Science.gov

Sample records for absorption line shapes

  1. Effects of velocity averaging on the shapes of absorption lines

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.

    1980-01-01

    The velocity averaging of collision cross sections produces non-Lorentz line shapes, even at densities where Doppler broadening is not apparent. The magnitude of the effects will be described using a model in which the collision broadening depends on a simple velocity power law. The effect of the modified profile on experimental measures of linewidth, shift and amplitude will be examined and an improved approximate line shape will be derived.

  2. Line shape of 57Co sources exhibiting self absorption

    NASA Astrophysics Data System (ADS)

    Spiering, H.; Ksenofontov, V.; Leupold, O.; Kusz, J.; Deák, L.; Németh, Z.; Bogdán, C.; Bottyán, L.; Nagy, D. L.

    2016-12-01

    The effect of selfabsorption in Mössbauer sources is studied in detail. Spectra were measured using an old 57 C o/ R h source of 74 M B q activity with an original activity of ca. 3.7 G B q and a 0.15 G B q 57 C o/ α - F e source magnetized by an in-plane magnetic field of 0.2 T. The 57 C o/ α - F e source of a thickness of 25 μ was used both from the active and the inactive side giving cause to very different selfabsorption effects. The absorber was a single crystal of ferrous ammonium sulphate hexahydrate (FAS). Its absorption properties were taken over from a detailed study (Bull et al., Hyperfine Interact. 94(1-3), 1; Spiering et al. 2). FAS (space group P21/c) crystallizes as flat plates containing the (overline {2}01) plane. The γ-direction was orthogonal to the crystal plate. The 57 C o atoms of the 57 C o/ R h source were assumed to be homogeneously distributed over a 6 μ thick Rh foil and to follow a one dimensional diffusion profile in the 25 μ Fe-foil. The diffusion length was fitted to 10 μ. The theory follows the Blume-Kistner equations for forward scattering (Blume and Kistner, Phys. Rev. 171, 417, 3) by integrating over the source sampled up to 128 layers.

  3. Impact of broadened laser line-shape on retrievals of atmospheric species from lidar sounding absorption spectra.

    PubMed

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2015-02-01

    We examine the impact of broadened laser line-shape on retrievals of atmospheric species from lidar-sounding absorption spectra. The laser is assumed to be deterministically modulated into a stable, nearly top-hat frequency comb to suppress the stimulated Brillouin scattering, allowing over 10-fold pulse energy increase without adding measurement noise. Our model remains accurate by incorporating the laser line-shape factor into the effective optical depth. Retrieval errors arising from measurement noise and model bias are analyzed parametrically and numerically to provide deeper insight. The stable laser line-shape broadening minimally degrades the column-averaged retrieval, but can significantly degrade the multiple-layer retrievals.

  4. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    US Department of Energy's (DOE) SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The increasing CO2 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. In spring 2009 we improved the aircraft's nadir window and during July and August we made 9 additional 2 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and eastern Virginia. Strong laser signals and clear CO2 line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. Analysis shows that the average signal levels follow predicted values, the altimetry measurements had an uncertainty of about 4 m, and that the average optical line depths follow the number density calculated from in-situ sensor readings. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. More details of the flights, measurements, analysis and scaling to space will be described in the presentation.

  5. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.

    2009-01-01

    altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. This spring we improved the aircraft's nadir window. During July and August 2009 we made 9 additional 2 hour long flights and measured the atmospheric C02 absorption and line shapes using the 1572.33 nm C02 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and Virginia. Strong laser signals and clear line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. The Oklahoma and east coast t1ights were coordinated with a LaRC/ITT C02 lidar on the LaRC UC-12 aircraft, a LaRC insitu C02 sensor, and the Oklahoma flights also included a JPL C02 lidar on a Twin Otter aircraft. Ed Browell and Gary Spiers led the LaRC and JPL teams. More details of the t1ights, measurements and analysis will be described in the presentation.

  6. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains.

    PubMed

    Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2015-04-10

    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.

  7. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains.

    PubMed

    Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2015-04-10

    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line. PMID:25910116

  8. Non-adiabatic, superfast passage to resonance: an alternative to pulsed fourier transform for absorption line shapes

    NASA Astrophysics Data System (ADS)

    Segel, S. L.; Creel, R. B.; Torgeson, D. R.

    1983-12-01

    We describe the theory, practice and experimental results of a continuous wave (CW) resonance technique which we call non-adiabatic superfast passage (NASP). NASP signal to noise per unit time (SNT) is better than pulsed Fourier transform spectrometers (PFTS) and far better than the conventional CW slow passage NMR using field modulation, lock-in amplifiers and signal averaging techniques. It is most useful in situations of long spin-lattice relaxation time and particularly those cases where the line shape is composed of narrow and broad components, as in a typical second-order quadrupolar perturbed magnetic resonance line shape.

  9. Mars Ozone Absorption Line Shapes from Infrared Heterodyne Spectra Applied to GCM-Predicted Ozone Profiles and to MEX/SPICAM Column Retrievals

    NASA Technical Reports Server (NTRS)

    Fast, Kelly E.; Kostiuk, T.; Annen, J.; Hewagama, T.; Delgado, J.; Livengood, T. A.; Lefevre, F.

    2008-01-01

    We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry Mars' atmosphere, serving as an observable with which to test predictions of photochemistry-coupled GCMs. Infrared heterodyne spectroscopy at 9.5 microns with spectral resolving power >1,000,000 is the only technique that can directly measure fully-resolved line shapes of Martian ozone features from the surface of the Earth. Measurements were made with Goddard Space Flight Center's Heterodyne instrument for Planetary Wind And Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii on February 21-24 2008 UT at Ls=35deg on or near the MEX orbital path. The HIPWAC observations were used to test GCM predictions. For example, a GCM-generated ozone profile for 60degN 112degW was scaled so that a radiative transfer calculation of its absorption line shape matched an observed HIPWAC absorption feature at the same areographic position, local time, and season. The RMS deviation of the model from the data was slightly smaller for the GCM-generated profile than for a line shape produced by a constant-with-height profile, even though the total column abundances were the same, showing potential for testing and constraining GCM ozone-profiles. The resulting ozone column abundance from matching the model to the HIPWAC line shape was 60% higher than that observed by SPICAM at the same areographic position one day earlier and 2.5 hours earlier in local time. This could be due to day-to-day, diurnal, or north polar region variability, or to measurement sensitivity to the ozone column and its distribution, and these possibilities will be explored. This work was supported by NASA's Planetary Astronomy Program.

  10. Theoretical investigation of the broad one-photon absorption line-shape of a flexible symmetric carbazole derivative.

    PubMed

    Liu, Yanli; Cerezo, Javier; Santoro, Fabrizio; Rizzo, Antonio; Lin, Na; Zhao, Xian

    2016-08-17

    The one-photon absorption spectrum of a carbazole derivative has been studied by employing density functional response theory combined with a mixed quantum/classical (QC) approach to simulate the spectral shape. In a first step of our analysis we employed the vertical gradient (VG) vibronic model to investigate the role of Franck-Condon (FC) profiles of the first ten electronic excited states of the system, underlying most of the range of the experimental spectrum. We then focussed on the first six excited states covering the low-energy region of the spectrum, and investigated the effect of inter-state electronic couplings on the spectral shapes within Herzberg-Teller (HT) theory. Furthermore, in order to introduce the broadening effects due to the two inter-ring torsions, we employed a QC approach, adopting VG vibronic models for high-frequency modes and computing the contribution of the torsions to the spectrum from the distribution of the excitation energies along a two-dimensional relaxed potential energy. Finally, we estimated the solvent inhomogeneous broadening by computing the solvent reorganization energy using a polarizable continuum model. Our calculations allow us to obtain a non-phenomenological description of the low-energy part of the spectrum in semi-quantitative agreement with experiment and to dissect the relative importance of solvent, torsional flexibility, FC vibronic progressions, and inter-state couplings in determining its broad spectral shapes and the modulation of its intensity. Our analysis also clearly highlights that the investigated carbazole represents a big challenge for available methodologies due to the existence of many close-lying excited electronic states coupled by internal low-frequency and high-frequency motions and by solvent fluctuations. The study of their impact on the spectra at the HT level is only approximate and more refined treatments would require a fully quantum-dynamical calculation on the manifold of the coupled

  11. Approximate line shapes for hydrogen

    NASA Technical Reports Server (NTRS)

    Sutton, K.

    1978-01-01

    Two independent methods are presented for calculating radiative transport within hydrogen lines. In Method 1, a simple equation is proposed for calculating the line shape. In Method 2, the line shape is assumed to be a dispersion profile and an equation is presented for calculating the half half-width. The results obtained for the line shapes and curves of growth by the two approximate methods are compared with similar results using the detailed line shapes by Vidal et al.

  12. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, R.B.

    1985-08-15

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  13. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  14. Line, Shape, Color.

    ERIC Educational Resources Information Center

    Greenman, Geri

    2002-01-01

    Describes an art project used with beginning high school art students that teaches them about continuous line drawing. Explains that the students create portraits of themselves, or another student, using glue, black construction paper, and chalk. (CMK)

  15. Quasar Absorption Line Survey - Cycle 4 High

    NASA Astrophysics Data System (ADS)

    Bahcall, John

    1994-01-01

    The Absorption Line Survey of bright quasars provides a homogeneous data base for studying fundamental questions about the origin and evolution of gaseous systems in the universe. The initial results determine at small redshifts the number densities of Ly-ALPHA systems, of metal-lines and extragalactic halos, of Lyman-limit systems, of associated absorption systems, and the shapes and intensities of quasar emission lines and spectral energy distributions. The survey reveals that much of the sky is covered by high or very high velocity metal-line clouds present in the Galactic halo. A larger sample, which includes the requested Cycle 3 observations, is required to answer many important questions. For example, what is the correlation function of Ly-ALPHA systems at small redshifts? What fraction of the metal, the Ly-ALPHA, and the Ly-limit systems are associated with galaxies and what are the characteristic sizes of the outer gaseous regions of different types of galaxies? Do absorbing systems show evidence of the large-scale structure seen with galaxies and clusters of galaxies? The observations requested in Cycle 3 will extend the region of coverage of the Key Project sample from the redshift range of z = 0.0 to 1.0 (Cycles 1& 2) to z = 0.0 to 1.6 (Cycles 1-3). THIS FILE CONTAINS THE HIGH PRIORITY OBSERVATIONS FROM CYCLES 2 and 3 WHICH WERE NOT COMPLETED IN THOSE CYCLES.

  16. Probability and shape of the spectral line of a single bulk characteristic energy loss of a fast electron in a medium with electron absorption and strong spatial dispersion

    SciTech Connect

    Libenson, B. N.

    2011-10-15

    The probability of single characteristic energy loss of a fast electron in a reflection experiment has been calculated. Unlike many works concerning this subject, the bremsstrahlung of bulk plasmons in the non- Cherenkov ranges of frequencies and wavevectors of a plasmon has been taken into account. The contributions to the probability of single loss and to the shape of the spectral line from a quantum correction that is due to the interference of elastic and inelastic electron scattering events have been determined. The probability has been calculated in the kinetic approximation for the relative permittivity, where the short-wavelength range of the plasmon spectrum is correctly taken into account. In view of these circumstances, the expression for the mean free path of the electron with respect to the emission of a bulk plasmon that was obtained by Pines [D. Pines, Elementary Excitations in Solids (Benjamin, New York, 1963)] has been refined. The coherence length of the fast electron in the medium-energy range under consideration has been estimated. The shape of the spectral line of energy losses in the non-Cherenkov frequency range has been determined. It has been shown that the probability of the single emission of the bulk plasmon incompletely corresponds to the Poisson statistics.

  17. Do Atoms Really "Emit" Absorption Lines?

    ERIC Educational Resources Information Center

    Brecher, Kenneth

    1991-01-01

    Presents three absorption line sources that enhance student understanding of the phenomena associated with the interaction of light with matter and help dispel the misconception that atoms "emit" absorption lines. Sources include neodymium, food coloring and other common household liquids, and fluorescent materials. (MDH)

  18. Molecular absorption in transition region spectral lines

    NASA Astrophysics Data System (ADS)

    Schmit, D. J.; Innes, D.; Ayres, T.; Peter, H.; Curdt, W.; Jaeggli, S.

    2014-09-01

    Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary. The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales and introduces a new complexity into our understanding of solar thermal structure. It lends credence to previous numerical studies that found evidence for elevated pockets of cool gas in the chromosphere. Movies associated to Figs. 1 and 2 are available in electronic form at http://www.aanda.org

  19. Spectrophotometry of six broad absorption line QSOs

    NASA Technical Reports Server (NTRS)

    Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.

    1987-01-01

    Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.

  20. Non-Voigt Lyalpha Absorption Line Profiles.

    PubMed

    Outram; Carswell; Theuns

    2000-02-01

    Recent numerical simulations have lead to a paradigm shift in our understanding of the intergalactic medium and the loss of a physical justification for Voigt profile fitting of the Lyalpha forest. Many individual lines seen in simulated spectra have significant departures from the Voigt profile, yet could be well fitted by a blend of two or more such lines. We discuss the expected effect on the line profiles due to ongoing gravitational structure formation and Hubble expansion. We develop a method to detect departures from Voigt profiles of the absorption lines in a statistical way and apply this method to simulated Lyalpha forest spectra, confirming that the profiles seen do statistically differ from Voigt profiles. PMID:10622758

  1. Line-Shape Transition of Collision Broadened Lines

    NASA Astrophysics Data System (ADS)

    Harde, H.; Katzenellenbogen, N.; Grischkowsky, D.

    1995-02-01

    Using the newly developed technique of THz time-domain spectroscopy, we have measured the far-wing absorption line profile of the ensemble of collision broadened ground state rotational lines of methylchloride vapor out to more than 200 linewidths from resonance, corresponding to frequency offsets as much as 5× the resonant frequency. On these far wings the measured absorption is approximately an order of magnitude less than that predicted by the van Vleck-Weisskopf theory. Our observations show that at higher frequencies a transition occurs from the regime of the van Vleck-Weisskopf theory to the regime of the Lorentz theory.

  2. An improved quasistatic line-shape theory: The effects of molecular motion on the line wings

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, Richard H.

    1994-01-01

    A theory is presented for the modification of the line-shape functions and absorption coefficient due to the breakdown of the quasistatic approximation. This breakdown arises from the effects of molecular motion and increases the absorption in the near wings. Numerical calculations for the high-frequency wing of the nu(sub 3) band of CO2 broadened by Ar are reported and it is shown that these effects are significant near the bandhead. The importance of such corrections in other spectral regions and for other systems is discussed briefly.

  3. Haptic perception of shapes and line drawings

    NASA Astrophysics Data System (ADS)

    Wijntjes, M. W. A.

    2008-09-01

    In this thesis various aspect of haptic perception were studied. The first part of the thesis is mainly concerned with haptic perception of two-dimensional shapes and line drawings. We first studied the angular acuity of two-dimensional shapes an found that the manner of exploration as well as the local and global stimulus properties influence angular acuity. Secondly we studied identification of line drawings by touch. We found that the size of the picture influences identifiability. We also found that observers seem to use a hypothesis driven strategy: on average 23% of the total exploration time was spend on confirming the final hypothesis. In the next chapter on line drawing identification we report a finding that helped to explain why identifying a line drawing by touch is such a difficult task. We found that if observers were not able to identify a picture and were given the opportunity to sketch what they had just felled, in 30% of the cases they could identify their own sketch. A line drawing is easily processed with vision, but if the input is made sequential instead of simultaneous, identification becomes very difficult. This is because the structure of the input has changed and cannot be used to match the internal representations. Similar to sequential vision, if a line drawing is explored by touch, then the structure of the percept is what could be called `one-dimensional'; that is, a sequential description. Observers experience difficulty in mentally switching between these two structures. What can be done is restructuring the representation from sequential to simultaneous by producing a sketch. This explains the recognition-after-sketching-effect. In the second part of the thesis we aspect of haptic perception of three-dimensional curvature. First we studied real, solid shapes and virtual shapes generated by a robotic interface. One of the purposes was to study the contribution of two isolated geometric cues. We found that the surface orientation is a

  4. Properties of quasar broad absorption line outflows

    NASA Astrophysics Data System (ADS)

    Capellupo, Daniel Moshin

    2012-06-01

    Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that likely exist in all quasars and could play a major role in feedback to galaxy evolution. In this dissertation, I use two methods to illuminate important properties of these outflows with the goal of a better understanding of these outflow systems and ultimately of the connection between quasars and their host galaxies. The variability of BALs can help us understand the structure, evolution, and basic physical properties of the outflows. I report here on a BAL monitoring programme of a sample of 24 luminous quasars at redshifts 1.2absorption to try to ascertain the cause(s) of the variability. I find that Si IV BALs are more likely to vary than C IV BALs. When both C IV and Si IV varied, those changes always occurred in the same sense (either getting weaker or stronger). The multi-epoch data, including up to 10 epochs of data per quasar, show that the BAL changes were not generally monotonic across the full ˜5 to ˜8 yr time span of our observations, suggesting that the characteristic time-scale for significant line variations, and (perhaps) for structural changes in the outflows, is less than a few years. The evidence presented here indicates that the cause of variability is likely a complex mixture of changing ionization in the outflowing

  5. Asymmetry parameter of peaked Fano line shapes

    NASA Astrophysics Data System (ADS)

    Meierott, S.; Hotz, T.; Néel, N.; Kröger, J.

    2016-10-01

    The spectroscopic line shape of electronic and vibrational excitations is ubiquitously described by a Fano profile. In the case of nearly symmetric and peaked Fano line shapes, the fit of the conventional Fano function to experimental data leads to difficulties in unambiguously extracting the asymmetry parameter, which may vary over orders of magnitude without degrading the quality of the fit. Moreover, the extracted asymmetry parameter depends on initially guessed values. Using the spectroscopic signature of the single-Co Kondo effect on Au(110) the ambiguity of the extracted asymmetry parameter is traced to the highly symmetric resonance profile combined with the inevitable scattering of experimental data. An improved parameterization of the conventional Fano function is suggested that enables the nonlinear optimization in a reduced parameter space. In addition, the presence of a global minimum in the sum of squared residuals and thus the independence of start parameters may conveniently be identified in a two-dimensional plot. An angular representation of the asymmetry parameter is suggested in order to reliably determine uncertainty margins via linear error propagation.

  6. Modes in Lined Wedge-Shaped Ducts

    NASA Astrophysics Data System (ADS)

    Mechel, F. P.

    1998-10-01

    The computation of sound fields in wedge-shaped spaces with an absorbing boundary (the seabed) is a classical problem of underwater acoustics, covered by a large number of publications. All known solutions are approximations which are restricted to very small wedge angles θ0, typically less than 3°. In underwater acoustics it is further assumed thatk0r≫1. The background of the present paper is the performance of lined conical duct sections in silencers. There the wedge angle can attain values around 45°, and the assumptionk0r≫1 cannot be made. The absorber of the lined boundary here is supposed to be locally reacting (for reasons of simplicity); it can be characterized by a normalized surface admittanceG0. The problems of the analysis arise from the fact, that the fundamental field solutions (modes) can no longer be separated in the cylindrical co-ordinatesr, θ if a boundary is absorbing. This paper describes analytical solutions for the construction of modes in lined wedge-shaped ducts; they can be applied for wedge angles up to about 15° (a subsequent paper will describe a method for angles up to about 45° but only moderatek0rvalues). In the solutions, use is made of “fictitious modes”, which satisfy the boundary conditions and solve a part of the wave equation. They must be completed by a “modal rest” to satisfy approximately the full wave equation. In the first solution, the rest is synthesized by fictitious modes; in the second solution, a separate function is introduced for the rest. Modes for typical underwater acoustics conditions will arise as side products.

  7. [A Detection Technique for Gas Concentration Based on the Spectral Line Shape Function].

    PubMed

    Zhou, Mo; Yang, Bing-chu; Tao, Shao-hua

    2015-04-01

    The methods that can rapidly and precisely measure concentrations of various gases have extensive applications in the fields such as air quality analysis, environmental pollution detection, and so on. The gas detection method based on the tunable laser absorption spectroscopy is considered a promising technique. For the infrared spectrum detection techniques, the line shape function of an absorption spectrum of a gas is an important parameter in qualitative and quantitative analysis of a gas. Specifically, how to obtain the line shape function of an absorption spectrum of a gas quickly and accurately is a key problem in the gas detection fields. In this paper we analyzed several existing line shape functions and proposed a method to calculate precisely the line shape function of a gas, and investigated the relation between the gas concentration and the peak value of a line shape function. Then we experimentally measured the absorption spectra of an acetylene gas in the wavelength range of 1,515-1,545 nm with a tunable laser source and a built-in spectrometer. With Lambert-Beer law we calculated the peak values of the line shape function of the gas at the given frequencies, and obtained a fitting curve for the line shape function in the whole waveband by using a computer program. Comparing the measured results with the calculated results of the Voigt function, we found that there was a deviation-between the experimental results and the calculated results. And we found that the measured concentration of the acetylene gas by using the fitting curve of the line shape function was more accurate and compatible with the actual situation. Hence, the empirical formula for the line shape function obtained from the experimental results would be more suitable for the concentration measurement of a gas. As the fitting curve for the line shape function of the acetylene gas has been deduced from the experiment, the corresponding peak values of the spectral lines can be

  8. Evidence for Photoionization-driven Broad Absorption Line Variability

    NASA Astrophysics Data System (ADS)

    Wang, Tinggui; Yang, Chenwei; Wang, Huiyuan; Ferland, Gary

    2015-12-01

    We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption lines are highly coordinated among different components of the same ion or the same absorption component of different ions for C iv, Si iv, and N v. Furthermore, we show that the equivalent widths (EWs) of the lines decrease or increase statistically when the continuum brightens or dims. This is further supported by the synchronized variations of emission and absorption-line EWs when the well-established intrinsic Baldwin effect for emission lines is taken into account. We find that the emergence of an absorption component is usually accompanied by the dimming of the continuum while the disappearance of an absorption-line component is accompanied by the brightening of the continuum. This suggests that the emergence or disappearance of a C iv absorption component is only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum variability the amplitude is larger. These results support the idea that absorption-line variability is driven mainly by changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and absorption-line variations.

  9. Narrowing of Doppler and hyperfine line shapes of Rb - D2 transition using a Vortex beam

    NASA Astrophysics Data System (ADS)

    Das, Bankim Chandra; Bhattacharyya, Dipankar; De, Sankar

    2016-01-01

    We performed an experimental and theoretical study on saturation absorption spectroscopy on 87Rb and 85Rb atoms in D2 transition using a Laguerre-Gaussian (LG) beam with higher orders. We observed narrow line shapes of the Doppler and hyperfine absorption profiles due to the introduction of the LG beam in comparison to the fundamental Gaussian beam. Narrowing of the line shape is dependent on the azimuthal mode index of the LG field. It is observed that the spatially dependent Rabi frequency plays a significant role behind these narrowing phenomenon.

  10. Majorana approach to the stochastic theory of line shapes

    NASA Astrophysics Data System (ADS)

    Komijani, Yashar; Coleman, Piers

    2016-08-01

    Motivated by recent Mössbauer experiments on strongly correlated mixed-valence systems, we revisit the Kubo-Anderson stochastic theory of spectral line shapes. Using a Majorana representation for the nuclear spin we demonstrate how to recast the classic line-shape theory in a field-theoretic and diagrammatic language. We show that the leading contribution to the self-energy can reproduce most of the observed line-shape features including splitting and line-shape narrowing, while the vertex and the self-consistency corrections can be systematically included in the calculation. This approach permits us to predict the line shape produced by an arbitrary bulk charge fluctuation spectrum providing a model-independent way to extract the local charge fluctuation spectrum of the surrounding medium. We also derive an inverse formula to extract the charge fluctuation from the measured line shape.

  11. The Hubble Space Telescope quasar absorption line key project. II - Data calibration and absorption-line selection

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Saxe, David H.; Weymann, Ray J.; Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Sargent, W. L. W.

    1993-01-01

    We present the observational and data processing aspects of the Hubble Space Telescope Quasar Absorption Line Key Project. Topics discussed include the observational technique, calibration of the data, software that simulates the data, the automated procedure used to identify and characterize the absorption features, and the determination of the sensitivity limits of the survey.

  12. Quasar absorption lines with a nonzero cosmological constant

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.; Ikeuchi, Satoru

    1992-01-01

    Quasar absorption lines in flat universes with nonzero cosmological constant Lambda are examined and compared with more conventional zero Lambda universes. Various evolution effects for intergalactic absorbers and the observed number density evolution of each absorption system are examined in order to discriminate between evolution effects and the cosmological models. An interesting interaction between Lambda effects and cosmic absorption phenomena is explored. Equations describing IGM absorption statistics are developed for nonzero Lambda cosmologies, both for unevolving absorber populations and some of the more popular physical models for the IGM and intergalactic clouds which include the effects of the absorber evolution.

  13. Active Galactic Nuclei Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru

    2007-07-01

    Quasars are the extremely bright nuclei found in about 10% of galaxies. A variety of absorption features (known collectively as quasar absorption lines) are detected in the rest-frame UV spectra of these objects. While absorption lines that have very broad widths originate in gas that is probably physocally related to the quasars, narrow absorption lines (NALs) were thought to arise in galaxies and/or in the intter-alacttic medium between the quasars and us. Using high-resolution spectra of quasars, it is found that a substantial fraction of NALs arise in gas in the immediate vicinity of the quasars. A dramatically variable, moderately-broad absorption line in the spectrum of the quasar HS 1603+3820l is also found. The variability of this line is monitored in a campaign with Subaru telescope. These observational results are compared to models for outflows from the quasars, specifically, models for accretion disk winds and evaporating obscuring tori. It is quite important to determine the mechanism of outflow because of its cosmological implications. The outflow could expel angular momentum from the accretion disk and enable quasars to accrete and shine. In addition, the outflow may also regulate star formation in the early stages of the assembly of the host galaxy and enrich the interstellar and intergalactic medium with metals.

  14. Broad Absorption Line Quasar catalogues with Supervised Neural Networks

    SciTech Connect

    Scaringi, Simone; Knigge, Christian; Cottis, Christopher E.; Goad, Michael R.

    2008-12-05

    We have applied a Learning Vector Quantization (LVQ) algorithm to SDSS DR5 quasar spectra in order to create a large catalogue of broad absorption line quasars (BALQSOs). We first discuss the problems with BALQSO catalogues constructed using the conventional balnicity and/or absorption indices (BI and AI), and then describe the supervised LVQ network we have trained to recognise BALQSOs. The resulting BALQSO catalogue should be substantially more robust and complete than BI-or AI-based ones.

  15. Terahertz vibrational absorption spectroscopy using microstrip-line waveguides

    NASA Astrophysics Data System (ADS)

    Byrne, M. B.; Cunningham, J.; Tych, K.; Burnett, A. D.; Stringer, M. R.; Wood, C. D.; Dazhang, L.; Lachab, M.; Linfield, E. H.; Davies, A. G.

    2008-11-01

    We demonstrate that terahertz microstrip-line waveguides can be used to measure absorption spectra of polycrystalline materials with a high frequency resolution (˜2 GHz) and with a spatial resolution that is determined by the microstrip-line dimensions, rather than the free-space wavelength. The evanescent terahertz-bandwidth electric field extending above the microstrip line interacts with, and is modified by, overlaid dielectric samples, thus enabling the characteristic vibrational absorption resonances in the sample to be probed. As an example, the terahertz absorption spectrum of polycrystalline lactose monohydrate was investigated; the lowest lying mode was observed at 534(±2) GHz, in excellent agreement with free-space measurements. This microstrip technique offers both a higher spatial and frequency resolution than free-space terahertz time-domain spectroscopy and requires no contact between the waveguide and sample.

  16. Line shape in a free-jet hypersonic expansion investigated by cavity ring-down spectroscopy and computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Suas-David, Nicolas; Kulkarni, Vinayak; Benidar, Abdessamad; Kassi, Samir; Georges, Robert

    2016-08-01

    Experiments are carried out for spectroscopic studies using hypersonic jet of carbon monoxide seeded in argon as a carrier gas. Probing of this jet using cavity ring-down spectroscopy revealed a double peak structure for various absorption lines. Flow field simulation using computational fluid dynamics is used to understand the shape of such lines integrated over line of sight. Absorption contribution from warmer non-isentropic part of the jet, owing to its transverse velocity variation, is found responsible for those line shapes.

  17. Variations in the Absorption Lines Associated with SN 1006

    NASA Astrophysics Data System (ADS)

    Fesen, Robert A.

    Analysis of 8th year IUE data for a faint sdOB star situated behind the young and suspected Type I supernova remnant of AD 1006 together with a careful re-analysis of earlier IUE spectra (Wu et al. 1983) confirm the presence of several very strong and definitely non-stellar absorption lines in this star's UV spectrum (Fesen, Wu, Leventhal, and Hamilton 1986). Exceedingly broad and strong absorption features at 2370 and 2600 A agree well with the relative strengths and wavelengths of the Fe II 2343, 2382, and 2599 A resonance lines and indicate an Fe II mass of about 0.1 solar mass. Other strong absorption features at 1282, 1331, and 1420 A are identified as redshifted S II (1259, 1254), O I (1302), and Si IV (1393, 1402) respectively with radial velocities of 5000 to 6700 km s^-1. The UV spectra of this sdOB star has provided us with an exciting and invaluable observational probe of the elemental composition and dynamical properties of a young Type I supernova remnant via the line-of-sight interception of the remnant's outer ejecta knots and expanding central iron core. The elements, ionization, and velocities implied by these absorption lines are in good agreement with both optical spectral features seen in Type I SN as well as detailed model calculations predicting the final explosive nucleosynthesis production and expansion velocities. Importantly however, some absorption line variations are seen between the 1982/83 and 1986 IUE spectra. Indeed, if the 1282, 1331, and 1420 A features are really due to knots of ejecta with dimensions similar to those of other remnants (i.e., 0.01 pc), these features cannot persist or remain unchanged over time scales greater than a few years. In order to understand fully the nature of the remnant's ejecta, we propose to monitor these changes in these absorption features over the next two IUE observing seasons (1987/88 and 1988/89). The exposure times are well known with the data reduction and analysis already established and

  18. PREFACE: XXI International Conference on Spectral Line Shapes (ICSLS 2012)

    NASA Astrophysics Data System (ADS)

    Devdariani, Alexander Z.

    2012-12-01

    The 21st International Conference on Spectral Line Shapes, ICSLS, was held in the historic main building of St Petersburg State University (St. Petersburg, Russia) on 3-9 June 2012. The event continued the tradition started in 1978 in Meudon Observatory in Paris. Representatives of line shape physics have since met every two years in different locations in Europe and North America. The most recent events were held in St John's, Newfoundland, Canada (2010), Valladolid, Spain (2008), and Auburn, AL (USA). Traditionally, the conferences consider experimental and theoretical issues of studying spectral line shapes, diagnostic utilization of spectral line profiles observed in absorption, emission or scattering of electromagnetic radiation by atoms, molecules, and clusters in different environments, including neutral environments, laboratory low and fusion plasmas, astrophysical conditions, and planetary atmospheres. The Conference was attended by over 100 professionals from Europe, Asia, America, Africa and New Zealand. The conference program was put together in such a way so as to exclude any parallel sessions. Five afternoon sessions featured 19 invited talks and 20 oral contributions, and two evening sessions offered 61 poster presentations, including post-deadline posters. This setup allowed for a relaxed and unhurried discussion of results and facilitated productive networking. The invited talks were selected by recommendation of members of the International Scientific Committee. The Organizers would like to thank all the members of the International Scientific Committee for their proposals on the agenda and their valuable advice. When considering candidates for oral contributions, the organizers took into account the suggestions and preferences of potential conference participants. When selecting the theses of poster presentations, the organizers focused on the topics in line with the theme of the conference and studies with well-formulated results. It must be

  19. SPECTROPOLARIMETRY OF RADIO-SELECTED BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    DiPompeo, M. A.; Brotherton, M. S.; Becker, R. H.; Gregg, M. D.; Tran, H. D.; White, R. L.; Laurent-Muehleisen, S. A.

    2010-07-15

    We report spectropolarimetry of 30 radio-selected broad absorption line (BAL) quasars with the Keck Observatory, 25 from the sample of Becker et al. Both high- and low-ionization BAL quasars are represented, with redshifts ranging from 0.5 to 2.5. The spectropolarimetric properties of radio-selected BAL quasars are very similar to those of radio-quiet BAL quasars: a sizeable fraction (20%) shows large continuum polarization (2%-10%) usually rising toward short wavelengths; emission lines are typically less polarized than the continuum; and absorption line troughs often show large polarization jumps. There are no significant correlations between polarization properties and radio properties, including those indicative of system orientation, suggesting that BAL quasars are not simply normal quasars seen from an edge-on perspective.

  20. What sodium absorption lines tell us about Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2014-10-01

    We propose that the sodium responsible for the variable Na ID absorption lines in some Type Ia supernovae (SN Ia) originate mainly from dust residing at ˜1 pc from the supernovae. In this Na-from-dust absorption (NaDA) model, the process by which the SN Ia peak luminosity releases sodium from dust at ˜1 pc from the SN is similar to the processes by which solar radiation releases sodium from cometary dust when comets approach a distance of ≲ 1 au from the Sun. The dust grains are not sublimated but rather stay intact, and release sodium by photon-stimulated desorption (or photosputtering). Some of the Na might start in the gas phase before the explosion. Weakening in absorption strength is caused by Na-ionizing radiation of the SN. We apply the NaDA model to SN 2006X and SN 2007le, and find it to comply better with the observed time variability of the Na ID absorption lines than the Na recombination model. The mass in the dusty shell of the NaDA model is much too high to be accounted for in the single-degenerate scenario for SN Ia. Therefore, the presence of variable Na ID lines in some SN Ia further weakens the already very problematic single-degenerate scenario for SN Ia.

