Science.gov

Sample records for absorption line shape

  1. Effects of velocity averaging on the shapes of absorption lines

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.

    1980-01-01

    The velocity averaging of collision cross sections produces non-Lorentz line shapes, even at densities where Doppler broadening is not apparent. The magnitude of the effects will be described using a model in which the collision broadening depends on a simple velocity power law. The effect of the modified profile on experimental measures of linewidth, shift and amplitude will be examined and an improved approximate line shape will be derived.

  2. Line shape of 57Co sources exhibiting self absorption

    NASA Astrophysics Data System (ADS)

    Spiering, H.; Ksenofontov, V.; Leupold, O.; Kusz, J.; Deák, L.; Németh, Z.; Bogdán, C.; Bottyán, L.; Nagy, D. L.

    2016-12-01

    The effect of selfabsorption in Mössbauer sources is studied in detail. Spectra were measured using an old 57 C o/ R h source of 74 M B q activity with an original activity of ca. 3.7 G B q and a 0.15 G B q 57 C o/ α - F e source magnetized by an in-plane magnetic field of 0.2 T. The 57 C o/ α - F e source of a thickness of 25 μ was used both from the active and the inactive side giving cause to very different selfabsorption effects. The absorber was a single crystal of ferrous ammonium sulphate hexahydrate (FAS). Its absorption properties were taken over from a detailed study (Bull et al., Hyperfine Interact. 94(1-3), 1; Spiering et al. 2). FAS (space group P21/c) crystallizes as flat plates containing the (overline {2}01) plane. The γ-direction was orthogonal to the crystal plate. The 57 C o atoms of the 57 C o/ R h source were assumed to be homogeneously distributed over a 6 μ thick Rh foil and to follow a one dimensional diffusion profile in the 25 μ Fe-foil. The diffusion length was fitted to 10 μ. The theory follows the Blume-Kistner equations for forward scattering (Blume and Kistner, Phys. Rev. 171, 417, 3) by integrating over the source sampled up to 128 layers.

  3. Collisional Line-Shape and Line-Mixing Parameters for CO(2) Absorption near 3340 cm(-1): Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Buldyreva, Jeanna; Auwera, Jean Vander

    2014-06-01

    class="MsoNormal">The present work is focused on the determination of line-shape parameters for one of the 12C16O2 bands detectable by the SOIR (Solar Occultation in the InfraRed) instrument onboard the ESA Venus Express spacecraft, namely the 21102 - 00001 band located near 3340 cm-1. High-resolution Fourier transform spectra of this band have been recorded at sub-atmospheric pressures and analyzed to extract isolated-line intensities and collisional parameters as well as first-order line-mixing coefficients. Voigt, hard-collision Rautian and Sobel'man, and quadratic-speed-dependent Voigt profiles have been used. The retrieved parameters are compared with previous data available in the literature and with theoretical estimates obtained by an Energy-Corrected Sudden approach (generally, non-Markovian) employing a symmetric metric in the Liouville space. The same approach, supplied with additional hypotheses for basic transition rates for the hot bands, has also been used to model the complete band shapes. The need for accounting of line-narrowing effects at sub-atmospheric pressures has been evidenced from comparison with the recorded spectra, and some improvements have been introduced in the relaxation matrix model, leading to a good agreement of calculated and measured absorptions from nearly Doppler pressure regime to nearly atmospheric pressure.

  4. Impact of broadened laser line-shape on retrievals of atmospheric species from lidar sounding absorption spectra.

    PubMed

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2015-02-09

    We examine the impact of broadened laser line-shape on retrievals of atmospheric species from lidar-sounding absorption spectra. The laser is assumed to be deterministically modulated into a stable, nearly top-hat frequency comb to suppress the stimulated Brillouin scattering, allowing over 10-fold pulse energy increase without adding measurement noise. Our model remains accurate by incorporating the laser line-shape factor into the effective optical depth. Retrieval errors arising from measurement noise and model bias are analyzed parametrically and numerically to provide deeper insight. The stable laser line-shape broadening minimally degrades the column-averaged retrieval, but can significantly degrade the multiple-layer retrievals.

  5. Line-Parameter Measurements and Stringent Tests of Line-Shape Models Based on Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bielska, Katarzyna; Fleisher, Adam J.; Hodges, Joseph T.; Lin, Hong; Long, David A.; Reed, Zachary D.; Sironneau, Vincent; Truong, Gar-Wing; Wójtewicz, Szymon

    2014-06-01

    Laser methods that are based on cavity-enhanced absorption spectroscopy (CEAS) are well-suited for measuring molecular line parameters under conditions of low optical density, and as such they are complementary to broadband Fourier-transform spectroscopy (FTS) techniques. Attributes of CEAS include relatively low detection limits, accurate and precise detuning axes and high fidelity measurements of line shape. In many cases these performance criteria are superior to those obtained using direct laser absorption spectroscopy and FTS-based systems. In this presentation we will survey several examples of frequency-stabilized cavity ring-down spectroscopy (FS-CRDS)1 measurements obtained with laser spectrometers developed at the National Institute of Standards and Technology (NIST) in Gaithersburg Maryland. These experiments, which are motivated by atmospheric monitoring and remote-sensing applications that require high-precision and accuracy, involve nearinfrared transitions of carbon dioxide, water, oxygen and methane. We discuss spectra with signal-to-noise ratios exceeding 106, frequency axes with absolute uncertainties in the 10 kHz to 100 kHz range and linked to a Cs clock, line parameters with relative uncertainties at the 0.2 % level and isotopic ratios measured with a precision of 0.03 %. We also present FS-CRDS measurements of CO2 line intensities which are measured at atmospheric concentration levels and linked to gravimetric standards for CO2 in air, and we quantify pressure-dependent deviations between various theoretical line profiles and measured line shapes. Finally we also present recent efforts to increase data throughput and spectral coverage in CEAS experiments. We describe three new high-bandwidth CEAS techniques including frequency-agile, rapid scanning spectroscopy (FARS)2, which enables continuous-wave measurements of cavity mode linewidth and acquisition of ringdown decays with no dead time during laser frequency tuning, heterodyne

  6. A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1992-01-01

    The far wing line shape theory developed previously and applied to the calculation of the continuum absorption of pure water vapor is extended to foreign-broadened continua. Explicit results are presented for H2O-N2 and H2O-CO2 in the frequency range from 0 to 10,000/cm. For H2O-N2 the positive and negative resonant frequency average line shape functions and absorption coefficients are computed for a number of temperatures between 296 and 430 K for comparison with available laboratory data. In general the agreement is very good.

  7. Absorption and emission line shapes in the O2 atmospheric bands - Theoretical model and limb viewing simulations

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Bucholtz, A.; Hays, P. B.; Ortland, D.; Skinner, W. R.

    1989-01-01

    A multiple scattering radiative transfer model has been developed to carry out a line-by-line calculation of the absorption and emission limb measurements that will be made by the High Resolution Doppler Imager to be flown on the Upper Atmosphere Research Satellite. The multiple scattering model uses the doubling and adding methods to solve the radiative transfer equation, modified to take into account a spherical inhomogeneous atmosphere. Representative absorption and emission line shapes in the O2 1Sigma(+)g - 3Sigma(-)g atmospheric bands (A,B, and gamma) and their variation with altitude are presented. The effects of solar zenith angle, aerosol loading, surface albedo, and cloud height on the line shapes are also discussed.

  8. Time-averaging approximation in the interaction picture: absorption line shapes for coupled chromophores with application to liquid water.

    PubMed

    Yang, Mino; Skinner, J L

    2011-10-21

    The time-averaging approximation (TAA), originally developed to calculate vibrational line shapes for coupled chromophores using mixed quantum/classical methods, is reformulated. In the original version of the theory, time averaging was performed for the full one-exciton Hamiltonian, while herein the time averaging is performed on the coupling (off-diagonal) Hamiltonian in the interaction picture. As a result, the influence of the dynamic fluctuations of the transition energies is more accurately described. We compare numerical results of the two versions of the TAA with numerically exact results for the vibrational absorption line shape of the OH stretching modes in neat water. It is shown that the TAA in the interaction picture yields theoretical line shapes that are in better agreement with exact results.

  9. The Features of the Frequency-Modulation Method When Studying the Shapes of the Spectral Lines of Nonlinear Absorption

    NASA Astrophysics Data System (ADS)

    Golubiatnikov, G. Yu.; Belov, S. P.; Lapinov, A. V.

    2017-01-01

    We briefly consider the method of the frequency (phase) modulation and signal detection at the second harmonic of the modulation frequency for recording and analyzing the spectral-line shapes. The precision sub-Doppler spectrometer in the millimeter- and submillimeter-wave ranges, which operated in the regime of nonlinear saturation of the spectral transitions in a standing wave (the Lamb-dip method), was used during the measurements. The influence of the saturation degree on the value and shape of the recorded frequency-modulated signals in the quadrature channels during the synchronous detection is demonstrated. Variation in the relationships among the signals determined by dispersion and absorption was observed. The necessity of allowance for the influence of the group-velocity dispersion and coherent effects on the shape of the recorded spectral lines is experimentally shown.

  10. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    US Department of Energy's (DOE) SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The increasing CO2 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. In spring 2009 we improved the aircraft's nadir window and during July and August we made 9 additional 2 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and eastern Virginia. Strong laser signals and clear CO2 line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. Analysis shows that the average signal levels follow predicted values, the altimetry measurements had an uncertainty of about 4 m, and that the average optical line depths follow the number density calculated from in-situ sensor readings. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. More details of the flights, measurements, analysis and scaling to space will be described in the presentation.

  11. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.

    2009-01-01

    altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. This spring we improved the aircraft's nadir window. During July and August 2009 we made 9 additional 2 hour long flights and measured the atmospheric C02 absorption and line shapes using the 1572.33 nm C02 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and Virginia. Strong laser signals and clear line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. The Oklahoma and east coast t1ights were coordinated with a LaRC/ITT C02 lidar on the LaRC UC-12 aircraft, a LaRC insitu C02 sensor, and the Oklahoma flights also included a JPL C02 lidar on a Twin Otter aircraft. Ed Browell and Gary Spiers led the LaRC and JPL teams. More details of the t1ights, measurements and analysis will be described in the presentation.

  12. Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Hasselbrack, W. E.; Sun, X.

    2009-12-01

    increasing CO2 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. This spring we improved the aircraft’s nadir window. During July and August 2009 we made 9 additional 2 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and Virginia. Strong laser signals and clear line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. Ed Browell and Gary Spiers led the LaRC and JPL teams. More details of the flights, measurements and their analysis will be described in the presentation.

  13. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains.

    PubMed

    Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2015-04-10

    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.

  14. Mars Ozone Absorption Line Shapes from Infrared Heterodyne Spectra Applied to GCM-Predicted Ozone Profiles and to MEX/SPICAM Column Retrievals

    NASA Technical Reports Server (NTRS)

    Fast, Kelly E.; Kostiuk, T.; Annen, J.; Hewagama, T.; Delgado, J.; Livengood, T. A.; Lefevre, F.

    2008-01-01

    We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry Mars' atmosphere, serving as an observable with which to test predictions of photochemistry-coupled GCMs. Infrared heterodyne spectroscopy at 9.5 microns with spectral resolving power >1,000,000 is the only technique that can directly measure fully-resolved line shapes of Martian ozone features from the surface of the Earth. Measurements were made with Goddard Space Flight Center's Heterodyne instrument for Planetary Wind And Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii on February 21-24 2008 UT at Ls=35deg on or near the MEX orbital path. The HIPWAC observations were used to test GCM predictions. For example, a GCM-generated ozone profile for 60degN 112degW was scaled so that a radiative transfer calculation of its absorption line shape matched an observed HIPWAC absorption feature at the same areographic position, local time, and season. The RMS deviation of the model from the data was slightly smaller for the GCM-generated profile than for a line shape produced by a constant-with-height profile, even though the total column abundances were the same, showing potential for testing and constraining GCM ozone-profiles. The resulting ozone column abundance from matching the model to the HIPWAC line shape was 60% higher than that observed by SPICAM at the same areographic position one day earlier and 2.5 hours earlier in local time. This could be due to day-to-day, diurnal, or north polar region variability, or to measurement sensitivity to the ozone column and its distribution, and these possibilities will be explored. This work was supported by NASA's Planetary Astronomy Program.

  15. Quasistellar Objects: Intervening Absorption Lines

    NASA Astrophysics Data System (ADS)

    Charlton, J.; Churchill, C.; Murdin, P.

    2000-11-01

    Every parcel of gas along the line of sight to a distant QUASAR will selectively absorb certain wavelengths of continuum light of the quasar due to the presence of the various chemical elements in the gas. Through the analysis of these quasar absorption lines we can study the spatial distributions, motions, chemical enrichment and ionization histories of gaseous structures from REDSHIFT five unti...

  16. Dynamic Line-by-line Pulse Shaping

    NASA Astrophysics Data System (ADS)

    Willits, John Thomas

    In pursuit of optical arbitrary waveform generation (OAWG), line-by-line pulse shapers use dynamic masks that can be modulated at the repetition rate of an input pulse train. The pulse-to-pulse control of the output pulse train with the waveform fidelity provided by line-by-line pulse shaping creates the most arbitrary waveform output possible, OAWG. This thesis studies the theoretical dynamic effects of such a pulse shaper and presents efforts towards realization of OAWG. Pulse shaping theory is extended to include rapid waveform update for line-by-line pulse shaping. The fundamental tradeoff between response speed and waveform fidelity is illustrated by several examples. Line-by-line pulse shaping is demonstrated at a repetition rate of 890 MHz on a mode-locked titanium sapphire laser. This pulse shaper relies on a virtual imaged phased array (VIPA) to obtain the necessary high spectral resolution. The details of the VIPA's ideal and nonideal performance are analyzed, simulated and tested. Individual frequency modes from the mode-locked titanium sapphire laser are also resolved using the same VIPA paired with a diffraction grating creating a 2-D spectral brush with a resolution of 357 MHz. The advantages and nonideal effects of VIPA-based pulse shaping are investigated. Analysis of several high speed modulation techniques are explored. The optical system required to separate adjacent comb lines into different single mode (SM) fibers necessary for several modulation techniques is designed and tested.

  17. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, R.B.

    1985-08-15

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  18. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  19. Line, Shape, Color.

    ERIC Educational Resources Information Center

    Greenman, Geri

    2002-01-01

    Describes an art project used with beginning high school art students that teaches them about continuous line drawing. Explains that the students create portraits of themselves, or another student, using glue, black construction paper, and chalk. (CMK)

  20. Description of metastable states in the asymptotic line shape theory

    NASA Astrophysics Data System (ADS)

    Klimeshina, Tatyana E.; Rodimova, Olga B.

    2014-11-01

    A line-by-line calculation of the continuum absorption coefficient in the 1600 and 3600 cm-1 water vapor bands with the line wing shape corresponding to asymptotic line shape theory is presented. The calculation results agree closely with quasi-bound dimer absorption estimates made in the context of a dimer hypothesis. An examination of the classical part of the problem at hand enables the fraction of the quasi-bound dimers to be estimated.

  1. Quasar Absorption Line Survey - Cycle 4 High

    NASA Astrophysics Data System (ADS)

    Bahcall, John

    1994-01-01

    The Absorption Line Survey of bright quasars provides a homogeneous data base for studying fundamental questions about the origin and evolution of gaseous systems in the universe. The initial results determine at small redshifts the number densities of Ly-ALPHA systems, of metal-lines and extragalactic halos, of Lyman-limit systems, of associated absorption systems, and the shapes and intensities of quasar emission lines and spectral energy distributions. The survey reveals that much of the sky is covered by high or very high velocity metal-line clouds present in the Galactic halo. A larger sample, which includes the requested Cycle 3 observations, is required to answer many important questions. For example, what is the correlation function of Ly-ALPHA systems at small redshifts? What fraction of the metal, the Ly-ALPHA, and the Ly-limit systems are associated with galaxies and what are the characteristic sizes of the outer gaseous regions of different types of galaxies? Do absorbing systems show evidence of the large-scale structure seen with galaxies and clusters of galaxies? The observations requested in Cycle 3 will extend the region of coverage of the Key Project sample from the redshift range of z = 0.0 to 1.0 (Cycles 1& 2) to z = 0.0 to 1.6 (Cycles 1-3). THIS FILE CONTAINS THE HIGH PRIORITY OBSERVATIONS FROM CYCLES 2 and 3 WHICH WERE NOT COMPLETED IN THOSE CYCLES.

  2. Polarization and Broad Absorption Lines in Quasars

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    1990-12-01

    OI 287 is a unique extragalactic source. It appears to take one property from each class of object. It is either some kind of missing link, or a new type of activity. Because of the high optical polarization, OI 287 has been classified with the blazars. However, every other blazar is variable in optical flux, polarization, and polarization angle., while OI 287 is constant at V=17, P=8%, and theta=145 degrees. Also, every other blazar has a radio source dominated by an intense flat-spectrum core, while OI 287 has an upper limit of 2% of the total 20cm flux in the core. The only group of quasars which ever shows even moderate (2-5%) constant optical polarization is the broad absorption line (BAL) objects, e.g. PHL 5200 and H1413+113. Among the BAL quasars, PHL 5200 and H1413+113 have exceptionally smooth deep, attached absorption lines, and also the highest polarization. We want to know whether OI 287 is a BAL quasar. It would be the first definite radio loud example. If it is a BAL quasar then the high polarization is really related to (and perhaps the key to) the BAL phenomenon, and we can use the techniques of spectropolarimetry to help unlock the BAL geometry. The UV spectral shape would also provide help determining the cause of polarization.

  3. Do Atoms Really "Emit" Absorption Lines?

    ERIC Educational Resources Information Center

    Brecher, Kenneth

    1991-01-01

    Presents three absorption line sources that enhance student understanding of the phenomena associated with the interaction of light with matter and help dispel the misconception that atoms "emit" absorption lines. Sources include neodymium, food coloring and other common household liquids, and fluorescent materials. (MDH)

  4. Absorption-Line Studies of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Shull, J. Michael

    We propose to undertake a "reverberation analysis" of the variable absorption lines ill two Seyfert Galaxies (NGC 4051 and Mrk 279) to help understand the origin of intrinsic absorption lines in AGNs. Stich an analysis is a powerful tool for elucidating the radial distribution of absorbing gas in the broad-line region (BLR) and narrow-line region (NLR). Only two Seyferts have previously been studied with this technique: NGC 4151 (Bromage el al. 1985; Clavel et al. 1987) and NGC 3516 (Voit, Shull, and Begelman 1987). The absorption features have been interpreted as an outflow of ionized clouds from the nuclear region or from an accretion disk affected by UV/X-ray heating. Neither the source of the absorbing gas in these Seyferts nor the "gene" which distingishes them from other Seyferts is known. Until the 1984 onset of absorption in Mrk 279, broad self-absorbed. lines had been observed only in Seyferts of low intrinsic luminosity, such as NGC 4051. Mrk 279 is intrinsically much brighter, and therefore more quasar-like, than the other three absorptionline Seyfert I's in the CfA sample. Thus, it may show how the absorption phenomenon changes at higher luminosity and could bridge the gap between the low luminosity absorption-line Seyferts and the well-studied broad absorption-line (BAL) QSO's. In addition, Mrk 279's significant redshift will allow us to study, for the first time, the Ly-alpha line in an absorption-line Seyfert. With 3 US-1 shifts for each of these two underobserved Seyferts, we can double the number of objects in which absorption-line variability has been studied and investigate why the absorption-line strengths correlate or anti-correlate with the UV continuum.

  5. PG 1411 + 442 - The nearest broad absorption line quasar

    NASA Technical Reports Server (NTRS)

    Malkan, Matthew A.; Green, Richard F.; Hutchings, John B.

    1987-01-01

    IUE observations reveal strong, moderately broad absorption troughs in the blue wings of the C IV and N V emission lines of the quasar PG 1411 + 442. No absorption from weakly ionized gas is detected. The emission-line strengths and overall shape of the ultraviolet/optical/near-infrared/far-infrared continuum of the new broad absorption line quasar are within the range normally measured in quasars. Its redshift is low enough to allow the morphology of the host galaxy to be studied in deep broad-band and intermediate-band CCD images. The galaxy appears to be a large spiral with a very long arm or tail. The inclination angle is 57 deg, which rules out the possibility that the line of sight to the nucleus intersects a large path length in a galactic disk.

  6. A survey of ultraviolet interstellar absorption lines

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Jenkins, E. B.; Spitzer, L., Jr.; York, D. G.; Hill, J. K.; Savage, B. D.; Snow, T. P., Jr.

    1983-01-01

    A telescope-spectrometer on the Copernicus spacecraft made possible the measurement of many ultraviolet absorption lines produced by the interstellar gas. The present survey provides data on ultraviolet absorption lines in the spectra of 88 early-type stars. The stars observed are divided into four classes, including reddened stars, unreddened bright stars, moderately reddened bright stars, and unreddened and moderately reddened faint stars. Data are presented for equivalent width, W, radial velocity V, and rms line width, D, taking into account some 10 to 20 lines of N I, O I, Si II, P II, S II, Cl I, Cl II, Mn II, Fe II, Ni II, Cu II, and H2. The data are based on multiple scans for each line. Attention is given to details of observations, the data reduction procedure, and the computation of equivalent width, mean velocity, and velocity dispersion.

  7. Solar flare gamma-ray line shapes

    NASA Technical Reports Server (NTRS)

    Werntz, C.; Kim, Y. E.; Lang, Frederick L.

    1990-01-01

    A computer code has been developed which is used to calculate ab initio the laboratory shapes and energy shifts of gamma-ray lines from (C-12)(p, gamma/4.438/)p-prime(C-12) and (O-16)(p, gamma/6.129/)p-prime(O-16) reactions and to calculate the expected shapes of these lines from solar flares. The sensitivity of observable solar flare gamma-ray line shapes to the directionality of the incident particles is investigated for several projectile angular distributions. Shapes of the carbon and oxygen lines are calculated assuming realistic proton energy spectra for particles in circular orbits at the mirror points of magnetic loops, for particle beams directed downward into the photosphere, and for isotropic particle distributions. Line shapes for flare sites near the center of the sun and on the limb are shown for both thin-target and thick-target interaction models.

  8. Narrow UV Absorption Line Outflows from Quasars

    NASA Astrophysics Data System (ADS)

    Hamann, F.; Simon, L.; Rodriguez Hidalgo, P.; Capellupo, D.

    2012-08-01

    Narrow absorption line (NAL) outflows are an important yet poorly understood part of the quasar outflow phenomenon. We discuss one particular NAL outflow that has high speeds, time variability, and moderate ionizations like typical BAL flows, at an estimated location just ˜5 pc from the quasar. It also has a total column density and line widths (internal velocity dispersions) ˜100 times smaller than BALs, with no substantial X-ray absorption. We argue that radiative shielding (in the form of an X-ray/warm absorber) is not critical for the outflow acceleration and that the moderate ionizations occur in dense substructures that have an overall small volume filling factor in the flow. We also present new estimates of the overall incidence of quasar outflow lines; e.g., ˜43% of bright quasars have a C IV NAL outflow while ˜68% have a C IV outflow line of any variety (NAL, BAL, or mini-BAL).

  9. Molecular absorption in transition region spectral lines

    NASA Astrophysics Data System (ADS)

    Schmit, D. J.; Innes, D.; Ayres, T.; Peter, H.; Curdt, W.; Jaeggli, S.

    2014-09-01

    Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary. The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales and introduces a new complexity into our understanding of solar thermal structure. It lends credence to previous numerical studies that found evidence for elevated pockets of cool gas in the chromosphere. Movies associated to Figs. 1 and 2 are available in electronic form at http://www.aanda.org

  10. Spectrophotometry of six broad absorption line QSOs

    NASA Technical Reports Server (NTRS)

    Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.

    1987-01-01

    Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.

  11. Analysis of Hα( Dα) Line Shape

    NASA Astrophysics Data System (ADS)

    Wei, Xu; Yan, Li

    2014-09-01

    The particles energy distribution is derived directly from the Hα( Dα) line shape, which is measured by two sets of OMA. The dissociative excitation of molecular is dominating when the local electron temperature is > 10 eV. The D α line shape is also simulated by the Monte-Carlo method, the molecular dissociation contributes to 57% neutral atoms and 53% emission intensity in front of the limiter, and 85% neutral atoms and 82% emission intensity in front of the wall. The processes of atoms and molecules influence on the energy balance is discussed in SOL, the power loss from molecular dissociation is 6 × 104 kW at SOL.

  12. [A line-by-line trace gas absorption model and its application in NDIR gas detection technology].

    PubMed

    Fang, Jing; Liu, Wen-qing; Zhang, Tian-shu

    2008-06-01

    An accurate line-by-line integral trace gas absorption model is presented in the present article. It is for mid-infrared band and can be used in the study on and application to detecting trace gas (or pollution gas). First of all, two algorithms of trace gas radioactive properties, line-by-line integral method and band model method, were introduced. The merits and demerits of each were compared. Several recent developed line-by-line integral calculation models were also introduced. Secondly, the basic principle of line-by-line integral trace gas absorption calculation model was described in detail. The absorption coefficient is a function of temperature, frequency (wave number), pressure, gas volume mixing ratio and constants associated with all contributing line transitions. The average monochromatic absorption coefficient at a given frequency of a given gas species can be written as the product of the number density of the molecular species to which the spectral line belongs, the line intensity and a line shape factor. Efficient calculation of the line shape factor may be required for different atmospheric conditions. In the lower atmosphere, the shape of spectral lines is dominated by pressure broadening and can be represented most simply by the Lorentz line shape factor. At high altitudes, the shape of spectral lines is governed by Doppler broadening At intermediate altitudes, they can be modeled using the Voigt line shape factor, a convolution of the Lorentz and Doppler line shape factors. Finally, in the section of experiment, the results calculated by model were compared with that measured by Fourier transform infrared spectrometer. As an instance, the model was applied to the detectors design of NDIR (non-dispersive infrared) technology and the relationship between signal intensity of detectors and concentration of CO2/CO was simulated by model. Available concentration range of detector was given by calculating the results of the model. It is based on

  13. A catalogue of absorption-line systems in QSO spectra

    NASA Astrophysics Data System (ADS)

    Ryabinkov, A. I.; Kaminker, A. D.; Varshalovich, D. A.

    2003-12-01

    We present a new catalog of absorption-line systems identified in the quasar spectra. It contains data on 821 QSOs and 8558 absorption systems comprising 16 139 absorption lines with measured redshifts in the QSO spectra. The catalog includes absorption-line systems consisting of lines of heavy elements, lines of neutral hydrogen, Lyman limit systems, damped Lyα absorption systems, and broad absorption-line systems. Using the data of the present catalog we also discuss redshift distributions of absorption-line systems. Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/707

  14. Anisotropic Hanle line shape via magnetothermoelectric phenomena

    NASA Astrophysics Data System (ADS)

    Das, K. S.; Dejene, F. K.; van Wees, B. J.; Vera-Marun, I. J.

    2016-11-01

    We observe anisotropic Hanle line shape with unequal in-plane and out-of-plane nonlocal signals for spin precession measurements carried out on lateral metallic spin valves with transparent interfaces. The conventional interpretation for this anisotropy corresponds to unequal spin relaxation times for in-plane and out-of-plane spin orientations as for the case of two-dimensional materials like graphene, but it is unexpected in a polycrystalline metallic channel. Systematic measurements as a function of temperature and channel length, combined with both analytical and numerical thermoelectric transport models, demonstrate that the anisotropy in the Hanle line shape is magnetothermal in origin, caused by the anisotropic modulation of the Peltier and Seebeck coefficients of the ferromagnetic electrodes. Our results call for the consideration of such magnetothermoelectric effects in the study of anisotropic spin relaxation.

  15. An improved quasistatic line-shape theory: The effects of molecular motion on the line wings

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, Richard H.

    1994-01-01

    A theory is presented for the modification of the line-shape functions and absorption coefficient due to the breakdown of the quasistatic approximation. This breakdown arises from the effects of molecular motion and increases the absorption in the near wings. Numerical calculations for the high-frequency wing of the nu(sub 3) band of CO2 broadened by Ar are reported and it is shown that these effects are significant near the bandhead. The importance of such corrections in other spectral regions and for other systems is discussed briefly.

  16. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    NASA Astrophysics Data System (ADS)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Liu, Wenjuan; Pan, Xiang; Shi, Xiheng; Wang, Jianguo; Wang, Tinggui; Yang, Chenwei; Zhang, Shaohua; Miller, Lauren P.

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s‑1 relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V-band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s‑1 has a density in the range of 109 to 1010 cm‑3 and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s‑1 has a density of 103 cm‑3 and a distance of ∼1 kpc.

  17. Haptic perception of shapes and line drawings

    NASA Astrophysics Data System (ADS)

    Wijntjes, M. W. A.

    2008-09-01

    In this thesis various aspect of haptic perception were studied. The first part of the thesis is mainly concerned with haptic perception of two-dimensional shapes and line drawings. We first studied the angular acuity of two-dimensional shapes an found that the manner of exploration as well as the local and global stimulus properties influence angular acuity. Secondly we studied identification of line drawings by touch. We found that the size of the picture influences identifiability. We also found that observers seem to use a hypothesis driven strategy: on average 23% of the total exploration time was spend on confirming the final hypothesis. In the next chapter on line drawing identification we report a finding that helped to explain why identifying a line drawing by touch is such a difficult task. We found that if observers were not able to identify a picture and were given the opportunity to sketch what they had just felled, in 30% of the cases they could identify their own sketch. A line drawing is easily processed with vision, but if the input is made sequential instead of simultaneous, identification becomes very difficult. This is because the structure of the input has changed and cannot be used to match the internal representations. Similar to sequential vision, if a line drawing is explored by touch, then the structure of the percept is what could be called `one-dimensional'; that is, a sequential description. Observers experience difficulty in mentally switching between these two structures. What can be done is restructuring the representation from sequential to simultaneous by producing a sketch. This explains the recognition-after-sketching-effect. In the second part of the thesis we aspect of haptic perception of three-dimensional curvature. First we studied real, solid shapes and virtual shapes generated by a robotic interface. One of the purposes was to study the contribution of two isolated geometric cues. We found that the surface orientation is a

  18. Relation between size dispersion and line shape in quantum dot ensembles

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. V.; Averkiev, N. S.

    2009-12-01

    We propose a method to model the density of optical transitions, absorption, and differential-absorption spectra of quantum dot ensembles. The developed approach combines physical straightforwardness of the conventional Gaussian-peak modeling with a more preside account of the influence of size dispersion on the line shape of quantum dots.

  19. The Early Universe Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Iye, Masanori

    2000-12-01

    High-z QSOs are valuable probes of the early universe and provide us information on the era of galaxy formation. QSOs can also be used as background sources against intervening objects such as proto-galactic clouds and faint foreground galaxies. These intervening objects produce absorption lines in the spectra of background QSOs. Gas clouds producing metal absorption lines are thought to exist in the halos of intervening galaxies and are used to evaluate the metal abundances of galaxies at high redshifts. In the course of studying the evolution of metal absorption lines, it was found that the number of absorbers per unit redshift interval increases in the vicinity of QSOs, especially of radio-loud QSOs. The reason of such an excess of metal absorption lines remains still unclear. In this paper, the authors review the absorption properties and enigmas of quasar absorption lines.

  20. Polarization and Broad Absorption Lines in Quasars-Repeat

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    1990-12-01

    OI 287 is a unique extragalactic source. It appears to take one property from each class of object. It is either some kind of missing link, or a new type of activity. Because of the high optical polarization, OI 287 has been classified with the blazars. However, every other blazar is variable in optical flux, polarization, and polarization angle., while OI 287 is constant at V=17, P=8%, and theta=145 degrees. Also, every other blazar has a radio source dominated by an intense flat-spectrum core, while OI 287 has an upper limit of 2% of the total 20cm flux in the core. The only group of quasars which ever shows even moderate (2-5%) constant optical polarization is the broad absorption line (BAL) objects, e.g. PHL 5200 and H1413+113. Among the BAL quasars, PHL 5200 and H1413+113 have exceptionally smooth deep, attached absorption lines, and also the highest polarization. We want to know whether OI 287 is a BAL quasar. It would be the first definite radio loud example. If it is a BAL quasar then the high polarization is really related to (and perhaps the key to) the BAL phenomenon, and we can use the techniques of spectropolarimetry to help unlock the BAL geometry. The UV spectral shape would also provide help determining the cause of polarization.

  1. Ultraviolet interstellar absorption lines from low-z galaxies

    NASA Astrophysics Data System (ADS)

    Sahu, M. S.

    1997-05-01

    The importance of studying absorption lines from z<<0.1 galaxies are discussed. The Mg II λλ2796 and 2803 Å doublet absorption is sensitive to low column density gas and has been used to search for absorption lines from low-z galaxies. Recent studies of abundances and depletion patterns toward the Small Magellanic Cloud (Welty et al. 1997) and the NGC 1705 sightline (Sahu & Blades, 1997) are reviewed.

  2. EVIDENCE FOR PHOTOIONIZATION-DRIVEN BROAD ABSORPTION LINE VARIABILITY

    SciTech Connect

    Wang, Tinggui; Yang, Chenwei; Wang, Huiyuan; Ferland, Gary

    2015-12-01

    We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption lines are highly coordinated among different components of the same ion or the same absorption component of different ions for C iv, Si iv, and N v. Furthermore, we show that the equivalent widths (EWs) of the lines decrease or increase statistically when the continuum brightens or dims. This is further supported by the synchronized variations of emission and absorption-line EWs when the well-established intrinsic Baldwin effect for emission lines is taken into account. We find that the emergence of an absorption component is usually accompanied by the dimming of the continuum while the disappearance of an absorption-line component is accompanied by the brightening of the continuum. This suggests that the emergence or disappearance of a C iv absorption component is only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum variability the amplitude is larger. These results support the idea that absorption-line variability is driven mainly by changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and absorption-line variations.

  3. Isolated line shape of methane with various collision partners

    NASA Astrophysics Data System (ADS)

    Le, Tuong; Fissiaux, Laurent; Lepère, Muriel; Tran, Ha

    2016-12-01

    In this work, the spectral profile of an isolated transition of methane broadened by Ar, N2, O2 and He was studied using different line-shape models, from the simple Voigt to the recently recommended Hartmann-Tran profiles. For each collision-partner, absorption spectra of the ν4 2A11-3A21 line of methane were measured at room temperature and pressures ranging from 28.26 to 95.50 mbar, with a high resolution tunable diode laser spectrometer. The spectroscopic parameters of each line-shape model used were then retrieved from measured spectra using a multispectrum fitting procedure. The obtained results show that the Voigt profile leads to large deviations with respect to the measured one and that non-Voigt effects are more important for CH4 diluted in Ar, N2 and O2 than in He. We also confirm that both the confinement narrowing and the speed dependence effects must be taken into account in order to correctly reproduce the experimental spectra. In addition, the determination of the instrumental distortions of the spectrometer is also presented and discussed as a main difficulty of this analysis.

  4. Balmer Absorption Lines in FeLoBALs

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Iwata, I.; Ohta, K.; Tamura, N.; Ando, M.; Akiyama, M.; Kiuchi, G.; Nakanishi, K.

    2007-10-01

    We discovered non-stellar Balmer absorption lines in two many-narrow-trough FeLoBALs (mntBALs) by the near-infrared spectroscopy with Subaru/CISCO. Presence of the non-stellar Balmer absorption lines is known to date only in the Seyfert galaxy NGC 4151; thus our discovery is the first cases for quasars. Since all known active galactic nuclei with Balmer absorption lines share similar characteristics, it is suggested that there is a population of BAL quasars which have unique structures at their nuclei or unique evolutionary phase.

  5. Broad Absorption Line Quasars and Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Wills, B. J.

    2009-12-01

    Luminous QSOs are signposts to galaxy evolution. Local supermassive black holes are the faded relics of quasars in their heyday at redshifts ˜2. Relationships between the masses of these local supermassive black holes and their host galaxy bulges reveal an intimate link, fundamental to galaxy evolution: the newly evolving galaxy fuels the seed black hole through its accretion disk and by loss of angular momentum and energy in the form of outflowing winds. As the central engine approaches Eddington luminosities, winds drive away dusty gas, revealing a luminous QSO and halting star formation in the galaxy bulge. Relativistic winds are manifested in powerful radio jets in ˜10% of quasars, and sub-relativistic winds are revealed by broad blueshifted absorption troughs in the “broad absorption line” (BAL) quasars. Historically, BALs avoid powerful radio quasars. Here we examine the BALs to investigate this inverse connection.

  6. Majorana approach to the stochastic theory of line shapes

    NASA Astrophysics Data System (ADS)

    Komijani, Yashar; Coleman, Piers

    2016-08-01

    Motivated by recent Mössbauer experiments on strongly correlated mixed-valence systems, we revisit the Kubo-Anderson stochastic theory of spectral line shapes. Using a Majorana representation for the nuclear spin we demonstrate how to recast the classic line-shape theory in a field-theoretic and diagrammatic language. We show that the leading contribution to the self-energy can reproduce most of the observed line-shape features including splitting and line-shape narrowing, while the vertex and the self-consistency corrections can be systematically included in the calculation. This approach permits us to predict the line shape produced by an arbitrary bulk charge fluctuation spectrum providing a model-independent way to extract the local charge fluctuation spectrum of the surrounding medium. We also derive an inverse formula to extract the charge fluctuation from the measured line shape.

  7. Non-Lorentzian ion cyclotron resonance line shapes arising from velocity-dependent ion-neutral collision frequencies

    NASA Technical Reports Server (NTRS)

    Whealton, J. H.; Mason, E. A.

    1973-01-01

    An asymptotic solution of the Boltzmann equation is developed for ICR absorption, without restrictions on the ion-neutral collision frequency or mass ratio. Velocity dependence of the collision frequency causes deviations from Lorentzian line shape.

  8. On the identification of deuterium lines in QSO absorption systems

    NASA Astrophysics Data System (ADS)

    Levshakov, S. A.; Takahara, F.

    1996-07-01

    The ambiguity of identification of deuterium lines in QSO absorption systems is considered, under the assumption that the D I and H I absorption lines are formed in turbulent media with a finite correlation length of the stochastic velocity field. The relative shift of the D I and H I lines is shown to vary over the range +/-(4-8) km s^- 1^ for a cloud model with hydrogen column density N_HI_ = 10^17^ cm^-2^, the ratio D/H = 10^-4^, and kinetic temperature T_kin_ = 10^4^ K. The variations in the relative shift of the deuterium lines are fundamental in character and result from the stochastic nature of the formation of absorption lines in turbulent media

  9. Quasar Absorption Lines and SDSS Galaxies

    NASA Astrophysics Data System (ADS)

    Shoemaker, Emileigh Suzanne; Scott, Jennifer E.; Oldak, Katarzyna

    2017-01-01

    We present the results of a study of the sightlines of 45 low redshift quasars (0.06 < z < 0.85) observed with HST/COS that lie within the footprint of the Sloan Digital Sky Survey. We use both the SDSS DR12 galaxy photometric data, including photometric redshifts, and the measured properties of the absorbers along with the known absorption characteristics of the intergalactic medium and the circumgalactic medium of galaxies to assign the most probable galaxy matches for each absorber in the sample, using estimated galaxy luminosities and virial radii as a discriminator. We show that the scheme can recover known galaxy-absorber matches found from spectroscopic data and thus provides a method for identifying likely pairs in photometric data sets as well as targets for spectroscopic follow up.

  10. Searching for Variability of NV Intrinsic Narrow Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Charlton, Jane C.; Ganguly, Rajib

    2017-01-01

    The majority of quasar absorption line systems with NV detected are found within the associated region (within 5000km/s of the quasar redshift) and many/most are believed to be related to the quasar accretion disk wind or outflows. The most definite evidence that these NV absorbers are "intrinsic" is partial covering of the quasar continuum source and/or broad line region. Over 50 quasars containing NV narrow absorption lines have observations obtained at different times with the Keck/HIRES and the VLT/UVES spectrographs at high resolution. The interval between these observations range from months to a decade in the quasar rest frame. While variability is common for intrinsic broad and mini-broad absorption lines, intrinsic narrow absorption lines have been found to be less likely to vary, though systematic studies with large, high quality datasets have been limited. The variability timescales are useful for deriving gas densities and thus the distances from the central engines. This is important in mapping the quasar surroundings, understanding the accretion disk wind mechanism, and assessing the effect the wind has on the galaxy surroundings. We report on the results of a systematic study of variability of NV NALs, exploiting the overlap of targets for observations in the archives of Keck and VLT, and discuss the consequences for interpretation of the origin of intrinsic narrow absorption lines.

  11. Active Galactic Nuclei Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru

    2007-07-01

    Quasars are the extremely bright nuclei found in about 10% of galaxies. A variety of absorption features (known collectively as quasar absorption lines) are detected in the rest-frame UV spectra of these objects. While absorption lines that have very broad widths originate in gas that is probably physocally related to the quasars, narrow absorption lines (NALs) were thought to arise in galaxies and/or in the intter-alacttic medium between the quasars and us. Using high-resolution spectra of quasars, it is found that a substantial fraction of NALs arise in gas in the immediate vicinity of the quasars. A dramatically variable, moderately-broad absorption line in the spectrum of the quasar HS 1603+3820l is also found. The variability of this line is monitored in a campaign with Subaru telescope. These observational results are compared to models for outflows from the quasars, specifically, models for accretion disk winds and evaporating obscuring tori. It is quite important to determine the mechanism of outflow because of its cosmological implications. The outflow could expel angular momentum from the accretion disk and enable quasars to accrete and shine. In addition, the outflow may also regulate star formation in the early stages of the assembly of the host galaxy and enrich the interstellar and intergalactic medium with metals.

  12. Synthetic absorption lines for a clumpy medium: a spectral signature for cloud acceleration in AGN?

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Proga, Daniel; Dannen, Randall; Kallman, Timothy R.

    2017-01-01

    There is increasing evidence that the highly ionised multiphase components of AGN disc winds may be due to thermal instability. The ions responsible for forming the observed X-ray absorption lines may only exist in relatively cool clumps that can be identified with the so-called `warm absorbers'. Here we calculate synthetic absorption lines for such warm absorbers from first principles by combining 2D hydrodynamic solutions of a two-phase medium with a dense grid of photoionization models to determine the detailed ionization structure of the gas. Our calculations reveal that cloud disruption, which leads to a highly complicated velocity field (i.e. a clumpy flow), will only mildly affect line shapes and strengths when the warm gas becomes highly mixed but not depleted. Prior to complete disruption, clouds which are optically thin to the driving UV resonance lines will cause absorption at an increasingly blueshifted line of sight velocity as they are accelerated. This behavior will imprint an identifiable signature on the line profile if warm absorbers are enshrouded in an even broader absorption line produced by a high column of intercloud gas. Interestingly, we show that it is possible to develop a spectral diagnostic for cloud acceleration by differencing the absorption components of a doublet line, a result which can be qualitatively understood using a simple partial covering model. Our calculations also permit us to comment on the spectral differences between cloud disruption and ionization changes driven by flux variability. Notably, cloud disruption offers another possibility for explaining absorption line variability.

  13. Broad Absorption Line Quasar catalogues with Supervised Neural Networks

    SciTech Connect

    Scaringi, Simone; Knigge, Christian; Cottis, Christopher E.; Goad, Michael R.

    2008-12-05

    We have applied a Learning Vector Quantization (LVQ) algorithm to SDSS DR5 quasar spectra in order to create a large catalogue of broad absorption line quasars (BALQSOs). We first discuss the problems with BALQSO catalogues constructed using the conventional balnicity and/or absorption indices (BI and AI), and then describe the supervised LVQ network we have trained to recognise BALQSOs. The resulting BALQSO catalogue should be substantially more robust and complete than BI-or AI-based ones.

  14. AFGL atmospheric absorption line parameters compilation - 1982 edition

    NASA Astrophysics Data System (ADS)

    Rothman, L. S.; Gamache, R. R.; Barbe, A.; Goldman, A.; Gillis, J. R.; Brown, L. R.; Toth, R. A.; Flaud, J.-M.; Camy-Peyret, C.

    1983-08-01

    The latest edition of the AFGL atmospheric absorption line parameters compilation for the seven most active infrared terrestrial absorbers is described. Major modifications to the atlas for this edition include updating of water-vapor parameters from 0 to 4300 per cm, improvements to line positions for carbon dioxide, substantial modifications to the ozone bands in the middle to far infrared, and improvements to the 7- and 2.3-micron bands of methane. The atlas now contains about 181,000 rotation and vibration-rotation transitions between 0 and 17,900 per cm. The sources of the absorption parameters are summarized.

  15. Radiation pressure confinement - IV. Application to broad absorption line outflows

    NASA Astrophysics Data System (ADS)

    Baskin, Alexei; Laor, Ari; Stern, Jonathan

    2014-12-01

    A fraction of quasars present broad absorption lines, produced by outflowing gas with typical velocities of 3000-10 000 km s-1. If the outflowing gas fills a significant fraction of the volume where it resides, then it will be highly ionized by the quasar due to its low density, and will not produce the observed UV absorption. The suggestion that the outflow is shielded from the ionizing radiation was excluded by recent observations. The remaining solution is a dense outflow with a filling factor f < 10-3. What produces such a small f? Here, we point out that radiation pressure confinement (RPC) inevitably leads to gas compression and the formation of dense thin gas sheets/filaments, with a large gradient in density and ionization along the line of sight. The total column of ionized dustless gas is a few times 1022 cm-2, consistent with the observed X-ray absorption and detectable P V absorption. The predicted maximal columns of various ions show a small dependence on the system parameters, and can be used to test the validity of RPC as a solution for the overionization problem. The ionization structure of the outflow implies that if the outflow is radiatively driven, then broad absorption line quasars should have L/L_Eddgtrsim 0.1.

  16. Redshifted 21cm Line Absorption by Intervening Galaxies

    NASA Astrophysics Data System (ADS)

    Briggs, F. H.

    The present generation of radio telescopes, combined with powerful new spectrometers, is opening a new age of redshifted radio absorption-line studies. Out-fitting of arrays of antennas, such as the European VLBI Network and the upgraded VLA, with flexibly tuned receivers, will measure sizes and kinematics of intervening galaxies as a function of cosmic time.

  17. Theoretical interpretation of the line shape of crystalline adipic acid.

    PubMed

    Blaise, Paul; El-Amine Benmalti, Mohamed; Henri-Rousseau, Olivier

    2006-01-14

    A general quantum theoretical approach of the upsilon(X-H) IR line shape of cyclic dimers of weakly H-bonded species in the crystal state is proposed. In this model, the adiabatic approximation (allowing to separate the high-frequency motion from the slow one of the H-bond bridge) is performed for each separate H-bond bridge of the dimer and a strong nonadiabatic correction is introduced into the model via the resonant exchange between the fast-mode excited states of the two moieties. Quantum indirect damping and Fermi resonances are taken into account. The present model reduces satisfactorily to many models in the literature dealing with more special situations. It has been applied to the cyclic dimers of adipic acid in the crystal phase. It correctly fits the experimental line shape of the hydrogenated compound and predicts satisfactorily the evolution in the line shapes with temperature and the change in the line shape with isotopic substitution.

  18. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control.

    PubMed

    Ott, Christian; Kaldun, Andreas; Raith, Philipp; Meyer, Kristina; Laux, Martin; Evers, Jörg; Keitel, Christoph H; Greene, Chris H; Pfeifer, Thomas

    2013-05-10

    Symmetric Lorentzian and asymmetric Fano line shapes are fundamental spectroscopic signatures that quantify the structural and dynamical properties of nuclei, atoms, molecules, and solids. This study introduces a universal temporal-phase formalism, mapping the Fano asymmetry parameter q to a phase φ of the time-dependent dipole response function. The formalism is confirmed experimentally by laser-transforming Fano absorption lines of autoionizing helium into Lorentzian lines after attosecond-pulsed excitation. We also demonstrate the inverse, the transformation of a naturally Lorentzian line into a Fano profile. A further application of this formalism uses quantum-phase control to amplify extreme-ultraviolet light resonantly interacting with He atoms. The quantum phase of excited states and its response to interactions can thus be extracted from line-shape analysis, with applications in many branches of spectroscopy.

  19. Absorption Spectra of Broadened Sodium Resonance Lines in Presence of Rare Gases

    SciTech Connect

    Chung, H-K; Shurgalin, M; Babb, J F

    2002-09-11

    The pressure broadening of alkali-metal lines is a fundamental problem with numerous applications. For example, the sodium resonance lines broadened by xenon are important in the production of broad spectra emitted in the HPS (High-Pressure Sodium) lamp and they potentially can be used for gas condition diagnostics. Broadened absorption lines of alkali-metal atoms are prominent in the optical spectra of brown dwarfs and understanding the broadening mechanism will help elucidate the chemical composition and atmospheric properties of those stars. The far-line wing spectra of sodium resonance lines broadened by rare gases are found to exhibit molecular characteristics such as satellites and hence the total absorption coefficients for vapors of Na atoms and perturbing rare gas atoms can be modeled as Na-RG (rare gas) molecular absorption spectra. In this work, using carefully chosen interatomic potentials for Na-RG molecules we carry out quantum-mechanical calculations for reduced absorption coefficients for vapors composed of Na-He, Na-Ar, and Na-Xe. Calculated spectra are compared to available experimental results and the agreement is good in the measured satellite positions and shapes.

  20. A SURVEY OF ALKALI LINE ABSORPTION IN EXOPLANETARY ATMOSPHERES

    SciTech Connect

    Jensen, Adam G.; Redfield, Seth; Endl, Michael; Cochran, William D.; Koesterke, Lars; Barman, Travis S. E-mail: sredfield@wesleyan.edu E-mail: wdc@astro.as.utexas.edu E-mail: barman@lowell.edu

    2011-12-20

    We obtained over 90 hr of spectroscopic observations of four exoplanetary systems with the Hobby-Eberly Telescope. Observations were taken in transit and out of transit, and we analyzed the differenced spectra-i.e., the transmission spectra-to inspect it for absorption at the wavelengths of the neutral sodium (Na I) doublet at {lambda}{lambda}5889, 5895 and neutral potassium (K I) at {lambda}7698. We used the transmission spectrum at Ca I {lambda}6122-which shows strong stellar absorption but is not an alkali metal resonance line that we expect to show significant absorption in these atmospheres-as a control line to examine our measurements for systematic errors. We use an empirical Monte Carlo method to quantify these systematic errors. In a reanalysis of the same data set using a reduction and analysis pipeline that was derived independently, we confirm the previously seen Na I absorption in HD 189733b at a level of (- 5.26 {+-} 1.69) Multiplication-Sign 10{sup -4} (the average value over a 12 A integration band to be consistent with previous authors). Additionally, we tentatively confirm the Na I absorption seen in HD 209458b (independently by multiple authors) at a level of (- 2.63 {+-} 0.81) Multiplication-Sign 10{sup -4}, though the interpretation is less clear. Furthermore, we find Na I absorption of (- 3.16 {+-} 2.06) Multiplication-Sign 10{sup -4} at <3{sigma} in HD 149026b; features apparent in the transmission spectrum are consistent with real absorption and indicate this may be a good target for future observations to confirm. No other results (Na I in HD 147506b and Ca I and K I in all four targets) are significant to {>=}3{sigma}, although we observe some features that we argue are primarily artifacts.

  1. Oscillator strength measurements of atomic absorption lines from stellar spectra

    NASA Astrophysics Data System (ADS)

    Lobel, Alex

    2011-05-01

    Herein we develop a new method to determine oscillator strength values of atomic absorption lines with state-of-the-art detailed spectral synthesis calculations of the optical spectrum of the Sun and of standard spectral reference stars. We update the log(gf) values of 911 neutral lines observed in the KPNO-FTS flux spectrum of the Sun and high-resolution echelle spectra (R = 80 000) of Procyon (F5 IV-V) and Eps Eri (K2 V) observed with large signal-to-noise (S/N) ratios of 2000 using the new Mercator-Hermes spectrograph at La Palma Observatory (Spain). We find for 483 Fe I, 85 Ni I, and 51 Si I absorption lines in the sample a systematic overestimation of the literature log(gf) values with central line depths below 15%. We employ a curve-of-growth analysis technique to test the accuracy of the new oscillator strength values and compare calculated equivalent line widths to the Moore, Minnaert, and Houtgast atlas of the Sun. The online SpectroWeb database at http://spectra.freeshell.org interactively displays the observed and synthetic spectra and provides the new log(gf) values together with important atomic line data. The graphical database is under development for stellar reference spectra of every spectral sub-class observed with large spectral resolution and S/N ratios.

  2. INFLUENCE OF DOPPLER WIDTH FLUCTUATIONS ON THE SHAPE OF SPECTRAL LINES

    SciTech Connect

    Silant'ev, N. A.; Lekht, E. E.; Alexeeva, G. A.

    2009-05-10

    We investigate the influence of stochastic Doppler width fluctuations on the shape of spectral lines. The photospheres and atmospheres of stars, and the interstellar medium, possess stochastic behavior especially near nonstationary objects such as active galactic nuclei, quasars, flare stars, and regions of star formation. In reality, we observe the mean values of intensities from these objects. In most situations, the spectral line extinction coefficient has a Gaussian shape with the stochastic Doppler width determined by thermal and small-scale turbulent motions of atoms or molecules. For small-scale turbulent motions (short-correlated turbulence) the propagation of radiation is described by the average extinction factor. This coefficient depends on the level of the Doppler width fluctuations {eta}. We show that these fluctuations change both the value of intensity and the shape of spectral lines. We consider distortions of the spectral line shapes for the absorption and emission lines for various values of the parameter {eta}. For a number of H{sub 2}O maser sources we estimate the values of this parameter, the optical depths of the inverted media, and the mean effective Doppler velocities. Maser emission lines with non-Gaussian shape can serve as an additional method for the investigation of the physical parameters in maser 'spots'.

  3. Spectral Line Shapes as a Diagnostic Tool in Magnetic Fusion

    SciTech Connect

    Stamm, R; Capes, H; Demura, A; Godbert-Mouret, L; Koubiti, M; Marandet, Y; Mattioli, M; Rosato, J; Rosmej, F; Fournier, K B

    2006-07-22

    Spectral line shapes and intensities are used for obtaining information on the various regions of magnetic fusion devices. Emission from low principal quantum numbers of hydrogen isotopes is analyzed for understanding the complex recycling mechanism. Lines emitted from high principal quantum numbers of hydrogen and helium are dominated by Stark effect, allowing an electronic density diagnostic in the divertor. Intensities of lines emitted by impurities are fitted for a better knowledge of ion transport in the confined plasma.

  4. Terminal Velocity Infall in QSO Absorption Line Halos

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert A.

    We explore the hypothesis that clouds detected in quasar absorption line systems are falling at a terminal velocity toward the center of high redshift gaseous galactic halos. Since both the ionization level and terminal velocity of halo clouds increase with increasing distance from the central galaxy, velocity resolved profiles of highly ionized gas are predicted to have a greater width than low ionization gas. A line of sight passing through the center of gaseous halo (an idealized damped Ly alpha system), yields low ionization absorption at the velocity of the galaxy, flanked by high ionization on either side. Reasonable halo parameters yield total velocity extents for C IV of Delta v_{C IV}=100-200 km s^{-1}, in agreement with many systems observed by Lu et al (1997). The remaining systems may better described by the rotating disk model of Prochaska & Wolfe (1998). Finally, observational tests are suggested for verifying or falsifying the terminal velocity hypothesis for these systems.

  5. Mapping of the Local Interstellar Medium using Absorption Line Spectroscopy

    NASA Astrophysics Data System (ADS)

    Penprase, Bryan Edward

    2017-01-01

    Using the Yale SMARTS 1.5-meter telescope at CTIO and the CHIRON spectrograph, we have developed a program for mapping the local interstellar medium using a sample of over 200 newly observed B stars previously unobserved using Na I absorption lines. This sample includes stars that extend out to map beyond the local bubble to 500 pc. The sample has been observed using high resolution absorption lines, and when combined with previously observed stars with Na I and Ca II data provides a more complete picture of the local ISM than previous surveys. The distances to the stars using the new GAIA database also allows for more accurate determination of distances to features in the lcoal ISM, and new maps of the structure of the ISM hav been prepared with the data.

  6. AFGL atmospheric absorption line parameters compilation - 1980 version

    NASA Astrophysics Data System (ADS)

    Rothman, L. S.

    1981-03-01

    A new version of the AFGL atmospheric absorption line parameters compilation is now available. Major modifications since the last edition of 1978 include the strongest bands of water vapor, updated line positions for carbon dioxide, improved ozone parameters in the 5- and 10 micron regions, and updated and additional data for methane in the 3.5- and 7.7 micron regions. The atlas now contains over 159,000 rotational and vibration-rotation transitions from 0.3 to 17,880 per cm.

  7. Observational Cosmology Using Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Aghaee, A.

    2016-09-01

    Distant, highly luminous quasars are important cosmological probes for a variety of astrophysical questions: the first generation of galaxies, the star formation history and metal enrichment in the early Universe, the growth of the first super massive black holes (SMBHs), the role of feedback from quasars and SMBHs in galaxy evolution, the epoch of reionization, etc. In addition, they are used as background illuminating source that reveal any object located by chance on the line of sight. I will present our group works in these issues that can be done using absorption lines in the quasar spectra.

  8. Pressure dependence of Se absorption lines in AlSb

    SciTech Connect

    Hsu, L. |; Haller, E.E.; Ramdas, A.K.

    1996-09-01

    Using far infrared absorption spectroscopy, the authors have investigated electronic transition spectra of Se donors in AlSb as a function of hydrostatic pressure. At least two distinct ground to bound excited state transition lines, which depend quadratically on the pressure, can be seen. At pressures between 30 and 50 kbar, evidence of an anti-crossing between one of the electronic transitions and a peak which they attribute to the 2 zone center LO phonon mode can be seen.

  9. The influence of line shape and band structure on temperatures in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Arking, A.; Grossman, K.

    1972-01-01

    Numerical experiments are performed to examine the effects of line shape and band structure on the radiative equilibrium temperature profile in planetary atmospheres. In order to accurately determine these effects, a method for calculating radiative terms is developed which avoids the usual approximations. It differs from the more commonly used methods in that it allows arbitrary dependence of the absorption coefficient on wave number, without requiring tedious line by line integration and without the constraints of band models. The present formulation is restricted to homogeneous atmospheres but the concept can be extended to the more general case. The numerical experiments reveal that the line shape and band structure of the absorbing gases have a large effect on temperatures in the higher layers of the atmosphere (corresponding to the stratosphere and mesosphere). The more nongrey the spectrum (that is, the higher the peaks and the deeper the troughs in the spectrum), the lower the temperature.

  10. Computation of pressure effects of inert-gas mixtures on atomic line shapes.

    NASA Technical Reports Server (NTRS)

    Jacobson, H. C.

    1972-01-01

    Recent line-shape experiments on the absorption series of cesium pressurized by various concentration ratios of argon and helium provide an opportunity to study the additivity of perturber interactions. Calculations which assume additivity and which assume additive adiabatic collisions agree well with the reported data. The results suggest that a systematic study of such experiments using accurate digitized data can furnish criteria for the valid applications of the additivity approximation.

  11. High pressure line shapes of the Rb D1 and D2 lines for 4He and 3He collisions

    NASA Astrophysics Data System (ADS)

    Miller, Wooddy S.; Rice, Christopher A.; Hager, Gordon D.; Rotondaro, Mathew D.; Berriche, Hamid; Perram, Glen P.

    2016-11-01

    Line shapes for the Rb D1 (51/2 2S ↔ 51/2 2P) and D2 (51/2 2S ↔ 53/2 2P) transitions with 4He and 3He collisions at pressures of 500-15,000 Torr and temperatures of 333-533 K have been experimentally observed and compared to predictions from the Anderson-Talman theory. The ground X1/2 + 2Σ and excited A1/2 + 2Π, A3/2 2Π, and B1/2 + 2Σ potential energy surfaces required for the line shape predictions have been calculated using a one-electron pseudo-potential technique. The observed collision induced shift rates for 4He are dramatically higher for the D1 line, 4.60±0.12 MHz/Torr, than the D2 line, 0.20±0.14 MHz/Torr. The asymmetry is somewhat larger for the D1 line and has the same sign as the shifting rate. The 3He broadening rate for the D2 line is 4% larger than the 4He rate, and 14% higher for the D1 line, reflecting the higher relative speed. The calculated broadening rates are systematically larger than the observed rates by 1.1-3.2 MHz/Torr and agree within 14%. The primary focus of the current work is to characterize the high pressure line shapes, focusing on the non-Lorentzian features far from line center. In the far wing, the cross-section decreases by more than 4 orders of magnitude, with a broad, secondary maximum in the D2 line near 735 nm. The potentials do not require empirical modification to provide excellent quantitative agreement with the observations. The dipole moment variation and absorption Boltzmann factor is critical to obtaining strong agreement in the wings.

  12. Acoustic absorption modeling of porous concrete considering the gradation and shape of aggregates and void ratio

    NASA Astrophysics Data System (ADS)

    Kim, H. K.; Lee, H. K.

    2010-03-01

    The results of acoustic absorption modeling of porous concrete considering the gradation and shape of aggregates and void ratio are presented. To model the void texture of porous concrete, the multi-layered micro-perforated rigid panel model considering air gaps [1,2] is adopted. The parameters used in this acoustic absorption modeling are determined by a geometrical and experimental approach considering the gradation and shape of aggregates and void ratio. The predicted acoustic absorption spectra are compared with experimental results to verify the proposed acoustic absorption modeling approach. Finally, a parametric study is conducted to investigate the influence of design factors on the acoustic absorption properties of porous concrete.

  13. Study of the Auger line shape of polyethylene and diamond

    NASA Technical Reports Server (NTRS)

    Dayan, M.; Pepper, S. V.

    1984-01-01

    The KVV Auger electron line shapes of carbon in polyethylene and diamond have been studied. The spectra were obtained in derivative form by electron beam excitation. They were treated by background subtraction, integration and deconvolution to produce the intrinsic Auger line shape. Electron energy loss spectra provided the response function in the deconvolution procedure. The line shape from polyethylene is compared with spectra from linear alkanes and with a previous spectrum of Kelber et al. Both spectra are compared with the self-convolution of their full valence band densities of states and of their p-projected densities. The experimental spectra could not be understood in terms of existing theories. This is so even when correlation effects are qualitatively taken into account account to the theories of Cini and Sawatzky and Lenselink.

  14. Study of the cavity-magnon-polariton transmission line shape

    NASA Astrophysics Data System (ADS)

    Harder, Michael; Bai, LiHui; Match, Christophe; Sirker, Jesko; Hu, CanMing

    2016-11-01

    We experimentally and theoretically investigate the microwave transmission line shape of the cavity-magnon-polariton (CMP) created by inserting a low damping magnetic insulator into a high quality 3D microwave cavity. While fixed field measurements are found to have the expected Lorentzian characteristic, at fixed frequencies the field swept line shape is in general asymmetric. Such fixed frequency measurements demonstrate that microwave transmission can be used to access magnetic characteristics of the CMP, such as the field line width Δ H. By developing an effective oscillator model of the microwave transmission we show that these line shape features are general characteristics of harmonic coupling. At the same time, at the classical level the underlying physical mechanism of the CMP is electrodynamic phase correlation and a second model based on this principle also accurately reproduces the experimental line shape features. In order to understand the microscopic origin of the effective coupled oscillator model and to allow for future studies of CMP phenomena to extend into the quantum regime, we develop a third, microscopic description, based on a Green's function formalism. Using this method we calculate the transmission spectra and find good agreement with the experimental results.

  15. Interpreting the convergence of Lyman series absorption lines

    NASA Technical Reports Server (NTRS)

    Jenkins, Edward B.

    1990-01-01

    Spectra of quasars at high z often show absorption at the Lyman limit from intervening gas systems at intermediate z having N(H) approx. greater than 10(exp 7) cm(-2). In some circumstances, N(H) can be determined by measuring the strength of the Lyman limit absorption or the damping wings of Lyman - alpha. With a spectrum taken at low wavelength resolution, say, lambda/delta lambda approx. 10(exp 3), it is usually not possible to distinguish individual Lyman series lines near the limit, yet one can still discern how rapidly the average intensity drops off as the limit is approached from the long wavelength side. The purpose here is to point out the information which is available from measurements of this series convergence.

  16. VERY LARGE TELESCOPE SPECTROPOLARIMETRY OF BROAD ABSORPTION LINE QSOs

    SciTech Connect

    DiPompeo, M. A.; Brotherton, M. S.; De Breuck, C.

