameters related to our novel line-implicit LU-SGS solver for convergence acceleration on 3D RANS meshes. The LU-SGS parameters are defined as the Courant-Friedrichs-Lewy number, the left-hand side dissipation, and the convergence of iterative solution of the linear problem arising from the linearisation of the implicit scheme. The influence of these parameters on the overall convergence is presented and default values are defined for maximum convergence acceleration. The optimised settings are applied to 3D RANS computations for comparison with explicit and line-implicit Runge-Kutta smoothing. For most of the cases, a computing time acceleration of the order of 2 is found depending on the mesh type, namely the boundary layer and the magnitude of residual reduction.

  13. Self-calibration of vision parameters via genetic algorithms with simulated binary crossover and laser line projection

    NASA Astrophysics Data System (ADS)

    Alanís, Francisco Carlos Mejía; Rodríguez, J. Apolinar Muñoz

    2015-05-01

    A self-calibration technique based on genetic algorithms (GAs) with simulated binary crossover (SBX) and laser line imaging is presented. In this technique, the GA determines the vision parameters based on perspective projection geometry. The GA is constructed by means of an objective function, which is deduced from the equations of the laser line projection. To minimize the objective function, the GA performs a recombination of chromosomes through the SBX. This procedure provides the vision parameters, which are represented as chromosomes. The approach of the proposed GA is to achieve calibration and recalibration without external references and physical measurements. Thus, limitations caused by the missing of references are overcome to make self-calibration and three-dimensional (3-D) vision. Therefore, the proposed technique improves the self-calibration obtained by GAs with references. Additionally, 3-D vision is carried out via laser line position and vision parameters. The contribution of the proposed method is elucidated based on the accuracy of the self-calibration, which is performed with GAs.

  14. Discovery of a cyclotron absorption line in the spectrum of the binary X-ray pulsar 4U 1538 - 52 observed by Ginga

    NASA Technical Reports Server (NTRS)

    Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro

    1990-01-01

    A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.

  15. Oscillator strengths of Cr I lines lying between 200 and 541 nm from hook-method and absorption measurements in a furnace

    NASA Technical Reports Server (NTRS)

    Huber, M. C. E.; Sandeman, R. J.

    1977-01-01

    Measurements of 148 oscillator strengths of neutral chromium transitions were made on Cr vapor in a high-temperature furnace by the hook and absorption methods for strong and weak lines, respectively. With the aid of a 5D-z 5F0 multiplet, the product of the oscillator strengths of the lines of this multiplet with the column densities of their respective lower levels could be determined, and by using estimated oscillator strengths for these lines, all data could be put on a common relative scale. This scale was altered so that the results were matched with relative emission intensities. Results are compared with other authors' results. A correction to the hook method constant was also determined.

  16. First laboratory detection of an absorption line of the first overtone electric quadrupolar band of N2 by CRDS near 2.2 μm

    NASA Astrophysics Data System (ADS)

    Čermák, P.; Vasilchenko, S.; Mondelain, D.; Kassi, S.; Campargue, A.

    2017-01-01

    The extremely weak 2-0 O(14) electric quadrupole transition of N2 has been detected by very high sensitivity Cavity Ring Down spectroscopy near 4518 cm-1. It is the first N2 absorption line in the first overtone band reported so far from laboratory experiments. By combining a feedback narrowed Distributed Feedback laser diode with a passive cell tracking technique, a limit of detection of αmin ∼ 1.2 × 10-11 cm-1 was achieved after one day of spectra averaging. The N2 2-0 O(14) line position and line intensity (about 1.5 × 10-30 cm/molecule) agree with calculated values provided in the HITRAN2012 database.

  17. Evaluation of the absorption line blackbody distribution function of CO2 and H2O using the proper orthogonal decomposition and hyperbolic correlations

    NASA Astrophysics Data System (ADS)

    Liu, F.; Chu, H.; Zhou, H.; Smallwood, G. J.

    2013-10-01

    Databases of the absorption line blackbody distribution function (ALBDF) of CO2 and H2O were generated over a wide range of gas and blackbody temperatures and the full range of gas concentration from line-by-line (LBL) calculations using the latest version of HITEMP. Proper orthogonal decomposition (POD) and the hyperbolic correlations (HC) were then used for rapid calculation the ALBDF value at an arbitrary combination of gas and blackbody temperatures and gas concentration. A novel hyperbolic correlation for H2O was proposed to fully account for the self-broadening effect. The accuracy of POD and the HC was evaluated by comparing the ALBDF values and the total gas emissivities from these two approximate methods at several selected conditions against those from LBL calculations. POD is significantly more accurate than HC at essentially no extra computational costs.

  18. Terminal velocity of wind, mass loss, and absorption lines of the central star of the planetary nebula 75 + 35. 1 deg

    SciTech Connect

    Feibelman, W.A.; Bruhweiler, F.C. Catholic Univ. of America, Washington, DC )

    1989-12-01

    The high-galactic latitude planetary nebula 75 + 35.1 deg was observed in the high-dispersion mode of the International Ultraviolet Explorer (IUE) satellite in the wavelength range 1150-1950 A. The N V resonance doublet at 1240 A and O V subordinate line at 1371 A exhibit strong stellar P Cygni profiles with absorption extending to -2150 km/s and -1000 km/s, respectively. Application of the first moment method implies a mass-loss rate of M = (1-3) x 10 to the -8th solar mass/yr. The high ionization of the wind lines and the presence of strong Fe VI and Fe V lines in the stellar photosphere support that this object is quite hot. A Teff of 75,000 + or - 10,000 K was adopted, although Tc = 94,000 K was found previously from low-resolution IUE data. 18 refs.