  1. A SURVEY OF ALKALI LINE ABSORPTION IN EXOPLANETARY ATMOSPHERES

    SciTech Connect

    Jensen, Adam G.; Redfield, Seth; Endl, Michael; Cochran, William D.; Koesterke, Lars; Barman, Travis S. E-mail: sredfield@wesleyan.edu E-mail: wdc@astro.as.utexas.edu E-mail: barman@lowell.edu

    2011-12-20

    We obtained over 90 hr of spectroscopic observations of four exoplanetary systems with the Hobby-Eberly Telescope. Observations were taken in transit and out of transit, and we analyzed the differenced spectra-i.e., the transmission spectra-to inspect it for absorption at the wavelengths of the neutral sodium (Na I) doublet at {lambda}{lambda}5889, 5895 and neutral potassium (K I) at {lambda}7698. We used the transmission spectrum at Ca I {lambda}6122-which shows strong stellar absorption but is not an alkali metal resonance line that we expect to show significant absorption in these atmospheres-as a control line to examine our measurements for systematic errors. We use an empirical Monte Carlo method to quantify these systematic errors. In a reanalysis of the same data set using a reduction and analysis pipeline that was derived independently, we confirm the previously seen Na I absorption in HD 189733b at a level of (- 5.26 {+-} 1.69) Multiplication-Sign 10{sup -4} (the average value over a 12 A integration band to be consistent with previous authors). Additionally, we tentatively confirm the Na I absorption seen in HD 209458b (independently by multiple authors) at a level of (- 2.63 {+-} 0.81) Multiplication-Sign 10{sup -4}, though the interpretation is less clear. Furthermore, we find Na I absorption of (- 3.16 {+-} 2.06) Multiplication-Sign 10{sup -4} at <3{sigma} in HD 149026b; features apparent in the transmission spectrum are consistent with real absorption and indicate this may be a good target for future observations to confirm. No other results (Na I in HD 147506b and Ca I and K I in all four targets) are significant to {>=}3{sigma}, although we observe some features that we argue are primarily artifacts.

  2. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control.

    PubMed

    Ott, Christian; Kaldun, Andreas; Raith, Philipp; Meyer, Kristina; Laux, Martin; Evers, Jörg; Keitel, Christoph H; Greene, Chris H; Pfeifer, Thomas

    2013-05-10

    Symmetric Lorentzian and asymmetric Fano line shapes are fundamental spectroscopic signatures that quantify the structural and dynamical properties of nuclei, atoms, molecules, and solids. This study introduces a universal temporal-phase formalism, mapping the Fano asymmetry parameter q to a phase φ of the time-dependent dipole response function. The formalism is confirmed experimentally by laser-transforming Fano absorption lines of autoionizing helium into Lorentzian lines after attosecond-pulsed excitation. We also demonstrate the inverse, the transformation of a naturally Lorentzian line into a Fano profile. A further application of this formalism uses quantum-phase control to amplify extreme-ultraviolet light resonantly interacting with He atoms. The quantum phase of excited states and its response to interactions can thus be extracted from line-shape analysis, with applications in many branches of spectroscopy. PMID:23661754

  3. Femtosecond laser processing with a holographic line-shaped beam.

    PubMed

    Hasegawa, Satoshi; Shiono, Koji; Hayasaki, Yoshio

    2015-09-01

    Line-shaped femtosecond pulses are well-suited to large-area machining with high throughput in laser cutting, peeling, and grooving of materials. First, we demonstrated the single-shot fabrication of a line structure in a glass surface using a line-shaped pulse generated by a holographic cylindrical lens displayed on a liquid-crystal spatial light modulator. We found the line structure was uniform and smooth near the ends because of the ability to precisely control the intensity distribution and to achieve single-shot fabrication. Second, we demonstrated a line-shaped beam deformed three-dimensionally for showing the potential of holographic line-shaped beam processing. Third, we demonstrated laser peeling of an indium tin oxide film. We found that little debris around the fabricated area was observed, because the debris was removed by the beam itself. Last, we demonstrated laser grooving of stainless steel. We found the swelling of the surface included upwardly growing nanogratings, although many line-shaped pulse irradiations were given. The swelling was caused by the depositions of the debris on the top of the nanogratings.

  4. INFLUENCE OF DOPPLER WIDTH FLUCTUATIONS ON THE SHAPE OF SPECTRAL LINES

    SciTech Connect

    Silant'ev, N. A.; Lekht, E. E.; Alexeeva, G. A.

    2009-05-10

    We investigate the influence of stochastic Doppler width fluctuations on the shape of spectral lines. The photospheres and atmospheres of stars, and the interstellar medium, possess stochastic behavior especially near nonstationary objects such as active galactic nuclei, quasars, flare stars, and regions of star formation. In reality, we observe the mean values of intensities from these objects. In most situations, the spectral line extinction coefficient has a Gaussian shape with the stochastic Doppler width determined by thermal and small-scale turbulent motions of atoms or molecules. For small-scale turbulent motions (short-correlated turbulence) the propagation of radiation is described by the average extinction factor. This coefficient depends on the level of the Doppler width fluctuations {eta}. We show that these fluctuations change both the value of intensity and the shape of spectral lines. We consider distortions of the spectral line shapes for the absorption and emission lines for various values of the parameter {eta}. For a number of H{sub 2}O maser sources we estimate the values of this parameter, the optical depths of the inverted media, and the mean effective Doppler velocities. Maser emission lines with non-Gaussian shape can serve as an additional method for the investigation of the physical parameters in maser 'spots'.

  5. On Wolf-Rayet stars with unshifted absorption lines

    NASA Astrophysics Data System (ADS)

    Moffat, A. F. J.; Lamontagne, R.; Shara, M. M.; McAlister, H. A.

    1986-06-01

    The authors examine a sample of 16 galactic Wolf-Rayet stars that exhibit unshifted absorption lines, but for which orbital motion involving the WR star and an O-type companion is either unknown or thought to be absent. If all of these are binaries, this would increase the estimate of the binary frequency for WR stars by about 10%. Speckle interferometry of three bright non-WNL+abs stars in Cygnus fails to reveal any astrometric companions down to a separation of 0.05arcsec. Thus, either the absorption lines are intrinsic to the WR star in these three cases or, more likely, they arise in a bound companion. The search for wide spectroscopic orbits for WR 137 and the WN3+abs star WR 3 is re-examined.

  6. Observational Cosmology Using Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Aghaee, A.

    2016-09-01

    Distant, highly luminous quasars are important cosmological probes for a variety of astrophysical questions: the first generation of galaxies, the star formation history and metal enrichment in the early Universe, the growth of the first super massive black holes (SMBHs), the role of feedback from quasars and SMBHs in galaxy evolution, the epoch of reionization, etc. In addition, they are used as background illuminating source that reveal any object located by chance on the line of sight. I will present our group works in these issues that can be done using absorption lines in the quasar spectra.

  7. Excited Spectator Electron Effects on Spectral Line Shapes

    SciTech Connect

    Iglesias, C A

    2009-10-12

    Excited spectator electron effects on Stark broadened spectral line shapes of transitions involving tightly bound electrons are investigated. It is shown that the interference terms in the electron impact broadening are essential to describe the overlapping lines generated by these configurations (e.g.; dielectronic satellite lines). The main impact is narrower spectral features and reduced far wing intensities compared to calculations neglecting the interference terms.

  8. Interstellar absorption lines in the galaxy NGC 1705

    SciTech Connect

    York, D.G.; Caulet, A.; Rybski, P.M.; Gallagher, J.S.; Blades, J.C. Lowell Observatory, Flagstaff, AZ Space Telescope Science Institute, Baltimore, MD )

    1990-03-01

    The possibility is considered, and shown to be plausible, that the strong C IV and Si IV absorption lines in low-resolution ultraviolet spectra of gas-rich dwarf galaxies are primarily interstellar, not stellar as has been supposed. The argument is based on analogies with H II regions in the Local Group, on low-resolution equivalent width measurements of gas-rich dwarf galaxies from the literature and on high-resolution UV spectra of NGC 1705. 48 refs.

  9. Interstellar absorption lines in the galaxy NGC 1705

    NASA Technical Reports Server (NTRS)

    York, Donald G.; Caulet, Adeline; Rybski, Paul M.; Gallagher, John S.; Blades, J. Chris

    1990-01-01

    The possibility is considered, and shown to be plausible, that the strong C IV and Si IV absorption lines in low-resolution ultraviolet spectra of gas-rich dwarf galaxies are primarily interstellar, not stellar as has been supposed. The argument is based on analogies with H II regions in the Local Group, on low-resolution equivalent width measurements of gas-rich dwarf galaxies from the literature and on high-resolution UV spectra of NGC 1705.

  10. Observations of Absorption Lines from Highly Ionized Atoms

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1984-01-01

    In the ultraviolet spectra of hot stars, absorption lines can be seen from highly ionized species in the interstellar medium. Observations of these features which have been very influential in revising the perception of the medium's various physical states, are discussed. The pervasiveness of O 6 absorption lines, coupled with complementary observations of a diffuse background in soft X-rays and EUV radiation, shows that there is an extensive network of low density gas (n approx. fewX 0.001/cucm) existing at coronal temperatures, 5.3 or = log T or = 6.3. Shocks created by supernova explosions or mass loss from early-type stars can propagate freely through space and eventually transfer a large amount of energy to the medium. To create the coronal temperatures, the shocks must have velocities in excess of 150 km/sec; shocks at somewhat lower velocity 9v or = 100 km/sec) can be directly observed in the lines of Si3. Observations of other lines in the ultraviolet, such as Si 4V and C 5, may highlight the widespread presence of energetic uv radiation from very hot, dward stars. More advanced techniques in visible and X-ray astronomical spectroscopy may open up for inspection selected lines from atoms in much higher stages of ionization.

  11. The Nature of Partial Covering in Broad Absorption Line Quasars

    NASA Astrophysics Data System (ADS)

    Leighly, Karen

    2012-10-01

    Ejected gas is seen as broad absorption lines in 20% of quasars. It has been known for 15 years that prominent lines such as CIV are usually saturated but not black because the absorbing gas only partially covers the continuum emission region. Therefore, column densities estimated from these lines are only lower limits. Accurate column densities can be obtained from rare ions that have two or more transitions from the same lower level, so that the optical depth and covering fraction can be solved for simultanously. Suitable lines are hard to find, so such measurements are rare. We have found that metastable helium is particularly useful for these measurements. Yet despite these advances, partial covering remains a just a parameter and its physical nature is not understood.We propose a unique experiment to constrain the physical nature of partial covering. We will compare the covering fraction measured from PV {a doublet in the far UV} with that measured from metastable HeI {optical and IR}. The ions creating these lines are relatively rare, and they present similar opacity over a wide range of gas parameters. But due to their wide wavelength separation, these lines probe dramatically different regions of the continuum source, the temperature-dependent accretion disk. So we expect different covering fraction behavior for different partial covering scenarios. This experiment is relevant for understanding the geometry and clumpiness of the outflow, and the results may impact our understanding of the global covering fraction, a parameter critical for determining the outflow kinetic luminosity, and thereby estimating feedback efficiency for broad absorption line outflows.

  12. High pressure line shapes of the Rb D1 and D2 lines for 4He and 3He collisions

    NASA Astrophysics Data System (ADS)

    Miller, Wooddy S.; Rice, Christopher A.; Hager, Gordon D.; Rotondaro, Mathew D.; Berriche, Hamid; Perram, Glen P.

    2016-11-01

    Line shapes for the Rb D1 (51/2 2S ↔ 51/2 2P) and D2 (51/2 2S ↔ 53/2 2P) transitions with 4He and 3He collisions at pressures of 500-15,000 Torr and temperatures of 333-533 K have been experimentally observed and compared to predictions from the Anderson-Talman theory. The ground X1/2 + 2Σ and excited A1/2 + 2Π, A3/2 2Π, and B1/2 + 2Σ potential energy surfaces required for the line shape predictions have been calculated using a one-electron pseudo-potential technique. The observed collision induced shift rates for 4He are dramatically higher for the D1 line, 4.60±0.12 MHz/Torr, than the D2 line, 0.20±0.14 MHz/Torr. The asymmetry is somewhat larger for the D1 line and has the same sign as the shifting rate. The 3He broadening rate for the D2 line is 4% larger than the 4He rate, and 14% higher for the D1 line, reflecting the higher relative speed. The calculated broadening rates are systematically larger than the observed rates by 1.1-3.2 MHz/Torr and agree within 14%. The primary focus of the current work is to characterize the high pressure line shapes, focusing on the non-Lorentzian features far from line center. In the far wing, the cross-section decreases by more than 4 orders of magnitude, with a broad, secondary maximum in the D2 line near 735 nm. The potentials do not require empirical modification to provide excellent quantitative agreement with the observations. The dipole moment variation and absorption Boltzmann factor is critical to obtaining strong agreement in the wings.

  13. Study of the Auger line shape of polyethylene and diamond

    NASA Technical Reports Server (NTRS)

    Dayan, M.; Pepper, S. V.

    1984-01-01

    The KVV Auger electron line shapes of carbon in polyethylene and diamond have been studied. The spectra were obtained in derivative form by electron beam excitation. They were treated by background subtraction, integration and deconvolution to produce the intrinsic Auger line shape. Electron energy loss spectra provided the response function in the deconvolution procedure. The line shape from polyethylene is compared with spectra from linear alkanes and with a previous spectrum of Kelber et al. Both spectra are compared with the self-convolution of their full valence band densities of states and of their p-projected densities. The experimental spectra could not be understood in terms of existing theories. This is so even when correlation effects are qualitatively taken into account account to the theories of Cini and Sawatzky and Lenselink.

  14. Are cold flows detectable with metal absorption lines?

    NASA Astrophysics Data System (ADS)

    Kimm, Taysun; Slyz, Adrianne; Devriendt, Julien; Pichon, Christophe

    2011-05-01

    Cosmological simulations have shown that dark matter haloes are connected to each other by large-scale filamentary structures. Cold gas flowing within this ‘cosmic web’ is believed to be an important source of fuel for star formation at high redshift. However, the presence of such filamentary gas has never been observationally confirmed despite the fact that its covering fraction within massive haloes at high redshift is predicted to be significant (˜25 per cent). In this Letter, we investigate in detail whether such cold gas is detectable using low-ionization metal absorption lines, such as C IIλ1334, as this technique has a proven observational record for detecting gaseous structures. Using a large statistical sample of galaxies from the MARENOSTRUM N-body+ adaptive mesh refinement (AMR) cosmological simulation, we find that the typical covering fraction of the dense, cold gas in 1012 M⊙ haloes at z˜ 2.5 is lower than expected (˜5 per cent). In addition, the absorption signal by the interstellar medium of the galaxy itself turns out to be so deep and so broad in velocity space that it completely drowns that of the filamentary gas. A detectable signal might be obtained from a cold filament exactly aligned with the line of sight, but this configuration is so unlikely that it would require surveying an overwhelmingly large number of candidate galaxies to tease it out. Finally, the predicted metallicity of the cold gas in filaments is extremely low (≤10-3 Z⊙). If this result persists when higher resolution runs are performed, it would significantly increase the difficulty of detecting filamentary gas inflows using metal lines. However, even if we assume that filaments are enriched to Z⊙, the absorption signal that we compute is still weak. We are therefore led to conclude that it is extremely difficult to observationally prove or disprove the presence of cold filaments as the favourite accretion mode of galaxies using low-ionization metal absorption

  15. Study of the cavity-magnon-polariton transmission line shape

    NASA Astrophysics Data System (ADS)

    Harder, Michael; Bai, LiHui; Match, Christophe; Sirker, Jesko; Hu, CanMing

    2016-11-01

    We experimentally and theoretically investigate the microwave transmission line shape of the cavity-magnon-polariton (CMP) created by inserting a low damping magnetic insulator into a high quality 3D microwave cavity. While fixed field measurements are found to have the expected Lorentzian characteristic, at fixed frequencies the field swept line shape is in general asymmetric. Such fixed frequency measurements demonstrate that microwave transmission can be used to access magnetic characteristics of the CMP, such as the field line width Δ H. By developing an effective oscillator model of the microwave transmission we show that these line shape features are general characteristics of harmonic coupling. At the same time, at the classical level the underlying physical mechanism of the CMP is electrodynamic phase correlation and a second model based on this principle also accurately reproduces the experimental line shape features. In order to understand the microscopic origin of the effective coupled oscillator model and to allow for future studies of CMP phenomena to extend into the quantum regime, we develop a third, microscopic description, based on a Green's function formalism. Using this method we calculate the transmission spectra and find good agreement with the experimental results.

  16. VERY LARGE TELESCOPE SPECTROPOLARIMETRY OF BROAD ABSORPTION LINE QSOs

    SciTech Connect

    DiPompeo, M. A.; Brotherton, M. S.; De Breuck, C.

    2011-03-15

    We present spectropolarimetry of 19 confirmed and four possible bright, southern broad absorption line (BAL) quasars from the European Southern Observatory Very Large Telescope. A wide range of redshifts is covered in the sample (from 0.9 to 3.4), and both low- and high-ionization quasars are represented, as well as radio-loud and radio-quiet BALQSOs. We continue to confirm previously established spectropolarimetric properties of BALQSOs, including the generally rising continuum polarization with shorter wavelengths and comparatively large fraction with high broadband polarization (6 of 19 with polarizations >2%). Emission lines are polarized less than or similar to the continuum, except in a few unusual cases, and absorption troughs tend to have higher polarizations. A search for correlations between polarization properties has been done, identifying two significant or marginally significant correlations. These are an increase in continuum polarization with decreasing optical luminosity (increasing absolute B magnitude) and decreasing C IV emission-line polarization with increased continuum polarization.

  17. Relative f-values from interstellar absorption lines: advantages and pitfalls

    NASA Astrophysics Data System (ADS)

    Jenkins, Edward B.

    2009-05-01

    Interstellar absorption features seen in the ultraviolet and visible spectra of stars provide opportunities for comparing the strengths of different transitions out of the ground electronic states of atoms, ions and simple molecules. In principle, such measurements are straightforward since the radiative transfer is manifested as a simple exponential absorption law at any given radial velocity. Complications arise when the velocity structures of the lines are not completely resolved, or when the lines are either very strongly saturated or too weak to observe. Dynamic range limitations can compromise the comparisons of two transitions that have very different absorption f-values, but they can be mitigated if there are examples with very different column densities and transitions of intermediate strength that can help to bridge the large gap in line strengths. Attempts to unravel the effects of saturation include the use of a curve of growth when only equivalent widths are available, or the measurements of the 'apparent optical depth' when the line is mostly resolved by the instrument. Unfortunately, the application of the curve of growth for one constituent to that of another can sometimes create systematic errors, since the two may have different velocity structures. Likewise, unresolved fine velocity structures in features that have large optical depths can make the apparent optical depths misrepresent the smoothed versions of the true optical depths. One method to compare the strength of a very weak line to that of a very strong one is to measure the total absorption of the former and compare it with the strength of the damping wings of the latter. However in many circumstances, small amounts of gas at velocities well displaced from the line center can masquerade as damping wings. For this reason, it is important to check that these wings have the proper shape.

  18. The First HeI* 10830 Broad Absorption Line Quasar

    NASA Astrophysics Data System (ADS)

    Leighly, Karen; Dietrich, M.; Barber, S.

    2010-03-01

    We report discovery of the first metastable HeI* broad absorption line quasar using SpeX on IRTF. The blue-shifted absorption profile extends in velocity space from about -1,000 to -11,000 km/s, and it shows considerable velocity structure of the order of 1,000 km/s. The maximum apparent optical depth is 0.6. Integration over the 10830 apparent optical depth profile yields a lower limit on the log HeI* column density of >14.3. Absorption is also seen in the HeI* λ3888Å line in optical spectra from SDSS and the MDM Hiltner telescope. These two transitions have the same lower level; thus, the covering fraction and optical depth can be determined. A pure partial covering model yields log HeI* column of 15.5-15.7, while a power law absorption distribution yields 16.1. These column densities are significantly larger than the lower limit because of the high ratio of the product of the wavelength and the oscillator strength (23.3). This property, plus the relatively low densities of HeI* in ionized gas, makes HeI* absorption a valuable probe of high column densities. Cloudy simulations were performed to investigate the nature of the absorber. The HeI* column density yielded a lower limit on the log ionization parameter of -0.2 and a corresponding lower limit on the log hydrogen column density of 23. The latter value is at least an order of magnitude larger than those generally obtained from BALQSOs with spectra amenable to partial covering analysis. The lack of Balmer absorption provided an upper limit on the log density of 7. The log kinetic luminosity was constrained to be between 46 and 48, corresponding to at least 0.3% to a large fraction of the bolometric luminosity. A proposed Suzaku observation may remove model degeneracy between the spectral energy distribution and ionization parameter. This work is funded by NSF AST-0707703.

  19. PREFACE: XXI International Conference on Spectral Line Shapes (ICSLS 2012)

    NASA Astrophysics Data System (ADS)

    Devdariani, Alexander Z.

    2012-12-01

    The 21st International Conference on Spectral Line Shapes, ICSLS, was held in the historic main building of St Petersburg State University (St. Petersburg, Russia) on 3-9 June 2012. The event continued the tradition started in 1978 in Meudon Observatory in Paris. Representatives of line shape physics have since met every two years in different locations in Europe and North America. The most recent events were held in St John's, Newfoundland, Canada (2010), Valladolid, Spain (2008), and Auburn, AL (USA). Traditionally, the conferences consider experimental and theoretical issues of studying spectral line shapes, diagnostic utilization of spectral line profiles observed in absorption, emission or scattering of electromagnetic radiation by atoms, molecules, and clusters in different environments, including neutral environments, laboratory low and fusion plasmas, astrophysical conditions, and planetary atmospheres. The Conference was attended by over 100 professionals from Europe, Asia, America, Africa and New Zealand. The conference program was put together in such a way so as to exclude any parallel sessions. Five afternoon sessions featured 19 invited talks and 20 oral contributions, and two evening sessions offered 61 poster presentations, including post-deadline posters. This setup allowed for a relaxed and unhurried discussion of results and facilitated productive networking. The invited talks were selected by recommendation of members of the International Scientific Committee. The Organizers would like to thank all the members of the International Scientific Committee for their proposals on the agenda and their valuable advice. When considering candidates for oral contributions, the organizers took into account the suggestions and preferences of potential conference participants. When selecting the theses of poster presentations, the organizers focused on the topics in line with the theme of the conference and studies with well-formulated results. It must be

  20. Ultraviolet observations of interstellar absorption lines toward SN 1987A

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Jenkins, Edward B.; Joseph, Charles L.; De Boer, Klass S.

    1989-01-01

    High-dispersion IUE echelle spectra of SN 1987A were averaged in order to obtain UV absorption-line profiles of the highest possible quality in the direction of SN 1987A. The profiles for Si IV and C IV are quite similar and have much less structure than the Al III profile. On relating column densities, while the C IV and Si IV ratio is relatively constant over the 0-100 km/s velocity range, the C IV to Al III and Si IV to Al III ratios vary by nearly a factor of 10. This suggests that the C IV and Si IV along this sight line in the Galaxy and its halo may have a common origin which differs from that for Al III.

  1. High Precision Assembly Line Synthesis for Molecules with Tailored Shapes

    PubMed Central

    Burns, Matthew; Essafi, Stephanie; Bame, Jessica R.; Bull, Stephanie P.; Webster, Matthew P.; Balieu, Sebastien; Dale, James W.; Butts, Craig P.; Harvey, Jeremy N.; Aggarwal, Varinder K.

    2014-01-01

    Molecular assembly lines, where molecules undergo iterative processes involving chain elongation and functional group manipulation are hallmarks of many processes found in Nature. We have sought to emulate Nature in the development of our own molecular assembly line through iterative homologations of boronic esters. Here we report a reagent (α-lithioethyl triispopropylbenzoate) which inserts into carbon-boron bonds with exceptionally high fidelity and stereocontrol. Through repeated iteration we have converted a simple boronic ester into a complex molecule (a carbon chain with ten contiguous methyl groups) with remarkably high precision over its length, its stereochemistry and therefore its shape. Different stereoisomers were targeted and it was found that they adopted different shapes (helical/linear) according to their stereochemistry. This work should now enable scientists to rationally design and create molecules with predictable shape, which could have an impact in all areas of molecular sciences where bespoke molecules are required. PMID:25209797

  2. X-ray line shapes of metals: Exact solutions of a final-state interaction model

    NASA Astrophysics Data System (ADS)

    Swarts, Coenraad A.; Dow, John D.

    2005-10-01

    By means of model calculations for an independent-electron metal, we obtain exact line shapes for the photon absorption, emission, and photoemission spectra of core states, including electronic relaxation. In all cases we find an x-ray edge anomaly. For the absorption and emission spectra this anomaly is superposed on a continuum resembling Elliott exciton theory. We display how the spectra evolve from the exciton limit to the free-electron limit as the final-state interaction strength is decreased or the Fermi energy increased. We compare the spectra obtained for different final-state interactions and find that different types of interactions produce different spectral shapes. Away from threshold the absorption and emission profiles show an enhancement of the free-electron result, as predicted by the screened-exciton theory. Our results offer potential explanations for (i) incompatibilities between threshold exponents and exponents extracted from other data, (ii) the occurrence of nearly symmetric x-ray photoemission lines, and (iii) the lack of mirror symmetry of absorption and emission edges.

  3. Carbon Auger line shape study of nitroaromatic explosives

    SciTech Connect

    Rogers, J.W. Jr.; Peebles, H.C.; Rye, R.R.; Houston, J.E.; Binkley, J.S.

    1984-05-01

    The C(KVV) Auger line shapes of a series of nitroaromatic explosives have been compared to condensed benzene. Energy shifts of the pi levels in TNB (1,3,5-trinitrobenzene) and TNT (2,4,6-trinitrotoluene) and charge redistribution caused by the resonance electron withdrawing effect of the nitro groups lead to changes in the Auger line shape of transitions involving these levels compared to those of benzene. In MATB (1-amino-2,4,6-trinitrobenzene), DATB (1,3-diamino-2,4,6-trinitrobenzene), and TATB (1,3,5-triamino-2,4,6-trinitrobenzene), the amino groups form resonant structures with the aromatic ring and donate charge density into the ring pi levels. This more than compensates for the charge density withdrawn by the nitro groups. As a result, an amino-carbon pi level is populated which leads to dramatic changes in the energy and intensity of the leading edge of the C(KVV) line shape for these compounds. Hole-hole correlation in the final state causes only small changes in line shape. The relative explosive shock initiation sensitivity of TNB and TNT, where the intermolecular bonding is weak, correlates with the observed Auger line shape changes and reflects the relative ring stability of these aromatic molecules. However, the addition of amino groups in MATB, DATB, and TATB decreases the ring bonding, as reflected in the Auger spectra, in favor of intra- and intermolecular hydrogen bond formation and the initiation sensitivity no longer correlates with ring bonding strength.

  4. Monitoring the variability of intrinsic absorption lines in quasar spectra , ,

    SciTech Connect

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ∼10{sup 3}-10{sup 5} cm{sup –3} and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.

  5. Laser line shape and spectral density of frequency noise

    SciTech Connect

    Stephan, G.M.; Blin, S.; Besnard, P.; Tam, T.T.; Tetu, M.

    2005-04-01

    Published experimental results show that single-mode laser light is characterized in the microwave range by a frequency noise which essentially includes a white part and a 1/f (flicker) part. We theoretically show that the spectral density (the line shape) which is compatible with these results is a Voigt profile whose Lorentzian part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified that the width of the Lorentzian part varies like 1/P where P is the laser power while the width of the Gaussian part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part originates from population noise.

  6. Thomson Thick X-Ray Absorption in a Broad Absorption Line Quasar, PG 0946+301.

    PubMed

    Mathur; Green; Arav; Brotherton; Crenshaw; deKool; Elvis; Goodrich; Hamann; Hines; Kashyap; Korista; Peterson; Shields; Shlosman; van Breugel W; Voit

    2000-04-20

    We present a deep ASCA observation of a broad absorption line quasar (BALQSO) PG 0946+301. The source was clearly detected in one of the gas imaging spectrometers, but not in any other detector. If BALQSOs have intrinsic X-ray spectra similar to normal radio-quiet quasars, our observations imply that there is Thomson thick X-ray absorption (NH greater, similar1024 cm-2) toward PG 0946+301. This is the largest column density estimated so far toward a BALQSO. The absorber must be at least partially ionized and may be responsible for attenuation in the optical and UV. If the Thomson optical depth toward BALQSOs is close to 1, as inferred here, then spectroscopy in hard X-rays with large telescopes like XMM would be feasible.

  7. Spectral line parameters including line shapes in the 2ν3 Q branch of 12CH4

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.; Yu, Shanshan; Smith, Mary Ann H.; Mantz, Arlan W.; Boudon, Vincent; Ismail, Syed

    2016-07-01

    In this study, we report the first experimental measurements of spectral line shape parameters (self- and air-broadened Lorentz half-widths, pressure-shifts, and line mixing (via off-diagonal relaxation matrix elements) coefficients and their temperature dependences, where appropriate) for transitions in the 2ν3 Q branch manifolds, Q(11)-Q(1) of methane (12CH4), in the 5996.5-6007-cm-1 region. The analysis included 23 high-resolution, high signal-to-noise laboratory absorption spectra recorded with the Bruker IFS-125HR Fourier transform spectrometer (FTS) at JPL. The experimental data were obtained using 12C-enriched 12CH4 and dilute mixtures of 12CH4 in dry air in the 130-296 K range using a room-temperature long path absorption cell and, two custom-built coolable cells. In the analysis, an interactive multispectrum fitting software was employed where all the 23 spectra (11 self-broadened and 12 air-broadened) were fit simultaneously. By carefully applying reasonable constraints to the parameters for severely blended lines, we were able to determine a self-consistent set of broadening, shift and line mixing (relaxation matrix coefficients) parameters for CH4-CH4 and CH4-air collisions. In the majority of cases, a quadratic speed dependence parameter common for all transitions in each Q(J) manifold was determined. However, temperature dependences of the Q branch line mixing parameter could not be determined from the present data. Since no other experimental line shape measurements have been reported for this Q-branch, the present results are compared to available values in the HITRAN2012 database.

  8. Extension of the quasistatic far-wing line shape theory to multicomponent anisotropic potentials

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1994-01-01

    The formalism developed previously for the calculation of the far-wing line shape function and the corresponding absorption coefficient using a single-component anisotropic interaction term and the binary collision and quasistatic approximations is generalized to multicomponent anisotropic potential functions. Explicit expressions are presented for several common cases, including the long-range dipole-dipole plus dipole-quadrupole interaction and a linear molecule interacting with a perturber atom. After determining the multicomponent functional representation for the interaction between the CO2 and Ar from previously published data, we calculate the theoretical line shape function and the corresponding absorption due to the nu(sub 3) band of CO2 in the frequency range 2400-2580 cm(exp -1) and compare our results with previous calculations carried out using a single-component anisotropic interaction, and with the results obtained assuming Lorentzian line shapes. The principal uncertainties in the present results, possible refinements of the theoretical formalism, and the applicability to other systems are discussed briefly.

  9. The shape of spectral lines: The importance of the far wings

    NASA Technical Reports Server (NTRS)

    Tipping, Richard

    1995-01-01

    Spectroscopy, the study of the interaction of radiation and matter, provides most of the information we have gleaned about the composition, structure, and evolution of the universe. As is well known, by measuring the frequencies of spectral lines in absorption or emission, one can uniquely infer the presence of atoms or molecules as well as their physical state and environment (e.g., solid or gaseous, neutral or ionized, moving or stationary, etc.). Furthermore, by studying the intensities of these lines, one can determine the abundance (i.e., number of a particular species per unit volume). Although less well known, the shape of the spectral lines, in particular, the structure of the far wings, plays a very important role in many important atmospheric phenomena such as the greenhouse effect or the absorption of harmful ultraviolet radiation. Although first measured more than 50 years ago, the anomalous absorption of radiation by water vapor in the earth's atmosphere was postulated to be due to far wings of allowed lines. However, only within the past few years has a quantitative verification of this hypothesis been possible through the development of an accurate theoretical description of the shape of self-broadened water lines. During the summer, work has been done on improving this theory and in comparing the results to other theories valid near the center of the lines. The relevance of this work to measurements of greenhouse gases, of earth-based measurements of the 3 K cosmic background radiation, of satellite-based measurements of the atmospheres of the earth and other planets, and other similar problems will be discussed briefly.