    2011-03-15

    We present spectropolarimetry of 19 confirmed and four possible bright, southern broad absorption line (BAL) quasars from the European Southern Observatory Very Large Telescope. A wide range of redshifts is covered in the sample (from 0.9 to 3.4), and both low- and high-ionization quasars are represented, as well as radio-loud and radio-quiet BALQSOs. We continue to confirm previously established spectropolarimetric properties of BALQSOs, including the generally rising continuum polarization with shorter wavelengths and comparatively large fraction with high broadband polarization (6 of 19 with polarizations >2%). Emission lines are polarized less than or similar to the continuum, except in a few unusual cases, and absorption troughs tend to have higher polarizations. A search for correlations between polarization properties has been done, identifying two significant or marginally significant correlations. These are an increase in continuum polarization with decreasing optical luminosity (increasing absolute B magnitude) and decreasing C IV emission-line polarization with increased continuum polarization.

  17. PREFACE: XXI International Conference on Spectral Line Shapes (ICSLS 2012)

    NASA Astrophysics Data System (ADS)

    Devdariani, Alexander Z.

    2012-12-01

    The 21st International Conference on Spectral Line Shapes, ICSLS, was held in the historic main building of St Petersburg State University (St. Petersburg, Russia) on 3-9 June 2012. The event continued the tradition started in 1978 in Meudon Observatory in Paris. Representatives of line shape physics have since met every two years in different locations in Europe and North America. The most recent events were held in St John's, Newfoundland, Canada (2010), Valladolid, Spain (2008), and Auburn, AL (USA). Traditionally, the conferences consider experimental and theoretical issues of studying spectral line shapes, diagnostic utilization of spectral line profiles observed in absorption, emission or scattering of electromagnetic radiation by atoms, molecules, and clusters in different environments, including neutral environments, laboratory low and fusion plasmas, astrophysical conditions, and planetary atmospheres. The Conference was attended by over 100 professionals from Europe, Asia, America, Africa and New Zealand. The conference program was put together in such a way so as to exclude any parallel sessions. Five afternoon sessions featured 19 invited talks and 20 oral contributions, and two evening sessions offered 61 poster presentations, including post-deadline posters. This setup allowed for a relaxed and unhurried discussion of results and facilitated productive networking. The invited talks were selected by recommendation of members of the International Scientific Committee. The Organizers would like to thank all the members of the International Scientific Committee for their proposals on the agenda and their valuable advice. When considering candidates for oral contributions, the organizers took into account the suggestions and preferences of potential conference participants. When selecting the theses of poster presentations, the organizers focused on the topics in line with the theme of the conference and studies with well-formulated results. It must be

  18. High Precision Assembly Line Synthesis for Molecules with Tailored Shapes

    PubMed Central

    Burns, Matthew; Essafi, Stephanie; Bame, Jessica R.; Bull, Stephanie P.; Webster, Matthew P.; Balieu, Sebastien; Dale, James W.; Butts, Craig P.; Harvey, Jeremy N.; Aggarwal, Varinder K.

    2014-01-01

    Molecular assembly lines, where molecules undergo iterative processes involving chain elongation and functional group manipulation are hallmarks of many processes found in Nature. We have sought to emulate Nature in the development of our own molecular assembly line through iterative homologations of boronic esters. Here we report a reagent (α-lithioethyl triispopropylbenzoate) which inserts into carbon-boron bonds with exceptionally high fidelity and stereocontrol. Through repeated iteration we have converted a simple boronic ester into a complex molecule (a carbon chain with ten contiguous methyl groups) with remarkably high precision over its length, its stereochemistry and therefore its shape. Different stereoisomers were targeted and it was found that they adopted different shapes (helical/linear) according to their stereochemistry. This work should now enable scientists to rationally design and create molecules with predictable shape, which could have an impact in all areas of molecular sciences where bespoke molecules are required. PMID:25209797

  19. Laser line shape and spectral density of frequency noise

    SciTech Connect

    Stephan, G.M.; Blin, S.; Besnard, P.; Tam, T.T.; Tetu, M.

    2005-04-01

    Published experimental results show that single-mode laser light is characterized in the microwave range by a frequency noise which essentially includes a white part and a 1/f (flicker) part. We theoretically show that the spectral density (the line shape) which is compatible with these results is a Voigt profile whose Lorentzian part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified that the width of the Lorentzian part varies like 1/P where P is the laser power while the width of the Gaussian part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part originates from population noise.

  20. Spectral line parameters including line shapes in the 2ν3 Q branch of 12CH4

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.; Yu, Shanshan; Smith, Mary Ann H.; Mantz, Arlan W.; Boudon, Vincent; Ismail, Syed

    2016-07-01

    In this study, we report the first experimental measurements of spectral line shape parameters (self- and air-broadened Lorentz half-widths, pressure-shifts, and line mixing (via off-diagonal relaxation matrix elements) coefficients and their temperature dependences, where appropriate) for transitions in the 2ν3 Q branch manifolds, Q(11)-Q(1) of methane (12CH4), in the 5996.5-6007-cm-1 region. The analysis included 23 high-resolution, high signal-to-noise laboratory absorption spectra recorded with the Bruker IFS-125HR Fourier transform spectrometer (FTS) at JPL. The experimental data were obtained using 12C-enriched 12CH4 and dilute mixtures of 12CH4 in dry air in the 130-296 K range using a room-temperature long path absorption cell and, two custom-built coolable cells. In the analysis, an interactive multispectrum fitting software was employed where all the 23 spectra (11 self-broadened and 12 air-broadened) were fit simultaneously. By carefully applying reasonable constraints to the parameters for severely blended lines, we were able to determine a self-consistent set of broadening, shift and line mixing (relaxation matrix coefficients) parameters for CH4-CH4 and CH4-air collisions. In the majority of cases, a quadratic speed dependence parameter common for all transitions in each Q(J) manifold was determined. However, temperature dependences of the Q branch line mixing parameter could not be determined from the present data. Since no other experimental line shape measurements have been reported for this Q-branch, the present results are compared to available values in the HITRAN2012 database.

  1. Monitoring the variability of intrinsic absorption lines in quasar spectra , ,

    SciTech Connect

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ∼10{sup 3}-10{sup 5} cm{sup –3} and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.

  2. Thomson Thick X-Ray Absorption in a Broad Absorption Line Quasar, PG 0946+301.

    PubMed

    Mathur; Green; Arav; Brotherton; Crenshaw; deKool; Elvis; Goodrich; Hamann; Hines; Kashyap; Korista; Peterson; Shields; Shlosman; van Breugel W; Voit

    2000-04-20

    We present a deep ASCA observation of a broad absorption line quasar (BALQSO) PG 0946+301. The source was clearly detected in one of the gas imaging spectrometers, but not in any other detector. If BALQSOs have intrinsic X-ray spectra similar to normal radio-quiet quasars, our observations imply that there is Thomson thick X-ray absorption (NH greater, similar1024 cm-2) toward PG 0946+301. This is the largest column density estimated so far toward a BALQSO. The absorber must be at least partially ionized and may be responsible for attenuation in the optical and UV. If the Thomson optical depth toward BALQSOs is close to 1, as inferred here, then spectroscopy in hard X-rays with large telescopes like XMM would be feasible.

  3. Shape of impurity electronic absorption bands in nematic liquid crystal

    SciTech Connect

    Aver`yanov, E.M.

    1994-11-01

    The impurity-matrix anisotropic static intermolecular interactions, orientation-statistical properties, and electronic structure of uniaxial impurity molecules are shown to have a significant influence on spectral moments of the electronic absorption bands of impurities in the nematic liquid crystal. 14 refs., 3 figs.

  4. Extension of the quasistatic far-wing line shape theory to multicomponent anisotropic potentials

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1994-01-01

    The formalism developed previously for the calculation of the far-wing line shape function and the corresponding absorption coefficient using a single-component anisotropic interaction term and the binary collision and quasistatic approximations is generalized to multicomponent anisotropic potential functions. Explicit expressions are presented for several common cases, including the long-range dipole-dipole plus dipole-quadrupole interaction and a linear molecule interacting with a perturber atom. After determining the multicomponent functional representation for the interaction between the CO2 and Ar from previously published data, we calculate the theoretical line shape function and the corresponding absorption due to the nu(sub 3) band of CO2 in the frequency range 2400-2580 cm(exp -1) and compare our results with previous calculations carried out using a single-component anisotropic interaction, and with the results obtained assuming Lorentzian line shapes. The principal uncertainties in the present results, possible refinements of the theoretical formalism, and the applicability to other systems are discussed briefly.

  5. Ultraviolet absorption lines associated with the Vela supernova remnant

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.; Wallerstein, G.; Silk, J.

    1976-01-01

    Two stars behind the Vela supernova remnant and two stars offset from the remnant have been observed with the UV spectrometer aboard the Copernicus satellite. Over 200 interstellar atomic and molecular absorption features between 1000 and 1400 A have been identified and measured for radial velocity and equivalent width. In many cases, additional information was obtained by studying the detailed shapes of the recorded profiles. Most of the stars show several absorption components, with clouds of the highest radial velocity appearing in the spectra of stars behind the remnant. For each component, column densities were derived using velocity dispersion parameters which yielded the most self-consistent results. Qualitatively, the gas toward the remnant exhibits a number of unusual properties, when compared with normal interstellar material. First, abnormally high radial velocities were evident. Second, the degree of ionization of some elements suggested the existence of ionizing processes significantly more potent than those found in general regions of space. Finally, an investigation of electron densities shows that much of the gas, especially that at high velocity, must exist in the form of relatively thin sheets or filaments. If cosmic abundances prevail, the column densities of high-velocity excited material suggest that H-alpha emission measures could be as large as 100 sq cm/cu pc.

  6. Broad Balmer-Line Absorption in SDSS J172341.10+555340.5

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro

    2010-10-01

    We present the discovery of Balmer-line absorption from Hα to H9 in an iron low-ionizaton broad absorption line (FeLoBAL) quasar, SDSS J172341.10+555340.5, by near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) attached to the Subaru Telescope. The redshift of the Balmer-line absorption troughs is 2.0530±0.0003, and it is blueshifted by 5370 km s-1 from the Balmer emission lines. It is more than 4000 km s-1 blueshifted from the previously known UV absorption lines. We detected relatively strong (EWrest = 20 Å) [OIII] emission lines that are similar to those found in other broad absorption line quasars with Balmer-line absorption. We also derived the column density of neutral hydrogen of 5.2 × 1017 cm-2 by using the curve of growth and taking account of Lyα trapping. We searched for UV absorption lines that had the same redshift with Balmer-line absorption, and found Ali III and Fe III absorption lines at z = 2.053 that correspond to previously unidentified absorption lines, and the presence of other blended troughs that were difficult to identify.

  7. Egelstaff time and the Birnbaum-Cohen line shape

    NASA Astrophysics Data System (ADS)

    Lewis, John Courtenay; Stamp, Clifford

    1999-04-01

    Two approaches to constructing line shape functions for fitting collision-induced spectra are examined. Starting with the symmetric time correlation function of Birnbaum and Cohen, we compare the lineshape obtained by including detailed balancing using a Boltzmann factor with that obtained using Egelstaff's complex time (the Birnbaum-Cohen lineshape). The lineshape obtained using Boltzmann-factor asymmetrization is found to be slightly superior in quality of fit to the Birnbaum-Cohen lineshape, and is faster to compute.

  8. Monitoring the Variability of Intrinsic Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ~103-105 cm-3 and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage. Based on data collected at Subaru telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations obtained at the European Southern Observatory at La Silla, Chile in programs 65.O-0063(B), 65.O-0474(A), 67.A-0078(A), 68.A-0461(A), 69.A-0204(A), 70.B-0522(A), 072.A-0346(A), 076.A-0860(A), 079.B-0469(A), and 166.A-0106(A).

  9. Outflow and hot dust emission in broad absorption line quasars

    SciTech Connect

    Zhang, Shaohua; Zhou, Hongyan; Wang, Huiyuan; Wang, Tinggui; Xing, Feijun; Jiang, Peng; Zhang, Kai E-mail: whywang@mail.ustc.edu.cn

    2014-05-01

    We have investigated a sample of 2099 broad absorption line (BAL) quasars with z = 1.7-2.2 built from the Sloan Digital Sky Survey Data Release Seven and the Wide-field Infrared Survey. This sample is collected from two BAL quasar samples in the literature and is refined by our new algorithm. Correlations of outflow velocity and strength with a hot dust indicator (β{sub NIR}) and other quasar physical parameters—such as an Eddington ratio, luminosity, and a UV continuum slope—are explored in order to figure out which parameters drive outflows. Here β{sub NIR} is the near-infrared continuum slope, which is a good indicator of the amount of hot dust emission relative to the accretion disk emission. We confirm previous findings that outflow properties moderately or weakly depend on the Eddington ratio, UV slope, and luminosity. For the first time, we report moderate and significant correlations of outflow strength and velocity with β{sub NIR} in BAL quasars. It is consistent with the behavior of blueshifted broad emission lines in non-BAL quasars. The statistical analysis and composite spectra study both reveal that outflow strength and velocity are more strongly correlated with β{sub NIR} than the Eddington ratio, luminosity, and UV slope. In particular, the composites show that the entire C IV absorption profile shifts blueward and broadens as β{sub NIR} increases, while the Eddington ratio and UV slope only affect the high and low velocity part of outflows, respectively. We discuss several potential processes and suggest that the dusty outflow scenario, i.e., that dust is intrinsic to outflows and may contribute to the outflow acceleration, is most likely.

  10. [Unusual shapes of absorption isotherms in three-component systems].

    PubMed

    Kruglova, E B

    2007-01-01

    It has been shown that the shape of Scatchard isotherms upon competitive binding of two ligands to the same binding site in the three-component ligand 1-ligand 2-DNA system depends crucially on the binding constant values. The binding isotherm of ligand 2 in the presence of the competitive ligand 1 turns back (has a bow-like form) when the binding constant of the first ligand is larger than the binding constant of the second one.

  11. Scanning freeform objects by combining shape from silhouette and shape from line structured light

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2014-12-01

    Freeform shape is usually designed by reverse engineering method thorough a 3D scanner, which is often expensive to most persons. The paper proposes a new scanning system combining shape from structured light and shape from silhouette, which can be implemented easily with low cost. The two methods are very complementary. For shape from silhouette, it can capture correct topological information of the object and obtain a closed envelop, and for shape from hand-held laser line, precise point clouds with some holes can be obtained. To gain their complementary advantages, a new data fusion strategy based a mesh energy functional is proposed to integrate the information from the two scanning methods, in which the points resulted from laser light will attract closed envelop from silhouette. After fusion, the precision of shape from silhouette is increased, and the topological error of shape from structured light is corrected. The design details are introduced, and a toy model is used to test the new method, which is difficult to scan using other systems. The test results proof the validity of the new method.

  12. X-ray absorption in pillar shaped transmission electron microscopy specimens.

    PubMed

    Bender, H; Seidel, F; Favia, P; Richard, O; Vandervorst, W

    2017-03-07

    The dependence of the X-ray absorption on the position in a pillar shaped transmission electron microscopy specimen is modeled for X-ray analysis with single and multiple detector configurations and for different pillar orientations relative to the detectors. Universal curves, applicable to any pillar diameter, are derived for the relative intensities between weak and medium or strongly absorbed X-ray emission. For the configuration as used in 360° X-ray tomography, the absorption correction for weak and medium absorbed X-rays is shown to be nearly constant along the pillar diameter. Absorption effects in pillars are about a factor 3 less important than in planar specimens with thickness equal to the pillar diameter. A practical approach for the absorption correction in pillar shaped samples is proposed and its limitations discussed. The modeled absorption dependences are verified experimentally for pillars with HfO2 and SiGe stacks.

  13. The Physical Nature of Polar Broad Absorption Line Quasars

    NASA Technical Reports Server (NTRS)

    Ghost, Kajal; Punsly, Brian

    2007-01-01

    It has been shown based on radio variability arguments that some BALQSOs (broad absorption line quasars) are viewed along the polar axis (o rthogonal to accretion disk) in the recent article of Zhou et a. Thes e arguments are based on the brightness temperature, T(sub b) exceedi ng 10(exp 12) K which leads to the well-known inverse Compton catastr ophe unless the radio jet is relativistic and is viewed along its axi s. In this letter, we expand the Zhou et al sample of polar BALQSOs u sing their techniques applied to SDSS DR5. In the process, we clarify a mistake in their calculation of brightness temperature. The expanded sample of high T(sub b) BALQSOS, has an inordinately large fraction of LoBALQSOs (low ionization BALQSOs). We consider this an important clue to understanding the nature of the polar BALQSOs. This is expec ted in the polar BALQSO analytical/numerical models of Punsly that pr edicted that LoBALQSOs occur when the line of sight is very close to the polar axis, where the outflow density is the highest.

  14. Anomalous absorption line in the magneto-optical response of graphene.

    PubMed

    Gusynin, V P; Sharapov, S G; Carbotte, J P

    2007-04-13

    The intensity as well as position in energy of the absorption lines in the infrared conductivity of graphene, both exhibit features that are directly related to the Dirac nature of its quasiparticles. We show that the evolution of the pattern of absorption lines as the chemical potential is varied encodes the information about the presence of the anomalous lowest Landau level. The first absorption line related to this level always appears with full intensity or is entirely missing, while all other lines disappear in two steps. We demonstrate that if a gap develops, the main absorption line splits into two provided that the chemical potential is greater than or equal to the gap.

  15. Composite Spectra of Broad Absorption Line Quasars in SDSS-III BOSS

    NASA Astrophysics Data System (ADS)

    Herbst, Hanna; Hamann, Fred; Paris, Isabelle; Capellupo, Daniel M.

    2017-01-01

    We present preliminary results from a study of broad absorption line (BAL) quasars in the SDSS-III BOSS survey. We’re particularly interested in BALs because they arise from quasar outflows, which may be a source of feedback to the host galaxy. We analyze median composite spectra for BOSS QSOs in the redshift range 2.1 to 3.4 sorted by the strength of the BAL absorption troughs, parameterized by the Balnicity Index (BI), to study trends in the emission and absorption properties of BAL quasars. The wavelength coverage and high number of quasars observed in the BOSS survey allow us to examine BALs in the Lyman forest. Our main preliminary results when sorting the quasars by BI are 1) doublet absorption lines such as P V 1128A show a 1:1 ratio across all BI, indicating large column densities at all BI. This suggests that weaker BAL troughs result from smaller covering fractions rather than lower column densities. 2) The He II emission line, which is a measure of the far-UV/near-UV hardness of the ionizing continuum, is weaker in the larger BI composite spectra, indicating a far-UV spectral softening correlated with BI. This is consistent with the radiatively-driven BAL outflows being helped by intrinsically weaker ionizing continuum shapes (e.g., Baskin, Laor, and Hamann 2013). We also find a trend for slightly redder continuum slopes in the larger BI composite spectra, suggesting that the slope differences in the near-UV are also intrinsic.

  16. Stochastic Liouville equation simulation of multidimensional vibrational line shapes of trialanine

    NASA Astrophysics Data System (ADS)

    Jansen, Thomas la Cour; Zhuang, Wei; Mukamel, Shaul

    2004-12-01

    The line shapes detected in coherent femtosecond vibrational spectroscopies contain direct signatures of peptide conformational fluctuations through their effect on vibrational frequencies and intermode couplings. These effects are simulated in trialanine using a Green's function solution of a stochastic Liouville equation constructed for four collective bath coordinates (two Ramachandran angles affecting the mode couplings and two diagonal energies). We find that fluctuations of the Ramachandran angles which hardly affect the linear absorption can be effectively probed by two-dimensional spectra. The signal generated at k1+k2-k3 is particularly sensitive to such fluctuations.

  17. Comparison of line-by-line and band models of near-IR methane absorption applied to outer planet atmospheres

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.; Fry, P. M.; Boudon, V.; Campargue, A.; Nikitin, A.

    2012-03-01

    , and Jupiter, as well as comparisons with 77 K lab measurements of McKellar (McKellar, A.R.W. [1989]. Can. J. Phys. 67, 1027-1035). At room temperatures and pressures band models and new line-by-line calculations generally agree within 1.6-3% RMS between 1800 cm-1 and 7919 cm-1, but disagree more significantly near 3200-3500 cm-1 and in the region where CH3D line data are missing between 5200 cm-1 and 5600 cm-1, and also at band edges near 3250 cm-1 and 5600 cm-1, where far wing line shapes may need improvement. For intermediate temperatures and methane paths, the Irwin et al. (Irwin, P.G.J., Sromovsky, L.A., Strong, E.K., Sihra, K., Bowles, N., Calcutt, S.B., Remedios, J.J. [2006]. Icarus 181, 309-319) band model agrees best with the line-by-line calculations at wavenumbers less than 5000 cm-1. At low temperatures and long path lengths the band models diverge more seriously, with that of Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2010]. Icarus 205, 309-319) providing the best agreement with line-by-line calculations. Model spectra computed from the band and line-by-line models were also compared with a Keck/NIRC2 H-band spectrum of Uranus (Sromovsky, L.A., Fry, P.M. [2008]. Icarus 193, 252-266), which could be fit well with either of the two band models, but the main aerosol layer required an optical depth five times smaller using the Irwin et al. band model than for either line-by-line calculations or the Karkoschka and Tomasko band model. By far the best fit to the Uranus H-band spectrum was obtained using line-by-line absorption calculations with a far wing line shape intermediate between that of Hartmann et al. (Hartmann, J.-M., Boulet, C., Brodbeck, C., van Thanh, N., Fouchet, T., Drossart, P. [2002]. J. Quant. Spectrosc. Radiat. Trans. 72, 117-122) and that of de Bergh et al. (de Bergh, C. et al. [2011]. Planet. Space Sci. doi:10.1016/j.pss.2011.05.003).

  18. X-ray-selected broad absorption line quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Carrera, F. J.; Ceballos, M.; Corral, A.; Ebrero, J.; Esquej, P.; Krumpe, M.; Mateos, S.; Rosen, S.; Schwope, A.; Streblyanska, A.; Symeonidis, M.; Tedds, J. A.; Watson, M. G.

    2017-02-01

    We study a sample of six X-ray-selected broad absorption line (BAL) quasi-stellar objects (QSOs) from the XMM-Newton Wide Angle Survey. All six objects are classified as BALQSOs using the classic balnicity index, and together they form the largest sample of X-ray-selected BALQSOs. We find evidence for absorption in the X-ray spectra of all six objects. An ionized absorption model applied to an X-ray spectral shape that would be typical for non-BAL QSOs (a power law with energy index α = 0.98) provides acceptable fits to the X-ray spectra of all six objects. The optical to X-ray spectral indices, αOX, of the X-ray-selected BALQSOs, have a mean value of <αOX> = 1.69 ± 0.05, which is similar to that found for X-ray-selected and optically selected non-BAL QSOs of a similar ultraviolet luminosity. In contrast, optically selected BALQSOs typically have much larger αOX and so are characterized as being X-ray weak. The results imply that X-ray selection yields intrinsically X-ray bright BALQSOs, but their X-ray spectra are absorbed by a similar degree to that seen in optically selected BALQSO samples; X-ray absorption appears to be ubiquitous in BALQSOs, but X-ray weakness is not. We argue that BALQSOs sit at one end of a spectrum of X-ray absorption properties in QSOs related to the degree of ultraviolet absorption in C IV 1550 Å.

  19. DISCOVERY OF THE TRANSITION OF A MINI-BROAD ABSORPTION LINE INTO A BROAD ABSORPTION LINE IN THE SDSS QUASAR J115122.14+020426.3

    SciTech Connect

    Hidalgo, Paola Rodriguez; Eracleous, Michael; Charlton, Jane; Hamann, Fred; Murphy, Michael T.; Nestor, Daniel

    2013-09-20

    We present the detection of a rare case of dramatic strengthening in the UV absorption profiles in the spectrum of the quasar J115122.14+020426.3 between observations {approx}2.86 yr apart in the quasar rest frame. A spectrum obtained in 2001 by the Sloan Digital Sky Survey shows a C IV ''mini-broad'' absorption line (FWHM = 1220 km s{sup -1}) with a maximum blueshift velocity of {approx}9520 km s{sup -1}, while a later spectrum from the Very Large Telescope shows a significantly broader and stronger absorption line, with a maximum blueshift velocity of {approx}12, 240 km s{sup -1} that qualifies as a broad absorption line. A similar variability pattern is observed in two additional systems at lower blueshifted velocities and in the Ly{alpha} and N V transitions as well. One of the absorption systems appears to be resolved and shows evidence for partial covering of the quasar continuum source (C{sub f} {approx} 0.65), indicating a transverse absorber size of, at least, {approx}6 Multiplication-Sign 10{sup 16} cm. In contrast, a cluster of narrower C IV lines appears to originate in gas that fully covers the continuum and broad emission line sources. There is no evidence for changes in the centroid velocity of the absorption troughs. This case suggests that at least some of the absorbers that produce ''mini-broad'' and broad absorption lines in quasar spectra do not belong to intrinsically separate classes. Here, the ''mini-broad'' absorption line is most likely interpreted as an intermediate phase before the appearance of a broad absorption line due to their similar velocities. While the current observations do not provide enough constraints to discern among the possible causes for this variability, future monitoring of multiple transitions at high resolution will help achieve this goal.

  20. A Kennicutt-Schmidt Law for Intervening Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Chelouche, Doron; Bowen, David V.

    2010-10-01

    We argue that most strong intervening metal absorption line systems, where the rest equivalent width of the Mg II λ2796 line is >0.5 Å, are interstellar material in, and outflowing from, star-forming disks. We show that a version of the Kennicutt-Schmidt law is readily obtained if the Mg II equivalent widths are interpreted as kinematic broadening from absorbing gas in outflowing winds originating from star-forming galaxies. Taking a phenomenological approach and using a set of observational constraints available for star-forming galaxies, we are able to account for the density distribution of strong Mg II absorbers over cosmic time. The association of intervening material with star-forming disks naturally explains the metallicity and dust content of strong Mg II systems, as well as their high H I column densities, and does not require the advection of metals from compact star-forming regions into the galaxy halos to account for the observations. We find that galaxies with a broad range of luminosities can give rise to absorption of a given rest equivalent width and discuss possible observational strategies to better quantify true galaxy-absorber associations and further test our model. We show that the redshift evolution in the density of absorbers closely tracks the star formation history of the universe and that strong intervening systems can be used to directly probe the physics of both bright and faint galaxies over a broad redshift range. In particular, in its simplest form, our model suggests that many of the statistical properties of star-forming galaxies and their associated outflows have not evolved significantly since z ~ 2. By identifying strong intervening systems with galaxy disks and quantifying a version of the Kennicutt-Schmidt law that applies to them, a new probe of the interstellar medium is found which provides complementary information to that obtained through emission studies of galaxies. Implications of our results for galaxy feedback and

  1. A far wing line shape theory and its application to the water vibrational bands (II)

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Tipping, R. H.

    1992-06-01

    Attention is given to a far wing line shape theory based on binary collision and quasi-static approximations. The theory is applicable for both the LF and HF wings of vibrational-rotational bands. It is used to calculate the frequency and temperature dependence of the continuous absorption coefficient for frequencies up to 10,000/cm for pure water vapor. The results are compared with existing laboratory data in the 2400-2700/cm window and in the 3000-4300/cm band center region, with field measurements in the 2000-2225/cm region and with a recent experimental measurement near 9466/cm. It is concluded that both the magnitude and temperature dependence of the water vapor continuum can be accounted for by the present theory without the introduction of any adjustable parameters. Refinements of the theory and extension to foreign-broadened absorption are also discussed.

  2. A far wing line shape theory and its application to the water vibrational bands (II)

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1992-01-01

    Attention is given to a far wing line shape theory based on binary collision and quasi-static approximations. The theory is applicable for both the LF and HF wings of vibrational-rotational bands. It is used to calculate the frequency and temperature dependence of the continuous absorption coefficient for frequencies up to 10,000/cm for pure water vapor. The results are compared with existing laboratory data in the 2400-2700/cm window and in the 3000-4300/cm band center region, with field measurements in the 2000-2225/cm region and with a recent experimental measurement near 9466/cm. It is concluded that both the magnitude and temperature dependence of the water vapor continuum can be accounted for by the present theory without the introduction of any adjustable parameters. Refinements of the theory and extension to foreign-broadened absorption are also discussed.

  3. Discovery of Hα Absorption in the Unusual Broad Absorption Line Quasar SDSS J083942.11+380526.3

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro; Iwata, Ikuru; Ohta, Kouji; Ando, Masataka; Akiyama, Masayuki; Tamura, Naoyuki

    2006-11-01

    We discovered Hα absorption in the broad Hα emission line of an unusual broad absorption line quasar, SDSS J083942.11+380526.3, at z=2.318, through near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) on the Subaru telescope. The presence of nonstellar Hα absorption is known only in the Seyfert galaxy NGC 4151 to date; thus, our discovery is the first case for quasars. The Hα absorption line is blueshifted by 520 km s-1 relative to the Hα emission line, and its redshift almost coincides with those of UV low-ionization metal absorption lines. The width of the Hα absorption (~340 km s-1) is similar to those of the UV low-ionization absorption lines. These facts suggest that the Hα and low-ionization metal absorption lines are produced by the same low-ionization gas, which has a substantial amount of neutral gas. The column density of the neutral hydrogen is estimated to be ~1018 cm-2 by assuming a gas temperature of 10,000 K from the analysis of the curve of growth. The continuum spectrum is reproduced by a reddened [E(B-V)~0.15 mag for the SMC-like reddening law] composite quasar spectrum. Furthermore, the UV spectrum of SDSS J083942.11+380526.3 shows a remarkable similarity to that of NGC 4151 in its low state, suggesting that the physical condition of the absorber in SDSS J083942.11+380526.3 is similar to that of NGC 4151 in the low state. As proposed for NGC 4151, SDSS J083942.11+380526.3 may also be seen through the edge of the obscuring torus. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  4. Infrared line shape of an alpha-carbon deuterium-labeled amino acid.

    PubMed

    Kinnaman, Carrie S; Cremeens, Matthew E; Romesberg, Floyd E; Corcelli, Steven A

    2006-10-18

    The viability of alpha-carbon deuterated bonds (Calpha-D) as infrared (IR) probes of protein backbone dynamics was explored through a combination of experiment and theory. alpha-Carbon deuterated alanine (Ala-d1) served as a convenient model system for a comparison of experiment, density functional theory (DFT), and combined quantum mechanical/molecular mechanical (QM/MM) simulations of the Calpha-D IR line shape. In addition to the primary Calpha-D absorption, the experimental spectrum contains three features that likely result from Fermi resonances. DFT calculations supported the assignments and identified the lower frequency modes participating in the Fermi resonances. A QM/MM simulation of the Ala-d1 line shape was in qualitative agreement with the experiment, including the presence of classical analogues of Fermi resonances. These studies demonstrated that the Calpha-D line shape is sensitive, via Fermi resonances, to lower frequency collective vibrations that are expected to play a role in protein dynamics and function, and that the QM/MM approach, which is applicable to proteins, is capable of aiding in their interpretation.

  5. Effects of velocity changing collisions on line shapes of HF in Ar

    NASA Astrophysics Data System (ADS)

    Demeio, Lucio; Green, Sheldon; Monchick, Louis

    1995-06-01

    The generalized Hess method (GHM) gives a line shape expression which is formally equivalent to the Rautian-Sobel'man hard collision model of Dicke narrowing, but differs radically in the definition of one of the relaxation terms. The relaxation term leading to pressure broadening is the same, but the term leading to Dicke narrowing and ultimately to Doppler line shapes at zero density differs in certain important respects: (1) in GHM it is a weighted sum of the pressure broadening coefficient and an optical diffusion coefficient and (2) there is no sharp distinction between ``velocity changing'' and ``phase changing'' collisions. The Dicke narrowing term should thus be understood as including both collision types irretrievably intermixed, with GHM providing a prescription for both relaxation terms. Applied to HF v=0→1, j→j±1 absorption spectra in a bath of Ar and using an accurate interaction potential obtained from spectra of the van der Waals complex and essentially exact close coupling scattering S matrices, GHM provides a rather good description of recently measured line shapes.

  6. Effects of velocity changing collisions on line shapes of HF in Ar

    SciTech Connect

    Demeio, L.; Green, S.; Monchick, L.

    1995-06-15

    The generalized Hess method (GHM) gives a line shape expression which is formally equivalent to the Rautian--Sobel`man hard collision model of Dicke narrowing, but differs radically in the definition of one of the relaxation terms. The relaxation term leading to pressure broadening is the same, but the term leading to Dicke narrowing and ultimately to Doppler line shapes at zero density differs in certain important respects: (1) in GHM it is a weighted sum of the pressure broadening coefficient and an optical diffusion coefficient and (2) there is no sharp distinction between ``velocity changing`` and ``phase changing`` collisions. The Dicke narrowing term should thus be understood as including both collision types irretrievably intermixed, with GHM providing a prescription for both relaxation terms. Applied to HF {ital v}=0{r_arrow}1, {ital j}{r_arrow}{ital j}{plus_minus}1 absorption spectra in a bath of Ar and using an accurate interaction potential obtained from spectra of the van der Waals complex and essentially exact close coupling scattering {ital S} matrices, GHM provides a rather good description of recently measured line shapes. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  7. Interstellar absorption lines in the spectrum of Gamma Velorum

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Bhavsar, S. P.

    1979-01-01

    Copernicus scans of selected interstellar absorption lines in the UV spectrum of Gamma Vel are analyzed, together with ground-based data, to obtain column densities for various ion states of C, N, O, Na, Mg, Al, Si, P, S, Cl, Ar, Ca, Mn, Fe, and CO. N I and O I are fitted to a single empirical curve of growth with a velocity parameter (b) of 8 km/s; Mg II, Si II, P II, S II, Mn II, and Fe II are fitted to another curve with b between 3 and 9 km/s. Abundance determinations relative to H I show that: (1) C, N, P, S, and Ar are probably close to their solar values; (2) O may be depleted by about a factor of 2; (3) Mg, Al, Si, Cl, Mn, and Fe are depleted by a factor of 4 or more: (4) Al is depleted by at least a factor of 10 in the H II region; and (5) both N V and O VI are present, but not C IV. The N V/O VI ratio implies that the electron temperature in the H II region is about 275,000 K.

  8. Probing Quasar Winds Using Intrinsic Narrow Absorption Lines

    NASA Astrophysics Data System (ADS)

    Culliton, Christopher S.; Charlton, Jane C.; Eracleous, Michael; Roberts, Amber; Ganguly, Rajib; Misawa, Toru; Muzahid, Sowgat

    2017-01-01

    Quasar outflows are important for understanding the accretion and growth processes of the central black hole. Furthermore, outflows potentially have a role in providing feedback to the galaxy, and halting star formation and infall of gas. The geometry and density of these outflows remain unknown, especially as a function of ionization and velocity. Having searched ultraviolet spectra at both high redshift (VLT/UVES; 1.4absorption lines (NALs) that are intrinsic to (physically associated with) the quasar. We identify intrinsic NALs with a wide range of properties, including ejection velocity, coverage fraction, and ionization level. We also consider the incidence of intrinsic absorbers as a function of quasar properties (optical, radio and X-ray fluxes), and find that radio properties and quasar orientation are influential in determining if a quasar is likely to host an intrinsic system. We find that there is a continuum of properties within the intrinsic NAL sample, rather than discrete families, ranging from partially covered CIV systems with black Lya and with a separate low ionization gas phase to partially covered NV systems with partially covered Lya and without detected low ionization gas. Additionally, we construct a model describing the spatial distributions, geometries, and varied ionization structures of intrinsic NALs.

  9. Conformational statistics of molecules with inner rotation and shapes of their electronic absorption bands

    SciTech Connect

    Aver`yanov, E.M.

    1994-10-01

    The effect of conformational statistics of molecules with inner rotation of {pi}-conjugated fragments on the position, intensity, and electronic absorption band shapes is studied in isotropic molecular media. It is shown that the conformational disorder of molecules with one inner rotation degree of freedom exerts an appreciable effect on the shift, inhomogeneous broadening, and asymmetry of the electronic absorption bands. An interpretation of the available experimental data is give. 19 refs., 1 fig.

  10. PREFACE: XXII International Conference on Spectral Line Shapes 2014

    NASA Astrophysics Data System (ADS)

    Parigger, C. G.

    2014-11-01

    The 22nd International Conference on Spectral Line Shapes (ICSLS) was convened at The University of Tennessee Space Institute (UTSI) at Tullahoma, Tennessee, USA, during June 1 to 6, 2014. A variety of topics of interest to the line shape community were addressed during invited and contributed oral and poster presentations. General categories of the ICSLS 2014 scientific contents included Astrophysics, Biomedical Physics, High and Low Temperature Plasma Physics, Magnetic Fusion Physics, Neutrals Atomic-Molecular-Optical (AMO) Physics, and Applied Physics. Research interests at UTSI and at the Center for Laser Applications (CLA) focus on Applied Physics and Plasma Physics areas such as laser-induced breakdown spectroscopy, spectroscopy with ultra-short light pulses, combustion diagnostics, to name a few. Consequently, the presentations during the conference addressed a variety of these topics. Attendance at the conference included researchers from North America, Africa, Asia and Europe, with an international representation showing 250 authors and co-authors with over 25 different citizenships, and 100 participants at the Conference. Figure 1 shows a photo of Conference attendees. The schedule included 82 contributions, 41 oral and 41 poster presentations. The 29 invited, 12 contributed oral and 41 contributed poster presentations were selected following communication with the international organizing committee members. A smart phone ''app'' was also utilized, thanks to Elsevier, to communicate electronic versions of the posters during the conference. Special thanks go to the members of the international and local committees for their work in organizing the 22nd ICSLS. In addition, thank you notes also go to the peer reviewers for the proceedings. Following the success of the IOP: Journal of Physics Conference Series selected for the 21st ICSLS publication, the proceedings papers report ongoing research activities. Papers submitted amount to 68 in number, or 83% of

  11. Anomalous optogalvanic line shapes of argon metastable transitions in a hollow cathode lamp

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.

    1993-01-01

    Anomalous optogalvanic line shapes were observed in a commercial hollow cathode lamp containing argon buffer gas. Deviations from Gaussian line shapes were particularly strong for transitions originating from the 3P2 metastable level of argon. The anomalous line shapes can be described reasonably well by the assumption that two regions in the discharge are excited simultaneously, each giving rise to a purely Gaussian line shape, but with different polarities, amplitudes, and linewidths.

  12. Quasar Absorption Lines: The Evolution of Galactic Gas Over Cosmic Time

    NASA Astrophysics Data System (ADS)

    Charlton, J.

    1996-12-01

    A view of the formation and evolution of galaxies and structure over the whole history of the Universe requires observations both of stars and of gas. From the stars in galaxies, now observed in deep images back in time to less than a billion years past the Big Bang, we can study the evolution of galaxy morphology and of star formation rates. Direct observation of gas in the Universe at all epochs is also possible, using absorption spectra of quasars as a probe of intervening material. This absorption arises not only from the gas in developed galaxies and in their environments, but also from the clumps of gas that will eventually combine to form galaxies, and from the gas spread through the Universe that is gradually flowing into the galaxies. This study of gas through quasar absorption lines has opened the possibility of observing directly the formation of galaxies through the assembly of their gas over time. Furthermore, with high resolution spectroscopy, the substructures observed in absorption profiles provide information about the internal workings of galaxies. This talk will present an overview of progress toward a comprehensive picture of the formation and evolution of galaxies through quasar absorption line studies. The absorption profiles that are observed due to the passage of the quasar light through a given structure are a convolution of several properties of the gas, including its spatial and kinematic distribution, its chemical composition, and its state of ionization. Illustrative models will be utilized to show how these various factors affect the appearance of synthetic spectra. Beginning with the philosophy ``what you see is what you get'', the kinematic spectral signatures of higher redshift absorbers will be modeled by familiar components of nearby galaxies: a rotating disk, an isothermal halo, and gas in radial inflow. A combination of these basic models goes a long way toward producing a variety of complex absorption profiles which are in fact

  13. What Drives the Outflows in Broad Absorption Line QSOs?

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1997-01-01

    We have made progress in the areas related to the propulsion and confinement of gas responsible for broad absorption troughts in QSOs: Radiative Acceleration in BALQSOs; The "Ghost" of Lyman (alpha); and Magnetic Confinement of Absorbing Gas.

  14. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029---Ejected or Intervening?

    NASA Astrophysics Data System (ADS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-10-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of zabs = 0.695 in the spectrum of the zem = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km s-1 is detected from C IV, N V, and O VI in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM ~ 250 km s-1) at zabs = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C IV, N V, and O VI doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by ~56,000 km s-1 to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km s-1 from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  15. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029--Ejected or Intervening?

    NASA Technical Reports Server (NTRS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-01-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of z(sub abs) = 0.695 in the spectrum of the z(sub em) = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km/s is detected from C iv, N v, and O vi in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM approx. 250 km/s) at z(sub abs) = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C iv, N v, and O vi doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by approx. 56,000 km/s to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km/s from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  16. High resolution gamma-ray astronomy - Observations and predictions of line shapes

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Dipen; Gehrels, Neil

    1991-01-01

    The shapes of gamma-ray lines carry unique information about the physical processes and conditions in astrophysical sites. Galactic center and SN 1987A lines have been observationally resolved allowing their shapes to be studied. There are also significant new theoretical results concerning line shapes from Type I supernovae, supernova remnants and the interstellar medium. New work is presented on a simple treatment of line profiles for rotating disks and spherical shells.

  17. Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size

    NASA Technical Reports Server (NTRS)

    Lindsay, Sean S.; Wooden, Diane; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R.

    2013-01-01

    We compute the absorption efficiency (Q(sub abs)) of forsterite using the discrete dipole approximation (DDA) in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8 - 40 micron wavelength range. Using the DDSCAT code, we compute Q(sub abs) for non-spherical polyhedral grain shapes with a(sub eff) = 0.1 micron. The shape characteristics identified are: 1) elongation/reduction along one of three crystallographic axes; 2) asymmetry, such that all three crystallographic axes are of different lengths; and 3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 micron, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1 - 1.0 micron) shifts the 10, 11 micron features systematically towards longer wavelengths and relative to the 11 micron feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 - 40 micron spectra provides a potential means to probe the temperatures at which forsterite formed.

  18. ABSORPTION EFFICIENCIES OF FORSTERITE. I. DISCRETE DIPOLE APPROXIMATION EXPLORATIONS IN GRAIN SHAPE AND SIZE

    SciTech Connect

    Lindsay, Sean S.; Wooden, Diane H.; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R. E-mail: diane.h.wooden@nasa.gov E-mail: msk@astro.umd.edu E-mail: murphy@nmsu.edu

    2013-03-20

    We compute the absorption efficiency (Q{sub abs}) of forsterite using the discrete dipole approximation in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8-40 {mu}m wavelength range. Using the DDSCAT code, we compute Q{sub abs} for non-spherical polyhedral grain shapes with a{sub eff} = 0.1 {mu}m. The shape characteristics identified are (1) elongation/reduction along one of three crystallographic axes; (2) asymmetry, such that all three crystallographic axes are of different lengths; and (3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 {mu}m, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1-1.0 {mu}m) shifts the 10 and 11 {mu}m features systematically toward longer wavelengths and relative to the 11 {mu}m feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet, or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 to 40 {mu}m spectra provides a potential means to probe the temperatures at which forsterite formed.

  19. Absorption Efficiencies of Forsterite. I. Discrete Dipole Approximation Explorations in Grain Shape and Size

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean S.; Wooden, Diane H.; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R.

    2013-03-01

    We compute the absorption efficiency (Q abs) of forsterite using the discrete dipole approximation in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8-40 μm wavelength range. Using the DDSCAT code, we compute Q abs for non-spherical polyhedral grain shapes with a eff = 0.1 μm. The shape characteristics identified are (1) elongation/reduction along one of three crystallographic axes; (2) asymmetry, such that all three crystallographic axes are of different lengths; and (3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 μm, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1-1.0 μm) shifts the 10 and 11 μm features systematically toward longer wavelengths and relative to the 11 μm feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet, or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 to 40 μm spectra provides a potential means to probe the temperatures at which forsterite formed.

  20. On the Acoustic Absorption of Porous Materials with Different Surface Shapes and Perforated Plates

    NASA Astrophysics Data System (ADS)

    CHEN, WEN-HWA; LEE, FAN-CHING; CHIANG, DAR-MING

    2000-10-01

    In architectural acoustic design, perforated plates are often used to protect porous materials from erosion. Although porous materials are usually applied to passive noise control, the effects of their surface shapes are seldom studied. To study the acoustic absorption of porous materials with different surface shapes and perforated plates, an efficient finite element procedure, which is derived by the Galerkin residual method and Helmholtz wave propagation equation, is used in this work. The two-microphone transfer function method and the modified Ingard and Dear impedance tube testing system are employed to measure the parameters deemed necessary for the finite element analysis, such as complex wave propagation constant, characteristic impedance and flow resistivity. For verifying the finite element results, the two-microphone transfer function method is also applied to measure the absorption coefficients of the discussed acoustic absorbers. Four surface shapes of commercially available porous materials, i.e., triangle, semicircle, convex rectangle and plate shapes, are chosen for analysis. The porosity of perforated plates is then evaluated. Finally, the distinct effect of the flow resistivity of porous materials on the acoustic absorption is demonstrated.

  1. Is there a connection between broad absorption line quasars and narrow-line Seyfert 1 galaxies?

    SciTech Connect

    Grupe, Dirk; Nousek, John A.

    2015-02-01

    We consider whether broad absorption line quasars (BAL QSOs) and narrow-line Seyfert 1 galaxies (NLS1s) are similar, as suggested by Brandt and Gallagher and Boroson. For this purpose, we constructed a sample of 11 BAL QSOs from existing Chandra and Swift observations. We found that BAL QSOs and NLS1s both operate at high Eddington ratios L/L{sub Edd}, although BAL QSOs have slightly lower L/L{sub Edd}. BAL QSOs and NLS1s in general have high Fe ii/Hβ and low [O iii]/Hβ ratios following the classic “Boroson and Green” eigenvector 1 relation. We also found that the mass accretion rates M-dot of BAL QSOs and NLS1s are more similar than previously thought, although some BAL QSOs exhibit extreme mass accretion rates of more than 10 M{sub ⊙} yr{sup −1}. These extreme mass accretion rates may suggest that the black holes in BAL QSOs are relativistically spinning. Black hole masses in BAL QSOs are a factor of 100 larger than NLS1s. From their location on a M−σ plot, we find that BAL QSOs contain fully developed black holes. Applying a principal component analysis to our sample, we find eigenvector 1 to correspond to the Eddington ratio L/L{sub Edd}, and eigenvector 2 to black hole mass.

  2. Line end shortening and corner rounding for novel off-axis illumination source shapes

    NASA Astrophysics Data System (ADS)

    Ling, Moh Lung; Chua, Gek Soon; Lin, Qunying; Tay, Cho Jui; Quan, Chenggen

    2009-03-01

    Previous study has shown that off-axis illumination (OAI) which employs duplicate conventional source shape such as double dipole, double annular or double quadrupole can reduce the effect of line width fluctuation and process window degradation at the forbidden pitch. In this paper, influence of the new OAI source shape on line end shortening and corner rounding effect is studied. Despite the advantage of reduced line width fluctuation, the proximity effect at line ends and corners for new source shapes need to be examined because both lateral and longitudinal pattern fidelity is important in actual implementation. Simulation study will be used for the study of line end shortening and corner rounding effect using new source shapes and the results will be compared with those resulted from annular illumination. Line end structures such as end to end, staggered, and T-shaped patterns are used for line end shortening study. For corner rounding, L-shaped and U-shaped structure are used. The pattern density and line end separation of feature will be varied to determine the important factors that cause image distortion. Results has shown that new source shapes have similar line end shortening and corner rounding characteristic with the conventional one. Besides, the variation of new source shapes for different pattern density and line end separation is relatively smaller compared with conventional OAI source shapes.

  3. Ugo Fano, Enrico Fermi, and spectral line shapes

    NASA Astrophysics Data System (ADS)

    Clark, Charles W.

    2005-03-01

    Ugo Fano's 1961 paper on spectral line shapes^1 was recently ranked as the third highest in citation impact of all papers published in the entire Physical Review series.^2 In the course of preparing an article for a NIST Centennial volume,^3 I became interested in the history of the results presented in Fano’s seminal paper, and will present my findings in this talk. An amusing sidelight concerns the role played by Enrico Fermi in the development of the famous ``Fano profile'' formula. I had been told this story by Fano when I was his graduate student, but uncertain of my recollection of the details, I did not publish it in his obituary.^4 I later learned that the archives of the Royal Society of London contain Fano's own written version of the tale, which will be presented in this talk. The story sheds light on the nature of Enrico Fermi's interactions with his students, and confirms accounts concerning the way in which he did his theoretical work.^5 ^1 U. Fano,``Effects of Configuration Interaction on Intensities and Phase Shifts,'' Phys. Rev. 124, 1866-1878 (1961)^2 S. Redner, physics/0407137 (2004)^3 http://nvl.nist.gov/pub/nistpubs/sp958-lide/116-119.pdf^4 C. W. Clark, Nature 410, 164 (2001)^5 F. Rasetti, in Collected Papers, vol. I, E. Fermi (University of Chicago Press, 1962), p. 178

  4. Line shape analysis of two-dimensional infrared spectra

    PubMed Central

    Guo, Qi; Pagano, Philip; Li, Yun-Liang; Kohen, Amnon; Cheatum, Christopher M.

    2015-01-01

    Ultrafast two-dimensional infrared (2D IR) spectroscopy probes femtosecond to picosecond time scale dynamics ranging from solvation to protein motions. The frequency-frequency correlation function (FFCF) is the quantitative measure of the spectral diffusion that reports those dynamics and, within certain approximations, can be extracted directly from 2D IR line shapes. A variety of methods have been developed to extract the FFCF from 2D IR spectra, which, in principle, should give the same FFCF parameters, but the complexity of real experimental systems will affect the results of these analyses differently. Here, we compare five common analysis methods using both simulated and experimental 2D IR spectra to understand the effects of apodization, anharmonicity, phasing errors, and finite signal-to-noise ratios on the results of each of these analyses. Our results show that although all of the methods can, in principle, yield the FFCF under idealized circumstances, under more realistic experimental conditions they behave quite differently, and we find that the centerline slope analysis yields the best compromise between the effects we test and is most robust to the distortions that they cause. PMID:26049447

  5. The Number of Neutrinos and the Z Line Shape

    NASA Astrophysics Data System (ADS)

    Blondel, Alain

    2016-10-01

    The Standard Theory can fit any number of fermion families, as long as the number of leptons and quark families are the same. At the time of the conception of LEP, the number of such families was unknown, and it was feared that the Z resonance would be washed out by decaying into so many families of neutrinos! It took only a few weeks in the fall of 1989 to determine that the number is three. The next six years (from 1990 to 1995) were largely devoted to the accurate determination of the Z line shape, with a precision that outperformed the most optimistic expectations by a factor of 10. The tale of these measurements is a bona fide mystery novel, the precession of electrons being strangely perturbed by natural phenomena, such as tides, rain, hydroelectric power, fast trains, not to mention vertical electrostatic separators. The number hidden in the loops of this treasure hunt was 179, the first estimate of the mass of the top quark; then, once that was found, where predicted, the next number was close to zero: the logarithm of Higgs mass divided by that of the Z. Twenty years later, the quality of these measurements remains, but what they tell us is different: it is no longer about unknown parameters of the Standard Theory, it is about what lies beyond it. This is so acutely relevant, that CERN has launched the design study of a powerful Z, W, H and top factory.

  6. Brain blood vessel segmentation using line-shaped profiles.

    PubMed

    Babin, Danilo; Pižurica, Aleksandra; De Vylder, Jonas; Vansteenkiste, Ewout; Philips, Wilfried

    2013-11-21

    Segmentation of cerebral blood vessels is of great importance in diagnostic and clinical applications, especially for embolization of cerebral aneurysms and arteriovenous malformations (AVMs). In order to perform embolization of the AVM, the structural and geometric information of blood vessels from 3D images is of utmost importance. For this reason, the in-depth segmentation of cerebral blood vessels is usually done as a fusion of different segmentation techniques, often requiring extensive user interaction. In this paper we introduce the idea of line-shaped profiling with an application to brain blood vessel and AVM segmentation, efficient both in terms of resolving details and in terms of computation time. Our method takes into account both local proximate and wider neighbourhood of the processed pixel, which makes it efficient for segmenting large blood vessel tree structures, as well as fine structures of the AVMs. Another advantage of our method is that it requires selection of only one parameter to perform segmentation, yielding very little user interaction.

  7. Brain blood vessel segmentation using line-shaped profiles

    NASA Astrophysics Data System (ADS)

    Babin, Danilo; Pižurica, Aleksandra; De Vylder, Jonas; Vansteenkiste, Ewout; Philips, Wilfried

    2013-11-01

    Segmentation of cerebral blood vessels is of great importance in diagnostic and clinical applications, especially for embolization of cerebral aneurysms and arteriovenous malformations (AVMs). In order to perform embolization of the AVM, the structural and geometric information of blood vessels from 3D images is of utmost importance. For this reason, the in-depth segmentation of cerebral blood vessels is usually done as a fusion of different segmentation techniques, often requiring extensive user interaction. In this paper we introduce the idea of line-shaped profiling with an application to brain blood vessel and AVM segmentation, efficient both in terms of resolving details and in terms of computation time. Our method takes into account both local proximate and wider neighbourhood of the processed pixel, which makes it efficient for segmenting large blood vessel tree structures, as well as fine structures of the AVMs. Another advantage of our method is that it requires selection of only one parameter to perform segmentation, yielding very little user interaction.

  8. Effect of a progressive sound wave on the profiles of spectral lines. 2: Asymmetry of faint Fraunhofer lines. [absorption spectra

    NASA Technical Reports Server (NTRS)

    Kostyk, R. I.

    1974-01-01

    The absorption coefficient profile was calculated for lines of different chemical elements in a medium with progressive sound waves. Calculations show that (1) the degree and direction of asymmetry depend on the atomic ionization potential and the potential of lower level excitation of the individual line; (2) the degree of asymmetry of a line decreases from the center toward the limb of the solar disc; and (3) turbulent motions 'suppress' the asymmetry.

  9. Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings.

    PubMed

    Zang, XiaoFei; Shi, Cheng; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhuang, SongLin

    2015-03-10

    Metamaterials, artificial electromagnetic media consisting of periodical subwavelength metal-based micro-structures, were widely suggested for the absorption of terahertz (THz) waves. However, they have been suffered from the absorption of THz waves just in the single-frequency owing to its resonance features. Here, in this paper, we propose a simple periodical structure, composed of two 90 degree crossed dumbbell-shaped doped-silicon grating arrays, to demonstrate broadband THz wave absorption. Our theoretical and experimental results illustrate that THz waves can be efficiently absorbed more than 95% ranging from 0.92 THz to 2.4 THz. Such an ultra-wideband polarization-independent THz absorber is realized mainly based on the mechanisms of the anti-reflection effect together with the [±1, 0]-order and [0, ±1]-order grating diffractions. The application of our investigation can be extend to THz couplers, filters, imaging, and so on.

  10. Gamma-Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Els, Paul

    2016-04-01

    The expected level of γγ absorption in the Broad Line Region (BLR) radiation field of γ-ray loud Flat Spectrum Radio Quasars (FSRQs) is evaluated as a function of the location of the γ-ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the γγ opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to γγ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the γ-ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the central engine and drops below unity for locations within the BLR. For locations outside the BLR, the BLR radiation energy density required for the production of GeV γ-rays rapidly increases beyond observational constraints, thus making the EC-BLR mechanism implausible. Therefore, in order to avoid significant γγ absorption by the BLR radiation field, the γ-ray emission region must therefore be located near the outer boundary of the BLR.

  11. Study of Water Absorption Lines in the Near Infrared

    DTIC Science & Technology

    1975-02-17

    the absorption coefficient is better approximated by the sum of Matcha -N«. oec short range contribution and W-BB dispersion contribution. The...and W. Byers Brown, Molecular Physics 2S, 1105 (1973). 5. R. L. Matcha and R. K. Nesbet, Phys. Rev. 1_6_0, 72 (1967). I H. B. Levine, Phys. Rev...reasurcrents of Ouren, ^eltqen Gaide, Helbing and Pauly. The dipole moment function is taken from ab initio 9 calculations of Matcha and Nesbet. With

  12. Investigation of Impact Load Absorption through Suspension Line Elongation

    DTIC Science & Technology

    1952-12-01

    16 1. Charts . . ’ . . . .. . . 16 2. glong~tion Ratin of Li; Goups . . . 163. Graphs . .. .. .. .. .. .. .. ... . 16 SECTION IV - DISCUSSION OF...Tester . ...................... z14 Figure 16 . Frazier Air Porosity Tester in Use ....... 215 Figure 17. 30 ft., Extended Skirt CsnoW’ in Deployment Bag...line than on canopies strung with high elongation line. WMADR 5&~5T 1 CONCLUSIONS; 15. Nylon is superior to fortisan in shock absorbing capacity. 16

  13. Ultrafast transient absorption studies of hematite nanoparticles: the effect of particle shape on exciton dynamics.

    PubMed

    Fitzmorris, Bob C; Patete, Jonathan M; Smith, Jacqueline; Mascorro, Xiomara; Adams, Staci; Wong, Stanislaus S; Zhang, Jin Z

    2013-10-01

    Much progress has been made in using hematite (α-Fe2 O3 ) as a potentially practical and sustainable material for applications such as solar-energy conversion and photoelectrochemical (PEC) water splitting; however, recent studies have shown that the performance can be limited by a very short charge-carrier diffusion length or exciton lifetime. In this study, we performed ultrafast studies on hematite nanoparticles of different shapes to determine the possible influence of particle shape on the exciton dynamics. Nanorice, multifaceted spheroidal nanoparticles, faceted nanocubes, and faceted nanorhombohedra were synthesized and characterized by using SEM and XRD techniques. Their exciton dynamics were investigated by using femtosecond transient absorption (TA) spectroscopy. Although the TA spectral features differ for the four samples studied, their decay profiles are similar, which can be fitted with time constants of 1-3 ps, approximately 25 ps, and a slow nanosecond component extending beyond the experimental time window that was measured (2 ns). The results indicate that the overall exciton lifetime is weakly dependent on the shape of the hematite nanoparticles, even though the overall optical absorption and scattering are influenced by the particle shape. This study suggests that other strategies need to be developed to increase the exciton lifetime or to lengthen the exciton diffusion length in hematite nanostructures.

  14. Two-dimensional poroelastic acoustical foam shape design for absorption coefficient maximization by topology optimization method.

    PubMed

    Lee, Joong Seok; Kim, Yoon Young; Kim, Jung Soo; Kang, Yeon June

    2008-04-01

    Optimal shape design of a two-dimensional poroelastic acoustical foam is formulated as a topology optimization problem. For a poroelastic acoustical system consisting of an air region and a poroelastic foam region, two different physical regions are continuously changed in an iterative design process. To automatically account for the moving interfaces between two regions, we propose a new unified model to analyze the whole poroelastic acoustical foam system with one set of governing equations; Biot's equations are modified with a material property interpolation from a topology optimization method. With the unified analysis model, we carry out two-dimensional optimal shape design of a poroelastic acoustical foam by a gradient-based topology optimization setting. The specific objective is the maximization of the absorption coefficient in low and middle ranges of frequencies with different amounts of a poroelastic material. The performances of the obtained shapes are compared with those of well-known wedge shapes, and the improvement of absorption is physically interpreted.

  15. - and Air-Broadened Line Shape Parameters of 12CH_4 : 4500-4620 CM-1

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda; Crawford, Timothy J.; Smith, Mary Ann H.; Mantz, Arlan; Predoi-Cross, Adriana

    2014-06-01

    Accurate knowledge of spectral line shape parameters is important for infrared transmission and radiance calculations in the terrestrial atmosphere. We report the self- and air-broadened Lorentz widths, shifts and line mixing coefficients along with their temperature dependences for methane absorption lines in the 2.2 μm spectral region. For this, we obtained a series of high-resolution, high S/N spectra of 99.99% 12C-enriched samples of pure methane and its dilute mixtures in dry air at cold temperatures down to 150 K using the Bruker IFS 125HR Fourier transform spectrometer at JPL. The coolable absorption cell had an optical path of 20.38 cm and was specially built to reside inside the sample compartment of the Bruker FTS. The 13 spectra used in the analysis consisted of seven pure 12CH_4 spectra at pressures from 4.5 to 169 Torr and six air-broadened spectra with total sample pressures of 113-300 Torr and methane volume mixing ratios between 4 and 9.7%. These 13 spectra were fit simultaneously using the multispectrum least-squares fitting technique. The results will be compared to existing values reported in the literature. K. Sung, A. W. Mantz, L. R. Brown, et al., J. Mol. Spectrosc., 162 (2010) 124-134. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. Atkins, JQSRT, 53 (1995) 705-721. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  16. DDA Modeling for the Mid-IR Absorption of Irregularly Shaped Crystalline Forsterite Grains

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean; Wooden, D. H.; Kelley, M. S.; Harker, D. E.; Woodward, C. E.; Murphy, J.

    2010-10-01

    An analysis of the Spitzer IRS spectra of the Deep Impact ejecta of comet 9P/Tempel 1 (Wooden et al. 2010, 42nd DPS Meeting) in conjunction with the dynamics of the ejecta grains (Kelley et al. 2010, 42nd DPS Meeting) strongly suggests that ecliptic comets have comae dominated by large (> 10 - 20 micron in radii) porous grains with Mg-rich crystal inclusions. In fact, Kelley et al. (2010) conclude that many ecliptic comets may be dominated by such grains with a high crystalline fraction, approximately 40% by mass, despite their generally weak silicate emission feature. To date, no model for the optical properties in the mid-IR of multi-mineralic large porous grains with silicate crystal inclusions, has been performed. We have initiated a program to compute the absorption and scattering efficiencies for these grains. Presented here are the 3 - 40 micron absorption efficiencies for models of sub-micron sized crystalline forsterite grains of irregular shape. We use the Discrete Dipole Approximation (DDA) to create discrete targets of forsterite that can be included in large porous aggregates. Computations are performed on the NAS Pleiades supercomputer. Our calculated absorption efficiencies for individual grains of forsterite are in agreement with laboratory measurements (Tamanai et al. 2006; Koike et al. 2003) and the continuous distribution of ellipsoids (CDE) method by Harker et al. (2007). We find for discrete grains that grain shape has a strong effect on the peak location of a crystalline resonance and that mimicking the physical properties of forsterite is important. Also presented are the absorption efficiencies for simple multi-component aggregates and for collections of forsterite crystals of different size and shape to replicate laboratory samples. This research is supported by the NASA GSRP Program.

  17. Probing low-redshift galaxies using quasar absorption lines with an emphasis on Ca II absorption

    NASA Astrophysics Data System (ADS)

    Sardane, Gendith M.

    2016-05-01

    We searched for intervening CaII absorption in nearly 95,000 quasar spectra with i≤20 from the Sloan Digital Sky Survey(SDSS) data releases DR7+DR9. Our identification of >400 CaII systems is the largest compilation of CaII absorbers in a blind search. (Abstract shortened by ProQuest.).

  18. On-Line Wavelength Calibration of Pulsed Laser for CO2 Differential Absorption LIDAR

    NASA Astrophysics Data System (ADS)

    Xiang, Chengzhi; Ma, Xin; Han, Ge; Liang, Ailin; Gong, Wei

    2016-06-01

    Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO2 detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO2 concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO2 detection. The MWS conducted segmented sampling across the CO2 absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO2 can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.

  19. Line Positions, Intensities And Line Shape Parameters Of PH3 Near 4.4 µm

    NASA Astrophysics Data System (ADS)

    Venkataraman, Malathy; Benner, D. C.; Kleiner, I.; Brown, L. R.; Sams, R. L.; Fletcher, L. N.

    2012-10-01

    Accurate knowledge of spectral line parameters in the 2000 to 2400 cm-1 region of PH3 is important for the CASSINI/VIMS exploration of dynamics and chemistry of Saturn and for the correct interpretation of future Jovian observations by JUNO and ESA’s newly-selected mission JUICE. Since the available intensity information for phosphine is inconsistent, we measured line positions and intensities for over 4000 individual transitions in the 2ν2, ν2+ν4, 2ν4, ν1 and the ν3 bands from analyzing high-resolution, high S/N spectra recorded at room temperature using two Fourier transform spectrometers (FTS); the Bruker IFS 125 HR FTS at PNNL and the Kitt Peak FTS at the National Solar Observatory in Arizona. In addition to line positions and intensities, self-broadened half width and self-induced pressure-shift coefficients were also measured for about 800 transitions for the various bands. The strong Coriolis and other types of interactions occurring among the various vibrational levels result in a large number of forbidden transitions as well as cause A+A- splittings in transitions with K″ that are multiples of 3. Line mixing was detected between several A+A- pairs of transitions; and self- line mixing coefficients were measured for several such pairs of transitions by applying the off-diagonal relaxation matrix formalism of Levy et al.1 A multispectrum nonlinear least squares technique2 employing a non-Voigt line shape including line mixing and speed dependence was used in fitting all the spectra simultaneously. Present results are compared with other reported values. This research is supported by NASA’s Outer Planets Research Program. References [1] A. Lévy et al., In “Spectroscopy of the Earth’s Atmosphere and Interstellar Medium”, Ed. K, Narahari Rao and A. Weber, Boston, Academic Press; p, 261-337 (1992). [2] D. C. Benner et al., J Quant. Spectrosc. Radiat. Transfer 53, 705, 1995.