  19. Terminal velocity of wind, mass loss, and absorption lines of the central star of the planetary nebula 75 + 35.1 deg

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.; Bruhweiler, Frederick C.

    1989-01-01

    The high-galactic latitude planetary nebula 75 + 35.1 deg was observed in the high-dispersion mode of the International Ultraviolet Explorer (IUE) satellite in the wavelength range 1150-1950 A. The N V resonance doublet at 1240 A and O V subordinate line at 1371 A exhibit strong stellar P Cygni profiles with absorption extending to -2150 km/s and -1000 km/s, respectively. Application of the first moment method implies a mass-loss rate of M = (1-3) x 10 to the -8th solar mass/yr. The high ionization of the wind lines and the presence of strong Fe VI and Fe V lines in the stellar photosphere support that this object is quite hot. A Teff of 75,000 + or - 10,000 K was adopted, although Tc = 94,000 K was found previously from low-resolution IUE data.

  20. Improved 20- to 32-GHz atmospheric absorption model

    NASA Astrophysics Data System (ADS)

    Cruz Pol, Sandra L.; Ruf, Christopher S.; Keihm, Stephen J.

    1998-09-01

    An improved model for the absorption of the atmosphere near the 22-GHz water vapor line is presented. The Van Vleck-Weisskopf line shape is used with a simple parameterized version of the model from Liebe et al. [1993] for the water vapor absorption spectra and a scaling of the model from Rosenkranz [1993] for the 20- to 32-GHz oxygen absorption. Radiometric brightness temperature measurements from two sites of contrasting climatological properties, San Diego, California, and West Palm Beach, Florida, were used as ground truth for comparison with in situ radiosonde-derived brightness temperatures under clear-sky conditions. Estimation of the new model's four parameters, related to water vapor line strength, line width and continuum absorption, and far-wing oxygen absorption, was performed using the Newton-Raphson inversion method. Improvements to the water vapor line strength and line width parameters are found to be statistically significant. The accuracy of the new absorption model is estimated to be 3% between 20 and 24 GHz, degrading to 8% near 32 GHz. In addition, the Hill line shape asymmetry ratio was evaluated in several currently used models to show the agreement of the data with Van Vleck-Weisskopf based models and to rule out water vapor absorption models near 22 GHz given by Waters [1976] and Ulaby et al. [1981], which are based on the Gross line shape.

  1. H2O and O2 Absorption-Line Abundances in the Coma of Comet 67P/Churyumov-Gerasimenko Measured by the R-Alice Ultraviolet Spectrograph

    NASA Astrophysics Data System (ADS)

    Keeney, Brian A.; Stern, S. Alan; Schindhelm, Eric; A'Hearn, Michael F.; Bertaux, Jean-Loup; Bieler, Andre; Feaga, Lori M.; Feldman, Paul D.; Parker, Joel Wm; Steffl, Andrew Joseph; Weaver, Harold A.

    2016-10-01

    The Alice far-UV spectrograph, aboard the ESA Rosetta spacecraft, has observed emissions in the wavelength range 800-2000 Å from the coma of Comet 67P/Churyumov-Gerasimenko since before orbital insertion in September 2014. We present novel observations of the cometary coma in absorption against the stellar continuum of UV-bright stars that were targeted or serendipitously observed near the comet's nucleus between April 2015 and February 2016 at heliocentric radii ranging from 1.2 to 2.4 AU. These spectra show clear signatures of absorption from gaseous H2O and O2. The observed H2O column densities agree well with values found by Rosetta's VIRTIS instrument (Bockelée-Morvan et al. 2015, A&A, 583, A6) and can be reasonably described by a simple Haser model. However, the absorption-derived O2/H2O ratio is somewhat larger than the 1-10% range reported by Rosetta's ROSINA mass spectrometer (Bieler et al. 2015, Nature, 526, 678) from September 2014 through March 2015 at heliocentric radii of 2.1-3.2 AU. We explore potential causes for this discrepancy, including systematic biases in the absorption-line measurements and seasonal variations in O2/H2O as the comet approaches perihelion.

  2. CAD model for circuit parameters of superconducting-based hybrid planar transmission lines

    NASA Astrophysics Data System (ADS)

    Mohebbi, Hamid Reza; Hamed Majedi, A.

    2009-12-01

    Using the concept of surface impedance associated with a superconductor or normal conductor's plate, we extend the CAD (computer aided design) formalisms on modeling and simulation of superconducting and normal transmission lines (STL and NTL) in order to include hybrid transmission lines (HTL). STL and NTL are entirely made of superconductor or normal conductor materials, respectively. In this paper, HTL refers to a planar transmission line (TL) such as parallel plate (PPTL), microstrip (μTL) and coplanar waveguide (CPW) whose ground plate is superconducting and whose top/center strip is a normal conductor or vice versa. We develop and present a set of closed-form equations in a tidy and succinct form for each configuration (STL, NTL and HTL) for widely-used planar TLs (PPTL, μTL and CPW). They can be easily implemented in a systematic way by the user for the purpose of fast TL design. The results obtained with this CAD tool are compared with previously reported results in the literature, and good agreement is observed.

  3. 'PSA-SPN' - A Parameter Sensitivity Analysis Method Using Stochastic Petri Nets: Application to a Production Line System

    SciTech Connect

    Labadi, Karim; Saggadi, Samira; Amodeo, Lionel

    2009-03-05

    The dynamic behavior of a discrete event dynamic system can be significantly affected for some uncertain changes in its decision parameters. So, parameter sensitivity analysis would be a useful way in studying the effects of these changes on the system performance. In the past, the sensitivity analysis approaches are frequently based on simulation models. In recent years, formal methods based on stochastic process including Markov process are proposed in the literature. In this paper, we are interested in the parameter sensitivity analysis of discrete event dynamic systems by using stochastic Petri nets models as a tool for modelling and performance evaluation. A sensitivity analysis approach based on stochastic Petri nets, called PSA-SPN method, will be proposed with an application to a production line system.