  10. Outflow and hot dust emission in broad absorption line quasars

    SciTech Connect

    Zhang, Shaohua; Zhou, Hongyan; Wang, Huiyuan; Wang, Tinggui; Xing, Feijun; Jiang, Peng; Zhang, Kai E-mail: whywang@mail.ustc.edu.cn

    2014-05-01

    We have investigated a sample of 2099 broad absorption line (BAL) quasars with z = 1.7-2.2 built from the Sloan Digital Sky Survey Data Release Seven and the Wide-field Infrared Survey. This sample is collected from two BAL quasar samples in the literature and is refined by our new algorithm. Correlations of outflow velocity and strength with a hot dust indicator (β{sub NIR}) and other quasar physical parameters—such as an Eddington ratio, luminosity, and a UV continuum slope—are explored in order to figure out which parameters drive outflows. Here β{sub NIR} is the near-infrared continuum slope, which is a good indicator of the amount of hot dust emission relative to the accretion disk emission. We confirm previous findings that outflow properties moderately or weakly depend on the Eddington ratio, UV slope, and luminosity. For the first time, we report moderate and significant correlations of outflow strength and velocity with β{sub NIR} in BAL quasars. It is consistent with the behavior of blueshifted broad emission lines in non-BAL quasars. The statistical analysis and composite spectra study both reveal that outflow strength and velocity are more strongly correlated with β{sub NIR} than the Eddington ratio, luminosity, and UV slope. In particular, the composites show that the entire C IV absorption profile shifts blueward and broadens as β{sub NIR} increases, while the Eddington ratio and UV slope only affect the high and low velocity part of outflows, respectively. We discuss several potential processes and suggest that the dusty outflow scenario, i.e., that dust is intrinsic to outflows and may contribute to the outflow acceleration, is most likely.

  11. Monitoring the Variability of Intrinsic Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ~103-105 cm-3 and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage. Based on data collected at Subaru telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations obtained at the European Southern Observatory at La Silla, Chile in programs 65.O-0063(B), 65.O-0474(A), 67.A-0078(A), 68.A-0461(A), 69.A-0204(A), 70.B-0522(A), 072.A-0346(A), 076.A-0860(A), 079.B-0469(A), and 166.A-0106(A).

  12. First Observation of the {Lambda}(1405) Line Shape in Electroproduction

    SciTech Connect

    Lu, Haiyun; Schumacher, Reinhard A.

    2013-10-01

    We report the first observation of the line shape of the {Lambda}(1405) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K{sup +}{Lambda}(1405) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0line shape. In our fits, the line shape corresponds approximately to predictions of a two-pole meson-baryon picture of the {Lambda}(1405), with a lower mass pole near 1368 MeV/c{sup 2} and a higher mass pole near 1423 MeV/c{sup 2}. Furthermore, with increasing photon virtuality the mass distribution shifts toward the higher mass pole.

  13. The Physical Nature of Polar Broad Absorption Line Quasars

    NASA Technical Reports Server (NTRS)

    Ghost, Kajal; Punsly, Brian

    2007-01-01

    It has been shown based on radio variability arguments that some BALQSOs (broad absorption line quasars) are viewed along the polar axis (o rthogonal to accretion disk) in the recent article of Zhou et a. Thes e arguments are based on the brightness temperature, T(sub b) exceedi ng 10(exp 12) K which leads to the well-known inverse Compton catastr ophe unless the radio jet is relativistic and is viewed along its axi s. In this letter, we expand the Zhou et al sample of polar BALQSOs u sing their techniques applied to SDSS DR5. In the process, we clarify a mistake in their calculation of brightness temperature. The expanded sample of high T(sub b) BALQSOS, has an inordinately large fraction of LoBALQSOs (low ionization BALQSOs). We consider this an important clue to understanding the nature of the polar BALQSOs. This is expec ted in the polar BALQSO analytical/numerical models of Punsly that pr edicted that LoBALQSOs occur when the line of sight is very close to the polar axis, where the outflow density is the highest.

  14. Shape of the absorption and fluorescence spectra of condensed phases and transition energies.

    PubMed

    Lagos, Miguel; Paredes, Rodrigo

    2014-11-13

    General integral expressions for the temperature-dependent profile of the spectral lines of photon absorption and emission by atomic or molecular species in a condensed environment are derived with no other hypothesis than: (a) The acoustic vibrational modes of the condensed host medium constitute the thermodynamic energy reservoir at a given constant temperature, and local electronic transitions modifying the equilibrium configuration of the surroundings are multiphonon events, regardless of the magnitude of the transition energy. (b) Electron-phonon coupling is linear in the variations of the bond length. The purpose is to develop a theoretical tool for the analysis of the spectra, allowing us to grasp highly accurate information from fitting the theoretical line shape function to experiment, including those spectra displaying wide features. The method is illustrated by applying it to two dyes, Lucifer Yellow CH and Coumarin 1, which display fluorescence maxima of 0.41 and 0.51 eV fwhm. Fitting the theoretical curves to the spectra indicates that the neat excitation energies are 2.58 eV ± 2.5% and 3.00 eV ± 2.0%, respectively.

  15. CO Emission from Low-Redshift QSO Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Bechtold, J.; Black, J. H.

    1994-12-01

    By studying the physical conditions in galaxies at different redshifts, we can begin to understand the evolutionary process of starformation from early epochs to the present. Such studies have been performed at optical and centimeter wavelengths for a number of years. Due to advances in receiver and telescope technology at millimeter and submillimeter wavelengths, molecular line studies have recently been performed toward high redshift absorption line systems. Observations of the mm/submm CO lines in these very young galaxies provide a way to investigate abundances of and conditions in potential starforming material. CO provides some of the strongest emission lines associated with star formation in nearby disk galaxies. Here we report the detection of CO in emission toward 4 galaxies at redshifts of 0.02 to 0.40. From these observations we are able to compute the molecular mass of the starforming material. Studies of starformation in galaxies at low to mid-redshift ranges are important, because these systems represent a transitional phase between starformation at early epochs and the present. Our recent detections of CO emission indicate total molecular masses in three of the galaxies to be a few times 10(9) Msun, using the ``standard conversion factor'' for molecular hydrogen column density to integrated CO intensity ratio (N(H_2)/Ico) and an H_o=75km/s/Mpc and q_o= 0.5. The fourth system, the z=0.40 21 cm absorber toward PKS 1229-021, has a molecular mass of ~ 10(11) M_sunh(-2) . Together with data at other wavelengths, the z=0.40 absorber may be a in pre-starburst phase. All four of our sources were selected to be metal line systems (with high HI column densities) and possess strong FIR fluxes detected by IRAS at 60 and/or 100{microns }. The source possessing the brightest FIR emission among the four is the z=0.05 21 cm absorber toward S4 0248+43. The total observed FIR luminosity for this source is LFIR =3.0x10E11 Lsun. Taking into account its luminosity and

  16. DISCOVERY OF THE TRANSITION OF A MINI-BROAD ABSORPTION LINE INTO A BROAD ABSORPTION LINE IN THE SDSS QUASAR J115122.14+020426.3

    SciTech Connect

    Hidalgo, Paola Rodriguez; Eracleous, Michael; Charlton, Jane; Hamann, Fred; Murphy, Michael T.; Nestor, Daniel

    2013-09-20

    We present the detection of a rare case of dramatic strengthening in the UV absorption profiles in the spectrum of the quasar J115122.14+020426.3 between observations {approx}2.86 yr apart in the quasar rest frame. A spectrum obtained in 2001 by the Sloan Digital Sky Survey shows a C IV ''mini-broad'' absorption line (FWHM = 1220 km s{sup -1}) with a maximum blueshift velocity of {approx}9520 km s{sup -1}, while a later spectrum from the Very Large Telescope shows a significantly broader and stronger absorption line, with a maximum blueshift velocity of {approx}12, 240 km s{sup -1} that qualifies as a broad absorption line. A similar variability pattern is observed in two additional systems at lower blueshifted velocities and in the Ly{alpha} and N V transitions as well. One of the absorption systems appears to be resolved and shows evidence for partial covering of the quasar continuum source (C{sub f} {approx} 0.65), indicating a transverse absorber size of, at least, {approx}6 Multiplication-Sign 10{sup 16} cm. In contrast, a cluster of narrower C IV lines appears to originate in gas that fully covers the continuum and broad emission line sources. There is no evidence for changes in the centroid velocity of the absorption troughs. This case suggests that at least some of the absorbers that produce ''mini-broad'' and broad absorption lines in quasar spectra do not belong to intrinsically separate classes. Here, the ''mini-broad'' absorption line is most likely interpreted as an intermediate phase before the appearance of a broad absorption line due to their similar velocities. While the current observations do not provide enough constraints to discern among the possible causes for this variability, future monitoring of multiple transitions at high resolution will help achieve this goal.

  17. Spectral shape of the UV ionizing background and He II absorption at redshifts 1.8 < z < 2.9

    NASA Astrophysics Data System (ADS)

    Agafonova, I. I.; Levshakov, S. A.; Reimers, D.; Fechner, C.; Tytler, D.; Simcoe, R. A.; Songaila, A.

    2007-01-01

    Aims:The shape of the UV ionizing background is reconstructed from optically thin metal absorption-line systems identified in spectra of HE 2347-4342, Q 1157+3143, and HS 1700+6416 in the redshift interval 1.8 < z < 2.9. Methods: The systems are analyzed by means of the Monte Carlo Inversion method completed with the spectral shape recovering procedure. Results: The UVB spectral shape fluctuates at 2.4 < z < 2.9 mostly due to radiative transfer processes in the clumpy IGM. At z ⪉ 1.8, the IGM becomes almost transparent both in the H I and He II Lyman continua and the variability of the spectral shape comes from diversity of spectral indices describing the QSO/AGN intrinsic radiation. At z > 2.4, the recovered spectral shapes show intensity depression between 3 and 4 Ryd due to He II Lyα absorption in the IGM clouds (line blanketing) and continuous medium (true Gunn-Petersen effect). The mean He II Lyα opacity estimated from the depth of this depression corresponds within 1-2σ to the values directly measured from the H I/He II Lyα forest towards the quasars studied. The observed scatter in η = N(He II)/N(H I) and anti-correlation between N(H I) and η can be explained by the combined action of variable spectral softness and differences in the mean gas density between the absorbing clouds. Neither of the recovered spectral shapes show features which can be attributed to the putative input of radiation from soft sources like starburst galaxies.

  18. Propagation of femtosecond pulse with self-similar shape in medium with nonlinear absorption

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Zakharova, Irina G.

    2015-05-01

    We investigate the propagation of laser pulse with self-similar shape in homogeneous medium with various mechanisms of nonlinear absorption: multi-photon absorption or resonant nonlinearity under detuning the frequency, corresponding to energy transition, from the current frequency of wave packet, or nonlinear absorption with its saturation. Both types of sign for frequency detuning are considered. This results in appearance of a refractive index grating which induced a laser pulse self-action. We analyze also the influence of the laser pulse self-modulation due to cubic nonlinearity on existence of the laser pulse propagation mode with self-similar shape. We develop an analytical solution of the corresponding nonlinear eigenfunction problem for laser pulse propagation in medium with nonlinear absorption. This solution is confirmed by computer simulation of the eigenfunction problem for Schrödinger equation with considered nonlinearity. This mode of laser pulse propagation is very important for powerful TW laser pulse propagating in glass.

  19. THE VIEWING ANGLES OF BROAD ABSORPTION LINE VERSUS UNABSORBED QUASARS

    SciTech Connect

    DiPompeo, M. A.; Brotherton, M. S.; De Breuck, C.

    2012-06-10

    It was recently shown that there is a significant difference in the radio spectral index distributions of broad absorption line (BAL) quasars and unabsorbed quasars, with an overabundance of BAL quasars with steeper radio spectra. This result suggests that source orientation does play into the presence or absence of BAL features. In this paper, we provide more quantitative analysis of this result based on Monte Carlo simulations. While the relationship between viewing angle and spectral index does indeed contain a lot of scatter, the spectral index distributions are different enough to overcome that intrinsic variation. Utilizing two different models of the relationship between spectral index and viewing angle, the simulations indicate that the difference in spectral index distributions can be explained by allowing BAL quasar viewing angles to extend about 10 Degree-Sign farther from the radio jet axis than non-BAL sources, though both can be seen at small angles. These results show that orientation cannot be the only factor determining whether BAL features are present, but it does play a role.

  20. X-Ray Continua of Broad Absorption Line Quasars

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    The targets for this program, PG1416-129 and LBQS 2212-1759 were known to be Broad Absorption Line Quasars (BALQSOs). BALQSOs are highly absorbed in soft X-rays. Good high energy response of Rossi-XTE made them ideal targets for observation. We observed LBQS 2212-1759 with PCA. We have now analyzed the data and found that the source was not detected. Since our target was expected to be faint, reliable estimate of background was very important. With the release of new FTOOLS (version 4.1) we were able to do so. We also analyzed a well known bright object and verified our results with the published data. This gave us confidence in the non-detection of our target LBQS 2212-1759. We are currently investigating the implications of this non-detection. Due to some scheduling problems, our second target PG1416-129 was not observed in A01. It was observed on 06/26/98. This target was detected with RXTE. We are now working on the spectral analysis with XSPEC.

  1. Line by Line Analysis of Carbon Dioxide Absorption for Predicting Global Warming

    NASA Astrophysics Data System (ADS)

    Smith, D. C.

    2010-12-01

    The anthropologic cause of global warming rests on the impact of CO2 on the green house effect. Previous derivations of the increase in the CO2 Forcing Function caused by doubling of atmospheric CO2 from 320 ppm to 640 ppm reported a value of 4 W/M2( Ramananathan,V,et al, J.of Geophysical Research Vol 84, C8,p4949, Aug.1979) This value leads to a calculated temperature rise of 1 deg.K (Charney,J. et al,”Carbon Dioxide and Climate: A Scientific Assessment”, National Academy of Science, Washington D.C., 1979). This increase in global temperature leads to an increase in water vapor if it is assumed that the relative humidity is constant. This ampflication leads to a calculated temperature rise of an additional 2 deg.K. Different arguments as to the effects of the earth’s albido change, clouds, and the oceans also impact the earths global warming with predictions of total temperature rise of as high as 6 deg.K { IPCC,2007 Summary for Policymakers. In: Climate Change 2007: The Physical Sciences Basis. Contributions of Working Group 1 to the Fourth Assessment Report of the IPCC [ Solomon,S,D. et al (eds)] Cambridge University Press, NY,USA}. Regardless of the other effects, the only way that man can be held responsible for global warming is by CO2 emissions and the resulting increase in the Forcing Function. This paper challenges the magnitude of the 4 W/M2 Forcing Function. The earth radiates in the 4 to 30 micron wavelength range. CO2 has absorption bands in the 4, 10, and 15 micron wavelengths (Hertzberg G. Molecular Spectra & Molecular Structure,Norstrand Co.,1960). McClatchey has tabulated the line stengths for all CO2 transitions and they are used to calculate the atmospheric absorption (McClatchey,R, et al “AFCRL Atmospheric Absorption Line Parameter Compilation”,AFCRL-TR-0096,1973). Detailed calculations of the CO2 line absorption in the 8 to 12 micron atmospheric window shows an increase of 0.3 W/M2 for CO2 doubling. The increase in absorbed fluence in

  2. Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration

    NASA Astrophysics Data System (ADS)

    Huang, Yongjun; Tian, Yiran; Wen, Guangjun; Zhu, Weiren

    2013-05-01

    In this paper, we systematically discuss a novel planar metamaterial absorber (PMA) based on asymmetrical snowflake-shaped resonators, which can exhibit two distinctly different absorption states, single- and dual-band absorptions, by controlling the branch lengths of the proposed resonators. Numerical simulations and experimental measurements are employed to investigate these two kinds of absorption characteristic in an X-band rectangular waveguide. Both results indicate that such a PMA exhibits a wide range of controllable operating frequencies for the single- and dual-band conditions. The proposed PMA is simple and easy to make, and it has wide applications in the fields of stealth technologies, thermal detectors, and imaging.

  3. PREFACE: XXII International Conference on Spectral Line Shapes 2014

    NASA Astrophysics Data System (ADS)

    Parigger, C. G.

    2014-11-01

    The 22nd International Conference on Spectral Line Shapes (ICSLS) was convened at The University of Tennessee Space Institute (UTSI) at Tullahoma, Tennessee, USA, during June 1 to 6, 2014. A variety of topics of interest to the line shape community were addressed during invited and contributed oral and poster presentations. General categories of the ICSLS 2014 scientific contents included Astrophysics, Biomedical Physics, High and Low Temperature Plasma Physics, Magnetic Fusion Physics, Neutrals Atomic-Molecular-Optical (AMO) Physics, and Applied Physics. Research interests at UTSI and at the Center for Laser Applications (CLA) focus on Applied Physics and Plasma Physics areas such as laser-induced breakdown spectroscopy, spectroscopy with ultra-short light pulses, combustion diagnostics, to name a few. Consequently, the presentations during the conference addressed a variety of these topics. Attendance at the conference included researchers from North America, Africa, Asia and Europe, with an international representation showing 250 authors and co-authors with over 25 different citizenships, and 100 participants at the Conference. Figure 1 shows a photo of Conference attendees. The schedule included 82 contributions, 41 oral and 41 poster presentations. The 29 invited, 12 contributed oral and 41 contributed poster presentations were selected following communication with the international organizing committee members. A smart phone ''app'' was also utilized, thanks to Elsevier, to communicate electronic versions of the posters during the conference. Special thanks go to the members of the international and local committees for their work in organizing the 22nd ICSLS. In addition, thank you notes also go to the peer reviewers for the proceedings. Following the success of the IOP: Journal of Physics Conference Series selected for the 21st ICSLS publication, the proceedings papers report ongoing research activities. Papers submitted amount to 68 in number, or 83% of

  4. Anomalous optogalvanic line shapes of argon metastable transitions in a hollow cathode lamp

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.

    1993-01-01

    Anomalous optogalvanic line shapes were observed in a commercial hollow cathode lamp containing argon buffer gas. Deviations from Gaussian line shapes were particularly strong for transitions originating from the 3P2 metastable level of argon. The anomalous line shapes can be described reasonably well by the assumption that two regions in the discharge are excited simultaneously, each giving rise to a purely Gaussian line shape, but with different polarities, amplitudes, and linewidths.

  5. Tracing inflows and outflows with absorption lines in circumgalactic gas

    NASA Astrophysics Data System (ADS)

    Ford, Amanda Brady; Davé, Romeel; Oppenheimer, Benjamin D.; Katz, Neal; Kollmeier, Juna A.; Thompson, Robert; Weinberg, David H.

    2014-10-01

    We examine how H I and metal absorption lines within low-redshift galaxy haloes trace the dynamical state of circumgalactic gas, using cosmological hydrodynamic simulations that include a well-vetted heuristic model for galactic outflows. We categorize inflowing, outflowing, and ambient gas based on its history and fate as tracked in our simulation. Following our earlier work, showing that the ionization level of absorbers was a primary factor in determining the physical conditions of absorbing gas, we show here that it is also a governing factor for its dynamical state. Low-ionization metal absorbers (e.g. Mg II) tend to arise in gas that will fall on to galaxies within several Gyr, while high-ionization metal absorbers (e.g. O VI) generally trace material that was deposited by outflows many Gyr ago. Inflowing gas is dominated by enriched material that was previously ejected in an outflow; hence, accretion at low redshifts is typically substantially enriched. Recycling wind material is preferentially found closer to galaxies, and is more dominant in lower mass haloes since high-mass haloes have more hot gas that is able to support itself against infall. Low-mass haloes also tend to re-eject more of their accreted material, owing to our outflow prescription that employs higher mass loading factors for lower mass galaxies. Typical H I absorbers trace unenriched ambient material that is not participating in the baryon cycle, but stronger H I absorbers arise in cool, enriched inflowing gas. Instantaneous radial velocity measures of absorbers are generally poor at distinguishing between inflowing and outflowing gas, except in the case of very recent outflows. These results suggest that probing halo gas using a range of absorbers can provide detailed information about the amount and physical conditions of material that is participating in the baryon cycle.

  6. Line Shape Variability in a Sample of AGN with Broad Lines

    NASA Astrophysics Data System (ADS)

    Ilić, D.; Popović, L. Č.; Shapovalova, A. I.; Burenkov, A. N.; Chavushyan, V. H.; Kovačević, A.

    2015-12-01

    The spectral variability of active galactic nuclei (AGN) is one of the key features that enables us to study in more detail, the structure of AGN emitting regions. Especially, the broad line profiles that vary both in flux and shape, give us invaluable information about the kinematics and geometry of the broad line region (BLR) where these lines are originating from. We give here a comparative review of the line shape variability in a sample of five type 1 AGNs, those with broad emission lines in their spectra, of the data obtained from the international long-term optical monitoring campaign coordinated by the Special Astrophysical Observatory of the Russian Academy of Science. The main aim of this campaign is to study the physics and kinematics of the BLR on a uniform data set, focusing on the problems of the photoionization heating of the BLR and its geometry, where, in this paper, we give for a first time, a comparative analysis of the variabilty of five type 1 AGNs, discussing their complex BLR physics and geometry in the framework of the estimates of the supermassive black hole mass in AGN.

  7. Studying Velocity Turbulence from Doppler-broadened Absorption Lines: Statistics of Optical Depth Fluctuations

    SciTech Connect

    Lazarian, A.; Pogosyan, D.

    2008-10-10

    We continue our work on developing techniques for studying turbulence with spectroscopic data. We show that Doppler-broadened absorption spectral lines, in particular, saturated absorption lines, can be used within the framework of the previously introduced technique termed the velocity coordinate spectrum (VCS). The VCS relates the statistics of fluctuations along the velocity coordinate to the statistics of turbulence; thus, it does not require spatial coverage by sampling directions in the plane of the sky. We consider lines with different degree of absorption and show that for lines of optical depth less than one, our earlier treatment of the VCS developed for spectral emission lines is applicable, if the optical depth is used instead of intensity. This amounts to correlating the logarithms of absorbed intensities. For larger optical depths and saturated absorption lines, we show that only wings of the line are available for the analysis. In terms of the VCS formalism, this results in introducing an additional window, whose size decreases with the increase of the optical depth. As a result, strongly saturated absorption lines only carry the information about the small-scale turbulence. Nevertheless, the contrast of the fluctuations corresponding to the small-scale turbulence increases with the increase of the optical depth, which provides advantages for studying turbulence by combining lines with different optical depths. By combining different absorption lines one can develop a tomography of the turbulence in the interstellar gas in all its complexity.

  8. What Drives the Outflows in Broad Absorption Line QSOs?

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1997-01-01

    We have made progress in the areas related to the propulsion and confinement of gas responsible for broad absorption troughts in QSOs: Radiative Acceleration in BALQSOs; The "Ghost" of Lyman (alpha); and Magnetic Confinement of Absorbing Gas.

  9. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029--Ejected or Intervening?

    NASA Technical Reports Server (NTRS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-01-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of z(sub abs) = 0.695 in the spectrum of the z(sub em) = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km/s is detected from C iv, N v, and O vi in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM approx. 250 km/s) at z(sub abs) = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C iv, N v, and O vi doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by approx. 56,000 km/s to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km/s from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  10. Absorption Efficiencies of Forsterite. I. Discrete Dipole Approximation Explorations in Grain Shape and Size

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean S.; Wooden, Diane H.; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R.

    2013-03-01

    We compute the absorption efficiency (Q abs) of forsterite using the discrete dipole approximation in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8-40 μm wavelength range. Using the DDSCAT code, we compute Q abs for non-spherical polyhedral grain shapes with a eff = 0.1 μm. The shape characteristics identified are (1) elongation/reduction along one of three crystallographic axes; (2) asymmetry, such that all three crystallographic axes are of different lengths; and (3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 μm, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1-1.0 μm) shifts the 10 and 11 μm features systematically toward longer wavelengths and relative to the 11 μm feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet, or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 to 40 μm spectra provides a potential means to probe the temperatures at which forsterite formed.

  11. Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size

    NASA Technical Reports Server (NTRS)

    Lindsay, Sean S.; Wooden, Diane; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R.

    2013-01-01

    We compute the absorption efficiency (Q(sub abs)) of forsterite using the discrete dipole approximation (DDA) in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8 - 40 micron wavelength range. Using the DDSCAT code, we compute Q(sub abs) for non-spherical polyhedral grain shapes with a(sub eff) = 0.1 micron. The shape characteristics identified are: 1) elongation/reduction along one of three crystallographic axes; 2) asymmetry, such that all three crystallographic axes are of different lengths; and 3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 micron, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1 - 1.0 micron) shifts the 10, 11 micron features systematically towards longer wavelengths and relative to the 11 micron feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 - 40 micron spectra provides a potential means to probe the temperatures at which forsterite formed.

  12. ABSORPTION EFFICIENCIES OF FORSTERITE. I. DISCRETE DIPOLE APPROXIMATION EXPLORATIONS IN GRAIN SHAPE AND SIZE

    SciTech Connect

    Lindsay, Sean S.; Wooden, Diane H.; Harker, David E.; Kelley, Michael S.; Woodward, Charles E.; Murphy, Jim R. E-mail: diane.h.wooden@nasa.gov E-mail: msk@astro.umd.edu E-mail: murphy@nmsu.edu

    2013-03-20

    We compute the absorption efficiency (Q{sub abs}) of forsterite using the discrete dipole approximation in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8-40 {mu}m wavelength range. Using the DDSCAT code, we compute Q{sub abs} for non-spherical polyhedral grain shapes with a{sub eff} = 0.1 {mu}m. The shape characteristics identified are (1) elongation/reduction along one of three crystallographic axes; (2) asymmetry, such that all three crystallographic axes are of different lengths; and (3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 {mu}m, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1-1.0 {mu}m) shifts the 10 and 11 {mu}m features systematically toward longer wavelengths and relative to the 11 {mu}m feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet, or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 to 40 {mu}m spectra provides a potential means to probe the temperatures at which forsterite formed.

  13. High resolution gamma-ray astronomy - Observations and predictions of line shapes

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Dipen; Gehrels, Neil

    1991-01-01

    The shapes of gamma-ray lines carry unique information about the physical processes and conditions in astrophysical sites. Galactic center and SN 1987A lines have been observationally resolved allowing their shapes to be studied. There are also significant new theoretical results concerning line shapes from Type I supernovae, supernova remnants and the interstellar medium. New work is presented on a simple treatment of line profiles for rotating disks and spherical shells.

  14. Is there a connection between broad absorption line quasars and narrow-line Seyfert 1 galaxies?

    SciTech Connect

    Grupe, Dirk; Nousek, John A.

    2015-02-01

    We consider whether broad absorption line quasars (BAL QSOs) and narrow-line Seyfert 1 galaxies (NLS1s) are similar, as suggested by Brandt and Gallagher and Boroson. For this purpose, we constructed a sample of 11 BAL QSOs from existing Chandra and Swift observations. We found that BAL QSOs and NLS1s both operate at high Eddington ratios L/L{sub Edd}, although BAL QSOs have slightly lower L/L{sub Edd}. BAL QSOs and NLS1s in general have high Fe ii/Hβ and low [O iii]/Hβ ratios following the classic “Boroson and Green” eigenvector 1 relation. We also found that the mass accretion rates M-dot of BAL QSOs and NLS1s are more similar than previously thought, although some BAL QSOs exhibit extreme mass accretion rates of more than 10 M{sub ⊙} yr{sup −1}. These extreme mass accretion rates may suggest that the black holes in BAL QSOs are relativistically spinning. Black hole masses in BAL QSOs are a factor of 100 larger than NLS1s. From their location on a M−σ plot, we find that BAL QSOs contain fully developed black holes. Applying a principal component analysis to our sample, we find eigenvector 1 to correspond to the Eddington ratio L/L{sub Edd}, and eigenvector 2 to black hole mass.

  15. Foreign-gas broadening of nitrous oxide absorption lines.

    NASA Technical Reports Server (NTRS)

    Tubbs, L. D.; Williams, D.

    1972-01-01

    We have measured the foreign-gas broadening coefficients for collisional broadening of lines in the nu-3 fundamental of N2O by He, Ne, Ar, Kr, Xe, H2, D2, and CH4. These coefficients, which give the ratio of the line-broadening ability of these gases to the line-broadening ability of N2, can be used with recent measurements and calculations of N2 broadening to obtain optical collision cross sections.

  16. In-line absorption sensor based on coiled optical microfiber

    NASA Astrophysics Data System (ADS)

    Lorenzi, Roberto; Jung, Yongmin; Brambilla, Gilberto

    2011-04-01

    We fabricated and tested an evanescent-wave absorption sensor consisting of an optical microfiber coil resonator embedded in fluidic channel walls. Low concentrations of flowing analyte show optical losses in agreement with a modified Beer-Lambert law. Higher concentration causes a limit value of the measured optical losses arising from adsorption mechanisms.

  17. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    NASA Astrophysics Data System (ADS)

    Dighe, P. M.; Das, D.

    2015-04-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×104 neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors.

  18. Effect of a progressive sound wave on the profiles of spectral lines. 2: Asymmetry of faint Fraunhofer lines. [absorption spectra

    NASA Technical Reports Server (NTRS)

    Kostyk, R. I.

    1974-01-01

    The absorption coefficient profile was calculated for lines of different chemical elements in a medium with progressive sound waves. Calculations show that (1) the degree and direction of asymmetry depend on the atomic ionization potential and the potential of lower level excitation of the individual line; (2) the degree of asymmetry of a line decreases from the center toward the limb of the solar disc; and (3) turbulent motions 'suppress' the asymmetry.

  19. Radio line and continuum observations of quasar-galaxy pairs and the origin of low reshift quasar absorption line systems

    NASA Technical Reports Server (NTRS)

    Carilli, C. L.; Vangorkom, J. H.; Hauxthausen, E. M.; Stocke, J. T.; Salzer, J.

    1990-01-01

    There are a number of known quasars for which our line of sight to the high redshift quasar passes within a few Holmberg radii of a low redshift galaxy. In a few of these cases, spectra of the quasar reveal absorption by gas associated with the low redshift galaxy. A number of these pairs imply absorption by gas which lies well outside the optical disk of the associated galaxy, leading to models of galaxies with 'halos' or 'disks' of gas extending to large radii. The authors present observations of 4 such pairs. In three of the four cases, they find that the associated galaxy is highly disturbed, typically due to a gravitational interaction with a companion galaxy, while in the fourth case the absorption can be explained by clouds in the optical disk of the associated galaxy. They are led to an alternative hypothesis concerning the origin of the low redshift absorption line systems: the absorption is by gas clouds which have been gravitationally stripped from the associated galaxy. These galaxies are rapidly evolving, and should not be used as examples of absorption by clouds in halos of field spirals. The authors conclude by considering the role extended gas in interacting systems plays in the origin of higher redshift quasar absorption line systems.

  20. The Number of Neutrinos and the Z Line Shape

    NASA Astrophysics Data System (ADS)

    Blondel, Alain

    2016-10-01

    The Standard Theory can fit any number of fermion families, as long as the number of leptons and quark families are the same. At the time of the conception of LEP, the number of such families was unknown, and it was feared that the Z resonance would be washed out by decaying into so many families of neutrinos! It took only a few weeks in the fall of 1989 to determine that the number is three. The next six years (from 1990 to 1995) were largely devoted to the accurate determination of the Z line shape, with a precision that outperformed the most optimistic expectations by a factor of 10. The tale of these measurements is a bona fide mystery novel, the precession of electrons being strangely perturbed by natural phenomena, such as tides, rain, hydroelectric power, fast trains, not to mention vertical electrostatic separators. The number hidden in the loops of this treasure hunt was 179, the first estimate of the mass of the top quark; then, once that was found, where predicted, the next number was close to zero: the logarithm of Higgs mass divided by that of the Z. Twenty years later, the quality of these measurements remains, but what they tell us is different: it is no longer about unknown parameters of the Standard Theory, it is about what lies beyond it. This is so acutely relevant, that CERN has launched the design study of a powerful Z, W, H and top factory.

  1. Brain blood vessel segmentation using line-shaped profiles

    NASA Astrophysics Data System (ADS)

    Babin, Danilo; Pižurica, Aleksandra; De Vylder, Jonas; Vansteenkiste, Ewout; Philips, Wilfried

    2013-11-01

    Segmentation of cerebral blood vessels is of great importance in diagnostic and clinical applications, especially for embolization of cerebral aneurysms and arteriovenous malformations (AVMs). In order to perform embolization of the AVM, the structural and geometric information of blood vessels from 3D images is of utmost importance. For this reason, the in-depth segmentation of cerebral blood vessels is usually done as a fusion of different segmentation techniques, often requiring extensive user interaction. In this paper we introduce the idea of line-shaped profiling with an application to brain blood vessel and AVM segmentation, efficient both in terms of resolving details and in terms of computation time. Our method takes into account both local proximate and wider neighbourhood of the processed pixel, which makes it efficient for segmenting large blood vessel tree structures, as well as fine structures of the AVMs. Another advantage of our method is that it requires selection of only one parameter to perform segmentation, yielding very little user interaction.

  2. Ugo Fano, Enrico Fermi, and spectral line shapes

    NASA Astrophysics Data System (ADS)

    Clark, Charles W.

    2005-03-01

    Ugo Fano's 1961 paper on spectral line shapes^1 was recently ranked as the third highest in citation impact of all papers published in the entire Physical Review series.^2 In the course of preparing an article for a NIST Centennial volume,^3 I became interested in the history of the results presented in Fano’s seminal paper, and will present my findings in this talk. An amusing sidelight concerns the role played by Enrico Fermi in the development of the famous ``Fano profile'' formula. I had been told this story by Fano when I was his graduate student, but uncertain of my recollection of the details, I did not publish it in his obituary.^4 I later learned that the archives of the Royal Society of London contain Fano's own written version of the tale, which will be presented in this talk. The story sheds light on the nature of Enrico Fermi's interactions with his students, and confirms accounts concerning the way in which he did his theoretical work.^5 ^1 U. Fano,``Effects of Configuration Interaction on Intensities and Phase Shifts,'' Phys. Rev. 124, 1866-1878 (1961)^2 S. Redner, physics/0407137 (2004)^3 http://nvl.nist.gov/pub/nistpubs/sp958-lide/116-119.pdf^4 C. W. Clark, Nature 410, 164 (2001)^5 F. Rasetti, in Collected Papers, vol. I, E. Fermi (University of Chicago Press, 1962), p. 178

  3. Gamma–Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Els, Paul

    2016-04-01

    The expected level of γγ absorption in the Broad Line Region (BLR) radiation field of γ-ray loud Flat Spectrum Radio Quasars (FSRQs) is evaluated as a function of the location of the γ-ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the γγ opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to γγ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the γ-ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the central engine and drops below unity for locations within the BLR. For locations outside the BLR, the BLR radiation energy density required for the production of GeV γ-rays rapidly increases beyond observational constraints, thus making the EC-BLR mechanism implausible. Therefore, in order to avoid significant γγ absorption by the BLR radiation field, the γ-ray emission region must therefore be located near the outer boundary of the BLR.