  20. Detectability of cold streams into high-redshift galaxies by absorption lines

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel

    2012-08-01

    Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.

  1. Improved And Quality Assessed Emission And Absorption Line Measurements In Sloan Digital Sky Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, M.; Schawinski, K.; Yi, S. K.

    2011-01-01

    We have established a new database of absorption and emission line measurements from the Sloan Digital Sky Survey 7th data release for the galaxies within a redshift of 0.2. This work used publicly available codes, pPXF(penalized pixel-fitting) and GANDALF(gas and absorption line fitting), to achieve robust spectral fits and reliable measurements. The absorption line strengths measured by SDSS pipeline are seriously contaminated by emission fill-in. We effectively separate emission lines from absorption lines. For instance, this work successfully extract [NI] doublet from Mgb and it leads to more realistic result of alpha enhancement on late-type galaxies compared to the previous database. Besides accurately measuring line strengths, the database will be provided with new parameters that are indicative of line strength measurement quality. Users can build a subset of database optimal for their studies using specific cuts in the fitting quality parameters as well as empirical signal-to-noise. Applying these parameters, we found galaxies with dramatically broad line regions among the galaxies with poor fitting quality parameters. We applied a new continuum finding prescriptions to newly identified BLRs and they turned out to be Seyfert I nuclei.

  2. Precision Control of the Electron Longitudinal Bunch Shape Using an Emittance-Exchange Beam Line

    NASA Astrophysics Data System (ADS)

    Ha, G.; Cho, M. H.; Namkung, W.; Power, J. G.; Doran, D. S.; Wisniewski, E. E.; Conde, M.; Gai, W.; Liu, W.; Whiteford, C.; Gao, Q.; Kim, K.-J.; Zholents, A.; Sun, Y.-E.; Jing, C.; Piot, P.

    2017-03-01

    We report on the experimental generation of relativistic electron bunches with a tunable longitudinal bunch shape. A longitudinal bunch-shaping (LBS) beam line, consisting of a transverse mask followed by a transverse-to-longitudinal emittance exchange (EEX) beam line, is used to tailor the longitudinal bunch shape (or current profile) of the electron bunch. The mask shapes the bunch's horizontal profile, and the EEX beam line converts it to a corresponding longitudinal profile. The Argonne wakefield accelerator rf photoinjector delivers electron bunches into a LBS beam line to generate a variety of longitudinal bunch shapes. The quality of the longitudinal bunch shape is limited by various perturbations in the exchange process. We develop a simple method, based on the incident slope of the bunch, to significantly suppress the perturbations.

  3. A method for measuring magnetic fields in sunspots using Zeeman-broadened absorption lines

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2017-04-01

    We present measurements of magnetic fields in several sunspots using high-resolution spectra obtained with the ESPARTACO spectrograph at the Universidad de los Andes, with the aim to explore experimental possibilities for students. Because the Zeeman line splitting is smaller than the line width, our work only observes broadened absorption lines. This broadening, however, can be measured and suitably modeled, giving realistic quantitative results.

  4. Discovery of Broad Soft X-ray Absorption Lines from the Quasar Wind in PDS 456

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Braito, V.; Nardini, E.; Behar, E.; O'Brien, P. T.; Tombesi, F.; Turner, T. J.; Costa, M. T.

    2016-06-01

    High-resolution soft X-ray spectroscopy of the prototype accretion disk wind quasar, PDS 456, is presented. Here, the XMM-Newton reflection grating spectrometer spectra are analyzed from the large 2013-2014 XMM-Newton campaign, consisting of five observations of approximately 100 ks in length. During the last observation (OBS. E), the quasar is at a minimum flux level, and broad absorption line (BAL) profiles are revealed in the soft X-ray band, with typical velocity widths of {σ }{{v}}˜ {{10,000}} km s-1. During a period of higher flux in the third and fourth observations (OBS. C and D, respectively), a very broad absorption trough is also present above 1 keV. From fitting the absorption lines with models of photoionized absorption spectra, the inferred outflow velocities lie in the range ˜ 0.1{--}0.2c. The absorption lines likely originate from He and H-like neon and L-shell iron at these energies. A comparison with earlier archival data of PDS 456 also reveals a similar absorption structure near 1 keV in a 40 ks observation in 2001, and generally the absorption lines appear most apparent when the spectrum is more absorbed overall. The presence of the soft X-ray BALs is also independently confirmed by an analysis of the XMM-Newton EPIC spectra below 2 keV. We suggest that the soft X-ray absorption profiles could be associated with a lower ionization and possibly clumpy phase of the accretion disk wind, where the latter is known to be present in this quasar from its well-studied iron K absorption profile and where the wind velocity reaches a typical value of 0.3c.

  5. The Unusual Absorption Line System of PG 2302+029 -- Ejected or Intervening?

    NASA Astrophysics Data System (ADS)

    Jannuzi, Buell

    1997-07-01

    A high-ionization broad absorption line system {C IV, N V, and O VI doublets; FWHM 3, 000 to 5, 000 km s^-1; z_rmabs=0.7} in the HST FOS UV spectrum of PG 2302+029 {z=1.052} has unprecedented properties. A distinct narrow line system {FWHM <250 km s^-1, z_abs=0.702} is also resolved within the broad system. If produced by material intrinsic to the quasar then the absorbing gas has been ejected from the quasar at more than sim56, 000 km s^-1. This extremely large ejection velocity as well as its ``detached'' nature {the reddest extent of the broad line absorption is more than 50, 000 km s^-1 from the quasar rest frame} would be unlike any known intrinsic absorber in QSOs. Alternatively, the broad and narrow systems could be produced by gas in a foreground cluster or super-cluster of galaxies. However, previous examples of such absorption have always included absorption by low-ionization species {e.g. Mg II, Si II}, which are not detected in the PG 2302+029 systems. We will undertake STIS and WFPC2 observations designed to help to identify the cause of this absorption system and allow us to determine whether the system is an extreme example of previously known classes of quasar absorption lines or represents an entirely new phenomenon.

  6. Molecular dynamic simulations of N2-broadened methane line shapes and comparison with experiments

    NASA Astrophysics Data System (ADS)

    Le, Tuong; Doménech, José-Luis; Lepère, Muriel; Tran, Ha

    2017-03-01

    Absorption spectra of methane transitions broadened by nitrogen have been calculated for the first time using classical molecular dynamic simulations. For that, the time evolution of the auto-correlation function of the dipole moment vector, assumed along a C-H axis, was computed using an accurate site-site intermolecular potential for CH4-N2. Quaternion coordinates were used to treat the rotation of the molecules. A requantization procedure was applied to the classical rotation and spectra were then derived as the Fourier-Laplace transform of the auto-correlation function. These computed spectra were compared with experimental ones recorded with a tunable diode laser and a difference-frequency laser spectrometer. Specifically, nine isolated methane lines broadened by nitrogen, belonging to various vibrational bands and having rotational quantum numbers J from 0 to 9, were measured at room temperature and at several pressures from 20 to 945 mbar. Comparisons between measured and calculated spectra were made through their fits using the Voigt profile. The results show that ab initio calculated spectra reproduce with very high fidelity non-Voigt effects on the measurements and that classical molecular dynamic simulations can be used to predict spectral shapes of isolated lines of methane perturbed by nitrogen.

  7. Line Shapes and Opacity Studies in Divertor Plasmas

    SciTech Connect

    Rosato, J.

    2008-10-22

    Large or dense divertor plasmas of magnetic fusion devices can be optically thick to the resonance lines of the hydrogen isotopes. In this work we examine the sensitivity of the line radiation transport to the detailed structure of the spectral profiles.

  8. A Comprehensive Study of Broad Absorption Line Quasars. I. Prevalence of HeI* Absorption Line Multiplets in Low-ionization Objects

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hongyan; Ji, Tuo; Yuan, Weimin; Wang, Ting-Gui; Jian, Ge; Shi, Xiheng; Zhang, Shaohua; Jiang, Peng; Shu, Xinwen; Wang, Huiyuan; Wang, Shu-Fen; Sun, Luming; Yang, Chenwei; Liu, Bo; Zhao, Wen

    2015-03-01

    Neutral helium multiplets, He i* λ λ 3189,3889,10830, are very useful diagnostics for the geometry and physical conditions of the absorbing gas in quasars. So far only a handful of He i* detections have been reported. Using a newly developed method, we detected the He i*λ 3889 absorption line in 101 sources of a well-defined sample of 285 Mg ii broad absorption line (BAL) quasars selected from SDSS DR5. This has increased the number of He i* BAL quasars by more than one order of magnitude. We further detected He i*λ 3189 in 50% (52/101) of the quasars in the sample. The detection fraction of He i* BALs in Mg ii BAL quasars is ∼35% as a whole, and it increases dramatically with increasing spectral signal-to-noise ratio (S/N), from ∼18% at S/N ≤slant 10 to ∼93% at S/N ≥slant 35. This suggests that He i* BALs could be detected in most Mg ii LoBAL quasars, provided the spectra S/N is high enough. Such a surprisingly high He i* BAL fraction is actually predicted from photoionization calculations based on a simple BAL model. The result indicates that He i* absorption lines can be used to search for BAL quasars at low z, which cannot be identified by ground-based optical spectroscopic surveys with commonly seen UV absorption lines. Using He i* λ3889, we discovered 19 BAL quasars at z\\lt 0.3 from the available SDSS spectral database. The fraction of He i* BAL quasars is similar to that of LoBAL objects.

  9. An X-ray-absorbed radio-quiet QSO with an intervening strong metal absorption-line system

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Mittaz, J. P. D.; Carrera, F. J.

    2000-02-01

    We find evidence for significant X-ray absorption in the QSO RXJ005734.78-272827.4, along with strong absorption lines in its optical spectrum. We propose that the absorption lines are due to an intervening metal-line system at a redshift of z=0.628, and show that this intervening system is also the probable cause of the X-ray absorption. The intervening absorber is inferred to have an X-ray column of ~1022cm-2. This is the first time that an absorption-line system has been identified with an X-ray absorber in a radio-quiet object.

  10. DISENTANGLING THE CIRCUMNUCLEAR ENVIRONS OF CENTAURUS A. II. ON THE NATURE OF THE BROAD ABSORPTION LINE

    SciTech Connect

    Espada, D.; Matsushita, S.; Sakamoto, K.; Peck, A. B.; Henkel, C.; Iono, D.; Israel, F. P.; Muller, S.; Petitpas, G.; Pihlstroem, Y.; Taylor, G. B.; Trung, D. V.

    2010-09-01

    We report on atomic gas (H I) and molecular gas (as traced by CO(2-1)) redshifted absorption features toward the nuclear regions of the closest powerful radio galaxy, Centaurus A (NGC 5128). Our H I observations using the Very Long Baseline Array allow us to discern with unprecedented sub-parsec resolution H I absorption profiles toward different positions along the 21 cm continuum jet in the inner 0.''3 (or 5.4 pc). In addition, our CO(2-1) data obtained with the Submillimeter Array probe the bulk of the absorbing molecular gas with little contamination by emission, which was not possible with previous CO single-dish observations. We shed light on the physical properties of the gas in the line of sight with these data, emphasizing the still open debate about the nature of the gas that produces the broad absorption line ({approx}55 km s{sup -1}). First, the broad H I line is more prominent toward the central and brightest 21 cm continuum component than toward a region along the jet at a distance {approx}20 mas (or 0.4 pc) further from the nucleus. This indicates that the broad absorption line arises from gas located close to the nucleus, rather than from diffuse and more distant gas. Second, the different velocity components detected in the CO(2-1) absorption spectrum match well with other molecular lines, such as those of HCO{sup +}(1-0), except the broad absorption line that is detected in HCO{sup +}(1-0) (and most likely related to that of the H I). Dissociation of molecular hydrogen due to the active galactic nucleus seems to be efficient at distances r {approx}< 10 pc, which might contribute to the depth of the broad H I and molecular lines.

  11. H{beta} LINE WIDTHS AS AN ORIENTATION INDICATOR FOR LOW-IONIZATION BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Punsly, Brian; Zhang Shaohua E-mail: brian.punsly@comdev-usa.co

    2010-12-20

    There is evidence from radio-loud quasars to suggest that the distribution of the H{beta} broad emission line (BEL) gas is arranged in a predominantly planar orientation, and this result may well also apply to radio-quiet quasars. This would imply that the observed FWHM of the H{beta} BELs is dependent on the orientation of the line of sight to the gas. If this view is correct then we propose that the FWHM can be used as a surrogate, in large samples, to determine the line of sight to the H{beta} BELs in broad absorption line quasars (BALQSOs). The existence of broad UV absorption lines (BALs) means that the line of sight to BALQSOs must also pass through the BAL out-flowing gas. It is determined that there is a statistically significant excess of narrow-line profiles in the SDSS DR7 archival spectra of low-ionization broad absorption line quasars (LoBALQSOs), indicating that BAL gas flowing close to the equatorial plane does not commonly occur in these sources. We also find that the data is not well represented by random lines of sight to the BAL gas. Our best fit indicates two classes of LoBALQSOs, the majority ({approx}2/3) are polar outflows that are responsible for the enhanced frequency of narrow-line profiles, and the remainder are equatorial outflows. We further motivated the line of sight explanation of the narrow-line excess in LoBALQSOs by considering the notion that the skewed distribution of line profiles is driven by an elevated Eddington ratio in BALQSOs. We constructed a variety of control samples comprised of non-LoBALQSOs matched to a de-reddened LoBALQSO sample in redshift, luminosity, black hole mass, and Eddington ratio. It is demonstrated that the excess of narrow profiles persists within the LoBALQSO sample relative to each of the control samples with no reduction of the statistical significance. Thus, we eliminate the possibility that the excess narrow lines seen in the LoBALQSOs arise from an enhanced Eddington ratio.

  12. Modeling of Line Shapes using Continuous Time Random Walk Theory

    NASA Astrophysics Data System (ADS)

    Capes, H.; Christova, M.; Boland, D.; Bouzaher, A.; Catoire, F.; Godbert-Mouret, L.; Koubiti, M.; Mekkaoui, S.; Rosato, J.; Marandet, Y.; Stamm, R.

    2010-11-01

    In order to provide a general framework where the Stark broadening of atomic lines in plasmas can be calculated, we model the plasma stochastic electric field by using the CTRW approach [1,2]. This allows retaining non Markovian terms in the Schrödinger equation averaged over the electric field fluctuations. As an application we consider a special case of a non separable CTRW process, the so called Kangaroo process [3]. An analytic expression for the line profile is finally obtained for arbitrary waiting time distribution functions. An application to the hydrogen Lyman α line is discussed.

  13. Low-redshift Lyman-alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1992-01-01

    Ultraviolet observations of the low-redshift quasar 3C 273 using the Hubble Space Telescope have revealed many more Lyman-alpha absorption lines than would be expected from extrapolation of the absorption systems seen toward QSOs at z about 2. It is shown here that these absorption lines can plausibly be produced by gas at large radii in the disks of spiral and irregular galaxies; the gas is confined by the dark matter halos and ionized and heated by the extragalactic radiation field. This scenario does not require the extragalactic ionizing radiation field to decline as rapidly with decreasing z as the QSO emissivity. Observations of Ly-alpha absorption through the halos of known galaxies at low redshift will constrain both the extragalactic background and the properties of galactic halos.

  14. EMPIRICAL LINE LISTS AND ABSORPTION CROSS SECTIONS FOR METHANE AT HIGH TEMPERATURES

    SciTech Connect

    Hargreaves, R. J.; Bernath, P. F.; Dulick, M.; Bailey, J.

    2015-11-01

    Hot methane is found in many “cool” sub-stellar astronomical sources including brown dwarfs and exoplanets, as well as in combustion environments on Earth. We report on the first high-resolution laboratory absorption spectra of hot methane at temperatures up to 1200 K. Our observations are compared to the latest theoretical spectral predictions and recent brown dwarf spectra. The expectation that millions of weak absorption lines combine to form a continuum, not seen at room temperature, is confirmed. Our high-resolution transmittance spectra account for both the emission and absorption of methane at elevated temperatures. From these spectra, we obtain an empirical line list and continuum that is able to account for the absorption of methane in high temperature environments at both high and low resolution. Great advances have recently been made in the theoretical prediction of hot methane, and our experimental measurements highlight the progress made and the problems that still remain.

  15. PG 1700 + 518 - a low-redshift, broad absorption line QSO

    SciTech Connect

    Pettini, M.; Boksenberg, A.

    1985-07-01

    The first high-resolution optical spectra and lower resolution UV spectra of PG 1700 + 518, the only known broad-absorption-line (BAL) QSO at low emission redshift (0.288) are presented. The optical data were obtained with the Isaac Newton Telescope on the island of La Palma and the UV data with the International Ultraviolet Explorer satellite. The outstanding feature of the optical spectrum is a strong, broad Mg II absorption trough, detached from the Mg II emission line and indicative of ejection velocities of between 7000 and 18,000 km/s. Also detected were narrow (FWHM = 350 km/s) Mg II absorption lines at absolute z = 0.2698, which are probably related to the mass ejection phenomenon. It is concluded that the emission-line spectrum is similar to that of other low-redshift QSOs although there are some obvious differences from typical BAL QSOs, most notably in the unusually low level of ionization of both emission-line and broad absorption line gas. 21 references.

  16. Microlensing Constraints on Broad Absorption and Emission Line Flows in the Quasar H1413+117

    NASA Astrophysics Data System (ADS)

    O'Dowd, Matthew J.; Bate, Nicholas F.; Webster, Rachel L.; Labrie, Kathleen; Rogers, Joshua

    2015-11-01

    We present new integral field spectroscopy of the gravitationally lensed broad absorption line (BAL) quasar H1413+117, covering the ultraviolet restframe spectral range. We observe strong microlensing signatures in lensed image D, and we use this microlensing to simultaneously constrain both the broad emission and broad absorption line gas. The wavelength independence of image D magnifications across the broad emission lines (BELs) indicates a lower limit on the broad emission line region (BELR) size equal to the Einstein radius (ER) of the system: ≳11 {(< M> /{M}⊙ )}0.5 lt-day for a lens redshift of 1.4 and ≳15 {(< M> /{M}⊙ )}0.5 lt-day for zL = 0.94. Lensing simulations verify that the observed wavelength independence is very unlikely for BELRs with significant velocity stratification at size scales below an ER. We perform spectral decomposition to derive the intrinsic BEL and continuum spectrum, subject to BAL absorption. We reconstruct the intrinsic BAL absorption profile, whose features allow us to constrain outflow kinematics in the context of a disk-wind model. We find a very sharp, blueshifted onset of absorption of 1500 km s-1 in both C iv and N v, which may correspond to an inner edge of a disk-wind’s radial outflow. The lower ionization Si iv and Al iii have higher-velocity absorption onsets, consistent with a decreasing ionization parameter with radius in an accelerating outflow. There is evidence of strong absorption in the BEL component, which indicates a high covering factor for absorption over two orders of magnitude in outflow radius.

  17. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.

    PubMed

    Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L

    2013-01-30

    The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.

  18. Metal-line absorption at Zabs approximately Zem from associated galaxies

    NASA Astrophysics Data System (ADS)

    Ellingson, E.; Yee, H. K. C.; Bechtold, Jill; Dobrzycki, Adam

    1994-04-01

    For a preliminary study of whether C IV absorption at Zabs approximately Zem is related to associated galaxy companions, we have collected data from a sample of 10 quasars with 0.15 less than z less than 0.65 for which high-resolution optical and UV spectroscopy is available from the literature, and for which we have deep optical images and limited spectroscopy. We also present new optical spectra for two of our samples. Four of these quasars have associated C IV absorption systems. In thes four fields, there are eight galaxies with Mr less than -19.0 mag within 35 kpc of the quasar (projected distance, assuming they are at the quasar redshift), which may be candidates for the associated C IV absorption. This observed density of galaxies near quasars with associated C IV absorption is significantly greater than that for a control sample of quasars chosen from the literature. This result suggests that galaxies near the quasar line of sight may be linked with associated C IV absorption. None of these quasars show associated Mg II absorption, despite the presence of galaxies very near the line of sight, suggesting a Mg II 'proximity effect,' where ionizing flux from the quasar destroys the Mg(+) from at least the outer parts of the galaxies. Three quasars are located in rich galaxy clusters, but none of these quasars are found to have associated C IV absorption. This suggests that galaxies in rich clusters associated with quasars are less likely to be metal-line absorbers. It is plausible that the extended galaxy halos which may be responsible for the absorptions are stripped from galaxies in these dense environments. While it seems that at Z approximately 0.6 rich clusters do not cause them, associated C IV absorption systems at higher redshift may be explained by associated clusters if there has been evolution in the properties of galaxy halos in dense environments.

  19. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  20. Polarization and Structure of Broad Absorption Line Quasi-Stellar Objects

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick Michael

    This thesis is a spectropolarimetric survey of broad absorption line quasi-stellar objects (BAL QSO). We observed 36 BAL QSO at the Palomar and W. M. Keck Observatories. BAL QSO have higher polarization than other quasars, reinforcing the view that they are normal quasars viewed from an equatorial aspect. However, there is a wide distribution of polarization values, which may be due to intrinsic differences in the geometry or optical depth to scattering. No correlations are found among emission line or broad absorption line properties and continuum polarization, suggesting that these properties are regulated by internal differences unrelated to viewing angle. The continuum polarization of BAL QSO is weakly wavelength-dependent after correction for emission line dilution. In most objects, the polarisation rises to the blue, suggesting that dust scattering or absorption may be important. Broad emission line photons are polarized less than the continuum; and the position angle of the electric vector is rotated with respect to the continuum. The semi-forbidden C III) emission line is polarized differently than the C IV emission line, suggesting resonance scattering in the C III) emission line region. Resonantly scattered photons from the broad absorption line region are detected at high velocities red-ward and blue-ward of the C IV line center in the spectra of some objects. These photons are negatively polarized with respect to the continuum photons, showing that the broad absorption line region and the continuum scattering region are oriented perpendicular to each other. The polarization increases in the BAL troughs, due mainly to partial coverage of the central source by the broad absorption line region. The geometry of the intervening BAL clouds is skewed with respect to the continuum scattering region, which results in position angle rotations in the BAL. The variation of polarization with velocity in the BAL is consistent with a non-radial, accelerating outflow

  1. Narrow absorption lines with two observations from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei; Cao, Yue

    2015-07-01

    We assemble 3524 quasars from the Sloan Digital Sky Survey (SDSS) with repeated observations to search for variations of the narrow C IV λ λ 1548,1551 and Mg II λ λ 2796,2803 absorption doublets in spectral regions shortward of 7000 Å in the observed frame, which corresponds to time-scales of about 150-2643 d in the quasar rest frame. In these quasar spectra, we detect 3580 C IV absorption systems with zabs = 1.5188-3.5212 and 1809 Mg II absorption systems with zabs = 0.3948-1.7167. In term of the absorber velocity (β) distribution in the quasar rest frame, we find a substantial number of C IV absorbers with β < 0.06, which might be connected to absorption of quasar outflows. The outflow absorption peaks at υ ≈ 2000 km s^{-1} and drops rapidly below this peak value. Among 3580 C IV absorption systems, 52 systems (˜1.5 per cent) show obvious variations in equivalent widths in the absorber rest frame (Wr): 16 enhanced, 16 emerged, 12 weakened and 8 disappeared systems, respectively. We find that changes in Wrλ1548 are related neither to the time-scales of the two SDSS observations nor to absorber velocities in the quasar rest frame. Variable absorption in low-ionization species is important to constrain the physical conditions of the absorbing gas. There are two variable Mg II absorption systems measured from SDSS spectra detected by Hacker et al. However, in our Mg II absorption sample, we find that neither shows variable absorption with confident levels of >4σ for λ2796 lines and >3σ for λ2803 lines.

  2. A ghostly damped Ly α system revealed by metal absorption lines

    NASA Astrophysics Data System (ADS)

    Fathivavsari, H.; Petitjean, P.; Zou, S.; Noterdaeme, P.; Ledoux, C.; Krühler, T.; Srianand, R.

    2017-03-01

    We report the discovery of the first 'ghostly' damped Ly α absorption system (DLA), which is identified by the presence of absorption from strong low-ion species at zabs = 1.704 65 along the line of sight to the quasar SDSS J113341.29-005740.0 with zem = 1.704 41. No Ly α absorption trough is seen associated with these absorptions because the DLA trough is filled with the leaked emission from the broad emission-line region of the quasar. By modelling the quasar spectrum and analysing the metal lines, we derive log N(H I)(cm-2) ∼21.0 ± 0.3. The DLA cloud is small (≤0.32 pc), thus not covering entirely the broad-line region and is located at ≥39 pc from the central active galactic nucleus (AGN). Although the DLA is slightly redshifted relative to the quasar, its metallicity ([S/H] = -0.41 ± 0.30) is intermediate between what is expected from infalling and outflowing gas. It could be possible that the DLA is part of some infalling material accreting on to the quasar host galaxy through filaments, and that its metallicity is raised by mixing with the enriched outflowing gas emanating from the central AGN. Current DLA surveys miss these 'ghostly' DLAs, and it would be important to quantify the statistics of this population by searching the Sloan Digital Sky Survey (SDSS) data base using metal absorption templates.

  3. Resolution Effects on Quasar Absorption Line Studies of ΛCDM Simulations

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn; Ceverino, D.; Churchill, C. W.; Murphy, M. T.; Evans, J. L.

    2009-01-01

    The technique of using background quasars to study absorption lines produced by gaseous halos of foreground galaxies provides a uniquely powerful tool to probe the gas-galaxy and IGM interface. With absorption lines, we are capable of studying the kinematic, chemical, and ionization conditions of galactic halos over all redshifts out to projected galactocentric radii of several 100 kpc. However, interpreting these data can be difficult. We have recently begun to produce similar absorption line observations of galaxies and their gaseous halos in LCDM cosmological simulations in order to constrain the dynamic interaction of the galaxy/halo/cosmic web environment and the distribution of gas within halos. The simulations are performed using the Eulerian Gasdynamics plus N-body Adaptive Refinement Tree (ART) code, were the highest resolution gas cells are 20-100 pc. However, absorption lines are primarily produced/observed in the halos of galaxies where the resolution is lower. Here, we quantify how varying the resolution affects the measured absorption velocity spreads, number of clouds, and covering fractions of halo gas within the simulated galaxies. This is an important step toward understanding the interplay between halo gas kinematics and small scale structure. It is crucial that we understand these effects in order to correctly interpret our observations.

  4. VizieR Online Data Catalog: QSOs narrow absorption line variability (Hacker+, 2013)

    NASA Astrophysics Data System (ADS)

    Hacker, T. L.; Brunner, R. J.; Lundgren, B. F.; York, D. G.

    2013-06-01

    Catalogues of 2,522 QAL systems and 33 variable NAL systems detected in SDSS DR7 quasars with repeat observations. The object identifiers, position coordinates, and plate-MJD-fibre designations are taken from the SpecObjAll table in the SDSS Catalogue Archive Server (CAS) while the quasar redshifts (zqso) are from Hewett & Wild (2010, Cat. J/MNRAS/405/2302). The absorption system redshift (zabs), system grade, and detected lines are outputs of the York et al. (2013, in. prep.) QAL detection pipeline. Some absorption lines are flagged based on alternate identifications (a), proximity of masked pixels (b), or questionable continuum fits (c). (3 data files).

  5. Line width and line shape analysis in the inductively coupled plasma by high resolution Fourier transform spectrometry

    SciTech Connect

    Faires, L.M.; Palmer, B.A.; Brault, J.W.

    1984-01-01

    High resolution Fourier transform spectrometry has been used to perform line width and line shape analysis of eighty-one iron I emision lines in the spectral range 290 to 390nm originating in the normal analytical zone of an inductively coupled plasma. Computer programs using non-linear least squares fitting techniques for line shape analysis were applied to the fully resolved spectra to determine Gaussian and Lorentzian components of the total observed line width. The effect of noise in the spectrum on the precision of the line fitting technique was assessed, and the importance of signal to noise ratio for line shape analysis is discussed. Translational (Doppler) temperatures were calculated from the Gaussian components of the line width and were found to be on the order of 6300/sup 0/K. The excitation temperature of iron I was also determined from the same spectral data by the spectroscopic slope method based on the Einstein-Boltzmann expression for spectral intensity and was found to be on the order of 4700/sup 0/K. 31 references.

  6. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    SciTech Connect

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Trump, J. R.; Hall, P. B.; Anderson, S. F.; Hamann, F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for C IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.

  7. Sensitivity of the curve-to-growth technique utilized in rocket experiments to determine the line shape of solar He I resonance lines

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Ogawa, H. S.

    1986-01-01

    The sensitivity of the curve-of-growth (COG) technique utilized in rocket measurements to determine the line profiles of the solar He I resonance emissions is theoretically examined with attention to the possibility of determining the line core shape using this technique. The line at 584.334 A is chosen as an illustration. Various possible source functions of the solar line have been assumed in the computation of the integrated transmitted intensity. A recent observational data set obtained by the present researchers is used as the constraint of the computation. It is confirmed that the COG technique can indeed provide a good measurement of the solar line width. However, to obtain detailed knowledge of the solar profile at line center and in the core region, (1) it is necessary to be able to carry out relative solar flux measurements with a 1-percent or better precision, and (2) it must be possible to measure the He gas pressure in the absorption cell to lower than 0.1 mtorr. While these numbers apply specifically to the present geometry, the results are readily scaled to other COG measurements using other experimental parameters.

  8. Examining Contributions to Line Shapes in the ν_1 + ν_3 Band of Acetylene

    NASA Astrophysics Data System (ADS)

    Cich, Matthew J.; Caiola, Salvatore M.; Lee, Stephen W.; Lopez, Gary V.; Sears, Trevor J.; Forthomme, Damien; McRaven, C. P.; Hall, Gregory E.; Mantz, A. W.

    2013-06-01

    Using an extended cavity diode laser locked to a frequency comb, line shapes in the ν_1 + ν_3 combination band of acetylene have been studied. The frequency stability of this experiment produces high accuracy measurements that provide rigorous tests of line shape theories. Measurements of the P(11) line shape were made for pure acetylene and acetylene-nitrogen gas mixtures at a series of temperatures between 125 K and 296 K. Using the speed-dependent Voigt line shape model, parameters were determined by fitting data for all temperatures and pressures in a single multispectrum analysis. The resulting parameters successfully reproduce the measured line shapes and are valid for the acetylene-nitrogen system over the range of temperatures studied and combined pressures of up to 1 atmosphere. P(11) is isolated with respect to hot band transitions and neighboring transitions of the same band, but this is an unusual case. To explore the effects of overlapping lines, the P(1) transition was measured in a series of pure acetylene measurements in a congested spectral region. Overlapping hot band lines of measurable intensities were modeled and line shape paramters were simultaneously determined for these along with the P(1) line. Additionally, the effects of line mixing between overlapping ν_1 + ν_3 lines were explored using an appropriate line mixing model. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences.

  9. New aspects of absorption line formation in intervening turbulent clouds - I. General principles

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Kegel, Wilhelm H.

    1997-07-01

    We study the formation of absorption lines in intervening clouds with stochastic velocity fields, accounting for the fact that actually only one line of sight is observed. Our results show that the introduction of the finite velocity correlation length leads to a new type of absorption line profiles which are asymmetric in general, may have different shifts of the centres of gravity, and look like barely resolved blends, i.e. could be interpreted in a standard Voigt fitting analysis as being caused by several independent clouds with different physical parameters. Numerical results are presented for the HI Lyalpha line with N_Hi=10^12,10^14,10^15 and 10^16cm^-2, T_kin=10^4 K, and different sets of turbulent parameters. The intensity fluctuations within the line profile caused by `turbulent noise' are investigated and the confidence belts for the absorption lines are calculated. We conclude that an exact measurement of the column densities of the absorbing atoms N_a from the observed values of the optical depths tau lambda is actually impossible for the case of the correlated velocity field. One can only determine a range of values within which N_a is to be found with a certain probability.

  10. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines.

    PubMed

    Ma, Q; Tipping, R H; Leforestier, C

    2008-03-28

    It is well known that the water-vapor continuum plays an important role in the radiative balance in the Earth's atmosphere. This was first discovered by Elsasser almost 70 years ago, and since that time there has been a large body of work, both experimental and theoretical, on this topic. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H(2)O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: Far wings of allowed transitions, water dimers, and collision-induced absorption. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the absorption. The first mechanism proposed was the accumulation of the far-wing absorption of the strong allowed transitions. Later, absorption by water dimers was proposed and this mechanism provides a qualitative explanation for the strong, negative T dependence. Recently, some atmospheric modelers have proposed that collision-induced absorption is one of the major contributors. However, based on improvements in the theoretical calculation of accurate far-wing line shapes, ab initio dimer calculations, and theoretical collision-induced absorptions, it is now generally accepted that the dominant mechanism for the absorption in the infrared (IR) windows is that due to the far wings. Whether this is true for other spectral regions is not presently established. Although all these three mechanisms have a negative T dependence, their T dependences will be characterized by individual features. To analyze the characteristics of the latter will enable one to assess their roles with more certainty. In this paper, we present a detailed study of the T dependence of the far-wing absorption mechanism. We will then compare our theoretical calculations with the most recent and accurate

  11. Instrument Line Shape Modeling and Correction for Off-Axis Detectors in Fourier Transform Spectrometry

    NASA Technical Reports Server (NTRS)

    Bowman, K.; Worden, H.; Beer, R.

    1999-01-01

    Spectra measured by off-axis detectors in a high-resolution Fourier transform spectrometer (FTS) are characterized by frequency scaling, asymmetry and broadening of their line shape, and self-apodization in the corresponding interferogram.

  12. Variability of the broad absorption lines in the QSO UM 232

    NASA Technical Reports Server (NTRS)

    Barlow, Thomas A.; Junkkarinen, Vesa T.; Burbidge, E. Margaret

    1989-01-01

    Low-resolution spectra of UM 232 taken in 1978, 1979, and 1988 at Lick Observatory are presented. Large changes in the Si IV lambda 1397, CIV lambda 1549, and Al III lambda 1857 broad absorption lines are apparent. The decrease in column density in all three ions and an observed brightening of the QSO suggests that these changes are due to an increase in the ionization level driven by an increase in the central source luminosity. This mechanism has been proposed by Smith and Penston to explain small changes in the absorption spectrum of the QSO 1246-057. The spectra of UM 232 show that the fractional decrease in optical depth is smaller at higher outflow velocies. The structure of the broad absorption-line region (BALR) is investigted by estimating an ionization parameter for each ion species as a function of velocity.

  13. Cross section calculations of astrophysical interest. [for theories of absorption and emission lines

    NASA Technical Reports Server (NTRS)

    Gerjuoy, E.

    1974-01-01

    Cross sections are discussed for rotational excitation associated with theories of absorption and emission lines from molecules in space with emphasis on H2CO, CO, and OH by collisions with neutral particles such H, H2, and He. The sensitivity of the Thaddeus equation for the H2CO calculation is examined.

  14. Archival research on absorption lines in violently star-forming galaxies

    NASA Technical Reports Server (NTRS)

    Gallagher, J. S.

    1989-01-01

    A computerized analysis of a starburst model is discussed. The model proposes that the absorption line equivalent width should scale with the level of star forming activity. Archival International Ultraviolet Explorer (IUE) data on IUE spectra of luminous blue galaxies were compared with previous IUE observations of extragalactic HII regions and low luminosity galaxies. The comparisons are summarized and causes for offsets are discussed.

  15. Line shape of the non-thermal 6300 A O/1D/ emission

    NASA Technical Reports Server (NTRS)

    Schmitt, G. A.; Abreu, V. J.; Hays, P. B.

    1982-01-01

    The two-population model of Schmitt, Abreu and Hays (1981) is used to calculate the line shape of the atomic oxygen metastable state, nonthermal O(1D) 6300 A emission, in order to simulate observations made from a space platform at different zenith angles and altitudes. The Addition theorem, for spherical harmonics of a Legendre polynomial expansion of the nonthermal population distribution function, is used to obtain nonthermal line shapes observed at zenith angles other than the local vertical one.

  16. A summary of transition probabilities for atomic absorption lines formed in low-density clouds

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Smith, W. H.

    1973-01-01

    A table of wavelengths, statistical weights, and excitation energies is given for 944 atomic spectral lines in 221 multiplets whose lower energy levels lie below 0.275 eV. Oscillator strengths were adopted for 635 lines in 155 multiplets from the available experimental and theoretical determinations. Radiation damping constants also were derived for most of these lines. This table contains the lines most likely to be observed in absorption in interstellar clouds, circumstellar shells, and the clouds in the direction of quasars where neither the particle density nor the radiation density is high enough to populate the higher levels. All ions of all elements from hydrogen to zinc are included which have resonance lines longward of 912 A, although a number of weaker lines of neutrals and first ions have been omitted.

  17. Candidate Hα emission and absorption line sources in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Wevers, T.; Jonker, P. G.; Nelemans, G.; Torres, M. A. P.; Groot, P. J.; Steeghs, D.; Maccarone, T. J.; Hynes, R. I.; Heinke, C.; Britt, C.

    2017-04-01

    We present a catalogue of candidate Hα emission and absorption line sources and blue objects in the Galactic Bulge Survey (GBS) region. We use a point source catalogue of the GBS fields (two strips of (l × b) = (6° × 1°) centred at b = 1.5° above and below the Galactic Centre), covering the magnitude range 16 ≤ r΄ ≤ 22.5. We utilize (r΄ - i΄, r΄ - Hα) colour-colour diagrams to select Hα emission and absorption line candidates, and also identify blue objects (compared to field stars) using the r΄ - i΄ colour index. We identify 1337 Hα emission line candidates and 336 Hα absorption line candidates. These catalogues likely contain a plethora of sources, ranging from active (binary) stars, early-type emission line objects, cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs) to background active galactic nuclei (AGN). The 389 blue objects we identify are likely systems containing a compact object, such as CVs, planetary nebulae and LMXBs. Hot subluminous dwarfs (sdO/B stars) are also expected to be found as blue outliers. Cross-matching our outliers with the GBS X-ray catalogue yields 16 sources, including 7 (magnetic) CVs and 1 qLMXB candidate among the emission line candidates and 1 background AGN for the absorption line candidates. One of the blue outliers is a high-state AM CVn system. Spectroscopic observations combined with the multiwavelength coverage of this area, including X-ray, ultraviolet and (time-resolved) optical and infrared observations, can be used to further constrain the nature of individual sources.

  18. Nanoscale Liquid Jets Shape New Line of Business

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Just as a pistol shrimp stuns its prey by quickly closing its oversized claw to shoot out a shock-inducing, high-velocity jet of water, NanoMatrix, Inc., is sending shockwaves throughout the nanotechnology world with a revolutionary, small-scale fabrication process that uses powerful liquid jets to cut and shape objects. Emanuel Barros, a former project engineer at NASA s Ames Research Center, set out to form the Santa Cruz, California-based NanoMatrix firm and materialize the micro/nano cutting process partially inspired by the water-spewing crustacean. Early on in his 6-year NASA career, Barros led the development of re-flown flight hardware for an award-winning Spacelab project called NeuroLab. This project, the sixteenth and final Spacelab mission, focused on a series of experiments to determine the effects of microgravity on the development of the mammalian nervous system.

  19. Robotic U-shaped assembly line balancing using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Mukund Nilakantan, J.; Ponnambalam, S. G.

    2016-02-01

    Automation in an assembly line can be achieved using robots. In robotic U-shaped assembly line balancing (RUALB), robots are assigned to workstations to perform the assembly tasks on a U-shaped assembly line. The robots are expected to perform multiple tasks, because of their capabilities. U-shaped assembly line problems are derived from traditional assembly line problems and are relatively new. Tasks are assigned to the workstations when either all of their predecessors or all of their successors have already been assigned to workstations. The objective function considered in this article is to maximize the cycle time of the assembly line, which in turn helps to maximize the production rate of the assembly line. RUALB aims at the optimal assignment of tasks to the workstations and selection of the best fit robot to the workstations in a manner such that the cycle time is minimized. To solve this problem, a particle swarm optimization algorithm embedded with a heuristic allocation (consecutive) procedure is proposed. The consecutive heuristic is used to allocate the tasks to the workstation and to assign a best fit robot to that workstation. The proposed algorithm is evaluated using a wide variety of data sets. The results indicate that robotic U-shaped assembly lines perform better than robotic straight assembly lines in terms of cycle time.

  20. Spectral anomalies of the light-induced drift effect caused by the velocity dependence of the collision broadening and shift of the absorption line

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. I.; Shalagin, Anatolii M.

    2013-02-01

    We have theoretically investigated the spectral features of the light-induced drift (LID) effect, arising due to the dependence of the collision broadening γ and shift Δ of the absorption line on the velocity of resonance particles, ν. It is shown that under certain conditions, account of this dependence can radically change the spectral shape of the LID signal, up to the appearance of additional zeros in the dependence of the drift velocity on the radiation frequency.

  1. Spectral anomalies of the light-induced drift effect caused by the velocity dependence of the collision broadening and shift of the absorption line

    SciTech Connect

    Parkhomenko, A I; Shalagin, Anatolii M

    2013-02-28

    We have theoretically investigated the spectral features of the light-induced drift (LID) effect, arising due to the dependence of the collision broadening {gamma} and shift {Delta} of the absorption line on the velocity of resonance particles, {nu}. It is shown that under certain conditions, account of this dependence can radically change the spectral shape of the LID signal, up to the appearance of additional zeros in the dependence of the drift velocity on the radiation frequency. (nonlinear optical phenomena)

  2. Atlas of absorption lines from 0 to 17 900 cm(-1)

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Rothman, L. S.; Rinsland, C. P.; Smith, M. A. H.; Richardson, D. J.; Larsen, J. C.

    1981-01-01

    Plots of absorption line strength versus line position for wavenumbers from 0 to 17,900 cm(-1) are shown for 20 atmospheric gases (H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2, NO2, NH3, HNO3, OH, HF, HCl, HBr, HI, ClO, OCS, H2CO). Also shown are similar plots of lower-state energy values for adsorption lines for the strongly adsorbing atmospheric gases (H2O, CO2, O3, and CH4) for wavenumbers from 0 to 5000 cm(-1).

  3. Broad absorption line variability on multi-year timescales in a large quasar sample

    NASA Astrophysics Data System (ADS)

    Filiz Ak, Nurten

    generally supportive of models where most BAL absorption arises at radii of 10--1000 light days. Average lifetime for a BAL trough along our line-of-sight is a few thousand years which is long compared to the orbital time of the accretion disk at the wind-launching radius. We have examined if BAL variations on several timescales depend upon quasar properties, including quasar luminosity, Eddington luminosity ratio, black hole mass, redshift, and radio loudness. Within the ranges of these properties spanned by our sample, we do not find any strong dependences. The coordinated trough variability of BAL quasars with multiple troughs suggests that changes in "shielding gas" may play a significant role in driving general BAL variability. I present a study investigating the dependence of C IV BAL properties and variation characteristics on accompanying Si IV and Al III absorption. Results of this study show that C IV BAL trough shapes, depths, velocity widths and strengths show a strong dependence on the presence of Si IV and Al III BAL troughs at corresponding velocities. Similarly, the variation characteristics and depth variation profiles of C IV BAL troughs also show a strong connection to BAL troughs in these transitions. Using these ions as a basic tracer of ionization level of the absorbing gas, systematic measurements of variability and profiles for a large sample of C IV , Si IV, and Al III BAL troughs present observational evidences of the relation between ionization level, column density and kinematics of outflows. Utilizing observational investigations on a large BAL quasar sample, we show that ionization level, column density and kinematics of outflows show correlated object-to-object differences. We present a detailed comparison between the observational results of this study and the well studied disk-wind model of quasar outflows, which suggests that the wind is launched from the accretion disk at ˜ 1016--1017 cm and radiatively driven by UV line pressure. Results

  4. SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.

    2017-01-01

    Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the intergalactic medium, and they may inject kinetic energy to the host galaxy, influencing its evolution. The traditional method of analyzing BALQSO spectra involves measuring myriad absorption lines, computing the inferred ionic column densities in each feature, and comparing with the output of photonionization models. This method is inefficient and does not handle line blending well. We introduce SimBAL, a spectral synthesis fitting method for BALQSOs, which compares synthetic spectra created from photoionization model results with continuum-normalized observed spectra using Bayesian model calibration. We find that we can obtain an excellent fit to the UV to near-IR spectrum of the low-redshift BALQSO SDSS J0850+4451, including lines from diverse ionization states such as PV, CIII*, SIII, Lyalpha, NV, SiIV, CIV, MgII, and HeI*.

  5. The Connection between Galaxies and Intergalactic Absorption Lines at Redshift 2<~z<~3

    NASA Astrophysics Data System (ADS)

    Adelberger, Kurt L.; Shapley, Alice E.; Steidel, Charles C.; Pettini, Max; Erb, Dawn K.; Reddy, Naveen A.

    2005-08-01

    Absorption-line spectroscopy of 23 background QSOs and numerous background galaxies has let us measure the spatial distribution of metals and neutral hydrogen around 1044 UV-selected galaxies at redshifts 1.8<~z<~3.3. The typical galaxy is surrounded to radii r~40 proper kpc by gas that has a large velocity spread (Δv>260 km s-1) and produces very strong absorption lines (NCIV>>1014 cm-2) in the spectra of background objects. These absorption lines are almost as strong as those produced by a typical galaxy's own interstellar gas. Absorption with an average column density of NCIV~=1014 cm-2 extends out to ~80 kpc, a radius large enough to imply that most strong intergalactic C IV absorption is associated with star-forming galaxies like those in our sample. Our measurement of the galaxy-C IV spatial correlation function shows that even the weakest detectable C IV systems are found in the same regions as galaxies; we find that the cross-correlation length increases with C IV column density and is similar to the galaxy autocorrelation length (r0~4 h-1 Mpc) for NCIV>~1012.5 cm-2. Distortions in the redshift-space galaxy-C IV correlation function on small scales may imply that some of the C IV systems have large peculiar velocities. Four of the five detected O VI absorption systems in our sample lie within 400 proper kpc of a known galaxy. Strong Lyα absorption is produced by the intergalactic gas within 1 h-1 comoving Mpc of most galaxies, but for a significant minority (~1/3) the absorption is weak or absent. This is not observed in smooth-particle hydrodynamic simulations that omit the effects of ``feedback'' from galaxy formation. We were unable to identify any statistically significant differences in age, dust reddening, environment, or kinematics between galaxies with weak nearby H I absorption and the rest, although galaxies with weak absorption may have higher star formation rates. Galaxies near intergalactic C IV systems appear to reside in relatively dense

  6. Absorption line profiles in a companion spectrum of a mass losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1990-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  7. Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties

    SciTech Connect

    Gonzalez-Fernandez, M.A.; Torres, T.E.; Andres-Verges, M.; Costo, R.; Presa, P. de la; Serna, C.J.; Morales, M.P.; Marquina, C.; Ibarra, M.R.; Goya, G.F.

    2009-10-15

    We present a study on the magnetic properties of naked and silica-coated Fe{sub 3}O{sub 4} nanoparticles with sizes between 5 and 110 nm. Their efficiency as heating agents was assessed through specific power absorption (SPA) measurements as a function of particle size and shape. The results show a strong dependence of the SPA with the particle size, with a maximum around 30 nm, as expected for a Neel relaxation mechanism in single-domain particles. The SiO{sub 2} shell thickness was found to play an important role in the SPA mechanism by hindering the heat outflow, thus decreasing the heating efficiency. It is concluded that a compromise between good heating efficiency and surface functionality for biomedical purposes can be attained by making the SiO{sub 2} functional coating as thin as possible. - Graphical Abstract: The magnetic properties of Fe{sub 3}O{sub 4} nanoparticles from 5 to 110 nm are presented, and their efficiency as heating agents discussed as a function of particle size, shape and surface functionalization.

  8. A Brownian Dynamics Approach to ESR Line Shape Calculations

    NASA Astrophysics Data System (ADS)

    Wright, Matthew P.

    The work presented in this thesis uses a Monte Carlo technique to simulate spectra for 14N spin-labels and 15N spin labels. The algorithm presented here also has the capability to produce simulated spectra for any admixture of 14N and 15N. The algorithm makes use of `iterative loops' to model Brownian rotational diffusion and for the repeated evaluation of the spectral correlation function (relaxation function). The method described in this work starts with a derivation of an angular dependent "Spin Hamiltonian" that when diagonalized yields orientation dependent eigenvalues. The resulting eigenvalue equations are later used to calculate the energy trajectories of a nitroxide spin-label undergoing rotational diffusion. The energy trajectories are then used to evaluate the relaxation function. The absorption spectrum is obtained by applying a Fourier transform to the relaxation function. However, the application of the Fourier transform to the relaxation function produces "leakage" effects that manifest as spurious peaks in the first derivative spectrum. To counter "leakage" effects a data windowing function was applied to the relaxation function prior to the Fourier transform. In order to test the accuracy of this algorithm, simulated spectra for 14N, and 15N spin labels diffusing in a glycerol-water mixture as well as a 14N-15N admixture diffusing in the same solvent were produced and compared to experimental spectra. An attempt to quantify the level of agreement was made by calculating the mean square residual of the simulated and experimental spectra. The main spectral features were reproduced with reasonable fidelity by the simulated spectra.

  9. Multiple Velocity Components in the CIV Absorption Line of NGC5548

    NASA Astrophysics Data System (ADS)

    Mathur, S.; Elvis, M.; Wilkes, B. J.

    1998-12-01

    The bright, variable, Seyfert 1 galaxy NGC 5548 has been extensively studied at many wavelengths. It has been a target of reverberation mapping experiments in the optical and UV (Peterson et al. 1992, Clavel et al. 1991, Korista et al. 1995). These have led to the accurate determination of the physical size of the BELR. The UV spectrum also shows absorption lines (Shull & Sachs 1993, Mathur, Elvis & Wilkes 1995 (MEW95)). Recently, based on ASCA and HST FOS data, MEW95 showed that the ionizaed X-ray and UV absorption in NGC5548 is likely to originate in the same material. We have now obtained high resolution GHRS spectrum around the CIV line. We find that the absorption line splits into multiple velocity components. The X-ray absorber would be associated with one of these components. We also have a tentative evidence for inflow based on the redshifted absorption component. This is in accord with the radial infall in NGC 5548 found by Done & Krolik (1996) based on the kinematic model of the BELR.

  10. Tunable bistability and asymmetric line shape in ring cavity-coupled Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Xinlu; Chen, Lixue

    2008-01-01

    A novel configuration of ring cavity-coupled Michelson interferometer is proposed to create sharp asymmetric multiple-resonance line shape, in which a ring cavity is side-coupled to one arm and a phase shifter is introduced into the other arm for static phase compensation. Such asymmetric line shape allows the tuning of the system between zero and complete transmission, with a phase offset much narrower than the full width of the cavity resonance itself. As tuning between resonance peak and notch of such asymmetric profile, optical transmission becomes much more sensitive to the round-trip phase shift of ring cavity than that in the case of symmetric Lorentzian line shape. By cooperating Kerr nonlinearity and cavity feedback, novel hysteresis loops and intrinsic bistability are achievable by adjusting incident power. The shapes of hysteresis curves associated with asymmetric resonance line shape are different from those arising from symmetric line shape. By adjusting the static phase compensation of phase shifter, tunable hysteresis loop and asymmetric multiple-resonance transmission can be easy performed. The simply constructed device is a good reference for sensitive optical switch, filter and sensor.

  11. Spectral shapes of Ar-broadened HCl lines in the fundamental band by classical molecular dynamics simulations and comparison with experiments

    SciTech Connect

    Tran, H.; Domenech, J.-L.

    2014-08-14

    Spectral shapes of isolated lines of HCl perturbed by Ar are investigated for the first time using classical molecular dynamics simulations (CMDS). Using reliable intermolecular potentials taken from the literature, these CMDS provide the time evolution of the auto-correlation function of the dipole moment, whose Fourier-Laplace transform leads to the absorption spectrum. In order to test these calculations, room temperature spectra of various lines in the fundamental band of HCl diluted in Ar are measured, in a large pressure range, with a difference-frequency laser spectrometer. Comparisons between measured and calculated spectra show that the CMDS are able to predict the large Dicke narrowing effect on the shape of HCl lines and to satisfactorily reproduce the shapes of HCl spectra at different pressures and for various rotational quantum numbers.

  12. The Herbig AE star AB AUR - absorption along the line of sight and chromospheric emission

    NASA Astrophysics Data System (ADS)

    Felenbok, P.; Praderie, F.; Talavera, A.

    1983-11-01

    The H-alpha, He I 5876 A, Na I 5890 A, Ca II IR triplet, and P14-P16 Paschen lines of AB Aur are all brighter than the nearby continuum. The emission lines are examined with regard to their origin as either recombination or chromospheric emission. While He I and H-alpha could be formed simultaneously by recombination under certain circumstances, a deep chromosphere would account for He I 5876, for the Paschen lines in emission, and perhaps even for the Ca II IR triplet in emission. A deep chromosphere would also explain why higher Balmer lines are in absorption and why the Ca II resonance lines have only an autoreversed emission core, despite not being fully in emission.

  13. Selection of the optimal combination of water vapor absorption lines for detection of temperature in combustion zones of mixing supersonic gas flows by diode laser absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mironenko, V. R.; Kuritsyn, Yu. A.; Bolshov, M. A.; Liger, V. V.

    2016-12-01

    Determination of a gas medium temperature by diode laser absorption spectrometry (DLAS) is based on the measurement of integral intensities of the absorption lines of a test molecule (generally water vapor molecule). In case of local thermodynamic equilibrium temperature is inferred from the ratio of the integral intensities of two lines with different low energy levels. For the total gas pressure above 1 atm the absorption lines are broadened and one cannot find isolated well resolved water vapor absorption lines within relatively narrow spectral interval of fast diode laser (DL) tuning range (about 3 cm-1). For diagnostics of a gas object in the case of high temperature and pressure DLAS technique can be realized with two diode lasers working in different spectral regions with strong absorption lines. In such situation the criteria of the optimal line selection differs significantly from the case of narrow lines. These criteria are discussed in our work. The software for selection the optimal spectral regions using the HITRAN-2012 and HITEMP data bases is developed. The program selects spectral regions of DL tuning, minimizing the error of temperature determination δT/T, basing on the attainable experimental error of line intensity measurement δS. Two combinations of optimal spectral regions were selected - (1.392 & 1.343 μm) and (1.392 & 1.339 μm). Different algorithms of experimental data processing are discussed.

  14. [Laser induced breakdown spectra of coal sample and self-absorption of the spectral line].

    PubMed

    Zhang, Gui-yin; Ji, Hui; Jin, Yi-dong

    2014-12-01

    The LIBS of one kind of household fuel coal was obtained with the first harmonic output 532 nm of an Nd·YAG laser as radiation source. With the assignment of the spectral lines, it was found that besides the elements C, Si, Mg, Fe, Al, Ca, Ti, Na and K, which are reported to be contained in coal, the presented sample also contains trace elements, such as Cd, Co, Hf, Ir, Li, Mn, Ni, Rb, Sr, V, W, Zn, Zr etc, but the spectral lines corresponding to O and H elements did not appear in the spectra. This is owing to the facts that the transition probability of H and O atoms is small and the energy of the upper level for transition is higher. The results of measurement also show that the intensity of spectral line increases with the laser pulse energy and self-absorption of the spectral lines K766.493 nm and K769.921 nm will appear to some extent. Increasing laser energy further will make self-absorption more obvious. The presence of self-absorption can be attributed to two factors. One is the higher transition rate of K atoms, and the other is that the increase in laser intensity induces the enhancement of the particle number density in the plasma.

  15. THE PHYSICAL CONDITIONS OF THE INTRINSIC N V NARROW ABSORPTION LINE SYSTEMS OF THREE QUASARS

    SciTech Connect

    Wu Jian; Charlton, Jane C.; Misawa, Toru; Eracleous, Michael; Ganguly, Rajib E-mail: misawatr@shinshu-u.ac.j

    2010-10-20

    We employ detailed photoionization models to infer the physical conditions of intrinsic narrow absorption line systems found in high-resolution spectra of three quasars at z = 2.6-3.0. We focus on a family of intrinsic absorbers characterized by N V lines that are strong relative to the Ly{alpha} lines. The inferred physical conditions are similar for the three intrinsic N V absorbers, with metallicities greater than 10 times the solar value (assuming a solar abundance pattern), and with high ionization parameters (log U {approx} 0). Thus, we conclude that the unusual strength of the N V lines results from a combination of partial coverage, a high ionization state, and high metallicity. We consider whether dilution of the absorption lines by flux from the broad emission line region can lead us to overestimate the metallicities and we find that this is an unlikely possibility. The high abundances that we infer are not surprising in the context of scenarios in which metal enrichment takes place very early on in massive galaxies. We estimate that the mass outflow rate in the absorbing gas (which is likely to have a filamentary structure) is less than a few M{sub sun} yr{sup -1} under the most optimistic assumptions, although it may be embedded in a much hotter, more massive outflow.

  16. The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines

    NASA Technical Reports Server (NTRS)

    Markowitz, Alex; Reeves, James N.; Miniutti, Giovanni; Serlemitsos, Peter; Kunieda, Hideyo; Taqoob, Tahir; Fabian, Andrew C.; Fukazawa, Yasushi; Mushotzky, Richard; Okajima, Takashi; Gallo, Luigi; Awaki, Hisamitsu; Griffiths, Richard E.

    2007-01-01

    We present results from a 150 ksec Suzaku observation of the Seyfert 1 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with partial covering by a lowly-ionized absorber with a column density near 5x10(exp 22) cm(exp -2) and with a covering fraction 96-100 percent. Narrow K-shell absorption features due to He- and H-like Fe confirm the presence of a high-ionization absorbing component as well. A broad Fe K(alpha) diskline is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad line. The narrow Fe Ka line at 6.4 keV is resolved, yielding a velocity width commensurate with the optical Broad Line Region. The strength of the Compton reflection hump suggests a contribution mainly from the broad Fe line origin. We include in our model soft band emission lines from He- and H-like ions and radiative recombination lines, consistent with photo-ionization, though a small contribution from collisional ionization is possible.

  17. Dust depletion of Ca and Ti in QSO absorption-line systems

    NASA Astrophysics Data System (ADS)

    Guber, C. R.; Richter, P.

    2016-06-01

    Aims: To explore the role of titanium- and calcium-dust depletion in gas in and around galaxies, we systematically study Ti/Ca abundance ratios in intervening absorption-line systems at low and high redshift. Methods: We investigate high-resolution optical spectra obtained by the UVES instrument at the Very Large Telescope (VLT) and spectroscopically analyze 34 absorption-line systems at z ≤ 0.5 to measure column densities (or limits) for Ca ii and Ti ii. We complement our UVES data set with previously published absorption-line data on Ti/Ca for redshifts up to z ~ 3.8. Our absorber sample contains 110 absorbers including damped Lyman α systems (DLAs), sub-DLAs, and Lyman-Limit systems (LLS). We compare our Ti/Ca findings with results from the Milky Way and the Magellanic Clouds and discuss the properties of Ti/Ca absorbers in the general context of quasar absorption-line systems. Results: Our analysis indicates that there are two distinct populations of absorbers with either high or low Ti/Ca ratios with a separation at [Ti/Ca] ≈ 1. While the calcium-dust depletion in most of the absorbers appears to be severe, the titanium depletions are mild in systems with high Ti/Ca ratios. The derived trend indicates that absorbers with high Ti/Ca ratios have dust-to-gas ratios that are substantially lower than in the Milky Way. We characterize the overall nature of the absorbers by correlating Ti/Ca with other observables (e.g., metallicity, velocity-component structure) and by modeling the ionization properties of singly-ionized Ca and Ti in different environments. Conclusions: We conclude that Ca ii and Ti ii bearing absorption-line systems trace predominantly neutral gas in the disks and inner halo regions of galaxies, where the abundance of Ca and Ti reflects the local metal and dust content of the gas. Our study suggests that the Ti/Ca ratio represents a useful measure for the gas-to-dust ratio and overall metallicity in intervening absorption-line systems.

  18. Inner salt-shaped small molecular photosensitizer with extremely enhanced two-photon absorption for mitochondrial-targeted photodynamic therapy.

    PubMed

    Hu, Wenbo; He, Tingchao; Jiang, Rongcui; Yin, Jun; Li, Lin; Lu, Xiaomei; Zhao, Hui; Zhang, Lei; Huang, Ling; Sun, Handong; Huang, Wei; Fan, Quli

    2017-02-04

    Herein, we experimentally and theoretically demonstrate an unprecedentedly enhanced two-photon absorption in a small organic molecule by a simple introduction of an inner salt-shaped structure. Moreover, such an inner salt-shaped small molecule also exhibits superior singlet oxygen quantum yield and fascinating structure-inherent mitochondrial-targeting ability for highly efficient two-photon photodynamic therapy via a mitochondrial apoptosis pathway.

  19. Line parameters including temperature dependences of air- and self-broadened line shapes of 12C16O2: 2.06-μm region

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Sung, Keeyoon; Brown, Linda R.; Miller, Charles E.; Payne, Vivienne H.; Drouin, Brian J.; Yu, Shanshan; Crawford, Timothy J.; Mantz, Arlan W.; Smith, Mary Ann H.; Gamache, Robert R.

    2016-08-01

    This study reports the results from analyzing a number of high resolution, high signal-to-noise ratio (S/N) spectra in the 2.06-μm spectral region for pure CO2 and mixtures of CO2 in dry air. A multispectrum nonlinear least squares curve fitting technique has been used to retrieve the various spectral line parameters. The dataset includes 27 spectra: ten pure CO2, two 99% 13C-enriched CO2 and fifteen spectra of mixtures of 12C-enriched CO2 in dry air. The spectra were recorded at various gas sample temperatures between 170 and 297 K. The absorption path lengths range from 0.347 to 49 m. The sample pressures for the pure CO2 spectra varied from 1.1 to 594 Torr; for the two 13CO2 spectra the pressures were ∼10 and 146 Torr. For the air-broadened spectra, the pressures of the gas mixtures varied between 200 and 711 Torr with CO2 volume mixing ratios ranging from 0.014% to 0.203%. The multispectrum fitting technique was applied to fit simultaneously all these spectra to retrieve consistent set of line positions, intensities, and line shape parameters including their temperature dependences; for this, the Voigt line shape was modified to include line mixing (via the relaxation matrix formalism) and quadratic speed dependence. The new results are compared to select published values, including recent ab initio calculations. These results are required to retrieve the column averaged dry air mole fraction (XCO2) from space-based observations, such as the Orbiting Carbon Observatory-2 (OCO-2) satellite mission that NASA launched in July 2014.

  20. Interstellar Absorption Lines in the Spectrum of the Starburst Galaxy NGC 1705

    NASA Astrophysics Data System (ADS)

    Sahu, M. S.

    1998-09-01

    A Goddard High Resolution Spectrograph archival study of the interstellar absorption lines in the line of sight to the H i-rich, starburst dwarf galaxy NGC 1705 in the 1170 to 1740 Å range at ~120 km s^-1 resolution is presented. The absorption features arising because of photospheric lines are distinctly different from the interstellar lines: the photospheric lines are weak, broad (equivalent widths >1 Å), asymmetric, and centered around the systemic LSR velocity of NGC 1705 (~610 km s^-1). The interstellar lines consist of three relatively narrow components at LSR velocities of -20, 260, and 540 km s^-1, and include absorption by neutral atoms (N i lambda1200 triplet and O i lambda1302), singly ionized atoms (Si ii lambdalambda1190, 1193, 1260, 1304, and 1526, S ii lambda1253, C ii lambda1334, C ii^* lambda1336, Fe ii lambda1608, and Al ii lambda1670), and atoms in higher ionization states (Si iii lambda1206, Si iv lambdalambda1393, 1402, and C iv lambdalambda1548, 1550). The Si iv and C iv absorption features have both interstellar and photospheric contributions. In an earlier study, Sahu & Blades identified the absorption system at -20 km s^-1 with Milky Way disk/halo gas, and the 260 km s^-1 system with a small, isolated high-velocity cloud HVC 487, which is probably associated with Magellanic Stream gas. The 540 km s^-1 absorption system is associated with a kiloparsec-scale expanding, ionized supershell centered on the super-star cluster NGC 1705-1. The analysis presented in this paper consists of (1) a list of all interstellar absorption features with greater than 3 sigma significance and their measured equivalent widths, (2) plots of the lines in the various atomic species together with the results of nonlinear least-squares fit profiles to the observed data, and (3) unpublished 21 cm maps from the Wakker & van Woerden survey showing the large-scale H i distribution in the region near the NGC 1705 sight line and HVC 487. Furthermore, weak N i lambda1200

  1. The Hubble Space Telescope quasar absorption line key project. III - First observational results on Milky Way gas

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Lu, Limin; Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Lockman, Felix J.; Sargent, W. L. W.