  4. Optimisation of flame parameters for simultaneous multi-element atomic absorption spectrometric determination of trace elements in rocks

    USGS Publications Warehouse

    Kane, J.S.

    1988-01-01

    A study is described that identifies the optimum operating conditions for the accurate determination of Co, Cu, Mn, Ni, Pb, Zn, Ag, Bi and Cd using simultaneous multi-element atomic absorption spectrometry. Accuracy was measured in terms of the percentage recoveries of the analytes based on certified values in nine standard reference materials. In addition to identifying optimum operating conditions for accurate analysis, conditions resulting in serious matrix interferences and the magnitude of the interferences were determined. The listed elements can be measured with acceptable accuracy in a lean to stoicheiometric flame at measurement heights ???5-10 mm above the burner.

  5. Effect of Critical Plasma Spray Parameters on Microstructure and Microwave Absorption Property of Ti3SiC2/Cordierite Coatings

    NASA Astrophysics Data System (ADS)

    Su, Jinbu; Zhou, Wancheng; Wang, Hongyu; Liu, Yi; Qing, Yuchang; Luo, Fa; Zhu, Dongmei; Zhou, Liang

    2016-04-01

    Ti3SiC2/cordierite coatings with different critical plasma spray parameters (CPSP) were fabricated via atmospheric plasma spraying method. The microstructure and phase constitution of the as-sprayed Ti3SiC2/cordierite coatings were characterized. The effects of CPSP conditions on the electromagnetic shielding, and dielectric and microwave absorption properties of coatings in the frequency of 8.2-12.4 GHz were also measured and investigated. The results showed that both real and imaginary part of the complex permittivity decrease with increasing CPSP values, which can be ascribed to the decomposition of some Ti3SiC2 into TiC. The calculated reflection loss of the as-sprayed Ti3SiC2/cordierite coatings with different CPSP conditions and thicknesses indicates that coatings with CPSP 0.3, 0.35, and 0.425 exhibit excellent microwave absorption property in the thickness of 1.5 mm. In order to broaden the bandwidth of the coatings, a double-layer coating system was designed. The calculated reflection loss results show that when the thickness of matching layer is 0.3 mm and the thickness of absorbing layer is 1.5 mm, the double-layer coating system shows a proper microwave absorption property with a minimum absorption value of -17.37 dB at 9.67 GHz and a absorption bandwidth (RL less than -5 dB) of 4.16 GHz in the investigated frequency.

  6. Variations of immune parameters in the lined seahorse Hippocampus erectus after infection with enteritis pathogen of Vibrio parahaemolyticus.

    PubMed

    Lin, Tingting; Zhang, Dong; Liu, Xin; Xiao, Dongxue

    2016-03-01

    Enteritis has been increasingly recognized as one of the major obstacles for the lined seahorse Hippocampus erectus mass culture success. In the present study, the intestinal bacteria strains of the lined seahorses H. erectus suffered from enteritis were isolated, then their pathogenicities were confirmed by artificial infection, and one pathogenic bacteria strain named DS3 was obtained. The median lethal dose (LD50) of strain DS3 for 10 days was determined. The seahorses with different infection levels of uninfected (control), early stage of infection (ESI) and late stage of infection (LSI) were respectively sampled at 0, 3, 6 and 9 days post infection, and 12 immune parameters in the plasma were analyzed. The strain DS3 identified with a biochemical test combined with a molecular method was Vibrio parahaemolyticus, and its LD50 for 10 days was 1.3 × 10(3) cfu/fish. Six parameters including monocytes/leucocytes, leucocytes phagocytic rate, interleukin-2, interferon-α, lysozyme and immunoglobulin M exhibited a generally similar variation trend: highest in the control, second in the ESI and lowest in the LSI throughout the entire experiment. In view of the infection level of V. parahaemolyticus to H. erectus is largely decided by the seahorse's own immune capacity, therefore, these immune parameters were high in the non- or slightly infected seahorses, and low in the severely infected individuals may be an indicator for immune level. These immune parameters may be reliable indicators for the juvenile and broodstock quality assessment. Moreover, clarification of the enteritis pathogen also provides guidances for targeted medicine choice for the lined seahorse.

  7. Development of a serum-free human cornea construct for in vitro drug absorption studies: the influence of varying cultivation parameters on barrier characteristics.

    PubMed

    Hahne, Matthias; Reichl, Stephan

    2011-09-15

    The increased use of ophthalmic products in recent years has led to an increased demand for in vitro and in vivo transcorneal drug absorption studies. Cell-culture models of the human cornea can avoid several of the disadvantages of widely used animal experimental models, including ethical concerns and poor standardisation. This study describes the development of a serum-free cultivated, three-dimensional human cornea model (Hemicornea, HC) for drug absorption experiments. The impact of varying cultivation conditions on the corneal barrier function was analysed and compared with excised rabbit and porcine corneas. The HC was cultivated on permeable polycarbonate filters using immortalised human keratocytes and a corneal epithelial cell line. The equivalence to native tissue was investigated through absorption studies using model substances with a wide range of molecular characteristics, including hydrophilic sodium fluorescein, lipophilic rhodamine B and fluorescein isothiocyanate (FITC)-labelled macromolecule dextran. To study the intra-laboratory repeatability and construct cultivation, the permeation studies were performed independently by different researchers. The HC exhibited a permeation barrier in the same range as excised animal corneas, high reproducibility and a lower standard deviation. Therefore, the HC could be a promising in vitro alternative to ex vivo corneal tissues in preclinical permeation studies.