  4. VizieR Online Data Catalog: AGN data and absorption-line measurements (Richter+, 2016)

    NASA Astrophysics Data System (ADS)

    Richter, P.; Wakker, B. P.; Fechner, C.; Herenz, P.; Tepper-Garcia, T.; Fox, A. J.

    2016-03-01

    Names, positions and emission redshifts for 303 QSOs are provided in Table A.1. Table A.2 summarizes the absorption-line measurements for 59 intervening SiIII absorbers including absorption redshifts, equivalent-widths, and column densities for various different ions. (2 data files).

  5. An ALMA Early Science survey of molecular absorption lines toward PKS 1830-211. Analysis of the absorption profiles

    NASA Astrophysics Data System (ADS)

    Muller, S.; Combes, F.; Guélin, M.; Gérin, M.; Aalto, S.; Beelen, A.; Black, J. H.; Curran, S. J.; Darling, J.; V-Trung, Dinh; García-Burillo, S.; Henkel, C.; Horellou, C.; Martín, S.; Martí-Vidal, I.; Menten, K. M.; Murphy, M. T.; Ott, J.; Wiklind, T.; Zwaan, M. A.

    2014-06-01

    We present the first results of an ALMA spectral survey of strong absorption lines for common interstellar species in the z = 0.89 molecular absorber toward the lensed blazar PKS 1830-211. The dataset brings essential information on the structure and composition of the absorbing gas in the foreground galaxy. In particular, we find absorption over large velocity intervals (≳100 km s-1) toward both lensed images of the blazar. This suggests either that the galaxy inclination is intermediate and that we sample velocity gradients or streaming motions in the disk plane, that the molecular gas has a large vertical distribution or extraplanar components, or that the absorber is not a simple spiral galaxy but might be a merger system. The number of detected species is now reaching a total of 42 different species plus 14 different rare isotopologues toward the SW image, and 14 species toward the NE line-of-sight. The abundances of CH, H2O, HCO+, HCN, and NH3 relative to H2 are found to be comparable to those in the Galactic diffuse medium. Of all the lines detected so far toward PKS 1830-211, the ground-state line of ortho-water has the deepest absorption. We argue that ground-state lines of water have the best potential for detecting diffuse molecular gas in absorption at high redshift. Appendix is available in electronic form at http://www.aanda.orgThe reduced spectrum (FITS format) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A112

  6. Modal Analysis in Lined Wedge-Shaped Ducts

    NASA Astrophysics Data System (ADS)

    Mechel, F. P.

    1998-10-01

    It has been suggested to describe the sound field in a wedge-shaped duct in a cylindrical co-ordinate system in which the boundaries of the wedge lie in a co-ordinate surface. This suggestion was developed in a companion paper [1]. The wave equation can be separated only if the boundaries are ideally reflecting (rigid or soft). Two solutions were proposed in reference [1] for absorbing boundaries. In the first solution the sound field is composed of “ideal modes” (modes in a wedge with ideally reflecting boundaries); the boundary condition at the absorbing boundary then leads to a system of equations for the mode amplitudes. The problem with this method lies in the fact that there is no radial orthogonality of the ideal modes so that the precision of the field synthesis by ideal modes is doubtful. In the second method in reference [1] one defines “fictitious modes” which satisfy the boundary conditions at the flanks exactly and which are based on hypergeometric functions as radial functions, but which produce a “rest” in the wave equation. It was described how this rest can be minimized; this procedure leads to slow numerical integrations. In the present paper, the wedge is subdivided into duct sections with parallel walls (the boundary is stepped); the fields in the sections are composed of duct modes (modes in a straight lined duct); the mode amplitudes are determined from the boundary conditions at the section limits. The advantages of the present method are (analytically) the duct modes are orthogonal across the sections, so the mode amplitudes can be determined with the usual precision of a modal analysis, and (numerically) no numerical integrations are needed.

  7. On-Line Wavelength Calibration of Pulsed Laser for CO2 Differential Absorption LIDAR

    NASA Astrophysics Data System (ADS)

    Xiang, Chengzhi; Ma, Xin; Han, Ge; Liang, Ailin; Gong, Wei

    2016-06-01

    Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO2 detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO2 concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO2 detection. The MWS conducted segmented sampling across the CO2 absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO2 can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.

  8. CRIRES spectroscopy and empirical line-by-line identification of FeH molecular absorption in an M dwarf

    NASA Astrophysics Data System (ADS)

    Wende, S.; Reiners, A.; Seifahrt, A.; Bernath, P. F.

    2010-11-01

    Molecular FeH provides a large number of sharp and isolated absorption lines that can be used to measure radial velocity, rotation, or magnetic field strength with high accuracy. Our aim is to provide an FeH atlas for M-type stars in the spectral region from 986 nm to 1077 nm (Wing-Ford band). To identify these lines in CRIRES spectra of the magnetically inactive, slowly rotating, M5.5 dwarf GJ1002, we calculated model spectra for the selected spectral region with theoretical FeH line data. In general this line list agrees with the observed data, but several individual lines differ significantly in position or in line strength. After identification of as many as possible FeH lines, we corrected the line data for position and line strength to provide an accurate atlas of FeH absorption lines for use in high precision spectroscopy of low mass stars. For all lines, we used a Voigt function to obtain their positions and equivalent widths. Identification with theoretical lines was done by hand. For confirmation of the identified lines, we used statistical methods, cross-correlation techniques, and line intensities. Eventually, we were able to identify FeH lines from the (0,0), (1,0), (1,1), (2,1), (2,2), (3,2), and (4,3) vibrational bands in the observed spectra and correct the positions of the lines if necessary. The deviations between theoretical and observed positions follow a normal distribution approximately around zero. In order to empirically correct the line strength, we determined Teff, instrumental broadening (rotational broadening) and a van der Waals enhancement factor for the FeH lines in GJ1002. We also give the scaling factors for the Einstein A values to correct the line strengths. With the identified lines, we derived rotational temperatures from the line intensities for GJ1002. We conclude that FeH lines can be used for a wide variety of applications in astrophysics. With the identified lines it will be possible for example to characterize magnetically

  9. - and Air-Broadened Line Shape Parameters of 12CH_4 : 4500-4620 CM-1

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda; Crawford, Timothy J.; Smith, Mary Ann H.; Mantz, Arlan; Predoi-Cross, Adriana

    2014-06-01

    Accurate knowledge of spectral line shape parameters is important for infrared transmission and radiance calculations in the terrestrial atmosphere. We report the self- and air-broadened Lorentz widths, shifts and line mixing coefficients along with their temperature dependences for methane absorption lines in the 2.2 μm spectral region. For this, we obtained a series of high-resolution, high S/N spectra of 99.99% 12C-enriched samples of pure methane and its dilute mixtures in dry air at cold temperatures down to 150 K using the Bruker IFS 125HR Fourier transform spectrometer at JPL. The coolable absorption cell had an optical path of 20.38 cm and was specially built to reside inside the sample compartment of the Bruker FTS. The 13 spectra used in the analysis consisted of seven pure 12CH_4 spectra at pressures from 4.5 to 169 Torr and six air-broadened spectra with total sample pressures of 113-300 Torr and methane volume mixing ratios between 4 and 9.7%. These 13 spectra were fit simultaneously using the multispectrum least-squares fitting technique. The results will be compared to existing values reported in the literature. K. Sung, A. W. Mantz, L. R. Brown, et al., J. Mol. Spectrosc., 162 (2010) 124-134. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. Atkins, JQSRT, 53 (1995) 705-721. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  10. Line Positions, Intensities And Line Shape Parameters Of PH3 Near 4.4 µm

    NASA Astrophysics Data System (ADS)

    Venkataraman, Malathy; Benner, D. C.; Kleiner, I.; Brown, L. R.; Sams, R. L.; Fletcher, L. N.

    2012-10-01

    Accurate knowledge of spectral line parameters in the 2000 to 2400 cm-1 region of PH3 is important for the CASSINI/VIMS exploration of dynamics and chemistry of Saturn and for the correct interpretation of future Jovian observations by JUNO and ESA’s newly-selected mission JUICE. Since the available intensity information for phosphine is inconsistent, we measured line positions and intensities for over 4000 individual transitions in the 2ν2, ν2+ν4, 2ν4, ν1 and the ν3 bands from analyzing high-resolution, high S/N spectra recorded at room temperature using two Fourier transform spectrometers (FTS); the Bruker IFS 125 HR FTS at PNNL and the Kitt Peak FTS at the National Solar Observatory in Arizona. In addition to line positions and intensities, self-broadened half width and self-induced pressure-shift coefficients were also measured for about 800 transitions for the various bands. The strong Coriolis and other types of interactions occurring among the various vibrational levels result in a large number of forbidden transitions as well as cause A+A- splittings in transitions with K″ that are multiples of 3. Line mixing was detected between several A+A- pairs of transitions; and self- line mixing coefficients were measured for several such pairs of transitions by applying the off-diagonal relaxation matrix formalism of Levy et al.1 A multispectrum nonlinear least squares technique2 employing a non-Voigt line shape including line mixing and speed dependence was used in fitting all the spectra simultaneously. Present results are compared with other reported values. This research is supported by NASA’s Outer Planets Research Program. References [1] A. Lévy et al., In “Spectroscopy of the Earth’s Atmosphere and Interstellar Medium”, Ed. K, Narahari Rao and A. Weber, Boston, Academic Press; p, 261-337 (1992). [2] D. C. Benner et al., J Quant. Spectrosc. Radiat. Transfer 53, 705, 1995.

  11. Detectability of cold streams into high-redshift galaxies by absorption lines

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel

    2012-08-01

    Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.

  12. Discovery of Extremely Broad Balmer Absorption Lines in SDSS J152350.42+391405.2

    NASA Astrophysics Data System (ADS)

    Zhang, Shaohua; Zhou, Hongyan; Shi, Xiheng; Shu, Xinwen; Liu, Wenjuan; Ji, Tuo; Jiang, Peng; Sun, Luming; Zhou, Junyan; Pan, Xiang

    2015-12-01

    We present the discovery of Balmer line absorption from Hα to Hγ in an iron low-ionization broad absorption line (FeLoBAL) quasar SDSS J152350.42+391405.2 (hereafter SDSS J1523+3914), by the quasi-simultaneous optical and near-infrared spectroscopy. The Balmer line absorption is at {z}{absor}=0.6039+/- 0.0021 and blueshifted by v = 10,353 km s-1 with respect to the Balmer emission lines. All Balmer BALs have a uniform absorption profile with the widths of {{Δ }}v˜ 12,000 km s-1. We also found the absorption trough in He i* λ10830 with the same velocity and width in the H-band TripleSpec spectrum of SDSS J1523+3914. This object is only the 10th active galactic nucleus known to exhibit nonstellar Balmer absorption, as well as the case with the highest velocity and broadest Balmer absorption lines that have ever been found. A CLOUDY analysis shows that the absorbers require a gas density of {{log}}10 {n}{{e}} ({{cm}}-3)=9 and an ionization parameter of {{log}}10 U=-1.0. They are located at a distance of ˜0.2 pc from the central ionizing source, which is slightly farther than that of broad emission line regions. Furthermore, SDSS J1523+3914 is one of the brightest Balmer BAL quasars ever reported, with unique iron absorption variations, making it the most promising candidate for follow-up high-resolution spectroscopy, multiband observations, and long-term monitoring.

  13. The Milky Way's Hot Gas Kinematics: Signatures in Current and Future OVII Absorption Line Observations

    NASA Astrophysics Data System (ADS)

    Miller, Matthew J.; Hodges-Kluck, Edmund J.; Bregman, Joel N.

    2016-02-01

    Detections of z ≈ 0 oxygen absorption and emission lines indicate the Milky Way hosts a hot (˜ {10}6 K), low-density plasma extending ≳ 50 {{kpc}} into the Mily Way’s halo. Current X-ray telescopes cannot resolve the line profiles, but the variation of their strengths on the sky constrains the radial gas distribution. Interpreting the O vii Kα absorption line strengths has several complications, including optical depth and line of sight velocity effects. Here, we present model absorption line profiles accounting for both of these effects to show the lines can exhibit asymmetric structures and be broader than the intrinsic Doppler width. The line profiles encode the hot gas rotation curve, the net inflow or outflow of hot gas, and the hot gas angular momentum profile. We show how line of sight velocity effects impact the conversion between equivalent width and the column density, and provide modified curves of growth accounting for these effects. As an example, we analyze the LMC sight line pulsar dispersion measure and O vii equivalent width to show the average gas metallicity is ≳ 0.6{Z}⊙ and b ≳ 100 km s-1. Determining these properties offers valuable insights into the dynamical state of the Milky Way’s hot gas, and improves the line strength interpretation. We discuss future strategies to observe these effects with an instrument that has a spectral resolution of about 3000, a goal that is technically possible today.

  14. Discovery of Broad Soft X-ray Absorption Lines from the Quasar Wind in PDS 456

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Braito, V.; Nardini, E.; Behar, E.; O’Brien, P. T.; Tombesi, F.; Turner, T. J.; Costa, M. T.

    2016-06-01

    High-resolution soft X-ray spectroscopy of the prototype accretion disk wind quasar, PDS 456, is presented. Here, the XMM-Newton reflection grating spectrometer spectra are analyzed from the large 2013–2014 XMM-Newton campaign, consisting of five observations of approximately 100 ks in length. During the last observation (OBS. E), the quasar is at a minimum flux level, and broad absorption line (BAL) profiles are revealed in the soft X-ray band, with typical velocity widths of {σ }{{v}}˜ {{10,000}} km s‑1. During a period of higher flux in the third and fourth observations (OBS. C and D, respectively), a very broad absorption trough is also present above 1 keV. From fitting the absorption lines with models of photoionized absorption spectra, the inferred outflow velocities lie in the range ˜ 0.1{--}0.2c. The absorption lines likely originate from He and H-like neon and L-shell iron at these energies. A comparison with earlier archival data of PDS 456 also reveals a similar absorption structure near 1 keV in a 40 ks observation in 2001, and generally the absorption lines appear most apparent when the spectrum is more absorbed overall. The presence of the soft X-ray BALs is also independently confirmed by an analysis of the XMM-Newton EPIC spectra below 2 keV. We suggest that the soft X-ray absorption profiles could be associated with a lower ionization and possibly clumpy phase of the accretion disk wind, where the latter is known to be present in this quasar from its well-studied iron K absorption profile and where the wind velocity reaches a typical value of 0.3c.

  15. Discovery of carbon radio recombination lines in absorption towards Cygnus A

    NASA Astrophysics Data System (ADS)

    Oonk, J. B. R.; van Weeren, R. J.; Salgado, F.; Morabito, L. K.; Tielens, A. G. G. M.; Rottgering, H. J. A.; Asgekar, A.; White, G. J.; Alexov, A.; Anderson, J.; Avruch, I. M.; Batejat, F.; Beck, R.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Breitling, F.; Brentjens, M.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Conway, J. E.; Corstanje, A.; de Gasperin, F.; de Geus, E.; de Vos, M.; Duscha, S.; Eislöffel, J.; Engels, D.; van Enst, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Hamaker, J. P.; Hassall, T. E.; Heald, G.; Hessels, J. W. T.; Hoeft, M.; Horneffer, A.; van der Horst, A.; Iacobelli, M.; Jackson, N. J.; Juette, E.; Karastergiou, A.; Klijn, W.; Kohler, J.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Mann, G.; Markoff, S.; McKean, J. P.; Mevius, M.; Miller-Jones, J. C. A.; Mol, J. D.; Mulcahy, D. D.; Munk, H.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Scaife, A. M. M.; Schoenmakers, A.; Schwarz, D.; Shulevski, A.; Sluman, J.; Smirnov, O.; Sobey, C.; Stappers, B. W.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Veen, S. ter; Thoudam, S.; Toribio, C.; van Nieuwpoort, R.; Vermeulen, R.; Vocks, C.; Vogt, C.; Wijers, R. A. M. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, A.

    2014-02-01

    We present the first detection of carbon radio recombination line absorption along the line of sight to Cygnus A. The observations were carried out with the Low Frequency Array in the 33-57 MHz range. These low-frequency radio observations provide us with a new line of sight to study the diffuse, neutral gas in our Galaxy. To our knowledge this is the first time that foreground Milky Way recombination line absorption has been observed against a bright extragalactic background source. By stacking 48 carbon α lines in the observed frequency range we detect carbon absorption with a signal-to-noise ratio of about 5. The average carbon absorption has a peak optical depth of 2 × 10-4, a line width of 10 km s-1 and a velocity of +4 km s-1 with respect to the local standard of rest. The associated gas is found to have an electron temperature Te ˜ 110 K and density ne ˜ 0.06 cm-3. These properties imply that the observed carbon α absorption likely arises in the cold neutral medium of the Orion arm of the Milky Way. Hydrogen and helium lines were not detected to a 3σ peak optical depth limit of 1.5 × 10-4 for a 4 km s-1 channel width. Radio recombination lines associated with Cygnus A itself were also searched for, but are not detected. We set a 3σ upper limit of 1.5 × 10-4 for the peak optical depth of these lines for a 4 km s-1 channel width.

  16. Stimuli-Responsive Shape Switching of Polymer Colloids by Temperature-Sensitive Absorption of Solvent.

    PubMed

    Wang, Huaguang; Li, Binghui; Yodh, Arjun G; Zhang, Zexin

    2016-08-16

    The dynamic manipulation of colloidal particle shape offers a novel design mechanism for the creation of advanced responsive materials. To this end, we introduce a versatile new strategy for shape control of anisotropic polymeric colloidal particles. The concept utilizes temperature-sensitive absorption of a suitable solvent from a binary mixture. Specifically, increasing the temperature in the vicinity of the demixing transition of a binary mixture causes more solvent to be absorbed into the polymeric colloidal particle, which, in turn, lowers the glass transition temperature of the polymer inside the particle, with a concomitant decrease in viscosity. The balance between the internal viscosity and surface tension of the particle is thus disrupted, and the anisotropic shape of the particle shifts to become more spherical. Subsequent rapid temperature quenching can halt the process, leaving the particle with an intermediate anisotropy. The resultant shape anisotropy control provides new routes for studies of the phase transitions of anisotropic colloids and enables the fabrication of unique particles for materials applications. PMID:27409766

  17. DISENTANGLING THE CIRCUMNUCLEAR ENVIRONS OF CENTAURUS A. II. ON THE NATURE OF THE BROAD ABSORPTION LINE

    SciTech Connect

    Espada, D.; Matsushita, S.; Sakamoto, K.; Peck, A. B.; Henkel, C.; Iono, D.; Israel, F. P.; Muller, S.; Petitpas, G.; Pihlstroem, Y.; Taylor, G. B.; Trung, D. V.

    2010-09-01

    We report on atomic gas (H I) and molecular gas (as traced by CO(2-1)) redshifted absorption features toward the nuclear regions of the closest powerful radio galaxy, Centaurus A (NGC 5128). Our H I observations using the Very Long Baseline Array allow us to discern with unprecedented sub-parsec resolution H I absorption profiles toward different positions along the 21 cm continuum jet in the inner 0.''3 (or 5.4 pc). In addition, our CO(2-1) data obtained with the Submillimeter Array probe the bulk of the absorbing molecular gas with little contamination by emission, which was not possible with previous CO single-dish observations. We shed light on the physical properties of the gas in the line of sight with these data, emphasizing the still open debate about the nature of the gas that produces the broad absorption line ({approx}55 km s{sup -1}). First, the broad H I line is more prominent toward the central and brightest 21 cm continuum component than toward a region along the jet at a distance {approx}20 mas (or 0.4 pc) further from the nucleus. This indicates that the broad absorption line arises from gas located close to the nucleus, rather than from diffuse and more distant gas. Second, the different velocity components detected in the CO(2-1) absorption spectrum match well with other molecular lines, such as those of HCO{sup +}(1-0), except the broad absorption line that is detected in HCO{sup +}(1-0) (and most likely related to that of the H I). Dissociation of molecular hydrogen due to the active galactic nucleus seems to be efficient at distances r {approx}< 10 pc, which might contribute to the depth of the broad H I and molecular lines.

  18. Line Shapes and Opacity Studies in Divertor Plasmas

    SciTech Connect

    Rosato, J.

    2008-10-22

    Large or dense divertor plasmas of magnetic fusion devices can be optically thick to the resonance lines of the hydrogen isotopes. In this work we examine the sensitivity of the line radiation transport to the detailed structure of the spectral profiles.

  19. Laboratory verification of on-line lithium analysis using ultraviolet absorption spectrometry

    SciTech Connect

    Beemster, B.J.; Schlager, K.J.; Schloegel, K.M.; Kahle, S.J.; Fredrichs, T.L.

    1992-12-31

    Several laboratory experiments were performed to evaluate the capability of absorption spectrometry in the ultraviolet-visible wavelength range with the objective of developing methods for on-line analysis of lithium directly in the primary coolant of Pressurized Water Reactors using optical probes. Although initial laboratory tests seemed to indicate that lithium could be detected using primary absorption (detection of natural spectra unassisted by reagents), subsequent field tests demonstrated that no primary absorption spectra existed for lithium in the ultraviolet-visible wavelength range. A second series of tests that were recently conducted did, however, confirm results reported in the literature to the effect that reagents were available that will react with lithium to form chelates that possess detectable absorption and fluorescent signatures. These results point to the possible use of secondary techniques for on-line analysis of lithium.

  20. EMPIRICAL LINE LISTS AND ABSORPTION CROSS SECTIONS FOR METHANE AT HIGH TEMPERATURES

    SciTech Connect

    Hargreaves, R. J.; Bernath, P. F.; Dulick, M.; Bailey, J.

    2015-11-01

    Hot methane is found in many “cool” sub-stellar astronomical sources including brown dwarfs and exoplanets, as well as in combustion environments on Earth. We report on the first high-resolution laboratory absorption spectra of hot methane at temperatures up to 1200 K. Our observations are compared to the latest theoretical spectral predictions and recent brown dwarf spectra. The expectation that millions of weak absorption lines combine to form a continuum, not seen at room temperature, is confirmed. Our high-resolution transmittance spectra account for both the emission and absorption of methane at elevated temperatures. From these spectra, we obtain an empirical line list and continuum that is able to account for the absorption of methane in high temperature environments at both high and low resolution. Great advances have recently been made in the theoretical prediction of hot methane, and our experimental measurements highlight the progress made and the problems that still remain.

  1. Low-redshift Lyman-alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1992-01-01

    Ultraviolet observations of the low-redshift quasar 3C 273 using the Hubble Space Telescope have revealed many more Lyman-alpha absorption lines than would be expected from extrapolation of the absorption systems seen toward QSOs at z about 2. It is shown here that these absorption lines can plausibly be produced by gas at large radii in the disks of spiral and irregular galaxies; the gas is confined by the dark matter halos and ionized and heated by the extragalactic radiation field. This scenario does not require the extragalactic ionizing radiation field to decline as rapidly with decreasing z as the QSO emissivity. Observations of Ly-alpha absorption through the halos of known galaxies at low redshift will constrain both the extragalactic background and the properties of galactic halos.

  2. Cm and mm Survey of Molecular Absorption Lines in Centaurus A

    NASA Astrophysics Data System (ADS)

    Ott, Juergen; Muller, S.; Meier, D.; Peck, A.; Impellizzeri, V.; Walter, F.; Henkel, C.; Martin, S.; Aalto, S.; van der Werf, P.; Feain, I.; Anderson, C.

    2012-01-01

    We present Australia Telescope Array data of molecular absorption lines toward the bright central core of Centaurus A. The line of sight crosses the prominent dust lane and continues through the disk and eventually through gas that may be very close to the central supermassive black hole. The goal of our the survey is to determine the physical conditions of the gas via analyses of molecular line tracers including molecular abundances and excitation that is sensitive to changes in temperature, density, ionization, and shocks. This study allows us to derive the physical conditions of every absorption line complex and finally let us assign the most likely environments. We present ATCA data in the 20-50GHz range at medium resolution of a few km/s and possibly ALMA data at 3mm and 1mm wavelengths. The project continues with sub-km/s higher spectral resolution for the most important lines in 2012.

  3. PG 1700 + 518 - a low-redshift, broad absorption line QSO

    SciTech Connect

    Pettini, M.; Boksenberg, A.

    1985-07-01

    The first high-resolution optical spectra and lower resolution UV spectra of PG 1700 + 518, the only known broad-absorption-line (BAL) QSO at low emission redshift (0.288) are presented. The optical data were obtained with the Isaac Newton Telescope on the island of La Palma and the UV data with the International Ultraviolet Explorer satellite. The outstanding feature of the optical spectrum is a strong, broad Mg II absorption trough, detached from the Mg II emission line and indicative of ejection velocities of between 7000 and 18,000 km/s. Also detected were narrow (FWHM = 350 km/s) Mg II absorption lines at absolute z = 0.2698, which are probably related to the mass ejection phenomenon. It is concluded that the emission-line spectrum is similar to that of other low-redshift QSOs although there are some obvious differences from typical BAL QSOs, most notably in the unusually low level of ionization of both emission-line and broad absorption line gas. 21 references.

  4. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  5. Modeling of Line Shapes using Continuous Time Random Walk Theory

    NASA Astrophysics Data System (ADS)

    Capes, H.; Christova, M.; Boland, D.; Bouzaher, A.; Catoire, F.; Godbert-Mouret, L.; Koubiti, M.; Mekkaoui, S.; Rosato, J.; Marandet, Y.; Stamm, R.

    2010-11-01

    In order to provide a general framework where the Stark broadening of atomic lines in plasmas can be calculated, we model the plasma stochastic electric field by using the CTRW approach [1,2]. This allows retaining non Markovian terms in the Schrödinger equation averaged over the electric field fluctuations. As an application we consider a special case of a non separable CTRW process, the so called Kangaroo process [3]. An analytic expression for the line profile is finally obtained for arbitrary waiting time distribution functions. An application to the hydrogen Lyman α line is discussed.

  6. Modelling of the X-ray broad absorption features in Narrow-Line Seyfert 1s

    NASA Astrophysics Data System (ADS)

    Porquet, Delphine; Mouchet, Martine; Dumont Anne-Marie

    2000-09-01

    We investigate the origin of the broad absorption features detected near 1-1.4 keV in several Narrow-Line Seyfert 1 galaxies, by modelling the absorbing medium with various physical parameters, using the ionization code PEGAS. The observed properties of the X-ray absorption features can be reproduced by taking into account the peculiar soft X-ray excess which is well fitted by a blackbody plus an underlying power law. We equally stress that the emission coming from the absorbing medium (related to the covering factor) has a strong influence on the resulting X-ray spectrum, in particular on the apparent position and depth of the absorption features. A non-solar iron abundance may be required to explain the observed deep absorption. We also investigate the influence of an additional collisional ionization process ("hybrid case") on the predicted absorption features.

  7. Abinitio calculations of the spectral shapes of CO2 isolated lines including non-Voigt effects and comparisons with experiments

    NASA Astrophysics Data System (ADS)

    Hartmann, J.-M.; Tran, H.; Ngo, N. H.; Landsheere, X.; Chelin, P.; Lu, Y.; Liu, A.-W.; Hu, S.-M.; Gianfrani, L.; Casa, G.; Castrillo, A.; Lepère, M.; Delière, Q.; Dhyne, M.; Fissiaux, L.

    2013-01-01

    We present a fully ab initio model and calculations of the spectral shapes of absorption lines in a pure molecular gas under conditions where the influences of collisions and of the Doppler effect are significant. Predictions of the time dependence of dipole autocorrelation functions (DACFs) are made for pure CO2 at room temperature using requantized classical molecular dynamics simulations. These are carried, free of any adjusted parameter, on the basis of an accurate anisotropic intermolecular potential. The Fourier-Laplace transforms of these DACFs then yield calculated spectra which are analyzed, as some measured ones, through fits using Voigt line profiles. Comparisons between theory and various experiments not only show that the main line-shape parameters (Lorentz pressure-broadening coefficients) are accurately predicted, but that subtle observed non-Voigt features are also quantitatively reproduced by the model. These successes open renewed perspectives for the understanding of the mechanisms involved (translational-velocity and rotational-state changes and their dependences on the molecular speed) and the quantification of their respective contributions. The proposed model should also be of great help for the test of widely used empirical line-shape models and, if needed, the construction of more physically based ones.

  8. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams

    PubMed Central

    Yu, Ya-Jen; Hearon, Keith; Wilson, Thomas S.; Maitland, Duncan J.

    2011-01-01

    The effect of moisture absorption on the glass transition temperature (Tg) and stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To our best knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the Tg of the foam, with a maximum water uptake shifting the Tg from 67 °C to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h. PMID:21949469

  9. The η Car Campaign with UVES at the ESO VLT II. Interstellar and circumstellar absorption lines

    NASA Astrophysics Data System (ADS)

    Weis, K.; Bomans, D. J.; Stahl, O.; Davidson, K.; Humphreys, R. M.; Gull, T. R.

    2005-09-01

    We monitored η Car and the Homunculus using the ESO VLT UVES spectrograph between 2002 and 2004 (see Weis et al., this proceedings). In these high dispersion spectra practically all interstellar absorption features known in the 3000 Å to 10000 Å regime are present (e.g. 4 Ti II lines, 3 Fe I lines, the Ca I line, both Na I doublets, the two K I doublets, and the Ca II doublets, several molecular lines, and a number of diffuse interstellar bands). Near-UV STIS spectra show many low ionization absorption lines (e.g. Gull et al., this proceedings), but there are several differences in the velocity structure and line strengths between these lines of sight, e.g. we do not detect multiple absorption components between -350 to -550 km s-1 in the UVES spectra. Changes over time are present in e.g. the Ca II lines, with small column density changes in the (probably interstellar) +80 km s-1 component and large changes in the -510 km s-1 component, which is most probably located in the outer shell of the Homunculus (see e.g. Nielsen et al., this proceedings). Similar changes in the Ti II 3384 Å component at -147 km s-1 are present, too. With the data set, we not only follow the temporal evolution of the circumstellar absorption components (presumably originating near η Car and in the Homunculus) before, during and after the event, but also search for changes along our long-slits centered on the star and on FOS4. Indeed, the -147 km s-1 component of the Ti II 3384 Å lines shows line strength variations over the southeast lobe of the Homunculus. A preliminary search for very high velocity absorption lines from the outer ejected using only one of our spectra already yielded a possible detection at -1500 km s-1. Clearly a detailed analysis of the absorption lines in the UVES data will provide many new insights into the structure and physics of η Car's ejecta.

  10. Narrow absorption lines with two observations from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei; Cao, Yue

    2015-07-01

    We assemble 3524 quasars from the Sloan Digital Sky Survey (SDSS) with repeated observations to search for variations of the narrow C IV λ λ 1548,1551 and Mg II λ λ 2796,2803 absorption doublets in spectral regions shortward of 7000 Å in the observed frame, which corresponds to time-scales of about 150-2643 d in the quasar rest frame. In these quasar spectra, we detect 3580 C IV absorption systems with zabs = 1.5188-3.5212 and 1809 Mg II absorption systems with zabs = 0.3948-1.7167. In term of the absorber velocity (β) distribution in the quasar rest frame, we find a substantial number of C IV absorbers with β < 0.06, which might be connected to absorption of quasar outflows. The outflow absorption peaks at υ ≈ 2000 km s^{-1} and drops rapidly below this peak value. Among 3580 C IV absorption systems, 52 systems (˜1.5 per cent) show obvious variations in equivalent widths in the absorber rest frame (Wr): 16 enhanced, 16 emerged, 12 weakened and 8 disappeared systems, respectively. We find that changes in Wrλ1548 are related neither to the time-scales of the two SDSS observations nor to absorber velocities in the quasar rest frame. Variable absorption in low-ionization species is important to constrain the physical conditions of the absorbing gas. There are two variable Mg II absorption systems measured from SDSS spectra detected by Hacker et al. However, in our Mg II absorption sample, we find that neither shows variable absorption with confident levels of >4σ for λ2796 lines and >3σ for λ2803 lines.

  11. HI Absorption Lines Detected from the Arecibo Legacy Fast ALFA Survey Data

    NASA Astrophysics Data System (ADS)

    Zhong-zu, Wu; Martha P, Haynes; Riccardo, Giovanelli; Ming, Zhu; Ru-rong, Chen

    2015-10-01

    We present some preliminary results of an on-going study of HI 21-cm absorption lines based on the 40% survey data released by the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA). (1) Ten HI candidate absorbers have been detected. Five of them are previously published in the literature, and the rest of them are new detections that need further confirmation. (2) For those sources with no detected absorptions, we have calculated the upper limit of their foreground HI column density NHI. The statistical result of the NHI distribution indicates that the ratio Ts/f between the averaged spin temperature and coverage factor for DLAs (the damped Lyα systems) might be larger than 500 K. The radio frequency interference (RFI) and standing wave are the main factors affecting the detection of HI absorption lines, which have been analyzed and discussed as well in order to find a method of solution. Our study can serve as a pathfinder for the future large-scale search of HI 21-cm absorption lines using the Five-Hundred-Meter Aperture Spherical Radio Telescope (FAST), which is an Arecibo-type radio telescope currently under construction in China with greatly increased sensitivity, bandwidth, and observational sky area. As prospects, we have discussed two types of observational studies of HI absorption lines toward extragalactic sources using the FAST telescope.