    1993-01-01

    Absorption lines found near zero redshift due to Milky Way disk and halo gas in the spectra of 15 quasars observed with the Faint Object Spectrograph (FOS) of the HST at a resolution of about 230 km/s are reported. Results show that Milky Way absorption lines comprise about 44 percent of all absorption lines seen in the first group of Key Project FOS spectra. Milky Way lines were observed for 3C 273 and H1821 + 643. Limits to the Mg-to-H abundance ratio obtained for very high velocity Mg II absorption detections imply gas-phase Mg abundances for the very high velocity gas ranging from more than 0.059 to more than 0.32 times the solar abundance. In all cases where high-velocity H I emission is seen, corresponding high-velocity metal-line absorption is observed.

  2. Frequency-fluctuation model applied to Stark-Zeeman spectral line shapes in plasmas

    SciTech Connect

    Ferri, S.; Calisti, A.; Mosse, C.; Mouret, L.; Talin, B.; Gigosos, M. A.; Gonzalez, M. A.; Lisitsa, V.

    2011-08-15

    A very fast method for calculating line shapes in the presence of an external magnetic field accounting for charge particle dynamics is proposed. It is based on a reformulation of the frequency fluctuation model, which provides an expression of the dynamic line shape as a functional of the static distribution function of frequencies. In the presence of an external magnetic field, the distribution of intensity and polarization of the emission depends on the angle between the observation line and the magnetic field's direction. Comparisons with numerical simulations and experimental results for various plasma conditions show very good agreement. Results on hydrogen lines in the context of magnetic fusion and the Lyman-{alpha} line, accounting for fine structure, emitted by argon in the context of inertial fusion, are also presented.

  3. High-resolution optical and ultraviolet absorption-line studies of interstellar gas

    NASA Technical Reports Server (NTRS)

    Cowie, Lennox L.; Songaila, Antoinette

    1986-01-01

    Recent progress in the characterization of the interstellar medium (ISM) by means of optical and UV spectral data is summarized. The gas is studied by focusing on background stars whose spectra can be accurately modeled to provide the light source for the absorption-line scans. The capabilities of earth- and space-based instruments which have been and are used for the surveys are delineated. The distributions of diffuse gas densities and characteristics of the cold, warm and hot gas in the Galaxy are described in terms of the elemental abundances, kinetics and distributions of the gas. Particular note is taken of gas in the solar neighborhood and around SNR, and of absorption-line data of cosmological significance.

  4. Discovery of an X-ray Violently Variable Broad Absorption Line Quasar

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Gutierrez, Carlos M.; Punsly, Brian; Chevallier, Loic; Goncalves, Anabela C.

    2006-01-01

    In this letter, we report on a quasar that is violently variable in the X-rays, XVV. It is also a broad absorption line quasar (BALQSO) that exhibits both high ionization and low ionization UV absorption lines (LoBALQSO). It is very luminous in the X-rays (approximately 10(exp 46) ergs s(sup -l) over the entire X-ray band). Surprisingly, this does not over ionize the LoBAL outflow. The X-rays vary by a factor of two within minutes in the quasar rest frame, which is shorter than 1/30 of the light travel time across a scale length equal to the black hole radius. We concluded that the X-rays are produced in a relativistic jet beamed toward earth in which variations in the Doppler enhancement produce the XVV behavior.

  5. Effect of higher-order multipole moments on the Stark line shape

    NASA Astrophysics Data System (ADS)

    Gomez, T. A.; Nagayama, T.; Kilcrease, D. P.; Montgomery, M. H.; Winget, D. E.

    2016-08-01

    Spectral line shapes are sensitive to plasma conditions and are often used to diagnose electron density of laboratory plasmas as well as astrophysical plasmas. Stark line-shape models take into account the perturbation of the radiator's energy structure due to the Coulomb interaction with the surrounding charged particles. Solving this Coulomb interaction is challenging and is commonly approximated via a multipole expansion. However, most models include only up to the second term of the expansion (the dipole term). While there have been studies on the higher-order terms due to one of the species (i.e., either ions or electrons), there is no model that includes the terms beyond dipole from both species. Here, we investigate the importance of the higher-order multipole terms from both species on the Hβ line shape. First, we find that it is important to include higher-order terms consistently from both ions and electrons to reproduce measured line-shape asymmetry. Next, we find that the line shape calculated with the dipole-only approximation becomes inaccurate as density increases. It is necessary to include up to the third (quadrupole) term to compute the line shape accurately within 2%. Since most existing models include only up to the dipole terms, the densities inferred with such models are in question. We find that the model without the quadrupole term slightly underestimates the density, and the discrepancy becomes as large as 12% at high densities. While the case of study is limited to Hβ, we expect similar impact on other lines.

  6. Relaxation of quantum systems weakly coupled to a bath. II. Formal analysis of the total-time-ordering-cumulant and partial-time-ordering-cumulant spectral line shapes

    NASA Astrophysics Data System (ADS)

    Bretón, J.; Hardisson, A.; Mauricio, F.; Velasco, S.

    1984-07-01

    Given a quantum system of a few degrees of freedom in weak interaction with a bath, the expressions which connect its total-time-ordering-cumulant and partial-time-ordering-cumulant relaxation with the corresponding spectral line shapes of dipolar absorption are deduced. For simplicity we consider a system with a nondegenerate and nonequidistant energy spectrum. A special study in the cases of isolated resonances and of a weak interference effect between resonances is made.

  7. Locking distributed feedback laser diode frequency to gas absorption lines based on genetic programming

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Li, Guanghui; Fang, Zishan; Zhai, Yueyang; Li, Xinyi; Liu, Feng

    2017-01-01

    Distributed feedback laser is widely used as the pump beam and probe beam in atomic physical and quantum experiments. As the frequency stability is a vital characteristic to the laser diode in these experiments, a saturated absorption frequency stabilization method assisted with the function of current and frequency is proposed. The relationship between the current and frequency is acquired based on the genetic programming (GP) algorithm. To verify the feasibility of the method, the frequency stabilization system is comprised of two parts that are modeling the relation between the current and frequency by GP and processing the saturated absorption signal. The results of the frequency stabilization experiment proved that this method can not only narrow the frequency searching range near the atomic line center but also compensate for the phase delay between the saturated absorption peak and the zero crossing point of the differential error signal. The reduced phase delay increases the locking probability and makes the wavelength drift only 0.015 pm/h, which converted to frequency drift is 7 MHz/h after frequency locking on the Rb absorption line.

  8. The VLBI structure of radio-loud Broad Absorption Line quasars

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Jiang, D. R.; Gu, M.

    2016-02-01

    The nature and origin of Broad Absorption Line (BAL) quasars and their relationship to non-BAL quasars are an open question. The BAL quasars are probably normal quasars seen along a particular line of sight. Alternatively, they are young or recently refueled. The high resolution radio morphology of BAL quasars is very important to understand the radio properties of BAL quasars. We present VLBA observations at L and C bands for a sample of BAL quasars. The observations will help us to explore the VLBI radio properties, and distinguish the present models of explaining BAL phenomena.

  9. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    NASA Technical Reports Server (NTRS)

    Welty, Daniel E.

    1990-01-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  10. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    NASA Astrophysics Data System (ADS)

    Welty, Daniel E.

    1990-07-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  11. Wavelength Locking to CO2 Absorption Line-Center for 2-Micron Pulsed IPDA Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong

    2016-01-01

    An airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-micron CW (Continuous Wave) laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nanometers, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.

  12. Surprises from a Deep ASCA Spectrum of the Broad Absorption Line Quasar PHL 5200

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Matt, G.; Green, P. J.; Elvis, M.; Singh, K. P.

    2002-01-01

    We present a deep (approx. 85 ks) ASCA observation of the prototype broad absorption line quasar (BALQSO) PHL 5200. This is the best X-ray spectrum of a BALQSO yet. We find the following: (1) The source is not intrinsically X-ray weak. (2) The line-of-sight absorption is very strong, with N(sub H) = 5 x 10(exp 23)/sq cm. (3) The absorber does not cover the source completely; the covering fraction is approx. 90%. This is consistent with the large optical polarization observed in this source, implying multiple lines of sight. The most surprising result of this observation is that (4) the spectrum of this BALQSO is not exactly similar to other radio-quiet quasars. The hard X-ray spectrum of PHL 5200 is steep, with the power-law spectral index alpha approx. 1.5. This is similar to the steepest hard X-ray slopes observed so far. At low redshifts, such steep slopes are observed in narrow-line Seyfert 1 (NLS1) galaxies, believed to be accreting at a high Eddington rate. This observation strengthens the analogy between BALQSOs and NLS1 galaxies and supports the hypothesis that BALQSOs represent an early evolutionary state of quasars. It is well accepted that the orientation to the line of sight determines the appearance of a quasar: age seems to play a significant role as well.

  13. VizieR Online Data Catalog: HeI* in broad absorption line QSOs (Liu+, 2015)

    NASA Astrophysics Data System (ADS)

    Liu, W.-J.; Zhou, H.; Ji, T.; Yuan, W.; Wang, T.-G.; Jian, G.; Shi, X.; Zhang, S.; Jiang, P.; Shu, X.; Wang, H.; Wang, S.-F.; Sun, L.; Yang, C.; Liu, B.; Zhao, W.

    2015-04-01

    Neutral helium multiplets, HeI*λλ3189, 3889, 10830, are very useful diagnostics for the geometry and physical conditions of the absorbing gas in quasars. So far only a handful of HeI* detections have been reported. Using a newly developed method, we detected the HeI*λ3889 absorption line in 101 sources of a well-defined sample of 285 MgII broad absorption line (BAL) quasars selected from SDSS DR5. This has increased the number of HeI* BAL quasars by more than one order of magnitude. We further detected HeI*λ3189 in 50% (52/101) of the quasars in the sample. The detection fraction of HeI* BALs in MgII BAL quasars is ~35% as a whole, and it increases dramatically with increasing spectral signal-to-noise ratio (S/N), from ~18% at S/N<=10 to ~93% at S/N>=35. This suggests that HeI* BALs could be detected in most MgII LoBAL quasars, provided the spectra S/N is high enough. Such a surprisingly high HeI* BAL fraction is actually predicted from photoionization calculations based on a simple BAL model. The result indicates that HeI* absorption lines can be used to search for BAL quasars at low z, which cannot be identified by ground-based optical spectroscopic surveys with commonly seen UV absorption lines. Using HeI*λ3889, we discovered 19 BAL quasars at z<0.3 from the available SDSS spectral database. The fraction of HeI* BAL quasars is similar to that of LoBAL objects. (7 data files).

  14. Simulation studies of multi-line line-of-sight tunable-diode-laser absorption spectroscopy performance in measuring temperature probability distribution function

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Le; Liu, Jian-Guo; Kan, Rui-Feng; Xu, Zhen-Yu

    2014-12-01

    Line-of-sight tunable-diode-laser absorption spectroscopy (LOS-TDLAS) with multiple absorption lines is introduced for non-uniform temperature measurement. Temperature binning method combined with Gauss—Seidel iteration method is used to measure temperature probability distribution function (PDF) along the line-of-sight (LOS). Through 100 simulated measurements, the variation of measurement accuracy is investigated with the number of absorption lines, the number of temperature bins and the magnitude of temperature non-uniformity. A field model with 2-T temperature distribution and 15 well-selected absorption lines are used for the simulation study. The Gauss—Seidel iteration method is discussed for its reliability. The investigation result about the variation of measurement accuracy with the number of temperature bins is different from the previous research results.

  15. [The development of acetylene on-line monitoring technology based on laser absorption spectrum].

    PubMed

    He, Ying; Zhang, Yu-jun; Kan, Rui-feng; Xia, Hui; Wang, Min; Cui, Xiao-juan; Chen, Jiu-ying; Chen, Dong; Liu, Wen-qing; Liu, Jian-guo

    2008-10-01

    As one of the materials in organic chemical industry, acetylene has been used in many aspects of chemical industry. But acetylene is a very dangerous inflammable and explosive gas, so it needs in-situ monitoring during industrial storage and production. Tunable diode laser absorption spectroscopy (TDLAS) technology has been widely used in atmospheric trace gases detection, because it has a lot of advantageous characteristics, such as high sensitivity, good selectivity, and rapid time response. The distribution characteristics of absorption lines of acetylene in near infrared band were studied, and then the system designing scheme of acetylene on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail. Moreover, the system of experiment measurement was set up and the method of signal detection and the algorithm of concentration inversion were studied. In addition, the sample cell with a path length of 10 cm, and the acetylene of different known concentrations were measured. As a result, the detection limit obtained reached 1.46 cm3 x m(-3). Finally the dynamic detection experiment was carried out, and the measurement result is stable and reliable, so the design of the system is practicable through experiment analysis. On-line acetylene leakage monitoring system was developed based on the experiment, and it is suitable for giving a leakage alarm of acetylene during its storage, transportation and use.

  16. Spectroscopic Line Shapes of Vibrational Quanta in the Presence of Molecular Resonances.

    PubMed

    Meierott, Stefan; Néel, Nicolas; Kröger, Jörg

    2016-07-07

    Line shapes of molecular vibrational quanta in inelastic electron tunneling spectroscopy may indicate the strength of electron-vibration coupling, the hybridization of the molecule with its environment, and the degree of vibrational damping by electron-hole pair excitation. Bare as well as C60-terminated Pb tips of a scanning tunneling microscope and clean as well as C60-covered Pb(111) surfaces were used in low-temperature experiments. Depending on the overlap of orbital and vibrational spectral ranges different spectroscopic line shapes of molecular vibrational quanta were observed. The energy range covered by the molecular resonance was altered by modifying the adsorption configuration of the molecule terminating the tip apex. Concomitantly, the line shapes of different vibrational modes were affected. The reported observations represent an experimental proof to theoretical predictions on the contribution from resonant processes to inelastic electron tunneling.

  17. EMERGENCE OF A BROAD ABSORPTION LINE OUTFLOW IN THE NARROW-LINE SEYFERT 1 GALAXY WPVS 007

    SciTech Connect

    Leighly, Karen M.; Casebeer, Darrin A.; Hamann, Fred; Grupe, Dirk

    2009-08-10

    We report results from a 2003 Far Ultraviolet Spectroscopic Explorer (FUSE) observation and reanalysis of a 1996 Hubble Space Telescope (HST) observation of the unusual X-ray transient Narrow-line Seyfert 1 galaxy WPVS 007. The HST Faint Object Spectrograph (FOS) spectrum revealed mini-BALs (broad absorption lines) with V {sub max} {approx} 900 km s{sup -1} and FWHM {approx}550 km s{sup -1}. The FUSE spectrum showed that an additional BAL outflow with V {sub max} {approx} 6000 km s{sup -1} and FWHM {approx}3400 km s{sup -1} had appeared. WPVS 007 is a low-luminosity object in which such a high-velocity outflow is not expected; therefore, it is an outlier on the M{sub V} /v {sub max} relationship. Template spectral fitting yielded apparent ionic columns, and a Cloudy analysis showed that the presence of P V requires a high-ionization parameter log(U) {>=} 0 and high-column density log(N {sub H}) {>=} 23 assuming solar abundances and a nominal spectral energy distribution (SED) for low-luminosity NLS1s with {alpha} {sub ox} = -1.28. A recent long Swift observation revealed the first hard X-ray detection and an intrinsic (unabsorbed) {alpha} {sub ox} {approx} -1.9. Using this SED in our analysis yielded lower column density constraints (log(N {sub H}) {>=} 22.2 for Z = 1, or log(N {sub H}) {>=} 21.6 if Z = 5). The X-ray weak continuum, combined with X-ray absorption consistent with the UV lines, provides the best explanation for the observed Swift X-ray spectrum. The large column densities and velocities implied by the UV data in any of these scenarios could be problematic for radiative acceleration. We also point out that since the observed P V absorption can be explained by lower total column densities using an intrinsically X-ray weak spectrum, we might expect to find P V absorption preferentially more often (or stronger) in quasars that are intrinsically X-ray weak.

  18. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    SciTech Connect

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10{sup –5}, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10{sup –5} in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10{sup –5}, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10{sup –5}. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10{sup –5}. We conclude that spectroscopic measurements of

  19. Constraining the Variation of the Fine-structure Constant with Observations of Narrow Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10-5, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (- 0.59 ± 0.55) × 10-5 in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10-5, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (- 0.47 ± 0.53) × 10-5. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (- 0.01 ± 0.26) × 10-5. We conclude that spectroscopic measurements of quasar absorption lines are not yet capable of

  20. Spectral line shapes using the dicenter approach for dense hot plasmas: hydrogen and helium-like lines.

    NASA Astrophysics Data System (ADS)

    Sauvan, P.; Leboucher-Dalimier, E.; Angelo, P.; Derfoul, H.; Ceccotti, T.; Poquerusse, A.; Calisti, A.; Talin, B.

    2000-05-01

    This paper reports on the spectral line shape of hydrogen and helium-like lines relevant to the quasi-static dicenter model. This treatment is justified for hot dense, moderate Z plasmas. The code IDEFIX developed for the quasi-static dicenter model involves a self-consistent description of the interactions and of the radiative properties. Strong dependence of the transition energies and of the dipole moments on the interionic separation are pointed out and novel density-dependent spectroscopic features such as asymmetries, satellite-like features, molecular transitions are exhibited. The theoretical spectra presented are discussed in connection with experimental results where these exist.

  1. WAVELENGTH MEASUREMENTS OF K TRANSITIONS OF OXYGEN, NEON, AND MAGNESIUM WITH X-RAY ABSORPTION LINES

    SciTech Connect

    Liao Jinyuan; Zhang Shuangnan; Yao Yangsen

    2013-09-10

    Accurate atomic transition data are important in many astronomical research areas, especially for studies of line spectroscopy. Whereas transition data of He-like and H-like ions (i.e., ions in high-charge states) have been accurately calculated, the corresponding data of K transitions of neutral or low-ionized metal elements are still very uncertain. Spectroscopy of absorption lines produced in the interstellar medium (ISM) has been proven to be an effective way to measure the central wavelengths of these atomic transitions. In this work, we analyze 36 Chandra High Energy Transmission Grating observations to search for and measure the ISM absorption lines along sight lines to 11 low-mass X-ray binaries. We correct the Galactic rotation velocity to the rest frame for every observation and then use two different methods to merge all the corrected spectra to a co-added spectrum. However, the co-added spectra obtained by this method exhibit biases, toward to either observations with high counts or lines with high signal-to-noise ratios. We do a Bayesian analysis of several significantly detected lines to obtain the systematic uncertainty and the bias correction for other lines. Compared to previous studies, our results improve the wavelength accuracy by a factor of two to five and significantly reduce the systematic uncertainties and biases. Several weak transitions (e.g., 1s-2p of Mg IV and Mg V; 1s-3p of Mg III and Mg V) are also detected for the first time, albeit with low significance; future observations with improved accuracy are required to confirm these detections.

  2. Absorption Line Analysis to Interprete and Constrain Cosmological Simulations of Galaxy Evolution with Feedback

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher

    2011-10-01

    The mammoth challenge for contemporary studies of galaxy formation and evolution are to establish detailed models in the cosmological context in which both the few parsec scale physics within galaxies are self-consistently unified and made consistent with the observed universe of galaxies. They key diagnostics reside with the gas physics, which dictate virtually every aspect of galaxy formation and evolution. The small scale physics includes stellar feedback, gas cooling, heating, and advection and the multiphase interstellar medium; the large scale physics includes intergalactic accretion, local merging, effects of supernovae driven winds, and the development of extended metal-enriched gas halos.Absorption line data have historically proven to be {and shall in the future} virtually the most powerful tool for understanding gas physics on all spatial scales over the majority of the age of the universe- the key to success. Simply stated, absorption lines are one of astronomy's most powerful observational windows on the universe {galaxy formation, galaxy winds, IGM metal enrichment, etc.}. The high quality and vast numbers of absorption line data {obtained with HST and FUSE} probe a broad range of gas structures {ISM, HVCs, halos, IGM} over the full cosmic span when galaxies are actively evolving.We propose to use LCDM hydrodynamic cosmological simulations employing a Eulerian Gasdynamics plus N-body Adaptive Refinement Tree {ART} code to develop and refine our understanding of stellar feedback physics and its role in governing the gas physics that regulates the evolution of galaxies and the IGM. We aim to substantially progress our understanding of all possible gas phases embedded within and extending far from galaxies. Our methodology is to apply a series of quantitative observational constraints from absorption line systems to better understand extended galaxy halos and the influence of the cosmological environment of the simulated galaxies: {1} galaxy halos

  3. Line-shape flattening resulting from hypersonic nozzle wedge flow in low-pressure chemical lasers.

    PubMed

    Livingston, P M; Bullock, D L

    1980-07-01

    The new hypersonic wedge nozzle (HYWN) supersonic wedge nozzle design produces a significant component of directed gas flow along the optical axis of a laser cavity comparable to thermal speeds. The gain-line-shape function is broadened and the refractive-index line shape is also spread as a function of wedge-flow half-angle. An analytical treatment as well as a numerical study is presented that evaluates the Doppler-directed-flow impact on the number of longitudinal modes and their frequencies as well as on gain and refractive-index saturation of those that lase in a Fabry-Perot cavity.

  4. Line-shape studies for single- and triple-pass Fabry-Perot interferometer systems.

    PubMed

    Palik, E D; Boukari, H; Gammon, R W

    1995-01-01

    To test the model developed in the preceding paper [Appl. Opt. 34, this issue (1994)] regarding the line shape produced by a Fabry-Perot interferometer system in a multipass mode, we have used three Lorentzian line shapes formed in scattering processes and subjected them to single and triple passes with some variation in the pinhole diameter. In most cases we find good agreement with the calculations with the only adjustable parameter being the single-pass contrast C(1). Where differences occur, plausible explanations are offered.

  5. UNSHIFTED METASTABLE He I* MINI-BROAD ABSORPTION LINE SYSTEM IN THE NARROW-LINE TYPE 1 QUASAR SDSS J080248.18+551328.9

    SciTech Connect

    Ji, Tuo; Zhou, Hongyan; Jiang, Peng; Wang, Tinggui; Wang, Huiyuan; Liu, Wenjuan; Yang, Chenwei; Ge, Jian; Hamann, Fred; Komossa, S.; Yuan, Weimin; Zuther, Jens; Lu, Honglin; Zuo, Wenwen

    2015-02-10

    We report the identification of an unusual absorption-line system in the quasar SDSS J080248.18+551328.9 and present a detailed study of the system, incorporating follow-up optical and near-IR spectroscopy. A few tens of absorption lines are detected, including He I*, Fe II*, and Ni II*, which arise from metastable or excited levels, as well as resonant lines in Mg I, Mg II, Fe II, Mn II, and Ca II. All of the isolated absorption lines show the same profile of width Δv ∼ 1500 km s{sup –1} centered at a common redshift as that of the quasar emission lines, such as [O II], [S II], and hydrogen Paschen and Balmer series. With narrow Balmer lines, strong optical Fe II multiplets, and weak [O III] doublets, its emission-line spectrum is typical for that of a narrow-line Seyfert 1 galaxy (NLS1). We have derived reliable measurements of the gas-phase column densities of the absorbing ions/levels. Photoionization modeling indicates that the absorber has a density of n {sub H} ∼ (1.0-2.5) × 10{sup 5} cm{sup –3} and a column density of N {sub H} ∼ (1.0-3.2) × 10{sup 21} cm{sup –2} and is located at R ∼100-250 pc from the central supermassive black hole. The location of the absorber, the symmetric profile of the absorption lines, and the coincidence of the absorption- and emission-line centroid jointly suggest that the absorption gas originates from the host galaxy and is plausibly accelerated by stellar processes, such as stellar winds and/or supernova explosions. The implications for the detection of such a peculiar absorption-line system in an NLS1 are discussed in the context of coevolution between supermassive black hole growth and host galaxy buildup.

  6. Hypersonic stagnation line merged layer flow on blunt axisymmetric bodies of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Jain, Amolak S.

    1993-01-01

    The problem of hypersonic stagnation line merged-layer flow of variously shaped blunt asisymmetric bodies is here formulated in such a way as to allow analytical calculations for bodies generated by a conic section. The governing equations encompass, apart from the usual parameters, the eccentricity of the conic section that generates the body-of-revolution for the effect of body shape on the solution obtained. The stagnation-point surface pressure increases as the favorable pressure gradient decreases, in the course of a change of body shape from spherical to hyperboloid.

  7. Made-to-measure galaxy modelling utilising absorption line strength data

    NASA Astrophysics Data System (ADS)

    Long, R. J.

    2016-12-01

    We enhance the Syer & Tremaine made-to-measure (M2M) particle method of stellar dynamical modelling to model simultaneously both kinematic data and absorption line strength data, thus creating a ‘chemo-M2M’ modelling scheme. We apply the enhanced method to four galaxies (NGC 1248, NGC 3838, NGC 4452, NGC 4551) observed using the SAURON integral-field spectrograph as part of the ATLAS3D programme. We are able to reproduce successfully the 2D line strength data achieving mean χ2 per bin values of ≈ 1 with > 95% of particles having converged weights. Because M2M uses a 3D particle system, we are also able to examine the underlying 3D line strength distributions. The extent to which these distributions are plausible representations of real galaxies requires further consideration. Overall, we consider the modelling exercise to be a promising first step in developing a ‘chemo-M2M’ modelling system and in understanding some of the issues to be addressed. While the made-to-measure techniques developed have been applied to absorption line strength data, they are in fact general and may be of value in modelling other aspects of galaxies.

  8. Evidence for active galactic nucleus feedback in the broad absorption lines and reddening of MRK 231 {sup ,}

    SciTech Connect

    Leighly, Karen M.; Baron, Eddie; Lucy, Adrian B.; Terndrup, Donald M.; Dietrich, Matthias; Gallagher, Sarah C.

    2014-06-20

    We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly full coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ∼100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.

  9. Conduction noise absorption by ITO thin films attached to microstrip line utilizing Ohmic loss

    SciTech Connect

    Kim, Sun-Hong; Kim, Sung-Soo

    2010-07-15

    For the aim of wide-band noise absorbers with a special design for low frequency performance, this study proposes conductive indium-tin oxide (ITO) thin films as the absorbent materials in microstrip line. ITO thin films were deposited on the polyimide film substrates by rf magnetron cosputtering of In{sub 2}O{sub 3} and Sn targets. The deposited ITO films show a typical value of electrical resistivity ({approx}10{sup -4} {Omega} m) and sheet resistance can be controlled in the range of 20-230 {Omega} by variation in film thickness. Microstrip line with characteristic impedance of 50 {Omega} was used for determining their noise absorbing properties. It is found that there is an optimum sheet resistance of ITO films for the maximum power absorption. Reflection parameter (S{sub 11}) is increased with decrease in sheet resistance due to impedance mismatch. On the while, transmission parameter (S{sub 21}) is decreased with decrease in sheet resistance due to larger Ohmic loss of the ITO films. Experimental results and computational prediction show that the optimum sheet resistance is about 100 {Omega}. For this film, greater power absorption is predicted in the lower frequency region than ferrite thin films of high magnetic loss, which indicates that Ohmic loss is the predominant loss parameter for power absorption in the low frequency range.

  10. Atlas of Absorption Lines from 0 to 17900 Cm (sup)-1

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Rothman, L. S.; Rinsland, C. P.; Pickett, H. M.; Richardson, D. J.; Namkung, J. S.

    1987-01-01

    Plots of logarithm (base 10) of absorption line strength versus wavenumber from 0 to 17900/cm(sup)-1 are shown for the 28 atmospheric gases (H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2, NO2, NH3, HNO3, OH, HF, HCl, HBr, HI, ClO, OCS, H2CO, HOCl, N2, HCN, CH3Cl, H2O2, C2H2, C2H6, PH3), which appear in the 1986 Air Force Geophysics Laboratory high-resolution transmission molecular absorption data base (HITRAN) compilation, and for O(P-3), O-18 isotopic ozone, and HO2 from the 1984 JPL compilation in the 0- to 200/cm(sup)-1 region, and infrared solar CO lines at 4500 K. Also shown are plots of logarithm (base 10) of approximate infrared absorption cross sections of 11 heavy molecules versus wavenumber. The cross-section data cover 700 to 1800/cm(sup)-1 and are included as a separate data file in the 1986 HITRAN database.

  11. Radiation Pressure-Driven Magnetic Disk Winds in Broad Absorption Line Quasi-Stellar Objects

    NASA Technical Reports Server (NTRS)

    DeKool, Martin; Begelman, Mitchell C.

    1995-01-01

    We explore a model in which QSO broad absorption lines (BALS) are formed in a radiation pressure-driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.

  12. Radiation Pressure--driven Magnetic Disk Winds in Broad Absorption Line Quasi-stellar Objects

    NASA Astrophysics Data System (ADS)

    de Kool, Martijn; Begelman, Mitchell C.

    1995-12-01

    We explore a model in which QSO broad absorption lines (BALs) are formed in a radiation pressure- driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.

  13. On-line measuring the section shape of a moving workpiece

    NASA Astrophysics Data System (ADS)

    Ren, WeiMing; Wang, Yialei; Sun, Peimao

    1994-08-01

    In this paper, an on-line high speed measurement method for section shape of the banded workpiece moving at high speed, such as the hot rolled section steel, is proposed and realized. Some important technologies in the system designing are described.

  14. Line shapes investigations in Yugoslavia and Serbia V (1997-2000). (Bibliography and citation index)

    NASA Astrophysics Data System (ADS)

    Dimitrijević, Milan S.

    2001-05-01

    The first part of the publication contains a review and anylysis of the results of spectral line shapes investigations in Yugoslavia and Serbia for 1997-2000. In the second part, the bibliography of the contributions of Yugoslav and Serbian scientists for 1997-2000 is given, together with the Citation Index for 1997-2000 for articles published 1962-2000.

  15. Line shapes investigations in Yugoslavia and Serbia III (1989 - 1993). (Bibliography and citation index).

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.

    1994-08-01

    The first part of the publication contains review and analysis of the results of spectral line shapes investigations in Yugoslavia and Serbia in the period 1989 - 1993. In the second part, the bibliography of the contributions of Yugoslav and Serbian scientists is given, together with the citation index.

  16. Line shapes investigations in Yugoslavia and Serbia IV (1993 - 1997). (Bibliography and citation index).

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.

    1997-09-01

    The first part of this publication contains review and analysis of the results of spectral line shapes investigations in Yugoslavia and Serbia for 1993 - 1997. In the second part, the bibliography of the contributions of Yugoslav and Serbian scientists for 1993 - 1997 is given, together with the citation index for 1993 - 1997 for articles published 1962 - 1997.

  17. Potential Energy Curves and Associated Line Shape of Alkali-Metal and Noble-Gas Interactions

    DTIC Science & Technology

    2014-10-20

    xii I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation...150 xii POTENTIAL ENERGY CURVES AND ASSOCIATED LINE SHAPE OF ALKALI-METAL AND NOBLE-GAS INTERACTIONS I. Introduction 1.1 Motivation...starting point for all modern developments of a quantum picture of pressure broadening, and show how this theory reduces to the classical theory under

  18. Low redshift Lyman alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1993-01-01

    Recent observations using the Hubble Space Telescope of the z = 0.156 QSO 3C 273 have discovered a surprisingly large number of Ly-alpha absorption lines. In particular, Morris et al. found 9 certain and 7 possible Ly-alpha lines with equivalent widths above 25 mA. This is much larger (by a factor of 5-10) than the number expected from extrapolation of the high-redshift behavior of the Ly-alpha forest. Within the context of pressure-confined models for the Ly-alpha clouds, this behavior can be understood if the ionizing background declines sharply between z is approximately 2 and z is approximately 0. However, this requires that the ionizing photon flux drop as rapidly as the QSO volume emissivity; moreover, the absorbers must have a space density n(sub O) is approximately 2.6(N/10)h/((D/100 kpc)(sup 2)) Mpc(sup -3) where D is the present-day diameter of the absorbers. It is somewhat surprising that such necessarily fragile objects could have survived in such numbers to the present day. It is shown that it is plausible that the atomic hydrogen extents of spiral and irregular galaxies are large enough to produce the observed number of Ly-alpha absorption lines toward 3C 273, and that the neutral column densities and doppler b-values expected under these conditions fall in the range found by Morris et al. (1991).

  19. Quasar Absorption Lines from Radiative Shocks: Implications for Multiphase Outflows and Feedback

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, C.-A.

    2012-08-01

    Photoionization modeling of certain low-ionization broad absorption lines in quasars implies very compact (ΔR ˜0.01 pc), galaxy-scale (R˜ kpc) absorbers blueshifted by several 1000 km s-1. While these are likely signatures of quasar outflows, the lifetimes of such compact absorbers are too short for them to be direct ejecta from a nuclear wind. Instead, I argue that the absorbing clouds must be transient and created in situ. Following arguments detailed by Faucher-Giguère, Quataert, & Murray (2011), I show that a model in which the cool absorbers form in radiative shocks arising when a quasar blast wave impacts an interstellar cloud along the line of sight successfully explains the key observed properties. Using this radiative shock model, the outflow kinetic luminosities for three luminous quasars are estimated to be Ėk ≍ 2-5% LAGN (with corresponding momentum fluxes Ṗ ≍2-15 LAGN/c), consistent with feedback models of the M-σ relation. These energetics are similar to those recently inferred of molecular outflows in local ultra-luminous infrared galaxies and in post-starburt winds, suggesting that active galactic nuclei (AGN) are capable of driving such outflows. Radiative shocks probably affect the multiphase structure of outflows in a range of other systems, potentially including narrower and higher-ionization quasar absorption lines, and compact intergalactic absorbers ejected by star formation and/or AGN activity.

  20. When galaxies collide: understanding the broad absorption-line radio galaxy 4C +72.26

    NASA Astrophysics Data System (ADS)

    Smith, D. J. B.; Simpson, C.; Swinbank, A. M.; Rawlings, S.; Jarvis, M. J.

    2010-05-01

    We present a range of new observations of the `broad absorption-line radio galaxy' 4C +72.26 (z ~ 3.5), including sensitive rest-frame ultraviolet integral field spectroscopy using the Gemini/GMOS-N instrument and Subaru/CISCO K-band imaging and spectroscopy. We show that 4C +72.26 is a system of two vigorously star-forming galaxies superimposed along the line of sight separated by ~1300 +/- 200 km s-1 in velocity, with each demonstrating spectroscopically resolved absorption lines. The most active star-forming galaxy also hosts the accreting supermassive black hole which powers the extended radio source. We conclude that the star formation is unlikely to have been induced by a shock caused by the passage of the radio jet, and instead propose that a collision is a more probable trigger for the star formation. Despite the massive starburst, the ultraviolet-mid-infrared spectral energy distribution suggests that the pre-existing stellar population comprises ~1012Msolar of stellar mass, with the current burst only contributing a further ~2 per cent, suggesting that 4C +72.26 has already assembled most of its final stellar mass.

  1. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Astrophysics Data System (ADS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-08-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  2. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-01-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  3. Instabilities in line-driven stellar winds. III - Wave propagation in the case of pure line absorption

    NASA Technical Reports Server (NTRS)

    Owocki, S. P.; Rybicki, G. B.

    1986-01-01

    The spatial and temporal evolution of small-amplitude velocity perturbations is examined in the idealized case of a stellar wind that is driven by pure line absorption of the star's continuum radiation. It is established that the instability in the supersonic region is of the advective type relative to the star, but of the absolute type relative to the wind itself. It is also shown that the inward propagation of information in such a wind is limited to the sound speed, in contrast to the theory of Abbott, which predicts inward propagation faster than sound. This apparent contradiction is resolved through an extensive discussion of the analytically soluble case of zero sound speed.

  4. Dipole-dipole resonance line shapes in a cold Rydberg gas

    NASA Astrophysics Data System (ADS)

    Richards, B. G.; Jones, R. R.

    2016-04-01

    We have explored the dipole-dipole mediated, resonant energy transfer reaction, 32 p3 /2+32 p3 /2→32 s +33 s , in an ensemble of cold 85Rb Rydberg atoms. Stark tuning is employed to measure the population transfer probability as a function of the total electronic energy difference between the initial and final atom-pair states over a range of Rydberg densities, 2 ×108≤ρ ≤3 ×109 cm-3. The observed line shapes provide information on the role of beyond nearest-neighbor interactions, the range of Rydberg atom separations, and the electric field inhomogeneity in the sample. The widths of the resonance line shapes increase approximately linearly with the Rydberg density and are only a factor of 2 larger than expected for two-body, nearest-neighbor interactions alone. These results are in agreement with the prediction [B. Sun and F. Robicheaux, Phys. Rev. A 78, 040701(R) (2008), 10.1103/PhysRevA.78.040701] that beyond nearest-neighbor exchange interactions should not influence the population transfer process to the degree once thought. At low densities, Gaussian rather than Lorentzian line shapes are observed due to electric field inhomogeneities, allowing us to set an upper limit for the field variation across the Rydberg sample. At higher densities, non-Lorentzian, cusplike line shapes characterized by sharp central peaks and broad wings reflect the random distribution of interatomic distances within the magneto-optical trap (MOT). These line shapes are well reproduced by an analytic expression derived from a nearest-neighbor interaction model and may serve as a useful fingerprint for characterizing the position correlation function for atoms within the MOT.

  5. Symmetry-Breaking in Cationic Polymethine Dyes: Part 2. Shape of Electronic Absorption Bands Explained by the Thermal Fluctuations of the Solvent Reaction Field.

    PubMed

    Masunov, Artëm E; Anderson, Dane; Freidzon, Alexandra Ya; Bagaturyants, Alexander A

    2015-07-02

    The electronic absorption spectra of the symmetric cyanines exhibit dramatic dependence on the conjugated chain length: whereas short-chain homologues are characterized by the narrow and sharp absorption bands of high intensity, the long-chain homologues demonstrate very broad, structureless bands of low intensity. Spectra of the intermediate homologues combine both features. These broad bands are often explained using spontaneous symmetry-breaking and charge localization at one of the termini, and the combination of broad and sharp features was interpreted as coexistence of symmetric and asymmetric species in solution. These explanations were not supported by the first principle simulations until now. Here, we employ a combination of time-dependent density functional theory, a polarizable continuum model, and Franck-Condon (FC) approximation to predict the absorption line shapes for the series of 2-azaazulene and 1-methylpyridine-4-substituted polymethine dyes. To simulate inhomogeneous broadening by the solvent, the molecular structures are optimized in the presence of a finite electric field of various strengths. The calculated FC line shapes, averaged with the Boltzmann weights of different field strengths, reproduce the experimentally observed spectra closely. Although the polarizable continuum model accounts for the equilibrium solvent reaction field at absolute zero, the finite field accounts for the thermal fluctuations in the solvent, which break the symmetry of the solute molecule. This model of inhomogeneous broadening opens the possibility for computational studies of thermochromism. The choice of the global hybrid exchange-correlation functional SOGGA11-X, including 40% of the exact exchange, plays the critical role in the success of our model.

  6. Improved and Quality-assessed Emission and Absorption Line Measurements in Sloan Digital Sky Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, Marc; Schawinski, Kevin; Yi, Sukyoung K.

    2011-08-01

    We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting (pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionized gas emission. In order to check for systematic departures from the rather standard set of assumptions that enters our models, we provide a quality assessment for our fit to the SDSS spectra in our sample, for both the stellar continuum and the nebular emissions and across different wavelength regions. This quality assessment also allows the identification of objects with either problematic data or peculiar features. We hope to foster the discovery potential of our database; therefore, our spectral fit is available to the community. For example, based on the quality assessment around the Hα and [N II] λ6584 lines, approximately 1% of the SDSS spectra classified as "galaxies" by the SDSS pipeline do in fact require additional broad lines to be matched, even though they do not show a strong continuum from an active nucleus, as

  7. IMPROVED AND QUALITY-ASSESSED EMISSION AND ABSORPTION LINE MEASUREMENTS IN SLOAN DIGITAL SKY SURVEY GALAXIES

    SciTech Connect

    Oh, Kyuseok; Yi, Sukyoung K.; Sarzi, Marc; Schawinski, Kevin

    2011-08-01

    We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting (pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionized gas emission. In order to check for systematic departures from the rather standard set of assumptions that enters our models, we provide a quality assessment for our fit to the SDSS spectra in our sample, for both the stellar continuum and the nebular emissions and across different wavelength regions. This quality assessment also allows the identification of objects with either problematic data or peculiar features. We hope to foster the discovery potential of our database; therefore, our spectral fit is available to the community. For example, based on the quality assessment around the H{alpha} and [N II] {lambda}6584 lines, approximately 1% of the SDSS spectra classified as 'galaxies' by the SDSS pipeline do in fact require additional broad lines to be matched, even though they do not show a strong continuum from an active

  8. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: RAPID C iv BROAD ABSORPTION LINE VARIABILITY

    SciTech Connect

    Grier, C. J.; Brandt, W. N.; Trump, J. R.; Schneider, D. P.; Hall, P. B.; Shen, Yue; Vivek, M.; Dawson, K. S.; Ak, N. Filiz; Chen, Yuguang; Denney, K. D.; Kochanek, C. S.; Peterson, B. M.; Green, Paul J.; Jiang, Linhua; McGreer, Ian D.; Pâris, I.; Tao, Charling; Bizyaev, Dmitry; and others

    2015-06-10

    We report the discovery of rapid variations of a high-velocity C iv broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4σ) variability in the equivalent width (EW) of the broad (∼4000 km s{sup −1} wide) C iv trough on rest-frame timescales as short as 1.20 days (∼29 hr), the shortest broad absorption line variability timescale yet reported. The EW varied by ∼10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n{sub e} ≳ 3.9 × 10{sup 5} cm{sup −3}. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.

  9. A Survey for Intervening CIV Absorption-Line Systems Using SDSS Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Monier, Eric M.; Nestor, D. B.; Daino, M. M.; Quider, A. M.; Rao, S. M.; Turnshek, D. A.

    2006-06-01

    Intervening CIV absorption-line systems are readily found in Sloan Digital Sky Survey (SDSS) quasar spectra at redshifts z > 1.5. Given the large number of absorbers, high statistical accuracy is possible in comparison to what was possible in the past. Here we present preliminary results on the incidence and evolution of the CIV systems as a function of CIV rest equivalent width. The absorber incidence is proportional to the product of gas cross-section and co-moving number density of absorbers, while the rest equivalent width is related to their kinematic spread. We discuss the interpretation of our results.

  10. Application of spectral line shapes to the study of high density ICF plasmas

    SciTech Connect

    Keane, C.J.; Hammel, B.A.; Langer, S.H.; Lee, R.W.; Calisti, A.; Godbert, L.; Stamm, R.; Talin, B.

    1994-09-01

    Spectral line broadening manifests itself in the study of high density inertial confinement fusion (ICF) plasmas in two important ways. First, comparison between measured and calculated lineshapes of individual spectral lines or groups of lines is used to diagnose plasma conditions in dense ICF plasmas, particularly in implosions. Secondly, through the emission and absorption coefficients spectral lineshapes serve as important inputs to plasma spectroscopy simulation codes which calculate simulated spectra from ICF targets. We discuss recent results from each of these areas. With regard to lineshape diagnostics, the advent of generalized line broadening codes has allowed the line profiles of complex multielectron emitters to be considered for diagnostic purposes. Particular example of this is the use of Ar He-{beta} and its associated dielectronic satellites as a diagnostic of T{sub e} and N{sub e}, as well as the development of Ne-like Xe line broadening as a density diagnostic. With respect to simulation codes, the implementation of detailed lineshapes in calculations of this type is in many ways in its infancy. We present here examples of cases where effects related to spectral lineshapes such as continuum lowering and line transfer of Stark broadened lines are important so as to provide a stimulus for future work in this field. 34 refs., 9 figs., 1 tab.

  11. Atmospheric absorption cell characterization

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The measurement capability of the Avionics Laboratory IR Facility was used to evaluate an absorption cell that will be used to simulate atmospheric absorption over horizontal paths of 1 - 10 km in length. Band models were used to characterize the transmittance of carbon dioxide (CO2), nitrogen (N2), and nitrous oxide (N2O) in the cell. The measured transmittance was compared to the calculated values. Nitrous oxide is important in the 4 - 4.5 micron range in shaping the weak line absorption of carbon dioxide. The absorption cell is adequate for simulating atmospheric absorption over these paths.

  12. Study on removal of phase lines in welding pool surface shape sensing

    NASA Astrophysics Data System (ADS)

    Wei, Yiqing; Liu, Nansheng; Hu, Xian; Ai, Xiaopu; Wei, Sheng; Liu, Xiaorui

    2009-11-01

    In recent years, arc welding pool surface shape sensing becomes a hot spot in the field of welding automation. In order to restore the pool surface shape, we first need to photograph the pool surface, and then extract useful information from the acquired images. In arc welding surface shape sensing system based on structured light projection, the raster images obtained by charge-coupled device (CCD) are seriously affected by strong arc and spatter, etc. resulting in errors of phase unwrapping, and thus seriously affecting the surface shape recovery. To address phase lines of unwrapping errors, this paper presents a two-neighborhood method. First we analyzed the characteristics of phase lines in the phase diagram, then by comparison of phase diagrams or phase difference diagrams processed before and after, the effectiveness of two-neighborhood method was confirmed, finally this method was applied to the actual pool phase diagram processing, experimental results also confirmed this two-neighborhood method is feasible in removal of phase lines.

  13. Temperature dependence of 13CH4 line shapes broadened by N2

    NASA Astrophysics Data System (ADS)

    Sung, K.; Mantz, A. M.; Brown, L. R.; Smith, M. H.; Benner, D. C.; Devi, V.; Crawford, T. J.

    2009-12-01

    In order to support remote sensing of Titan’s atmosphere, the temperature dependences for the 13CH4 nitrogen broadening and frequency shift coefficients were measured for several transitions from 1200 to 1400 cm-1 (8.33 to 7.14 μm) using a Fourier transform spectrometer (Bruker IFS-125HR) newly configured with a temperature stabilized cryogenic absorption cell at the Jet Propulsion Laboratory. The cryogenic cell is mounted on the cold finger of a closed cycle helium refrigerator, and the temperatures are monitored with Si diode sensors. The wedged ZnSe cell windows are vacuum sealed with crushed indium gaskets. The cell has an optical path of 24 cm and is suspended from the top cover of the evacuated sample compartment. It has demonstrated a temperature stability of better than ±0.01 K at all temperatures between 300 K and 90 K. To test the system performance, we first recorded 10 spectra of the ν4 band of 13CH4 broadened by nitrogen at 0.0056 cm-1 instrumental resolution (Resolving power = 232000) using a HgCdTe detector. The pressures of 13CH4+N2 mixtures ranged from 140 to 796 torr with the volume mixing ratios of 13CH4 varying between 0.001 and 0.012 at 296, 255, 225 and 180 K. Line shape parameters in the spectral region from 1200 to 1400 cm-1 were retrieved using the nonlinear least squares multispectrum technique1, fitting selected wavenumber intervals of all spectra simultaneously to determine temperature dependence. Preliminary results from the temperature dependence measurements at planetary and astrophysical temperatures are reported along with detailed discussion of the instrumental setup. This new spectroscopic capability at the Jet Propulsion Laboratory will enable future research in studies of planetary science and astrophysics2. 1 Benner DC, Rinsland CP, Devi VM, Smith MAH, Atkins D. A multispectrum nonlinear least squares fitting technique. JQSRT 53, 705 - 721 (1995). 2 The research at the Jet Propulsion Laboratory (JPL), California Institute

  14. New aspects of absorption line formation in intervening turbulent clouds - II. Monte Carlo simulation of interstellar H+D Lyalpha absorption profiles

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Kegel, Wilhelm H.; Mazets, Igor E.

    1997-07-01

    Stochastic velocity fields with finite correlation lengths affect the formation of interstellar (intergalactic) absorption lines in a way not accounted for in the standard analysis procedure in which Voigt profiles are fitted to the observed line profiles. We investigate these effects, accounting in particular for the fact that interstellar absorption spectra reflect only one realization of the velocity field, since (i) actually only one line of sight is observed and (ii) the velocity structure of the cloud has to be considered to be `frozen' over the exposure time. This paper presents results of Monte Carlo calculations. In this technique an ensemble of line profiles is computed, each one of which corresponds to one realization of the random velocity field. The most important results are the following. (1) The individual line profiles may deviate substantially from each other and from the ensemble average. (2) Correlated velocity fields may cause complex multicomponent absorption features which in a traditional analysis would be attributed to several clouds, i.e. to density and/or kinetic temperature inhomogeneities. (3) Each line of sight has its own curve-of-growth. (4) Applying the standard analysis to such line profiles may produce misleading results concerning the physical parameters of the cloud. (5) In particular, the apparent scatter of the D/H ratio revealed in the ISM on the basis of the Copernicus, IUE, and HST observations may be caused by an inadequate analysis. Finally, we discuss under which conditions cloud characteristics may be derived from absorption lines without relying on a particular physical model.

  15. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    NASA Technical Reports Server (NTRS)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  16. Absorption-line spectrum of GC 1556 + 335 - ejected or intervening material

    SciTech Connect

    Morris, S.L.; Weymann, R.J.; Foltz, C.B.; Turnshek, D.A.; Shectman, S.

    1986-11-01

    Two rich C IV absorption complexes in the radio-loud QSO GC 1556 + 335 are described. Column densities for seven of the redshift systems in these complexes are measured, and limits on the distances between the QSO and absorbing clouds are derived using ionization parameters estimated from matching photoionization models to the observations and a density estimated from an upper limit to the C II(asterisk) column density in the z = 1.65367 redshift system. These limits show that GC 1556 + 335 is not a typical member of the BALQSO class. Two alternative models are discussed in which the absorption complexes are caused by material either entrained into a radio jet from the QSO or contained in two clusters of galaxies along the line of sight. It is suggested that the emission associated with the complexes may be detectable, and that a study of the velocity field and geometry of such emission might be decisive in determining the mechanism responsible for the absorption. 40 references.

  17. Recent Line-Shape and Doppler Thermometry Studies Involving Transitions in the ν1 +ν3 Band of Acetylene

    NASA Astrophysics Data System (ADS)

    Hashemi, Robab; Rozario, Hoimonti; Povey, Chad; Garber, Jolene; Derksen, Mark; Predoi-Cross, Adriana

    2014-06-01

    The line positions for transitions in the ν1 +ν3 band are often used as a frequency standard by the telecom industry and also needed for planetary atmospheric studies. Four relevant studies have been recently carried out in our group and will be discussed briefly below. (1) N2-broadened line widths and N2-pressure induced line shifts have been measured for transitions in the ν1 +ν3 band of acetylene at seven temperatures in the range 213333K to obtain the temperature dependences of broadening and shift coefficients. The Voigt and hard-collision line profile models were used to retrieve the line parameters. This study has been published in Molecular Physics, 110 Issue 21/22 (2012) 2645-2663. (2) Six nitrogen perturbed transitions of acetylene within the ν1 +ν3 absorption band have been recorded using a 3-channel diode laser spectrometer. We have examined C2H2 spectra using a hard collision (Rautian) profile over a range of five temperatures (213 K-333 K). From these fits we have obtained the N2-broadening and narrowing coefficients of C2H2 and examined their temperature dependence. The experimentally measured narrowing coefficients have been used to estimate the nitrogen diffusion coefficients. The broadening coefficients and corresponding temperature dependence exponents have also been compared to that of calculations completed using a classical impact approach on an ab initio potential energy surface. We have observed a good agreement between our theoretical and experimental results. This study was published in Canadian Journal of Physics 91(11) 896-905 (2013). (3) An extension of the previous study was to analyze the room temperature for the same six transitions using the Voigt, Rautian, Galatry, RautianGalatry and Correlated Rautian profiles. For the entire pressure range, we have tested the applicability of these line-shape models. Except for Voigt profile, Dicke narrowing effect has been considered in all mentioned line-shape models. The experimental

  18. XMM-Newton Spectroscopy of the X-ray Detected Broad Absorption Line QSO CSO 755

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2005-01-01

    We present the results from XMM-Newton observations of the highly optically polarized broad absorption line quasar (BALQSO) CSO 755. By analyzing its X-ray spectrum with a total of approximately 3000 photons we find that this source has an X-ray continuum of "typical" radio-quiet quasars, with a photon index of Gamma=1.83, and a rather flat (X-ray bright) intrinsic optical-to-X-ray spectral slope of alpha_ox=- 1.51. The source shows evidence for intrinsic absorption, and fitting the spectrum with a neutral-absorption model gives a column density of N_H approximately 1.2x10^22 cm^{-2}; this is among the lowest X-ray columns measured for BALQSOs. We do not detect, with high significance, any other absorption features in the X-ray spectrum. Upper limits we place on the rest-frame equivalent width of a neutral (ionized) Fe K-alpha line, less than =180 eV (less than =120 eV), and on the Compton-reflection component parameter, R less than =0.2, suggest that most of the X-rays from the source are directly observed rather than being scattered or reflected; this is also supported by the relatively flat intrinsic alpha ox we measure. The possibility that most of the X-ray flux is scattered due to the high level of UV-optical polarization is ruled out. Considering data for 46 BALQSOs from the literature, including CSO 755, we have found that the UV-optical continuum polarization level of BALQSOs is not correlated with any of their X-ray properties. A lack of significant short-term and long-term X-ray flux variations in the source may be attributed to a large black-hole mass in CSO 755. We note that another luminous BALQSO, PG 2112+059, has both similar shallow C IV BALs and moderate X-ray absorption.

  19. Resonance line shape, strain and electric potential distributions of composite magnetoelectric sensors

    NASA Astrophysics Data System (ADS)

    Gerken, Martina

    2013-06-01

    Multiferroic composite magnetoelectric (ME) sensors are based on the elastic coupling of a magnetostrictive phase and a piezoelectric phase. A deformation of the magnetostrictive phase causes strain in the piezoelectric phase and thus an induced voltage. Such sensors may be applied both for static as well as for dynamic magnetic field measurements. Particularly high sensitivities are achieved for operation at a mechanical resonance. Here, the resonance line shape of layered (2-2 composite) cantilever ME sensors at the first bending-mode resonance is investigated theoretically. Finite element method (FEM) simulations using a linear material model reveal an asymmetric resonance profile and a zero-response frequency for the ME coefficient. Frequency-dependent strain and electric potential distributions inside the magnetoelectric composite are studied for the case of a magnetostrictive-piezoelectric bilayer. It is demonstrated that a positive or a negative voltage may be induced across the piezoelectric layer depending on the position of the neutral plane. The frequency-dependent induced electric potential is investigated for structured cantilevers that exhibit magnetostriction only at specific positions. For static operation an induced voltage is obtained locally at positions with magnetostriction. In addition to this direct effect a resonance-assisted effect is observed for dynamic operation. Magnetostriction in a limited area of the cantilever causes a global vibration of the cantilever. Thus, deformation of the piezoelectric layer and an induced electric potential also occur in areas of the cantilever without magnetostriction. The direct and the resonance-assisted pathway may induce voltages of equal or of opposite sign. The net induced voltage results from the superposition of the two effects. As the resonance-assisted induced voltage changes sign upon passing the resonance frequency, while the direct component is constant, an asymmetric line shape and a zero

  20. THE JHU-SDSS METAL ABSORPTION LINE CATALOG: REDSHIFT EVOLUTION AND PROPERTIES OF Mg II ABSORBERS

    SciTech Connect

    Zhu Guangtun; Menard, Brice

    2013-06-20

    We present a generic and fully automatic method aimed at detecting absorption lines in the spectra of astronomical objects. The algorithm estimates the source continuum flux using a dimensionality reduction technique and nonnegative matrix factorization, and then detects and identifies metal absorption lines. We apply it to a sample of {approx}10{sup 5} quasar spectra from the Sloan Digital Sky Survey and compile a sample of {approx}40,000 Mg II- and Fe II-absorber systems, spanning the redshift range 0.4 < z < 2.3. The corresponding catalog is publicly available. We study the statistical properties of these absorber systems and find that the rest equivalent width distribution of strong Mg II absorbers follows an exponential distribution at all redshifts, confirming previous studies. Combining our results with recent near-infrared observations of Mg II absorbers, we introduce a new parameterization that fully describes the incidence rate of these systems up to z {approx} 5. We find the redshift evolution of strong Mg II absorbers to be remarkably similar to the cosmic star formation history over 0.4 < z < 5.5 (the entire redshift range covered by observations), suggesting a physical link between these two quantities.

  1. Line formation in Be star circumstellar disks Shear broadening, shell absorption, stellar obscuration and rotational parameter

    NASA Astrophysics Data System (ADS)

    Hummel, W.; Vrancken, M.

    2000-07-01

    We improve the theory of Horne & Marsh on shear broadening in accretion disks of CVs and adapt it to Be star circumstellar disks. Stellar obscuration and shell absorption are taken into account in detail. It is shown that shell absorption is already present in those emission lines where the central depression does not drop below the stellar continuum. The model profiles are fitted to observed symmetric Hα net emission lines with low equivalent width. The derived disk radii range from Rd = 5.3 R_* to Rd = 18 R_* and the surface emissivity varies as ~ R-m with 1.6 < m < 3.5. The comparison between model profiles of rotational parameter j>(1)/(2) with the optically thick Hα profile of HR 5440 rules out the range of j>(1)/(2). This can be understood by the lack of velocity shear in the outer disk regions. We conclude that Keplerian rotation (j=(1)/(2)) is a valid approximation. Based on observations collected at the German-Spanish Astronomical Center (DSAZ), Calar Alto, operated by the Max-Plank-Institut für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy. Based on observations collected at the Observatoire de Haute-Provence (OHP), CNRS, France.

  2. High-resolution absorption spectroscopy of the OH 2Π3/2 ground state line

    NASA Astrophysics Data System (ADS)

    Wiesemeyer, H.; Güsten, R.; Heyminck, S.; Jacobs, K.; Menten, K. M.; Neufeld, D. A.; Requena-Torres, M. A.; Stutzki, J.

    2012-06-01

    The chemical composition of the interstellar medium is determined by gas phase chemistry, assisted by grain surface reactions, and by shock chemistry. The aim of this study is to measure the abundance of the hydroxyl radical (OH) in diffuse spiral arm clouds as a contribution to our understanding of the underlying network of chemical reactions. Owing to their high critical density, the ground states of light hydrides provide a tool to directly estimate column densities by means of absorption spectroscopy against bright background sources. We observed onboard the SOFIA observatory the 2Π3/2, J = 5/2 ← 3/2 2.5 THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius spiral arm. OH column densities in the spiral arm clouds along the sightlines to W49N, W51 and G34.26+0.15 were found to be of the order of 1014 cm-2, which corresponds to a fractional abundance of 10-7 to 10-8, which is comparable to that of H2O. The absorption spectra of both species have similar velocity components, and the ratio of the derived H2O to OH column densities ranges from 0.3 to 1.0. In W49N we also detected the corresponding line of 18OH.

  3. Line parameters including temperature dependences of self- and air-broadened line shapes of 12C16O2: 1.6-μm region

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.; Miller, Charles E.; Drouin, Brian J.; Payne, Vivienne H.; Yu, Shanshan; Smith, Mary Ann H.; Mantz, Arlan W.; Gamache, Robert R.

    2016-07-01

    Pressure-broadened line shapes in the 30013←00001 (ν1+4 ν20 +ν3) band of 12C16O2 at 6228 cm-1 are reanalyzed using new spectra recorded with sample temperatures down to 170 K. High resolution, high signal-to-noise (S/N) laboratory measurements of line shapes (Lorentz air- and self-broadened half-width coefficients, pressure-shift coefficients and off-diagonal relaxation matrix element coefficients) as a function of gas sample temperatures for various pressures and volume mixing ratios are presented. The spectra were recorded using two different Fourier transform spectrometers (FTS): (1) the McMath-Pierce FTS located at the National Solar Observatory on Kitt Peak, Arizona (and reported in Devi et al., J Mol Spectrosc 2007;245:52-80) and, (2) the Bruker IFS-125HR FTS at the Jet Propulsion Laboratory in Pasadena, California. The 19 spectra taken at Kitt Peak were all recorded near room temperature while the 27 Bruker spectra were acquired both at room temperature and colder temperatures (170-296 K). Various spectral resolutions (0.004-0.011 cm-1), absorption path lengths (2.46-121 m) and CO2 samples (natural and 12C-enriched) were included in the dataset. To maximize the accuracies of the various retrieved line parameters, a multispectrum nonlinear least squares spectrum fitting software program was used to adjust the ro-vibrational constants (G,B,D etc.) and intensity parameters (including Herman-Wallis terms) instead of directly measuring the individual line positions and intensities. To minimize systematic residuals, line mixing (via off-diagonal relaxation matrix elements) and quadratic speed dependence parameters were included in the analysis. Contributions from other weakly absorbing bands: the 30013←00001 and 30012←00001 bands of 13C16O2, the 30013←00001 band of 12C16O18O, hot bands 31113←01101 and 32212←02201 of 12C16O2, as well as the 40013←10001 and the 40014←10002 bands of 12C16O2, present within the fitted interval were also measured

  4. Comparison of experimental and theoretical pressure-broadened atomic line shapes.

    NASA Technical Reports Server (NTRS)

    Atakan, A. K.; Jacobson, H. C.

    1972-01-01

    Line-structure calculations of the longer wavelength resonance line of cesium pressurized by argon are compared with experimental values over a range of perturber relative densities from 0.5 to 61. The main features of the line shapes are reproduced by the general pressures method using Lennard-Jones potentials. The calculations indicate that results are very sensitive to the potential parameters employed, but are not sensitive to changes in the temperature. The data are also compared with the method that makes the quasi-static approximation and with the high-pressure limit that leads to a Gaussian line profile. The former technique yields good agreement over the range of pressures where the approximation is warranted, and the latter appears to have several disadvantages.

  5. Raman Q-branch line shapes as a test of the H2-Ar intermolecular potential

    NASA Technical Reports Server (NTRS)

    Green, Sheldon

    1990-01-01

    The line-shape cross sections of vibrational Raman Q-branch spectra are determined theoretically for D2 and H2 in Ar. The calculations are based on accurate close-coupling matrices and the intermolecular potential obtained by Le Roy and Hutson (1987) from spectra of van der Waals complexes. The calculation techniques applied are explained, and the results are presented in tables and graphs and discussed in detail with reference to published experimental data. Agreement to within about 25 percent is obtained for the line widths, but the line shifts are found to be a factor of two smaller than the measured values, and a temperature dependence of line-width cross sections is predicted which is not observed experimentally.