  8. Mars Ozone Absorption Line Shapes from Infrared Heterodyne Spectra Applied to GCM-Predicted Ozone Profiles and to MEX/SPICAM Column Retrievals

    NASA Technical Reports Server (NTRS)

    Fast, Kelly E.; Kostiuk, T.; Annen, J.; Hewagama, T.; Delgado, J.; Livengood, T. A.; Lefevre, F.

    2008-01-01

    We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry Mars' atmosphere, serving as an observable with which to test predictions of photochemistry-coupled GCMs. Infrared heterodyne spectroscopy at 9.5 microns with spectral resolving power >1,000,000 is the only technique that can directly measure fully-resolved line shapes of Martian ozone features from the surface of the Earth. Measurements were made with Goddard Space Flight Center's Heterodyne instrument for Planetary Wind And Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii on February 21-24 2008 UT at Ls=35deg on or near the MEX orbital path. The HIPWAC observations were used to test GCM predictions. For example, a GCM-generated ozone profile for 60degN 112degW was scaled so that a radiative transfer calculation of its absorption line shape matched an observed HIPWAC absorption feature at the same areographic position, local time, and season. The RMS deviation of the model from the data was slightly smaller for the GCM-generated profile than for a line shape produced by a constant-with-height profile, even though the total column abundances were the same, showing potential for testing and constraining GCM ozone-profiles. The resulting ozone column abundance from matching the model to the HIPWAC line shape was 60% higher than that observed by SPICAM at the same areographic position one day earlier and 2.5 hours earlier in local time. This could be due to day-to-day, diurnal, or north polar region variability, or to measurement sensitivity to the ozone column and its distribution, and these possibilities will be explored. This work was supported by NASA's Planetary Astronomy Program.

  9. Constraints on the neutrino parameters by future cosmological 21 cm line and precise CMB polarization observations

    SciTech Connect

    Oyama, Yoshihiko; Kohri, Kazunori; Hazumi, Masashi E-mail: kohri@post.kek.jp

    2016-02-01

    Observations of the 21 cm line radiation coming from the epoch of reionization have a great capacity to study the cosmological growth of the Universe. Besides, CMB polarization produced by gravitational lensing has a large amount of information about the growth of matter fluctuations at late time. In this paper, we investigate their sensitivities to the impact of neutrino property on the growth of density fluctuations, such as the total neutrino mass, the effective number of neutrino species (extra radiation), and the neutrino mass hierarchy. We show that by combining a precise CMB polarization observation such as Simons Array with a 21 cm line observation such as Square kilometer Array (SKA) phase 1 and a baryon acoustic oscillation observation (Dark Energy Spectroscopic Instrument:DESI) we can measure effects of non-zero neutrino mass on the growth of density fluctuation if the total neutrino mass is larger than 0.1 eV. Additionally, the combinations can strongly improve errors of the bounds on the effective number of neutrino species σ (N{sub ν}) ∼ 0.06−0.09 at 95 % C.L.. Finally, by using SKA phase 2, we can determine the neutrino mass hierarchy at 95 % C.L. if the total neutrino mass is similar to or smaller than 0.1 eV.

  10. Method of m-line spectroscopy, a good tool to determine and control the optical parameters of waveguide structures

    NASA Astrophysics Data System (ADS)

    Auguściuk, ElŻbieta

    2013-01-01

    Method of spectroscopy m-line is an accurate method for determination of the optical parameters of the planar and stripe waveguides. In this method, the laser beam is coupled to the waveguide (e.g. by the prism) in the form of discrete angles. If the layer of the solid or liquid material is deposited on the waveguide, the change in the coupling angle is observed. Modified method of the m-line spectroscopy allows for determination of the optical parameters of deposited layers with high accuracy. Moreover, modification of the waveguide structure obtained via deposition of consecutive layers and changes the ability to propagate not only in the same waveguide. Modified method of m-line spectroscopy has found many potential applications in various areas such as: technological control of the applied layers quality; modification of the light propagation in the waveguide structures; utilization in the preventive medicine for diabetic diseases; food-control of the level of nutrients in vegetables (e.g. sugar level in white beets).

  11. Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption

    NASA Technical Reports Server (NTRS)

    Barnes, James C.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1989-01-01

    Amplified spontaneous emission, ASE, generated by a Ti:Al2O3 laser amplifier has been measured as a function of pump energy, and thus gain, using the atomic absorption of rubidium, Rb, gas at 0.780 micron. By tuning the Ti:Al2O3 laser, the Rb cell could selectively absorb the narrow spectral bandwidth laser radiation while transmitting the wide spectral bandwidth ASE. Transmission of laser amplifier pulses through a Rb absorption cell, measured at various temperatures, thus allows the measurement of the weak ASE in the vicinity of the strong laser pulse. A model for the transmission of Rb as a function of temperature and wavelength has been developed. The measured transmissions are in good agreement with the transmission model predictions.

  12. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  13. Optical parameters measurement for diagnostic and photodynamic therapy of human cervical adenocarcinoma (HeLa) cell line

    NASA Astrophysics Data System (ADS)

    Rehman, A.; Firdous, S.; Nawaz, M.; Ahmad, M.