  12. VizieR Online Data Catalog: QSOs narrow absorption line variability (Hacker+, 2013)

    NASA Astrophysics Data System (ADS)

    Hacker, T. L.; Brunner, R. J.; Lundgren, B. F.; York, D. G.

    2013-06-01

    Catalogues of 2,522 QAL systems and 33 variable NAL systems detected in SDSS DR7 quasars with repeat observations. The object identifiers, position coordinates, and plate-MJD-fibre designations are taken from the SpecObjAll table in the SDSS Catalogue Archive Server (CAS) while the quasar redshifts (zqso) are from Hewett & Wild (2010, Cat. J/MNRAS/405/2302). The absorption system redshift (zabs), system grade, and detected lines are outputs of the York et al. (2013, in. prep.) QAL detection pipeline. Some absorption lines are flagged based on alternate identifications (a), proximity of masked pixels (b), or questionable continuum fits (c). (3 data files).

  13. Absorption lines in the spectrum of Q0248 + 4302 due to a foreground tidal tail

    SciTech Connect

    Sargent, W.L.W.; Steidel, C.C. California Univ., Berkeley )

    1990-08-01

    The strong absorption lines in the spectrum of the quasar Q0248 + 4302 are discussed. The absorption has been shown to be produced in a sinuous tidal tail which emanates from the nearby galaxy pair G0248 + 4302A,B. There is a velocity difference of about 260 km/s between the systemic redshift of the interacting galaxies and the redshift of the tidal tail at a galactocentric distance of about 11/h kpc. The large velocity spread observed in the tail gas is probably responsible for the unusual strength of the interstellar lines. 18 refs.

  14. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    SciTech Connect

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Trump, J. R.; Hall, P. B.; Anderson, S. F.; Hamann, F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for C IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.

  15. Electric field distribution and exciton recombination line shape in GaAs

    NASA Astrophysics Data System (ADS)

    Schuster, J.; Kim, T. Y.; Batke, E.; Reuter, D.; Wieck, A. D.

    2016-05-01

    We studied the photoluminescence line shapes of free and bound excitons in a n-modulation doped {{Al}}1-x{{Ga}}x{As}-GaAs heterostructure with linearly increasing electric field in the p-doped buffer. At small laser excitation power the line shapes of the neutral donor bound and free excitons deviate strongly from a simple Lorentzian, whereas the neutral acceptor bound exciton is not obviously affected. Asymmetric lines of sawtooth-type form are observed for the donor bound and the free exciton. The line asymmetry could be traced back to the field dependent exciton binding energy and the field distribution in our heterostructure. A simple analytical model can account for the field dependent line shapes and a fit to the experimental lines gives a satisfactory agreement.

  16. Cross section calculations of astrophysical interest. [for theories of absorption and emission lines

    NASA Technical Reports Server (NTRS)

    Gerjuoy, E.

    1974-01-01

    Cross sections are discussed for rotational excitation associated with theories of absorption and emission lines from molecules in space with emphasis on H2CO, CO, and OH by collisions with neutral particles such H, H2, and He. The sensitivity of the Thaddeus equation for the H2CO calculation is examined.

  17. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA).

    PubMed

    Brown, Lisa V; Yang, Xiao; Zhao, Ke; Zheng, Bob Y; Nordlander, Peter; Halas, Naomi J

    2015-02-11

    Here, we report a new nanoantenna for surface-enhanced infrared absorption (SEIRA) detection, consisting of a fan-shaped Au structure positioned at a well-specified distance above a reflective plane with an intervening silica spacer layer. We examine how to optimize both the antenna dimensions and the spacer layer for optimal SEIRA enhancement of the C-H stretching mode. This tunable 3D geometry yields a theoretical SEIRA enhancement factor of 10(5), corresponding to the experimental detection of 20-200 zeptomoles of octadecanethiol, using a standard commercial FTIR spectrometer. Experimental studies illustrate the sensitivity of the observed SEIRA signal to the gap dimensions. The optimized antenna structure exhibits an order of magnitude greater SEIRA sensitivity than previous record-setting designs.

  18. A summary of transition probabilities for atomic absorption lines formed in low-density clouds

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Smith, W. H.

    1973-01-01

    A table of wavelengths, statistical weights, and excitation energies is given for 944 atomic spectral lines in 221 multiplets whose lower energy levels lie below 0.275 eV. Oscillator strengths were adopted for 635 lines in 155 multiplets from the available experimental and theoretical determinations. Radiation damping constants also were derived for most of these lines. This table contains the lines most likely to be observed in absorption in interstellar clouds, circumstellar shells, and the clouds in the direction of quasars where neither the particle density nor the radiation density is high enough to populate the higher levels. All ions of all elements from hydrogen to zinc are included which have resonance lines longward of 912 A, although a number of weaker lines of neutrals and first ions have been omitted.

  19. Instrument Line Shape Modeling and Correction for Off-Axis Detectors in Fourier Transform Spectrometry

    NASA Technical Reports Server (NTRS)

    Bowman, K.; Worden, H.; Beer, R.

    1999-01-01

    Spectra measured by off-axis detectors in a high-resolution Fourier transform spectrometer (FTS) are characterized by frequency scaling, asymmetry and broadening of their line shape, and self-apodization in the corresponding interferogram.

  20. Atlas of absorption lines from 0 to 17 900 cm(-1)

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Rothman, L. S.; Rinsland, C. P.; Smith, M. A. H.; Richardson, D. J.; Larsen, J. C.

    1981-01-01

    Plots of absorption line strength versus line position for wavenumbers from 0 to 17,900 cm(-1) are shown for 20 atmospheric gases (H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2, NO2, NH3, HNO3, OH, HF, HCl, HBr, HI, ClO, OCS, H2CO). Also shown are similar plots of lower-state energy values for adsorption lines for the strongly adsorbing atmospheric gases (H2O, CO2, O3, and CH4) for wavenumbers from 0 to 5000 cm(-1).

  1. Nanoscale Liquid Jets Shape New Line of Business

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Just as a pistol shrimp stuns its prey by quickly closing its oversized claw to shoot out a shock-inducing, high-velocity jet of water, NanoMatrix, Inc., is sending shockwaves throughout the nanotechnology world with a revolutionary, small-scale fabrication process that uses powerful liquid jets to cut and shape objects. Emanuel Barros, a former project engineer at NASA s Ames Research Center, set out to form the Santa Cruz, California-based NanoMatrix firm and materialize the micro/nano cutting process partially inspired by the water-spewing crustacean. Early on in his 6-year NASA career, Barros led the development of re-flown flight hardware for an award-winning Spacelab project called NeuroLab. This project, the sixteenth and final Spacelab mission, focused on a series of experiments to determine the effects of microgravity on the development of the mammalian nervous system.

  2. Broad absorption line variability on multi-year timescales in a large quasar sample

    NASA Astrophysics Data System (ADS)

    Filiz Ak, Nurten

    generally supportive of models where most BAL absorption arises at radii of 10--1000 light days. Average lifetime for a BAL trough along our line-of-sight is a few thousand years which is long compared to the orbital time of the accretion disk at the wind-launching radius. We have examined if BAL variations on several timescales depend upon quasar properties, including quasar luminosity, Eddington luminosity ratio, black hole mass, redshift, and radio loudness. Within the ranges of these properties spanned by our sample, we do not find any strong dependences. The coordinated trough variability of BAL quasars with multiple troughs suggests that changes in "shielding gas" may play a significant role in driving general BAL variability. I present a study investigating the dependence of C IV BAL properties and variation characteristics on accompanying Si IV and Al III absorption. Results of this study show that C IV BAL trough shapes, depths, velocity widths and strengths show a strong dependence on the presence of Si IV and Al III BAL troughs at corresponding velocities. Similarly, the variation characteristics and depth variation profiles of C IV BAL troughs also show a strong connection to BAL troughs in these transitions. Using these ions as a basic tracer of ionization level of the absorbing gas, systematic measurements of variability and profiles for a large sample of C IV , Si IV, and Al III BAL troughs present observational evidences of the relation between ionization level, column density and kinematics of outflows. Utilizing observational investigations on a large BAL quasar sample, we show that ionization level, column density and kinematics of outflows show correlated object-to-object differences. We present a detailed comparison between the observational results of this study and the well studied disk-wind model of quasar outflows, which suggests that the wind is launched from the accretion disk at ˜ 1016--1017 cm and radiatively driven by UV line pressure. Results

  3. Probing the Inner Regions of Protoplanetary Disks with CO Absorption Line Spectroscopy

    NASA Astrophysics Data System (ADS)

    McJunkin, Matthew; France, Kevin; Burgh, Eric B.; Herczeg, Gregory J.; Schindhelm, Eric; Brown, Joanna M.; Brown, Alexander

    2013-03-01

    Carbon monoxide (CO) is the most commonly used tracer of molecular gas in the inner regions of protoplanetary disks. CO can be used to constrain the excitation and structure of the circumstellar environment. Absorption line spectroscopy provides an accurate assessment of a single line of sight through the protoplanetary disk system, giving more straightforward estimates of column densities and temperatures than CO and molecular hydrogen (H2) emission line studies. We analyze new observations of ultraviolet CO absorption from the Hubble Space Telescope along the sightlines to six classical T Tauri stars. Gas velocities consistent with the stellar velocities, combined with the moderate-to-high disk inclinations, argue against the absorbing CO gas originating in a fast-moving disk wind. We conclude that the far-ultraviolet observations provide a direct measure of the disk atmosphere or possibly a slow disk wind. The CO absorption lines are reproduced by model spectra with column densities in the range N(12CO) ~ 1016-1018 cm-2 and N(13CO) ~ 1015-1017 cm-2, rotational temperatures T rot(CO) ~ 300-700 K, and Doppler b-values, b ~ 0.5-1.5 km s-1. We use these results to constrain the line-of-sight density of the warm molecular gas (n CO ~ 70-4000 cm-3) and put these observations in context with protoplanetary disk models.

  4. Stark level analysis of the spectral line shape of electronic transitions in rare earth ions embedded in host crystals

    NASA Astrophysics Data System (ADS)

    Steinkemper, H.; Fischer, S.; Hermle, M.; Goldschmidt, J. C.

    2013-05-01

    Rare earth ions embedded in host crystals are of great interest for many applications. Due to the crystal field of the host material, the energy levels of the rare earth ions split into several Stark levels. The resulting broadening of the spectral line shapes of transitions between those levels determines the upconversion phenomena, especially under broad-spectrum illumination, which are relevant for photovoltaics for instance. In this paper, we present a method to determine the spectral line shape of energy level transitions of rare earth ions from the absorption spectrum of the investigated material. A parameter model is used to describe the structure of the individual energy levels based on a representation of the Stark splitting. The parameters of the model are then determined with an evolutionary optimization algorithm. The described method is applied to the model system of β-NaEr0.2Y0.8F4. The results indicate that for illumination with a wavelength around 1523 nm, simple upconversion processes such as two-step absorption or direct energy transfer are less efficient than commonly assumed. Hence a sequence of efficient processes is suggested as an explanation for the high upconversion quantum yield of β-NaEr0.2Y0.8F4, which has not yet been reported in the literature.

  5. Robotic U-shaped assembly line balancing using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Mukund Nilakantan, J.; Ponnambalam, S. G.

    2016-02-01

    Automation in an assembly line can be achieved using robots. In robotic U-shaped assembly line balancing (RUALB), robots are assigned to workstations to perform the assembly tasks on a U-shaped assembly line. The robots are expected to perform multiple tasks, because of their capabilities. U-shaped assembly line problems are derived from traditional assembly line problems and are relatively new. Tasks are assigned to the workstations when either all of their predecessors or all of their successors have already been assigned to workstations. The objective function considered in this article is to maximize the cycle time of the assembly line, which in turn helps to maximize the production rate of the assembly line. RUALB aims at the optimal assignment of tasks to the workstations and selection of the best fit robot to the workstations in a manner such that the cycle time is minimized. To solve this problem, a particle swarm optimization algorithm embedded with a heuristic allocation (consecutive) procedure is proposed. The consecutive heuristic is used to allocate the tasks to the workstation and to assign a best fit robot to that workstation. The proposed algorithm is evaluated using a wide variety of data sets. The results indicate that robotic U-shaped assembly lines perform better than robotic straight assembly lines in terms of cycle time.

  6. Absorption line profiles in a companion spectrum of a mass losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1990-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  7. Fraunhofer-type absorption lines in double-pulse laser-induced plasma.

    PubMed

    Nagli, Lev; Gaft, Michael; Gornushkin, Igor

    2012-03-01

    We studied the confocal double-pulse laser-induced plasma in the very beginning of its life. It was found that the second laser pulse fired 0.7 to 5 µs after the first pulse produces plasma which, during the first 0 to 20 ns, resembles solar configuration. There is a very hot and compact plasma core that radiates a broad continuum spectrum and a much larger and cooler outer shell. The light from the hot core passes through the cold outer shell and is partly absorbed by atoms and ions that are in ground (or close to ground) states. This produces absorption lines that are similar to Fraunhofer lines observed in the sun spectrum. The possibility to use these absorption lines for new direct and calibration free laser-induced breakdown spectroscopy analytical applications, both in laboratory and industrial conditions, is proved.

  8. The Redshift Dependence of Gamma-Ray Absorption in the Environments of Strong-Line AGNs

    SciTech Connect

    Reimer, A.; /Stanford U., HEPL /KIPAC, Menlo Park

    2007-11-12

    The case of {gamma}-ray absorption due to photon-photon pair production of jet photons in the external photon environments, such as the accretion disk and the broad-line region radiation fields, of {gamma}-ray--loud active galactic nuclei (AGNs) that exhibit strong emission lines is considered. I demonstrate that this 'local opacity,' if detected, will almost unavoidably be redshift-dependent in the sub-TeV range. This introduces nonnegligible biases and complicates approaches for studying the evolution of the extragalactic background light with contemporary GeV instruments such as the Gamma-Ray Large Area Space Telescope (GLAST ), where the {gamma}-ray horizon is probed by means of statistical analysis of absorption features (e.g., the Fazio-Stecker relation) in AGN spectra at various redshifts. It particularly applies to strong-line quasars, where external photon fields are potentially involved in {gamma}-ray production.

  9. Absorption-line profiles in a companion spectrum of a mass-losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1992-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10 (exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  10. Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties

    SciTech Connect

    Gonzalez-Fernandez, M.A.; Torres, T.E.; Andres-Verges, M.; Costo, R.; Presa, P. de la; Serna, C.J.; Morales, M.P.; Marquina, C.; Ibarra, M.R.; Goya, G.F.

    2009-10-15

    We present a study on the magnetic properties of naked and silica-coated Fe{sub 3}O{sub 4} nanoparticles with sizes between 5 and 110 nm. Their efficiency as heating agents was assessed through specific power absorption (SPA) measurements as a function of particle size and shape. The results show a strong dependence of the SPA with the particle size, with a maximum around 30 nm, as expected for a Neel relaxation mechanism in single-domain particles. The SiO{sub 2} shell thickness was found to play an important role in the SPA mechanism by hindering the heat outflow, thus decreasing the heating efficiency. It is concluded that a compromise between good heating efficiency and surface functionality for biomedical purposes can be attained by making the SiO{sub 2} functional coating as thin as possible. - Graphical Abstract: The magnetic properties of Fe{sub 3}O{sub 4} nanoparticles from 5 to 110 nm are presented, and their efficiency as heating agents discussed as a function of particle size, shape and surface functionalization.

  11. Measurement of (222)Rn by absorption in plastic scintillators and alpha/beta pulse shape discrimination.

    PubMed

    Mitev, Krasimir K

    2016-04-01

    This work demonstrates that common plastic scintillators like BC-400, EJ-200 and SCSF-81 absorb radon and their scintillation pulse decay times are different for alpha- and beta-particles. This allows the application of pulse shape analysis for separation of the pulses of alpha- and beta-particles emitted by the absorbed radon and its progeny. It is shown that after pulse shape discrimination of beta-particles' pulses, the energy resolution of BC-400 and EJ-200 alpha spectra is sufficient to separate the peaks of (222)Rn, (218)Po and (214)Po and allows (222)Rn measurements that are unaffected by the presence of thoron ((220)Rn) in the environment. The alpha energy resolution of SCSF-81 in the experiments degrades due to imperfect collection of the light emitted inside the scintillating fibers. The experiments with plastic scintillation microspheres (PSM) confirm previous findings of other researchers that PSM have alpha-/beta-discrimination properties and show suitability for radon measurements. The diffusion length of radon in BC-400 and EJ-200 is determined. The pilot experiments show that the plastic scintillators are suitable for radon-in-soil-gas measurements. Overall, the results of this work suggest that it is possible to develop a new type of radon measurement instruments which employ absorption in plastic scintillators, pulse-shape discrimination and analysis of the alpha spectra. Such instruments can be very compact and can perform continuous, real-time radon measurements and thoron detection. They can find applications in various fields from radiation protection to earth sciences. PMID:26851823

  12. First line shape analysis and spectroscopic parameters for the ν11 band of 12C2H4

    NASA Astrophysics Data System (ADS)

    Es-sebbar, Et-touhami; Mantzaras, John; Benilan, Yves; Farooq, Aamir

    2016-11-01

    An accurate knowledge of line intensities, collisional broadening coefficients and narrowing parameters is necessary for the interpretation of high-resolution infrared spectra of the Earth and other planetary atmospheres. One of the most promising spectral domains for 12C2H4 monitoring in such environments is located near the 3.36 μm window, through its ν11 C-H stretching mode. In this paper, we report an extensive study in which we precisely determine spectroscopic parameters of 12C2H4 ν11 band at 297±1 K, using a narrow Difference-Frequency-Generation (DFG) laser with 10-4 cm-1 resolution. Absorption measurements were performed in the 2975-2980 cm-1 spectral window to investigate 32 lines corresponding to J'Ka',Kc'←JKa,Kc, where, 5≤J≤7; 0≤Ka≤6 and 1≤Kc≤14. Spectroscopic parameters are retrieved using either Voigt or appropriate Galatry profile to simulate the measured 12C2H4 line shape. Line intensities along with self-broadening coefficients are reported for all lines. Narrowing coefficients for each isolated line are also derived. To our knowledge, the current study reports the first extensive spectroscopic parameter measurements of the 12C2H4 ν11 band in the 2975-2980 cm-1 range.

  13. Optical bistability involving photonic crystal microcavities and Fano line shapes.

    PubMed

    Cowan, A R; Young, Jeff F

    2003-10-01

    The reflectivity of a single-channel waveguide mode upon resonantly coupling to a Kerr-active nonlinear resonant cavity is calculated analytically, including the effects of two-photon absorption. The resonant reflectivity takes the form of a Fano resonance because the solution includes linear reflections from perturbations downstream of the localized cavity. Instead of using a Hamiltonian formulation of the scattering problem, an intuitive set of basis states is used to expand the Green's function of the electric field wave equation. All resulting overlap functions describing the linear coupling between guided and localized states, and the nonlinear renormalization of the material's refractive index, are in terms of well-defined physical quantities. Although derived in the context of photonic crystal-based waveguides and cavities, the treatment is valid for any low-loss waveguide-resonator geometry that satisfies specific weak coupling criteria. For a cavity consisting of Al0.18Ga0.82As, hosting a localized mode at 1.55 microm with a Q of 4000 and a mode volume of 0.055 microm(3), we predict the onset of bistable reflection at incident powers of approximately 40 mW. The downstream reflections lead to hysteresis loops in the reflectivity that are topologically distinct from conventional Lorentzian-derived loops characteristic of isolated Fabry-Perot cavities. We provide a stability argument that reveals the unstable branches of these unique hysteresis loops, and we illustrate some of the rich bistable behaviors that can be engineered with such downstream sources. PMID:14683064

  14. Time variations of narrow absorption lines in high resolution quasar spectra

    NASA Astrophysics Data System (ADS)

    Boissé, P.; Bergeron, J.; Prochaska, J. X.; Péroux, C.; York, D. G.

    2015-09-01

    Aims: We have searched for temporal variations of narrow absorption lines in high resolution quasar spectra. A sample of five distant sources were assembled, for which two spectra are available, either VLT/UVES or Keck/HIRES, which were taken several years apart. Methods: We first investigate under which conditions variations in absorption line profiles can be detected reliably from high resolution spectra and discuss the implications of changes in terms of small-scale structure within the intervening gas or intrinsic origin. The targets selected allow us to investigate the time behaviour of a broad variety of absorption line systems by sampling diverse environments: the vicinity of active nuclei, galaxy halos, molecular-rich galaxy disks associated with damped Lyα systems, as well as neutral gas within our own Galaxy. Results: Intervening absorption lines from Mg ii, Fe ii, or proxy species with lines of lower opacity tracing the same kind of (moderately ionised) gas appear in general to be remarkably stable (1σ upper limits as low as 10% for some components on scales in the range 10-100 au), even for systems at zabs ≈ ze. Marginal variations are observed for Mg ii lines towards PKS 1229-021 at zabs = 0.83032; however, we detect no systems that display any change as large as those reported in low resolution SDSS spectra. The lack of clear variations for low β Mg ii systems does not support the existence of a specific population of absorbers made of swept-up gas towards blazars. In neutral or diffuse molecular media, clear changes are seen for Galactic Na i lines towards PKS 1229-02 (decrease in N by a factor of four for one of the five components over 9.7 yr), corresponding to structure on a scale of about 35 au, in good agreement with known properties of the Galactic interstellar medium. Tentative variations are detected for H2J = 3 lines towards FBQS J2340-0053 at zabs = 2.05454 (≃35% change in column density, N, over 0.7 yr in the rest frame), suggesting

  15. LOW-z Mg II BROAD ABSORPTION-LINE QUASARS FROM THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Zhang Shaohua; Wang Tingi; Wang Huiyuan; Zhou Hongyan; Dong Xiaobo; Wang Jianguo E-mail: whywang@mail.ustc.edu.c

    2010-05-01

    We present a sample of 68 low-z Mg II low-ionization broad absorption-line (loBAL) quasars. The sample is uniformly selected from the Sloan Digital Sky Survey Data Release 5 according to the following criteria: (1) redshift 0.4 < z {<=} 0.8, (2) median spectral S/N>7 pixel{sup -1}, and (3) Mg II absorption-line width {Delta}v{sub c} {>=} 1600 km s{sup -1}. The last criterion is a trade-off between the completeness and consistency with respect to the canonical definition of BAL quasars that have the 'balnicity index' BI>0 in C IV BAL. We adopted such a criterion to ensure that {approx}90% of our sample are classical BAL quasars and the completeness is {approx}80%, based on extensive tests using high-z quasar samples with measurements of both C IV and Mg II BALs. We found (1) Mg II BAL is more frequently detected in quasars with narrower H{beta} emission line, weaker [O III] emission line, stronger optical Fe II multiplets, and higher luminosity. In term of fundamental physical parameters of a black hole accretion system, loBAL fraction is significantly higher in quasars with a higher Eddington ratio than those with a lower Eddington ratio. The fraction is not dependent on the black hole mass in the range concerned. The overall fraction distribution is broad, suggesting a large range of covering factor of the absorption material. (2) [O III]-weak loBAL quasars averagely show undetected [Ne V] emission line and a very small line ratio of [Ne V] to [O III]. However, the line ratio in non-BAL quasars, which is much larger than that in [O III]-weak loBAL quasars, is independent of the strength of the [O III] line. (3) loBAL and non-loBAL quasars have similar colors in near-infrared to optical band but different colors in ultraviolet. (4) Quasars with Mg II absorption lines of intermediate width are indistinguishable from the non-loBAL quasars in optical emission line properties but their colors are similar to loBAL quasars, redder than non-BAL quasars. We also discuss

  16. Spectral shapes of Ar-broadened HCl lines in the fundamental band by classical molecular dynamics simulations and comparison with experiments

    SciTech Connect

    Tran, H.; Domenech, J.-L.

    2014-08-14

    Spectral shapes of isolated lines of HCl perturbed by Ar are investigated for the first time using classical molecular dynamics simulations (CMDS). Using reliable intermolecular potentials taken from the literature, these CMDS provide the time evolution of the auto-correlation function of the dipole moment, whose Fourier-Laplace transform leads to the absorption spectrum. In order to test these calculations, room temperature spectra of various lines in the fundamental band of HCl diluted in Ar are measured, in a large pressure range, with a difference-frequency laser spectrometer. Comparisons between measured and calculated spectra show that the CMDS are able to predict the large Dicke narrowing effect on the shape of HCl lines and to satisfactorily reproduce the shapes of HCl spectra at different pressures and for various rotational quantum numbers.

  17. Spectral line shapes of L-shell transitions in Ne-like iron

    NASA Astrophysics Data System (ADS)

    Mancini, Roberto C.

    2016-05-01

    Photon-energy-resolved large-scale opacity calculations employ Stark broadened spectral line shapes only to account for the contribution of K-shell line transitions. Detailed ion broadening effects are not considered for L- and M-shell transitions. We present Stark broadening calculations for the line profiles of L-shell transitions linking ground state and singly excited states in Ne-like iron ions. These detailed line shapes have been computed in the standard Stark broadening theory approximation taking into account the effect of both static ions and dynamic electrons. The results show the importance of the ion's effect on the line broadening of several L-shell line transitions.

  18. Stark broadening of impurity absorption lines by inhomogeneous electric fields in highly compensated germanium

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Fujii, K.; Ohyama, T.; Itoh, K. M.; Haller, E. E.

    1996-06-01

    Stark broadening of Zeeman absorption lines caused by inhomogeneous electric fields in highly compensated Ge has been studied by means of far-infrared magneto-optical absorption spectroscopy measurements. A number of transmutation-doped Ge single crystals with a systematically varying compensation ratio were employed. The broadening of the full width at half maximum (FWHM) of an absorption line of the Ga acceptor is studied as a function of excitation light intensity with above-band-gap energy. The FWHM increases with decreasing intensity of the band-edge light excitation. Observation of the theoretically predicted 4/3-power law of Stark broadening, due to ionized impurities, is reported. The line broadening originates in the Stark effect, due to inhomogeneous electric fields caused by the random distribution of ionized impurities. In order to understand the mechanism for the line broadening in detail, a numerical approach based on a Monte Carlo simulation has been performed. The results of this simulation show that the inhomogeneity of the field distribution becomes larger with increasing concentration of ionized impurities. The simulation based on a perfectly random distribution for an initial impurity arrangement gives a fairly good agreement with the experimental results. We conclude that the distribution of impurities in transmutation-doped Ge samples is close to random.

  19. Dust depletion of Ca and Ti in QSO absorption-line systems

    NASA Astrophysics Data System (ADS)

    Guber, C. R.; Richter, P.

    2016-06-01

    Aims: To explore the role of titanium- and calcium-dust depletion in gas in and around galaxies, we systematically study Ti/Ca abundance ratios in intervening absorption-line systems at low and high redshift. Methods: We investigate high-resolution optical spectra obtained by the UVES instrument at the Very Large Telescope (VLT) and spectroscopically analyze 34 absorption-line systems at z ≤ 0.5 to measure column densities (or limits) for Ca ii and Ti ii. We complement our UVES data set with previously published absorption-line data on Ti/Ca for redshifts up to z ~ 3.8. Our absorber sample contains 110 absorbers including damped Lyman α systems (DLAs), sub-DLAs, and Lyman-Limit systems (LLS). We compare our Ti/Ca findings with results from the Milky Way and the Magellanic Clouds and discuss the properties of Ti/Ca absorbers in the general context of quasar absorption-line systems. Results: Our analysis indicates that there are two distinct populations of absorbers with either high or low Ti/Ca ratios with a separation at [Ti/Ca] ≈ 1. While the calcium-dust depletion in most of the absorbers appears to be severe, the titanium depletions are mild in systems with high Ti/Ca ratios. The derived trend indicates that absorbers with high Ti/Ca ratios have dust-to-gas ratios that are substantially lower than in the Milky Way. We characterize the overall nature of the absorbers by correlating Ti/Ca with other observables (e.g., metallicity, velocity-component structure) and by modeling the ionization properties of singly-ionized Ca and Ti in different environments. Conclusions: We conclude that Ca ii and Ti ii bearing absorption-line systems trace predominantly neutral gas in the disks and inner halo regions of galaxies, where the abundance of Ca and Ti reflects the local metal and dust content of the gas. Our study suggests that the Ti/Ca ratio represents a useful measure for the gas-to-dust ratio and overall metallicity in intervening absorption-line systems.

  20. THE PHYSICAL CONDITIONS OF THE INTRINSIC N V NARROW ABSORPTION LINE SYSTEMS OF THREE QUASARS

    SciTech Connect

    Wu Jian; Charlton, Jane C.; Misawa, Toru; Eracleous, Michael; Ganguly, Rajib E-mail: misawatr@shinshu-u.ac.j

    2010-10-20

    We employ detailed photoionization models to infer the physical conditions of intrinsic narrow absorption line systems found in high-resolution spectra of three quasars at z = 2.6-3.0. We focus on a family of intrinsic absorbers characterized by N V lines that are strong relative to the Ly{alpha} lines. The inferred physical conditions are similar for the three intrinsic N V absorbers, with metallicities greater than 10 times the solar value (assuming a solar abundance pattern), and with high ionization parameters (log U {approx} 0). Thus, we conclude that the unusual strength of the N V lines results from a combination of partial coverage, a high ionization state, and high metallicity. We consider whether dilution of the absorption lines by flux from the broad emission line region can lead us to overestimate the metallicities and we find that this is an unlikely possibility. The high abundances that we infer are not surprising in the context of scenarios in which metal enrichment takes place very early on in massive galaxies. We estimate that the mass outflow rate in the absorbing gas (which is likely to have a filamentary structure) is less than a few M{sub sun} yr{sup -1} under the most optimistic assumptions, although it may be embedded in a much hotter, more massive outflow.

  1. The Suzaku Observation of NGC 3516: Complex Absorption and the Broad and Narrow Fe K Lines

    NASA Technical Reports Server (NTRS)

    Markowitz, Alex; Reeves, James N.; Miniutti, Giovanni; Serlemitsos, Peter; Kunieda, Hideyo; Taqoob, Tahir; Fabian, Andrew C.; Fukazawa, Yasushi; Mushotzky, Richard; Okajima, Takashi; Gallo, Luigi; Awaki, Hisamitsu; Griffiths, Richard E.

    2007-01-01

    We present results from a 150 ksec Suzaku observation of the Seyfert 1 NGC 3516 in October 2005. The source was in a relatively highly absorbed state. Our best-fit model is consistent with partial covering by a lowly-ionized absorber with a column density near 5x10(exp 22) cm(exp -2) and with a covering fraction 96-100 percent. Narrow K-shell absorption features due to He- and H-like Fe confirm the presence of a high-ionization absorbing component as well. A broad Fe K(alpha) diskline is required in all fits, even after the complex absorption is taken into account; an additional partial-covering component is an inadequate substitute for the continuum curvature associated with the broad line. The narrow Fe Ka line at 6.4 keV is resolved, yielding a velocity width commensurate with the optical Broad Line Region. The strength of the Compton reflection hump suggests a contribution mainly from the broad Fe line origin. We include in our model soft band emission lines from He- and H-like ions and radiative recombination lines, consistent with photo-ionization, though a small contribution from collisional ionization is possible.

  2. Reionisation and High-Redshift Galaxies: The View from Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Becker, George D.; Bolton, James S.; Lidz, Adam

    2015-12-01

    Determining when and how the first galaxies reionised the intergalactic medium promises to shed light on both the nature of the first objects and the cosmic history of baryons. Towards this goal, quasar absorption lines play a unique role by probing the properties of diffuse gas on galactic and intergalactic scales. In this review, we examine the multiple ways in which absorption lines trace the connection between galaxies and the intergalactic medium near the reionisation epoch. We first describe how the Ly α forest is used to determine the intensity of the ionising ultraviolet background and the global ionising emissivity budget. Critically, these measurements reflect the escaping ionising radiation from all galaxies, including those too faint to detect directly. We then discuss insights from metal absorption lines into reionisation-era galaxies and their surroundings. Current observations suggest a buildup of metals in the circumgalactic environments of galaxies over z ~ 6 to 5, although changes in ionisation will also affect the evolution of metal line properties. A substantial fraction of metal absorbers at these redshifts may trace relatively low-mass galaxies. Finally, we review constraints from the Ly α forest and quasar near zones on the timing of reionisation. Along with other probes of the high-redshift Universe, absorption line data are consistent with a relatively late end to reionisation (5.5 ≲ z ≲ 7); however, the constraints are still fairly week. Significant progress is expected to come through improved analysis techniques, increases in the number of known high-redshift quasars from optical and infrared sky surveys, large gains in sensitivity from next-generation observing facilities, and synergies with other probes of the reionisation era.