  6. Absorption-Line Probes of Gas and Dust in Galactic Superwinds

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy M.; Lehnert, Matthew D.; Strickland, David K.; Armus, Lee

    2000-08-01

    We have obtained moderate resolution (R=few thousand) spectra of the Na I λλ5890, 5896 (Na D) absorption line in a sample of 32 far-IR-bright starburst galaxies. In 18 cases, the Na D line in the nucleus is produced primarily by interstellar gas, while cool stars contribute significantly in the others. In 12 of the 18 ``interstellar-dominated'' cases the Na D line is blueshifted by over 100 km s-1 relative to the galaxy systemic velocity (the ``outflow sources''), while no case shows a net redshift of more than 100 km s-1. The absorption-line profiles in these outflow sources span the range from near the galaxy systemic velocity to a maximum blueshift of ~400-600 km s-1. The outflow sources are galaxies systematically viewed more nearly face-on than the others. We therefore argue that the absorbing material consists of ambient interstellar material that has been entrained and accelerated along the minor axis of the galaxy by a hot starburst-driven superwind. The Na D lines are optically thick, but indirect arguments imply total hydrogen column densities of NH~few×1021 cm-2. This implies that the superwind is expelling matter at a rate comparable to the star formation rate. This outflowing material is evidently very dusty: we find a strong correlation between the depth of the Na D profile and the line-of-sight reddening. Typical implied values are E(B-V)=0.3-1 over regions several-to-10 kpc in size. We briefly consider some of the potential implications of these observations. The estimated terminal velocities of superwinds inferred from the present data and extant X-ray data are typically 400-800 km-1, are independent of the galaxy rotation speed, and are comparable to (substantially exceed) the escape velocities for L* (dwarf) galaxies. The resulting selective loss of metals from shallower potential wells can establish the mass-metallicity relation in spheroids, produce the observed metallicity in the intracluster medium, and enrich a general IGM to of order 10

  7. Probing the interstellar medium in Puppis-Vela through optical absorption line spectroscopy

    NASA Astrophysics Data System (ADS)

    Cha, Alexandra Nicole Stuehler

    2000-06-01

    The interstellar medium (ISM) toward Puppis-Vela (l = 245° to 275°, b = -15° to +5°) has been studied using high resolution, R ~ 75,000-90,000, high signal-to-noise, S/N ~ 100, optical Na I and Ca II absorption spectra along several hundred lines of sight. The distance of the Vela supernova remnant was found to be at d ~ 250 pc, a factor of two less than the canonical value. Lines of sight passing through the Vela supernova remnant were seen to have optical spectra that varied over epochs of a few years, including those toward HD 72089, HD 72127, HD 72997, HD 73658, HD 74455, HD 75309, and HD 75821. The variability of the first three lines of sight had been previously documented, but variability in the spectra toward the latter four stars had not been observed. An analysis of the Local ISM (d < 200 pc) toward Puppis-Vela is presented, and using both Na I absorption features and accurate distances to the stars, courtesy of Hipparcos trigonometric parallax data, spatially compact, homogeneous velocity components were mapped. In the Local ISM, the Puppis-Vela region abuts the apparent extension of the Local Bubble (or Cavity) known as the β CMa tunnel, and the compiled Na I lines of sight suggest that within 200 pc, the extent of the tunnel is confined to a region smaller than was previously thought. The technique of identifying and mapping individual velocity components in three dimensions was extended to the Puppis-Vela ISM out to d ~ 1 kpc, and a total of 7 velocity components were identified. Gas with velocities higher than that expected in the ambient ISM combined with higher than normal reddening was detected toward two regions, (l ~ 254°, b ~ -1°) and (l ~ 251°, b ~ -7°), suggesting the presence of previously unidentified structures. Nearby, gas associated with the IRAS Vela Shell was detected in Na I at distances >~ 300 pc. The Na I velocity components from IRAS Vela Shell sight lines were fit with a model of a spherically expanding filled sphere with

  8. VARIABLE REDDENING AND BROAD ABSORPTION LINES IN THE NARROW-LINE SEYFERT 1 GALAXY WPVS 007: AN ORIGIN IN THE TORUS

    SciTech Connect

    Leighly, Karen M.; Cooper, Erin; Grupe, Dirk; Terndrup, Donald M.; Komossa, S.

    2015-08-10

    We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddening increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable.

  9. Gain and Raman line-broadening with graphene coated diamond-shape nano-antennas.

    PubMed

    Paraskevaidis, Charilaos; Kuykendall, Tevye; Melli, Mauro; Weber-Bargioni, Alexander; Schuck, P James; Schwartzberg, Adam; Dhuey, Scott; Cabrini, Stefano; Grebel, Haim

    2015-10-07

    Using Surface Enhanced Raman Scattering (SERS), we report on intensity-dependent broadening in graphene-deposited broad-band antennas. The antenna gain curve includes both the incident frequency and some of the scattered mode frequencies. By comparing antennas with various gaps and types (bow-tie vs. diamond-shape antennas) we make the case that the line broadening did not originate from strain, thermal or surface potential. Strain, if present, further shifts and broadens those Raman lines that are included within the antenna gain curve.

  10. Line shape of a transition between two levels in a three-level {Lambda} configuration

    SciTech Connect

    Han, Hyok Sang; Jeong, Ji Eun; Cho, D.

    2011-09-15

    We report on our study of the line shape of a transition between two levels in a three-level {Lambda} configuration. By using Poisson statistics under the assumption that the atom stays in a two-level steady state before it is optically pumped to the reservoir state, we arrive at a simple analytic expression for the line shape of a three-level atom. This expression reveals a new type of saturation in the time domain, which is conceptually different from that of power-broadening in a two-level atom. It can also be used as a basis for more complicated situations of Doppler-broadened gaseous samples or pump-and-probe spectroscopy. We tested the theory experimentally in an ideal situation of slow pulsed {sup 85}Rb atoms and found excellent agreement. Application to measurements of a branching ratio or a Franck-Condon factor of a diatomic molecule is discussed.

  11. An analysis of temperature dependent photoluminescence line shapes in InGaN

    NASA Astrophysics Data System (ADS)

    Teo, K. L.; Colton, J. S.; Yu, P. Y.; Weber, E. R.; Li, M. F.; Liu, W.; Uchida, K.; Tokunaga, H.; Akutsu, N.; Matsumoto, K.

    1998-09-01

    Photoluminescence (PL) line shapes in InGaN multiple quantum well structures have been studied experimentally and theoretically between 10 and 300 K. The higher temperature PL spectra can be fitted quantitatively with a thermalized carrier distribution and a broadened joint-density-of-states. The low temperature PL line shapes suggest that carriers are not thermalized, as a result of localization by band-gap fluctuations. We deduce a localization energy of ˜7 meV as compared with an activation energy of ˜63 meV from thermal quenching of the PL intensity. We thus conclude that this activation energy and the band-gap fluctuation most likely have different origins.

  12. Multi-Sightline Observation of Narrow Absorption Lines in Lensed Quasar SDSS J1029+2623

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Saez, Cristian; Charlton, Jane C.; Eracleous, Michael; Chartas, George; Bauer, Franz E.; Inada, Naohisa; Uchiyama, Hisakazu

    2016-07-01

    We exploit the widely separated images of the lensed quasar SDSS J1029+2623 ({z}{em} = 2.197, θ = 22.″5) to observe its outflowing wind through two different sightlines. We present an analysis of three observations, including two with the Subaru telescope in 2010 February and 2014 April, separated by four years, and one with the Very Large Telescope, separated from the second Subaru observation by ˜2 months. We detect 66 narrow absorption lines (NALs), of which 24 are classified as intrinsic NALs that are physically associated with the quasar based on partial coverage analysis. The velocities of intrinsic NALs appear to cluster around values of {v}{ej} ˜ 59,000, 43,000, and 29,000 km s-1, which is reminiscent of filamentary structures obtained by numerical simulations. There are no common intrinsic NALs at the same redshift along the two sightlines, implying that the transverse size of the NAL absorbers should be smaller than the sightline distance between two lensed images. In addition to the NALs with large ejection velocities of {v}{ej} > 1000 km s-1, we also detect broader proximity absorption lines (PALs) at {z}{abs} ˜ {z}{em}. The PALs are likely to arise in outflowing gas at a distance of r ≤ 620 pc from the central black hole with an electron density of n e ≥8.7 × 103 cm-3. These limits are based on the assumption that the variability of the lines is due to recombination. We discuss the implications of these results on the three-dimensional structure of the outflow.

  13. A new table of Balmer line shapes for the diagnostic of magnetic fusion plasmas

    NASA Astrophysics Data System (ADS)

    Rosato, J.; Marandet, Y.; Stamm, R.

    2017-01-01

    A new table of Stark-Zeeman line shapes is provided for plasma diagnostics in the framework of magnetic fusion research. Spectral profiles of Dα, Dβ, Dγ, Dδ, and Dε have been calculated using computer simulations in conditions relevant to tokamak edge and divertor plasmas. After a brief presentation of the calculation method, we propose an interpolation formula and we give a routine for diagnostic applications. Analyses of experimental and synthetic spectra are performed as an illustration.

  14. Improved Characterization of Healthy and Malignant Tissue by NMR Line-Shape Relaxation Correlations

    PubMed Central

    Peemoeller, H.; Shenoy, R.K.; Pintar, M.M.; Kydon, D.W.; Inch, W.R.

    1982-01-01

    We performed a relaxation-line-shape correlation NMR experiment on muscle, liver, kidney, and spleen tissues of healthy mice and of mouse tumor tissue. In each tissue studied, five spin groups were resolved and characterized by their relaxation parameters. We report a previously uncharacterized semi-solid spin group and discuss briefly the value of this method for the identification of malignant tissues. PMID:7104438

  15. Line shapes of the exotic charm-anticharm mesons X(3872) and Z(4430)

    NASA Astrophysics Data System (ADS)

    Lu, Meng

    The B-factory experiments have recently discovered a series of new cc mesons, including the X(3872) and the first manifestly exotic meson Z +/-(4430). The proximity of the mass of the X to the D*0D 0 threshold has motivated its identification as a loosely-bound hadronic molecule whose constituents are a superposition of the charm mesons pairs D*0D 0 and D0D* 0. Factorization formulas for its line shapes are derived by taking advantage of the universality of S-wave resonances near a 2-particle threshold and by including the effects from the nonzero width of D* meson and the inelastic scattering channels of the charm mesons. The best fit to the line shapes of X in the J/psipi +pi- and D0 D0pi0 channels measured by the Belle Collaboration corresponds to the X being a bound state whose mass is just below the D*0 D0 threshold. The differences between the line shapes of X produced in B+ decays and B0 decays as well as in decay channels J/psipi+pi-, J /psipi+pi-pi0 , and D0D 0pi0 are further derived by taking into account the effects from the closeby channel composed of charged charm mesons. A more speculative application of the universality of S-wave resonances near a 2-particle threshold is to the Z+/-(4430), which is interpreted as a charm meson molecule composed of a superposition of D+1D*0 and D*+D01 . The small ratio of the binding energy of the Z + to the width of its constituent D1 is exploited to obtained simple predictions for its line shapes in the channels psi(2S)pi + and D*D*pi.

  16. Cavity ring-down spectroscopy of Doppler-broadened absorption line with sub-MHz absolute frequency accuracy.

    PubMed

    Cheng, C-F; Sun, Y R; Pan, H; Lu, Y; Li, X-F; Wang, J; Liu, A-W; Hu, S-M

    2012-04-23

    A continuous-wave cavity ring-down spectrometer has been built for precise determination of absolute frequencies of Doppler-broadened absorption lines. Using a thermo-stabilized Fabry-Pérot interferometer and Rb frequency references at the 780 nm and 795 nm, 0.1 - 0.6 MHz absolute frequency accuracy has been achieved in the 775-800 nm region. A water absorption line at 12579 cm(-1) is studied to test the performance of the spectrometer. The line position at zero-pressure limit is determined with an uncertainty of 0.3 MHz (relative accuracy of 0.8 × 10(-9)).

  17. Differential surface models for tactile perception of shape and on-line tracking of features

    NASA Technical Reports Server (NTRS)

    Hemami, H.

    1987-01-01

    Tactile perception of shape involves an on-line controller and a shape perceptor. The purpose of the on-line controller is to maintain gliding or rolling contact with the surface, and collect information, or track specific features of the surface such as edges of a certain sharpness. The shape perceptor uses the information to perceive, estimate the parameters of, or recognize the shape. The differential surface model depends on the information collected and on the a priori information known about the robot and its physical parameters. These differential models are certain functionals that are projections of the dynamics of the robot onto the surface gradient or onto the tangent plane. A number of differential properties may be directly measured from present day tactile sensors. Others may have to be indirectly computed from measurements. Others may constitute design objectives for distributed tactile sensors of the future. A parameterization of the surface leads to linear and nonlinear sequential parameter estimation techniques for identification of the surface. Many interesting compromises between measurement and computation are possible.

  18. On-line digital holographic measurement of size and shape of microparticles for crystallization processes

    NASA Astrophysics Data System (ADS)

    Khanam, Taslima; Darakis, Emmanouil; Rajendran, Arvind; Kariwala, Vinay; Asundi, Anand K.; Naughton, Thomas J.

    2008-09-01

    Crystallization is a widely used chemical process that finds applications in pharmaceutical industries. In an industrial crystallization process, it is not only important to produce pure crystals but also to control the shape and size of the crystals, as they affect the efficiency of downstream processes and the dissolution property of the drug. The effectiveness of control algorithms depend on the availability of on-line, real-time information about these critical properties. In this paper, we investigate the use of lens-less in-line digital holographic microscopy for size and shape measurements for crystallization processes. For this purpose, we use non-crystalline spherical microparticles and carbon fibers with known sizes present in a liquid suspension as test systems. We propose an algorithm to extract size and shape information for a population of microparticles from the experimentally recorded digital holograms. The measurements obtained from the proposed method show good agreement with the corresponding known size and shape of the particles.

  19. Interferometric control of contact line, shape, and aberrations of liquid lenses

    NASA Astrophysics Data System (ADS)

    Voitenko, Igor; Storm, Ronald; Westfall, Raymond; Rogers, Stanley

    2007-09-01

    An optical system consisting of an aqueous electrolyte resting on a polymer/gold/indium-tin-oxide (ITO) layer deposited onto a glass substrate is analyzed to acquire contact angle - focal distance data as a function of applied voltage. The shape factor of a liquid lens and its dependence on the perimeter of contact line and contact angle was analyzed in the presence of an electrical field applied between the electrolyte and planar electrode system. The contact angle of a liquid on a thin, transparent film of gold (20 nm thick) - on ITO under electrolyte solution could be varied from 110 +/- 3° when the gold was held at -2.4 V to 41 +/- 3° without voltage. The behavior of a water-based electrolyte and water-soluble polymer blend and its influence on the shape of contact line and profile of the lens were investigated by employing a holographic setup at wavelengths of 632.8 and 543.5 nm. Optical micrographs showing the profile of the lens, aberration-less aperture, deformation of contact line, and shape of the liquid lens, respectively, were analyzed in reflection and transmission. Both the advancing and receding contact angles were measured directly from digitized images of the profile of the lens. The dynamic range of linear beam steering and dependence of the focal length of the liquid lens on the applied voltage are discussed.

  20. Inter-Stellar Medium Absorption Lines As Outflow Tracers - A Comparison Between AGNs And SFGs

    NASA Astrophysics Data System (ADS)

    Talia, Margherita; Cimatti, A.; Brusa, M.

    2016-10-01

    To reproduce the properties of galaxies in the local Universe, as well as the scaling relations between host galaxies and black holes properties, many galaxy formation models invoke the presence of fast and energetic winds extending over galaxy scales. These massive gas outflows can be powered either by star-formation (SF) or AGN activity, though the relative dominance and efficiency of the different mechanisms is not yet fully understoodIn the last decade much effort has been put in the search for observational evidence of such phenomena, especially at the peak of both SF and AGN activity through cosmic time (1absorption lines in the UV regime, as well as broad, blue-shifted profiles in optical emission lines have been observed in galaxies at all redshifts and are usually interpreted as evidence of fast material moving towards our line of sight. More recently, especially thanks to new facilities like ALMA, outflows are being observed also in neutral and molecular gasIn order to study the differences and possible synergy between the two main driving outflow mechanisms (AGN or SF activity) and to understand the role that outflows might play in SF quenching and galaxy evolution, we collected a large sample of AGNs and SFGs at z>1.7 from large optical spectroscopic surveys (zCOSMOS, VUDS, ESO public surveys), complemented with HST imaging, X-ray (Chandra) and IR data. The richness of available data for our sample allowed us to map a large portion of the physical parameters space. We concentrated our analysis on the ISM absorption lines in the rest-frame UV wavelength range. Through stacking tecniques we studied the relation between such lines and AGN and SFG properties. I will present our results (Talia et al

  1. Time-Variable Complex Metal Absorption Lines in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Eracleous, Michael; Charlton, Jane C.; Tajitsu, Akito

    2005-08-01

    We present a new spectrum of the quasar HS 1603+3820 taken 1.28 yr (0.36 yr in the quasar rest frame) after a previous observation with Subaru+HDS. The new spectrum enables us to search for time variability as an identifier of intrinsic narrow absorption lines (NALs). This quasar shows a rich complex of C IV NALs within 60,000 km s-1 of the emission redshift. On the basis of covering factor analysis, Misawa et al. found that the C IV NAL system at zabs=2.42-2.45 (system A, at a shift velocity of vsh=8300-10,600 km s-1 relative to the quasar) was intrinsic to the quasar. With our new spectrum, we perform time variability analysis, as well as covering factor analysis, to separate intrinsic NALs from intervening NALs for eight C IV systems. Only system A, which was identified as an intrinsic system in the earlier paper by Misawa et al., shows a strong variation in line strength (Wobs~10.4-->19.1 Å). We speculate that a broad absorption line (BAL) could be forming in this quasar (i.e., many narrower lines will blend together to make a BAL profile). We illustrate the plausibility of this suggestion with the help of a simulation in which we vary the column densities and covering factors of the NAL complex. Under the assumption that a change of ionization state causes the variability, a lower limit can be placed on the electron density (ne>~3×104cm-3) and an upper limit on the distance from the continuum source (r<=6 kpc). On the other hand, if the motion of clumpy gas causes the variability (a more likely scenario), the crossing velocity and the distance from the continuum source are estimated to be vcross>8000 km s-1 and r<3 pc. In this case, the absorber does not intercept any flux from the broad emission line region, but only flux from the UV continuum source. If we adopt the dynamical model of Murray et al., we can obtain a much more strict constraint on the distance of the gas parcel from the continuum source, r<0.2 pc. Based on data collected at the Subaru

  2. The velocity distribution of interstellar gas observed in strong UV absorption lines

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; York, D. G.

    1978-01-01

    Observations of three strong interstellar UV absorption lines of N I (1199 A), N II (1083 A), and Si III (1206 A) in 47 stars of widely varying distance and a variety of spectral types are analyzed to obtain a velocity distribution function for the interstellar gas. A technique based on the maximum and minimum velocities observed along a line of sight is adopted because of heavy line blending, and results are discussed for both power-law and exponential distribution functions. The expected distribution of radiative-phase supernova remnants (SNRs) in the interstellar medium is calculated as a function of SNR birthrate and of the interstellar density in which they evolve. The results are combined with observed distance estimates, and it is shown that an interstellar density in excess of 0.1 per cu cm would be required to keep the SNRs sufficiently confined so that their cross sections are consistent with the observed number of components. The alternative possibility is considered that SNRs do not enter the radiative phase before escaping from the Galaxy or colliding with neighboring remnants.

  3. The Keilson and Storer 3-dimensional (KS-3D) line shape model: applications to optical diagnostic in combustion media

    SciTech Connect

    Joubert, Pierre

    2008-10-22

    High-resolution infrared and Raman spectroscopies require refine spectral line shape model to account for all observed features. For instance, for gaseous mixtures of light molecules with heavy perturbers, drastic changes arise particularly in the collision regime, resulting from the inhomogeneous effects due to the radiator speed-dependence of the collisional line broadening and line shifting parameters. Following our previous work concerning the collision regime, we have developed a new line shape modelization called the Keilson and Storer 3-dimensional line shape model to lower densities, when the Doppler contribution, and the collisional confinement narrowing can be no longer neglected. The consequences for optical diagnostics, particularly for H{sub 2}-N{sub 2} mixtures with high pressure and high temperature are presented. The effects of collisional relaxation on the spectral line shapes are discussed.

  4. Effect of ion-neutral collision mechanism on the trapped-ion equation of motion: a new mass spectral line shape for high-mass trapped ions

    NASA Astrophysics Data System (ADS)

    Guan, Shenheng; Li, Guo-Zhong; Marshall, Alan G.

    1997-11-01

    The decay amplitude envelope of an ICR time-domain signal determines its corresponding Fourier transform mass spectral line shape. The commonly accepted FT-ICR frequency-domain unapodized Lorentzian spectral line shape originates from the Langevin ion-neutral collision model, in which an ion is treated as a point charge that induces an electric dipole moment in a neutral collision partner. The Langevin model provides a good description of reactions of low-energy collisions of low-mass positive ions with neutrals. However, the Langevin model is inappropriate for collisions of high-mass gas-phase biopolymer ions with low-mass neutrals. Here, we examine ion trajectories for both Langevin and hard-sphere ion-neutral collision models. For the Langevin model, collision frequency is independent of ion speed, leading to a linear differential equation of ion motion with a frictional damping term linearly proportional to ion velocity. For the hard-sphere model, collision frequency is proportional to ion speed and the frictional damping term is proportional to the square of ion velocity. We show that the resulting (non-linear) equation of ion motion leads to a non-exponential time-domain ICR signal whose amplitude envelope has the form, 1/(1 + [sigma]t), in which [sigma] is a constant. Dispersion-vs-absorption (DISPA) line shape analysis reveals that the `hard-sphere' spectral line shape resembles that of overlaid narrow and broad Lorentzians. We discuss several important implications of the new `hard-sphere' line shape for ICR spectral analysis, ICR signal processing, collision-based ion activation, and ion axialization. Finally, in the hard-sphere limit, a non-linear frictional damping term will also apply to ions in a Paul trap.

  5. Sensitivity of thin cirrus clouds in the tropical tropopause layer to ice crystal shape and radiative absorption

    NASA Astrophysics Data System (ADS)

    Russotto, R. D.; Ackerman, T. P.; Durran, D. R.

    2016-03-01

    Subvisible cirrus clouds in the tropical tropopause layer (TTL) play potentially important roles in Earth's radiation budget and in the transport of water into the stratosphere. Previous work on these clouds with 2-D cloud-resolving models has assumed that all ice crystals were spherical, producing too few crystals greater than 60 μm in length compared with observations. In this study, the System for Atmospheric Modeling cloud-resolving model is modified in order to calculate the fall speeds, growth rates, and radiative absorption of nonspherical ice crystals. This extended model is used in simulations that aim to provide an upper bound on the effects of ice crystal shape on the time evolution of thin cirrus clouds and to identify the physical processes responsible for any such effects. Model runs assuming spheroidal crystals result in a higher center of cloud ice mass than in the control, spherical case, while the total mass of ice is little affected by the shape. Increasing the radiative heating results in less total cloud ice mass relative to the control case, an effect which is robust with more extreme perturbations to the absorption coefficients. This is due to higher temperatures reducing the relative humidity in the cloud and its environment, and greater entrainment of dry air due to dynamical changes. Comparisons of modeled ice crystal size distributions with recent airborne observations of TTL cirrus show that incorporating nonspherical shape has the potential to bring the model closer to observations.

  6. The influence of Stark broadening on Cr II spectral line shapes in stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Ryabchikova, T.; Simić, Z.; Popović, L. Č.; Dačić, M.

    2007-07-01

    Aims:We consider the effect of Stark broadening on the shapes of Cr ii spectral lines observed in stellar atmospheres of the middle part of the main sequence. Methods: Stark broadening parameters were calculated by the semiclassical perturbation approach. For stellar spectra synthesis, the improved version synth3 of the code synth for synthetic spectrum calculations was used. Results: Stark broadening parameters for Cr ii spectral lines of seven multiplets belonging to 4s-4p transitions were calculated. New calculated Stark parameters were applied to the analysis of Cr ii line profiles observed in the spectrum of Cr-rich star HD 133792. Conclusions: We found that Stark broadening mechanism is very important and should be taken into account, especially in the study of Cr abundance stratification.

  7. Spectropolarimetry of PKS 0040-005 and the orientation of broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Brotherton, M. S.; De Breuck, C.; Schaefer, J. J.

    2006-10-01

    We have used the Very Large Telescope (VLT) to obtain spectropolarimetry of the radio-loud, double-lobed broad absorption line (BAL) quasar PKS 0040-005. We find that the optical continuum of PKS 0040-005 is intrinsically polarized at 0.7 per cent with an electric vector position angle nearly parallel to that of the large-scale radio axis. This result is naturally explained in terms of an equatorial scattering region seen at a small inclination, building a strong case that the BAL outflow is not equatorial. In conjunction with other recent results concerning BAL quasars, the era of simply characterizing these sources as `edge-on' is over. Based on observations collected at the European Southern Observatory, Paranal, project 71.B-0121(A). E-mail: mbrother@uwyo.edu (MSB); cdbreuc@eso.org (CDB); schaefjj@ufl.edu (JJS) ‡ ESO Visitor.

  8. Determination of molecular line parameters for acrolein (C(3)H(4)O) using infrared tunable diode laser absorption spectroscopy.

    PubMed

    Harward, Charles N; Thweatt, W David; Baren, Randall E; Parrish, Milton E

    2006-04-01

    Acrolein (C(3)H(4)O) molecular line parameters, including infrared (IR) absorption positions, strengths, and nitrogen broadened half-widths, must be determined since they are not included in the high resolution transmission (HITRAN) molecular absorption database of spectral lines. These parameters are required for developing a quantitative analytical method for measuring acrolein in a single puff of cigarette smoke using tunable diode laser absorption spectroscopy (TDLAS). The task is complex since acrolein has many highly overlapping infrared absorption lines in the room temperature spectrum and the cigarette smoke matrix contains thousands of compounds. This work describes the procedure for estimating the molecular line parameters for these overlapping absorption lines in the wavenumber range (958.7-958.9 cm(-1)) using quantitative reference spectra taken with the infrared lead-salt TDLAS instrument at different pressures and concentrations. The nitrogen broadened half-width for acrolein is 0.0937 cm(-1)atm(-1) and to our knowledge, is the first time it has been reported in the literature.

  9. FR-II Broad Absorption Line Quasars and the Life Cycle of Quasars

    SciTech Connect

    Gregg, M D; Becker, R H; de Vries, W

    2006-01-05

    By combining the Sloan Digitized Sky Survey Third Data Release quasar list with the VLA FIRST survey, we have identified five objects having both broad absorption lines in their optical spectra and FR-II radio morphologies. We identify an additional example of this class from the FIRST Bright Quasar Survey, J1408+3054. Including the original FR-II-BAL object, J1016+5209, brings the number of such objects to eight. These quasars are relatively rare; finding this small handful has required the 45,000-large quasar sample of SDSS. The FR-II-BAL quasars exhibit a significant anti-correlation between radio-loudness and the strength of the BAL features. This is easily accounted for by the evolutionary picture in which quasars emerge from cocoons of BAL-producing material which stifle the development of radio jets and lobes. There is no such simple explanation for the observed properties of FR-II-BALs in the unification-by-orientation model of quasars. The rarity of the FR-II-BAL class implies that the two phases do not coexist for very long in a single quasar, perhaps less than 10{sup 5} years, with the combined FR-II, high ionization broad absorption phase being even shorter by another factor of 10 or more.

  10. BROAD ABSORPTION LINE VARIABILITY ON MULTI-YEAR TIMESCALES IN A LARGE QUASAR SAMPLE

    SciTech Connect

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Hall, P. B.; Anderson, S. F.; Hamann, F.; Lundgren, B. F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2013-11-10

    We present a detailed investigation of the variability of 428 C IV and 235 Si IV broad absorption line (BAL) troughs identified in multi-epoch observations of 291 quasars by the Sloan Digital Sky Survey-I/II/III. These observations primarily sample rest-frame timescales of 1-3.7 yr over which significant rearrangement of the BAL wind is expected. We derive a number of observational results on, e.g., the frequency of BAL variability, the velocity range over which BAL variability occurs, the primary observed form of BAL-trough variability, the dependence of BAL variability upon timescale, the frequency of BAL strengthening versus weakening, correlations between BAL variability and BAL-trough profiles, relations between C IV and Si IV BAL variability, coordinated multi-trough variability, and BAL variations as a function of quasar properties. We assess implications of these observational results for quasar winds. Our results support models where most BAL absorption is formed within an order-of-magnitude of the wind-launching radius, although a significant minority of BAL troughs may arise on larger scales. We estimate an average lifetime for a BAL trough along our line-of-sight of a few thousand years. BAL disappearance and emergence events appear to be extremes of general BAL variability, rather than being qualitatively distinct phenomena. We derive the parameters of a random-walk model for BAL EW variability, finding that this model can acceptably describe some key aspects of EW variability. The coordinated trough variability of BAL quasars with multiple troughs suggests that changes in 'shielding gas' may play a significant role in driving general BAL variability.

  11. THE INTRINSIC FRACTIONS AND RADIO PROPERTIES OF LOW-IONIZATION BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Dai Xinyu; Shankar, Francesco; Sivakoff, Gregory R.

    2012-10-01

    Low-ionization (Mg II, Fe II, and Fe III) broad absorption line quasars (LoBALs) probe a relatively obscured quasar population and could be at an early evolutionary stage for quasars. We study the intrinsic fractions of LoBALs using the Sloan Digital Sky Survey (SDSS), Two Micron All Sky Survey, and Faint Images of the Radio Sky at Twenty cm survey. We find that the LoBAL fractions of the near-infrared (NIR) and radio samples are approximately 5-7 times higher than those measured in the optical sample. This suggests that the fractions measured in the NIR and radio bands are closer to the intrinsic fractions of the populations, and that the optical fractions are significantly biased due to obscuration effects, similar to high-ionization broad absorption line quasars (HiBALs). Considering a population of obscured quasars that do not enter the SDSS, which could have a much higher LoBAL fraction, we expect that the intrinsic fraction of LoBALs could be even higher. We also find that the LoBAL fractions decrease with increasing radio luminosities, again, similarly to HiBALs. In addition, we find evidence for increasing fractions of LoBALs toward higher NIR luminosities, especially for FeLoBALs with a fraction of {approx}18% at M{sub K{sub s}}< -31 mag. This population of NIR-luminous LoBALs may be at an early evolutionary stage of quasar evolution. To interpret the data, we use a luminosity-dependent model for LoBALs that yields significantly better fits than those from a pure geometric model.

  12. A variable P v broad absorption line and quasar outflow energetics

    NASA Astrophysics Data System (ADS)

    Capellupo, D. M.; Hamann, F.; Barlow, T. A.

    2014-10-01

    Broad absorption lines (BALs) in quasar spectra identify high-velocity outflows that might exist in all quasars and could play a major role in feedback to galaxy evolution. The viability of BAL outflows as a feedback mechanism depends on their kinetic energies, as derived from the outflow velocities, column densities, and distances from the central quasar. We estimate these quantities for the quasar, Q1413+1143 (redshift ze = 2.56), aided by the first detection of P V λλ1118, 1128 BAL variability in a quasar. In particular, P V absorption at velocities where the C IV trough does not reach zero intensity implies that the C IV BAL is saturated and the absorber only partially covers the background continuum source (with characteristic size <0.01 pc). With the assumption of solar abundances, we estimate that the total column density in the BAL outflow is log NH ≳ 22.3 cm-2. Variability in the P V and saturated C IV BALs strongly disfavours changes in the ionization as the cause of the BAL variability, but supports models with high column density BAL clouds moving across our lines of sight. The observed variability time of 1.6 yr in the quasar rest frame indicates crossing speeds >750 km s-1 and a radial distance from the central black hole of ≲ 3.5 pc, if the crossing speeds are Keplerian. The total outflow mass is ˜4100 M⊙, the kinetic energy ˜4 × 1054 erg, and the ratio of the outflow kinetic energy luminosity to the quasar bolometric luminosity is ˜0.02 (at the minimum column density and maximum distance), which might be sufficient for important feedback to the quasar's host galaxy.

  13. Investigating the radio-loud phase of broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Bruni, G.; González-Serrano, J. I.; Pedani, M.; Benn, C. R.; Mack, K.-H.; Holt, J.; Montenegro-Montes, F. M.; Jiménez-Luján, F.

    2014-09-01

    Context. Broad absorption lines (BALs) are present in the spectra of ~20% of quasars (QSOs); this indicates fast outflows (up to 0.2c) that intercept the observer's line of sight. These QSOs can be distinguished again into radio-loud (RL) BAL QSOs and radio-quiet (RQ) BAL QSOs. The first are very rare, even four times less common than RQ BAL QSOs. The reason for this is still unclear and leaves open questions about the nature of the BAL-producing outflows and their connection with the radio jet. Aims: We explored the spectroscopic characteristics of RL and RQ BAL QSOs with the aim to find a possible explanation for the rarity of RL BAL QSOs. Methods: We identified two samples of genuine BAL QSOs from SDSS optical spectra, one RL and one RQ, in a suitable redshift interval (2.5 < z < 3.5) that allowed us to observe the Mg ii and Hβ emission lines in the adjacent near-infrared (NIR) band. We collected NIR spectra of the two samples using the Telescopio Nazionale Galileo (TNG, Canary Islands). By using relations known in the literature, we estimated the black-hole mass, the broad-line region radius, and the Eddington ratio of our objects and compared the two samples. Results: We found no statistically significant differences from comparing the distributions of the cited physical quantities. This indicates that they have similar geometries, accretion rates, and central black-hole masses, regardless of whether the radio-emitting jet is present or not. Conclusions: These results show that the central engine of BAL QSOs has the same physical properties with and without a radio jet. The reasons for the rarity of RL BAL QSOs must reside in different environmental or evolutionary variables. Figure 3 is available in electronic form at http://www.aanda.org

  14. A new perspective on the interstellar cloud surrounding the Sun from UV absorption line results

    NASA Astrophysics Data System (ADS)

    Gry, Cecile; Jenkins, Edward B.

    2015-01-01

    We offer a new, more inclusive, picture of the local interstellar medium, where it is composed of a single, monolithic cloud that surrounds the Sun in all directions. Our study of velocities based on Mg II and Fe II ultraviolet absorption lines indicates that the cloud has an average motion consistent with the velocity vector of gas impacting the heliosphere and does not behave like a rigid body: gas within the cloud is being differentially decelerated in the direction of motion, and the cloud is expanding in directions perpendicular to this flow, much like the squashing of a balloon. The outer boundary of the cloud is in average 10 pc away from us but is highly irregular, being only a few parsecs away in some directions, with possibly a few extensions up to 20 pc. Average H I volume densities vary between 0.03 and 0.1 cm3 over different sight lines. Metals appear to be significantly depleted onto grains, and there is a steady increase in this effect from the rear of the cloud to the apex of motion. There is no evidence that changes in the ionizing radiation influence the apparent abundances. Additional, secondary velocity components are detected in 60% of the sight lines. Almost all of them appear to be interior to the volume holding the gas that we identify with the main cloud. Half of the sight lines exhibit a secondary component moving at about - 7.2 km/s with respect to the main component, which may be the signature of an implosive shock propagating toward the cloud's interior.

  15. Time-dependent excitation and ionization modelling of absorption-line variability due to GRB 080310

    NASA Astrophysics Data System (ADS)

    Vreeswijk, P. M.; Ledoux, C.; Raassen, A. J. J.; Smette, A.; De Cia, A.; Woźniak, P. R.; Fox, A. J.; Vestrand, W. T.; Jakobsson, P.

    2013-01-01

    We model the time-variable absorption of Fe II, Fe III, Si II, C II and Cr II detected in Ultraviolet and Visual Echelle Spectrograph (UVES) spectra of gamma-ray burst (GRB) 080310, with the afterglow radiation exciting and ionizing the interstellar medium in the host galaxy at a redshift of z = 2.42743. To estimate the rest-frame afterglow brightness as a function of time, we use a combination of the optical VRI photometry obtained by the RAPTOR-T telescope array, which is presented in this paper, and Swift's X-Ray Telescope (XRT) observations. Excitation alone, which has been successfully applied for a handful of other GRBs, fails to describe the observed column density evolution in the case of GRB 080310. Inclusion of ionization is required to explain the column density decrease of all observed Fe II levels (including the ground state 6D9/2) and increase of the Fe III 7S3 level. The large population of ions in this latter level (up to 10% of all Fe III) can only be explained through ionization of Fe II, as a large fraction of the ionized Fe II ions (we calculate 31% using the Flexible Atomic and Cowan codes) initially populate the 7S3 level of Fe III rather than the ground state. This channel for producing a significant Fe III 7S3 level population may be relevant for other objects in which absorption lines from this level, the UV34 triplet, are observed, such as broad absorption line (BAL) quasars and η Carinae. This provides conclusive evidence for time-variable ionization in the circumburst medium, which to date has not been convincingly detected. However, the best-fit distance of the neutral absorbing cloud to the GRB is 200-400 pc, i.e. similar to GRB-absorber distance estimates for GRBs without any evidence for ionization. We find that the presence of time-varying ionization in GRB 080310 is likely due to a combination of the super-solar iron abundance ([Fe/H] = +0.2) and the low H I column density (log N(H i) = 18.7) in the host of GRB 080310. Finally

  16. Metal-line absorption at Z(sub abs) approximately Z(sub em) from associated galaxies

    NASA Technical Reports Server (NTRS)

    Ellingson, E.; Yee, H. K. C.; Bechtold, Jill; Dobrzycki, Adam

    1994-01-01

    For a preliminary study of whether C IV absorption at Z(sub abs) approximately Z(sub em) is related to associated galaxy companions, we have collected data from a sample of 10 quasars with 0.15 less than z less than 0.65 for which high-resolution optical and UV spectroscopy is available from the literature, and for which we have deep optical images and limited spectroscopy. We also present new optical spectra for two of our samples. Four of these quasars have associated C IV absorption systems. In thes four fields, there are eight galaxies with M(sub r) less than -19.0 mag within 35 kpc of the quasar (projected distance, assuming they are at the quasar redshift), which may be candidates for the associated C IV absorption. This observed density of galaxies near quasars with associated C IV absorption is significantly greater than that for a control sample of quasars chosen from the literature. This result suggests that galaxies near the quasar line of sight may be linked with associated C IV absorption. None of these quasars show associated Mg II absorption, despite the presence of galaxies very near the line of sight, suggesting a Mg II 'proximity effect,' where ionizing flux from the quasar destroys the Mg(+) from at least the outer parts of the galaxies. Three quasars are located in rich galaxy clusters, but none of these quasars are found to have associated C IV absorption. This suggests that galaxies in rich clusters associated with quasars are less likely to be metal-line absorbers. It is plausible that the extended galaxy halos which may be responsible for the absorptions are stripped from galaxies in these dense environments. While it seems that at Z approximately 0.6 rich clusters do not cause them, associated C IV absorption systems at higher redshift may be explained by associated clusters if there has been evolution in the properties of galaxy halos in dense environments.

  17. A novel control system for automatically locking a diode laser frequency to a selected gas absorption line

    NASA Astrophysics Data System (ADS)

    Dong, Lei; Yin, Wangbao; Ma, Weiguang; Jia, Suotang

    2007-05-01

    A novel control system has been developed for avoiding manual operation during traditional frequency locking. The control system uses a computer with a commercial data acquisition card. This accomplishes the whole operation of frequency locking, including generating ramp, searching locking point, engaging a proportional-integral-differential (PID) regulator at the proper time and outputting PID compensation signal. Moreover, a new method has also been employed to make the novel control system accurately identify the locking points of all absorption lines within the scanning range, so that the laser frequency can be automatically firmly brought onto any selected absorption line centre without any adjusting time. The operation of the system, the ability to identify absorption lines and the performance of the frequency locking were discussed in detail. Successful tests were made with two different lasers: external cavity diode lasers and distributed feedback diode lasers.

  18. High-resolution IUE observations of interstellar absorption lines in the Vela supernova remnant

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.; Wallerstein, G.; Silk, J.

    1984-01-01

    Ultraviolet spectra of 45 stars in the vicinity of the Vela supernova remnant were recorded by the short-wavelength echelle spectrograph aboard the International Ultraviolet Explorer (IUE). Over one-third of the stars show interstellar absorption lines at large radial velocities (greater than 60 km/s). The mapping of these high-velocity components in the sky suggests the motions are chaotic, rather than from a coherent expansion of the remnant material. In accord with earlier conclusions from Copernicus data, the gas at high velocity exhibits higher than normal ionization and shows substantially less depletion of nonvolatile elements than normal interstellar material at low velocities. Relatively strong lines from neutral carbon in the two excited fine-structure states indicate that the neutral clouds within the remnant have had their pressures enhanced by the passage of the blast wave from the supernova. Also, the remnant seems to show a significant enhancement in the abundances of low-velocity Si IV, C IV, and N V over those found in the general interstellar medium.

  19. Magnetic Turbulence and Line Broadening in Simulations of Lyman-Alpha Absorption

    NASA Astrophysics Data System (ADS)

    Gurvich, Alex; Burkhart, Blakesley K.; Bird, Simeon

    2016-01-01

    We use the Illustris cosmological AREPO simulations to study the effects of gas turbulence and magnetic fields on measurements from the Lyman-Alpha forest. We generate simulated Lyman-Alpha spectra and plot the distributions of Column Density (CDD) and Doppler Width (b) both by adhering to the canonical method of fitting Voigt profiles to absorption lines and by directly measuring the column density and equivalent widths from snapshot data .We investigate the effects of additional unresolved gas turbulence in Illustris by adding an additional broadening term to the line profiles to mimic turbulent broadening. When we do this, we find a measurable effect in the CDD and an offset in the mean of the b distribution corresponding to the additional turbulence. We also compare different MHD runs in AREPO we find that the CDD can measurably differentiate between magnetic seed field at redshifts as low as z=0.1, but we do not find that the b distribution is affected at a detectable level. Our work suggests that the effects of turbulence and magnetic fields from z=2-0.1 can potentially be measured with these diagnostics. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  20. C IV Broad Absorption Line Acceleration in Sloan Digital Sky Survey Quasars

    NASA Astrophysics Data System (ADS)

    Grier, C. J.; Brandt, W. N.; Hall, P. B.; Trump, J. R.; Filiz Ak, N.; Anderson, S. F.; Green, Paul J.; Schneider, D. P.; Sun, M.; Vivek, M.; Beatty, T. G.; Brownstein, Joel R.; Roman-Lopes, Alexandre

    2016-06-01

    We present results from the largest systematic investigation of broad absorption line (BAL) acceleration to date. We use spectra of 140 quasars from three Sloan Digital Sky Survey programs to search for global velocity offsets in BALs over timescales of ≈2.5-5.5 years in the quasar rest frame. We carefully select acceleration candidates by requiring monolithic velocity shifts over the entire BAL trough, avoiding BALs with velocity shifts that might be caused by profile variability. The C iv BALs of two quasars show velocity shifts consistent with the expected signatures of BAL acceleration, and the BAL of one quasar shows a velocity-shift signature of deceleration. In our two acceleration candidates, we see evidence that the magnitude of the acceleration is not constant over time; the magnitudes of the change in acceleration for both acceleration candidates are difficult to produce with a standard disk-wind model or via geometric projection effects. We measure upper limits to acceleration and deceleration for 76 additional BAL troughs and find that the majority of BALs are stable to within about 3% of their mean velocities. The lack of widespread acceleration/deceleration could indicate that the gas producing most BALs is located at large radii from the central black hole and/or is not currently strongly interacting with ambient material within the host galaxy along our line of sight.

  1. The radio core and jet in the broad absorption-line quasar PG 1700+518

    NASA Astrophysics Data System (ADS)

    Yang, J.; Wu, F.; Paragi, Z.; An, T.

    2012-01-01

    The blueshifted broad absorption lines (BAL) or troughs are observed in active galactic nuclei (AGNs) when our line of sight is intercepted by a high-speed outflow (wind), likely originating in the accretion disc. The outflow or wind can shed light on the internal structure obscured by the AGN torus. Recently, it has been shown that this outflow is rotating in the BAL quasar PG 1700+518, further supporting the accretion disc origin of the wind. With the purpose of giving independent constraints on the wind geometry, we performed high-resolution European very long baseline interferometry (VLBI) Network (EVN) observations at 1.6 GHz in 2010. Combining the results with the Very Large Array (VLA) archival data at 8.4 GHz, we present its jet structure on scales of parsec (pc) to kiloparsec (kpc) for the first time. The source shows two distinct jet features in east-west direction with a separation of around 4 kpc. The eastern feature, which has so far been assumed to hide the core, is a kpc-scale hotspot, which is completely resolved out in the EVN image. In the western jet feature, we find a compact jet component, which pinpoints the position of the central black hole in the galaxy. Jet components on both sides of the core are additionally detected in the north-west-south-east direction, and they show a symmetric morphology on scale of <1 kpc. This two-sided jet feature is not common in the known BAL quasars and indicates that the jet axis is far away from the line of sight. Furthermore, it is nearly parallel to the scattering plane revealed earlier by optical polarimetry. By analogy to polar-scattered Seyfert 1 galaxies, we conclude that the jet likely has a viewing angle around 45°. The analogy is further supported by the recent report of significant cold absorption in the soft X-rays, a nearly unique feature to polar-scattered Seyfert galaxies. Finally, our observations have confirmed the earlier finding that the majority of radio emission in this galaxy arises

  2. Optical absorption in a disk-shaped quantum dot in the presence of an impurity

    NASA Astrophysics Data System (ADS)

    Mikhail, I. F. I.; Shafee, A. M.

    2017-02-01

    The linear and third order nonlinear optical absorption coefficients have been calculated in a two dimensional disk quantum dot. The confinement potential has been taken to be a combination of a parabolic and inverse squared part. The study has been performed in the presence of a perpendicular static magnetic field and a central or off-central impurity. The resulting Schrödinger equation has been solved by applying the variational method. It has been found that the presence of impurity causes a huge increase in the square of the transition matrix and in the absorption coefficients, in particular in the third order coefficient. Moreover, the asymmetry which results in the case of off-central impurity has been dealt with carefully by taking into consideration the transition matrices which vanish in other cases.

  3. No Evidence for Variability of Intervening Absorption Lines toward GRB 060206: Implications for the MgII Incidence Problem

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro; Totani, Tomonori; Hattori, Takashi; Ohta, Kouji; Kawabata, Koji S.; Kobayashi, Naoto; Iye, Masanori; Nomoto, Ken'ichi; Kawai, Nobuyuki

    2009-02-01

    We examined the variability of absorption line strength of intervening systems along the line of sight to GRB 060206 at z = 4.05, utilizing low-resolution optical spectra obtained by the Subaru telescope from six to ten hours after the burst. Strong variabilities of FeII and MgII lines at z = 1.48 during t = 5--8hr have been reported for this GRB, and those have been used to support the idea of clumpy MgII cloudlets, which was originally proposed to explain the anomalously high incidence of MgII absorbers in the GRB spectra compared to quasars. However, our spectra with a higher signal-to-noise ratio do not show any evidence for variability in t = 6--10hr. There is a clear discrepancy between our data and those of Hao et al. (2007, ApJ, 659, L99) in the overlapping time interval. Furthermore, the line strengths in our data are in agreement with those observed at t ˜ 2hr by Thöne et al. (2008, A&A, 489, 37). We also detected FeII and MgII absorption lines for a system at z = 2.26; these lines do not show evidence for variability either. Therefore, we conclude that there is no strong evidence for the variability in the intervening absorption lines toward GRB 060206, offering poor support for the MgII cloudlet hypothesis by the GRB 060206 data.

  4. Modeling biological fluorescence emission spectra using Lorentz line shapes and nonlinear optimization

    NASA Astrophysics Data System (ADS)

    Nation, Paul D.; Howard, A. Q.; Webb, Lincoln J.

    2007-08-01

    Using the Levenberg-Marquardt nonlinear optimization algorithm and a series of Lorentzian line shapes, the fluorescence emission spectra from BG (Bacillus globigii) bacteria can be accurately modeled. This method allows data from both laboratory and field sources to model the return signal from biological aerosols using a typical LIF (lidar induced fluorescence) system. The variables found through this procedure match individual fluorescence components within the biological material and therefore have a physically meaningful interpretation. The use of this method also removes the need to calculate phase angles needed in autoregressive all-pole models.

  5. Extremely wideband signal shaping using one- and two-dimensional nonuniform nonlinear transmission lines

    NASA Astrophysics Data System (ADS)

    Afshari, E.; Bhat, H. S.; Hajimiri, A.; Marsden, J. E.

    2006-03-01

    We propose a class of electrical circuits for extremely wideband (EWB) signal shaping. A one-dimensional, nonlinear, nonuniform transmission line is proposed for narrow pulse generation. A two-dimensional transmission lattice is proposed for EWB signal combining. Model equations for the circuits are derived. Theoretical and numerical solutions of the model equations are presented, showing that the circuits can be used for the desired application. The procedure by which the circuits are designed exemplifies a modern, mathematical design methodology for EWB circuits.

  6. Resonances in photoabsorption: Predissociation line shapes in the 3pπD ^1Pi _u^+ leftarrow X^1Σ _g^+ system in H2

    NASA Astrophysics Data System (ADS)

    Mezei, J. Zs.; Schneider, I. F.; Glass-Maujean, M.; Jungen, Ch.

    2014-08-01

    The predissociation of the 3pπ D^1Π_u^+,v≥ 3,N=1, N = 2, and N = 3 levels of diatomic hydrogen is calculated by ab initio multichannel quantum defect theory combined with a R-matrix type approach that accounts for interfering predissociation and autoionization. The theory yields absorption line widths and shapes that are in good agreement with those observed in the high-resolution synchrotron vacuum-ultraviolet absorption spectra obtained by Dickenson et al. [J. Chem. Phys. 133, 144317 (2010)] at the DESIRS beamline of the SOLEIL synchrotron. The theory predicts further that many of the D state resonances with v ⩾ 6 exhibit a complex fine structure which cannot be modeled by the Fano profile formula and which has not yet been observed experimentally.

  7. A Variable Energy, Redshifted, Iron Absorption Line in a recoiling Black Hole

    NASA Astrophysics Data System (ADS)

    Civano, Francesca

    The aim of this proposal is to maximize the scientific return of a medium deep (123 ksec) XMM-Newton observation, awarded during the AO10 call for proposal, to obtain a high quality X-ray spectrum of CID-42, a very peculiar source discovered in the COSMOS survey. CID-42 is exceptional in many respects showing a redshifted, variable energy absorption line plus an emission line at ~ 6 keV forming an inverted P-Cygni profile. These features were never observed before in the X-rays. The peculiar nature of CID-42 extends well beyond the X-ray spectrum. First, two optical sources in a common envelope are clearly seen in the HST data. They are separated by about 2.45 kpc. Thanks to the unrivaled Chandra HRC resolution it was possible to unambiguously associate the X-ray emission to only one of the two optical sources. Second, a high velocity (1100 km/s) offset, between the broad and narrow component of the H-beta line is measured in the VLT/Magellan/Keck optical spectra. The velocity offset observed is unlikely to be due to a ongoing merger because too high. Third, the above mentioned inverted P-Cygni profile in the hard X-ray spectrum would be naturally explained by an high velocity (v~0.02-0.14c) gas infall in the innermost region of the accreting Black Hole. All together the observed properties support the interpretation of a Black Hole kicked from the center of the galaxy by asymmetric emission of gravitational waves produced during a major merger. The Black Hole is caught while still active, at ~10^6 yrs after the kick and at a substantial distance from the center of the galaxy. The theoretical expectations suggest that they are extremely rare and just 1 or 2 gravitational wave recoiling Black Holes are expected in a survey like COSMOS. CID- 42 thus represents a ``Rosetta stone'' for the study of SMBH mergers that are believed to occur during galaxy-galaxy mergers, and their fate after the merging. The detailed study of the hard X-ray XMM-Newton spectrum, in the

  8. Variable Reddening and Broad Absorption Lines in the Narrow-line Seyfert 1 Galaxy WPVS 007: An Origin in the Torus

    NASA Astrophysics Data System (ADS)

    Leighly, Karen M.; Cooper, Erin; Grupe, Dirk; Terndrup, Donald M.; Komossa, S.

    2015-08-01

    We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddening increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11733, 13015, and 14058.

  9. CO{sub 2} isolated line shapes by classical molecular dynamics simulations: Influence of the intermolecular potential and comparison with new measurements

    SciTech Connect

    Larcher, G.; Tran, H. Schwell, M.; Chelin, P.; Landsheere, X.; Hartmann, J.-M.; Hu, S.-M.

    2014-02-28

    Room temperature absorption spectra of various transitions of pure CO{sub 2} have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 μm and 0.8 μm regions. Their spectral shapes have been calculated by requantized classical molecular dynamics simulations. From the time-dependent auto-correlation function of the molecular dipole, including Doppler and collisional effects, spectral shapes are directly computed without the use of any adjusted parameter. Analysis of the spectra calculated using three different anisotropic intermolecular potentials shows that the shapes of pure CO{sub 2} lines, in terms of both the Lorentz widths and non-Voigt effects, slightly depend on the used potential. Comparisons between these ab initio calculations and the measured spectra show satisfactory agreement for all considered transitions (from J = 6 to J = 46). They also show that non-Voigt effects on the shape of CO{sub 2} transitions are almost independent of the rotational quantum number of the considered lines.

  10. First detection of ionized helium absorption lines in infrared K band spectra of O-type stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Block, David L.; Geballe, T. R.; Hanson, Margaret M.

    1993-01-01

    We have obtained high SNR, moderate-resolution K band spectra of two early O-type main sequence stars, HD 46150 O5 V, and HD 46223 O4 V, in the Rosette Nebula. We report the detection, for the first time, of the 2.189 micron He II line in O-type stars. Also detected is the 2.1661 micron Br-gamma line in absorption. The 2.058 micron He I line appears to be present in absorption in both stars, although its appearance at our resolution is complicated by atmospheric features. These three lines can form the basis for a spectral classification system for hot stars in the K band that may be used at infrared wavelengths to elucidate the nature of those luminous stars in otherwise obscured H II and giant H II regions.

  11. Total Absorption Spectroscopy Study of (92)Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape.

    PubMed

    Zakari-Issoufou, A-A; Fallot, M; Porta, A; Algora, A; Tain, J L; Valencia, E; Rice, S; Bui, V M; Cormon, S; Estienne, M; Agramunt, J; Äystö, J; Bowry, M; Briz, J A; Caballero-Folch, R; Cano-Ott, D; Cucoanes, A; Elomaa, V-V; Eronen, T; Estévez, E; Farrelly, G F; Garcia, A R; Gelletly, W; Gomez-Hornillos, M B; Gorlychev, V; Hakala, J; Jokinen, A; Jordan, M D; Kankainen, A; Karvonen, P; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Molina, F; Moore, I; Perez-Cerdán, A B; Podolyák, Zs; Penttilä, H; Regan, P H; Reponen, M; Rissanen, J; Rubio, B; Shiba, T; Sonzogni, A A; Weber, C

    2015-09-04

    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.

  12. Probing the Circumgalactic Medium of Submillimeter Galaxies with QSO Absorption Line Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Hennawi, Joseph F.; Prochaska, Jason X.; Stockton, Alan N.; Mutel, Robert Lucien; Casey, Caitlin; Cooray, Asantha R.; Keres, Dusan

    2017-01-01

    We present first results from an ongoing survey to characterize the circumgalactic medium (CGM) of the massive high-redshift galaxieds detected as submillimeter galaxies (SMGs). By cross-matching far-infrared-selected galaxies from Herschel with spectroscopically confirmed quasars, we constructed a sample of 163 SMG-QSO pairs with separations less than 36". We observed 62 SMG-QSO pairs with the Very Large Array (VLA) and the Atacama Large Millimeter Array (ALMA). These observations obtained sub-arcsecond positions of 31 SMGs and identified seven previously-thought SMG-QSO pairs as submillimeter-luminous QSOs. We are currently conducting a redshift survey of the VLA/ALMA-confirmed SMGs and acquiring high S/N UV-optical specrtoscopy of the background QSOs. For the small sample of three VLA-confirmed SMG-QSO pairs that we have the complete data set, absorption line spectra of the background QSOs allow us to analyze the CGM of SMGs for the first time, providing insight into the fuel-supply ultimately powering their tremendous starbursts. Our observations reveal strong HI Ly-alpha absorption (rest-frame equivalent widths about 2-3 A) around all three SMGs; however, none exhibit compelling evidence for strong neutral absorbers (NHI > 1017.2 cm-2) or metal absorption, allowing us to place an 1-sigma upper limit on the covering factor of optically thick HI gas around SMGs of fC < 36.9%. This is significantly lower than the covering factor around the co-eval population of luminous QSOs. Theoretical models predict that the structure of the CGM is entirely determined by dark matter halo mass. Given that that SMGs are believed to inhabit massive dark matter halos comparable to those hosting quasars, this difference in covering factor is unexpected. Therefore, our results tentatively indicate that SMGs may not have substantial cool gas reservoirs in their halos and that they may inhabit much less massive halos than previously thought.

  13. Dependence of the Broad Absorption Line Quasar Fraction on Radio Luminosity

    NASA Astrophysics Data System (ADS)

    Shankar, Francesco; Dai, Xinyu; Sivakoff, Gregory R.

    2008-11-01

    We find that the fraction of classical broad absorption line quasars (BALQSOs) among the FIRST radio sources in the Sloan Data Release 3, is 20.5+ 7.3-5.9% at the faintest radio powers detected (L1.4 GHz ~ 1032 erg s-1), and rapidly drops to lesssim8% at L1.4 GHz ~ 3 × 1033 erg s-1. Similarly, adopting the broader absorption index (AI) definition of Trump et al., we find the fraction of radio BALQSOs to be 44+ 8.1-7.8%, reducing to 23.1+ 7.3-6.1% at high luminosities. While the high fraction at low radio power is consistent with the recent near-IR estimates by Dai et al., the lower fraction at high radio powers is intriguing and confirms previous claims based on smaller samples. The trend is independent of the redshift range, the optical and radio flux selection limits, or the exact definition of a radio match. We also find that at fixed optical magnitude, the highest bins of radio luminosity are preferentially populated by non-BALQSOs, consistent with the overall trend. We do find, however, that those quasars identified as AI-BALQSOs but not under the classical definition do not show a significant drop in their fraction as a function of radio power, further supporting independent claims that these sources, characterized by lower equivalent width, may represent an independent class from the classical BALQSOs. We find the balnicity index, a measure of the absorption trough in BALQSOs, and the mean maximum wind velocity to be roughly constant at all radio powers. We discuss several plausible physical models which may explain the observed fast drop in the fraction of the classical BALQSOs with increasing radio power, although none is entirely satisfactory. A strictly evolutionary model for the BALQSO and radio emission phases requires a strong fine-tuning to work, while a simple geometric model, although still not capable of explaining polar BALQSOs and the paucity of FRII BALQSOs, is statistically successful in matching the data if part of the apparent radio

  14. A monolithic constant-fraction discriminator using distributed R-C delay-line shaping

    SciTech Connect

    Simpson, M.L.; Young, G.R.; Xu, M.

    1995-06-01

    A monolithic, CMOS, constant-fraction discriminator (CFD) was fabricated in the Orbit Semiconductor, 1.2 {mu} N-well process. This circuit uses an on-chip, distributed, R-C delay-line to realize the constant-fraction shaping. The delay-line is constructed from a narrow, 500-{mu} serpentine layer of polysilicon above a wide, grounded, second layer of polysilicon. This R-C delay-line generates about 1.1 ns of delay for 5 ns risetime signals with a slope degradation of only {approx_equal} 15% and an amplitude reduction of about 6.1%. The CFD also features an automatic walk adjustment. The entire circuit, including the delay line, has a 200 {mu} pitch and is 950 {mu} long. The walk for a 5 ns risetime signal was measured as {plus_minus} 100 ps over the 100:1 dynamic range from {minus}15 mV to {minus}1.5 mV. to {minus}1.5 V. The CFD consumes 15 mW.

  15. Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar

    NASA Astrophysics Data System (ADS)

    Sluse, D.; Hutsemékers, D.; Anguita, T.; Braibant, L.; Riaud, P.

    2015-10-01

    Testing the standard Shakura-Sunyaev model of accretion is a challenging task because the central region of quasars where accretion takes place is unresolved with telescopes. The analysis of microlensing in gravitationally lensed quasars is one of the few techniques that can test this model, yielding to the measurement of the size and of temperature profile of the accretion disc. We present spectroscopic observations of the gravitationally lensed broad absorption line quasar H1413+117, which reveal partial microlensing of the continuum emission that appears to originate from two separated regions: a microlensed region, corresponding the compact accretion disc; and a non-microlensed region, more extended and contributing to at least 30% of the total UV-continuum flux. Because this extended continuum is occulted by the broad absorption line clouds, it is not associated with the host galaxy, but rather with light scattered in the neighbourhood of the central engine. We measure the amplitude of microlensing of the compact continuum over the rest-frame wavelength range 1000-7000 Å. Following a Bayesian scheme, we confront our measurements to microlensing simulations of an accretion disc with a temperature varying as T ∝ R-1/ν. We find a most likely source half-light radius of R1/2 = 0.61 × 1016cm (i.e., 0.002 pc) at 0.18 μm, and a most-likely index of ν = 0.4. The standard disc (ν = 4/3) model is not ruled out by our data, and is found within the 95% confidence interval associated with our measurements. We demonstrate that, for H1413+117, the existence of an extended continuum in addition to the disc emission only has a small impact on the inferred disc parameters, and is unlikely to solve the tension between the microlensing source size and standard disc sizes, as previously reported in the literature. Based on observations made with ESO Telescopes at the Paranal Observatory (Chile). ESO program ID: 386.B-0337.Appendices A and B are available in electronic form

  16. Quasicontiguous frequency-fluctuation model for calculation of hydrogen and hydrogenlike Stark-broadened line shapes in plasmas.

    PubMed

    Stambulchik, E; Maron, Y

    2013-05-01

    We present an analytical method for the calculation of shapes of Stark-broadened spectral lines in plasmas, applicable to hydrogen and hydrogenlike transitions (including Rydberg ones) with Δn>1. The method is based on the recently suggested quasicontiguous approximation of the static Stark line shapes, while the dynamical effects are accounted for using the frequency-fluctuation-model approach. Comparisons with accurate computer simulations show excellent agreement.

  17. Spectral Line Shapes in the 2ν_3 Q Branch of 12CH_4

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.; Yu, Shanshan; Smith, Mary Ann H.; Ismail, Syed; Mantz, Arlan; Boudon, Vincent

    2016-06-01

    We will present the first experimental measurements of spectral line shapes (self- and air-broadened half width, pressure shift, and line mixing (via off-diagonal relaxation matrix element) coefficients and their temperature dependences, where appropriate, for transitions in the 2ν_3 Q branch manifolds of 12CH_4 in the 1.6 μ m region. Employing a multispectrum nonlinear least squares technique, we simultaneously fitted 23 high-resolution spectra of 12CH_4 and mixtures of 12CH_4 in air, recorded at different pressure-temperature combinations between 130 and 296 K. These data were recorded using the Bruker IFS 125 HR Fourier transform spectrometer at the Jet Propulsion Laboratory together with two coolable sample cells. By applying a set of constraints to the parameters of severely blended transitions, a self-consistent set of broadening, shift and line mixing parameters for CH_4-CH_4 and CH_4-air collisions were retrieved. A quadratic speed dependence parameter common for all transitions in each Q(J) manifold was determined. In addition to line shape parameters, line positions and line intensities were also measured for over 100 transitions in the whole Q branch region (5996.5 - 6007.7 cm-1). Comparisons of present results with values in HITRAN2012 will be provided. D.C. Benner, C.P. Rinsland, V. Malathy Devi, M.A. H. Smith, and D. Atkins. JQSRT 53 (1995) 705-721 K. Sung, A.W. Mantz, M.A.H. Smith, L.R. Brown, T.J. Crawford, V.M. Devi, D.C. Benner. J.Mol. Spectrosc. 162 (2010)124-134 A.W. Mantz, K. Sung, T.J. Crawford, L.R. Brown, M.A.H. Smith, V.M. Devi, D.C. Benner, J. Mol. Spectrosc. 304 (2014) 12-24. Research described in this paper are performed at the College of William and Mary, Jet Propulsion Laboratory, California Institute of Technology, Connecticut College, and NASA Langley Research Center under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  18. On-line measurement of ski-jumper trajectory: combining stereo vision and shape description

    NASA Astrophysics Data System (ADS)

    Nunner, T.; Sidla, O.; Paar, G.; Nauschnegg, B.

    2010-01-01

    Ski jumping has continuously raised major public interest since the early 70s of the last century, mainly in Europe and Japan. The sport undergoes high-level analysis and development, among others, based on biodynamic measurements during the take-off and flight phase of the jumper. We report on a vision-based solution for such measurements that provides a full 3D trajectory of unique points on the jumper's shape. During the jump synchronized stereo images are taken by a calibrated camera system in video rate. Using methods stemming from video surveillance, the jumper is detected and localized in the individual stereo images, and learning-based deformable shape analysis identifies the jumper's silhouette. The 3D reconstruction of the trajectory takes place on standard stereo forward intersection of distinct shape points, such as helmet top or heel. In the reported study, the measurements are being verified by an independent GPS measurement mounted on top of the Jumper's helmet, synchronized to the timing of camera exposures. Preliminary estimations report an accuracy of +/-20 cm in 30 Hz imaging frequency within 40m trajectory. The system is ready for fully-automatic on-line application on ski-jumping sites that allow stereo camera views with an approximate base-distance ratio of 1:3 within the entire area of investigation.

  19. Illustrating Surface Shape in Volume Data via Principal Direction-Driven 3D Line Integral Convolution

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria

    1997-01-01

    The three-dimensional shape and relative depth of a smoothly curving layered transparent surface may be communicated particularly effectively when the surface is artistically enhanced with sparsely distributed opaque detail. This paper describes how the set of principal directions and principal curvatures specified by local geometric operators can be understood to define a natural 'flow' over the surface of an object, and can be used to guide the placement of the lines of a stroke texture that seeks to represent 3D shape information in a perceptually intuitive way. The driving application for this work is the visualization of layered isovalue surfaces in volume data, where the particular identity of an individual surface is not generally known a priori and observers will typically wish to view a variety of different level surfaces from the same distribution, superimposed over underlying opaque structures. By advecting an evenly distributed set of tiny opaque particles, and the empty space between them, via 3D line integral convolution through the vector field defined by the principal directions and principal curvatures of the level surfaces passing through each gridpoint of a 3D volume, it is possible to generate a single scan-converted solid stroke texture that may intuitively represent the essential shape information of any level surface in the volume. To generate longer strokes over more highly curved areas, where the directional information is both most stable and most relevant, and to simultaneously downplay the visual impact of directional information in the flatter regions, one may dynamically redefine the length of the filter kernel according to the magnitude of the maximum principal curvature of the level surface at the point around which it is applied.