    2011-11-01

    The purpose of this study was to investigate the optical properties, absorption coefficient (μ a ) scattering coefficient (μ s ) and refractive indices, (n) of HeLa cell line in a suspension of 2% minimum essential medium (MEM) at two different (632.8 and 532.0 nm) wave lengths of laser light. Optical properties were determined with Kubelka Munk Model (KMM) and refractive index measurement was made through minimum angle of deviation method (MAD). We reported μ a = 8.643 ± 0.187 and 2.348 ± 0.249 cm-1 and μ s = 5.609 ± 0.287 and 88.166 ± 2.833 cm-1 at 632.8 and 532.0 nm, respectively. Refractive index was found to be 1.332 and 1.312 at 632.8 nm and 532.0 nm, respectively. The discussed results provide a route of information for clinical diagnosis, therapeutic application and dosimetry studies in HeLa and other cell lines.

  14. Assessing the link between chlorophyll concentration and absorption line height at 676 nm over a broad range of water types.

    PubMed

    Nardelli, Schuyler C; Twardowski, Michael S

    2016-10-31

    The relationship between absorption at 676 nm normalized to chlorophyll-a, i.e., specific absorption aph*(676), and various optical and environmental properties is examined in extensive data sets from Case I and Case II waters found globally to assess drivers of variability such as pigment packaging. A better understanding of this variability could lead to more accurate estimates of chlorophyll concentrations from in situ optical measurements that may be made autonomously. Values of aph*(676) ranged from 0.00006 to 0.0944 m2/mg Chl a across all sites studied, but converged on median and mean values (n = 563) of 0.0108 and 0.0139 m2/mg Chl a respectively, with no apparent relationship with various optical properties, latitude, coastal or open ocean environment, depth, temperature, salinity, photoadaptation, ecosystem health, or albedo. Relative consistency in aph* across such diverse water types and the full range in chlorophyll concentration suggests a single aph* may be used to estimate chlorophyll concentration from absorption measurements with better accuracy than currently thought.

  15. Investigation of broadening and shift of vapour absorption lines of H{sub 2}{sup 16}O in the frequency range 7184 – 7186 cm{sup -1}

    SciTech Connect

    Nadezhdinskii, A I; Pereslavtseva, A A; Ponurovskii, Ya Ya

    2014-10-31

    We present the results of investigation of water vapour absorption spectra in the 7184 – 7186 cm{sup -1} range that is of particular interest from the viewpoint of possible application of the data obtained for monitoring water vapour in the Earth's stratosphere. The doublet of H{sub 2}{sup 16}O near ν = 7185.596 cm{sup -1} is analysed. The coefficients of broadening and shift of water vapour lines are found in the selected range in mixtures with buffer gases and compared to those obtained by other authors. (laser spectroscopy)

  16. [Determination of Pb and Cd in atomospheric particulates by flame atomic absorption spectrometry coupled with on-line flow injection pretreatment with ultrasonic leaching].

    PubMed

    Gao, Yan; Wang, Dong-hai; Lin, Yu-bin; Li, Jian-yi; Kong, Qing-zhen

    2003-04-01

    In this paper, the method for extracting the metals from the filter membrane of the atomospheric particulates with ultrasonic leaching was reported. The dissolution conditions of kinds and acidity as well as the interference conditions were studied. The method of determination Pb and Cd of the atomospheric particulates by flame atomic absorption spectrometry coupled with on-line flow injection preconcentration was proved to be rapid and accuracy. The recoveries are more than 97%. The relative standard deviation of six samples are less than 2.6%.

  17. Infrared heterodyne spectroscopy of astronomical and laboratory sources at 8.5 micron. [absorption line profiles of nitrogen oxide and black body emission from Moon and Mars

    NASA Technical Reports Server (NTRS)

    Mumma, M.; Kostiuk, T.; Cohen, S.; Buhl, D.; Vonthuna, P. C.

    1974-01-01

    The first infrared heterodyne spectrometer using tuneable semiconductor (PbSe) diode lasers has been constructed and was used near 8.5 micron to measure absorption line profiles of N2O in the laboratory and black body emission from the Moon and from Mars. Spectral information was recorded over a 200 MHz bandwidth using an 8-channel filter bank. The resolution was 25 MHz and the minimum detectable (black body) power was 1 x 10 to the minus 16th power watts for 8 minutes of integration. The results demonstrate the usefulness of heterodyne spectroscopy for the study of remote and local sources in the infrared.

  18. Determination of optimal parameters for CD-SEM measurement of line-edge roughness

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin D.; Bishop, Michael; McCormack, Donald W., Jr.; Villarrubia, John S.; Vladar, Andras E.; Dixson, Ronald; Vorburger, Theodore V.; Orji, N. G.; Allgair, John A.

    2004-05-01

    The measurement of line-edge roughness (LER) has recently become a topic of concern in the litho-metrology community and the semiconductor industry as a whole. The Advanced Metrology Advisory Group (AMAG), a council composed of the chief metrologists from the International SEMATECH (ISMT) consortium"s Member Companies and from the National Institute of Standards and Technology (NIST), has a project to investigate LER metrics and to direct the critical dimension scanning electron microscope (CD-SEM) supplier community towards a semiconductor industry-backed, standardized solution for implementation. The 2003 International Technology Roadmap for Semiconductors (ITRS) has included a new definition for roughness. The ITRS envisions root mean square measurements of edge and width roughness. There are other possible metrics, some of which are surveyed here. The ITRS envisions the root mean square measurements restricted to roughness wavelengths falling within a specified process-relevant range and with measurement repeatability better than a specified tolerance. This study addresses the measurement choices required to meet those specifications. An expression for the length of line that must be measured and the spacing of measurement positions along that length is derived. Noise in the image is shown to produce roughness measurement errors that have both random and nonrandom (i.e., bias) components. Measurements are reported on both UV resist and polycrystalline silicon in special test patterns with roughness typical for those materials. These measurements indicate that the sensitivity of a roughness measurement to noise depends importantly both on the choice of edge detection algorithm and the quality of the focus. Measurements are less sensitive to noise when a model-based or sigmoidal fit algorithm is used and when the images are in good focus. Using the measured roughness characteristics for UV resist lines and applying the ITRS requirements for the 90 nm technology