  3. Time-dependent calculations of hydrogen spectral line shapes in dense plasmas

    NASA Astrophysics Data System (ADS)

    Olchawa, Wiesław

    2001-04-01

    A new formalism has been elaborated for calculations of hydrogen line profiles emitted by dense plasmas. Calculated line shapes are broadened, shifted and asymmetrical. The formalism is very general and yields full line shapes, shifts and widths at relatively small number of assumptions. For this purpose a new basis of the appropriate subspace of the Hilbert space has been built. This basis gives an accurate description of the quadratic Stark effect and the interaction of the emitter with field gradients. A computer simulation has been used to determine the emitter perturbations by electrons and ions. Final results have been compared with experimental and theoretical findings of other authors.

  4. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes

    NASA Astrophysics Data System (ADS)

    Ngo, N. H.; Lisak, D.; Tran, H.; Hartmann, J.-M.

    2013-11-01

    We demonstrate that a previously proposed model opens the route for the inclusion of refined non-Voigt profiles in spectroscopic databases and atmospheric radiative transfer codes. Indeed, this model fulfills many essential requirements: (i) it takes both velocity changes and the speed dependences of the pressure-broadening and -shifting coefficients into account. (ii) It leads to accurate descriptions of the line shapes of very different molecular systems. Tests made for pure H2, CO2 and O2 and for H2O diluted in N2 show that residuals are down to ≃0.2% of the peak absorption, (except for the untypical system of H2 where a maximum residual of ±3% is reached), thus fulfilling the precision requirements of the most demanding remote sensing experiments. (iii) It is based on a limited set of parameters for each absorption line that have known dependences on pressure and can thus be stored in databases. (iv) Its calculation requires very reasonable computer costs, only a few times higher than that of a usual Voigt profile. Its inclusion in radiative transfer codes will thus induce bearable CPU time increases. (v) It can be extended in order to take line-mixing effects into account, at least within the so-called first-order approximation.

  5. The Hubble Space Telescope quasar absorption line key project. III - First observational results on Milky Way gas

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Lu, Limin; Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Lockman, Felix J.; Sargent, W. L. W.

    1993-01-01

    Absorption lines found near zero redshift due to Milky Way disk and halo gas in the spectra of 15 quasars observed with the Faint Object Spectrograph (FOS) of the HST at a resolution of about 230 km/s are reported. Results show that Milky Way absorption lines comprise about 44 percent of all absorption lines seen in the first group of Key Project FOS spectra. Milky Way lines were observed for 3C 273 and H1821 + 643. Limits to the Mg-to-H abundance ratio obtained for very high velocity Mg II absorption detections imply gas-phase Mg abundances for the very high velocity gas ranging from more than 0.059 to more than 0.32 times the solar abundance. In all cases where high-velocity H I emission is seen, corresponding high-velocity metal-line absorption is observed.

  6. Line parameters including temperature dependences of air- and self-broadened line shapes of 12C16O2: 2.06-μm region

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Sung, Keeyoon; Brown, Linda R.; Miller, Charles E.; Payne, Vivienne H.; Drouin, Brian J.; Yu, Shanshan; Crawford, Timothy J.; Mantz, Arlan W.; Smith, Mary Ann H.; Gamache, Robert R.

    2016-08-01

    This study reports the results from analyzing a number of high resolution, high signal-to-noise ratio (S/N) spectra in the 2.06-μm spectral region for pure CO2 and mixtures of CO2 in dry air. A multispectrum nonlinear least squares curve fitting technique has been used to retrieve the various spectral line parameters. The dataset includes 27 spectra: ten pure CO2, two 99% 13C-enriched CO2 and fifteen spectra of mixtures of 12C-enriched CO2 in dry air. The spectra were recorded at various gas sample temperatures between 170 and 297 K. The absorption path lengths range from 0.347 to 49 m. The sample pressures for the pure CO2 spectra varied from 1.1 to 594 Torr; for the two 13CO2 spectra the pressures were ∼10 and 146 Torr. For the air-broadened spectra, the pressures of the gas mixtures varied between 200 and 711 Torr with CO2 volume mixing ratios ranging from 0.014% to 0.203%. The multispectrum fitting technique was applied to fit simultaneously all these spectra to retrieve consistent set of line positions, intensities, and line shape parameters including their temperature dependences; for this, the Voigt line shape was modified to include line mixing (via the relaxation matrix formalism) and quadratic speed dependence. The new results are compared to select published values, including recent ab initio calculations. These results are required to retrieve the column averaged dry air mole fraction (XCO2) from space-based observations, such as the Orbiting Carbon Observatory-2 (OCO-2) satellite mission that NASA launched in July 2014.

  7. The Hubble Space Telescope Quasar Absorption Line Key Project. XIV. The Evolution of Lyα Absorption Lines in the Redshift Interval z = 0-1.5

    NASA Astrophysics Data System (ADS)

    Weymann, Ray J.; Jannuzi, Buell T.; Lu, Limin; Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Hartig, George F.; Kirhakos, Sofia; Sargent, W. L. W.; Savage, Blair D.; Schneider, Donald P.; Turnshek, David A.; Wolfe, Arthur M.

    1998-10-01

    We present the results of an analysis of the rate of evolution of the Lyα absorption lines in the redshift interval 0.0 to ~1.5 based upon a sample of 987 Lyα absorption lines identified in the spectra of 63 QSOs obtained with the Faint Object Spectrograph (FOS) of the Hubble Space Telescope (HST). These spectra were obtained as part of the QSO Absorption Line Survey, an HST Key Project during the first four years of observations with the telescope. Fits to the evolution of the number of absorbers per unit redshift (dN/dz) of the form dN/dz = A × (1 + z)γ continue to yield values of γ in the range 0.1-0.3, decidedly flatter than results from ground-based data pertaining to the redshift range z > 1.7. These results are consistent with our previous results based on a much smaller sample of lines, but the uncertainties in the fit have been greatly reduced. The combination of the HST and ground-based data suggest a marked transition in the rate of evolution of the Lyα lines at a redshift of about 1.7. The 19 Lyα lines from an additional higher redshift QSO from our sample for which tentative line identifications are available (UM 18; zem = 1.89) support the suggestion of a rapid increase at around this redshift. We derive the cumulative distribution of the full sample of Lyα lines and show that the distribution in redshift can indeed be well represented by a power law of the form (1 + z)γ. For this same sample, the distribution of equivalent widths of the Lyα absorbers above a rest equivalent width of 0.1 Å is fit quite well by an exponential. Comparing samples of Lyα lines, one set of which has redshifts the same as, or very near to, the redshifts of ions from heavy elements and another set in which no ions from heavy elements have been identified, we find that the Lyα systems with heavy element detections have a much steeper slope than the high rest equivalent width portion of the Lyman-only sample. We argue that this result is not likely to be due to

  8. Discovery of an X-ray Violently Variable Broad Absorption Line Quasar

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Gutierrez, Carlos M.; Punsly, Brian; Chevallier, Loic; Goncalves, Anabela C.

    2006-01-01

    In this letter, we report on a quasar that is violently variable in the X-rays, XVV. It is also a broad absorption line quasar (BALQSO) that exhibits both high ionization and low ionization UV absorption lines (LoBALQSO). It is very luminous in the X-rays (approximately 10(exp 46) ergs s(sup -l) over the entire X-ray band). Surprisingly, this does not over ionize the LoBAL outflow. The X-rays vary by a factor of two within minutes in the quasar rest frame, which is shorter than 1/30 of the light travel time across a scale length equal to the black hole radius. We concluded that the X-rays are produced in a relativistic jet beamed toward earth in which variations in the Doppler enhancement produce the XVV behavior.

  9. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    NASA Astrophysics Data System (ADS)

    Welty, Daniel E.

    1990-07-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  10. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    NASA Technical Reports Server (NTRS)

    Welty, Daniel E.

    1990-01-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  11. The VLBI structure of radio-loud Broad Absorption Line quasars

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Jiang, D. R.; Gu, M.

    2016-02-01

    The nature and origin of Broad Absorption Line (BAL) quasars and their relationship to non-BAL quasars are an open question. The BAL quasars are probably normal quasars seen along a particular line of sight. Alternatively, they are young or recently refueled. The high resolution radio morphology of BAL quasars is very important to understand the radio properties of BAL quasars. We present VLBA observations at L and C bands for a sample of BAL quasars. The observations will help us to explore the VLBI radio properties, and distinguish the present models of explaining BAL phenomena.

  12. The spatial and kinematic structure of QSO metal-line absorption systems

    NASA Technical Reports Server (NTRS)

    Lanzetta, Kenneth M.

    1992-01-01

    Recent attempts to infer the spatial and kinematic distributions of the material responsible for absorption lines observed in the spectra of background QSOs are presented. Current models of the absorbing regions are compared, and initial observational results are described. This research is expected to lead eventually to a detailed picture of the extended gaseous halo regions of galaxies at early evolutionary stages and to an understanding of the physical processes at work in these halos.

  13. What Quasars Really Look Like: Unification of the Emission and Absorption Line Regions

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    2000-01-01

    We propose a simple unifying structure for the inner regions of quasars and AGN. This empirically derived model links together the broad absorption line (BALS), the narrow UV/X-ray ionized absorbers, the BELR, and the 5 Compton scattering/fluorescing regions into a single structure. The model also suggests an alternative origin for the large-scale bi-conical outflows. Some other potential implications of this structure are discussed.

  14. Wavelength Locking to CO2 Absorption Line-Center for 2-Micron Pulsed IPDA Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong

    2016-01-01

    An airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-micron CW (Continuous Wave) laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nanometers, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.

  15. Observations of absorption lines from highly ionized atoms. [of interstellar medium

    NASA Technical Reports Server (NTRS)

    Jenkins, Edward B.

    1987-01-01

    In the ultraviolet spectra of hot stars, absorption lines can be seen from highly ionized species in the interstellar medium. Observations of these features which have been very influential in revising the perception of the medium's various physical states, are discussed. The pervasiveness of O 6 absorption lines, coupled with complementary observations of a diffuse background in soft X-rays and EUV radiation, shows that there is an extensive network of low density gas (n approx. few x 0.001/cu cm) existing at coronal temperatures log T = 5.3 or 6.3. Shocks created by supernova explosions or mass loss from early-type stars can propagate freely through space and eventually transfer a large amount of energy to the medium. To create the coronal temperatures, the shocks must have velocities in excess of 150 km/sec; shocks at somewhat lower velocity (v = 100 km/sec) can be directly observed in the lines of Si3. Observations of other lines in the ultraviolet, such as Si 4V and C 5, may highlight the widespread presence of energetic UV radiation from very hot, dwarf stars. More advanced techniques in visible and X-ray astronomical spectroscopy may open up for inspection selected lines from atoms in much higher stages of ionization.

  16. Surprises from a Deep ASCA Spectrum of the Broad Absorption Line Quasar PHL 5200

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Matt, G.; Green, P. J.; Elvis, M.; Singh, K. P.

    2002-01-01

    We present a deep (approx. 85 ks) ASCA observation of the prototype broad absorption line quasar (BALQSO) PHL 5200. This is the best X-ray spectrum of a BALQSO yet. We find the following: (1) The source is not intrinsically X-ray weak. (2) The line-of-sight absorption is very strong, with N(sub H) = 5 x 10(exp 23)/sq cm. (3) The absorber does not cover the source completely; the covering fraction is approx. 90%. This is consistent with the large optical polarization observed in this source, implying multiple lines of sight. The most surprising result of this observation is that (4) the spectrum of this BALQSO is not exactly similar to other radio-quiet quasars. The hard X-ray spectrum of PHL 5200 is steep, with the power-law spectral index alpha approx. 1.5. This is similar to the steepest hard X-ray slopes observed so far. At low redshifts, such steep slopes are observed in narrow-line Seyfert 1 (NLS1) galaxies, believed to be accreting at a high Eddington rate. This observation strengthens the analogy between BALQSOs and NLS1 galaxies and supports the hypothesis that BALQSOs represent an early evolutionary state of quasars. It is well accepted that the orientation to the line of sight determines the appearance of a quasar: age seems to play a significant role as well.

  17. The Evolution of Quasar C IV and Si IV Broad Absorption Lines over Multi-year Timescales

    NASA Astrophysics Data System (ADS)

    Gibson, Robert R.; Brandt, W. N.; Gallagher, S. C.; Hewett, Paul C.; Schneider, Donald P.

    2010-04-01

    We investigate the variability of C IV λ1549 broad absorption line (BAL) troughs over rest-frame timescales of up to ≈7 yr in 14 quasars at redshifts z >~ 2.1. For nine sources at sufficiently high redshift, we also compare the C IV and Si IV λ1400 absorption variation. We compare shorter and longer term variability using spectra from up to four different epochs per source and find complex patterns of variation in the sample overall. The scatter in the change of absorption equivalent width (EW), ΔEW, increases with the time between observations. BALs do not, in general, strengthen or weaken monotonically, and variation observed over shorter (lsimmonths) timescales is not predictive of multi-year variation. We find no evidence for asymmetry in the distribution of ΔEW that would indicate that BALs form and decay on different timescales, and we constrain the typical BAL lifetime to be gsim30 yr. The BAL absorption for one source, LBQS 0022+0150, has weakened and may now be classified as a mini-BAL. Another source, 1235+1453, shows evidence of variable, blue continuum emission that is relatively unabsorbed by the BAL outflow. C IV and Si IV BAL shape changes are related in at least some sources. Given their high velocities, BAL outflows apparently traverse large spatial regions and may interact with parsec-scale structures such as an obscuring torus. Assuming BAL outflows are launched from a rotating accretion disk, notable azimuthal symmetry is required in the outflow to explain the relatively small changes observed in velocity structure over times up to 7 yr.

  18. C IV Broad Absorption Line Variability in QSO spectra from SDSS I-III Surveys

    NASA Astrophysics Data System (ADS)

    De Cicco, D.; Brandt, W. N.; Paolillo, M.; Grier, C. J.

    2016-08-01

    We present the results of our study of C IV broad absorption line (BAL) variability in the spectra of more than 1500 QSO's from several SDSS I-III surveys. Absorption lines in QSO spectra are due to outflowing winds which originate from the accretion disk, at a distance on the order of 1/100 - 1/10 pc from the central super-massive black hole (SMBH). Winds trigger the accretion mechanism onto the SMBH removing angular momentum from the disk and, since they evacuate gas from the host galaxy, they are believed to play a fundamental role in galaxy evolution. Absorption lines can be classified on the basis of their width and of the observed transitions, and their equivalent width can change on timescales from months to years, due to variations in the covering factor and/or in the ionization level. We analyzed the largest sample ever used for such kind of studies. We find that the fraction of disappearing BALs is three times larger than the one found in previous works. Strong evidence is found for a coordinated variability in spectra with multiple BAL troughs which may be interpreted in terms of disk-wind rotation, and/or variations in the physical status of the shielding gas. We also find that, in spectra with multiple BAL troughs, the disappearing ones are generally those with the highest central velocity.

  19. Measurability of Kinetic Temperature from Metal Absorption-Line Spectra Formed in Chaotic Media

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Takahara, Fumio; Agafonova, Irina I.

    1999-06-01

    We present a new method for recovering the kinetic temperature of the intervening diffuse gas to an accuracy of 10%. The method is based on the comparison of unsaturated absorption-line profiles of two species with different atomic weights. The species are assumed to have the same temperature and bulk motion within the absorbing region. The computational technique involves the Fourier transform of the absorption profiles and the consequent entropy-regularized χ2-minimization (ERM) to estimate the model parameters. The procedure is tested using synthetic spectra of C+, Si+, and Fe+ ions. The comparison with the standard Voigt fitting analysis is performed, and it is shown that the Voigt deconvolution of the complex absorption-line profiles may result in estimated temperatures that are not physical. We also successfully analyze Keck telescope spectra of C II λ1334 and Si II λ1260 lines observed at the redshift z=3.572 toward the quasar Q1937-1009 by Tytler et al. Based in part on data obtained at the W. M. Keck Observatory, which is jointly operated by the University of California and the California Institute of Technology.

  20. A new analysis of fine-structure constant measurements and modelling errors from quasar absorption lines

    NASA Astrophysics Data System (ADS)

    Wilczynska, Michael R.; Webb, John K.; King, Julian A.; Murphy, Michael T.; Bainbridge, Matthew B.; Flambaum, Victor V.

    2015-12-01

    We present an analysis of 23 absorption systems along the lines of sight towards 18 quasars in the redshift range of 0.4 ≤ zabs ≤ 2.3 observed on the Very Large Telescope (VLT) using the Ultraviolet and Visual Echelle Spectrograph (UVES). Considering both statistical and systematic error contributions we find a robust estimate of the weighted mean deviation of the fine-structure constant from its current, laboratory value of Δα/α = (0.22 ± 0.23) × 10-5, consistent with the dipole variation reported in Webb et al. and King et al. This paper also examines modelling methodologies and systematic effects. In particular, we focus on the consequences of fitting quasar absorption systems with too few absorbing components and of selectively fitting only the stronger components in an absorption complex. We show that using insufficient continuum regions around an absorption complex causes a significant increase in the scatter of a sample of Δα/α measurements, thus unnecessarily reducing the overall precision. We further show that fitting absorption systems with too few velocity components also results in a significant increase in the scatter of Δα/α measurements, and in addition causes Δα/α error estimates to be systematically underestimated. These results thus identify some of the potential pitfalls in analysis techniques and provide a guide for future analyses.

  1. Simulation studies of multi-line line-of-sight tunable-diode-laser absorption spectroscopy performance in measuring temperature probability distribution function

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Le; Liu, Jian-Guo; Kan, Rui-Feng; Xu, Zhen-Yu

    2014-12-01

    Line-of-sight tunable-diode-laser absorption spectroscopy (LOS-TDLAS) with multiple absorption lines is introduced for non-uniform temperature measurement. Temperature binning method combined with Gauss—Seidel iteration method is used to measure temperature probability distribution function (PDF) along the line-of-sight (LOS). Through 100 simulated measurements, the variation of measurement accuracy is investigated with the number of absorption lines, the number of temperature bins and the magnitude of temperature non-uniformity. A field model with 2-T temperature distribution and 15 well-selected absorption lines are used for the simulation study. The Gauss—Seidel iteration method is discussed for its reliability. The investigation result about the variation of measurement accuracy with the number of temperature bins is different from the previous research results.

  2. The HST quasar absorption line key project. 4: HST faint-object spectrograph and ground-based observations of the unusual low-redshift broad absorption-line quasi-stellar object PG 0043+039

    NASA Technical Reports Server (NTRS)

    Turnshek, David A.; Espey, Brian R.; Kopko, Michael, Jr.; Rauch, Michael; Weymann, Ray J.; Jannuzi, Buell T.; Boksenberg, Alec; Bergeron, Jacqueline; Hartig, George F.; Sargent, W. L. W.

    1994-01-01

    Hubble Space Telescope Faint Object Spectrograph (HST FOS) observations have shown that the spectrum of the low-redshift (z(sub em) approximately equal to 0.384) QSO PG 0043+039 exhibits weak broad absorption lines (BALs). The BALs were discovered during the course of UV spectrophotometry made for the HST Quasar Absorption Line Key Project. The HST data are analyzed along with ground-based optical and IUE spectrophotometry. The object is found to have a number of atypical properties relative to normal non-BAL QSOs. The observed continuum is atypical in the sense that it is much weaker than that of a normal optically selected QSO at rest wavelengths approximately less than 2200 A. Intrinsic reddening of E(B-V) approximately equal to 0.11 mag by dust similar to that found in the SMC at the redshift of PG 0043+039 conservatively accounts for the observed continuum shape moderately well. These observed characteristics are typical of low-ionization BAL QSOs, but convincing evidence for BALs due to low-ionization transitions of Mg II, Al III, Al II, or C II does not exist. Therefore, this object may be a misaligned BAL QSO having many of the characteristics of low-ionization BAL QSOs with the sight line passing through a putative dusty region, but evidently missing clouds of high enough column density to produce observable low-ionization BALs. If the intrinsic dust-extinction model is correct, the observations suggest that the dust is not confined to the presumably higher density, low-ionization BAL clouds, but that it has drifted to nearby high-ionization BAL regions. We also consider other possible mechanisms for producing the shape of the continuous energy distribution which cannot be ruled out. We compare the Fe II emission in PG 0043+039 with that in another Key Project QSO, NGC 2841-UB 3, which has optical Fe II emission comparable in strength to that in PG 0043+039, but has anomalously weak UV Fe II emission. In addition, from an analysis of UV and optical

  3. Effect of higher-order multipole moments on the Stark line shape

    NASA Astrophysics Data System (ADS)

    Gomez, T. A.; Nagayama, T.; Kilcrease, D. P.; Montgomery, M. H.; Winget, D. E.

    2016-08-01

    Spectral line shapes are sensitive to plasma conditions and are often used to diagnose electron density of laboratory plasmas as well as astrophysical plasmas. Stark line-shape models take into account the perturbation of the radiator's energy structure due to the Coulomb interaction with the surrounding charged particles. Solving this Coulomb interaction is challenging and is commonly approximated via a multipole expansion. However, most models include only up to the second term of the expansion (the dipole term). While there have been studies on the higher-order terms due to one of the species (i.e., either ions or electrons), there is no model that includes the terms beyond dipole from both species. Here, we investigate the importance of the higher-order multipole terms from both species on the Hβ line shape. First, we find that it is important to include higher-order terms consistently from both ions and electrons to reproduce measured line-shape asymmetry. Next, we find that the line shape calculated with the dipole-only approximation becomes inaccurate as density increases. It is necessary to include up to the third (quadrupole) term to compute the line shape accurately within 2%. Since most existing models include only up to the dipole terms, the densities inferred with such models are in question. We find that the model without the quadrupole term slightly underestimates the density, and the discrepancy becomes as large as 12% at high densities. While the case of study is limited to Hβ, we expect similar impact on other lines.

  4. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    SciTech Connect

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10{sup –5}, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10{sup –5} in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10{sup –5}, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10{sup –5}. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10{sup –5}. We conclude that spectroscopic measurements of

  5. Line shapes in sub-Doppler DAVLL in the 87Rb-D2 line

    NASA Astrophysics Data System (ADS)

    Choi, Gyeong-Won; Noh, Heung-Ryoul

    2016-05-01

    We present a theoretical and experimental study of the sub-Doppler dichroic atomic vapor laser lock (DAVLL) for the D2 transition line of 87Rb atoms. The experimental results of the sub-Doppler DAVLL spectra are compared with calculated results using both accurate density matrix equations and approximate rate equations. We find good agreement between the experimental and calculated results. In particular, the coherence effect must be included in the signal for the cycling transition line.

  6. WAVELENGTH MEASUREMENTS OF K TRANSITIONS OF OXYGEN, NEON, AND MAGNESIUM WITH X-RAY ABSORPTION LINES

    SciTech Connect

    Liao Jinyuan; Zhang Shuangnan; Yao Yangsen

    2013-09-10

    Accurate atomic transition data are important in many astronomical research areas, especially for studies of line spectroscopy. Whereas transition data of He-like and H-like ions (i.e., ions in high-charge states) have been accurately calculated, the corresponding data of K transitions of neutral or low-ionized metal elements are still very uncertain. Spectroscopy of absorption lines produced in the interstellar medium (ISM) has been proven to be an effective way to measure the central wavelengths of these atomic transitions. In this work, we analyze 36 Chandra High Energy Transmission Grating observations to search for and measure the ISM absorption lines along sight lines to 11 low-mass X-ray binaries. We correct the Galactic rotation velocity to the rest frame for every observation and then use two different methods to merge all the corrected spectra to a co-added spectrum. However, the co-added spectra obtained by this method exhibit biases, toward to either observations with high counts or lines with high signal-to-noise ratios. We do a Bayesian analysis of several significantly detected lines to obtain the systematic uncertainty and the bias correction for other lines. Compared to previous studies, our results improve the wavelength accuracy by a factor of two to five and significantly reduce the systematic uncertainties and biases. Several weak transitions (e.g., 1s-2p of Mg IV and Mg V; 1s-3p of Mg III and Mg V) are also detected for the first time, albeit with low significance; future observations with improved accuracy are required to confirm these detections.

  7. Absorption Line Analysis to Interprete and Constrain Cosmological Simulations of Galaxy Evolution with Feedback

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher

    2011-10-01

    The mammoth challenge for contemporary studies of galaxy formation and evolution are to establish detailed models in the cosmological context in which both the few parsec scale physics within galaxies are self-consistently unified and made consistent with the observed universe of galaxies. They key diagnostics reside with the gas physics, which dictate virtually every aspect of galaxy formation and evolution. The small scale physics includes stellar feedback, gas cooling, heating, and advection and the multiphase interstellar medium; the large scale physics includes intergalactic accretion, local merging, effects of supernovae driven winds, and the development of extended metal-enriched gas halos.Absorption line data have historically proven to be {and shall in the future} virtually the most powerful tool for understanding gas physics on all spatial scales over the majority of the age of the universe- the key to success. Simply stated, absorption lines are one of astronomy's most powerful observational windows on the universe {galaxy formation, galaxy winds, IGM metal enrichment, etc.}. The high quality and vast numbers of absorption line data {obtained with HST and FUSE} probe a broad range of gas structures {ISM, HVCs, halos, IGM} over the full cosmic span when galaxies are actively evolving.We propose to use LCDM hydrodynamic cosmological simulations employing a Eulerian Gasdynamics plus N-body Adaptive Refinement Tree {ART} code to develop and refine our understanding of stellar feedback physics and its role in governing the gas physics that regulates the evolution of galaxies and the IGM. We aim to substantially progress our understanding of all possible gas phases embedded within and extending far from galaxies. Our methodology is to apply a series of quantitative observational constraints from absorption line systems to better understand extended galaxy halos and the influence of the cosmological environment of the simulated galaxies: {1} galaxy halos

  8. Integrative fitting of absorption line profiles with high accuracy, robustness, and speed

    NASA Astrophysics Data System (ADS)

    Skrotzki, Julian; Habig, Jan Christoph; Ebert, Volker

    2014-08-01

    The principle of the integrative evaluation of absorption line profiles relies on the numeric integration of absorption line signals to retrieve absorber concentrations, e.g., of trace gases. Thus, it is a fast and robust technique. However, previous implementations of the integrative evaluation principle showed shortcomings in terms of accuracy and the lack of a fit quality indicator. This has motivated the development of an advanced integrative (AI) fitting algorithm. The AI fitting algorithm retains the advantages of previous integrative implementations—robustness and speed—and is able to achieve high accuracy by introduction of a novel iterative fitting process. A comparison of the AI fitting algorithm with the widely used Levenberg-Marquardt (LM) fitting algorithm indicates that the AI algorithm has advantages in terms of robustness due to its independence from appropriately chosen start values for the initialization of the fitting process. In addition, the AI fitting algorithm shows speed advantages typically resulting in a factor of three to four shorter computational times on a standard personal computer. The LM algorithm on the other hand retains advantages in terms of a much higher flexibility, as the AI fitting algorithm is restricted to the evaluation of single absorption lines with precomputed line width. Comparing both fitting algorithms for the specific application of in situ laser hygrometry at 1,370 nm using direct tunable diode laser absorption spectroscopy (TDLAS) suggests that the accuracy of the AI algorithm is equivalent to that of the LM algorithm. For example, a signal-to-noise ratio of 80 and better typically yields a deviation of <1 % between both fitting algorithms. The properties of the AI fitting algorithm make it an interesting alternative if robustness and speed are crucial in an application and if the restriction to a single absorption line is possible. These conditions are fulfilled for the 1,370 nm TDLAS hygrometry at the

  9. UNSHIFTED METASTABLE He I* MINI-BROAD ABSORPTION LINE SYSTEM IN THE NARROW-LINE TYPE 1 QUASAR SDSS J080248.18+551328.9

    SciTech Connect

    Ji, Tuo; Zhou, Hongyan; Jiang, Peng; Wang, Tinggui; Wang, Huiyuan; Liu, Wenjuan; Yang, Chenwei; Ge, Jian; Hamann, Fred; Komossa, S.; Yuan, Weimin; Zuther, Jens; Lu, Honglin; Zuo, Wenwen

    2015-02-10

    We report the identification of an unusual absorption-line system in the quasar SDSS J080248.18+551328.9 and present a detailed study of the system, incorporating follow-up optical and near-IR spectroscopy. A few tens of absorption lines are detected, including He I*, Fe II*, and Ni II*, which arise from metastable or excited levels, as well as resonant lines in Mg I, Mg II, Fe II, Mn II, and Ca II. All of the isolated absorption lines show the same profile of width Δv ∼ 1500 km s{sup –1} centered at a common redshift as that of the quasar emission lines, such as [O II], [S II], and hydrogen Paschen and Balmer series. With narrow Balmer lines, strong optical Fe II multiplets, and weak [O III] doublets, its emission-line spectrum is typical for that of a narrow-line Seyfert 1 galaxy (NLS1). We have derived reliable measurements of the gas-phase column densities of the absorbing ions/levels. Photoionization modeling indicates that the absorber has a density of n {sub H} ∼ (1.0-2.5) × 10{sup 5} cm{sup –3} and a column density of N {sub H} ∼ (1.0-3.2) × 10{sup 21} cm{sup –2} and is located at R ∼100-250 pc from the central supermassive black hole. The location of the absorber, the symmetric profile of the absorption lines, and the coincidence of the absorption- and emission-line centroid jointly suggest that the absorption gas originates from the host galaxy and is plausibly accelerated by stellar processes, such as stellar winds and/or supernova explosions. The implications for the detection of such a peculiar absorption-line system in an NLS1 are discussed in the context of coevolution between supermassive black hole growth and host galaxy buildup.

  10. Unshifted Metastable He I* Mini-broad Absorption Line System in the Narrow-line Type 1 Quasar SDSS J080248.18+551328.9

    NASA Astrophysics Data System (ADS)

    Ji, Tuo; Zhou, Hongyan; Jiang, Peng; Wang, Tinggui; Ge, Jian; Wang, Huiyuan; Komossa, S.; Hamann, Fred; Zuther, Jens; Liu, Wenjuan; Lu, Honglin; Zuo, Wenwen; Yang, Chenwei; Yuan, Weimin

    2015-02-01

    We report the identification of an unusual absorption-line system in the quasar SDSS J080248.18+551328.9 and present a detailed study of the system, incorporating follow-up optical and near-IR spectroscopy. A few tens of absorption lines are detected, including He I*, Fe II*, and Ni II*, which arise from metastable or excited levels, as well as resonant lines in Mg I, Mg II, Fe II, Mn II, and Ca II. All of the isolated absorption lines show the same profile of width Δv ~ 1500 km s-1 centered at a common redshift as that of the quasar emission lines, such as [O II], [S II], and hydrogen Paschen and Balmer series. With narrow Balmer lines, strong optical Fe II multiplets, and weak [O III] doublets, its emission-line spectrum is typical for that of a narrow-line Seyfert 1 galaxy (NLS1). We have derived reliable measurements of the gas-phase column densities of the absorbing ions/levels. Photoionization modeling indicates that the absorber has a density of n H ~ (1.0-2.5) × 105 cm-3 and a column density of N H ~ (1.0-3.2) × 1021 cm-2 and is located at R ~100-250 pc from the central supermassive black hole. The location of the absorber, the symmetric profile of the absorption lines, and the coincidence of the absorption- and emission-line centroid jointly suggest that the absorption gas originates from the host galaxy and is plausibly accelerated by stellar processes, such as stellar winds and/or supernova explosions. The implications for the detection of such a peculiar absorption-line system in an NLS1 are discussed in the context of coevolution between supermassive black hole growth and host galaxy buildup.

  11. The Discovery of the First He Iλ10830 Broad Absorption Line Quasar

    NASA Astrophysics Data System (ADS)

    Leighly, Karen M.; Dietrich, Matthias; Barber, Sara

    2011-02-01

    We report the discovery of the first He I*λ10830 broad absorption line quasar FBQS J1151+3822. Using new infrared and optical spectra, as well as the SDSS spectrum, we extracted the apparent optical depth profiles as a function of velocity of the 3889 Å and 10830 Å He I* absorption lines. Since these lines have the same lower levels, inhomogeneous absorption models could be used to extract the average true He I* column density; the log of that number was 14.9. The total hydrogen column density was obtained using Cloudy models. A range of ionization parameters and densities were allowed, with the lower limit on the ionization parameter of log U = -1.4 determined by the requirement that there be sufficient He I*, and the upper limit on the density of log n = 8 determined by the lack of Balmer absorption. Simulated UV spectra showed that the ionization parameter could be further constrained in principle using a combination of low- and high-ionization lines (such as Mg II and P V), but the only density-sensitive line predicted to be observable and not significantly blended was C IIIλ1176. We estimated the outflow rate and kinetic energy, finding them to be consistent but on the high side compared with analyses of other objects. Assuming that radiative line driving is the responsible acceleration mechanism, a force multiplier model was constructed. A dynamical argument using the model results strongly constrained the density to be log n >= ~7. Consequently, the log hydrogen column density is constrained to be between 21.7 and 22.9, the mass outflow rate to be between 11 and 56 solar masses per year, the ratio of the mass outflow rate to the accretion rate to be between 1.2 and 5.8, and the kinetic energy to be between 1 and 5 × 1044 erg s-1. We discuss the advantages of using He I* to detect high column density BALQSOs and measure their properties. We find that the large λfik ratio of 23.3 between the 10830 Å and 3889 Å components makes He I* analysis sensitive

  12. Effect of weld line shape on material flow during friction stir welding of aluminum and steel

    NASA Astrophysics Data System (ADS)

    Yasui, Toshiaki; Ando, Naoyuki; Morinaka, Shinpei; Mizushima, Hiroki; Fukumoto, Masahiro

    2014-08-01

    The effect of weld line shape on material flow during the friction stir welding of aluminum and steel was investigated. The material flow velocity was evaluated with simulated experiments using plasticine as the simulant material. The validity of the simulated experiments was verified by the marker material experiments on aluminum. The circumferential velocity of material around the probe increased with the depth from the weld surface. The effect is significant in cases where the advancing side is located on the outside of curve and those with higher curvature. Thus, there is an influence of weld line shape on material flow.