  20. Observation of Fano line shapes in infrared vibrational spectra of CO{sub 2} adsorbed on Cu(997) and Cu(111)

    SciTech Connect

    Koitaya, Takanori; Shiozawa, Yuichiro; Mukai, Kozo; Yoshimoto, Shinya; Yoshinobu, Jun

    2016-02-07

    Adsorption states of carbon dioxide on the Cu(997) and Cu(111) surfaces were investigated by infrared reflection absorption spectroscopy, temperature programmed desorption, and X-ray photoelectron spectroscopy. CO{sub 2} molecules are physisorbed on the Cu(997) surface at temperatures below 70 K; neither chemisorption nor dissociation of CO{sub 2} occurs on the Cu(997) surface at this low temperature. However, the vibrational spectra of adsorbed CO{sub 2} depend significantly on the substrate temperature and coverage. IR spectra of CO{sub 2} vibrational modes at 70 K show asymmetric Fano line shapes, while only normal absorption bands are observed when CO{sub 2} is adsorbed at 20 K. Fano line shapes are also observed for CO{sub 2} on Cu(111) at 85 K. The observation of Fano effect indicates the coupling between the electronic continuum states of the Cu surface and the internal vibrational modes of CO{sub 2} even in such physisorbed system.

  1. The Density Matrix of H20 - N2 In the Coordinate Representation: A Monte Carlo Calculation of the Far-Wing Line Shape

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1999-01-01

    The far-wing line shape theory within the binary collision and quasistatic framework has been developed using the coordinate representation. Within this formalism, the main computational task is the evaluation of multidimensional integrals whose variables are the orientational angles needed to specify the initial and final positions of the system during transition processes. Using standard methods, one is able to evaluate the 7-dimensional integrations required for linear molecular systems, or the 7-dimensional integrations for more complicated asymmetric-top (or symmetric-top) molecular systems whose interaction potential contains cyclic coordinates. In order to obviate this latter restriction on the form of the interaction potential, a Monte Carlo method is used to evaluate the 9-dimensional integrations required for systems consisting of one asymmetric-top (or symmetric-top) and one linear molecule, such as H20-N2. Combined with techniques developed previously to deal with sophisticated potential models, one is able to implement realistic potentials for these systems and derive accurate, converged results for the far-wing line shapes and the corresponding absorption coefficients. Conversely, comparison of the far-wing absorption with experimental data can serve as a sensitive diagnostic tool in order to obtain detailed information on the short-range anisotropic dependence of interaction potentials.

  2. Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation.

    PubMed

    Madelin, Guillaume; Grucker, Daniel; Franconi, Jean-Michel; Thiaudiere, Eric

    2006-07-01

    In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup.

  3. Isotopic ratios at z = 0.68 from molecular absorption lines toward B 0218+357

    NASA Astrophysics Data System (ADS)

    Wallström, S. H. J.; Muller, S.; Guélin, M.

    2016-11-01

    Isotopic ratios of heavy elements are a key signature of the nucleosynthesis processes in stellar interiors. The contribution of successive generations of stars to the metal enrichment of the Universe is imprinted on the evolution of isotopic ratios over time. We investigate the isotopic ratios of carbon, nitrogen, oxygen, and sulfur through millimeter molecular absorption lines arising in the z = 0.68 absorber toward the blazar B 0218+357. We find that these ratios differ from those observed in the Galactic interstellar medium, but are remarkably close to those in the only other source at intermediate redshift for which isotopic ratios have been measured to date, the z = 0.89 absorber in front of PKS 1830-211. The isotopic ratios in these two absorbers should reflect enrichment mostly from massive stars, and they are indeed close to the values observed toward local starburst galaxies. Our measurements set constraints on nucleosynthesis and chemical evolution models. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A96

  4. Fast outflows in broad absorption line quasars and their connection with CSS/GPS sources

    NASA Astrophysics Data System (ADS)

    Bruni , G.; Mack, K.-H.; Montenegro-Montes, F. M.; Brienza, M.; González-Serrano, J. I.

    2016-02-01

    Broad absorption line quasars are among the objects presenting the fastest outflows. The launching mechanism itself is not completely understood. Models in which they could be launched from the accretion disk, and then curved and accelerated by the effect of the radiation pressure, have been presented. We conducted an extensive observational campaign, from radio to optical band, to collect information about their nature and test the models present in the literature, the main dichotomy being between a young scenario and an orientation one. We found a variety of possible orientations, morphologies, and radio ages, not converging to a particular explanation for the BAL phenomenon. From our latest observations in the m- and mm-band, we obtained an indication of a lower dust abundance with respect to normal quasars, thus suggesting a possible feedback process on the host galaxy. Also, in the low-frequency regime we confirmed the presence of CSS components, sometime in conjunction with a GPS one already detected at higher frequencies. Following this, about 70 % of our sample turns out to be in a GPS or CSS+GPS phase. We conclude that fast outflows, responsible for the BAL features, can be more easily present among objects going through a restarting or just-started radio phase, where radiation pressure can substantially contribute to their acceleration.

  5. MOSFIRE ABSORPTION LINE SPECTROSCOPY OF z > 2 QUIESCENT GALAXIES: PROBING A PERIOD OF RAPID SIZE GROWTH

    SciTech Connect

    Belli, Sirio; Ellis, Richard S.; Konidaris, Nick P.; Newman, Andrew B.

    2014-06-20

    Using the MOSFIRE near-infrared multi-slit spectrograph on the Keck 1 Telescope, we have secured high signal-to-noise ratio absorption line spectra for six massive galaxies with redshift 2 < z < 2.5. Five of these galaxies lie on the red sequence and show signatures of passive stellar populations in their rest-frame optical spectra. By fitting broadened spectral templates we have determined stellar velocity dispersions and, with broad-band Hubble Space Telescope and Spitzer photometry and imaging, stellar masses and effective radii. Using this enlarged sample of galaxies, we confirm earlier suggestions that quiescent galaxies at z > 2 have small sizes and large velocity dispersions compared to local galaxies of similar stellar mass. The dynamical masses are in very good agreement with stellar masses (log M {sub *}/M {sub dyn} = –0.02 ± 0.03), although the average stellar-to-dynamical mass ratio is larger than that found at lower redshift (–0.23 ± 0.05). By assuming evolution at fixed velocity dispersion, not only do we confirm a surprisingly rapid rate of size growth but we also consider the necessary evolutionary track on the mass-size plane and find a slope α = dlog R{sub e} /dlog M {sub *} ≳ 2 inconsistent with most numerical simulations of minor mergers. Both results suggest an additional mechanism may be required to explain the size growth of early galaxies.

  6. The intervening and associated O VI absorption-line systems in the ultraviolet spectrum of H1821+643

    NASA Astrophysics Data System (ADS)

    Savage, Blair D.; Tripp, Todd M.; Lu, Limin

    1998-02-01

    GHRS and FOS ultraviolet spectra of the bright QSO H1821+643 reveal the presence of strong O VI 1031.93, 1037.62 A absorption systems at z(abs) = 0.225 and 0.297, the latter being at the redshift of the QSO itself. Ground-based galaxy redshift measurements by us and others reveal two emission-line galaxies near the redshift of the intervening system at z(abs) = 0.225, suggesting the existence of a galaxy group at this redshift. The intervening O VI absorption system is also detected in H I but is not detected in the lines of Si II, Si IV, C IV, or N V. These ionization characteristics can be explained by a low-density, extended diffuse gas distribution that is photoionized by the metagalactic UV background if the gas has a metallicity of 0.1 times solar. Such a photoionized gas may be associated with the extended halo of the luminous intervening spiral galaxy at a projected distance of 100 h kpc, or with an intragroup medium. Alternatively, the absorption may be produced in hot collisionally ionized halo gas or in a hot intragroup medium. The associated system with z(abs) = 0.297 contains narrow and broad O VI absorption. The narrow absorption, which is also detected in H I, C III, C IV, and Si IV, can be modeled as gas photoionized by H1821+643 with roughly solar abundances. This gas is probably situated close to H1821+643. The broad O VI absorption that is centered at the emission redshift of H1821+643 may represent a weak and narrow example of the broad absorption line phenomena.

  7. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    SciTech Connect

    Pascucci, I.; Simon, M. N.; Edwards, S.; Heyer, M.; Rigliaco, E.; Hillenbrand, L.; Gorti, U.; Hollenbach, D.

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.

  8. Study of the radiation line width and shape from the Bi2212 mesa structure

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Takanari; Yamamoto, Takashi; Ishida, Kazuya; Tsujimoto, Manabu; Delfanazari, Kaveh; Nakayama, Ryo; Kitamura, Takeo; Sawamura, Masashi; Asai, Hidehiro; Minami, Hidetoshi; Kadowaki, Kazuo

    2012-02-01

    Continuous electromagnetic waves in terahertz (THz) range have been observed from mesa structures of Bi2Sr2CaCu2O8+δ(Bi2212) single crystals^1) It has been established that the radiation frequency is determined by both the ac Josephson frequency and the resonance condition of the geometrical cavity^2). In order to understand the mechanism of the radiation from the intrinsic Josephson junctions (IJJs) in Bi2212, we studied the radiation line width and shape. These might depend upon the physical parameters of the Bi2212 single crystal such as the number of IJJs the fluctuations of the quasiparticles and pairs, the non-linearity and non-equilibrium conditions, and the stability of the electrical circuit including the IJJs. However, technical difficulties have been delayed the line width measurements in the THz range. Recently, we succeeded in measuring the radiation line width using a frequency mixer. These results will be compared to those from a single junction 1) L. Ozyuzer et al., Science 318 (2007) 1291., 2) K. Kadowaki et al., J. Phys. Soc. Jpn. 79 (2010) 023703

  9. A dynamic model for anomalous figures: the shape of line-induced brightness modifications.

    PubMed

    Pinna, B; Sambin, M

    1991-01-01

    It is recognized that a fundamental role in the perception of anomalous figures is played by the intensity and shape of brightness modifications induced by line ends. The aim of this work was to study the structure of these modifications experimentally, by using variously arranged dots as probes. It was thus assumed that dots can measure activations generated inside abrupt line ends. The results show distribution of activation which differs according to dot distance and angle with respect to the continuation of the line near its end. These data do not agree with the predictions of information processing models in the literature on anomalous figures, which are based on perceptually postulated figures accounting for unlikely gaps. However, they do agree with the dynamic model proposed here, which is based on the idea that certain figure characteristics, eg the differential brightness of anomalous figures, depend on activation distribution which in turn depends on the organization of the forces in play. This idea is rooted in Gestalt theory. Another model supported by our experimental data is Grossberg's neural dynamic approach. In this case too, the basic idea is that of activation distribution which depends on the interaction of complex neural networks functioning according to special algorithms.

  10. Highly Ionized Iron Absorption Lines from Outflowing Gases in the X-ray Spectrum of NGC 1365

    NASA Technical Reports Server (NTRS)

    Risaliti, G.; Bianchi, S.; Matt, G.; Baldi, A.; Elvis, M.; Fabbiano, G.; Zezas, A.

    2006-01-01

    We present the discovery of four absorption lines in the X-ray spectrum of the Seyfert galaxy NGC 1365, at energies between 6.7 and 8.3 keV. The lines are detected with high statistical confidence (from >20 sigma for the strongest to -4 sigma for the weakest) in two XMM-Newton observations 60 ks long. We also detect the same lines, with a lower signal-to-noise ratio (but still >2 sigma for each line), in two previous shorter (-10 ks) XMM-Newton observations. The spectral analysis identifies these features as Fe XXV and Fe XXVI Kalpha and Kbeta lines, outflowing with velocities varying between -1000 and -5000 km/s among the observations. These are the highest quality detections of such lines so far. The high equivalent widths [EW (Kalpha) approximately 100 eV] and the Kalpha/Kbeta ratios imply that the lines are due to absorption of the AGN continuum by a highly ionized gas with column density NH-5?1023 cm(exp -2) at a distance of -(50-100)RS from the continuum source.

  11. Absorption and emission spectral shapes of a prototype dye in water by combining classical/dynamical and quantum/static approaches.

    PubMed

    Petrone, Alessio; Cerezo, Javier; Ferrer, Francisco J Avila; Donati, Greta; Improta, Roberto; Rega, Nadia; Santoro, Fabrizio

    2015-05-28

    We study the absorption and emission electronic spectra in an aqueous solution of N-methyl-6-oxyquinolinium betaine (MQ), an interesting dye characterized by a large change of polarity and H-bond ability between the ground (S0) and the excited (S1) states. To that end we compare alternative approaches based either on explicit solvent models and density functional theory (DFT)/molecular-mechanics (MM) calculations or on DFT calculations on clusters models embedded in a polarizable continuum (PCM). In the first approach (ClMD), the spectrum is computed according to the classical Franck-Condon principle, from the dispersion of the time-dependent (TD)-DFT vertical transitions at selected snapshots of molecular dynamics (MD) on the initial state. In the cluster model (Qst) the spectrum is simulated by computing the quantum vibronic structure, estimating the inhomogeneous broadening from state-specific TD-DFT/PCM solvent reorganization energies. While both approaches provide absorption and emission spectral shapes in nice agreement with experiment, the Stokes shift is perfectly reproduced by Qst calculations if S0 and S1 clusters are selected on the grounds of the MD trajectory. Furthermore, Qst spectra better fit the experimental line shape, mostly in absorption. Comparison of the predictions of the two approaches is very instructive: the positions of Qst and ClMD spectra are shifted due to the different solvent models and the ClMD spectra are narrower than the Qst ones, because MD underestimates the width of the vibrational density of states of the high-frequency modes coupled to the electronic transition. On the other hand, both Qst and ClMD approaches highlight that the solvent has multiple and potentially opposite effects on the spectral width, so that the broadening due to solute-solvent vibrations and electrostatic interaction with bulk solvent is (partially) counterbalanced by a narrowing of the contribution due to the solute vibrational modes. Qst analysis

  12. Spectral Line-Shape Model to Replace the Voigt Profile in Spectroscopic Databases

    NASA Astrophysics Data System (ADS)

    Lisak, Daniel; Ngo, Ngoc Hoa; Tran, Ha; Hartmann, Jean-Michel

    2014-06-01

    The standard description of molecular line shapes in spectral databases and radiative transfer codes is based on the Voigt profile. It is well known that its simplified assumptions of absorber free motion and independence of collisional parameters from absorber velocity lead to systematic errors in analysis of experimental spectra, and retrieval of gas concentration. We demonstrate1,2 that the partially correlated quadratic speed-dependent hardcollision profile3. (pCqSDHCP) is a good candidate to replace the Voigt profile in the next generations of spectroscopic databases. This profile takes into account the following physical effects: the Doppler broadening, the pressure broadening and shifting of the line, the velocity-changing collisions, the speed-dependence of pressure broadening and shifting, and correlations between velocity- and phase/state-changing collisions. The speed-dependence of pressure broadening and shifting is incorporated into the pCqSDNGP in the so-called quadratic approximation. The velocity-changing collisions lead to the Dicke narrowing effect; however in many cases correlations between velocityand phase/state-changing collisions may lead to effective reduction of observed Dicke narrowing. The hard-collision model of velocity-changing collisions is also known as the Nelkin-Ghatak model or Rautian model. Applicability of the pCqSDHCP for different molecular systems was tested on calculated and experimental spectra of such molecules as H2, O2, CO2, H2O in a wide span of pressures. For all considered systems, pCqSDHCP is able to describe molecular spectra at least an order of magnitude better than the Voigt profile with all fitted parameters being linear with pressure. In the most cases pCqSDHCP can reproduce the reference spectra down to 0.2% or better, which fulfills the requirements of the most demanding remote-sensing applications. An important advantage of pCqSDHCP is that a fast algorithm for its computation was developedab4,5 and allows

  13. Linear headache: a recurrent unilateral head pain circumscribed in a line-shaped area

    PubMed Central

    2014-01-01

    Background A headache circumscribed in a line-shaped area but not confined to the territory of one particular nerve had ever been described in Epicrania Fugax (EF) of which the head pain is moving and ultrashort. In a 25-month period from Feb 2012 to Mar 2014, we encountered 12 patients with a paroxysmal motionless head pain restricted in a linear trajectory. The head pain trajectory was similar to that of EF, but its all other features obviously different from those of EF. We named this distinctive but undescribed type of headache linear headache (LH). Methods A detailed clinical feature of the headache was obtained in all cases to differentiate with EF, trigeminal autonomic cephalalgias (TACs) and cranial neuralgia. Similarities and differences in clinical features were compared between LH and migraine. Results The twelve LH patients (mean age 43.9 ± 12.2) complained of a recurrent, moderate to severe, distending (n = 9), pressure-like (n = 3) or pulsating (n = 3) pain within a strictly unilateral line-shaped area. The painful line is distributed from occipital or occipitocervical region to the ipsilateral eye (n = 5), forehead (n = 6) or parietal region (n = 1). The pain line has a trajecory similar to that of EF but no characteristics of moving. The headache duration would be ranged from five minutes to three days, but usually from half day to one day in most cases (n = 8). Six patients had the accompaniment of nausea with or without vomiting, and two patients had the accompaniment of ipsilateral dizziness. The attacks could be either spontaneous (n = 10) or triggered by noise, depression and resting after physical activity (n = 1), or by stress and staying up late (n = 1). The frequency of attacks was variable. The patients had well response to flunarizine, sodium valproate and amitriptyline but not to carbamazepine or oxcarbazepine. LH is different from EF, trigeminal autonomic cephalalgias (TACs) and cranial neuralgia, but it had couple of features similar

  14. Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    NASA Technical Reports Server (NTRS)

    Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.

    2015-01-01

    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.

  15. Experimental demonstration of an invisible cloak with irregular shape by using tensor transmission line metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Guo-Chang; Li, Chao; Fang, Guang-You

    2015-01-01

    We present the design and the experimental demonstration of an invisible cloak with irregular shape by using tensor transmission line (TL) metamaterials. The fabricated cloak consists of tensor TL unit cells exhibiting anisotropic effective material parameters, while the background medium consists of isotropic TL unit cells. The simulated and the measured field patterns around the cloak show a fairly good agreement, both demonstrate that the fabricated cloak can shield the cloaked interior area from electromagnetic fields without perturbing the external fields. The scattering of the cloaked perfect electric conductor (PEC) is minimized. Furthermore, the nonresonant property of the TL structure results in a relatively broad bandwidth of the realized cloak, which is clearly observed in our experiment. Project supported by the National Natural Science Foundation of China (Grant Nos.11174280, 60990323, and 60990320) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.YYYJ-1123).

  16. Phenomenology of near-threshold states: a practical parametrisation for the line shapes

    NASA Astrophysics Data System (ADS)

    Guo, F.-K.; Hanhart, C.; Kalashnikova, Yu. S.; Matuschek, P.; Mizuk, R. V.; Nefediev, A. V.; Wang, Q.; Wynen, J.-L.

    2017-03-01

    In the last decade many states in the spectrum of charmonium and bottomonium have been observed experimentally above the lowest open-flavour threshold. Most of these states reside in the vicinity of strong thresholds and show properties that cannot be captured by simple quark models. Description and understanding of such exotic states is a challenge for the phenomenology of strong interactions, since it requires building adequate theoretical tools and approaches. In this work, a practical parametrisation for the line shapes of near threshold resonance(s) is derived in the framework of a coupled-channel model which includes an arbitrary number of elastic and inelastic channels as well as of bare pole terms. Parameters of the distribution have a direct relation to phenomenology and the resulting analytical parametrisation is therefore ideally suited to harvest the full information content provided by the measurements and to establish a link between the experimental data and their theoretical interpretation.

  17. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy

    SciTech Connect

    Umapathy, S.; Mallick, B.; Lakshmanna, A.

    2010-07-14

    Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse and a femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS.

  18. Dispersion and line shape of plasmon satellites in one, two, and three dimensions

    SciTech Connect

    Vigil-Fowler, Derek; Louie, Steven G.; Lischner, Johannes

    2016-06-27

    Using state-of-the-art many-body Green's function calculations based on the GW plus cumulant approach, we analyze the properties of plasmon satellites in the electron spectral function resulting from electron-plasmon interactions in one-, two-, and three-dimensional systems. Specifically, we show how their dispersion relation, line shape, and linewidth are related to the properties of the constituent electrons and plasmons. In addition, to gain insight into the many-body processes giving rise to the formation of plasmon satellites, we connect the GW plus cumulant approach to a many-body wave-function picture of electron-plasmon interactions and introduce the coupling-strength-weighted electron-plasmon joint density states as a powerful concept for understanding plasmon satellites.

  19. Dispersion and line shape of plasmon satellites in one, two, and three dimensions

    DOE PAGES

    Vigil-Fowler, Derek; Louie, Steven G.; Lischner, Johannes

    2016-06-27

    Using state-of-the-art many-body Green's function calculations based on the GW plus cumulant approach, we analyze the properties of plasmon satellites in the electron spectral function resulting from electron-plasmon interactions in one-, two-, and three-dimensional systems. Specifically, we show how their dispersion relation, line shape, and linewidth are related to the properties of the constituent electrons and plasmons. In addition, to gain insight into the many-body processes giving rise to the formation of plasmon satellites, we connect the GW plus cumulant approach to a many-body wave-function picture of electron-plasmon interactions and introduce the coupling-strength-weighted electron-plasmon joint density states as a powerfulmore » concept for understanding plasmon satellites.« less

  20. Characterization of the laser cleaving on glass sheets with a line-shape laser beam

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Zan; Lin, Jehnming

    2007-07-01

    A CO 2 laser with a line-shape beam was used to cleave a soda-lime glass substrate at various beam-rotation angles to the cutting direction. The stress distribution on the glass substrate cleaved by the laser beam has been analyzed in this study. An uncoupled thermal-elastic analysis was achieved by the ABAQUS software based on the finite element method. The numerical results show that the stress field of the fracture is caused by a complex stress state and the cleavages are significantly affected by the heat diffusion and beam rotation angle. At the rotation angle of zero degree to the cleaving direction, the phenomena of the chip formation have been found due to a large temperature gradient at the cleaving depth of the glass substrate.

  1. The Nature of Low-ionization Broad Absorption Line Quasi-stellar Objects

    NASA Astrophysics Data System (ADS)

    Lazarova, Mariana Spasova

    The tight correlations between properties of galaxy bulges and their central supermassive black holes have been reproduced successfully in simulations of galaxy collisions if feedback processes are invoked. Mergers of gas-rich galaxies of comparable size have been shown to trigger starbursts, fuel the central black holes, and transform disks into ellipticals. Feedback from the black hole accretion in the form of extreme outflows has need suggested as the mechanism by which the black hole stop its own growth and quenches the star formation in the galaxy by expelling the gas supply. Such winds have been detected in Broad Absorption Line (BAL) QSOs. However, observational evidence that BAL QSOs may be an evolutionary link between mergers and QSO is missing. In this thesis, we provide the first detailed study of the spectral energy distributions and host galaxy morphologies of a statistically significant volume-limited sample of 22 optically-selected low-ionization Broad Absorption Line QSOs (LoBALs) at 0.5 < z < 0.6. By comparing their mid-IR spectral properties and far-IR SEDs with those of a control sample of 35 non-LoBALs (non-LoBALs) matched in Mi, we investigate the differences between the two populations in terms of their infrared emission and star formation activity. We model the SEDs and decouple the AGN and starburst contributions to the far-infrared luminosity in LoBALs and in non-LoBALs. We estimate star formation rates (SFRs) corrected for the AGN contribution to the FIR flux and find that LoBALs have comparable levels of star formation activity to non-LoBALs when considering the entire samples. Overall, our results show that there is no strong evidence from the mid- and far-IR properties that LoBALs are drawn from a different parent population than non-LoBALs. We conducted the first high-resolution morphological analysis of LoBALs using observations obtained with the Hubble Space Telescope Wide Field Camera 3 in two channels. Signs of recent or ongoing

  2. Variation of Ionizing Continuum: The Main Driver of Broad Absorption Line Variability

    NASA Astrophysics Data System (ADS)

    He, Zhicheng; Wang, Tinggui; Zhou, Hongyan; Bian, Weihao; Liu, Guilin; Yang, Chenwei; Dou, Liming; Sun, Luming

    2017-04-01

    We present a statistical analysis of the variability of broad absorption lines (BALs) in quasars using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 12 (SDSS DR12). We divide the sample into two groups according to the pattern of the variation of C iv BAL with respect to that of a continuum: the equivalent widths (EW) of the BAL decreases (increases) when the continuum brightens (dims) as group T1; and the variation of the EW and the continuum in the opposite relation of group T2. We find that T2 has significantly ({P}{{T}}< {10}-6, Students T Test) higher EW ratios (R) of Si iv to C iv BAL than T1. Our result agrees with the prediction of photoionization models that {C}+3 column density increases (decreases) if there is a (or no) {C}+3 ionization front, while R decreases with the incident continuum. We show that BAL variabilities in at least 80% of quasars are driven by the variation of an ionizing continuum, while other models that predict uncorrelated BAL and continuum variability contribute less than 20%. Considering large uncertainty in the continuum flux calibration, the latter fraction may be much smaller. When the sample is binned into different time intervals between the two observations, we find significant difference in the distribution of R between T1 and T2 in all time-bins down to {{Δ }}T< 6 days, suggesting that the BAL outflow in a fraction of quasars has a recombination timescale of only a few days.

  3. Design and application of a fish-shaped lateral line probe for flow measurement.

    PubMed

    Tuhtan, J A; Fuentes-Pérez, J F; Strokina, N; Toming, G; Musall, M; Noack, M; Kämäräinen, J K; Kruusmaa, M

    2016-04-01

    We introduce the lateral line probe (LLP) as a measurement device for natural flows. Hydraulic surveys in rivers and hydraulic structures are currently based on time-averaged velocity measurements using propellers or acoustic Doppler devices. The long-term goal is thus to develop a sensor system, which includes spatial gradients of the flow field along a fish-shaped sensor body. Interpreting the biological relevance of a collection of point velocity measurements is complicated by the fact that fish and other aquatic vertebrates experience the flow field through highly dynamic fluid-body interactions. To collect body-centric flow data, a bioinspired fish-shaped probe is equipped with a lateral line pressure sensing array, which can be applied both in the laboratory and in the field. Our objective is to introduce a new type of measurement device for body-centric data and compare its output to estimates of conventional point-based technologies. We first provide the calibration workflow for laboratory investigations. We then provide a review of two velocity estimation workflows, independent of calibration. Such workflows are required as existing field investigations consist of measurements in environments where calibration is not feasible. The mean difference for uncalibrated LLP velocity estimates from 0 to 50 cm/s under in a closed flow tunnel and open channel flume was within 4 cm/s when compared to conventional measurement techniques. Finally, spatial flow maps in a scale vertical slot fishway are compared for the LLP, direct measurements, and 3D numerical models where it was found that the LLP provided a slight overestimation of the current velocity in the jet and underestimated the velocity in the recirculation zone.

  4. Design and application of a fish-shaped lateral line probe for flow measurement

    NASA Astrophysics Data System (ADS)

    Tuhtan, J. A.; Fuentes-Pérez, J. F.; Strokina, N.; Toming, G.; Musall, M.; Noack, M.; Kämäräinen, J. K.; Kruusmaa, M.

    2016-04-01

    We introduce the lateral line probe (LLP) as a measurement device for natural flows. Hydraulic surveys in rivers and hydraulic structures are currently based on time-averaged velocity measurements using propellers or acoustic Doppler devices. The long-term goal is thus to develop a sensor system, which includes spatial gradients of the flow field along a fish-shaped sensor body. Interpreting the biological relevance of a collection of point velocity measurements is complicated by the fact that fish and other aquatic vertebrates experience the flow field through highly dynamic fluid-body interactions. To collect body-centric flow data, a bioinspired fish-shaped probe is equipped with a lateral line pressure sensing array, which can be applied both in the laboratory and in the field. Our objective is to introduce a new type of measurement device for body-centric data and compare its output to estimates of conventional point-based technologies. We first provide the calibration workflow for laboratory investigations. We then provide a review of two velocity estimation workflows, independent of calibration. Such workflows are required as existing field investigations consist of measurements in environments where calibration is not feasible. The mean difference for uncalibrated LLP velocity estimates from 0 to 50 cm/s under in a closed flow tunnel and open channel flume was within 4 cm/s when compared to conventional measurement techniques. Finally, spatial flow maps in a scale vertical slot fishway are compared for the LLP, direct measurements, and 3D numerical models where it was found that the LLP provided a slight overestimation of the current velocity in the jet and underestimated the velocity in the recirculation zone.

  5. The effect of vesicle shape, line tension, and lateral tension on membrane-binding proteins

    NASA Astrophysics Data System (ADS)

    Hutchison, Jaime B.

    Model membranes allow for the exploration of complex biological phenomena with simple, controllable components. In this thesis we employ model membranes to determine the effect of vesicle properties such as line tension, lateral tension, and shape on membrane-binding proteins. We find that line tension at the boundary between domains in a phase separated vesicle can accumulate model membrane-binding proteins (green fluorescent protein with a histidine tag), and that those proteins can, in turn, alter vesicle shape. These results suggest that domains in biological membranes may enhance the local concentration of membrane-bound proteins and thus alter protein function. We also explore how membrane mechanical and chemical properties alter the function of the N-BAR domain of amphiphysin, a membrane-binding protein implicated in endocytosis. We find that negatively charged lipids are necessary for N-BAR binding to membranes at detectable levels, and that, at least for some lipid species, binding may be cooperative. Measurements of N-BAR binding as a function of vesicle tension reveal that modest membrane tension of around 2 mN/m, corresponding to a strain of around 1%, strongly increases N-BAR binding. We attribute this increase in binding with tension to the insertion of N-BAR's N-terminal amphipathic helix into the membrane which increases the membrane area. We propose that N-BAR, which was previously described as being able to sense membrane curvature, may be sensing strain instead. Measurements of membrane deformation by N-BAR as a function of membrane tension reveal that tension can hinder membrane deformation. Thus, tension may favor N-BAR binding yet suppress membrane deformation/tubulation, which requires work against tension. These results suggest that membrane tension, a parameter that is often not controlled in model membranes but is tightly controlled in biological cells, may be important in regulating protein binding and assembly and, hence, protein

  6. Formation of a Giant Galactic Gaseous Halo: Metal-Absorption Lines and High-Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Li, Fan

    1992-04-01

    A Galactic gaseous halo formed through the interstellar disk-halo connection is simulated by means of a two-dimensional axisymmetric hydrodynamic code based upon the chimney model of the interstellar medium, a new version of the galactic fountain. Galactic rotation, heating processes by diffuse UV flux, and radiative cooling processes are taken into account. The resulting gaseous halo can be divided into three categories, i.e., wind-type halo, bound-type halo, and cooled-type halo. In this way, we try to reproduce the column densities of C IV, N V, O VI, and Si IV in the observed absorption lines of halo stars. Assuming that the radiatively cooled halo gas condenses into clouds due to thermal instabilities, we can calculate their distribution and ballistic motions in the Galactic gravitational field. These correspond to the high- and intermediate-velocity clouds observed at high Galactic latitudes. We find that a cooled-type halo with a gas temperature between 5 X 10^5 and 10^6 K and a density between 10^-3 and 10^-2 cm^-3 at the disk-halo interface can reproduce the observational facts about our Galaxy. Supposing that the metal-absorption-line systems of QSOs arise from the halos of intervening galaxies formed by similar processes, we calculate features of the Ca II, Mg II, C IV, and Si IV absorption lines in various stages of galactic evolution. We conclude that C IV systems which are greater than 50 kpc in size correspond to the wind-type halo. On the other hand, Mg II and Ca II systems can only be detected in a very restricted region ( Metaxa, SMALL FAINT CLUSTERS IN THE LMC This is a short review of the main results of my Ph.D. thesis concerning some important problems on the dynamical properties of the LMC star clusters. The topic of this thesis was to find and study the dynamical paramters (tidal radius r_t core radius r_c concentration parameters log (r_t/r_c), and total mass M) for a large sample of small LMC clusters and to define their location in the

  7. Temperature-dependent pressure broadened line shape measurements in the ν 1+ ν 3 band of acetylene using a diode laser referenced to a frequency comb

    NASA Astrophysics Data System (ADS)

    Cich, M. J.; McRaven, C. P.; Lopez, G. V.; Sears, T. J.; Hurtmans, D.; Mantz, A. W.

    2012-11-01

    Using an extended cavity diode laser referenced to a femtosecond frequency comb, the P(11) absorption line in the ν 1+ ν 3 combination band of the most abundant isotopologue of pure acetylene was studied at temperatures of 296, 240, 200, 175, 165, 160, 155, and 150 K to determine pressure-dependent line shape parameters at these temperatures. The laser emission profile, the instrumental resolution, is a Lorentz function characterized by a half width at half the maximum emission (HWHM) of 8.3×10-6 cm-1 (or 250 kHz) for these measurements. Six collision models were tested in fitting the experimental data: Voigt, speed-dependent Voigt, Rautian-Sobel'man, Galatry, and two Rautian-Galatry hybrid models (with and without speed-dependence). Only the speed-dependent Voigt model was able to fit the data to the experimental noise level at all temperatures and for pressures between 3 and nearly 360 torr. The variations of the speed-dependent Voigt profile line shape parameters with temperature were also characterized, and this model accurately reproduces the observations over their entire range of temperature and pressure.

  8. Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements

    NASA Astrophysics Data System (ADS)

    Sun, Kang; Liu, Xiong; Nowlan, Caroline R.; Cai, Zhaonan; Chance, Kelly; Frankenberg, Christian; Lee, Richard A. M.; Pollock, Randy; Rosenberg, Robert; Crisp, David

    2017-03-01

    Accurately characterizing the instrument line shape (ILS) of the Orbiting Carbon Observatory-2 (OCO-2) is challenging and highly important due to its high spectral resolution and requirement for retrieval accuracy (0. 25 %) compared to previous spaceborne grating spectrometers. On-orbit ILS functions for all three bands of the OCO-2 instrument have been derived using its frequent solar measurements and high-resolution solar reference spectra. The solar reference spectrum generated from the 2016 version of the Total Carbon Column Observing Network (TCCON) solar line list shows significant improvements in the fitting residual compared to the solar reference spectrum currently used in the version 7 Level 2 algorithm in the O2 A band. The analytical functions used to represent the ILS of previous grating spectrometers are found to be inadequate for the OCO-2 ILS. Particularly, the hybrid Gaussian and super-Gaussian functions may introduce spurious variations, up to 5 % of the ILS width, depending on the spectral sampling position, when there is a spectral undersampling. Fitting a homogeneous stretch of the preflight ILS together with the relative widening of the wings of the ILS is insensitive to the sampling grid position and accurately captures the variation of ILS in the O2 A band between decontamination events. These temporal changes of ILS may explain the spurious signals observed in the solar-induced fluorescence retrieval in barren areas.

  9. QED Theory of Radiation Emission and Absorption Lines for Atoms and Ions in a Strong Laser Field

    SciTech Connect

    Glushkov, A. V.

    2008-10-22

    The results of numerical calculating the multi-photon resonance shift and width for transition 6S-6F in the atom of Cs (wavelength 1059nm) in a laser pulse of the Gaussian and soliton-like shapes are presented. QED theory of radiation atomic lines is used.

  10. The Near Infrared Absorption Spectrum of Water by CRDS Between 1.26-1.70 µm:Complete Empirical Line List and Continuum Absorption

    NASA Astrophysics Data System (ADS)

    Mondelain, Didier; Campargue, Alain; Kassi, Samir; Mikhailenko, Semen

    2014-06-01

    Due to the increasing performances of Airborne- and ground-based spectrometers, a more and more accurate characterization of the water vapor absorption is required. This is especially true in the transparency windows, corresponding to low absorption spectral regions widely used for probing the Earth's atmosphere. State-of-the-art experimental developments are required to fulfill the needs in terms of accuracy of the spectroscopic data. For that purpose, we are using high-sensitivity Continuous Wave Cavity Ring Down Spectroscopy (CW-CRDS) allowing reproducing in laboratory conditions comparable to the atmospheric ones in terms of absorption path length (tens of kilometers), temperature and pressure. From extensive analysis of our CRDS spectra, we have constructed an empirical line list for "natural" water vapor at 296 K in the 5850 7920 cm-1 region including 38 318 transitions of four major water isotopologues (H2 16O, H218O, H217O and HD16O) with an intensity cut-off of 1·10-29 cm/molecule. The list is made mostly complete over the whole spectral region by including a large number of unobserved weak lines with positions calculated using experimentally determined energy levels and intensities obtained from variational calculations. In addition, we provide HD18O and HD 17O lists in the same region for transitions with intensities larger than 1·10-29 cm/molecule. The HD18O and HD17O lists (1 972 lines in total) were obtained using empirical energy levels available in the literature and variational intensities. The global list (40 290 transitions) including the contribution of the six major isotopologues has been adopted for the new edition of the GEISA database in the region. The advantages and drawbacks of our list will be discussed in comparison with the list provided for the same region in the 2012 edition of the HITRAN database. Separate experiments were dedicated to the measurement of the water vapor self-continuum crosssections in the 1.6 µm window by CW

  11. INVISIBLE ACTIVE GALACTIC NUCLEI. II. RADIO MORPHOLOGIES AND FIVE NEW H i 21 cm ABSORPTION LINE DETECTORS

    SciTech Connect

    Yan, Ting; Stocke, John T.; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2016-03-15

    This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5 and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by

  12. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  13. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  14. Higher-order mode absorption measurement of X-band choke-mode cavities in a radial line structure

    NASA Astrophysics Data System (ADS)

    Zha, Hao; Shi, Jiaru; Wu, Xiaowei; Chen, Huaibi

    2016-04-01

    An experiment is presented to study the higher-order mode (HOM) suppression of X-band choke-mode structures with a vector network analyzer (VNA). Specific radial line disks were built to test the reflection from the corresponding damping load and different choke geometries. The mismatch between the radial lines and the VNA was calibrated through a special multi-short-load calibration method. The measured reflections of different choke geometries showed good agreement with the theoretical calculations and verified the HOM absorption feature of each geometric design.

  15. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    PubMed

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  16. No Evidence for Variability of Intervening Absorption Lines toward GRB 060206: Implications for the Mg II Incidence Problem

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Totani, T.; Hattori, T.; Ohta, K.; Kawabata, K. S.; Kobayashi, N.; Iye, M.; Nomoto, K.; Kawai, N.

    2009-05-01

    We examine variability of absorption line strength of intervening systems along the line of sight to GRB 060206 at z = 4.05, by the low-resolution optical spectra obtained by the Subaru telescope from six to ten hours after the burst. Strong variabilities of Fe II and Mg II lines at z = 1.48 during t = 5-8 hours have been reported for this GRB [8], and this has been used to support the idea of clumpy Mg II cloudlets that was originally proposed to explain the anomalously high incidence of Mg II absorbers in GRB spectra compared with quasars. However, our spectra with higher signal-to-noise ratio do not show any evidence for variability in t = 6-10 hours. There is a clear discrepancy between our data and Hao et al. data in the overlapping time interval. Furthermore, the line strengths in our data are in good agreement with those observed at t~2 hours by Thone et al. [22]. Therefore we conclude that there is no strong evidence for variability of intervening absorption lines toward GRB 060206, significantly weakening the support to the Mg II cloudlet hypothesis by the GRB 060206 data.

  17. Wavelength locking to CO2 absorption line-center for 2-μm pulsed IPDA lidar application

    NASA Astrophysics Data System (ADS)

    Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong

    2016-05-01

    An airborne 2-m triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-μm CW laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nm, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.

  18. Recovery of acetylene absorption line profile basing on tunable diode laser spectroscopy with intensity modulation and photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Li; Thursby, Graham; Stewart, George; Arsad, Norhana; Uttamchandani, Deepak; Culshaw, Brian; Wang, Yiding

    2010-04-01

    A novel and direct absorption line recovery technique based on tunable diode laser spectroscopy with intensity modulation is presented. Photoacoustic spectroscopy is applied for high sensitivity, zero background and efficient acoustic enhancement at a low modulation frequency. A micro-electromechanical systems (MEMS) mirror driven by an electrothermal actuator is used for generating laser intensity modulation (without wavelength modulation) through the external reflection. The MEMS mirror with 10μm thick structure material layer and 100nm thick gold coating is formed as a circular mirror of 2mm diameter attached to an electrothermal actuator and is fabricated on a chip that is wire-bonded and placed on a PCB holder. Low modulation frequency is adopted (since the resonant frequencies of the photoacoustic gas cell and the electrothermal actuator are different) and intrinsic high signal amplitude characteristics in low frequency region achieved from measured frequency responses for the MEMS mirror and the gas cell. Based on the property of photoacoustic spectroscopy and Beer's law that detectable sensitivity is a function of input laser intensity in the case of constant gas concentration and laser path length, a Keopsys erbium doped fibre amplifier (EDFA) with opto-communication C band and high output power up to 1W is chosen to increase the laser power. High modulation depth is achieved through adjusting the MEMS mirror's reflection position and driving voltage. In order to scan through the target gas absorption line, the temperature swept method is adopted for the tunable distributed feed-back (DFB) diode laser working at 1535nm that accesses the near-infrared vibration-rotation spectrum of acetylene. The profile of acetylene P17 absorption line at 1535.39nm is recovered ideally for ~100 parts-per-million (ppm) acetylene balanced by nitrogen. The experimental signal to noise ratio (SNR) of absorption line recovery for 500mW laser power was ~80 and hence the

  19. Broad Balmer Absorption Line Variability: Evidence of Gas Transverse Motion in the QSO SDSS J125942.80+121312.6

    NASA Astrophysics Data System (ADS)

    Shi, Xiheng; Zhou, Hongyan; Shu, Xinwen; Zhang, Shaohua; Ji, Tuo; Pan, Xiang; Sun, Luming; Zhao, Wen; Hao, Lei

    2016-03-01

    We report on the discovery of broad Balmer absorption lines variability in the QSO SDSS J125942.80+121312.6, based on the optical and near-infrared spectra taken from the SDSS-I, SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), and TripleSpec observations over a timescale of 5.8 years in the QSO's rest-frame. The blueshifted absorption profile of Hβ shows a variation of more than 5σ at a high velocity portion (\\gt 3000 {km} {{{s}}}-1) of the trough. We perform a detailed analysis for the physical conditions of the absorber using Balmer lines as well as metastable He i and optical Fe ii absorptions (λ4233 from b4P5/2 level and λ5169 from a6S5/2) at the same velocity. These Fe ii lines are identified in the QSO spectra for the first time. According to the photoionization simulations, we estimate a gas density of n({{H}})≈ {10}9.1 {{cm}}-3 and a column density of {N}{col}({{H}})≈ {10}23 {{cm}}-2 for the BOSS data, but the model fails to predict the variations of ionic column densities between the SDSS and BOSS observations if changes in ionizing flux are assumed. We thus propose transverse motion of the absorbing gas being the cause of the observed broad Balmer absorption line variability. In fact, we find that the changes in covering factors of the absorber can well-reproduce all of the observed variations. The absorber is estimated ∼0.94 pc away from the central engine, which is where the outflow likely experiences deceleration due to the collision with the surrounding medium. This scheme is consistent with the argument that LoBAL QSOs may represent the transition from obscured star-forming galaxies to classic QSOs.

  20. Frequency-modulated, tunable, semiconductor-optical-amplifier-based fiber ring laser for linewidth and line shape control.

    PubMed

    Girard, Simon Lambert; Chen, Hongxin; Schinn, Gregory W; Piché, Michel

    2008-08-15

    We report how the linewidth and line shape of a tunable semiconductor-optical-amplifier-based fiber ring laser can be actively adjusted by applying an intracavity frequency modulation to the laser. Frequency-modulated laser operation is achieved by driving the phase modulator frequency close to the cavity axial-mode spacing, leading to a constant-amplitude laser output having a periodically varying instantaneous frequency. The resulting linewidth varies proportionally with the inverse of the frequency detuning, and it is adjustable from submegahertz to over more than 5 GHz. By appropriate selection of the modulating waveform we have synthesized a near-Gaussian output line shape; other line shapes can be produced by modifying the modulating waveform. Experimental observations are in good agreement with a simple model.

  1. Absorption lines from magnetically driven winds in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Chakravorty, S.; Petrucci, P.-O.; Ferreira, J.; Henri, G.; Belmont, R.; Clavel, M.; Corbel, S.; Rodriguez, J.; Coriat, M.; Drappeau, S.; Malzac, J.

    2016-05-01

    Context. High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines suggesting the presence of outflowing winds. Furthermore, observations show that the disk winds are equatorial and they occur in the Softer (disk dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. Aims: We want to test whether the self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter. This mass loading is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Thus, the physical properties of the outflow depend on and are controlled by the global structure of the disk. Methods: We studied different MHD solutions characterized by different values of the disk aspect ratio (ɛ) and the ejection efficiency (p). We also generate two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be either from dissipation of energy due to MHD turbulence in the disk or from illumination of the disk surface. Warm solutions can have large (>0.1) values of p, which would imply larger wind mass loading at the base of the outflow. We use each of these MHD solutions to predict the physical parameters (distance, density, velocity, magnetic field, etc.) of an outflow. Motivated by observational results, we have put limits on the ionization parameter (ξ), column density, and timescales. Further constraints were derived for the allowed values of ξ from thermodynamic instability considerations, particularly for the Hard SED. These physical constraints were imposed on each of these outflows to select regions within it, which are consistent with the observed winds. Results: The cold MHD solutions are found to be

  2. The hydration dependence of CaCO3 absorption lines in the Far IR

    NASA Astrophysics Data System (ADS)

    Powell, Johnny; Emery, Logan P

    2014-06-01

    The far infrared (FIR) absorption lines of CaCO3 have been measured at a range of relative humidities (RH) between 33 and 92% RH using a Bruker 66v/S spectrometer. Hydration measurements on CaCO3 have been made in the mid-infrared (MIR) by [Al-Hosney, H.A. and Grassian, V.H., 2005, Phys. Chem. Chem. Phys., 7, 1266], and astrophysically-motivated temperature-dependent FIR measurements of CaCO3 in vacuum have also been reported [Posch, T., et al., 2007, Ap. J., 668, 993]. The custom sample cell constructed for these hydrated-FIR spectra is required because the 66v/S bench is under vacuum (3 mbar) during typical measurements. Briefly, the sample cell consists of two Thalium Bromoiodide (KRS-5) windows, four O-rings, a plastic ring for separating the windows and providing a volume for the saturated atmosphere. CaCO3 was deposited on KRS-5 windows using doubly-distilled water as an intermediary. The KRS-5 window with sample and assembled sample cell were placed in a desiccator with the appropriated saturated salt solution [Washburn, E.W. (Ed.), International Critical Tables of Numerical Data, Physics Chemistry and Technology, Vol. 1, (McGraw-Hill, New York, 1926), p. 67-68] and allowed to hydrate for 23 hours. For spectroscopy the desiccator was quickly opened and the second KRS-5 window placed in the cell to seal the chamber. A spectrum was then taken of the sample at the appropriate RH. The spectra taken characterize the adsorption of water vapor and CaCO3 that might occur in circumstellar environments [Melnick, G.J., et al. 2001, Nature, 412, 160].The MIR and FIR reflectance spectra of calcite (CaCO3) have been thoroughly studied by [Hellwege, K.H., et al., 1970, Z. Physik, 232, 61]. Five Lorentzian curves were fit to our data in the range from 378-222 cm-1/SUP> and each was able to be assigned to a known mode of CaCO3. The data does not support the conclusion of a hydration effect on these modes of CaCO3, but it does suggest a possible broadening of three modes

  3. X-ray Weak Broad-line Qquasars: Absorption or Intrinsic X-ray Weakness

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Risaliti, Guida

    2005-01-01

    XMM observations of X-ray weak quasars have been performed during 2003 and 2004. The data for all the observations have become available in 2004 (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed all the data, and obtained interesting scientific results. Out of the eight sources, 4 are confirmed to be extremely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confined to be highly variable both in flux (by factor 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects we are completing a publication: 1) For the X-ray weak sources, a paper is submitted with a complete analysis of the X-ray spectra both from Chandra and XMM-Newton, and a comparison with optical and near-IR photometry obtained from all-sky surveys. Possible models for the unusual spectral energy distribution of these sources are also presented. 2) For the variable sources, a paper is being finalized where the X-ray spectra obtained with XMM-Newton are compared with previous X-ray observations and with observations at other wavelengths. It is shown that these sources are high luminosity and extreme cases of the highly variable class of narrow-line Seyfert Is. In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations have been performed in early 2004. They will complement the XMM data and will lead to understanding of whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circum-nuclear material. The infrared spectra of the variable sources have been already

  4. Measurement of the $\\Sigma \\pi$ photoproduction line shapes near the $\\Lambda(1405)$

    SciTech Connect

    Moriya, K; Adhikari, K P; Adikaram, D; Aghasyan, M; Anderson, M D; Anefalos Pereira, S; Ball, J; Baltzell, N A; Battaglieri, M; Batourine, V; Bedlinskiy, I; Bellis, M; Biselli, A S; Bono, J; Boiarinov, S; Briscoe, W J; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Cole, P L; Collins, P; Crede, V; D'Angelo, A; Dashyan, N; De Sanctis, E; De Vita, R; Deur, A; Dey, B; Djalali, C; Doughty, R; Dupre, R; Egiyan, H; El Fassi, L; Eugenio, P; Fedotov, G; Fegan, S; Fersch, R; Fleming, J A; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Golovatch, E; Gothe, R W; Griffioen, K A; Guidal, M; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Heddle, D; Hicks, K; Ho, D; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jo, H S; Keller, D; Khandaker, M; Khertarpal, P; Kim, A; Kim, W; Klein, A; Klein, F J; Koirala, S; Kubarovsky, A; Kubarovsky, V; Kuleshov, S V; Kvaltine, N D; Livingston, K; Lu, H Y; MacGregor, I.J. D; Markov, N; Mayer, M; McCracken, M; McKinnon, B; Mestayer, M D; Meyer, C A; Mirazita, M; Mineeva, T; Mokeev, V; Montgomery, R A; Munevar, E; Munoz Camacho, C; Nadel-Turonski, P; Nasseripour, R; Nepali, C S; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Phelps, E; Phillips, J J; Pisano, S; Pivnyuk, N; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Protopopescu, D; Rimal, D; Ripani, M; Ritchie, B G; Rosner, G; Rossi, P; Sabatio, F; Saini, M S; Salgado, C; Schott, D; Seder, E; Seraydaryan, H; Sharabian, Y G; Smith, E S; Smith, G D; Sober, D I; Stepanyan, S S; Stepanyan, S; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Tang, W; Taylor, S; Taylor, C E; Tian, Ye; Tkachenko, S; Torayev, B; Ungaro, M; Vernarsky, B; Vlassov, A V; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Weygand, D P

    2013-03-01

    The reaction {gamma} + p -> K{sup +} + {Sigma} + {p}i was used to determine the invariant mass distributions or "line shapes" of the {Sigma}{sup +} {pi}{sup -}, {Sigma}{sup -} {pi}{sup +} and {Sigma}{sup 0} {pi}{sup 0} final states, from threshold at 1328 MeV/c^2 through the mass range of the {Lambda}(1405) and the {Lambda}(1520). The measurements were made with the CLAS system at Jefferson Lab using tagged real photons, for center-of-mass energies 1.95 < W < 2.85 GeV. The three mass distributions differ strongly in the vicinity of the I=0 {Lambda}(1405), indicating the presence of substantial I=1 strength in the reaction. Background contributions to the data from the {Sigma}{sup 0}(1385) and from K* {Sigma} production were studied and shown to have negligible influence. To separate the isospin amplitudes, Breit-Wigner model fits were made that included channel-coupling distortions due to the Nkbar threshold. A best fit to all the data was obtained after including a phenomenological I=1, J{sup P} = 1/2{sup -} amplitude with a centroid at 1394\\pm20 MeV/c^2 and a second I=1 amplitude at 1413\\pm10 MeV/c^2. The centroid of the I=0 {Lambda}(1405) strength was found at the {Sigma} {pi} threshold, with the observed shape determined largely by channel-coupling, leading to an apparent overall peak near 1405 MeV/c^2.

  5. NEW PERSPECTIVE ON GALAXY OUTFLOWS FROM THE FIRST DETECTION OF BOTH INTRINSIC AND TRAVERSE METAL-LINE ABSORPTION

    SciTech Connect

    Kacprzak, Glenn G.; Cooke, Jeff; Martin, Crystal L.; Ho, Stephanie H.; Bouché, Nicolas; LeReun, Audrey; Schroetter, Ilane; Churchill, Christopher W.; Klimek, Elizabeth

    2014-09-01

    We present the first observation of a galaxy (z = 0.2) that exhibits metal-line absorption back-illuminated by the galaxy (down-the-barrel) and transversely by a background quasar at a projected distance of 58 kpc. Both absorption systems, traced by Mg II, are blueshifted relative to the galaxy systemic velocity. The quasar sight line, which resides almost directly along the projected minor axis of the galaxy, probes Mg I and Mg II absorption obtained from the Keck/Low Resolution Imaging Spectrometer as well as Lyα, Si II, and Si III absorption obtained from the Hubble Space Telescope/Cosmic Origins Spectrograph. For the first time, we combine two independent models used to quantify the outflow properties for down-the-barrel and transverse absorption. We find that the modeled down-the-barrel deprojected outflow velocities range between V {sub dtb} = 45-255 km s{sup –1}. The transverse bi-conical outflow model, assuming constant-velocity flows perpendicular to the disk, requires wind velocities V {sub outflow} = 40-80 km s{sup –1} to reproduce the transverse Mg II absorption kinematics, which is consistent with the range of V {sub dtb}. The galaxy has a metallicity, derived from Hα and N II, of [O/H] = –0.21 ± 0.08, whereas the transverse absorption has [X/H] = –1.12 ± 0.02. The galaxy star formation rate is constrained between 4.6-15 M {sub ☉} yr{sup –1} while the estimated outflow rate ranges between 1.6-4.2 M {sub ☉} yr{sup –1} and yields a wind loading factor ranging between 0.1-0.9. The galaxy and gas metallicities, the galaxy-quasar sight-line geometry, and the down-the-barrel and transverse modeled outflow velocities collectively suggest that the transverse gas originates from ongoing outflowing material from the galaxy. The ∼1 dex decrease in metallicity from the base of the outflow to the outer halo suggests metal dilution of the gas by the time it reached 58 kpc.

  6. Determination of vibration-rotation lines intensities from absorption Fourier spectra

    NASA Technical Reports Server (NTRS)

    Mandin, J. Y.

    1979-01-01

    The method presented allows the line intensities to be calculated from either their equivalent widths, heights, or quantities deduced from spectra obtained by Fourier spectrometry. This method has proven its effectiveness in measuring intensities of 60 lines of the molecule H2O with a precision of 10%. However, this method cannot be applied to isolated lines.

  7. Demonstration of Current Profile Shaping using Double Dog-Leg Emittance Exchange Beam Line at Argonne Wakefield Accelerator

    SciTech Connect

    Ha, Gwanghui; Cho, Moo-Hyun; Conde, Manoel; Doran, Darrell; Gai, Wei; Jing, Chunguang; Kim, Kwang-Je; Liu, Wanming; Namkung, Won; Piot, Philippe; Power, John; Sun, Yin-E; Whiteford, Charles; Wisniewski, Eric; Zholents, Alexander

    2016-06-01

    Emittance exchange (EEX) based longitudinal current profile shaping is the one of the promising current profile shaping technique. This method can generate high quality arbitrary current profiles under the ideal conditions. The double dog-leg EEX beam line was recently installed at the Argonne Wakefield Accelerator (AWA) to explore the shaping capability and confirm the quality of this method. To demonstrate the arbitrary current profile generation, several different transverse masks are applied to generate different final current profiles. The phase space slopes and the charge of incoming beam are varied to observe and suppress the aberrations on the ideal profile. We present current profile shaping results, aberrations on the shaped profile, and its suppression.

  8. X-ray absorption lines suggest matter infalling onto the central black-hole of Mrk 509

    NASA Astrophysics Data System (ADS)

    Dadina, M.; Cappi, M.; Malaguti, G.; Ponti, G.; de Rosa, A.

    2005-11-01

    Evidence for both red- and blue-shifted absorption lines due to ionized Fe in the X-ray spectrum of the Seyfert 1 galaxy Mrk 509 is reported. These features appear to be transient on time-scales as short as ~20 ks, and have been observed with two different satellites, BeppoSAX and XMM-Newton. The red- and blue-shifted lines are found at E˜5.5 keV and ~8.1-8.3 keV (rest-frame), respectively. The first is seen in one out of six BeppoSAX observations, the latter is seen by both satellites. Under the assumption that the absorption is due to either H- or He-like Iron, the implied velocities for the absorbing matter are v˜0.15-0.2 c, in both outward and inward directions. An alternative explanation in terms of gravitational red-shift for the ~5.5 keV line cannot be ruled out with the current data. We argue, however, that the temporal patterns and sporadic nature of the lines are more easily reconciled with models that predict important radial motions close to the central black hole, such as the "aborted jet" model, the "thundercloud" model, or magneto-hydrodynamical models of jets and accretion-disks.

  9. Beyond Zeeman spectroscopy: Magnetic-field diagnostics with Stark-dominated line shapes

    SciTech Connect

    Tessarin, S.; Mikitchuk, D.; Doron, R.; Stambulchik, E.; Kroupp, E.; Maron, Y.; Hammer, D. A.; Jacobs, V. L.; Seely, J. F.; Oliver, B. V.; Fisher, A.

    2011-09-15

    A recently suggested spectroscopic approach for magnetic-field determination in plasma is employed to measure magnetic fields in an expanding laser-produced plasma plume in an externally applied magnetic field. The approach enables the field determination in a diagnostically difficult regime for which the Zeeman-split patterns are not resolvable, as is often encountered under the conditions characteristic of high-energy-density plasmas. Here, such conditions occur in the high-density plasma near the laser target, due to the dominance of Stark broadening. A pulsed-power system is used to generate magnetic fields with a peak magnitude of 25 T at the inner-electrode surface in a coaxial configuration. An aluminum target attached to the inner electrode surface is then irradiated by a laser beam to produce the expanding plasma that interacts with the applied azimuthal magnetic field. A line-shape analysis of the Al III 4s-4p doublet (5696 and 5722 A) enables the simultaneous determination of the magnetic field and the electron density. The measured magnetic fields are generally found to agree with those expected in a vacuum based on the pulsed-power system current. Examples of other transitions that can be used to diagnose a wide range of plasma and magnetic field parameters are presented.

  10. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA) (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Brown, Lisa V.; Zhao, Ke; Zheng, Bob Y.; Nordlander, Peter; Halas, Naomi J.

    2015-08-01

    Surface-enhanced infrared absorption (SEIRA) has been gaining substantial attention by using plasmonic nanoantennas to amplify near-field intensities so that it can extend IR spectroscopy to zeptomolar quantities and ultimately to the sigle-molecule level. Here we report a new nanoantenna for SEIRA detection, consisting of a fan-shaped Au structure positioned at a well-specified distance above a reflective plane with an intervening silica spacer layer. This antenna can be easily tuned to overlap vibrational modes within a broad spectral range from the near-IR into terahertz regimes. Our finite difference time domain (FDTD) simulations reveal a maximum SEIRA enhancement factor of 105 in the antenna junction area, which is corresponding to the experimental detection of 20-200 zeptomoles of octadecanethiol, using a standard commercial FTIR spectrometer. Our optimized antenna exhibits an order of magnitude greater SEIRA sensitivity than previous record-setting designs, which opens new opportunities for using infrared spectroscopy to analyze exceptionally small quantities of molecules.

  11. Enhancing two-color absorption, self-phase modulation, and Raman microscopy signatures in tissue with femtosecond laser pulse shaping

    NASA Astrophysics Data System (ADS)

    Fischer, Martin C.; Piletic, Ivan; Fu, Dan; Matthews, Thomas E.; Liu, Henry; Samineni, Prathyush; Li, Baolei; Warren, Warren S.

    2009-02-01

    Nonlinear microscopies (most commonly, two-photon fluorescence, second harmonic generation, and coherent anti-Stokes Raman scattering (CARS)) have had notable successes in imaging a variety of endogenous and exogenous targets in recent years. These methods generate light at a color different from any of the exciting laser pulses, which makes the signal relatively easy to detect. Our work has focused on developing microscopy techniques using a wider range of nonlinear signatures (two-photon absorption of nonfluorescent species, self phase modulation) which have some specific advantages - for example, in recent papers we have shown that we can differentiate between different types of melanin in pigmented lesions, image hemoglobin and its oxygenation, and measure neuronal activity. In general, these signatures do not generate light at a different color and we rely on the advantages of femtosecond laser pulse shaping methods to amplify the signals and make them visible (for example, using heterodyne detection of the induced signal with one of the co-propagating laser pulses). Here we extend this work to stimulated Raman and CARS geometries. In the simplest experiments, both colors arise from filtering a single fs laser pulse, then modulating afterwards; in other cases, we demonstrate that spectral reshaping can retain high frequency resolution in Raman and CARS geometries with femtosecond laser pulses.

  12. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  13. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.

    2016-01-01

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.

  14. Ratio of Dust to Metal Abundance in Quasar Absorption Line Systems from 1.9 < z < 3.3

    NASA Astrophysics Data System (ADS)

    Stawinski, Stephanie; Malhotra, Sangeeta

    2017-01-01

    Measuring the ratio of dust to metal abundance in quasar absorption line systems will provide insight to the chemical evolution of galaxies, dust formation, and dust properties in the early universe. Quasar absorption systems allow us to study the abundance of dust from many different redshifts, in this project up to z ~ 3.3 for absorber redshift. The absorption bump at 2175 Å is a broad, but strong, dust feature within the UV-optical wavelength range. This feature, if detected, can be directly related to the optical depth of the dust in the absorbing systems. However, the 2175 Å bump is very broad, having a full-width half-maximum approximately 350 * (1 + z) Å, and therefore hard to distinguish from a single spectrum. To find this bump, it is important to co-add many quasar spectra. In this project, we look at how the abundance of dust compares to that of metals for 105 quasar spectra with strong damped Lyman alpha systems with absorber redshifts ranging from 1.9 < z < 3.3. From these spectra, we created a composite spectrum to analyze the 2175 Å bump and the absorption of heavy elements. We will present the results including the strength of the 2175 Å feature found in our composite spectrum.

  15. Origins of optical absorption and emission lines in AlN

    SciTech Connect

    Yan, Qimin; Janotti, Anderson; Van de Walle, Chris G.; Scheffler, Matthias

    2014-09-15

    To aid the development of AlN-based optoelectronics, it is essential to identify the defects that cause unwanted light absorption and to minimize their impact. Using hybrid functional calculations, we investigate the role of native defects and their complexes with oxygen, a common impurity in AlN. We find that Al vacancies are the source of the absorption peak at 3.4 eV observed in irradiated samples and of the luminescence signals at 2.78 eV. The absorption peak at ∼4.0 eV and higher, and luminescence signals around 3.2 and 3.6 eV observed in AlN samples with high oxygen concentrations are attributed to complexes of Al vacancies and oxygen impurities. We also propose a transition involving Al and N vacancies and oxygen impurities that may be a cause of the absorption band peaked at 2.9 eV.

  16. VizieR Online Data Catalog: QSO B0218+357 molecular absorption lines (Wallstroem+, 2016)

    NASA Astrophysics Data System (ADS)

    Wallstroem, S. H. J.; Muller, S.; Guelin, M.

    2016-08-01

    ASCII files of the absorption spectra presented in Figure 2. The files are named after the molecule or isotopologue. Column 1 is velocity, column 2 is intensity (normalized to 1), Velocities are in a heliocentric frame, with zabs=0.68466 (11 data files).