  19. Taguchi's off line method and Multivariate loss function approach for quality management and optimization of process parameters -A review

    NASA Astrophysics Data System (ADS)

    Bharti, P. K.; Khan, M. I.; Singh, Harbinder

    2010-10-01

    Off-line quality control is considered to be an effective approach to improve product quality at a relatively low cost. The Taguchi method is one of the conventional approaches for this purpose. Through this approach, engineers can determine a feasible combination of design parameters such that the variability of a product's response can be reduced and the mean is close to the desired target. The traditional Taguchi method was focused on ensuring good performance at the parameter design stage with one quality characteristic, but most products and processes have multiple quality characteristics. The optimal parameter design minimizes the total quality loss for multiple quality characteristics. Several studies have presented approaches addressing multiple quality characteristics. Most of these papers were concerned with maximizing the parameter combination of signal to noise (SN) ratios. The results reveal the advantages of this approach are that the optimal parameter design is the same as the traditional Taguchi method for the single quality characteristic; the optimal design maximizes the amount of reduction of total quality loss for multiple quality characteristics. This paper presents a literature review on solving multi-response problems in the Taguchi method and its successful implementation in various industries.

  20. Measurements of induced voltages and currents in a distribution power line and associated atmospheric parameters

    NASA Technical Reports Server (NTRS)

    Santiago-Perez, Julio

    1988-01-01

    The frequency and intensity of thunderstorms around the Kennedy Space Center (KSC) has affected scheduled launch, landing, and other ground operations for many years. In order to protect against and provide safe working facilities, KSC has performed and hosted several studies on lightning phenomena. For the reasons mentioned above, KSC has established the Atmospheric Science Field Laboratory (ASFL). At these facilities KSC launches wire-towing rockets into thunderstorms to trigger natural lightning to the launch site. A program named Rocket Triggered Lightning Program (RTLP) is being conducted at the ASFL. This report calls for two of the experiments conducted in the summer 1988 Rocket Triggered Lightning Program. One experiment suspended an electric field mill over the launching areas from a balloon about 500 meters high to measure the space charges over the launching area. The other was to connect a waveform recorder to a nearby distribution power line to record currents and voltages wave forms induced by natural and triggered lightning.

  1. Operational parameter fields in hyperbaric plasma keyhole welding of mild steel line pipe

    SciTech Connect

    Hoffmeister, H.; Huismann, G.; Sommer, U.; Knagenhjelm, H.O.

    1996-12-01

    Based on recent work on orbital plasma keyhole welding of Duplex Stainless Steels and Low Carbon Martensitic 12--13% Cr-Steels, the capability of the plasma keyhole process for hyperbaric positional welding is explored. Based on respective nozzle geometry development, constant position welding of 100 mm OD 5 mm wall thickness St 35 pipe test pieces is carried out at constant welding speeds of 3mm/s at various constant currents and plasma Argon gas flow rates. As a result, the operational parameter fields are basically limited by lack of penetration (LOP) at too low gas flows and cutting (CT) together with dropping at too high gas flow rates. Based on present hyperbaric specifications for fabrication, limiting conditions for minimum root weld widths of 3mm and maximum root reinforcements of 2mm are established, for 11 and 41 bar as well as for the 3h, 6h and 12 h position. As common operating parameter sets for all positions, 135 A and 1.5 l/min plasma gas flow and 120 A and 1.8 l/min plasma gas flow are identified for 11 bar and 41 bar respectively.

  2. Gravitationally Redshifted Absorption Lines in the Burst Spectra of the Neutron Star in the X-Ray Binary EXO 0748-676

    NASA Technical Reports Server (NTRS)

    Cottoam, J.; Paerels, F.; Mendez, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The most straightforward manner of determining masses and radii of neutron stars is by measuring the gravitational redshift of spectral lines produced in the neutron star photosphere; such a measurement would provide direct constraints on the mass-to-radius ratio of the neutron star, and therefore on the equation of state for neutron star matter. Using data taken with the Reflection Grating Spectrometer on board the XMM-Newton observatory we identify, for the first time, significant absorption lines in the spectra of 28 bursts of the low-mass X-ray binary EXO 0748-676. The most significant features are consistent with the Fe XXVI and XXV n=2-3 and O VIII n=1-2 transitions, with a redshift of z=0.35, identical within small uncertainties for the different transitions. This constitutes the first direct and unambiguous measurement of the gravitational redshift in a neutron star.

  3. RXTE Observations of Positive Correlations between the Cyclotron Line Parameters and Luminosity in GX 304-1

    NASA Astrophysics Data System (ADS)

    Rothschild, Richard E.; Kühnel, Matthias; Britton Hemphill, Paul; Markowitz, Alex; Pottschmidt, Katja; Wilms, Joern; Staubert, Rüdiger; Klochkov, Dmitry; Postnov, Konstantin; Goronostaev, Mikhail