  13. Line-shape flattening resulting from hypersonic nozzle wedge flow in low-pressure chemical lasers.

    PubMed

    Livingston, P M; Bullock, D L

    1980-07-01

    The new hypersonic wedge nozzle (HYWN) supersonic wedge nozzle design produces a significant component of directed gas flow along the optical axis of a laser cavity comparable to thermal speeds. The gain-line-shape function is broadened and the refractive-index line shape is also spread as a function of wedge-flow half-angle. An analytical treatment as well as a numerical study is presented that evaluates the Doppler-directed-flow impact on the number of longitudinal modes and their frequencies as well as on gain and refractive-index saturation of those that lase in a Fabry-Perot cavity.

  14. An absorption line in the ultraviolet spectrum of 40 Eridani B

    NASA Technical Reports Server (NTRS)

    Greenstein, J. L.

    1980-01-01

    Two excellent low-resolution spectra show an absorption line of equivalent width 3 A, near 1391 A, in the typical DA (hydrogen atmosphere) white dwarf 40 Eri B. The line is confirmed by a high-resolution spectrum and is the first seen in any DA star. Ultraviolet fluxes and the profile of Lyman-alpha confirm an effective temperature near 17,000 K. If the line is Si IV, it requires a temperature near 40,000 K. Unattractive possibilities are a hot circumstellar absorbing envelope dependent on accretion from companions, or formation at large optical depth in a transparent atmosphere with high Si/H. A suggestion that H2 should be considered leads to the possible interpretation as the (0, 5) transition of the Lyman band, formed at small optical depth. The band should be stronger in cooler DAs.

  15. Evidence for active galactic nucleus feedback in the broad absorption lines and reddening of MRK 231 {sup ,}

    SciTech Connect

    Leighly, Karen M.; Baron, Eddie; Lucy, Adrian B.; Terndrup, Donald M.; Dietrich, Matthias; Gallagher, Sarah C.

    2014-06-20

    We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly full coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ∼100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.

  16. Hypersonic stagnation line merged layer flow on blunt axisymmetric bodies of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Jain, Amolak S.

    1993-01-01

    The problem of hypersonic stagnation line merged-layer flow of variously shaped blunt asisymmetric bodies is here formulated in such a way as to allow analytical calculations for bodies generated by a conic section. The governing equations encompass, apart from the usual parameters, the eccentricity of the conic section that generates the body-of-revolution for the effect of body shape on the solution obtained. The stagnation-point surface pressure increases as the favorable pressure gradient decreases, in the course of a change of body shape from spherical to hyperboloid.

  17. Radiation Pressure-Driven Magnetic Disk Winds in Broad Absorption Line Quasi-Stellar Objects

    NASA Technical Reports Server (NTRS)

    DeKool, Martin; Begelman, Mitchell C.

    1995-01-01

    We explore a model in which QSO broad absorption lines (BALS) are formed in a radiation pressure-driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.

  18. Atlas of Absorption Lines from 0 to 17900 Cm (sup)-1

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Rothman, L. S.; Rinsland, C. P.; Pickett, H. M.; Richardson, D. J.; Namkung, J. S.

    1987-01-01

    Plots of logarithm (base 10) of absorption line strength versus wavenumber from 0 to 17900/cm(sup)-1 are shown for the 28 atmospheric gases (H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2, NO2, NH3, HNO3, OH, HF, HCl, HBr, HI, ClO, OCS, H2CO, HOCl, N2, HCN, CH3Cl, H2O2, C2H2, C2H6, PH3), which appear in the 1986 Air Force Geophysics Laboratory high-resolution transmission molecular absorption data base (HITRAN) compilation, and for O(P-3), O-18 isotopic ozone, and HO2 from the 1984 JPL compilation in the 0- to 200/cm(sup)-1 region, and infrared solar CO lines at 4500 K. Also shown are plots of logarithm (base 10) of approximate infrared absorption cross sections of 11 heavy molecules versus wavenumber. The cross-section data cover 700 to 1800/cm(sup)-1 and are included as a separate data file in the 1986 HITRAN database.

  19. Effect of line, soaking and cooking time on water absorption, texture and splitting of red kidney beans.

    PubMed

    Zamindar, Nafiseh; Baghekhandan, Mohamad Shahedi; Nasirpour, Ali; Sheikhzeinoddin, Mahmoud

    2013-02-01

    Dry beans are rich sources of dietary fiber and phytochemicals such as flavonoids and phenolics that exhibit good functional properties. In current study line, cooking and soaking time effects were investigated on water absorption, splitting and texture of different Iranian red kidney beans to determine the best lines and the best soaking time related to them for industrial use. D81083 line had the highest level of water absorption after 24 h soaking followed by Akhtar and KS31164 lines while Azna, Goli and Naz lines had the lowest level of water absorption (p < 0.05). Akhtar and Sayyad had the highest level of splitting while KS31164 had the lowest level of splitting (p < 0.05). Soaking of Akhtar line for 24 h caused the highest level of water absorption accompanied with low splitting level. 24 h soaking and longer cooking time is recommended for Sayyad, while 12 h soaking and longer cooking time is recommended for KS31164 line. 24 h soaking causes higher level of water absorption and lower level of splitting in Derakhshan line. The effects of line, cooking and soaking time on red bean texture were significant (p < 0.01).

  20. Effect of line, soaking and cooking time on water absorption, texture and splitting of red kidney beans.

    PubMed

    Zamindar, Nafiseh; Baghekhandan, Mohamad Shahedi; Nasirpour, Ali; Sheikhzeinoddin, Mahmoud

    2013-02-01

    Dry beans are rich sources of dietary fiber and phytochemicals such as flavonoids and phenolics that exhibit good functional properties. In current study line, cooking and soaking time effects were investigated on water absorption, splitting and texture of different Iranian red kidney beans to determine the best lines and the best soaking time related to them for industrial use. D81083 line had the highest level of water absorption after 24 h soaking followed by Akhtar and KS31164 lines while Azna, Goli and Naz lines had the lowest level of water absorption (p < 0.05). Akhtar and Sayyad had the highest level of splitting while KS31164 had the lowest level of splitting (p < 0.05). Soaking of Akhtar line for 24 h caused the highest level of water absorption accompanied with low splitting level. 24 h soaking and longer cooking time is recommended for Sayyad, while 12 h soaking and longer cooking time is recommended for KS31164 line. 24 h soaking causes higher level of water absorption and lower level of splitting in Derakhshan line. The effects of line, cooking and soaking time on red bean texture were significant (p < 0.01). PMID:24425894

  1. A comparison of neutral hydrogen 21 cm observations with UV and optical absorption-line measurements

    NASA Technical Reports Server (NTRS)

    Giovanelli, R.; York, D. G.; Shull, J. M.; Haynes, M. P.

    1978-01-01

    Several absorption components detected in visible or UV lines have been identified with emission features in new high-resolution, high signal-to-noise 21 cm observations. Stars for which direct overlap is obtained are HD 28497, lambda Ori, mu Col, HD 50896, rho Leo, HD 93521, and HD 219881. With the use of the inferred H I column densities from 21 cm profiles, rather than the integrated column densities obtained from L-alpha, more reliable densities can be derived from the existence of molecular hydrogen. Hence the cloud thicknesses are better determined; and 21 cm emission maps near these stars can be used to obtain dimensions on the plane of the sky. It is now feasible to derive detailed geometries for isolated clumps of gas which produce visual absorption features.

  2. Low redshift Lyman alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1993-01-01

    Recent observations using the Hubble Space Telescope of the z = 0.156 QSO 3C 273 have discovered a surprisingly large number of Ly-alpha absorption lines. In particular, Morris et al. found 9 certain and 7 possible Ly-alpha lines with equivalent widths above 25 mA. This is much larger (by a factor of 5-10) than the number expected from extrapolation of the high-redshift behavior of the Ly-alpha forest. Within the context of pressure-confined models for the Ly-alpha clouds, this behavior can be understood if the ionizing background declines sharply between z is approximately 2 and z is approximately 0. However, this requires that the ionizing photon flux drop as rapidly as the QSO volume emissivity; moreover, the absorbers must have a space density n(sub O) is approximately 2.6(N/10)h/((D/100 kpc)(sup 2)) Mpc(sup -3) where D is the present-day diameter of the absorbers. It is somewhat surprising that such necessarily fragile objects could have survived in such numbers to the present day. It is shown that it is plausible that the atomic hydrogen extents of spiral and irregular galaxies are large enough to produce the observed number of Ly-alpha absorption lines toward 3C 273, and that the neutral column densities and doppler b-values expected under these conditions fall in the range found by Morris et al. (1991).

  3. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-01-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  4. On the cosmic evolution of Fe/Mg in QSO absorption line systems

    NASA Astrophysics Data System (ADS)

    Dey, Arjun; Torrey, Paul; Rubin, Kate H. R.; Zhu, Guangtun Ben; Suresh, Joshua

    2015-08-01

    We investigate the variation of the ratio of the equivalent widths of the Fe II λ2600 line to the Mg II λλ2796, 2803 doublet as a function of redshift in a large sample of absorption lines drawn from the Johns Hopkins University - Sloan Digital Sky Survey Absorption Line Catalog. We find that despite large scatter, the observed ratio shows a trend where the equivalent width ratio R≡ W_{Fe II}/W_{Mg II} decreases monotonically with increasing redshift z over the range 0.55 ≤ z ≤ 1.90. Selecting the subset of absorbers where the signal-to-noise ratio of the Mg II equivalent width W_{Mg II} is ≥ 3 and modelling the equivalent width ratio distribution as a Gaussian, we find that the mean of the Gaussian distribution varies as R∝ (-0.045± 0.005)z. We discuss various possible reasons for the trend. A monotonic trend in the Fe/Mg abundance ratio is predicted by a simple model where the abundances of Mg and Fe in the absorbing clouds are assumed to be the result of supernova (SN) ejecta and where the cosmic evolution in the SNIa and core-collapse SN rates is related to the cosmic star formation rate. If the trend in R reflects the evolution in the abundances, then it is consistent with the predictions of the simple model.

  5. Spectral line shapes of P-branch transitions of oxygen B-band

    NASA Astrophysics Data System (ADS)

    Wójtewicz, Szymon; Cygan, Agata; Masłowski, Piotr; Domysławska, Jolanta; Wcisło, Piotr; Zaborowski, Mikołaj; Lisak, Daniel; Trawiński, Ryszard S.; Ciuryło, Roman

    2014-06-01

    The precise line-shape measurements of self- and foreign-broadened P-branch transitions of the oxygen B band near 689 nm are presented. Data were obtained using the Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectrometer assisted by the optical frequency comb.1,2 This technique enables us to achieve high spectral resolution (about 1 MHz) and high signal-to-noise ratio spectra (above 10000:1) of weak transitions.3,4 It is showed that the inclusion of the line-narrowing effects (Dicke narrowing or the speed dependence of collisional broadening) is necessary to properly model measured line shapes. The multispectrum fitting technique is used to minimize correlation between line-shape parameters. Relations between the line narrowing obtained from different line-shape models in the low pressure limit (below 5 kPa) were verified experimentally. Line positions with uncertainties of about 170 kHz, intensities and the collisional broadening coefficients with uncertainties of about 0.5% are reported and compared to data available in the literature.5 The research is part of the program of the National Laboratory FAMO in Toruń, Poland, and is supported by the Polish National Science Centre Projects no. DEC-2011/01/B/ST2/00491 and UMO-2012/05/N/ST2/02717. The research is also supported by the Foundation for Polish Science TEAM and HOMING PLUS Projects co-financed by the EU European Regional Development Fund. A. Cygan is partially supported by the Foundation for Polish Science START Project.

  6. Symmetry-Breaking in Cationic Polymethine Dyes: Part 2. Shape of Electronic Absorption Bands Explained by the Thermal Fluctuations of the Solvent Reaction Field.

    PubMed

    Masunov, Artëm E; Anderson, Dane; Freidzon, Alexandra Ya; Bagaturyants, Alexander A

    2015-07-01

    The electronic absorption spectra of the symmetric cyanines exhibit dramatic dependence on the conjugated chain length: whereas short-chain homologues are characterized by the narrow and sharp absorption bands of high intensity, the long-chain homologues demonstrate very broad, structureless bands of low intensity. Spectra of the intermediate homologues combine both features. These broad bands are often explained using spontaneous symmetry-breaking and charge localization at one of the termini, and the combination of broad and sharp features was interpreted as coexistence of symmetric and asymmetric species in solution. These explanations were not supported by the first principle simulations until now. Here, we employ a combination of time-dependent density functional theory, a polarizable continuum model, and Franck-Condon (FC) approximation to predict the absorption line shapes for the series of 2-azaazulene and 1-methylpyridine-4-substituted polymethine dyes. To simulate inhomogeneous broadening by the solvent, the molecular structures are optimized in the presence of a finite electric field of various strengths. The calculated FC line shapes, averaged with the Boltzmann weights of different field strengths, reproduce the experimentally observed spectra closely. Although the polarizable continuum model accounts for the equilibrium solvent reaction field at absolute zero, the finite field accounts for the thermal fluctuations in the solvent, which break the symmetry of the solute molecule. This model of inhomogeneous broadening opens the possibility for computational studies of thermochromism. The choice of the global hybrid exchange-correlation functional SOGGA11-X, including 40% of the exact exchange, plays the critical role in the success of our model.

  7. Symmetry-Breaking in Cationic Polymethine Dyes: Part 2. Shape of Electronic Absorption Bands Explained by the Thermal Fluctuations of the Solvent Reaction Field.

    PubMed

    Masunov, Artëm E; Anderson, Dane; Freidzon, Alexandra Ya; Bagaturyants, Alexander A

    2015-07-01

    The electronic absorption spectra of the symmetric cyanines exhibit dramatic dependence on the conjugated chain length: whereas short-chain homologues are characterized by the narrow and sharp absorption bands of high intensity, the long-chain homologues demonstrate very broad, structureless bands of low intensity. Spectra of the intermediate homologues combine both features. These broad bands are often explained using spontaneous symmetry-breaking and charge localization at one of the termini, and the combination of broad and sharp features was interpreted as coexistence of symmetric and asymmetric species in solution. These explanations were not supported by the first principle simulations until now. Here, we employ a combination of time-dependent density functional theory, a polarizable continuum model, and Franck-Condon (FC) approximation to predict the absorption line shapes for the series of 2-azaazulene and 1-methylpyridine-4-substituted polymethine dyes. To simulate inhomogeneous broadening by the solvent, the molecular structures are optimized in the presence of a finite electric field of various strengths. The calculated FC line shapes, averaged with the Boltzmann weights of different field strengths, reproduce the experimentally observed spectra closely. Although the polarizable continuum model accounts for the equilibrium solvent reaction field at absolute zero, the finite field accounts for the thermal fluctuations in the solvent, which break the symmetry of the solute molecule. This model of inhomogeneous broadening opens the possibility for computational studies of thermochromism. The choice of the global hybrid exchange-correlation functional SOGGA11-X, including 40% of the exact exchange, plays the critical role in the success of our model. PMID:26087319

  8. The Physical Nature of Weak MgII Quasar Absorption Line Systems.

    NASA Astrophysics Data System (ADS)

    Narayanan, Anand

    2007-12-01

    In a span of four decades, quasar absorption line spectroscopy has emerged as one of the most efficient methods for probing HI gas and associated metals in a wide range of environments, from redshifts corresponding to the most distant quasars up to the present. The connection between strong MgII quasar absorption systems and the disks/halos of galaxies of various morphologies is fairly well established. In contrast, the physical nature of weak MgII absorbers is not sufficiently understood. In this talk, I will present results from my dissertation work, which is a study of weak MgII quasar absorption line systems at 01), could be gas clouds in the extended halos of galaxies, analogous to the Milky Way high velocity clouds. The gas might correspond to material expelled from rapidly star-forming galaxies in correlated supernova events. Some fraction of the population of weak MgII clouds can also arise along sight lines that intercept tidally stripped interstellar gas, residing in circumgalactic environments. The `iron-rich’ weak MgII clouds, which are prevalent at lower redshifts (z<1), must be tracing Type Ia enriched gas in sites that have been previously enriched by star formation, most likely in dwarf galaxies. These scenarios will be reviewed in my presentation. This work is supported by NSF. I thankfully acknowledge the Zaccheus Daniel Foundation and Sigma Xi for providing generous travel support.

  9. Atomic Line Shapes in the Presence of an External Magnetic Field

    SciTech Connect

    Adams, M L; Lee, R W; Scott, H A; Chung, H K; Klein, L

    2002-07-03

    Both the theoretical basis and computational approach for extending the capabilities of a spectral line broadening code are presented. Following standard line broadening theory, the effects of an external magnetic field are incorporated into the atomic Hamiltonian and plasma average. In the presence of an external magnetic field the atomic Hamiltonian angular properties are altered--atomic energy levels are perturbed and the spectral emission line is polarized. The magnetic field introduces a preferential axis that changes the plasma average. These extensions have been incorporated into a new spectral line broadening code that is applied to several problems of importance to the understanding of tokamak edge plasmas. Applications fall into two broad categories: (1) determination of local plasma properties from distinct line shape features; and (2) consideration of global plasma phenomenon, such as radiation transport. Observable features of the Zeeman effect make H{sub {alpha}} a good magnetic field diagnostic. H{sub {beta}} does not make a good electron density diagnostic since the Zeeman effect is comparable to the Stark effect for a majority of tokamak edge plasma conditions. When optically thick lines exist the details of the spectral line shapes are shown to significantly influence the transport of radiation throughout the system.

  10. XMM-Newton Spectroscopy of the X-ray Detected Broad Absorption Line QSO CSO 755

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2005-01-01

    We present the results from XMM-Newton observations of the highly optically polarized broad absorption line quasar (BALQSO) CSO 755. By analyzing its X-ray spectrum with a total of approximately 3000 photons we find that this source has an X-ray continuum of "typical" radio-quiet quasars, with a photon index of Gamma=1.83, and a rather flat (X-ray bright) intrinsic optical-to-X-ray spectral slope of alpha_ox=- 1.51. The source shows evidence for intrinsic absorption, and fitting the spectrum with a neutral-absorption model gives a column density of N_H approximately 1.2x10^22 cm^{-2}; this is among the lowest X-ray columns measured for BALQSOs. We do not detect, with high significance, any other absorption features in the X-ray spectrum. Upper limits we place on the rest-frame equivalent width of a neutral (ionized) Fe K-alpha line, less than =180 eV (less than =120 eV), and on the Compton-reflection component parameter, R less than =0.2, suggest that most of the X-rays from the source are directly observed rather than being scattered or reflected; this is also supported by the relatively flat intrinsic alpha ox we measure. The possibility that most of the X-ray flux is scattered due to the high level of UV-optical polarization is ruled out. Considering data for 46 BALQSOs from the literature, including CSO 755, we have found that the UV-optical continuum polarization level of BALQSOs is not correlated with any of their X-ray properties. A lack of significant short-term and long-term X-ray flux variations in the source may be attributed to a large black-hole mass in CSO 755. We note that another luminous BALQSO, PG 2112+059, has both similar shallow C IV BALs and moderate X-ray absorption.

  11. Calibration and instrumental line shape characterization of a set of portable FTIR spectrometers for detecting greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Frey, M.; Hase, F.; Blumenstock, T.; Groß, J.; Kiel, M.; Mengistu Tsidu, G.; Schäfer, K.; Sha, M. K.; Orphal, J.

    2015-07-01

    A comprehensive calibration procedure for mobile, low-resolution, solar-absorption FTIR spectrometers, used for greenhouse gases observations, is developed. These instruments commend themselves for campaign use and deployment at remote sites. The instrumental line shape (ILS) of each spectrometer has been thoroughly characterized by analyzing the shape of H2O signatures in open path spectra. A setup for the external source is suggested and the invariance of derived ILS parameters with regard to chosen path length is demonstrated. The instrumental line shape characteristics of all spectrometers were found to be close to nominal. Side-by-side solar observations before and after a campaign, which involved shipping of all spectrometers to a selected target site and back, are applied for verifying the temporal invariability of instrumental characteristics and for deriving intercalibration factors for XCO2 and XCH4, which take into account residual differences of instrumental characteristics. An excellent level of agreement and stability was found between the different spectrometers: the uncorrected biases in XCO2 and XCH4 are smaller than 0.01 and 0.15 %, respectively, and the drifts are smaller than 0.005 and 0.035 %. As an additional sensitive demonstration of the instrumental performance we show the excellent agreement of ground pressure values obtained from the total column measurements of O2 and barometric records. We find a calibration factor of 0.9700 for the spectroscopic measurements in comparison to the barometric records and a very small scatter between the individual spectrometers (0.02 %). As a final calibration step, using a co-located TCCON (Total Carbon Column Observation Network) spectrometer as a reference, a common scaling factor has been derived for the XCO2 and XCH4 products, which ensures that the records are traceable to the WMO in situ scale.

  12. Study on removal of phase lines in welding pool surface shape sensing

    NASA Astrophysics Data System (ADS)

    Wei, Yiqing; Liu, Nansheng; Hu, Xian; Ai, Xiaopu; Wei, Sheng; Liu, Xiaorui

    2009-11-01

    In recent years, arc welding pool surface shape sensing becomes a hot spot in the field of welding automation. In order to restore the pool surface shape, we first need to photograph the pool surface, and then extract useful information from the acquired images. In arc welding surface shape sensing system based on structured light projection, the raster images obtained by charge-coupled device (CCD) are seriously affected by strong arc and spatter, etc. resulting in errors of phase unwrapping, and thus seriously affecting the surface shape recovery. To address phase lines of unwrapping errors, this paper presents a two-neighborhood method. First we analyzed the characteristics of phase lines in the phase diagram, then by comparison of phase diagrams or phase difference diagrams processed before and after, the effectiveness of two-neighborhood method was confirmed, finally this method was applied to the actual pool phase diagram processing, experimental results also confirmed this two-neighborhood method is feasible in removal of phase lines.

  13. THE JHU-SDSS METAL ABSORPTION LINE CATALOG: REDSHIFT EVOLUTION AND PROPERTIES OF Mg II ABSORBERS

    SciTech Connect

    Zhu Guangtun; Menard, Brice

    2013-06-20

    We present a generic and fully automatic method aimed at detecting absorption lines in the spectra of astronomical objects. The algorithm estimates the source continuum flux using a dimensionality reduction technique and nonnegative matrix factorization, and then detects and identifies metal absorption lines. We apply it to a sample of {approx}10{sup 5} quasar spectra from the Sloan Digital Sky Survey and compile a sample of {approx}40,000 Mg II- and Fe II-absorber systems, spanning the redshift range 0.4 < z < 2.3. The corresponding catalog is publicly available. We study the statistical properties of these absorber systems and find that the rest equivalent width distribution of strong Mg II absorbers follows an exponential distribution at all redshifts, confirming previous studies. Combining our results with recent near-infrared observations of Mg II absorbers, we introduce a new parameterization that fully describes the incidence rate of these systems up to z {approx} 5. We find the redshift evolution of strong Mg II absorbers to be remarkably similar to the cosmic star formation history over 0.4 < z < 5.5 (the entire redshift range covered by observations), suggesting a physical link between these two quantities.

  14. A measurement of the 362 GHz absorption line of Mars atmospheric H 2O 2

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Sandor, B. J.; Moriarty-Schieven, G. H.

    2004-03-01

    The 362.156 GHz absorption spectrum of H 2O 2 in the Mars atmosphere was observed on September 4 of 2003, employing the James Clerk Maxwell Telescope (JCMT) sub-millimeter facility on Mauna Kea, Hawaii. Radiative transfer analysis of this line absorption yields an average volume mixing ratio of 18±0.4 ppbv within the lower (0-30 km) Mars atmosphere, in general accordance with standard photochemical models (e.g., Nair et al., 1994, Icarus 111, 124-150). Our derived H 2O 2 abundance is roughly three times greater than the upper limit retrieved by Encrenaz et al. (2002, Astron. Astrophys. 396, 1037-1044) from infrared spectroscopy, although part of this discrepancy may result from the different solar longitudes ( Ls) of observation. Aphelion-to-perihelion thermal forcing of the global Mars hygropause generates substantial (>200%) increases in HO x abundances above ˜10 km altitudes between the Ls=112° period of the Encrenaz et al. upper limit measurement and the current Ls=250° period of detection (Clancy and Nair, 1996, J. Geophys. Res. 101, 12785-12590). The observed H 2O 2 line absorption weakens arguments for non-standard homogeneous (Encrenaz et al., 2002, Astron. Astrophys. 396, 1037-1044) or heterogeneous (Krasnopolsky, 2003a, J. Geophys. Res. 108; 2003b, Icarus 165, 315-325) chemistry, which have been advocated partly on the basis of infrared (8 μm) non-detections for Mars H 2O 2. Observation of Mars H 2O 2 also represents the first measurement of a key catalytic specie in a planetary atmosphere other than our own.

  15. Absorption-line systems in simulated galaxies fed by cold streams

    NASA Astrophysics Data System (ADS)

    Fumagalli, Michele; Prochaska, J. Xavier; Kasen, Daniel; Dekel, Avishai; Ceverino, Daniel; Primack, Joel R.

    2011-12-01

    Hydro-cosmological simulations reveal that massive galaxies at high redshift are fed by long narrow streams of merging galaxies and a smoother component of cold gas. We post-process seven high-resolution simulated galaxies with radiative transfer to study the absorption characteristics of the gas in galaxies and streams, in comparison with the statistics of observed absorption-line systems. We find that much of the stream gas is ionized by UV radiation from background and local stellar sources, but still optically thick (? cm-2) so that the streams appear as Lyman-limit systems (LLSs). At z > 3, the fraction of neutral gas in streams becomes non-negligible, giving rise to damped Lyman α absorbers (DLAs) as well. The gas in the central and incoming galaxies remains mostly neutral, responsible for DLAs. Within one (two) virial radii, the covering factor of optically thick gas is <25 per cent (10 per cent) for LLSs and <5 per cent (1 per cent) for DLAs, slowly declining with time following the universal expansion. Nevertheless, galaxies and their cold streams in the studied mass range, Mvir= 1010-1012 M⊙, account for >30 per cent of the observed absorbers in the foreground of quasars, the rest possibly arising from smaller galaxies or the intergalactic medium. The mean metallicity in the streams is ˜1 per cent solar, much lower than in the galaxies. The simulated galaxies reproduce the Lyα-absorption equivalent widths observed around Lyman-break galaxies, but they severely underpredict the equivalent widths in metal lines, suggesting that the latter may arise from outflows. We conclude that the observed metal-poor LLSs are likely detections of the predicted cold streams. Revised analysis of the observed LLSs kinematics and simulations with more massive outflows in conjunction with the inflows may enable a clearer distinction between the signatures of the various gas modes.

  16. Recent Line-Shape and Doppler Thermometry Studies Involving Transitions in the ν1 +ν3 Band of Acetylene

    NASA Astrophysics Data System (ADS)

    Hashemi, Robab; Rozario, Hoimonti; Povey, Chad; Garber, Jolene; Derksen, Mark; Predoi-Cross, Adriana

    2014-06-01

    The line positions for transitions in the ν1 +ν3 band are often used as a frequency standard by the telecom industry and also needed for planetary atmospheric studies. Four relevant studies have been recently carried out in our group and will be discussed briefly below. (1) N2-broadened line widths and N2-pressure induced line shifts have been measured for transitions in the ν1 +ν3 band of acetylene at seven temperatures in the range 213333K to obtain the temperature dependences of broadening and shift coefficients. The Voigt and hard-collision line profile models were used to retrieve the line parameters. This study has been published in Molecular Physics, 110 Issue 21/22 (2012) 2645-2663. (2) Six nitrogen perturbed transitions of acetylene within the ν1 +ν3 absorption band have been recorded using a 3-channel diode laser spectrometer. We have examined C2H2 spectra using a hard collision (Rautian) profile over a range of five temperatures (213 K-333 K). From these fits we have obtained the N2-broadening and narrowing coefficients of C2H2 and examined their temperature dependence. The experimentally measured narrowing coefficients have been used to estimate the nitrogen diffusion coefficients. The broadening coefficients and corresponding temperature dependence exponents have also been compared to that of calculations completed using a classical impact approach on an ab initio potential energy surface. We have observed a good agreement between our theoretical and experimental results. This study was published in Canadian Journal of Physics 91(11) 896-905 (2013). (3) An extension of the previous study was to analyze the room temperature for the same six transitions using the Voigt, Rautian, Galatry, RautianGalatry and Correlated Rautian profiles. For the entire pressure range, we have tested the applicability of these line-shape models. Except for Voigt profile, Dicke narrowing effect has been considered in all mentioned line-shape models. The experimental

  17. Line parameters including temperature dependences of self- and air-broadened line shapes of 12C16O2: 1.6-μm region

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.; Miller, Charles E.; Drouin, Brian J.; Payne, Vivienne H.; Yu, Shanshan; Smith, Mary Ann H.; Mantz, Arlan W.; Gamache, Robert R.

    2016-07-01

    Pressure-broadened line shapes in the 30013←00001 (ν1+4 ν20 +ν3) band of 12C16O2 at 6228 cm-1 are reanalyzed using new spectra recorded with sample temperatures down to 170 K. High resolution, high signal-to-noise (S/N) laboratory measurements of line shapes (Lorentz air- and self-broadened half-width coefficients, pressure-shift coefficients and off-diagonal relaxation matrix element coefficients) as a function of gas sample temperatures for various pressures and volume mixing ratios are presented. The spectra were recorded using two different Fourier transform spectrometers (FTS): (1) the McMath-Pierce FTS located at the National Solar Observatory on Kitt Peak, Arizona (and reported in Devi et al., J Mol Spectrosc 2007;245:52-80) and, (2) the Bruker IFS-125HR FTS at the Jet Propulsion Laboratory in Pasadena, California. The 19 spectra taken at Kitt Peak were all recorded near room temperature while the 27 Bruker spectra were acquired both at room temperature and colder temperatures (170-296 K). Various spectral resolutions (0.004-0.011 cm-1), absorption path lengths (2.46-121 m) and CO2 samples (natural and 12C-enriched) were included in the dataset. To maximize the accuracies of the various retrieved line parameters, a multispectrum nonlinear least squares spectrum fitting software program was used to adjust the ro-vibrational constants (G,B,D etc.) and intensity parameters (including Herman-Wallis terms) instead of directly measuring the individual line positions and intensities. To minimize systematic residuals, line mixing (via off-diagonal relaxation matrix elements) and quadratic speed dependence parameters were included in the analysis. Contributions from other weakly absorbing bands: the 30013←00001 and 30012←00001 bands of 13C16O2, the 30013←00001 band of 12C16O18O, hot bands 31113←01101 and 32212←02201 of 12C16O2, as well as the 40013←10001 and the 40014←10002 bands of 12C16O2, present within the fitted interval were also measured

  18. Transient dispersion and absorption in a V-shaped atomic system

    NASA Astrophysics Data System (ADS)

    Sahrai, M.; Maleki, A.; Hemmati, R.; Mahmoudi, M.

    2010-01-01

    We investigate the dynamical behavior of the dispersion and the absorption in a V-type three level atomic system. It is shown that in the presence of decay-induced interference the probe dispersion and absorption are phase dependent. We find that an incoherent pumping field provides an additional control parameter for switching the group velocity of a light pulse. The required switching times for switching the group velocity of a probe field from subluminal to superluminal pulse propagation is then discussed.

  19. VARIABLE REDDENING AND BROAD ABSORPTION LINES IN THE NARROW-LINE SEYFERT 1 GALAXY WPVS 007: AN ORIGIN IN THE TORUS

    SciTech Connect

    Leighly, Karen M.; Cooper, Erin; Grupe, Dirk; Terndrup, Donald M.; Komossa, S.

    2015-08-10

    We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and location of the absorbing material. Swift monitoring has revealed a secular decrease since ∼2010 accompanied by flattening of the optical and UV photometry that suggests variable reddening. Analysis of four Hubble Space Telescope COS observations since 2010, including a Director’s Discretionary time observation during the occultation, shows that the broad-absorption-line velocity offset and the C iv emission-line width both decrease as the reddening increases. The occultation dynamical timescale, the BAL variability dynamical timescale, and the density of the BAL gas show that both the reddening material and the broad-absorption-line gas are consistent with an origin in the torus. These observations can be explained by a scenario in which the torus is clumpy with variable scale height, and the BAL gas is blown from the torus material like spray from the crest of a wave. As the obscuring material passes into our line of sight, we alternately see high-velocity broad absorption lines and a clear view to the central engine, or low-velocity broad absorption lines and strong reddening. WPVS 007 has a small black hole mass, and correspondingly short timescales, and so we may be observing behavior that is common in BALQSOs, but is not typically observable.

  20. H{sub 2}-He vibrational line-shape parameters: Measurement and semiclassical calculation

    SciTech Connect

    Forsman, J.W.; Bonamy, J.; Robert, D.; Berger, J.P.; Saint-Loup, R.; Berger, H.