  17. Scanning electron microscope measurement of width and shape of 10nm patterned lines using a JMONSEL-modeled library.

    PubMed

    Villarrubia, J S; Vladár, A E; Ming, B; Kline, R J; Sunday, D F; Chawla, J S; List, S

    2015-07-01

    The width and shape of 10nm to 12 nm wide lithographically patterned SiO2 lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines' widths and shapes are parameters. The approximately 32 nm pitch sample was patterned at Intel using a state-of-the-art pitch quartering process. Their narrow widths and asymmetrical shapes are representative of near-future generation transistor gates. These pose a challenge: the narrowness because electrons landing near one edge may scatter out of the other, so that the intensity profile at each edge becomes width-dependent, and the asymmetry because the shape requires more parameters to describe and measure. Modeling was performed by JMONSEL (Java Monte Carlo Simulation of Secondary Electrons), which produces a predicted yield vs. position for a given sample shape and composition. The simulator produces a library of predicted profiles for varying sample geometry. Shape parameter values are adjusted until interpolation of the library with those values best matches the measured image. Profiles thereby determined agreed with those determined by transmission electron microscopy and critical dimension small-angle x-ray scattering to better than 1 nm.

  18. IOS and ECS line coupling calculation for the CO-He system - Influence on the vibration-rotation band shapes

    NASA Technical Reports Server (NTRS)

    Boissoles, J.; Boulet, C.; Robert, D.; Green, S.

    1987-01-01

    Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1-0 CO-He vibration-rotation band shape is then computed for the case of weakly overlapping lines in the 292-78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of Lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO-He system, based on either the strong collision model or exponential energy gap law, is also discussed.

  19. Sensor for In-Motion Continuous 3D Shape Measurement Based on Dual Line-Scan Cameras

    PubMed Central

    Sun, Bo; Zhu, Jigui; Yang, Linghui; Yang, Shourui; Guo, Yin

    2016-01-01

    The acquisition of three-dimensional surface data plays an increasingly important role in the industrial sector. Numerous 3D shape measurement techniques have been developed. However, there are still limitations and challenges in fast measurement of large-scale objects or high-speed moving objects. The innovative line scan technology opens up new potentialities owing to the ultra-high resolution and line rate. To this end, a sensor for in-motion continuous 3D shape measurement based on dual line-scan cameras is presented. In this paper, the principle and structure of the sensor are investigated. The image matching strategy is addressed and the matching error is analyzed. The sensor has been verified by experiments and high-quality results are obtained. PMID:27869731

  20. Sensor for In-Motion Continuous 3D Shape Measurement Based on Dual Line-Scan Cameras.

    PubMed

    Sun, Bo; Zhu, Jigui; Yang, Linghui; Yang, Shourui; Guo, Yin

    2016-11-18

    The acquisition of three-dimensional surface data plays an increasingly important role in the industrial sector. Numerous 3D shape measurement techniques have been developed. However, there are still limitations and challenges in fast measurement of large-scale objects or high-speed moving objects. The innovative line scan technology opens up new potentialities owing to the ultra-high resolution and line rate. To this end, a sensor for in-motion continuous 3D shape measurement based on dual line-scan cameras is presented. In this paper, the principle and structure of the sensor are investigated. The image matching strategy is addressed and the matching error is analyzed. The sensor has been verified by experiments and high-quality results are obtained.

  1. [Analysis of lorentzian line shape function broadened by non-sinusoidal wavelength modulation].

    PubMed

    Sun, You-Qun; Wang, Yun-Tao; Ruan, Chi; Xu, Song-Song

    2014-03-01

    In the present work, the Fourier analysis of Lorentzian line shape broadened by non-sinusoidal wavelength modulation was investigated, in which the third order and above harmonic items were ignored. The analytical expression of n-order Fourier coefficient was brought out, where a variable K named harmonic distortion to characterize the ratio of the second harmonic to the first harmonic was introduced. Numerical simulations based on the cases of K > 0.01 and K < 0.01 were carried out, and the result shows: non-sinusoidal modulation has little effect compared with the sinusoidal modulation when K value is less than 0.01, however, if K value is about 0.1 or higher, the center of the Fourier amplitude curve would deviate from the origin of coordinates. With the increase in the harmonic distortion, the deviation of the curve grows, and high order harmonics are more sensitive to the non-sinusoidal modulation compared with the low order harmonics. In addition, when harmonic distortion cannot be ignored, for example K > 0.01, the effect of different depths of modulation on the odd and even order harmonic amplitude curve is significant. And the numerical simulation shows there exists an optimum value of modulation depth which could minimize the impact of the harmonic distortion, and both large K value and small K value would cause a great error. The conclusion of this work could be applied in error analysis of wavelength modulation spectroscopy system And the results are helpful to deepening understanding of WMS and would be the important reference for some kind of frequency stabilization technology in laser instrument.

  2. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs.

    PubMed

    Allen, Vivian; Bates, Karl T; Li, Zhiheng; Hutchinson, John R

    2013-05-02

    Locomotion in living birds (Neornithes) has two remarkable features: feather-assisted flight, and the use of unusually crouched hindlimbs for bipedal support and movement. When and how these defining functional traits evolved remains controversial. However, the advent of computer modelling approaches and the discoveries of exceptionally preserved key specimens now make it possible to use quantitative data on whole-body morphology to address the biomechanics underlying this issue. Here we use digital body reconstructions to quantify evolutionary trends in locomotor biomechanics (whole-body proportions and centre-of-mass position) across the clade Archosauria. We use three-dimensional digital reconstruction to estimate body shape from skeletal dimensions for 17 archosaurs along the ancestral bird line, including the exceptionally preserved, feathered taxa Microraptor, Archaeopteryx, Pengornis and Yixianornis, which represent key stages in the evolution of the avian body plan. Rather than a discrete transition from more-upright postures in the basal-most birds (Avialae) and their immediate outgroup deinonychosauria, our results support hypotheses of a gradual, stepwise acquisition of more-crouched limb postures across much of theropod evolution, although we find evidence of an accelerated change within the clade Maniraptora (birds and their closest relatives, such as deinonychosaurs). In addition, whereas reduction of the tail is widely accepted to be the primary morphological factor correlated with centre-of-mass position and, hence, evolution of hindlimb posture, we instead find that enlargement of the pectoral limb and several associated trends have a much stronger influence. Intriguingly, our support for the onset of accelerated morpho-functional trends within Maniraptora is closely correlated with the evolution of flight. Because we find that the evolution of enlarged forelimbs is strongly linked, via whole-body centre of mass, to hindlimb function during

  3. Flocculation of deformable emulsion droplets. 1: Droplet shape and line tension effects

    SciTech Connect

    Denkov, N.D.; Petsev, D.N.; Danov, K.D.

    1995-12-01

    A simple theoretical model which allows the study of the configuration and the interaction energy of a doublet of flocculated Brownian droplets was recently proposed (Denkov et al., Phys, Rev. Lett. 71, 3226 (1993)). In this model the equilibrium film radius and thickness are determined by minimizing the total pair interaction energy which is presented as a sum of explicit expressions for the different contributions (van der Waals, electrostatic, steric, depletion, surface extension, etc.). In the present study this simplified model is numerically verified by comparison with the results stemming from the real shape of the interacting droplets. In order to determine the real configuration of two drops in contact the authors solve numerically the augmented Laplace equation of capillarity which accounts for the interaction between the droplets. Then the total interaction energy is alteratively calculated by integrating the energy density along the surfaces of the droplets. The numerical comparison shows that the equilibrium film radius and thickness, as well as the interaction energy calculated by means of the simplified model, are in very good agreement with the results from the more detailed (but more complex) approach. Numerical calculations of the equilibrium line tensions acting at the film periphery, a function of the droplet radius, are performed. The obtained results are relevant also to flocs containing more than two particles since the theory predicts pairwise additivity of the interaction energy in most cases. The results can be useful in gaining a deeper understanding of the processes of stabilization of flocculation in emulsions. Emulsions of great importance in many areas of human activity such as oil recovery.

  4. Detection of High Velocity Absorption Components in the He I Lines of Eta Carinae near the Time of Periastron

    NASA Technical Reports Server (NTRS)

    Richardson, Noel D.; St-Jean, Lucas; Gull, Theodore R.; Madura, Thomas; Hillier, D. John; Teodoro, Mairan; Moffat, Anthony; Corcoran, Michael; Damineli, Augusto

    2014-01-01

    We have obtained a total of 58 high spectral resolution (R90,000) spectra of the massive binary star eta Carinae since 2012 in an effort to continue our orbital and long-term echelle monitoring of this extreme binary (Richardson et al. 2010, AJ, 139, 1534) with the CHIRON spectrograph on the CTIO 1.5 m telescope (Tokovinin et al. 2013, PASP, 125, 1336) in the 45507500A region. We have increased our monitoring efforts and observation frequency as the periastron event of 2014 has approached. We note that there were multiple epochs this year where we observe unusual absorption components in the P Cygni troughs of the He I triplet lines. In particular, we note high velocity absorption components related to the following epochs for the following lines: He I 4713: HJD 2456754- 2456795 (velocity -450 to -560 kms) He I 5876: HJD 2456791- 2456819 (velocity -690 to -800 kms) He I 7065: HJD 2456791- 2456810 (velocity -665 to -730 kms) Figures: Note that red indicates a high-velocity component noted above. He I 4713: http:www.astro.umontreal.carichardson4713.png He I 5876: http:www.astro.umontreal.carichardson5876.png He I 7065: http:www.astro.umontreal.carichardson7065.png These absorptions are likely related to the wind-wind collision region and bow shock, as suggested by the high-velocity absorption observed by Groh et al. (2010, AA, 519, 9) in the He I 10830 Atransition. In these cases, we suspect that we look along an arm of the shock cone and that we will see a fast absorption change from the other collision region shortly after periastron. We suspect that this is related to the multiple-components of the He II 4686 line that was noted by Walter (ATel6334), and is confirmed in our data. Further, high spectral resolution data are highly encouraged,especially for resolving powers greater than 50,000.These observations were obtained with the CTIO 1.5 m telescope, operated by the SMARTS Consortium, and were obtained through both SMARTS and NOAO programs 2012A-0216,2012B-0194

  5. THE COS-HALOS SURVEY: AN EMPIRICAL DESCRIPTION OF METAL-LINE ABSORPTION IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM

    SciTech Connect

    Werk, Jessica K.; Prochaska, J. Xavier; Tripp, Todd M.; O'Meara, John M.; Peeples, Molly S.

    2013-02-15

    We present the equivalent width and column density measurements for low and intermediate ionization states of the circumgalactic medium (CGM) surrounding 44 low-z, L Almost-Equal-To L* galaxies drawn from the COS-Halos survey. These measurements are derived from far-UV transitions observed in HST/COS and Keck/HIRES spectra of background quasars within an impact parameter R < 160 kpc to the targeted galaxies. The data show significant metal-line absorption for 33 of the 44 galaxies, including quiescent systems, revealing the common occurrence of a cool (T Almost-Equal-To 10{sup 4}-10{sup 5} K), metal-enriched CGM. The detection rates and column densities derived for these metal lines decrease with increasing impact parameter, a trend we interpret as a declining metal surface density profile for the CGM. A comparison of the relative column densities of adjacent ionization states indicates that the gas is predominantly ionized. The large surface density in metals demands a large reservoir of metals and gas in the cool CGM (very conservatively, M {sup cool} {sub CGM} > 10{sup 9} M {sub Sun }), which likely traces a distinct density and/or temperature regime from the highly ionized CGM traced by O{sup +5} absorption. The large dispersion in absorption strengths (including non-detections) suggests that the cool CGM traces a wide range of densities or a mix of local ionizing conditions. Lastly, the kinematics inferred from the metal-line profiles are consistent with the cool CGM being bound to the dark matter halos hosting the galaxies; this gas may serve as fuel for future star formation. Future work will leverage this data set to provide estimates on the mass, metallicity, dynamics, and origin of the cool CGM in low-z, L* galaxies.

  6. Spectral line shapes. Volume 4 - Proceedings of the Eighth International Conference, College of William and Mary, Williamsburg, VA, June 9-13, 1986

    NASA Technical Reports Server (NTRS)

    Exton, Reginald J. (Editor)

    1987-01-01

    The present conference discusses topics in line broadening and shift phenomena in low-to-moderately dense plasmas, resonances in the continuum, hot and dense laser-produced plasmas, collisional broadening and intermolecular potentials, molecular broadening and collision-induced spectroscopy, collisional redistribution and laser-assisted collision processes, coherent and nonlinear spectroscopy, astrophysical line-shapes, and short-wavelength lasers. Attention is given to the widths and shifts of Be ion lines, the Stark broadening of Xe II and Fe I lines, perturbed and unperturbed series in the line-shapes of autoionizing Rydberg series, the line-broadening of hydrogenic ions in dense plasmas, Doppler-free line-shapes, the Franck-Condon principle, the dynamics of laser-assisted reactive collisions, the gas-kinetic effects of light, collision-induced processes in nonlinear optics, and line-shaping phenomena in cool stars.

  7. Spectral line shapes. Volume 4 - Proceedings of the Eighth International Conference, College of William and Mary, Williamsburg, VA, June 9-13, 1986

    NASA Astrophysics Data System (ADS)

    Exton, Reginald J.

    The present conference discusses topics in line broadening and shift phenomena in low-to-moderately dense plasmas, resonances in the continuum, hot and dense laser-produced plasmas, collisional broadening and intermolecular potentials, molecular broadening and collision-induced spectroscopy, collisional redistribution and laser-assisted collision processes, coherent and nonlinear spectroscopy, astrophysical line-shapes, and short-wavelength lasers. Attention is given to the widths and shifts of Be ion lines, the Stark broadening of Xe II and Fe I lines, perturbed and unperturbed series in the line-shapes of autoionizing Rydberg series, the line-broadening of hydrogenic ions in dense plasmas, Doppler-free line-shapes, the Franck-Condon principle, the dynamics of laser-assisted reactive collisions, the gas-kinetic effects of light, collision-induced processes in nonlinear optics, and line-shaping phenomena in cool stars.

  8. Digital signal processor-based high-precision on-line Voigt lineshape fitting for direct absorption spectroscopy.

    PubMed

    Xu, Lijun; Liu, Chang; Zheng, Deyan; Cao, Zhang; Cai, Weiwei

    2014-12-01

    To realize on-line high-accuracy measurement in direct absorption spectroscopy (DAS), a system-on-chip, high-precision digital signal processor-based on-line Voigt lineshape fitting implementation is introduced in this paper. Given that the Voigt lineshape is determined by the Gauss full width at half maximum (FWHM) and Lorentz FWHM, a look-up table, which covers a range of combinations of both, is first built to achieve rapid and accurate calculation of Voigt lineshape. With the look-up table and raw absorbance data in hand, Gauss-Newton nonlinear fitting module is implemented to obtain the parameters including both the Gauss and Lorentz FWHMs, which can be used to calculate the integrated absorbance. To realize the proposed method in hardware, a digital signal processor (DSP) is adopted to fit the Voigt lineshape in a real-time DAS measurement system. In experiment, temperature and H2O concentration of a flat flame are recovered from the transitions of 7444.36 cm(-1) and 7185.6 cm(-1) by the DSP-based on-line Voigt lineshape fitting and on-line integral of the raw absorbance, respectively. The results show that the proposed method can not only fit the Voigt lineshape on-line but also improve the measurement accuracy compared with those obtained from the direct integral of the raw absorbance.

  9. The magnetic field of an isolated neutron star from X-ray cyclotron absorption lines.

    PubMed

    Bignami, G F; Caraveo, P A; De Luca, A; Mereghetti, S

    2003-06-12

    Isolated neutron stars are highly magnetized, fast-rotating objects that form as an end point of stellar evolution. They are directly observable in X-ray emission, because of their high surface temperatures. Features in their X-ray spectra could in principle reveal the presence of atmospheres, or be used to estimate the strength of their magnetic fields through the cyclotron process, as is done for X-ray binaries. Almost all isolated neutron star spectra observed so far appear as featureless thermal continua. The only exception is 1E1207.4-5209 (refs 7-9), where two deep absorption features have been detected, but with insufficient definition to permit unambiguous interpretation. Here we report a long X-ray observation of the same object in which the star's spectrum shows three distinct features, regularly spaced at 0.7, 1.4 and 2.1 keV, plus a fourth feature of lower significance, at 2.8 keV. These features vary in phase with the star's rotation. The logical interpretation is that they are features from resonant cyclotron absorption, which allows us to calculate a magnetic field strength of 8 x 10(10) G, assuming the absorption arises from electrons.

  10. Time resolved metal line profile by near-ultraviolet tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vitelaru, C.; de Poucques, L.; Minea, T. M.; Popa, G.

    2011-03-01

    Pulsed systems are extensively used to produce active species such as atoms, radicals, excited states, etc. The tunable diode laser absorption spectroscopy (TD-LAS) is successfully used to quantify the density of absorbing species, but especially for stationary or slow changing systems. The time resolved-direct absorption profile (TR-DAP) measurement method by TD-LAS, with time resolution of μs is proposed here as an extension of the regular use of diode laser absorption spectroscopy. The spectral narrowness of laser diodes, especially in the blue range (˜0.01 pm), combined with the nanosecond fast trigger of the magnetron pulsed plasma and long trace recording on the oscilloscope (period of second scale) permit the detection of the sputtered titanium metal evolution in the afterglow (˜ms). TR-DAP method can follow the time-dependence of the temperature (Doppler profile) and the density (deduced from the absorbance) of any medium and heavy species in a pulsed system.

  11. Effect of photoions on the line shape of the Foerster resonance lines and microwave transitions in cold rubidium Rydberg atoms

    SciTech Connect

    Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Yakshina, E. A.; Ryabtsev, I. I.; Dyubko, S. F.; Alekseev, E. A.; Pogrebnyak, N. L.; Bezuglov, N. N.; Arimondo, E.

    2012-01-15

    Experiments are carried out on the spectroscopy of the Foerster resonance lines Rb(37P) + Rb(37P) {yields} Rb(37S) + Rb(38S) and microwave transitions nP {yields} n Prime S, n Prime D between Rydberg states of cold rubidium atoms in a magneto-optical trap (MOT). Under ordinary conditions, all spectra exhibit a linewidth of 2-3 MHz irrespective of the interaction time between atoms or between atoms and microwave radiation, although the limit resonance width should be determined by the inverse interaction time. The analysis of experimental conditions has shown that the main source of line broadening is the inhomogeneous electric field of cold photoions that are generated under the excitation of initial nP Rydberg states by broadband pulsed laser radiation. The application of an additional electric-field pulse that rapidly extracts photoions produced by a laser pulse leads to a considerable narrowing of lines of microwave resonances and the Foerster resonance. Various sources of line broadening in cold Rydberg atoms are analyzed.

  12. FUSE and STIS Observations of Intervening O VI Absorption Line Systems in the Spectrum of PG 0953+415

    NASA Astrophysics Data System (ADS)

    Savage, B. D.; Sembach, K. R.; Tripp, T. M.; Richter, P.; Jenkins, E. B.

    2000-12-01

    We analyze Far Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph (STIS) observations of the intergalactic O VI absorption line systems in the direction of the bright QSO PG 0953+415 (z = 0.239). The FUSE observations cover the wavelength range from 905 to 1187 Å with a velocity resolution of 20 km/s. The STIS observations obtained with the E140M echelle spectrograph extend from 1150 to 1730 Å with a resolution of 8 km/s. These are supplemented with STIS G140M and G230M observations from 1145-1201 Å and from 1724-1814 A with a resolution of 30 km/s. We detect a strong O VI system at z = 0.06807 in the lines of H I Ly alpha, beta, and gamma, O VI 1031.93, 1037.62, N V 1238.80, 1242.80, C IV 1548.20, 1550.77, and C III 977.02 Å. We confirm the detection of the z = 0.14232 O VI system studied previously by Tripp and Savage (2000). The new FUSE observations of this system record Ly beta , O VI 1031.93, 1037.62, and C III 977.02 Å. We derive column densities for the absorption lines detected in both O VI systems using curve of growth and profile fitting techniques. We study the physical conditions in each system and attempt to determine the origin(s) of the ionization. Both detected O VI systems occur at redshifts where there are peaks in the number density of intervening galaxies along the line of sight based on a WIYN redshift survey of galaxies in the one degree field centered on PG 0953+415. We discuss the implications of these observations for the baryonic content of O VI absorption line systems. Financial support has been provided by NASA contract NAS-532985 and STSCI Grants GO 06499.02 and GO 08165.02.

  13. An accelerated line-by-line option for MODTRAN combining on-the-fly generation of line center absorption within 0.1 cm-1 bins and pre-computed line tails

    NASA Astrophysics Data System (ADS)

    Berk, Alexander; Conforti, Patrick; Hawes, Fred

    2015-05-01

    A Line-By-Line (LBL) option is being developed for MODTRAN6. The motivation for this development is two-fold. Firstly, when MODTRAN is validated against an independent LBL model, it is difficult to isolate the source of discrepancies. One must verify consistency between pressure, temperature and density profiles, between column density calculations, between continuum and particulate data, between spectral convolution methods, and more. Introducing a LBL option directly within MODTRAN will insure common elements for all calculations other than those used to compute molecular transmittances. The second motivation for the LBL upgrade is that it will enable users to compute high spectral resolution transmittances and radiances for the full range of current MODTRAN applications. In particular, introducing the LBL feature into MODTRAN will enable first-principle calculations of scattered radiances, an option that is often not readily available with LBL models. MODTRAN will compute LBL transmittances within one 0.1 cm-1 spectral bin at a time, marching through the full requested band pass. The LBL algorithm will use the highly accurate, pressure- and temperature-dependent MODTRAN Padé approximant fits of the contribution from line tails to define the absorption from all molecular transitions centered more than 0.05 cm-1 from each 0.1 cm-1 spectral bin. The beauty of this approach is that the on-the-fly computations for each 0.1 cm-1 bin will only require explicit LBL summing of transitions centered within a 0.2 cm-1 spectral region. That is, the contribution from the more distant lines will be pre-computed via the Padé approximants. The status of the LBL effort will be presented. This will include initial thermal and solar radiance calculations, validation calculations, and self-validations of the MODTRAN band model against its own LBL calculations.

  14. Speed Dependent Line Shapes in 1.61 μm and 2.07 μm CO_2 Atmospheric Retrievals for the OCO-2 Mission

    NASA Astrophysics Data System (ADS)

    Thompson, David R.; Brown, Linda R.; Crisp, David; Jiang, Yibo; Oyafuso, Fabiano; Sung, Keeyoon; Miller, Charles E.; Natraj, Vijay; Wunch, Debra; Benner, D. Chris; Devi, V. Malathy

    2012-06-01

    We are validating line parameters for CO_2 at 1.61 μm and 2.07 μm using high resolution atmospheric spectra and a new retrieval algorithm [1, 2] being developed for the Orbiting Carbon Observatory (OCO-2) in order to estimate column-averaged mixing ratio of CO_2, XCO2, to a sub-1% precision. This requirement demands highly accurate molecular line shape models. We tested a combination of line mixing [3] with speed dependent Voigt shapes [4,5] obtained from laboratory spectra using a state of the art multi-spectrum fitting procedure [6, 7]. The atmospheric tests were made with a diverse set of over 400 soundings including upward- and downward-looking FT-IR data from the Total Carbon Column Observing Network (TCCON), and the data from TANSO-FTS spectrometer aboard the Greenhouse gases Observing SATellite (GOSAT), respectively. The new absorption cross sections significantly reduced residuals in the spectral fit in the 2.07 μm region, while the effects on the 1.61 μm band are less definitive but still suggest some improvement. Overall these tests favor the adoption of the new models. [1] O'Dell C.W., et al. AMT 2012; 5:99-121. [2] Crisp, D., et al. AMTD 2012; 5:1 - 60. [3] Hartmann, J. M., et al. ACP 9:7303-7312. [4] Devi et al., J. Mol.Spec. 2007; 245:52-80. [5] Benner et al. 66th International Symposium on Molecular Spectroscopy, Columbus OH (2011). [6] Benner, D.C., et al., JQSRT 1995; 53(6):705 - 721. [7] Letchworth, K.L., et al. JQSRT, 107: 173 - 192. The research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology and at The College of William and Mary under contracts with National Aeronautics and Space Administration. US Government Support Acknowledged.

  15. Frequency Comb-Referenced Measurements of - and Nitrogen-Perturbed Line Shapes in the ν_1 + ν_3 Band of Acetylene

    NASA Astrophysics Data System (ADS)

    Cich, Matthew J.; Lopez, Gary V.; Sears, Trevor J.; McRaven, C. P.; Mantz, A. W.; Hurtmans, Daniel

    2011-06-01

    Frequency comb technology has the potential to dramatically improve precision and accuracy in measured spectra, but few applications have yet been reported. One application that can benefit from the high stability of spectrometers referenced to frequency combs is the measurement of spectral line shapes. We have built an absorption spectrometer based on an extended cavity diode laser locked to an Er-fiber-based frequency comb operating near 1550 nm. Here we report the first measurements of line shapes using a frequency comb as a reference. We studied the P(11) line in the ν_1 + ν_3 combination band of acetylene at 195 739.649 513(8) GHz at several temperatures from 296K down to 175K. This talk focuses on the data taken at 296K. We used a hard collision model (Rautian-Sobel'man) fit to the measurements to determine self- and nitrogen- pressure broadening, pressure shift and Dicke narrowing parameters that are at least 2 orders of magnitude more precise than those reported in previous measurements. We compare these hard collision model results with those of two other widely-used models: the Galatry (soft collision) and the Voigt function. The temperature- and rotational level- dependence of these parameters have been measured and some of the results will be discussed in a separate talk. Acknowledgements:Acknowledgement is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. CPM gratefully acknowledges support by DOE EPSCoR grant DOE-07ER46361 for work conducted at the University of Oklahoma. The measurements and analyses were performed under grants NNX09AJ93G and NNX08AO78G from the NASA Planetary and Atmospheres program.

  16. The ultraviolet spectrum of the gravitational lens candidate UM 425 = QSO 1120+019: Evidence for broad absorption line (BAL) structure

    NASA Technical Reports Server (NTRS)

    Michelitsianos, A. G.; Oliversen, R. J.

    1995-01-01

    The UV line profile structure of high-ionization resonance lines found with the International Ultraviolet Explorer (IUE) in the brightest of four multiply imaged sources (images-A) in the candidate gravitational lens UM 425 = QSO 1120+019 indicates broad absorption line (BAL) structure. The deep-broad trough associated with the O IV line extends to velocities approiximately -12,000 km/s, and contains disrete features that suggest multicomponent velocity structure. This structure may include contributions from C IV absorption from the early-type galaxy that is believed to lens UM 425. A strong absorption feature in the blue wing of the Lyman-alpha lambda 1216 emission line may be a Lyman alpha absorption system at a Z(sub Ly alpha) = 1.437 +/- 0.003, or it may be formed by the superposition of the broad N V lambda lambda 1238, 1242 absorption trough on the extended blue emission wing of the QSO Lyman-alpha line. We obtained a redshift of Z(sub QSO) = 1.471 +/- 0.003 from Lyman-alpha lambda 1215, consistent with the redshift found by Meylan and Djorgovski in the optical. The Lyman-alpha line appears unusally weak due to the presence of N V lambda 1240 BAL absorption. A Lyman-limit absorption system at lambda 912 was not observed in the QSO rest frame. The detection of BAL structure in the other weaker ground-state resonance lines of N II (l) and S IV (l) was not found, suggesting these lines are formed in a region that is distinct from the BAL component. Detection of BAL structure in the other fainter images in this system with Hubble Space Telescope (HST) instrumentation, similar to structure observed here in image A, could provide evidence that UM 425 is a gravitational lens.

  17. HIGHLY IONIZED Fe-K ABSORPTION LINE FROM CYGNUS X-1 IN THE HIGH/SOFT STATE OBSERVED WITH SUZAKU

    SciTech Connect

    Yamada, S.; Yoshikawa, A.; Makishima, K.; Torii, S.; Noda, H.; Mineshige, S.; Ueda, Y.; Kubota, A.; Gandhi, P.; Done, C.

    2013-04-20

    We present observations of a transient He-like Fe K{alpha} absorption line in Suzaku observations of the black hole binary Cygnus X-1 on 2011 October 5 near superior conjunction during the high/soft state, which enable us to map the full evolution from the start to the end of the episodic accretion phenomena or dips for the first time. We model the X-ray spectra during the event and trace their evolution. The absorption line is rather weak in the first half of the observation, but instantly deepens for {approx}10 ks, and weakens thereafter. The overall change in equivalent width is a factor of {approx}3, peaking at an orbital phase of {approx}0.08. This is evidence that the companion stellar wind feeding the black hole is clumpy. By analyzing the line with a Voigt profile, it is found to be consistent with a slightly redshifted Fe XXV transition, or possibly a mixture of several species less ionized than Fe XXV. The data may be explained by a clump located at a distance of {approx}10{sup 10-12} cm with a density of {approx}10{sup (-13)-(-11)} g cm{sup -3}, which accretes onto and/or transits the line of sight to the black hole, causing an instant decrease in the observed degree of ionization and/or an increase in density of the accreting matter. Continued monitoring for individual events with future X-ray calorimeter missions such as ASTRO-H and AXSIO will allow us to map out the accretion environment in detail and how it changes between the various accretion states.

  18. Terahertz Fine Structure Lines toward NGC 2024

    NASA Astrophysics Data System (ADS)

    Graf, U. U.; Simon, R.; Stutzki, J.; Güsten, R.

    2016-05-01

    We present 1.9 THz [Cii] and 4.7 THz [Oi] measurements of the star forming region NGC 2024 observed with GREAT on SOFIA. Velocity resolved spectroscopy reveals the strong foreground absorption, which conceals most of the intrinsic line brightness of the dense PDR region. Modelling of the line shapes allows disentangling the foreground absorption from the strong background emission.

  19. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    NASA Technical Reports Server (NTRS)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; Fabian, A. C.; Farrah, D.; Fiore, F.; Fuerst, F.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R.; Madsen, K. K.; Matt, G.; Ogle, P.; Risaliti, G.; Saez, C.; Teng, S. H.; Walton, D. J.; Zhang, W. W.

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  20. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    SciTech Connect

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Hickox, R.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fabian, A. C.; Farrah, D.; Fiore, F.; Hailey, C. J.; Matt, G.; Ogle, P.; and others

    2013-08-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  1. Size and temperature dependence of the line shape of ESR spectra of the XXZ antiferromagnetic chain

    NASA Astrophysics Data System (ADS)

    Ikeuchi, Hiroki; De Raedt, Hans; Bertaina, Sylvain; Miyashita, Seiji

    2017-01-01

    The electron spin resonance spectrum of the XXZ spin chain with finite length shows a double-peak structure at high temperatures around the electron paramagnetic resonance (EPR) frequency. This fact has been pointed out by direct numerical methods [S. El Shawish, O. Cépas, and S. Miyashita, Phys. Rev. B 81, 224421 (2010), 10.1103/PhysRevB.81.224421; H. Ikeuchi, H. De Raedt, S. Bertaina, and S. Miyashita, Phys. Rev. B 92, 214431 (2015), 10.1103/PhysRevB.92.214431]. The question of whether the double-peak structure survives in the thermodynamics is of particular interest. We study the size dependence of the line shape, including the even-odd effect. It is found that the peaks forming the double-peak structure are assigned to individual resonances, each of which is specified by the magnetizations of the resonating states (M ,M -1 ) . To understand dependences, we decompose the spectrum into contributions from transitions specified by the magnetization, and we characterize the structure of the spectrum by individual contributions. We analyze the size dependence of each contribution individually by extending the moment method introduced by M. Brockman et al. to each component, and we find that the mean of each peak approaches the paramagnetic resonance point with 1 /N (where N is the length of the chain), which indicates that the separation of the peaks of the double-peak structure also vanishes inversely with the system size. We also study the temperature dependence of the structure. At low temperatures, the spectrum has a single peak with a finite width at a position with a finite shift from the frequency of EPR, as pointed out by the analysis of field-theoretical works [M. Oshikawa and I. Affleck, Phys. Rev. Lett. 82, 5136 (1999), 10.1103/PhysRevLett.82.5136]. The study of the temperature dependence of the spectrum shows how the high-temperature spectrum changes to the low-temperature one with a drastic broadening of the spectrum.

  2. Revisiting Vertical Models To Simulate the Line Shape of Electronic Spectra Adopting Cartesian and Internal Coordinates.

    PubMed

    Cerezo, Javier; Santoro, Fabrizio

    2016-10-11

    Vertical models for the simulation of spectroscopic line shapes expand the potential energy surface (PES) of the final state around the equilibrium geometry of the initial state. These models provide, in principle, a better approximation of the region of the band maximum. At variance, adiabatic models expand each PES around its own minimum. In the harmonic approximation, when the minimum energy structures of the two electronic states are connected by large structural displacements, adiabatic models can breakdown and are outperformed by vertical models. However, the practical application of vertical models faces the issues related to the necessity to perform a frequency analysis at a nonstationary point. In this contribution we revisit vertical models in harmonic approximation adopting both Cartesian (x) and valence internal curvilinear coordinates (s). We show that when x coordinates are used, the vibrational analysis at nonstationary points leads to a deficient description of low-frequency modes, for which spurious imaginary frequencies may even appear. This issue is solved when s coordinates are adopted. It is however necessary to account for the second derivative of s with respect to x, which here we compute analytically. We compare the performance of the vertical model in the s-frame with respect to adiabatic models and previously proposed vertical models in x- or Q1-frame, where Q1 are the normal coordinates of the initial state computed as combination of Cartesian coordinates. We show that for rigid molecules the vertical approach in the s-frame provides a description of the final state very close to the adiabatic picture. For sizable displacements it is a solid alternative to adiabatic models, and it is not affected by the issues of vertical models in x- and Q1-frames, which mainly arise when temperature effects are included. In principle the G matrix depends on s, and this creates nonorthogonality problems of the Duschinsky matrix connecting the normal

  3. Welcome to the 21st International Conference on Spectral Line Shapes

    NASA Astrophysics Data System (ADS)

    2012-12-01

    organizing committee of the conference has not forgotten about the cultural and tourism significance of the host city, with Hermitage and the Russian Museum, memorial museums of Pushkin and Dostoevsky, Mariinsky and Mikhailovsky Theaters being only a few of the many places to visit. Early June is the time of white nights, the best time to visit the environs of St. Petersburg with its many imperial palaces and parks, and attend multiple music and theater festivals. This is just the right time to take a break from physics overall and spectral line shapes in particular. On behalf of the Rector's Office let me wish the Conference every success, and do not forget to take some time out to enjoy your visit. Welcome! Professor N G Skvortsov Vice-Rector for Research St. Petersburg University

  4. Interstellar H I and H2 in the Magellanic Clouds: An Expanded Sample Based on Ultraviolet Absorption-line Data

    NASA Astrophysics Data System (ADS)

    Welty, Daniel E.; Xue, Rui; Wong, Tony

    2012-02-01

    We have determined column densities of H I and/or H2 for sight lines in the Magellanic Clouds from archival Hubble Space Telescope and Far-Ultraviolet Spectroscopic Explorer spectra of H I Lyα and H2 Lyman-band absorption. Together with some similar data from the literature, we now have absorption-based N(H I) and/or N(H2) for 285 Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) sight lines (114 with a detection or limit for both species)—enabling more extensive, direct, and accurate determinations of molecular fractions, gas-to-dust ratios, and elemental depletions in these two nearby, low-metallicity galaxies. For sight lines where the N(H I) estimated from 21 cm emission is significantly higher than the value derived from Lyα absorption (presumably due to emission from gas beyond the target stars), integration of the 21 cm profile only over the velocity range seen in Na I or H2 absorption generally yields much better agreement. Conversely, N(21 cm) can be lower than N(Lyα) by factors of 2-3 in some LMC sight lines—suggestive of small-scale structure within the 21 cm beam(s) and/or some saturation in the emission. The mean gas-to-dust ratios obtained from N(Htot)/E(B - V) are larger than in our Galaxy, by factors of 2.8-2.9 in the LMC and 4.1-5.2 in the SMC—i.e., factors similar to the differences in metallicity. The N(H2)/E(B - V) ratios are more similar in the three galaxies, but with considerable scatter within each galaxy. These data may be used to test models of the atomic-to-molecular transition at low metallicities and predictions of N(H2) based on comparisons of 21 cm emission and the IR emission from dust. ), the MAST archive at STScI (FUSE data), and the University of Bonn (LAB and GASS 21 cm surveys).

  5. Ultraviolet interstellar absorption lines in the LMC: Searching for hidden SNRs

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Wakker, Bart; Low, Mordecai-Mark Mac; Garcia-Segura, Guillermo

    1994-01-01

    Strong x-ray emission detected in Large Magellanic Cloud (LMC) superbubbles has been explained as the result of interior supernova remnants (SNRs) hitting the dense superbubble shell. Such SNRs cannot be found using conventional criteria. We thus investigate the possibility of using the interstellar absorption properties in the ultraviolet (UV) as a diagnostic of hidden SNR shocks. The International Ultraviolet Explorer (IUE) archives provide the database for this pilot study. They contain high-dispersion spectra of several stars in x-ray bright superbubbles. To distinguish the effects of SNR shocks from those of local stellar winds and a global hot halo around the LMC, we included control objects in different environments. We find that almost all interstellar absorption properties can be explained by the interstellar environment associated with the objects. Summarizing the two most important results of this study: (1) a large velocity shift between the high-ionization species (C IV and Si IV) and the low-ionization species (S II, Si II, and C II*) is a diagnostic of hidden SNR shocks; however, the absence of a velocity shift does not preclude the existence of SNR shocks; (2) there is no evidence that the LMC is uniformly surrounded by hot gas; hot gas is preferentially found associated with large interstellar structures like superbubbles and supergiant shells, which may extend to large distances from the plane.

  6. Distribution of smile line, gingival angle and tooth shape among the Saudi Arabian subpopulation and their association with gingival biotype

    PubMed Central

    AlQahtani, Nabeeh A.; Haralur, Satheesh B.; AlMaqbol, Mohammad; AlMufarrij, Ali Jubran; Al Dera, Ahmed Ali; Al-Qarni, Mohammed

    2016-01-01

    Objectives: To determine the occurrence of smile line and maxillary tooth shape in the Saudi Arabian subpopulation, and to estimate the association between these parameters with gingival biotype. Materials and Methods: On the fulfillment of selection criteria, total 315 patients belong to Saudi Arabian ethnic group were randomly selected. Two frontal photographs of the patients were acquired. The tooth morphology, gingival angle, and smile line classification were determined with ImageJ image analyzing software. The gingival biotype was assessed by probe transparency method. The obtained data were analyzed with SPSS 19 (IBM Corporation, New York, USA) software to determine the frequency and association between other parameters and gingival biotype. Results: Among the clinical parameters evaluated, the tapering tooth morphology (56.8%), thick gingival biotype (53%), and average smile line (57.5%) was more prevalent. The statistically significant association was found between thick gingival biotype and the square tooth, high smile line. The high gingival angle was associated with thin gingival biotype. Conclusions: The study results indicate the existence of an association between tooth shape, smile line, and gingival angle with gingival biotype. PMID:27195228

  7. The SLUGGS survey: globular cluster stellar population trends from weak absorption lines in stacked spectra

    NASA Astrophysics Data System (ADS)

    Usher, Christopher; Forbes, Duncan A.; Brodie, Jean P.; Romanowsky, Aaron J.; Strader, Jay; Conroy, Charlie; Foster, Caroline; Pastorello, Nicola; Pota, Vincenzo; Arnold, Jacob A.

    2015-01-01

    As part of the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey, we stack 1137 Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) spectra of globular clusters from 10 galaxies to study their stellar populations in detail. The stacked spectra have median signal-to-noise ratios of ˜90 Å-1. Besides the calcium triplet, we study weaker sodium, magnesium, titanium and iron lines as well as the Hα and higher order Paschen hydrogen lines. In general, the stacked spectra are consistent with old ages and a Milky Way-like initial mass function. However, we see different metal line index strengths at fixed colour and magnitude, and differences in the calcium triplet-colour relation from galaxy to galaxy. We interpret this as strong evidence for variations in the globular cluster colour-metallicity relation between galaxies. Two possible explanations for the colour-metallicity relation variations are that the average ages of globular clusters vary from galaxy to galaxy or that the average abundances of light elements (i.e. He, C, N and O) differ between galaxies. Stacking spectra by magnitude, we see that the colours become redder and metal line indices stronger with brighter magnitudes. These trends are consistent with the previously reported `blue tilts' being mass-metallicity relations.

  8. A Two-Line Absorption Instrument for Scramjet Temperature and Water Vapor Concentration Measurement in HYPULSE

    NASA Technical Reports Server (NTRS)

    Tsai, C. Y.

    1998-01-01

    A three beam water vapor sensor system has been modified to provide for near simultaneous temperature measurement. The system employs a tunable diode laser to scan spectral line of water vapor. The application to measurements in a scramjet combustor environment of a shock tunnel facility is discussed. This report presents and discusses die initial calibration of the measurement system.

  9. Effect of duct shape, Mach number, and lining construction on measured suppressor attenuation and comparison with theory

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Krejsa, E. A.; Coats, J. W.

    1972-01-01

    Noise attenuation was measured for several types of cylindrical suppressors that use a duct lining composed of honeycomb cells covered with a perforated plate. The experimental technique used gave attenuation data that were repeatable and free of noise floors and other sources of error. The suppressor length, the effective acoustic diameter, suppressor shape and flow velocity were varied. The agreement among the attenuation data and two widely used analytical models was generally satisfactory. Changes were also made in the construction of the acoustic lining to measure their effect on attenuation. One of these produced a very broadband muffler.

  10. Study of semiconductor valence plasmon line shapes via electron energy-loss spectroscopy in the transmission electron microscope

    SciTech Connect

    Kundmann, M.K.

    1988-11-01

    Electron energy-loss spectra of the semiconductors Si, AlAs, GaAs, InAs, InP, and Ge are examined in detail in the regime of outer-shell and plasmon energy losses (0--100eV). Particular emphasis is placed on modeling and analyzing the shapes of the bulk valence plasmon lines. A line shape model based on early work by Froehlich is derived and compared to single-scattering probability distributions extracted from the measured spectra. Model and data are found to be in excellent agreement, thus pointing the way to systematic characterization of the plasmon component of EELS spectra. The model is applied to three separate investigations. 82 refs.

  11. Organization of T-shaped facial amphiphiles at the air/water interface studied by infrared reflection absorption spectroscopy.

    PubMed

    Schwieger, Christian; Chen, Bin; Tschierske, Carsten; Kressler, Jörg; Blume, Alfred

    2012-10-11

    We studied the behavior of monolayers at the air/water interface of T-shaped facial amphiphiles which show liquid-crystalline mesophases in the bulk. The compounds are composed of a rigid p-terphenyl core (TP) with two terminal hydrophobic ether linked alkyl chains of equal length and one facial hydrophilic tri(ethylene oxide) chain with a carboxylic acid end group. Due to their amphiphilic nature they form stable Langmuir films at the air/water interface. Depending on the alkyl chain length they show markedly different compression isotherms. We used infrared reflection absorption spectroscopy (IRRAS) to study the changes in molecular organization of the TP films upon compression. We could retrieve information on layer thickness, alkyl chain crystallization, and the orientation of the TP cores within the films. Films of TPs with long (16 carbon atoms: TP 16/3) and short (10 carbon atoms: TP 10/3) alkyl chains were compared. Compression of TP 16/3 leads to crystallization of the terminal alkyl chains, whereas the alkyl chains of TP 10/3 stay fluid over the complete compression range. TP 10/3 shows an extended plateau in the compression isotherm which is due to a layering transition. The mechanism of this layering transition is discussed. Special attention was paid to the question of whether a so-called roll-over collapse occurs during compression. From the beginning to the end of the plateau, the layer thickness is increased from 15 to 38 Å and the orientation of the TP cores changes from parallel to the water surface to isotropic. We conclude that the plateau in the compression isotherm reflects the transition of a TP monolayer to a TP multilayer. The monolayer consists of a sublayer of well-organized TP cores underneath a sublayer of fluid alkyl chains whereas the multilayer consists of a well oriented bottom layer and a disordered top layer. Our findings do not support the model of a roll-over collapse. This study demonstrates how the IRRA band intensity of OH

  12. Measurement of the ozone absorption cross-section at the 253. 7 nm Mercury line

    SciTech Connect

    Mauersberger, K.; Barnes, J.; Hanson, D.; Morton, J.

    1986-07-01

    The absorption cross-section of ozone at 253.7 nm is frequently used as a standard for the entire UV wavelength range. The presently accepted value is 1.147 x 10/sup -17/ cm/sup 2/, known with an uncertainty of about 2%. The cross-section has been recently measured by simultaneously monitoring the ozone pressure, the impurities in the ozone gas, the gas temperature and the UV beam intensity. The cross-section at room temperature was found to be 1.137 x 10/sup -17/ cm/sup 2/, having an uncertainty of +- .7%. The improved accuracy will aid a number of ozone experiments including the i-italicn-italic s-italici-italict-italicu-italic photometers and Solar Backscatter Ultraviolet instruments.

  13. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere.

    PubMed

    Konopacky, Quinn M; Barman, Travis S; Macintosh, Bruce A; Marois, Christian

    2013-03-22

    Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging--spatially resolving the planet from its parent star--which enables high-resolution spectroscopy of self-luminous planets in jovian-like orbits. Here, we present a spectrum with numerous, well-resolved molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 astronomical units from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygen ratio that is greater than that of the host star, providing hints about the planet's formation.

  14. Asymptotic expansions of the kernel functions for line formation with continuous absorption

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.

    1991-01-01

    Asymptotic expressions are obtained for the kernel functions M2(tau, alpha, beta) and K2(tau, alpha, beta) appearing in the theory of line formation with complete redistribution over a Voigt profile with damping parameter a, in the presence of a source of continuous opacity parameterized by beta. For a greater than 0, each coefficient in the asymptotic series is expressed as the product of analytic functions of a and eta. For Doppler broadening, only the leading term can be evaluated analytically.

  15. The Hubble Space Telescope quasar absorption line key project. 6: Properties of the metal-rich systems

    NASA Technical Reports Server (NTRS)

    Bergeron, Jacqueline; Petitjean, Patrick; Sargent, W. L. W.; Bahcall, John N.; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Savage, Blair D.; Schneider, Donald P.

    1994-01-01

    We present an analysis of the properties of a sample of 18 metal-rich, low-redshift z(sub abs) much less than z(sub em) absorbers seen in low- and medium-resolution spectra obtained for the Quasar Absorption Line Key Project with the Hubble Space Telescope Faint Object Spectrograph (HST/FOS). For most of the C IV and Lyman-limit systems, observations in the optical wavelength range of the expected associated Mg II absorption are available. As at high redshift (z approximately 2), there are two subclasses of absorbers which are characterized by the presence or absence of MG II absorption. However, some low-redshift Mg II and Fe absorptions originate from regions optically thin to UV ionizing photons and thus, at low redshift, the low-ionization systems do not always trace high opacities, as is the case at high redshift. This implies that the mean ionization state of metal-rich, optically thin absorbing clouds falls with decreasing redshift, which is consistent with the hypothesis that the gas is photoionized by the metagalactic UV background radiation field. Two main constraints are derived from the analysis of the Lyman-limit sample, assuming photoionization models are valid. First, a low opacity to ionizing photons (tau(sub LL) approximately less than 1), as observed for several Mg II-Fe II systems at z approximately 0.5, sets limits on the ionization level of hydrogen, thus on the total hydrogen column density and the heavy element abundances, (Z/H) approximately -0.5 to -0.3. Second, the dimensions of individual Mg II clouds are smaller than at high redshift by a factor 3-10. At z approximately greater than 0.6, the O VI absorption doublet is detected in four of the five z(sub abs) much less than z(sub em) systems for which the O VI wavelength range has been observed, whereas the associated N V doublet is detected in only two cases. This suggests that the presence of a high-ionization O VI phase is a general property of z approximately 0.6-1 absorption systems

  16. A Census of Intrinsic Narrow Absorption Lines in the Spectra of Quasars at z = 2-4

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael; Ganguly, Rajib; Tytler, David; Kirkman, David; Suzuki, Nao; Lubin, Dan

    2007-07-01

    We use Keck HIRES spectra of 37 optically bright quasars at z=2-4 to study narrow absorption lines that are intrinsic to the quasars (intrinsic NALs, produced in gas that is physically associated with the quasar central engine). We identify 150 NAL systems, which contain 124 C IV, 12 N V, and 50 Si IV doublets, of which 18 are associated systems (within 5000 km s-1 of the quasar redshift). We use partial coverage analysis to separate intrinsic NALs from NALs produced in cosmologically intervening structures. We find 39 candidate intrinsic systems (28 reliable determinations and 11 that are possibly intrinsic). We estimate that 10%-17% of C IV systems at blueshifts of 5000-70,000 km s-1 relative to quasars are intrinsic. At least 32% of quasars contain one or more intrinsic C IV NALs. Considering N V and Si IV doublets showing partial coverage as well, at least 50% of quasars host intrinsic NALs. This result constrains the solid angle subtended by the absorbers to the background source(s). We identify two families of intrinsic NAL systems, those with strong N V absorption and those with negligible absorption in N V but with partial coverage in the C IV doublet. We discuss the idea that these two families represent different regions or conditions in accretion disk winds. Of the 26 intrinsic C IV NAL systems, 13 have detectable low-ionization absorption lines at similar velocities, suggesting that these are two-phase structures in the wind rather than absorbers in the host galaxy. We also compare possible models for quasar outflows, including radiatively accelerated disk-driven winds, magnetocentrifugally accelerated winds, and pressure-driven winds, and we discuss ways of distinguishing between these models observationally. The data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration

  17. The effect of line tension on the shape of liquid menisci near stripwise heterogeneous walls.

    PubMed

    Hoorfar, M; Amirfazli, A; Gaydos, J A; Neumann, A W

    2005-06-30

    Most attempts for the measurement of line tension in solid-liquid-vapor systems are based on the drop size dependence of contact angles of sessile drops on smooth, homogeneous solid surfaces. Despite being a well-defined thermodynamic quantity, there are still significant discrepancies in both the magnitude and sign of line tension reported in different experimental arrangements and theoretical studies. In order to broaden the scope of experimental studies of line tension, a non-axisymmetric system, i.e., a stripwise heterogeneous wall arrangement, was considered. A numerical scheme has been developed to solve simultaneously both the modified Young equation and the Laplace equation of capillarity for such a stripwise wall and to generate a series of theoretical contact lines for non-zero line tension values. These theoretical curves can be compared to experimental profiles to determine line tension. The preliminary comparison of these curves with an experimental curve suggests that the line tension value is on the order of 10(-6) (J/m), in agreement with values obtained from drop size dependence of contact angle studies. The comparison also shows that line tension in such systems cannot be as low as 10(-10) (J/m), i.e., the order of the magnitude obtained from some theoretical studies and experimental approaches.

  18. Study of the Many Fluorescent Lines and the Absorption Variability in GX 301-2 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Fuerst, F.; Suchy, S.; Kreykenbohm, I.; Barragan, L.; Wilms, J.; Pottschmidt, K.; Caballero, I.; Kretschmar, P.; Ferrigno, C.; Rothschild, R. E.

    2011-01-01

    We present an in-depth study of the High Mass X-ray Binary (HMXB) GX 301-2 during its pre-periastron flare using data from the XMM-Newton satellite. The energy spectrum shows a power law continuum absorbed by a large equivalent hydrogen column on the order of 10(exp 24)/ sq cm and a prominent Fe K-alpha fluorescent emission line. Besides the Fe K-alpha line, evidence for Fe K-Beta, Ni K-alpha, Ni K-Beta, S K-alpha, Ar K-alpha, Ca K-alpha, and Cr K-alpha fluorescent lines is found. The observed line strengths are consistent with fluorescence in a cold absorber. This is the first time that Cr K-alpha is seen in emission in the X-ray spectrum of a HMXB. In addition to the modulation by the strong pulse period of approx 685 sec the source is highly variable and shows different states of activity. We perform time-resolved as well as pulse-to-pulse resolved spectroscopy to investigate differences between these states of activity. We find that fluorescent line fluxes are strongly variable and generally follow the overall flux. The N-H value is variable by a factor of 2, but not correlated to continuum normalization. We find an interval of low flux in the light curve in which the pulsations cease almost completely, without any indication of an increasing absorption column. We investigate this dip in detail and argue that it is most likely that during the dip the accretion ceased and the afterglow of the fluorescent iron accounted for the main portion of the X-ray flux. A similar dip was found earlier in RXTE data, and we compare our findings to these results.

  19. Intersstellar absorption lines between 2000 and 3000 A in nearby stars observed with BUSS. [Balloon Borne Ultraviolet Spectrophotometer

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Lenhart, H.; Van Der Hucht, K. A.; Kamperman, T. M.; Kondo, Y.

    1986-01-01

    Spectra obtained between 2000 and 3000 A with the Balloon Borne Ultraviolet Spectrophotometer (BUSS) payload were examined for interstellar absorption lines. In bright stars, with spectral types between O9V and F5V, such lines were measured of Mg I, Mg II, Cr II, Mn II, Fe II and Zn II, with Cr II and Zn II data of especially high quality. Column densities were derived and interstellar abundances were determined for the above species. It was found that metal depletion increases with increasing E(B-V); Fe was most affected and Zn showed a small depletion for E(B-V) greater than 0.3 towards Sco-Oph. The metal column densities, derived for Alpha-And, Kappa-Dra, Alpha-Com, Alpha-Aql, and 29 Cyg were used to infer N(H I). It was shown that the ratio of Mg I to Na I is instrumental in determining the ionization structure along each line of sight. The spectra of Aql stars confirms the presence of large gas densities near Alpha-Oph. Moreover, data indicated that the Rho-Oph N(H I) value needs to be altered to 35 x 10 to the 20th/sq cm, based on observed ion ratios and analysis of the Copernicus L-alpha profile.

  20. Atmospheric Profiling Combining the Features of GPS ro & Mls: Satellite to Satellite Occultations Near Water & Ozone Absorption Lines

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Ward, D.; Otarola, A. C.; McGhee, J.; Reed, H.; Erickson, D.

    2015-12-01

    Assessing climate models & their predictions requires observations that determine the state of the real climate system precisely and unambiguously, independently from models. For this purpose, we have been developing a new orbiting remote sensing system called the Active Temperature, Ozone & Moisture Microwave Spectrometer (ATOMMS) which is a cross between GPS RO and the Microwave Limb Sounder. ATOMMS actively probes water vapor, ozone & other absorption lines at cm & mm wavelengths in a satellite to satellite occultation geometry to simultaneously profile temperature, pressure, water vapor and ozone as well as other important constituents. Individual profiles of water vapor, temperature & pressure heights will extend from near the surface into the mesosphere with ~1%, 0.4K and 10 m precision respectively and still better accuracy, with 100 m vertical resolution. Ozone profiles will extend upward from the upper troposphere. Line of sight wind profiles will extend upwards from the mid-stratosphere. ATOMMS is a doubly differential absorption system which eliminates drift and both sees clouds and sees thru them, to deliver performance in clouds within a factor of 2 of the performance in clear skies. This all-weather sampling combined with insensitivity to surface emissivity avoids sampling biases that limit most existing satellite records. ATOMMS will profile slant liquid water in clouds & rain and as well as turbulence via scintillations ("twinkling of a star"). Using prototype ATOMMS instrumentation that we developed with funding from NSF, several ATOMMS ground field campaigns precisely measured water vapor, cloud amount, rainfall, turbulence and absorption line spectroscopy. ATOMMS's dynamic range was demonstrated as water vapor was derived to 1% precision in optical depths up to 17. We are developing high altitude aircraft to aircraft instrumentation to further demonstrate ATOMMS performance, refine spectroscopy & support future field campaigns. Our vision is a

  1. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering

    PubMed Central

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-01-01

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces. PMID:26891773

  2. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-02-01

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces.

  3. Limits on variations in fundamental constants from 21-cm and ultraviolet Quasar absorption lines.

    PubMed

    Tzanavaris, P; Webb, J K; Murphy, M T; Flambaum, V V; Curran, S J

    2005-07-22

    Quasar absorption spectra at 21-cm and UV rest wavelengths are used to estimate the time variation of x [triple-bond] alpha(2)g(p)mu, where alpha is the fine structure constant, g(p) the proton g factor, and m(e)/m(p) [triple-bond] mu the electron/proton mass ratio. Over a redshift range 0.24 < or = zeta(abs) < or = 2.04, (Deltax/x)(weighted)(total) = (1.17 +/- 1.01) x 10(-5). A linear fit gives x/x = (-1.43 +/- 1.27) x 10(-15) yr(-1). Two previous results on varying alpha yield the strong limits Deltamu/mu = (2.31 +/- 1.03) x 10(-5) and Deltamu/mu=(1.29 +/- 1.01) x10(-5). Our sample, 8 x larger than any previous, provides the first direct estimate of the intrinsic 21-cm and UV velocity differences 6 km s(-1).

  4. In-Line Capacitance Sensor for Real-Time Water Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Perusich, Stephen A.

    2010-01-01

    A capacitance/dielectric sensor was designed, constructed, and used to measure in real time the in-situ water concentration in a desiccant water bed. Measurements were carried out with two experimental setups: (1) passing nitrogen through a humidity generator and allowing the gas stream to become saturated at a measured temperature and pressure, and (2) injecting water via a syringe pump into a nitrogen stream. Both water vapor generating devices were attached to a downstream vertically-mounted water capture bed filled with 19.5 g of Moisture Gone desiccant. The sensor consisted of two electrodes: (1) a 1/8" dia stainless steel rod placed in the middle of the bed and (2) the outer shell of the stainless steel bed concentric with the rod. All phases of the water capture process (background, heating, absorption, desorption, and cooling) were monitored with capacitance. The measured capacitance was found to vary linearly with the water content in the bed at frequencies above 100 kHz indicating dipolar motion dominated the signal; below this frequency, ionic motion caused nonlinearities in the water concentration/capacitance relationship. The desiccant exhibited a dielectric relaxation whose activation energy was lowered upon addition of water indicating either a less hindered rotational motion or crystal reorientation.

  5. X-Ray Weak Broad-Line Quasars: Absorption or Intrinsic X-Ray Weakness

    NASA Technical Reports Server (NTRS)

    Risaliti, Guido; Mushotzky, Richard F. (Technical Monitor)

    2004-01-01

    XMM observations of X-ray weak quasars have been performed during 2003. The data for all but the last observation are now available (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed these data, and obtained interesting preliminary scientific results. Out of the eight sources, 4 are confirmed to be extrimely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confirmed to be highly variable both in flux (by factors 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects, an article is in preparation. Preliminary results have been presented at an international workshop on AGN surveys in December 2003, in Cozumel (Mexico). In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations, and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations will be performed in early 2004, and will complement the XMM data, in order to understand whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circumnuclear material.

  6. Excitation ahead of shock fronts in krypton measured by single line laser absorption

    NASA Astrophysics Data System (ADS)

    Boetticher, W.; Kilpin, D.

    1984-12-01

    The absorption of single-mode radiation (from a dye laser tuned to 587.25 and 557.18 nm) by Kr in front of shock waves with Mach numbers 12-21 in a 50-mm-diameter 4.4-m-long free-position driver shock tube at preshock pressures 0.7-2.7 kPa is measured to determine the number densities of the metastable 5s(1 1/2)2 and 5s(1 1/2)1 precursor states (1s5 and 1s4 in Paschen notation, respectively). The measurement technique and calculations follow those of Ernst (1982). The results are presented in tables and graphs and characterized in comparison with previous findings. The time constant of the exponential rise of the precursor is found to be about 8 microsec, and the concentration of 1s5 + 1s4 for Mach 20 is calculated as about 10 ppm, in agreement (to within a factor of 5) with model predictions for Ar and Xe.

  7. Resonator spectrometer for precise broadband investigations of atmospheric absorption in discrete lines and water vapor related continuum in millimeter wave range.

    PubMed

    Tretyakov, M Yu; Krupnov, A F; Koshelev, M A; Makarov, D S; Serov, E A; Parshin, V V

    2009-09-01

    The instrument and methods for measuring spectral parameters of discrete atmospheric lines and water-related continuum absorption in the millimeter wave range are described. The instrument is based on measurements of the Fabry-Pérot resonance response width using fast phase continuous scanning of the frequency-synthesized radiation. The instrument allows measurement of gas absorptions at the cavity eigenfrequencies ranging from 45 to 370 GHz with the highest to date absorption variation sensitivity of 4x10(-9) cm(-1). The use of a module of two rigidly bounded maximum identical resonators differing in length by exactly a factor of two allows accurate separation of the studied gas absorption and spectrometer baseline, in particular, the absorption by water adsorbed on the resonator elements. The module is placed in a chamber with temperature controlled between -30 and +60 degrees C, which permits investigation of temperature dependence of absorption. It is shown that systematic measurement error of discrete atmospheric line parameters does not exceed the statistical one and the achieved accuracy satisfies modern demands for the atmospheric remote sensing data retrieval. Potential systematic error arising from the neglect of the effect of water adsorption on mirror surfaces is discussed. Examples of studies of water and oxygen spectral line parameters as well as continuum absorption in wet nitrogen are given.

  8. A Bayesian Method For Finding Galaxies That Cause Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Shoemaker, Emileigh Suzanne; Laubner, David Andrew; Scott, Jennifer E.

    2016-01-01

    We present a study of candidate absorber-galaxy pairs for 39 low redshift quasar sightlines (0.06 < z < 0.85) using a statistical approach to match absorbers with galaxies near the quasar lines of sight. Of the 75 quasars observed with HST/Cosmic Origins Spectrograph (COS) and archived on the Mikulski Archive for Space Telescopes (MAST), 39 overlap with the footprint of the Sloan Digital Sky Survey (SDSS). We downloaded the COS linelists for these quasar spectra from MAST and queried the SDSS DR12 database for photometric data on all galaxies within 1 Mpc of each of these quasar lines of sight. We calculated photometric redshifts for all the SDSS galaxies using the Bayesian Photometric Redshift code. We used all these absorber and galaxy data as input into an absorber-galaxy matching code which also employs a Bayesian scheme, along with known statistics of the intergalactic medium and circumgalactic media of galaxies, for finding the most probable galaxy match for each absorber. We compare our candidate absorber-galaxy matches to existing studies in the literature and explore trends in the absorber and galaxy properties among the matched and non-matched populations. This method of matching absorbers and galaxies can be used to find targets for follow up spectroscopic studies.

  9. Ca II AND Na I QUASAR ABSORPTION-LINE SYSTEMS IN AN EMISSION-SELECTED SAMPLE OF SDSS DR7 GALAXY/QUASAR PROJECTIONS. I. SAMPLE SELECTION

    SciTech Connect

    Cherinka, B.; Schulte-Ladbeck, R. E.

    2011-10-15

    The aim of this project is to identify low-redshift host galaxies of quasar absorption-line systems by selecting galaxies that are seen in projection onto quasar sightlines. To this end, we use the Seventh Data Release of the Sloan Digital Sky Survey to construct a parent sample of 97,489 galaxy/quasar projections at impact parameters of up to 100 kpc to the foreground galaxy. We then search the quasar spectra for absorption-line systems of Ca II and Na I within {+-}500 km s{sup -1} of the galaxy's velocity. This yields 92 Ca II and 16 Na I absorption systems. We find that most of the Ca II and Na I systems are sightlines through the Galactic disk, through high-velocity cloud complexes in our halo, or Virgo Cluster sightlines. Placing constraints on the absorption line rest equivalent width significance ({>=}3.0{sigma}), the local standard of rest velocity along the sightline ({>=}345 km s{sup -1}), and the ratio of the impact parameter to the galaxy optical radius ({<=}5.0), we identify four absorption-line systems that are associated with low-redshift galaxies at high confidence, consisting of two Ca II systems (one of which also shows Na I) and two Na I systems. These four systems arise in blue, {approx}L*{sub r} galaxies. Tables of the 108 absorption systems are provided to facilitate future follow-up.

  10. A far-wing line shape theory which satisfies the detailed balance principle

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Hartmann, J.-M.; Boulet, C.

    1995-01-01

    A far-wing theory in which the validity of the detailed balance principle is maintained in each step of the derivation is presented. The role of the total density matrix including the initial correlations is analyzed rigorously. By factoring out the rapidly varying terms in the complex-time development operator in the interaction representation, better approximate expressions can be obtained. As a result, the spectral density can be expressed in terms of the line-coupling functions in which two coupled lines are arranged symmetrically and whose frequency detunings are omega - 1/2(omega(sub ji) + omega (sub j'i'). Using the approximate values omega - omega(sub ji) results in expressions that do not satisfy the detailed balance principle. However, this principle remains satisfied for the symmetrized spectral density in which not only the coupled lines are arranged symmetrically, but also the initial and final states belonging to the same lines are arranged symmetrically as well.