    2016-04-01

    The Rossi X-ray Timing Explorer observed four outbursts of the accreting X-ray binary transient source GX 304-1 in 2010 and 2011. During the 2010-2011 observations, the HEXTE cluster A viewing direction was fixed aligned with the PCA field of view and HEXTE cluster B was fixed viewing a background region 1.5 degrees off of the source direction. The cluster A background was successfully estimated from cluster B events, and this made possible the measurement of the ~55 keV cyclotron line and an accurate measurement of the continuum. The cyclotron line energy spans 50 to 60 keV throughout each outburst, implying magnetic fields ranging from 4-5 teraGauss as the scattering region reacts to the varying mass accretion rate. We present results of a detailed 3-100 keV spectral analysis of 69 separate observations, and report a greater than 7 sigma measurement of a positive correlation between cyclotron line parameters (energy, width, and depth) and luminosity, as well as other spectral parameters' correlations with luminosity. The three cyclotron line parameters’ correlations with luminosity show a flattening of the relationships with increasing luminosity, and have been fitted by quasi-spherical accretion and disk accretion models. The width and depth correlation exponents follow directly from the energy correlation exponent with only the assumption that the accretion column is in the subcritical (Coulomb-braking) regime and the energy changes in proportion to the characteristic stopping length of protons. Correlations of all spectral parameters with primary 2-10 keV power law flux reveal the mass accretion rate to be the primary driver of the spectral shape. A large enhancement in the line of sight column density lasting about three days is seen just before periastron in one outburst and a smaller enhancement of similar duration at the same orbital phase is seen in a second outburst, suggesting the presence of a dense structure in the stellar wind.

  4. Parameter identification and on-line estimation for reduced kinetic model

    SciTech Connect

    Littel, J.D.; Muske, K.R.; Del`Orco, P.C.; Le, L.A.; Flesner, R.L.

    1998-08-07

    The base hydrolysis process for the destruction of energetic or explosive materials results is a high pH hydrolysate solution with reaction products that include a series of carboxylic acid salts, glycolates, amines, and nitrates. The hydrolysate solutions obtained from this process contain from two to ten wt% of organic carbon and nitrogen compounds that must be further treated before disposal. Hydrothermal oxidation at elevated temperatures (450 C) and pressure (14,000 psi) was selected as the treatment process for the hydrolysate solutions obtained from hydrolysis of the high explosive PBX 9404 at the Department of Energy Pantex facility in Amarillo, Texas. In this work, the authors describe the use of receding horizon identification and estimation techniques to determine the model parameters for a reduced kinetic model describing the oxidation-reduction reactions in a hydrothermal oxidation reactor. This model is used in a model predictive controller that minimizes the total aqueous nitrogen in the hydrothermal oxidation reactor effluent.

  5. Spectral Line Shape Parameters for the ν_1, ν_2, and ν_3 Bands of Hdo: Self and CO_2 Broadened

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Gamache, Robert R.; Renaud, Candice L.; Mantz, Arlan; Smith, Mary Ann H.; Villanueva, Geronimo L.

    2016-06-01

    To provide precise information relevant to Martian atmospheric remote sensing, high resolution high signal-to-noise ratio spectra of HDO in mixture with CO_2 were recorded in the ν_1, ν_2, and ν_3 fundamental bands between 2.7 and 7 μm regions. The spectra were obtained with the Bruker IFS-125HR Fourier transform spectrometer at the Jet Propulsion Laboratory along with two specially built coolable absorption cells with path lengths of 0.2038 m and 20.941 m at various sample gas temperatures (˜220 - 296 K), total sample pressures and volume mixing ratios. A multispectrum nonlinear least squares technique was applied to fit simultaneously all the spectra obtained. The measured line parameters include accurate line positions, intensities, self- and CO_2-broadened Lorentz halfwidth and pressure-shift coefficients, and temperature dependences of CO_2 broadened HDO halfwidth and pressure-shift coefficients. Line mixing coefficients using the relaxation matrix formalism and quadratic speed dependence parameters were also measured where appropriate. Example results for select transitions in each band will be presented and comparisons made to other measured/calculated values. K. Sung, A.W. Mantz, M.A.H. Smith, L.R. Brown, T.J. Crawford, V.M. Devi, D.C. Benner. J. Mol. Spectrosc. 162 (2010) 124-134. A.W. Mantz, K. Sung, T.J. Crawford, L.R. Brown, M.A.H. Smith, V.M. Devi, D.C. Benner, J. Mol. Spectrosc. 304 (2014) 12-24. D.C. Benner, C.P. Rinsland, V. Malathy Devi, M.A. H. Smith, and D. Atkins. JQSRT 53 (1995) 705-721. Research described in this paper are performed at the College of William and Mary, Jet Propulsion Laboratory, California Institute of Technology, Connecticut College, and NASA Langley Research Center under contracts and cooperative agreements with the National Aeronautics and Space Administration. RRG and CLR were supported by the National Science Foundation through Grant # AGS-1156862.

  6. Genome-Wide QTL Mapping for Wheat Processing Quality Parameters in a Gaocheng 8901/Zhoumai 16 Recombinant Inbred Line Population

    PubMed Central

    Jin, Hui; Wen, Weie; Liu, Jindong; Zhai, Shengnan; Zhang, Yan; Yan, Jun; Liu, Zhiyong; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.). In the present study, a recombinant inbred line (RIL) population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs) for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA), and Mixolab parameters using the wheat 90 and 660 K single nucleotide polymorphism (SNP) chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90 and 660 K SNP assays spanned a total length of 4121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6596 new SNP markers were anchored to the bread wheat linkage map, with 1046 and 5550 markers from the 90 and 660 K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP) technique for improvement of processing quality in bread wheat. PMID:27486464

  7. The Catalogue of Stellar Parameters from the Detached Double-Lined Eclipsing Binaries in the Milky Way

    NASA Astrophysics Data System (ADS)

    Eker, Z.; Bilir, S.; Soydugan, F.; Gökçe, E. Yaz; Soydugan, E.; Tüysüz, M.; Şenyüz, T.; Demircan, O.

    2014-05-01

    The most accurate stellar astrophysical parameters were collected from the solutions of the light and the radial velocity curves of 257 detached double-lined eclipsing binaries in the Milky Way. The catalogue contains masses, radii, surface gravities, effective temperatures, luminosities, projected rotational velocities of the component stars, and the orbital parameters. The number of stars with accurate parameters increased 67% in comparison to the most recent similar collection by Torres, Andersen, & Giménez (2010). Distributions of some basic parameters were investigated. The ranges of effective temperatures, masses, and radii are 2 750

  8. An Implementation of the Fundamental Parameters Approach for Analysis of X-ray Powder Diffraction Line Profiles

    PubMed Central

    Mendenhall, Marcus H.; Mullen, Katharine; Cline, James P.

    2015-01-01

    This work presents an open implementation of the Fundamental Parameters Approach (FPA) models for analysis of X-ray powder diffraction line profiles. The original literature describing these models was examined and code was developed to allow for their use within a Python based least squares refinement algorithm. The NIST interest in the FPA method is specific to its ability to account for the optical aberrations of the powder diffraction experiment allowing for an accurate assessment of lattice parameter values. Lattice parameters are one of the primary certified measurands of NIST Standard Reference Materials (SRMs) for powder diffraction. Lattice parameter values obtained from analysis of data from SRMs 640e and 660c using both the NIST FPA Python code and the proprietary, commercial code Topas, that constitutes the only other actively supported, complete implementation of FPA models within a least-squares data analysis environment, agreed to within 2 fm. This level of agreement demonstrates that both the NIST code and Topas constitute an accurate implementation of published FPA models. PMID:26958448

  9. Line Parameters Of CH3CN From 305 To 415 cm-1

    NASA Astrophysics Data System (ADS)

    Brown, Linda R.; Kamadjeu, D. A.; Kleiner, I.; Orphal, J.; Sams, R. L.

    2006-12-01

    Mapping important compounds, such as hydrocarbons and nitriles, is needed in order to understand the photochemical cycle of Titan and how it couples with the dynamics to produce organic aerosols. For this, the CIRS spectrometer (Composite Infrared Spectrometer) on board Cassini is currently recording rotation and vibration-rotation spectra of Titan between 10 and 1400 cm-1. To support analysis of these data, high resolution laboratory spectra of CH3CN have been recorded using Fourier transform spectrometers at PNL and LISA. This paper presents a prediction of line positions and intensities of CH3 CN for the ν&8 fundamental and the 2ν8 -ν8 hot band (located near 360 cm&-1). Analyses of the two fundamentals near 10 microns are in progress. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with The National Aeronautics and Space Administration. I.K, J. O and A. D. also want to thank the Programme National de Planétologie for funding part of this research. This research was supported, in part, by the United States Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division and the experimental part was performed at the W. R, Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle under contract DE-AC06-76RLO 1830. We wish to thank Drs R. Antilla and S. Alanko for kindly making available supplemental data in electronic and paper forms. #

  10. Direct determination of radionuclides in building materials with self-absorption correction for the 63 and 186 keV γ-energy lines.

    PubMed

    Długosz-Lisiecka, Magdalena; Ziomek, Martyna

    2015-12-01

    The use of 911 keV and 129 keV γ-line intensity ratio has been applied for self-absorption correction of the 63 keV (234)Th ((238)U) and 186 keV((226)Ra and (235)U) lines in typical building materials and soil samples. Proposed procedure allows to determine (238)U from the (234)Th line (63 keV) and (226)Ra after subtraction of (235)U interference in the 186 keV. It is important in the case of low uranium concentration and weak intensity of (235)U 143 keV γ energy line, when activity of this radionuclide can be apprised on the natural constant (238)U/(235)U ratio, only (excluding accidental anthropogenic depleted uranium deposition in the soil samples). Therefore, by this method a direct and fast determination of the (226)Ra and other important radionuclides, without one month waiting period for (226)Ra-(222)Rn daughter equilibrium, is possible. The accuracy of the method has been confirmed (relative relation deviation <10%) for typical buildings materials such as: tales, bricks, concrete blocks and various type of ceramic materials.

  11. A search for intervening HI absorption

    NASA Astrophysics Data System (ADS)

    Reeves, Sarah N.; Sadler, Elaine M.; Allison, James R.; Koribalski, Baerbel S.; Curran, Stephen J.

    2013-03-01

    HI absorption-line studies provide a unique probe of the gas distribution and kinematics in galaxies well beyond the local universe (z ≳ 0.3). HI absorption-line surveys with next-generation radio telescopes will provide the first large-scale studies of HI in a redshift regime which is poorly understood. However, we currently lack the understanding to infer galaxy properties from absorption-line observations alone. To address this issue, we are conducting a search for intervening HI absorption in a sample of 20 nearby galaxies. Our aim is to investigate how the detection rate varies with distance from the galaxy. We target sight-lines to bright continuum sources, which intercept known gas-rich galaxies, selected from the HIPASS Bright Galaxy Catalogue (Koribalski et al. 2004). In our pilot sample, six galaxies with impact parameters < 20 kpc, we do not detect any absorption lines - although all are detected in 21cm emission. This indicates that an absorption non-detection cannot simply be interpreted as an absence of neutral gas - see Fig. 1. Our detection rate is low compared to previous surveys e.g. Gupta et al. (2010). This is, at least partially, due to the high resolution of the observations reducing the flux of the background source, which will also be an issue in future surveys, such as ASKAP-FLASH.

  12. Performance of a total absorption clover detector for Qβ measurements of neutron-rich nuclei far from the β-stability line

    NASA Astrophysics Data System (ADS)