  11. Optical frequency standard by using a 1560 nm diode laser locked to saturated absorption lines of rubidium vapor

    SciTech Connect

    Masuda, Shin; Seki, Atsushi; Niki, Shoji

    2007-07-20

    A robust, compact, highly accurate rubidium optical frequency standard module was developed to overcome the delicate performance of conventional frequency stabilized lasers. A frequency doubled1560 nm distributed feedback diode laser locked to a rubidium D2 saturated absorption line without using an optical amplifier was demonstrated, and dithering-free optical output was obtained. In addition, the sensitivity of the developed optical frequency standard to magnetic fields was investigated. We confirmed that the influence of the magnetic fields on the optical frequency standard can be almost negligible when using appropriate magnetic-shield films. As a result, the magnetic-field-insensitive optical frequency standard, which can be embedded in optical systems,exhibiting uncertainty less than at least 100 kHz, was successfully realized for the first time to the best of our knowledge.

  12. Dramatically Variable C IV Mini-Broad Absorption Line System in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, T.; Eracleous, M.; Charlton, J. C.; Chartas, G.; Kashikawa, N.

    2008-10-01

    We observed the quasar HS 1603+3820 (z_{em} = 2.542, first discovered by Dobrzycki et al. 1996) six times over an interval of 4.2 yrs (1.2 yrs in the quasar rest frame) using the High Dispersion Spectrograph on Subaru telescope. The purpose was to study the mini-broad absorption line (mini-BAL; FWHM ˜ 1,000 km s^{-1}) that is blue-shifted from the quasar by ˜ 9,500 km s^{-1}. We found significant time variability, which supported the physical association of the mini-BAL gas with an outflow from the quasar. We have narrowed down the cause of the variability to two possible scenarios. We also used archival Chandra x-ray data to study the x-ray properties of this quasar. The results constrain the location of the absorbing gas relative to the overall outflow.

  13. Detection of copper in water using on-line plasma-excited atomic absorption spectroscopy (AAS).

    PubMed

    Porento, Mika; Sutinen, Veijo; Julku, Timo; Oikari, Risto

    2011-06-01

    A measurement method and apparatus was developed to measure continuously toxic metal compounds in industrial water samples. The method was demonstrated by using copper as a sample metal. Water was injected into the sample line and subsequently into a nitrogen plasma jet, in which the samples comprising the metal compound dissolved in water were decomposed. The transmitted monochromatic light was detected and the absorbance caused by copper atoms was measured. The absorbance and metal concentration were used to calculate sensitivity and detection limits for the studied metal. The sensitivity, limit of detection, and quantification for copper were 0.45 ± 0.02, 0.25 ± 0.01, and 0.85 ± 0.04 ppm, respectively.

  14. A Fourth H I 21 cm Absorption System in the Sight Line of MG J0414+0534: A Record for Intervening Absorbers

    NASA Astrophysics Data System (ADS)

    Tanna, A.; Curran, S. J.; Whiting, M. T.; Webb, J. K.; Bignell, C.

    2013-08-01

    We report the detection of a strong H I 21 cm absorption system at z = 0.5344, as well as a candidate system at z = 0.3389, in the sight line toward the z = 2.64 quasar MG J0414+0534. This, in addition to the absorption at the host redshift and the other two intervening absorbers, takes the total to four (possibly five). The previous maximum number of 21 cm absorbers detected along a single sight line is two and so we suspect that this number of gas-rich absorbers is in some way related to the very red color of the background source. Despite this, no molecular gas (through OH absorption) has yet been detected at any of the 21 cm redshifts, although, from the population of 21 cm absorbers as a whole, there is evidence for a weak correlation between the atomic line strength and the optical-near-infrared color. In either case, the fact that so many gas-rich galaxies (likely to be damped Lyα absorption systems) have been found along a single sight line toward a highly obscured source may have far-reaching implications for the population of faint galaxies not detected in optical surveys, a possibility which could be addressed through future wide-field absorption line surveys with the Square Kilometer Array.

  15. Using ISM abundances in the SMC to Correct for Element Depletions by Dust in QSO Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Jenkins, Edward

    2014-10-01

    The availability of 10-m class telescopes with high resolution echelle spectrographs has enabled astronomers to measure accurately the gas-phase abundances of various elements in QSO absorption line systems at high redshifts. These systems offer insights on the chemical evolution of galaxies (and their nearby environments) in their early stages of development. However, in order to obtain total abundances the observations need to be corrected for the depletions caused by the formation of dust, and traditionally people have done so by using the depletion patterns seen in our own Galaxy. There is now evidence that indicates that such patterns in low-metallicity systems differ from those of our Galaxy and thus the corrections may be misleading. The aim of our proposed HST observations is to measure the gas-phase abundances toward stars in the Small Magellanic Cloud, which is a low-metallicity dwarf galaxy where there exist good measurements of stellar comparison abundances. We plan to record ISM absorption features from STIS medium-resolution echelle spectra for 14 stars in the SMC that are known to have varying levels of depletion, so that we can derive the gas-phase abundance patterns of the elements Ni, Fe, Cr, Mn, Si, Mg, Ge, Kr, Zn, and perhaps P.

  16. Atmospheric profiling via satellite to satellite occultations near water and ozone absorption lines for weather and climate

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Ward, D.; Otarola, A. C.; McGhee, J.; Stovern, M.; Sammler, K.; Reed, H.; Erickson, D.; McCormick, C.; Griggs, E.

    2016-05-01

    Significantly reducing weather and climate prediction uncertainty requires global observations with substantially higher information content than present observations provide. While GPS occultations have provided a major advance, GPS observations of the atmosphere are limited by wavelengths chosen specifically to minimize interaction with the atmosphere. Significantly more information can be obtained via satellite to satellite occultations made at wavelengths chosen specifically to characterize the atmosphere. Here we describe such a system that will probe cm- and mmwavelength water vapor absorption lines called the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS). Profiling both the speed and absorption of light enables ATOMMS to profile temperature, pressure and humidity simultaneously, which GPS occultations cannot do, as well as profile clouds and turbulence. We summarize the ATOMMS concept and its theoretical performance. We describe field measurements made with a prototype ATOMMS instrument and several important capabilities demonstrated with those ground based measurements including retrieving temporal variations in path-averaged water vapor to 1%, in clear, cloudy and rainy conditions, up to optical depths of 17, remotely sensing turbulence and determining rain rates. We conclude with a vision of a future ATOMMS low Earth orbiting satellite constellation designed to take advantage of synergies between observational needs for weather and climate, ATOMMS unprecedented orbital remote sensing capabilities and recent cubesat technological innovations that enable a constellation of dozens of very small spacecraft to achieve many critical, but as yet unfulfilled, monitoring and forecasting needs.

  17. XMM-NEWTON OBSERVATIONS OF THE RADIO-LOUD BROAD ABSORPTION LINE QUASAR FBQS J131213.5+231958

    SciTech Connect

    Mathur, Smita; Dai Xinyu E-mail: dai@nhn.ou.ed

    2010-12-15

    We present XMM-Newton observations of the broad absorption line (BAL) quasar FBQS J131213.5+231958. The X-ray spectrum of the source can be well described by an absorbed power-law model in which the absorber is either ionized or only partially covers the continuum source. This can explain the apparent lack of absorption observed in the Chandra spectrum with low signal-to-noise ratio. While the power-law slope of the spectrum is similar to that of non-BAL radio-loud quasars, the Eddington luminosity ratio is likely to be significantly higher than the mean. This shows that in high-mass black holes (BHs), high Eddington accretion may not result in as steep of a spectrum as in lower-mass BHs. This provides important constraints for accretion disk models. It also provides support to the idea that BAL quasars, at least their radio-loud subclass, represent an early evolutionary stage of quasars.

  18. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements.

    PubMed

    Koch, Grady J; Beyon, Jeffrey Y; Gibert, Fabien; Barnes, Bruce W; Ismail, Syed; Petros, Mulugeta; Petzar, Paul J; Yu, Jirong; Modlin, Edward A; Davis, Kenneth J; Singh, Upendra N

    2008-03-01

    A 2 microm wavelength, 90 mJ, 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 2.9 GHz from the center of a CO(2) absorption line. Once detuned from the line center the laser wavelength is actively locked to keep the wavelength within 1.9 MHz standard deviation about the setpoint. This wavelength control allows optimization of the optical depth for a differential absorption lidar (DIAL) measuring atmospheric CO(2) concentrations. The laser transmitter has been coupled with a coherent heterodyne receiver for measurements of CO(2) concentration using aerosol backscatter; wind and aerosols are also measured with the same lidar and provide useful additional information on atmospheric structure. Range-resolved CO(2) measurements were made with <2.4% standard deviation using 500 m range bins and 6.7 min? (1000 pulse pairs) integration time. Measurement of a horizontal column showed a precision of the CO(2) concentration to <0.7% standard deviation using a 30 min? (4500 pulse pairs) integration time, and comparison with a collocated in situ sensor showed the DIAL to measure the same trend of a diurnal variation and to detect shorter time scale CO(2) perturbations. For vertical column measurements the lidar was setup at the WLEF tall tower site in Wisconsin to provide meteorological profiles and to compare the DIAL measurements with the in situ sensors distributed on the tower up to 396 m height. Assuming the DIAL column measurement extending from 153 m altitude to 1353 m altitude should agree with the tower in situ sensor at 396 m altitude, there was a 7.9 ppm rms difference between the DIAL and the in situ sensor using a 30 min? rolling average on the DIAL measurement.

  19. AN STIS ATLAS OF Ca II TRIPLET ABSORPTION LINE KINEMATICS IN GALACTIC NUCLEI

    SciTech Connect

    Batcheldor, D.; Mandalou, J.; Axon, D.; Valluri, M.; Merritt, D.

    2013-09-15

    The relations observed between supermassive black holes and their host galaxies suggest a fundamental link in the processes that cause these two objects to evolve. A more comprehensive understanding of these relations could be gained by increasing the number of supermassive black hole mass (M{sub .}) measurements. This can be achieved, in part, by continuing to model the stellar dynamics at the centers of galactic bulges using data of the highest possible spatial resolution. Consequently, we present here an atlas of galaxies in the Space Telescope Imaging Spectrograph (STIS) data archive that may have spectra suitable for new M{sub .} estimates. Archived STIS G750M data for all non-barred galactic bulges are co-aligned and combined, where appropriate, and the radial signal-to-noise ratios calculated. The line-of-sight velocity distributions from the Ca II triplet are then determined using a maximum penalized likelihood method. We find 19 out of 42 galaxies may provide useful new M{sub .} estimates since they are found to have data that is comparable in quality with data that has been used in the past to estimate M{sub .}. However, we find no relation between the signal-to-noise ratio in the previously analyzed spectra and the uncertainties of the black hole masses derived from the spectra. We also find that there is a very limited number of appropriately observed stellar templates in the archive from which to estimate the effects of template mismatching.

  20. Diurnal and Interannual Variation in Absorption Lines of Isotopic Carbon Dioxide in Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Kostiuk, Theodor; Hewagama, Tilak; Kolasinski, John R.; Henning, Wade G.

    2015-11-01

    Groundbased observations of Mars in 2003, 2007, 2012, and 2014 have detected transitions of carbon dioxide containing the stable minor isotopes of oxygen and carbon as well as the primary isotopes, using the ultrahigh resolution spectrometer HIPWAC at the NASA Infrared Telescope Facility. The most well characterized minor isotope is O-18, due to strong lines and observational opportunities. The average estimated O-18/O-16 isotope ratio is roughly consistent with other in situ and remote spectroscopic measurements but demonstrates an additional feature in that the retrieved ratio appears to increase with greater ground surface temperature. These conclusions primarily come from analyzing a subset of the 2007 data. Additional observations have been acquired over a broad range of local time and meridional position to evaluate variability with respect to ground surface temperature. These additional observations include one run of measurements with C-13. These observations can be compared to local in situ measurements by the Curiosity rover to narrow the uncertainty in absolute isotope ratio and extend isotopic measurements to other regions and seasons on Mars. The relative abundance of carbon dioxide heavy isotopes on Mars is central to estimating the primordial atmospheric inventory on Mars. Preferential freeze-distillation of heavy isotopes means that any measurement of the isotope ratio can be only a lower limit on heavy isotope enrichment due to past and current loss to space.

  1. NMR of platinum catalysts: Double NMR of chemisorbed carbon monoxide and a model for the platinum NMR line shape

    NASA Astrophysics Data System (ADS)

    Makowka, Claus D.; Slichter, Charles P.; Sinfelt, J. H.

    1985-05-01

    The authors report observation of the NMR line of 195Pt atoms in the surface layer of small platinum-metal particles on which 13CO has been chemisorbed. The surface 195Pt atoms are resolved from those of 195Pt atoms deeper in the particle by spin-echo double resonance between 195Pt and 13C. The particles, supported on η-alumina, had dispersions (fraction of the atoms that are on the surface) of 26% and 76%. Comparison with 195Pt resonance in Pt carbonyls suggests that the magnitude of the Knight shift of the surface Pt is less than 0.2%. Analysis of the 195Pt spin-lattice relaxation indicates that the small surface Knight shift results from cancellation of 6s and 5d core-polarization contributions as was found theoretically by Weinert and Freeman for clean Pt surfaces. The 13-195Pt indirect spin coupling is found to be very similar to those in diamagnetic platinum carbonyl molecules. The results show that CO bonds via the C atom and verify that concepts from studies of large single crystals are valid for the small particles. The key features of the 195Pt line shapes in these small platinum particles are described by a simple phenomenological model of the spatial Knight-shift variation inside these particles. The model successfully describes the major structure seen in the NMR line shapes of samples with dispersions ranging from 5% to 76%.

  2. Improved 20- to 32-GHz atmospheric absorption model

    NASA Astrophysics Data System (ADS)

    Cruz Pol, Sandra L.; Ruf, Christopher S.; Keihm, Stephen J.

    1998-09-01

    An improved model for the absorption of the atmosphere near the 22-GHz water vapor line is presented. The Van Vleck-Weisskopf line shape is used with a simple parameterized version of the model from Liebe et al. [1993] for the water vapor absorption spectra and a scaling of the model from Rosenkranz [1993] for the 20- to 32-GHz oxygen absorption. Radiometric brightness temperature measurements from two sites of contrasting climatological properties, San Diego, California, and West Palm Beach, Florida, were used as ground truth for comparison with in situ radiosonde-derived brightness temperatures under clear-sky conditions. Estimation of the new model's four parameters, related to water vapor line strength, line width and continuum absorption, and far-wing oxygen absorption, was performed using the Newton-Raphson inversion method. Improvements to the water vapor line strength and line width parameters are found to be statistically significant. The accuracy of the new absorption model is estimated to be 3% between 20 and 24 GHz, degrading to 8% near 32 GHz. In addition, the Hill line shape asymmetry ratio was evaluated in several currently used models to show the agreement of the data with Van Vleck-Weisskopf based models and to rule out water vapor absorption models near 22 GHz given by Waters [1976] and Ulaby et al. [1981], which are based on the Gross line shape.

  3. An STIS Atlas of Ca II Triplet Absorption Line Kinematics in Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Batcheldor, D.; Axon, D.; Valluri, M.; Mandalou, J.; Merritt, D.

    2013-09-01

    The relations observed between supermassive black holes and their host galaxies suggest a fundamental link in the processes that cause these two objects to evolve. A more comprehensive understanding of these relations could be gained by increasing the number of supermassive black hole mass (M •) measurements. This can be achieved, in part, by continuing to model the stellar dynamics at the centers of galactic bulges using data of the highest possible spatial resolution. Consequently, we present here an atlas of galaxies in the Space Telescope Imaging Spectrograph (STIS) data archive that may have spectra suitable for new M • estimates. Archived STIS G750M data for all non-barred galactic bulges are co-aligned and combined, where appropriate, and the radial signal-to-noise ratios calculated. The line-of-sight velocity distributions from the Ca II triplet are then determined using a maximum penalized likelihood method. We find 19 out of 42 galaxies may provide useful new M • estimates since they are found to have data that is comparable in quality with data that has been used in the past to estimate M •. However, we find no relation between the signal-to-noise ratio in the previously analyzed spectra and the uncertainties of the black hole masses derived from the spectra. We also find that there is a very limited number of appropriately observed stellar templates in the archive from which to estimate the effects of template mismatching. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  4. X-RAYS FROM A RADIO-LOUD COMPACT BROAD ABSORPTION LINE QUASAR 1045+352 AND THE NATURE OF OUTFLOWS IN RADIO-LOUD BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Kunert-Bajraszewska, Magdalena; Katarzynski, Krzysztof; Siemiginowska, Aneta; Janiuk, Agnieszka

    2009-11-10

    We present new results on X-ray properties of radio-loud broad absorption line (BAL) quasars and focus on broadband spectral properties of a high-ionization BAL (HiBAL) compact steep spectrum (CSS) radio-loud quasar 1045+352. This HiBAL quasar has a very complex radio morphology indicating either strong interactions between a radio jet and the surrounding interstellar medium or a possible re-start of the jet activity. We detected 1045+352 quasar in a short 5 ksec Chandra ACIS-S observation. We applied theoretical models to explain spectral energy distribution of 1045+352 and argue that non-thermal, inverse-Compton (IC) emission from the innermost parts of the radio jet can account for a large fraction of the observed X-ray emission. In our analysis, we also consider a scenario in which the observed X-ray emission from radio-loud BAL quasars can be a sum of IC jet X-ray emission and optically thin corona X-ray emission. We compiled a sample of radio-loud BAL quasars that were observed in X-rays to date and report no correlation between their X-ray and radio luminosity. However, the radio-loud BAL quasars show a large range of X-ray luminosities and absorption columns. This is consistent with the results obtained earlier for radio-quiet BAL quasars and may indicate an orientation effect in BAL quasars or more complex dependence between X-ray emission, radio emission, and an orientation based on the radio morphology.

  5. X-Ray Line-Shape Diagnostics and Novel Stigmatic Imaging Schemes For the National Ignition Facility

    SciTech Connect

    M. Bitter,, K.W. Hill, N.A. Pablant, L.F. Delgado-Aparicio, P. Beiersdorfer, E. Wang, and M. Sanchez del Rio

    2011-08-15

    In response to a recent solicitation from the US Department of Energy we proposed the development of a new x-ray line-shape diagnostic and novel stigmatic imaging schemes for the National Ignition Facility (NIF). These diagnostics are based on the imaging properties of spherically bent crystals, explained in Fig. 1, which have already been successfully applied to the diagnosis of extended tokamak plasmas for measurements of the ion-temperature and toroidal flow-velocity profiles [United States Patent: US 6, 259, 763 B1] and refs. [1, 2].

  6. Resonances in photoabsorption: Predissociation line shapes in the 3pπD{sup 1}Π{sup +}{sub u} ← Χ{sup 1}Σ{sub g}{sup +} system in H{sub 2}

    SciTech Connect

    Mezei, J. Zs.; Schneider, I. F.; Glass-Maujean, M.; Jungen, Ch.

    2014-08-14

    The predissociation of the 3pπD{sup 1}Π{sub u}{sup +},v≥3,N=1, N = 2, and N = 3 levels of diatomic hydrogen is calculated by ab initio multichannel quantum defect theory combined with a R-matrix type approach that accounts for interfering predissociation and autoionization. The theory yields absorption line widths and shapes that are in good agreement with those observed in the high-resolution synchrotron vacuum-ultraviolet absorption spectra obtained by Dickenson et al. [J. Chem. Phys. 133, 144317 (2010)] at the DESIRS beamline of the SOLEIL synchrotron. The theory predicts further that many of the D state resonances with v ⩾ 6 exhibit a complex fine structure which cannot be modeled by the Fano profile formula and which has not yet been observed experimentally.

  7. On the origin of the Z-shaped narrow-line region in the Seyfert galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain; Tully, R. B.; Bland-Hawthorn, Jonathan

    1993-01-01

    A kinematic study has been carried out of the line-emitting gas in the Seyfert galaxy NGC 3516. The existence of two curved filaments in the central 2.5 kpc of this galaxy, which give Z-shaped appearance to its NLR. A precessing twin-jet model in which the line-emitting material is entrained by a precessing radio jet and kept ionized by the nuclear ionization field can explain the kinematic data of the brightest emission rather well. If this model is valid, this would make NGC 3516 the least luminous known active galaxy with a precessing jet. An alternative scenario assumes that the curved inner filaments represent gas entrained by a radio jet which is deflected by ram pressure from the rotation interstellar medium of the galaxy.

  8. The 13CH4 absorption spectrum in the Icosad range (6600-7692 cm-1) at 80 K and 296 K: Empirical line lists and temperature dependence

    NASA Astrophysics Data System (ADS)

    Campargue, A.; Béguier, S.; Zbiri, Y.; Mondelain, D.; Kassi, S.; Karlovets, E. V.; Nikitin, A. V.; Rey, M.; Starikova, E. N.; Tyuterev, Vl. G.

    2016-08-01

    The 13CH4 absorption spectrum has been recorded at 296 K and 80 K in the Icosad range between 6600 and 7700 cm-1. The achieved noise equivalent absorption of the spectra recorded by differential absorption spectroscopy (DAS) is about αmin ≈ 1.5 × 10-7 cm-1. Two empirical line lists were constructed including 17,792 and 24,139 lines at 80 K and 296 K, respectively. For comparison, the HITRAN database provides only 1040 13CH4 lines in the region determined from methane spectra with natural isotopic abundance. Empirical values of the lower state energy level, Eemp, were systematically derived from the intensity ratios of the lines measured at 80 K and 296 K. Overall 10,792 Eemp values were determined providing accurate temperature dependence for most of the 13CH4 absorption in the region (93% and 82% at 80 K and 296 K, respectively). The quality of the derived empirical values of the lower state rotational quantum number, Jemp, is illustrated by their clear propensity to be close to an integer. A good agreement is achieved between our small Jemp values, with previous accurate determinations obtained by applying the 2T method to jet and 80 K spectra. The line lists at 296 K and 80 K which are provided as Supplementary material will be used for future rovibrational assignments based on accurate variational calculations.

  9. Satellite and Opacity Effects on Resonance Line Shapes Produced from Short-Pulse Laser Heated Foils

    SciTech Connect

    Shepherd, R; Audebert, P; Chen, H-K; Fournier, K B; Peyreusse, O; Moon, S; Lee, R W; Price, D; Klein, L; Gauthier, J C; Springer, P

    2002-12-03

    We measure the He-like, time-resolved emission from thin foils consisting of 250 {angstrom} of carbon-250 {angstrom} of aluminum and 500 {angstrom} aluminum illuminated with a 150 fs laser pulse at an intensity of 1 x 10{sup 19} W/cm{sup 2}. Dielectronic satellite contributions to the 1s{sup 2}-1s2p({sup 1}P), 1s{sup 2}-1s3p({sup 1}P), and 1s{sup 2}1s4p({sup 1}P) line intensities are modeled using the configuration averaged code AVERROES and is found to be significant for all three resonance lines. The contribution of opacity broadening is inferred from the data and found to be significant only in the 1s{sup 2}-1s2p({sup 1}P).

  10. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Yaqoob, T.; Braito, V.; Dadina, M.

    2010-10-01

    Context. Blue-shifted Fe K absorption lines have been detected in recent years between 7 and 10 keV in the X-ray spectra of several radio-quiet AGNs. The derived blue-shifted velocities of the lines can often reach mildly relativistic values, up to 0.2-0.4c. These findings are important because they suggest the presence of a previously unknown massive and highly ionized absorbing material outflowing from their nuclei, possibly connected with accretion disk winds/outflows. Aims: The scope of the present work is to statistically quantify the parameters and incidence of the blue-shifted Fe K absorption lines through a uniform analysis on a large sample of radio-quiet AGNs. This allows us to assess their global detection significance and to overcome any possible publication bias. Methods: We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. A simple uniform model composed by an absorbed power-law plus Gaussian emission and absorption lines provided a good fit for all the data sets. We derived the absorption lines parameters and calculated their detailed detection significance making use of the classical F-test and extensive Monte Carlo simulations. Results: We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies higher than 7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3 × 10-8, and their detection have been independently confirmed by a spectral analysis of the MOS data, with associated random probability <10-7. We identify the lines as Fe XXV and Fe XXVI K-shell resonant absorption. They are systematically blue-shifted, with a velocity distribution ranging from zero up to ~0.3c, with a peak and mean value at ~0.1c. We detect variability of the lines on both EWs and blue-shifted velocities among different XMM-Newton observations

  11. Path integral formalism for the spectral line shape in plasmas: Lyman-{alpha} with fine structure

    SciTech Connect

    Bedida, N.; Meftah, M. T.; Boland, D.; Stamm, R.

    2008-10-22

    We examine in this work the expression of the dipolar autocorrelation function for an emitter in the plasma using the path integrals formalism. The results for Lyman alpha lines with fine structure are retrieved in a compact formula. The expression of the dipolar autocorrelation function takes into account the ions dynamics and the fine structure effects. The electron's effect is represented by the impact operator {phi}{sub e} in the final formula.

  12. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.

    PubMed

    Najim, Mohd; Modi, Gaurav; Mishra, Yogendra Kumar; Adelung, Rainer; Singh, Dharmendra; Agarwala, Vijaya

    2015-09-21

    A viable lightweight absorber is the current need for stealth technology as well as microwave absorption. Several microwave absorbers have been developed, but it is still a challenge to fabricate an absorber that facilitates microwave absorption in broad bandwidth or covers the maximum portion of the frequency range 2-18 GHz, the commonly used range for radar and other applications. Therefore, it is highly required to develop a wide bandwidth absorber that can provide microwave absorption in the most part of the frequency range 2-18 GHz while simultaneously being lightweight and can be fabricated in desired bulk quantities by the cost-effective synthesis methods. In this paper, an attempt has been made to design an ultra-wide bandwidth absorber with enhanced microwave absorption response by using nickel-phosphorus coated tetrapod-shaped ZnO (Ni-P coated T-ZnO). In the Ni-P coated T-ZnO absorber, ZnO acts as a good dielectric contributor, while Ni as a magnetic constituent to obtain a microwave absorbing composite material, which has favorable absorption properties. Ni-P coated ZnO nano-microstructures are synthesized by a simple and scalable two-step process. First, tetrapod-shaped ZnO (T-ZnO) structures have been grown by the flame transport synthesis (FTS) approach in a single step process and then they have been coated with Ni-P by an electroless coating technique. Their morphology, degree of crystallinity and existing phases were studied in detail by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. The complex permittivity and permeability of the "as-fabricated" T-ZnO and Ni-P coated T-ZnO have been measured in the frequency range of 4-14 GHz and their microwave absorption properties are computed using the coaxial transmission-reflection method. The strongest reflection loss (RL) peak value of -36.41 dB has been obtained at a frequency of ∼8.99 GHz with coating thickness of 3.4 mm for the Ni

  13. Rapid and Accurate Calculation of a Speed Dependent Spectral Line Shape

    NASA Astrophysics Data System (ADS)

    Beverstock, D. Reed; Weaver, Kendra Letchworth; Benner, D. Chris

    2014-06-01

    Use of the Voigt profile with the Lorentz width allowed to vary with the speed of collision has been hampered by the lack of fast accurate algorithms. Such an algorithm has been written assuming a quadratic dependence of the Lorentz width upon the speed of collision that is accurate to one part in 10 000 and is generally only a factor of four or so slower than the equivalent Voigt calculation with the Letchworth and Benner algorithm. The only exception to the accuracy is far from line center near the Doppler limit when the speed dependent parameter is quite large. At this point the spectral line has fallen by at least 17 orders of magnitude from the line center and is generally insignificant. Gauss-Hermite quadrature of third to seventeenth order, Taylor series expansion about precomputed points and spline interpolation are used in the computation of both the real and imaginary parts for various regions. Kendra L. Letchworth and D. Chris Benner, JQSRT 107 (2007) 173-192. This work was funded by the Jet Propulsion Laboratory and National Science Foundation.

  14. Unveiling the Intrinsic X-Ray Properties of Broad Absorption Line Quasars with a Relatively Unbiased Sample

    NASA Astrophysics Data System (ADS)

    Morabito, Leah K.; Dai, Xinyu; Leighly, Karen M.; Sivakoff, Gregory R.; Shankar, Francesco

    2014-05-01

    There is growing evidence of a higher intrinsic fraction of broad absorption line quasars (BALQSOs) than that obtained in optical surveys, on which most previous X-ray studies of BALQSOs have focused. Here we present Chandra observations of 18 BALQSOs at z ~ 2, selected from a near-infrared (Two Micron All Sky Survey) sample, where the BALQSO fraction is likely to be close to the intrinsic fraction. We measure photon indices using the stacked spectra of the optically faint (i - Ks >= 2.3 mag) and optically bright (i - Ks < 2.3 mag) samples to be Γ ~= 1.5-2.1. We constrain their intrinsic column density by modeling the X-ray fractional hardness ratio, finding a mean column density of 3.5 × 1022 cm-2 assuming neutral absorption. We incorporate Sloan Digital Sky Survey optical measurements (rest frame UV) to study the broadband spectral index between the X-ray and UV bands, and compare this to a large sample of normal quasars. We estimate that the optically faint BALQSOs are X-ray weaker than the optically bright ones, and the entire sample of BALQSOs are intrinsically X-ray weak when compared to normal active galactic nuclei (AGNs). Correcting for magnification of X-ray emission via gravitational lensing by the central black hole viewed at large inclination angles makes these BALQSOs even more intrinsically X-ray weak. Finally, we estimate AGN kinetic feedback efficiencies of a few percent for an X-ray wind of 0.3c in high-ionization BALQSOs. Combined with energy carried by low-ionization BALQSOs and UV winds, the total kinetic energy in BALQSOs can be sufficient to provide AGN kinetic feedback required to explain the co-evolution between black holes and host galaxies.

  15. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    SciTech Connect

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.; and others

    2014-10-10

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  16. The quantum dynamics of interfacial hydrogen: Path integral maximum entropy calculation of adsorbate vibrational line shapes for the H/Ni(111) system

    NASA Astrophysics Data System (ADS)

    Kim, Dongsup; Doll, J. D.; Gubernatis, J. E.

    1997-01-01

    Vibrational line shapes for a hydrogen atom on an embedded atom model (EAM) of the Ni(111) surface are extracted from path integral Monte Carlo data. Maximum entropy methods are utilized to stabilize this inversion. Our results indicate that anharmonic effects are significant, particularly for vibrational motion parallel to the surface. Unlike their normal mode analogs, calculated quantum line shapes for the EAM potential predict the correct ordering of vibrational features corresponding to parallel and perpendicular adsorbate motion.

  17. Second-order quadrupolar line shapes under molecular dynamics: An additional transition in the extremely fast regime.

    PubMed

    Hung, Ivan; Wu, Gang; Gan, Zhehong

    2016-12-10

    NMR spectroscopy is a powerful tool for probing molecular dynamics. For the classic case of two-site exchange, NMR spectra go through the transition from exchange broadening through coalescence and then motional narrowing as the exchange rate increases passing through the difference between the resonance frequencies of the two sites. For central-transition spectra of half-integer quadrupolar nuclei in solids, line shape change due to molecular dynamics occurs in two stages. The first stage occurs when the exchange rate is comparable to the second-order quadrupolar interaction. The second spectral transition comes at a faster exchange rate which approaches the Larmor frequency and generally reduces the isotropic quadrupolar shift. Such a two-stage transition phenomenon is unique to half-integer quadrupolar nuclei. A quantum mechanical formalism in full Liouville space is presented to explain the physical origin of the two-stage phenomenon and for use in spectral simulations. Variable-temperature (17)O NMR of solid NaNO3 in which the NO3(-) ion undergoes 3-fold jumps confirms the two-stage transition process. The spectra of NaNO3 acquired in the temperature range of 173-413K agree well with simulations using the quantum mechanical formalism. The rate constants for the 3-fold NO3(-) ion jumps span eight orders of magnitude (10(2)-10(10)s(-1)) covering both transitions of the dynamic (17)O line shape.

  18. Electron line shape and transmission function of the KATRIN monitor spectrometer

    SciTech Connect

    Slezák, M.

    2013-12-30

    Knowledge of the neutrino mass is of particular interest in modern neutrino physics. Besides the neutrinoless double beta decay and cosmological observation information about the neutrino mass is obtained from single beta decay by observing the shape of the electron spectrum near the endpoint. The KATRIN β decay experiment aims to push the limit on the effective electron antineutrino mass down to 0.2 eV/c{sup 2}. To reach this sensitivity several systematic effects have to be under control. One of them is the fluctuations of the absolute energy scale, which therefore has to be continuously monitored at very high precision. This paper shortly describes KATRIN, the technique for continuous monitoring of the absolute energy scale and recent improvements in analysis of the monitoring data.

  19. On the line-shape analysis of Compton profiles and its application to neutron scattering

    NASA Astrophysics Data System (ADS)

    Romanelli, G.; Krzystyniak, M.

    2016-05-01

    Analytical properties of Compton profiles are used in order to simplify the analysis of neutron Compton scattering experiments. In particular, the possibility to fit the difference of Compton profiles is discussed as a way to greatly decrease the level of complexity of the data treatment, making the analysis easier, faster and more robust. In the context of the novel method proposed, two mathematical models describing the shapes of differenced Compton profiles are discussed: the simple Gaussian approximation for harmonic and isotropic local potential, and an analytical Gauss-Hermite expansion for an anharmonic or anisotropic potential. The method is applied to data collected by VESUVIO spectrometer at ISIS neutron and muon pulsed source (UK) on Copper and Aluminium samples at ambient and low temperatures.

  20. Laser frequency stabilization using a dispersive line shape induced by Doppler Effect.

    PubMed

    Wang, Qing; Qi, Xianghui; Liu, Shuyong; Yu, Jiachen; Chen, Xuzong

    2015-02-09

    We report a simple and robust Doppler-free spectroscopic technique to stabilize a laser frequency to the atomic transition. By employing Doppler Effect on the atomic beam, we obtained a very stable dispersive signal with a high signal-to-noise ratio and no Doppler-background, which served as an error signal to electronically stabilize a laser frequency without modulation. For validating the performance of this technique, we locked a DFB laser to the (133)Cs D2 line and observed an efficient suppression of the frequency noise and a long-term reduction of the frequency drifts in a laboratory environment.

  1. Some computational aspects of the hals (harmonic analysis of x-ray line shape) method

    SciTech Connect

    Moshkina, T.I.; Nakhmanson, M.S.

    1986-02-01

    This paper discusses the problem of distinguishing the analytical line from the background and approximates the background component. One of the constituent parts of the program package in the procedural-mathematical software for x-ray investigations of polycrystalline substances in application to the DRON-3, DRON-2 and ADP-1 diffractometers is the SSF system of programs, which is designed for determining the parameters of the substructure of materials. The SSF system is tailored not only to Unified Series (ES) computers, but also to the M-6000 and SM-1 minicomputers.

  2. Anomalous Dynamical Line Shapes in a Quantum Magnet at Finite Temperature

    SciTech Connect

    Tennant D. A.; James A.; Lake, B.; Essler, F.H.L.; Notbohm, S.; Mikeska, H.-J.; Fielden, J.; Kogerler,, P.; Canfield, P.C.; Telling, M.T.F.

    2012-01-04

    The effect of thermal fluctuations on the dynamics of a gapped quantum magnet is studied using inelastic neutron scattering on copper nitrate, a model material for the spin-1/2, one-dimensional (1D) bond alternating Heisenberg chain. A large, highly deuterated, single-crystal sample of copper nitrate is produced using a solution growth method and measurements are made using the high-resolution backscattering spectrometer OSIRIS at the ISIS Facility. Theoretical calculations and numerical analysis are combined to interpret the physical origin of the thermal effects observed in the magnetic spectra. The primary observations are (1) a thermally induced central peak due to intraband scattering, which is similar to Villain scattering familiar from soliton systems in 1D, and (2) the one-magnon quasiparticle pole is seen to develop with temperature into an asymmetric continuum of scattering. We relate this asymmetric line broadening to a thermal strongly correlated state caused by hard-core constraints and quasiparticle interactions. These findings are a counter example to recent assertions of the universality of line broadening in 1D systems and are applicable to a broad range of quantum systems.

  3. Nustar Reveals an Intrinsically X-ray Weak Broad Absorption Line Quasar in the Ultraluminous Infrared Galaxy Markarian 231

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Brandt. W. N.; Harrison, F. A.; Luo, B.; Alexander, D. M.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Fabian, A. C.; Farrah, D.; Fiore, F.; Gandhi, P.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R. C.; Madsen, K. K.; Ptak, A. F.; Rigby, Jane Rebecca; Risaliti, G.; Saz, C.; Stern, D.; Veilleux, S.; Walton, D. J.; Wik, D. R.; Zhang, W. W.

    2014-01-01

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin N(sub H) approx. 1.2(sup +0.3) sub-0.3) x 10(exp 23) / sq cm) column. The intrinsic X-ray luminosity L(sub 0.5-30 Kev) approx. 1.0 x 10(exp 43) erg /s) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is approx. 0.03% compared to the typical values of 2-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope alpha(sub 0X) approx. -1.7. It is a local example of a low-ionization broad absorption line (LoBAL) quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  4. Solvatochromic effect in absorption and emission spectra of star-shaped bipolar derivatives of 1,3,5-triazine and carbazole. A time-dependent density functional study.

    PubMed

    Baryshnikov, Gleb V; Bondarchuk, Sergey V; Minaeva, Valentina A; Ågren, Hans; Minaev, Boris F

    2017-02-01

    A series of three star-shaped compounds containing both donor (carbazole) and acceptor (2,4,6-triphenyl-1,3,5-triazine) moieties linked through various linking bridges was studied theoretically at the linear response TD-DFT level of theory to describe their absorption and fluorescence spectra. The concept of a localized charge-transfer excited state has been applied successfully to explain the observed strong solvatochromic effect in the emission spectra of the studied molecules, which can be utilized for the fabrication of color tunable solution-processable OLEDs. The concept is in particularly applicable to donor-acceptor species with a C 3 symmetry point group where the static dipole moment changes dramatically upon electronic excitation. An important peculiarity of the studied molecules is that they are characterized by non-zero values of the HOMO and LUMO orbitals in the same common part of molecular space that provides a large electric dipole transition moment for both light absorption and emission. Graphical abstract Star-shaped C 3 symmetry point group derivatives for color tunable OLEDs.

  5. Effect of buffer gases on broadening of the Iodine-127 resonance absorption line at a 633-nm He-Ne laser wavelength

    SciTech Connect

    Kireev, S.V.; Shnyrev, S.L.; Zaspa, Yu.P.

    1995-04-01

    Collisional broadening coefficients are measured for iodine-127 resonance absorption lines in several rare cases of atmospheric air and CO{sub 2}. The results obtained are used to determine the optimum pressure of a gaseous mixture in a measuring cell for detecting iodine-127 by a helium-neon (633 nm) laser-induced fluorescence technique of monitoring iodine in atmospheric air.

  6. Improved Experimental Line Positions for the (1,1) Band of the b 1Σ+ - X 3Σ- Transition of O2 by Intracavity Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, Leah C.; O'Brien, Emily C.; O'Brien, James J.

    2012-06-01

    We report improved experimental line positions for the (1,1) band of the b 1Σ+ - X 3Σ- transition of O2. Results are comparised with previous experimental measurements and predicted values. Additionally, a new method of producing vibrationally hot molecules for use in absorption spectroscopy of stable gas phase molecules is described.

  7. The KMOS GTO Cluster Program: Absorption Line Spectroscopy of Cluster Galaxies at z˜1.5

    NASA Astrophysics Data System (ADS)

    Houghton, R. C. W.; Davies, R. L.; Bender, R.; Beifiori, A.; Chan, J.; Cappellari, M.; Galametz, A.; Lewis, I.; Mendel, J. T.; Prichard, L.; Saglia, R. P.; Sharples, R.; Smith, R.; Stott, J.; Wilman, D.; Wegner, M.

    2016-10-01

    The GTO KMOS cluster program (P.I.s Davies & Bender) is investigating the absorption line spectra of individual cluster galaxies during the peak epoch of star formation at 1.3< z<2. The multiplexed nature of KMOS increases the observing efficiency by more than an order-of-magnitude compared to single integral field units, which is essential for obtaining deep spectra of many faint targets. Furthermore, the NIR capabilities of KMOS produce observations of the well understood rest-frame V-band indices at these redshifts, providing reliable measures of age and composition for the stellar populations. The kinematics coupled with archival HST photometry allow us to construct the fundamental plane and study the evolution in size and mass-to-light when the Universe was less than 5 Gyrs old. The program has already obtained spectra of ˜60 galaxies in three clusters with on-source exposure times of 15-20 hrs per galaxy. We present early results from these data and provide an overview of the project.

  8. Crystal-field analysis and calculation of two-photon absorption line strengths of dicesium sodium hexachlorogadolinate(III).

    PubMed

    Duan, Chang-Kui; Tanner, Peter A

    2010-03-31

    The crystal-field energy level calculation of the 4f(7) ion Gd(3+) in the crystal Cs(2)NaGdCl(6) has fitted 45 levels with standard deviation 12 cm(-1), with the energy parameters being consistent with those from other studies. The resulting eigenvectors have been employed in the calculation of two-photon absorption (TPA) intensities of transitions from the electronic ground state (8)S(7/2) to the crystal-field levels of excited (6)P, (6)I and (6)D multiplet terms. The TPA line strengths are highly polarization dependent and exhibit striking differences for linearly polarized incident radiation compared with circularly polarized radiation. The relative intensities are compared with those available from previous experimental studies and some reassignments have been made. Good agreement of calculated and experimental TPA spectra is found, except for the intensity ratio of the transitions to (6)P(7/2) or (6)P(5/2) compared with that to (6)P(3/2), for linear and circular polarizations, where the calculation overestimates the ratio. Reasons for this disagreement are presented.

  9. Long term stability of the NBS design Debye dielectric coaxial line wave shaping filter

    SciTech Connect

    Nahman, N.S.

    1993-12-28

    By means of analysis of NBS laboratory notebooks for the period of 1976--1982 in conjunction with recent LANL P14 measurements it is shown that the Model 100-1, S/N 1 Debye Coaxial Line is stable. From the date of its inception in July 1977 to the present, at a temperature of 30 C the transition duration of the filter insertion step response has reexamined a 125.8 ps while the relative dielectric constant has remained at 2.7. Also, capacitance measurements on the NBS--held Model 100-2, S/N 2 have demonstrated that the capacitance has remained at 32.3 pF since 1979.

  10. ME-CAGEBIRDr,X-CPMG-HSQMBC. A phase sensitive, multiplicity edited long range HSQC with absorptive line shapes

    NASA Astrophysics Data System (ADS)

    Koskela, Harri; Kilpeläinen, Ilkka; Heikkinen, Sami

    2016-11-01

    ME-CAGEBIRDr,X-CPMG-HSMBC pulse sequence is a phase sensitive, carbon multiplicity edited 2D-experiment for detecting heteronuclear correlations originating from long-range 1H, 13C-couplings, nJCH. The presented method allows measurement of nJCH-values as well as is capable of separating different carbon types in subspectra (13C/13CH2 and 13CH/13CH3) with minimal amount of cross talk i.e. cross peaks from wrong carbon multiplicity. Pure lineshapes and clean subspectra are achieved by utilizing CPMG in polarization transfer period, CRISIS-approach in multiplicity editing period and zero-quantum filtration. The obtained spectral properties together with simple setup of the experiment make ME-CAGEBIRDr,X-CPMG-HSMBC a useful addition into synthetic organic chemistry oriented NMR-tool collection.

  11. Determination of cobalt in biological samples by line-source and high-resolution continuum source graphite furnace atomic absorption spectrometry using solid sampling or alkaline treatment

    NASA Astrophysics Data System (ADS)

    Ribeiro, Anderson Schwingel; Vieira, Mariana Antunes; da Silva, Alessandra Furtado; Borges, Daniel L. Gallindo; Welz, Bernhard; Heitmann, Uwe; Curtius, Adilson José

    2005-06-01

    Two procedures for the determination of Co in biological samples by graphite furnace atomic absorption spectrometry (GF AAS) were compared: solid sampling (SS) and alkaline treatment with tetramethylammonium hydroxide (TMAH) using two different instruments for the investigation: a conventional line-source (LS) atomic absorption spectrometer and a prototype high-resolution continuum source atomic absorption spectrometer. For the direct introduction of the solid samples, certified reference materials (CRM) were ground to a particle size ≤50 μm. Alkaline treatment was carried out by placing about 250 mg of the sample in polypropylene flasks, adding 2 mL of 25% m/v tetramethylammonium hydroxide and de-ionized water. Due to its unique capacity of providing a 3-D spectral plot, a high-resolution continuum source (HR-CS) graphite furnace atomic absorption spectrometry was used as a tool to evaluate potential spectral interferences, including background absorption for both sample introduction procedures, revealing that a continuous background preceded the atomic signal for pyrolysis temperatures lower than 700 °C. Molecular absorption bands with pronounced rotational fine structure appeared for atomization temperatures >1800 °C probably as a consequence of the formation of PO. After optimization had been carried out using high resolution continuum source atomic absorption spectrometry, the optimized conditions were adopted also for line-source atomic absorption spectrometry. Six biological certified reference materials were analyzed, with calibration against aqueous standards, resulting in agreement with the certified values (according to the t-test for a 95% confidence level) and in detection limits as low as 5 ng g -1.

  12. Enhanced and broadband microwave absorption of flake-shaped Fe and FeNi composite with Ba ferrites

    NASA Astrophysics Data System (ADS)

    Li, Wangchang; Lv, Junjun; Zhou, Xiang; Zheng, Jingwu; Ying, Yao; Qiao, Liang; Yu, Jing; Che, Shenglei

    2017-03-01

    In order to achieve a broad bandwidth absorber at high frequency, the composites of M-type ferrite BaCo1.0Ti1.0Fe10O19 (BaM) with flaked carbonyl iron powders (CIP) and flaked Fe50Ni50 were prepared to optimize the surface impedance in broadband frequency, respectively. The diameter of the flaked carbonyl iron powders (CIP) and Fe50Ni50 is in the range of 5-10 μm and 10-20 μm and the thickness of the CIP and Fe50Ni50 is close to 200 nm and 400 nm, respectively. The complex permeability and permittivity show that the addition of BaM obviously reduces the values of real part of permittivity and imaginary part of the permeability which can enhance the matched-wave-impedance. The absorption bands less than -10 dB of CIP-BaM and FeNi-BaM absorber approach to 5.5 GHz (5.7-11.2 GHz) and 7 GHz (11-18 GHz) at 1.5 mm. However, the bands of CIP and FeNi are only 1.9 GHz (4.7-6.6 GHz) and 2.1 GHz (4.0-6.1 GHz). Hence, the electromagnetic match property is greatly improved by BaM ferrites, and this composite shows a broaden absorption band.

  13. Absorption cross sections for HF laser lines due to traces of CO/sub 2/, N/sub 2/O, and CH/sub 4/ in air

    SciTech Connect

    Agroskin, V.Ya.; Vasil'ev, G.K.; Gur'ev, V.I.; Tatarinova, E.E.

    1986-12-01

    The emission from an HF (DF) laser is spread over a large number of vibrational-rotational lines in the range 2.7-4.2 ..mu..m, which contains absorption bands of virtually all substances of interesting quantitative gas analysis, and in particular, detecting atmospheric pollutants, determining discharges from industrial plants, locating deposits of certain minerals, forecasting volcanic activity, and so on. Pulsed chemical HF (DF) lasers can be based on the chain reaction of fluorine with hydrogen (deuterium), which is promising for these purposes because the number of lines is large by comparison with any other type of laser (about 100 lines). These lasers also have high efficiency in converting the pumping energy to radiation and high beam power with relatively small dimensions and the same laser cell can be used to obtain the emission from carbon dioxide in the range 9.6-10.6 ..mu..m by energy transfer from DF to carbon dioxide. It is necessary to know the absorption characteristics of the substances at the lines of the HF (DF) laser. In this paper, the authors report measured cross sections for carbon dioxide, nitrogen oxide, and carbon hydrogenate, in the form of minor impurities in the air (about 1-10%) for various lines from an HF laser. The authors compare the data with published values, while the available spectroscopic characteristics are used in theoretical calculations of the absorption cross section and compared with the experiment.

  14. Enhancement of the magnetoelectric coupling in an A-line shape magnetostrictive/piezoelectric structure

    NASA Astrophysics Data System (ADS)

    Zhang, Juanjuan; Kang, Yan; Yu, Yang; Gao, Yuanwen

    2017-01-01

    In this study, a new kind of magnetoelectric (ME) structure is designed with Terfenol-D, PZT-5A and nonmagnetic and nonelectric trestle. The configuration of this ME structure presents "A-line" type, PZT-5A and Terfenol-D are respectively bonded with the trestles, which adopt the knuckle joint assembly. Differently from the conventional ME layered structure, in the new structure, the deformation of the PZT-5A of larger size is driven by a Terfenol-D layer of smaller size at an external magnetic field. Since the driven force is applied at the ends of piezoelectric layer through the trestles, the whole piezoelectric layer can be completely stretched or compressed, and the larger voltage should be induced. For the new ME structure with mica trestle, the maximum value of αE is twice higher than that for the conventional laminated ME structure. Furthermore, a wider range of response frequency is also observed in this structure. For the new ME structure with ABS trestle, the experimental results indicate that the maximum ME voltage coefficient is measured as high as 31.85 V/cm Oe at 405 Oe.

  15. Radiometric observations of the 752.033-GHz rotational absorption line of H2O from a laboratory jet. [simulation of rocket plumes

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T.-S.; Fetterman, H. R.; Litvak, M. M.

    1980-01-01

    With the aid of a high-resolution two-stage heterodyne radiometer, spectral absorption measurements of the 752.033 GHz line of water vapor were carried out, using a blackbody continuum as a background radiation source for investigating the absorptive properties of the H2O content of high altitude rocket plumes. To simulate this physical situation in a laboratory environment, a small steam jet was operated within a large high-vacuum chamber, with the H2O jet plume traversing the radiometer line of sight. The experiments verified that this rotational line is optically thick, with excitation temperatures below 100 K, in the downstream part of the plume, as predicted by theoretical modelling.

  16. Abundances of O, Mg, S, Cr, Mn, Ti, Ni and Zn from absorption lines of neutral gas in the Large Magellanic Cloud in front of R136

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Fitzpatrick, E. L.; Savage, B. D.

    1985-01-01

    Weak absorption lines of C I, O I, Mg I, Mg II, Si I, Si II, P I, Cl I, Cr II, Mn II, Fe I, Ni II, Zn II, CO and C2 are detected in neutral gas in front of the 30 Doradus H II region by IUE spectra of R 136. The Large Magellanic Cloud abundances from the absorption lines are a factor of 2 or 3 below those of the Milky Way, in agreement with emission line study results. Neutral gas density and temperature are estimated from the observed excitation and ionization to be about 300/cu cm and 100 K, respectively; this implies a gas pressure of 30,000/cu cm K.

  17. A CHANDRA SURVEY OF THE X-RAY PROPERTIES OF BROAD ABSORPTION LINE RADIO-LOUD QUASARS

    SciTech Connect

    Miller, B. P.; Brandt, W. N.; Garmire, G. P.; Gibson, R. R.; Shemmer, O. E-mail: niel@astro.psu.edu E-mail: rgibson@astro.washington.edu

    2009-09-10

    This work presents the results of a Chandra study of 21 broad absorption line (BAL) radio-loud quasars (RLQs). We conducted a Chandra snapshot survey of 12 bright BAL RLQs selected from Sloan Digital Sky Survey Data/Faint Images of the Radio Sky data and possessing a wide range of radio and C IV absorption properties. Optical spectra were obtained nearly contemporaneously with the Hobby-Eberly Telescope; no strong flux or BAL variability was seen between epochs. In addition to the snapshot targets, we include in our sample nine additional BAL RLQs possessing archival Chandra coverage. We compare the properties of (predominantly high-ionization) BAL RLQs to those of non-BAL RLQs as well as to BAL radio-quiet quasars (RQQs) and non-BAL RQQs for context. All 12 snapshots and 8/9 archival BAL RLQs are detected, with observed X-ray luminosities less than those of non-BAL RLQs having comparable optical/UV luminosities by typical factors of 4.1-8.5. (BAL RLQs are also X-ray weak by typical factors of 2.0-4.5 relative to non-BAL RLQs having both comparable optical/UV and radio luminosities.) However, BAL RLQs are not as X-ray weak relative to non-BAL RLQs as are BAL RQQs relative to non-BAL RQQs. While some BAL RLQs have harder X-ray spectra than typical non-BAL RLQs, some have hardness ratios consistent with those of non-BAL RLQs, and there does not appear to be a correlation between X-ray weakness and spectral hardness, in contrast to the situation for BAL RQQs. RLQs are expected to have X-ray continuum contributions from both accretion-disk corona and small-scale jet emission. While the entire X-ray continuum in BAL RLQs cannot be obscured to the same degree as in BAL RQQs, we calculate that the jet is likely partially covered in many BAL RLQs. We comment briefly on implications for geometries and source ages in BAL RLQs.

  18. The effect of vertical velocity probability distribution shape on cloud activation of aerosols: off-line calculations

    NASA Astrophysics Data System (ADS)

    Tonttila, J.; Romakkaniemi, S.; Räisänen, P.; Kokkola, H.; Järvinen, H.

    2012-04-01

    Off-line calculations of cloud activation of aerosols using a probability density function (PDF) for vertical velocity (w) are performed. The focus is on the variation of the shape of the PDF using two functional formulations: the Normal distribution PDF and the Pearson type IV PDF. The Normal distribution provides a familiar example, as it has been widely used to approximate vertical velocity distributions in numerous applications, including climate models. Pearson type IV distribution provides an alternative that, to our knowledge, has not been employed before to describe the vertical velocity PDF. The advantage of the Pearson distribution is its versatility in representing skewed and more peaked distribution shapes compared to the Normal distribution, though this is obtained at the expense of increased mathematical complexity. The experiments are performed using a box model, in which the environmental conditions, including the aerosol size distribution (bi-modal) and chemical composition (ammonium-sulphate particles) are prescribed as constants. Measured size distributions comprising clean and polluted cases are used. Cloud activation of aerosols is calculated by integrating over the positive side of the PDF of w, which yields the mean number of activated particles (Nact). The mean, variance, and skewness of the PDFs along with the type of the PDF itself are altered in order to explore the effect of the PDF shape on the activation process. All experiments are repeated for three well-documented activation parameterizations: Lin & Leaitch, Abdul-Razzak & Ghan and Fountoukis & Nenes. The results show that for symmetric distributions of w (skewness = 0) there is a maximum difference of 10-15 % in Nact between the cases with w given by the Normal distribution, and the more peaked Pearson distribution. The largest differences are seen for the most polluted cases. Nact in clean cases will saturate rather quickly with respect to the maximum supersaturation and, hence

  19. CHANDRA VIEW OF THE WARM-HOT INTERGALACTIC MEDIUM TOWARD 1ES 1553+113: ABSORPTION-LINE DETECTIONS AND IDENTIFICATIONS. I

    SciTech Connect

    Nicastro, F.; Zappacosta, L.; Elvis, M.; Krongold, Y.; Mathur, S.; Gupta, A.; Danforth, C.; Shull, J. M.; Barcons, X.; Borgani, S.; Branchini, E.; Cen, R.; Dave, R.; Kaastra, J.; Paerels, F.; Piro, L.; Takei, Y.

    2013-06-01

    We present the first results from our pilot 500 ks Chandra Low Energy Transmission Grating Large Program observation of the soft X-ray brightest source in the z {approx}> 0.4 sky, the blazar 1ES 1553+113, aimed to secure the first uncontroversial detections of the missing baryons in the X-rays. We identify a total of 11 possible absorption lines, with single-line statistical significances between 2.2{sigma} and 4.1{sigma}. Six of these lines are detected at high single-line statistical significance (3.6 {<=} {sigma} {<=} 4.1), while the remaining five are regarded as marginal detections in association with either other X-ray lines detected at higher significance and/or far-ultraviolet (FUV) signposts. Three of these lines are consistent with metal absorption at z {approx_equal} 0, and we identify them with Galactic O I and C II. The remaining eight lines may be imprinted by intervening absorbers and are all consistent with being high-ionization counterparts of FUV H I and/or O VI intergalactic medium signposts. In particular, five of these eight possible intervening absorption lines (single-line statistical significances of 4.1{sigma}, 4.1{sigma}, 3.9{sigma}, 3.8{sigma}, and 2.7{sigma}), are identified as C V and C VI K{alpha} absorbers belonging to three WHIM systems at z{sub X} = 0.312, z{sub X} = 0.237, and (z{sub X} ) = 0.133, which also produce broad H I (and O VI for the z{sub X} = 0.312 system) absorption in the FUV. For two of these systems (z{sub X} = 0.312 and 0.237), the Chandra X-ray data led the a posteriori discovery of physically consistent broad H I associations in the FUV (for the third system the opposite applies), so confirming the power of the X-ray-FUV synergy for WHIM studies. The true statistical significances of these three X-ray absorption systems, after properly accounting for the number of redshift trials, are 5.8{sigma} (z{sub X} = 0.312; 6.3{sigma} if the low-significance O V and C V K{beta} associations are considered), 3.9{sigma} (z

  20. High Dust Depletion in two Intervening Quasar Absorption Line Systems with the 2175 Å Extinction Bump at z ~ 1.4

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ge, Jian; Prochaska, J. Xavier; Wang, Junfeng; Zhou, Hongyan; Wang, Tinggui

    2010-12-01

    We present the column densities of heavy elements and dust depletion studies in two strong Mg II absorption systems at z ~ 1.4 displaying the 2175 Å dust extinction feature. Column densities are measured from low-ionization absorption lines using an Apparent Optical Depth Method on the Keck/ESI spectra. We find that the dust depletion patterns resemble that of cold diffuse clouds in the Milky Way (MW). The values, [Fe/Zn] ≈-1.5 and [Si/Zn]<-0.67, are among the highest dust depletion measured for quasar absorption line systems. In another 2175 Å absorber at z = 1.64 toward the quasar SDSS J160457.50+220300.5, Noterdaeme et al. reported a similar dust depletion measurement ([Fe/Zn] = -1.47 and [Si/Zn] = -1.07) and detected C I and CO absorption lines on its VLT/UVES spectrum. We conclude that heavy dust depletion (i.e., a characteristic of cold dense clouds in MW) is required to produce a pronounced 2175 Å extinction bump. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. Discovery of two broad absorption line quasars at redshift about 4.75 using the Lijiang 2.4 m telescope

    NASA Astrophysics Data System (ADS)

    Yi, WeiMin; Wu, XueBing; Wang, FeiGe; Yang, JinYi; Yang, Qian; Bai, JinMing

    2015-09-01

    The ultraviolet broad absorption lines have been seen in the spectra of quasars at high redshift, and are generally considered to be caused by outflows with velocities from thousands kilometers per second to one tenth of the speed of light. They provide crucial implications for the cosmological structures and physical evolutions related to the feedback of active galactic nuclei (AGNs). Recently, through a dedicated program of optically spectroscopic identifications of selected quasar candidates at redshift 5 by using the Lijiang 2.4 m telescope, we discovered two luminous broad absorption line quasars (BALQSOs) at redshift about 4.75. One of them may even have the potentially highest absorption Balnicity Index (BI) ever found to date, which is remarkably characterized by its deep, broad absorption lines and sub-relativistic outflows. Further physical properties, including the metal abundances, variabilities, evolutions of the supermassive black holes (SMBH) and accretion disks associated with the feedback process, can be investigated with multi-wavelength follow-up observations in the future.

  2. A Candidate for an Intrinsic Dusty Absorber with a Metal-rich Damped Lyα Absorption Line System in the Quasar J170542.91+354340.2

    NASA Astrophysics Data System (ADS)

    Pan, Xiang; Zhou, Hongyan; Ge, Jian; Jiang, Peng; Yang, Bin; Lu, Honglin; Ji, Tuo; Zhang, Shaohua; Shi, Xiheng

    2017-02-01

    We present a detailed analysis of the unusual damped Lyα absorption line system (DLA) toward the quasar SDSS J170542.91+354340.2 at a redshift of 2, previously reported by Noterdaeme et al. as one of the very few CO absorbers known to date at high z. This DLA is exceptional in that: (1) its extinction curve is similar to peculiar Milky Way sightlines penetrating star formation regions; (2) its absorption components are redshifted at a speed of several hundred km s‑1 compared to broad Balmer emission lines; (3) its gas-phase metallicity is super-solar as evaluated from more than 30 absorption lines; (4) detection of residual flux in the DLA trough and variability of {{C}} {{IV}} absorption is possible. Based on these facts, we argue that this dusty DLA is a good candidate for an intrinsic quasar 2175 Å absorber, and can originate from star formation regions of the quasar’s host galaxy. We discuss in detail the gas and dust properties, and the dust depletion. Follow-up observations, such as spectropolarimetry and optical/infrared spectroscopy, will help to confirm the system’s intrinsic nature and to explore how dust grains behave in the extreme environments proximate to quasars.

  3. Optical multistability and Fano line-shape control via mode coupling in whispering-gallery-mode microresonator optomechanics

    PubMed Central

    Zhang, Suzhen; Li, Jiahua; Yu, Rong; Wang, Wei; Wu, Ying

    2017-01-01

    We study a three-mode (i.e., a clockwise mode, a counterclockwise mode, and a mechanical mode) coherent coupling regime of the optical whispering-gallery-mode (WGM) microresonator optomechanical system by considering a pair of counterpropagating modes in a general case. The WGM microresonator is coherently driven by a strong control laser field and a relatively weak probe laser field via a tapered fiber. The system parameters utilized to explore this process correspond to experimentally demonstrated values in the WGM microresonator optomechanical systems. By properly adjusting the coupling rate of these two counterpropagating modes in the WGM microresonator, the steady-state displacement behaviors of the mechanical oscillation and the normalized power transmission and reflection spectra of the output fields are analyzed in detail. It is found that the mode coupling plays a crucial role in rich line-shape structures. Some interesting phenomena of the system, including optical multistability and sharp asymmetric Fano-shape optomechanically induced transparency (OMIT), can be generated with a large degree of control and tunability. Our obtained results in this study can be used for designing efficient all-optical switching and high-sensitivity sensor. PMID:28045120

  4. Optical multistability and Fano line-shape control via mode coupling in whispering-gallery-mode microresonator optomechanics

    NASA Astrophysics Data System (ADS)

    Zhang, Suzhen; Li, Jiahua; Yu, Rong; Wang, Wei; Wu, Ying

    2017-01-01

    We study a three-mode (i.e., a clockwise mode, a counterclockwise mode, and a mechanical mode) coherent coupling regime of the optical whispering-gallery-mode (WGM) microresonator optomechanical system by considering a pair of counterpropagating modes in a general case. The WGM microresonator is coherently driven by a strong control laser field and a relatively weak probe laser field via a tapered fiber. The system parameters utilized to explore this process correspond to experimentally demonstrated values in the WGM microresonator optomechanical systems. By properly adjusting the coupling rate of these two counterpropagating modes in the WGM microresonator, the steady-state displacement behaviors of the mechanical oscillation and the normalized power transmission and reflection spectra of the output fields are analyzed in detail. It is found that the mode coupling plays a crucial role in rich line-shape structures. Some interesting phenomena of the system, including optical multistability and sharp asymmetric Fano-shape optomechanically induced transparency (OMIT), can be generated with a large degree of control and tunability. Our obtained results in this study can be used for designing efficient all-optical switching and high-sensitivity sensor.

  5. Enhanced lines and box-shaped features in the gamma-ray spectrum from annihilating dark matter in the NMSSM

    SciTech Connect

    Cerdeño, D.G.; Peiró, M.; Robles, S. E-mail: miguel.peiro@uam.es

    2016-04-01

    We study spectral features in the gamma-ray emission from dark matter (DM) annihilation in the Next-to-Minimal Supersymmetric Standard Model (NMSSM), with either neutralino or right-handed (RH) sneutrino DM . We perform a series of scans over the NMSSM parameter space, compute the DM annihilation cross section into two photons and the contribution of box-shaped features, and compare them with the limits derived from the Fermi-LAT search for gamma-ray lines using the latest Pass 8 data. We implement the LHC bounds on the Higgs sector and on the masses of supersymmetric particles as well as the constraints on low-energy observables. We also consider the recent upper limits from the Fermi-LAT satellite on the continuum gamma-ray emission from dwarf spheroidal galaxies (dSphs). We show that in the case of the RH sneutrino the constraint on gamma-ray spectral features can be more stringent than the dSph bounds. This is due to the Breit-Wigner enhancement near the ubiquitous resonances with a CP even Higgs and the contribution of scalar and pseudoscalar Higgs final states to box-shaped features. By contrast, for neutralino DM, the di-photon final state is only enhanced in the resonance with a Z boson and box-shaped features are even more suppressed. Therefore, the observation of spectral features could constitute a discriminating factor between both models. In addition, we compare our results with direct DM searches, including the SuperCDMS and LUX limits on the elastic DM-nucleus scattering cross section and show that some of these scenarios would be accessible to next generation experiments. Thus, our findings strengthen the idea of complementarity among distinct DM search strategies.