    1995-10-01

    High-resolution inverse Raman spectroscopy has been used to obtain the line shifting and line broadening coefficients of H{sub 2} perturbed by He. Measurements have been made for the {ital Q}-branch transitions ({ital J}=0{r_arrow}5) in a density range of 10 to 20 amagat and from 296 to 995 K. Up to 795 K we have directly deduced from the experimental broadening coefficients the inelastic rotational state-to-state and vibrational dephasing rates. At higher temperatures, owing to the larger number of channels of relaxation which occur, the results have been analyzed using a scaling law. The line shift and broadening coefficients exhibit a square root and a linear dependence on temperature, respectively, and a significant {ital J} dependence. Semiclassical calculations based on an accurate {ital ab} {ital initio} potential lead to line-shape parameters consistent with experiment. They allow a clear understanding of their observed temperature dependence.

  1. {ital Hubble Space Telescope} Observations of the Broad Absorption Line Quasar PG 0946+301

    SciTech Connect

    Arav, N.; Korista, K.T. |; de Kool, M. |; Junkkarinen, V.T.; Begelman, M.C.

    1999-05-01

    We analyze {ital Hubble Space Telescope} ({ital HST}) and ground-based spectra of the brightest broad absorption line (BAL) quasar in the UV: PG 0946+301. A detailed study of the absorption troughs as a function of velocity is presented, facilitated by the use of a new algorithm to solve for the optical depth as a function of velocity for multiplet lines. We find convincing evidence for saturation in parts of the troughs. This supports our previous assertion that saturation is common in BALs and therefore cast doubts on claims for very high metallicity in BAL flows. Because of the importance of BAL saturation we also discuss its evidence in other objects. In PG 0946+301 large differences in ionization as a function of velocity are detected, and our findings support the hypothesis that the line of sight intersects a number of flow components that combine to give the appearance of the whole trough. Based on the optical depth profiles, we develop a geometrical-kinematical model for the flow. We have positively identified 16 ions of eight elements (H i, C iii, C iv, N iii, N iv, N v, O iii, O iv, O v, O vi, Ne v, Ne viii, P v, Si iv, S v, S vi) and have probable identifications of Mg x and S iv. Unlike earlier analysis of {ital IUE} data, we find no evidence for BALs arising from excited ionic states in the {ital HST} spectrum of PG 0946+301. {copyright} {ital {copyright} 1999.} {ital The American Astronomical Society}

  2. Multi-Sightline Observation of Narrow Absorption Lines in Lensed Quasar SDSS J1029+2623

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Saez, Cristian; Charlton, Jane C.; Eracleous, Michael; Chartas, George; Bauer, Franz E.; Inada, Naohisa; Uchiyama, Hisakazu

    2016-07-01

    We exploit the widely separated images of the lensed quasar SDSS J1029+2623 ({z}{em} = 2.197, θ = 22.″5) to observe its outflowing wind through two different sightlines. We present an analysis of three observations, including two with the Subaru telescope in 2010 February and 2014 April, separated by four years, and one with the Very Large Telescope, separated from the second Subaru observation by ˜2 months. We detect 66 narrow absorption lines (NALs), of which 24 are classified as intrinsic NALs that are physically associated with the quasar based on partial coverage analysis. The velocities of intrinsic NALs appear to cluster around values of {v}{ej} ˜ 59,000, 43,000, and 29,000 km s‑1, which is reminiscent of filamentary structures obtained by numerical simulations. There are no common intrinsic NALs at the same redshift along the two sightlines, implying that the transverse size of the NAL absorbers should be smaller than the sightline distance between two lensed images. In addition to the NALs with large ejection velocities of {v}{ej} > 1000 km s‑1, we also detect broader proximity absorption lines (PALs) at {z}{abs} ˜ {z}{em}. The PALs are likely to arise in outflowing gas at a distance of r ≤ 620 pc from the central black hole with an electron density of n e ≥8.7 × 103 cm‑3. These limits are based on the assumption that the variability of the lines is due to recombination. We discuss the implications of these results on the three-dimensional structure of the outflow.

  3. Gain and Raman line-broadening with graphene coated diamond-shape nano-antennas.

    PubMed

    Paraskevaidis, Charilaos; Kuykendall, Tevye; Melli, Mauro; Weber-Bargioni, Alexander; Schuck, P James; Schwartzberg, Adam; Dhuey, Scott; Cabrini, Stefano; Grebel, Haim

    2015-10-01

    Using Surface Enhanced Raman Scattering (SERS), we report on intensity-dependent broadening in graphene-deposited broad-band antennas. The antenna gain curve includes both the incident frequency and some of the scattered mode frequencies. By comparing antennas with various gaps and types (bow-tie vs. diamond-shape antennas) we make the case that the line broadening did not originate from strain, thermal or surface potential. Strain, if present, further shifts and broadens those Raman lines that are included within the antenna gain curve.

  4. Simulation studies of ion dynamic effects on dense plasma line shapes

    SciTech Connect

    Pollock, E.L.

    1986-12-01

    Computer simulations have been widely used in studying dense plasma properties including the local field properties important in spectral line broadening calculations. We will review here a more recent use of simulation, possibly less familiar to this audience, where the time dependent ionic microfield generated by computer simulation of a plasma is used directly as a time dependent external potential for the evolution of the electronic structure of an ion. This permits calculation of the dipole correlation function and thus line shapes with the inclusion of ion dynamic effects. 12 refs., 7 figs.

  5. Resonant two-photon autoionization of H2. I. Autoionization line shape and rate

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Rai Dastidar, K.; Rai Dastidar, T. K.

    1986-01-01

    Effect of laser intensity on the line shape of and the rate for resonant two-photon autoionization of H2 through the lowest doubly excited autoionizing state of 1Σg (1σ2u) symmetry has been studied using the resolvent-operator technique, the different vibrational levels of the B 1Σu state of H2 being the intermediate resonances. The autoionization line shape and rate have been found to depend on the intensity and on the choice of (i) the vibrational level of the intermediate resonance, (ii) the vibrational level of the final H2 + ion, and (iii) the nuclear continuum of the autoionizing state. It is shown that an experimental study of the process is feasible within the currently available laboratory laser resources.

  6. Line shape of a transition between two levels in a three-level {Lambda} configuration

    SciTech Connect

    Han, Hyok Sang; Jeong, Ji Eun; Cho, D.

    2011-09-15

    We report on our study of the line shape of a transition between two levels in a three-level {Lambda} configuration. By using Poisson statistics under the assumption that the atom stays in a two-level steady state before it is optically pumped to the reservoir state, we arrive at a simple analytic expression for the line shape of a three-level atom. This expression reveals a new type of saturation in the time domain, which is conceptually different from that of power-broadening in a two-level atom. It can also be used as a basis for more complicated situations of Doppler-broadened gaseous samples or pump-and-probe spectroscopy. We tested the theory experimentally in an ideal situation of slow pulsed {sup 85}Rb atoms and found excellent agreement. Application to measurements of a branching ratio or a Franck-Condon factor of a diatomic molecule is discussed.

  7. An analysis of temperature dependent photoluminescence line shapes in InGaN

    NASA Astrophysics Data System (ADS)

    Teo, K. L.; Colton, J. S.; Yu, P. Y.; Weber, E. R.; Li, M. F.; Liu, W.; Uchida, K.; Tokunaga, H.; Akutsu, N.; Matsumoto, K.

    1998-09-01

    Photoluminescence (PL) line shapes in InGaN multiple quantum well structures have been studied experimentally and theoretically between 10 and 300 K. The higher temperature PL spectra can be fitted quantitatively with a thermalized carrier distribution and a broadened joint-density-of-states. The low temperature PL line shapes suggest that carriers are not thermalized, as a result of localization by band-gap fluctuations. We deduce a localization energy of ˜7 meV as compared with an activation energy of ˜63 meV from thermal quenching of the PL intensity. We thus conclude that this activation energy and the band-gap fluctuation most likely have different origins.

  8. Time-Variable Complex Metal Absorption Lines in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Eracleous, Michael; Charlton, Jane C.; Tajitsu, Akito

    2005-08-01

    We present a new spectrum of the quasar HS 1603+3820 taken 1.28 yr (0.36 yr in the quasar rest frame) after a previous observation with Subaru+HDS. The new spectrum enables us to search for time variability as an identifier of intrinsic narrow absorption lines (NALs). This quasar shows a rich complex of C IV NALs within 60,000 km s-1 of the emission redshift. On the basis of covering factor analysis, Misawa et al. found that the C IV NAL system at zabs=2.42-2.45 (system A, at a shift velocity of vsh=8300-10,600 km s-1 relative to the quasar) was intrinsic to the quasar. With our new spectrum, we perform time variability analysis, as well as covering factor analysis, to separate intrinsic NALs from intervening NALs for eight C IV systems. Only system A, which was identified as an intrinsic system in the earlier paper by Misawa et al., shows a strong variation in line strength (Wobs~10.4-->19.1 Å). We speculate that a broad absorption line (BAL) could be forming in this quasar (i.e., many narrower lines will blend together to make a BAL profile). We illustrate the plausibility of this suggestion with the help of a simulation in which we vary the column densities and covering factors of the NAL complex. Under the assumption that a change of ionization state causes the variability, a lower limit can be placed on the electron density (ne>~3×104cm-3) and an upper limit on the distance from the continuum source (r<=6 kpc). On the other hand, if the motion of clumpy gas causes the variability (a more likely scenario), the crossing velocity and the distance from the continuum source are estimated to be vcross>8000 km s-1 and r<3 pc. In this case, the absorber does not intercept any flux from the broad emission line region, but only flux from the UV continuum source. If we adopt the dynamical model of Murray et al., we can obtain a much more strict constraint on the distance of the gas parcel from the continuum source, r<0.2 pc. Based on data collected at the Subaru

  9. Point-, line-, and plane-shaped cellular constructs for 3D tissue assembly.

    PubMed

    Morimoto, Yuya; Hsiao, Amy Y; Takeuchi, Shoji

    2015-12-01

    Microsized cellular constructs such as cellular aggregates and cell-laden hydrogel blocks are attractive cellular building blocks to reconstruct 3D macroscopic tissues with spatially ordered cells in bottom-up tissue engineering. In this regard, microfluidic techniques are remarkable methods to form microsized cellular constructs with high production rate and control of their shapes such as point, line, and plane. The fundamental shapes of the cellular constructs allow for the fabrication of larger arbitrary-shaped tissues by assembling them. This review introduces microfluidic formation methods of microsized cellular constructs and manipulation techniques to assemble them with control of their arrangements. Additionally, we show applications of the cellular constructs to biological studies and clinical treatments and discuss future trends as their potential applications.

  10. Photosensor aperture shaping to reduce aliasing in optical-mechanical line-scan imaging systems.

    NASA Technical Reports Server (NTRS)

    Katzberg, S. J.; Huck, F. O.; Wall, S. D.

    1973-01-01

    Review of optical-mechanical scanning techniques that are generally employed in instruments specifically designed to characterize variations in scene brightness spectrally or radiometrically. Special attention is given to the effect of aliasing on the spatial detail of the reconstructed image. Aliasing may be caused by linescan sampling and can, in turn, severely degrade images that emphasize the spatial characterization of a scene. Photosensor aperture shaping and line-scan spacing are investigated as means for reducing this degradation.

  11. Improved Characterization of Healthy and Malignant Tissue by NMR Line-Shape Relaxation Correlations

    PubMed Central

    Peemoeller, H.; Shenoy, R.K.; Pintar, M.M.; Kydon, D.W.; Inch, W.R.

    1982-01-01

    We performed a relaxation-line-shape correlation NMR experiment on muscle, liver, kidney, and spleen tissues of healthy mice and of mouse tumor tissue. In each tissue studied, five spin groups were resolved and characterized by their relaxation parameters. We report a previously uncharacterized semi-solid spin group and discuss briefly the value of this method for the identification of malignant tissues. PMID:7104438

  12. Study of one-dimensional electron hopping and its effects on ESR line shape

    SciTech Connect

    Tang, Jau; Dikshit, S.N.; Norris, J.R. |

    1997-08-01

    Random hopping processes between discrete sites along a finite open chain or around a closed finite loop are examined. Closed form formulae are prescribed for the dependence of the ESR (electron spin resonance) line shape on the chain length and hopping rate. Significant differences between the closed loop and open chain are demonstrated. Deviation at short time from the results of diffusion in a continuum is presented.

  13. Line shapes of the exotic charm-anticharm mesons X(3872) and Z(4430)

    NASA Astrophysics Data System (ADS)

    Lu, Meng

    The B-factory experiments have recently discovered a series of new cc mesons, including the X(3872) and the first manifestly exotic meson Z +/-(4430). The proximity of the mass of the X to the D*0D 0 threshold has motivated its identification as a loosely-bound hadronic molecule whose constituents are a superposition of the charm mesons pairs D*0D 0 and D0D* 0. Factorization formulas for its line shapes are derived by taking advantage of the universality of S-wave resonances near a 2-particle threshold and by including the effects from the nonzero width of D* meson and the inelastic scattering channels of the charm mesons. The best fit to the line shapes of X in the J/psipi +pi- and D0 D0pi0 channels measured by the Belle Collaboration corresponds to the X being a bound state whose mass is just below the D*0 D0 threshold. The differences between the line shapes of X produced in B+ decays and B0 decays as well as in decay channels J/psipi+pi-, J /psipi+pi-pi0 , and D0D 0pi0 are further derived by taking into account the effects from the closeby channel composed of charged charm mesons. A more speculative application of the universality of S-wave resonances near a 2-particle threshold is to the Z+/-(4430), which is interpreted as a charm meson molecule composed of a superposition of D+1D*0 and D*+D01 . The small ratio of the binding energy of the Z + to the width of its constituent D1 is exploited to obtained simple predictions for its line shapes in the channels psi(2S)pi + and D*D*pi.

  14. Rest-frame optical properties of luminous, radio-selected broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Runnoe, Jessie C.; Ganguly, R.; Brotherton, M. S.; DiPompeo, M. A.

    2013-08-01

    We have obtained Infrared Telescope Facility/SpeX spectra of eight moderate-redshift (z = 0.7-2.4), radio-selected (log R* ≈ 0.4-1.9) broad absorption line (BAL) quasars. The spectra cover the rest-frame optical band. We compare the optical properties of these quasars to those of canonically radio-quiet (log R* ≲ 1) BAL quasars at similar redshifts and to low-redshift quasars from the Palomar-Green catalogue. As with previous studies of BAL quasars, we find that [O III] λ5007 is weak, and optical Fe II emission is strong, a rare combination in canonically radio-loud (log R* ≳ 1) quasars. With our measurements of the optical properties, particularly the Balmer emission-line widths and the continuum luminosity, we have used empirical scaling relations to estimate black hole masses and Eddington ratios. These lie in the range (0.4-2.6) × 109 M⊙ and 0.1-0.9, respectively. Despite their comparatively extreme radio properties relative to most BAL quasars, their optical properties are quite consistent with those of radio-quiet BAL quasars and dissimilar to those of radio-loud non-BAL quasars. While BAL quasars generally appear to have low values of [O III] λ5007/Fe II an extreme of `Eigenvector 1', the Balmer line widths and Eddington ratios do not appear to significantly differ from those of unabsorbed quasars at similar redshifts and luminosities.

  15. The velocity distribution of interstellar gas observed in strong UV absorption lines

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; York, D. G.

    1978-01-01

    Observations of three strong interstellar UV absorption lines of N I (1199 A), N II (1083 A), and Si III (1206 A) in 47 stars of widely varying distance and a variety of spectral types are analyzed to obtain a velocity distribution function for the interstellar gas. A technique based on the maximum and minimum velocities observed along a line of sight is adopted because of heavy line blending, and results are discussed for both power-law and exponential distribution functions. The expected distribution of radiative-phase supernova remnants (SNRs) in the interstellar medium is calculated as a function of SNR birthrate and of the interstellar density in which they evolve. The results are combined with observed distance estimates, and it is shown that an interstellar density in excess of 0.1 per cu cm would be required to keep the SNRs sufficiently confined so that their cross sections are consistent with the observed number of components. The alternative possibility is considered that SNRs do not enter the radiative phase before escaping from the Galaxy or colliding with neighboring remnants.

  16. Differential surface models for tactile perception of shape and on-line tracking of features

    NASA Technical Reports Server (NTRS)

    Hemami, H.

    1987-01-01

    Tactile perception of shape involves an on-line controller and a shape perceptor. The purpose of the on-line controller is to maintain gliding or rolling contact with the surface, and collect information, or track specific features of the surface such as edges of a certain sharpness. The shape perceptor uses the information to perceive, estimate the parameters of, or recognize the shape. The differential surface model depends on the information collected and on the a priori information known about the robot and its physical parameters. These differential models are certain functionals that are projections of the dynamics of the robot onto the surface gradient or onto the tangent plane. A number of differential properties may be directly measured from present day tactile sensors. Others may have to be indirectly computed from measurements. Others may constitute design objectives for distributed tactile sensors of the future. A parameterization of the surface leads to linear and nonlinear sequential parameter estimation techniques for identification of the surface. Many interesting compromises between measurement and computation are possible.

  17. Interferometric control of contact line, shape, and aberrations of liquid lenses

    NASA Astrophysics Data System (ADS)

    Voitenko, Igor; Storm, Ronald; Westfall, Raymond; Rogers, Stanley

    2007-09-01

    An optical system consisting of an aqueous electrolyte resting on a polymer/gold/indium-tin-oxide (ITO) layer deposited onto a glass substrate is analyzed to acquire contact angle - focal distance data as a function of applied voltage. The shape factor of a liquid lens and its dependence on the perimeter of contact line and contact angle was analyzed in the presence of an electrical field applied between the electrolyte and planar electrode system. The contact angle of a liquid on a thin, transparent film of gold (20 nm thick) - on ITO under electrolyte solution could be varied from 110 +/- 3° when the gold was held at -2.4 V to 41 +/- 3° without voltage. The behavior of a water-based electrolyte and water-soluble polymer blend and its influence on the shape of contact line and profile of the lens were investigated by employing a holographic setup at wavelengths of 632.8 and 543.5 nm. Optical micrographs showing the profile of the lens, aberration-less aperture, deformation of contact line, and shape of the liquid lens, respectively, were analyzed in reflection and transmission. Both the advancing and receding contact angles were measured directly from digitized images of the profile of the lens. The dynamic range of linear beam steering and dependence of the focal length of the liquid lens on the applied voltage are discussed.

  18. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing

    PubMed Central

    Kärcher, Bernd; Burkhardt, Ulrike; Ponater, Michael; Frömming, Christine

    2010-01-01

    Estimates of the global radiative forcing by line-shaped contrails differ mainly due to the large uncertainty in contrail optical depth. Most contrails are optically thin so that their radiative forcing is roughly proportional to their optical depth and increases with contrail coverage. In recent assessments, the best estimate of mean contrail radiative forcing was significantly reduced, because global climate model simulations pointed at lower optical depth values than earlier studies. We revise these estimates by comparing the probability distribution of contrail optical depth diagnosed with a climate model with the distribution derived from a microphysical, cloud-scale model constrained by satellite observations over the United States. By assuming that the optical depth distribution from the cloud model is more realistic than that from the climate model, and by taking the difference between the observed and simulated optical depth over the United States as globally representative, we quantify uncertainties in the climate model’s diagnostic contrail parameterization. Revising the climate model results accordingly increases the global mean radiative forcing estimate for line-shaped contrails by a factor of 3.3, from 3.5 mW/m2 to 11.6 mW/m2 for the year 1992. Furthermore, the satellite observations and the cloud model point at higher global mean optical depth of detectable contrails than often assumed in radiative transfer (off-line) studies. Therefore, we correct estimates of contrail radiative forcing from off-line studies as well. We suggest that the global net radiative forcing of line-shaped persistent contrails is in the range 8–20 mW/m2 for the air traffic in the year 2000. PMID:20974909

  19. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing.

    PubMed

    Kärcher, Bernd; Burkhardt, Ulrike; Ponater, Michael; Frömming, Christine

    2010-11-01

    Estimates of the global radiative forcing by line-shaped contrails differ mainly due to the large uncertainty in contrail optical depth. Most contrails are optically thin so that their radiative forcing is roughly proportional to their optical depth and increases with contrail coverage. In recent assessments, the best estimate of mean contrail radiative forcing was significantly reduced, because global climate model simulations pointed at lower optical depth values than earlier studies. We revise these estimates by comparing the probability distribution of contrail optical depth diagnosed with a climate model with the distribution derived from a microphysical, cloud-scale model constrained by satellite observations over the United States. By assuming that the optical depth distribution from the cloud model is more realistic than that from the climate model, and by taking the difference between the observed and simulated optical depth over the United States as globally representative, we quantify uncertainties in the climate model's diagnostic contrail parameterization. Revising the climate model results accordingly increases the global mean radiative forcing estimate for line-shaped contrails by a factor of 3.3, from 3.5 mW/m(2) to 11.6 mW/m(2) for the year 1992. Furthermore, the satellite observations and the cloud model point at higher global mean optical depth of detectable contrails than often assumed in radiative transfer (off-line) studies. Therefore, we correct estimates of contrail radiative forcing from off-line studies as well. We suggest that the global net radiative forcing of line-shaped persistent contrails is in the range 8-20 mW/m(2) for the air traffic in the year 2000. PMID:20974909

  20. Sensitivity of thin cirrus clouds in the tropical tropopause layer to ice crystal shape and radiative absorption

    NASA Astrophysics Data System (ADS)

    Russotto, R. D.; Ackerman, T. P.; Durran, D. R.

    2016-03-01

    Subvisible cirrus clouds in the tropical tropopause layer (TTL) play potentially important roles in Earth's radiation budget and in the transport of water into the stratosphere. Previous work on these clouds with 2-D cloud-resolving models has assumed that all ice crystals were spherical, producing too few crystals greater than 60 μm in length compared with observations. In this study, the System for Atmospheric Modeling cloud-resolving model is modified in order to calculate the fall speeds, growth rates, and radiative absorption of nonspherical ice crystals. This extended model is used in simulations that aim to provide an upper bound on the effects of ice crystal shape on the time evolution of thin cirrus clouds and to identify the physical processes responsible for any such effects. Model runs assuming spheroidal crystals result in a higher center of cloud ice mass than in the control, spherical case, while the total mass of ice is little affected by the shape. Increasing the radiative heating results in less total cloud ice mass relative to the control case, an effect which is robust with more extreme perturbations to the absorption coefficients. This is due to higher temperatures reducing the relative humidity in the cloud and its environment, and greater entrainment of dry air due to dynamical changes. Comparisons of modeled ice crystal size distributions with recent airborne observations of TTL cirrus show that incorporating nonspherical shape has the potential to bring the model closer to observations.

  1. X-ray absorption/emission line spectroscopy of the Galactic hot gaseous halo

    NASA Astrophysics Data System (ADS)

    Wang, Daniel

    2016-04-01

    There is an ongoing debate as to whether or not the Milky Way is surrounded by a large-scale, massive corona. Vastly different conclusions as to its extent and mass have been drawn from existing studies based on X-ray absorption and/or emission line spectroscopy. I will discuss my assessment of this issue, focusing on various uncertainties and potential problems in the present data, analyses, results, and interpretations.In particular, I will examine how different assumptions about the temperature distribution of the corona affect the inference of its physical scale. I will also discuss the external perspectives of galactic coronae obtained form observing nearby highly-inclined disk galaxies.

  2. The Keilson and Storer 3-dimensional (KS-3D) line shape model: applications to optical diagnostic in combustion media

    SciTech Connect

    Joubert, Pierre

    2008-10-22

    High-resolution infrared and Raman spectroscopies require refine spectral line shape model to account for all observed features. For instance, for gaseous mixtures of light molecules with heavy perturbers, drastic changes arise particularly in the collision regime, resulting from the inhomogeneous effects due to the radiator speed-dependence of the collisional line broadening and line shifting parameters. Following our previous work concerning the collision regime, we have developed a new line shape modelization called the Keilson and Storer 3-dimensional line shape model to lower densities, when the Doppler contribution, and the collisional confinement narrowing can be no longer neglected. The consequences for optical diagnostics, particularly for H{sub 2}-N{sub 2} mixtures with high pressure and high temperature are presented. The effects of collisional relaxation on the spectral line shapes are discussed.

  3. The Keilson and Storer 3-dimensional (KS-3D) line shape model: applications to optical diagnostic in combustion media

    NASA Astrophysics Data System (ADS)

    Joubert, Pierre

    2008-10-01

    High-resolution infrared and Raman spectroscopies require refine spectral line shape model to account for all observed features. For instance, for gaseous mixtures of light molecules with heavy perturbers, drastic changes arise particularly in the collision regime, resulting from the inhomogeneous effects due to the radiator speed-dependence of the collisional line broadening and line shifting parameters. Following our previous work concerning the collision regime, we have developed a new line shape modelization called the Keilson and Storer 3-dimensional line shape model to lower densities, when the Doppler contribution, and the collisional confinement narrowing can be no longer neglected. The consequences for optical diagnostics, particularly for H2-N2 mixtures with high pressure and high temperature are presented. The effects of collisional relaxation on the spectral line shapes are discussed.

  4. FR-II Broad Absorption Line Quasars and the Life Cycle of Quasars

    SciTech Connect

    Gregg, M D; Becker, R H; de Vries, W

    2006-01-05

    By combining the Sloan Digitized Sky Survey Third Data Release quasar list with the VLA FIRST survey, we have identified five objects having both broad absorption lines in their optical spectra and FR-II radio morphologies. We identify an additional example of this class from the FIRST Bright Quasar Survey, J1408+3054. Including the original FR-II-BAL object, J1016+5209, brings the number of such objects to eight. These quasars are relatively rare; finding this small handful has required the 45,000-large quasar sample of SDSS. The FR-II-BAL quasars exhibit a significant anti-correlation between radio-loudness and the strength of the BAL features. This is easily accounted for by the evolutionary picture in which quasars emerge from cocoons of BAL-producing material which stifle the development of radio jets and lobes. There is no such simple explanation for the observed properties of FR-II-BALs in the unification-by-orientation model of quasars. The rarity of the FR-II-BAL class implies that the two phases do not coexist for very long in a single quasar, perhaps less than 10{sup 5} years, with the combined FR-II, high ionization broad absorption phase being even shorter by another factor of 10 or more.

  5. Absorption Line Studies and the Distribution of Neutral Gas in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.

    1984-01-01

    Previous published absorption line studies performed at ultraviolet and visual wavelengths are combined with new ultraviolet data in order to map out the distribution of HI within 150 pc of the Sun. Newly presented data for distances less than 50 pc further support the local cloud model as presented by Bruhweiler (1982). The Sun is embedded, near the edge of a diffuse cloud with total column density 2 x 10 to the 19th power/sq cm. Most observed directions within 50 pc away from the cloud body reveal trace amounts of gas (N)HI) approximately 10 to the 18th power/sq cm presumably arising in the outer skin of the local cloud. At greater distances (50 approximately or d approximately or 150 pc) most directions show significant absorption with N(HI) 10(19)/sq cm. Two directions, one toward the northern galactic pole (NGP), the other toward beta CMa exhibit unusually low HI column densities out to distances of 150 to 200 pc. However, substantial amounts of gas N(HI) 10 to the 19th power/sq cm, are seen toward the NGP at greater distances. The implicatons of these results on astronomy at wavelengths shortward of 912A are discussed.

  6. Unusual high-redshift radio broad absorption-line quasar 1624+3758

    NASA Astrophysics Data System (ADS)

    Benn, C. R.; Carballo, R.; Holt, J.; Vigotti, M.; González-Serrano, J. I.; Mack, K.-H.; Perley, R. A.

    2005-07-01

    We present observations of the most radio-luminous broad absorption-line (BAL) quasar known, 1624+3758, at redshift z= 3.377. The quasar has several unusual properties. (1) The FeII UV191 1787-Åemission line is very prominent. (2) The BAL trough (BALnicity index 2990 km s-1) is detached by 21000 km s-1 and extends to velocity v=-29000 km s-1. There are additional intrinsic absorbers at -1900 and -2800 km s-1. (3) The radio rotation measure of the quasar, 18350 rad m-2, is the second highest known. The radio luminosity is P1.4GHz= 4.3 × 1027 W Hz-1 (H0= 50 km s-1 Mpc-1, q0= 0.5) and the radio loudness is R*= 260. The radio source is compact and the radio spectrum is GHz-peaked, consistent with it being relatively young. The width of the CIV emission line, in conjunction with the total optical luminosity, implies a black hole mass MBH~ 109Msolar, L/LEddington~ 2. The high Eddington ratio and the radio-loudness place this quasar in one corner of Boroson's two-component scheme for the classification of active galactic nuclei, implying a very high accretion rate, and this may account for some of the unusual observed properties. The v=-1900km s-1 absorber is a possible Lyman-limit system, with N(HI) = 4 × 1018 cm-2, and a covering factor of 0.7. A complex mini-BAL absorber at v=-2200 to -3400 km s-1 is detected in each of CIV, NV and OVI. The blue and red components of the CIV doublet happen to be unblended, allowing both the covering factor and optical depth to be determined as a function of velocity. Variation of the covering factor with velocity dominates the form of the mini-BAL, with the absorption being saturated (e-τ~ 0) over most of the velocity range. The velocity dependence of the covering factor and the large velocity width imply that the mini-BAL is intrinsic to the quasar. There is some evidence of line-locking between velocity components in the CIV mini-BAL, suggesting that radiation pressure plays a role in accelerating the outflow.

  7. Broad Absorption Line Variability on Multi-Year Timescales in a Large Quasar Sample

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Filiz Ak, N.; Hall, P. B.; Schneider, D. P.; SDSS-III BAL Variability Team

    2014-01-01

    We have performed a detailed investigation of the variability of 428 C IV and 235 Si IV Broad Absorption Line (BAL) troughs identified in multi-epoch observations of 291 quasars by the Sloan Digital Sky Survey-I/II/III. These observations primarily sample rest-frame timescales of 1-3 yr over which significant rearrangement of the BAL wind is expected. We derive a number of observational results on, e.g., the frequency of BAL variability, the velocity range over which BAL variability occurs, the primary observed form of BAL-trough variability, the dependence of BAL variability upon timescale, the frequency of BAL strengthening vs. weakening, correlations between BAL variability and BAL-trough profiles, relations between C IV and Si IV BAL variability, coordinated multi-trough variability, and BAL variations as a function of quasar properties. We assess implications of these observational results for quasar winds. Our results support models where most BAL absorption is formed within an order-of-magnitude of the wind-launching radius, although a significant minority of BAL troughs may arise on larger scales. We estimate an average lifetime for a BAL trough along our line-of-sight of a few thousand years. BAL disappearance and emergence events appear to be extremes of general BAL variability, rather than being qualitatively distinct phenomena. We derive the parameters of a random-walk model for BAL EW variability, finding that this model can acceptably describe some key aspects of EW variability. The coordinated trough variability of BAL quasars with multiple troughs suggests that changes in "shielding gas" may play a significant role in driving general BAL variability. The good prospects for significantly extending this work will be briefly summarized.

  8. THE INTRINSIC FRACTIONS AND RADIO PROPERTIES OF LOW-IONIZATION BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Dai Xinyu; Shankar, Francesco; Sivakoff, Gregory R.

    2012-10-01

    Low-ionization (Mg II, Fe II, and Fe III) broad absorption line quasars (LoBALs) probe a relatively obscured quasar population and could be at an early evolutionary stage for quasars. We study the intrinsic fractions of LoBALs using the Sloan Digital Sky Survey (SDSS), Two Micron All Sky Survey, and Faint Images of the Radio Sky at Twenty cm survey. We find that the LoBAL fractions of the near-infrared (NIR) and radio samples are approximately 5-7 times higher than those measured in the optical sample. This suggests that the fractions measured in the NIR and radio bands are closer to the intrinsic fractions of the populations, and that the optical fractions are significantly biased due to obscuration effects, similar to high-ionization broad absorption line quasars (HiBALs). Considering a population of obscured quasars that do not enter the SDSS, which could have a much higher LoBAL fraction, we expect that the intrinsic fraction of LoBALs could be even higher. We also find that the LoBAL fractions decrease with increasing radio luminosities, again, similarly to HiBALs. In addition, we find evidence for increasing fractions of LoBALs toward higher NIR luminosities, especially for FeLoBALs with a fraction of {approx}18% at M{sub K{sub s}}< -31 mag. This population of NIR-luminous LoBALs may be at an early evolutionary stage of quasar evolution. To interpret the data, we use a luminosity-dependent model for LoBALs that yields significantly better fits than those from a pure geometric model.

  9. THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. II. RESULTS

    SciTech Connect

    Conroy, Charlie; Van Dokkum, Pieter G.

    2012-11-20

    The spectral absorption lines in early-type galaxies contain a wealth of information regarding the detailed abundance pattern, star formation history, and stellar initial mass function (IMF) of the underlying stellar population. Using our new population synthesis model that accounts for the effect of variable abundance ratios of 11 elements, we analyze very high quality absorption line spectra of 38 early-type galaxies and the nuclear bulge of M31. These data extend to 1 {mu}m and they therefore include the IMF-sensitive spectral features Na I, Ca II, and FeH at 0.82 {mu}m, 0.86 {mu}m, and 0.99 {mu}m, respectively. The models fit the data well, with typical rms residuals {approx}< 1%. Strong constraints on the IMF and therefore the stellar mass-to-light ratio, (M/L){sub stars}, are derived for individual galaxies. We find that the IMF becomes increasingly bottom-heavy with increasing velocity dispersion and [Mg/Fe]. At the lowest dispersions and [Mg/Fe] values the derived IMF is consistent with the Milky Way (MW) IMF, while at the highest dispersions and [Mg/Fe] values the derived IMF contains more low-mass stars (is more bottom-heavy) than even a Salpeter IMF. Our best-fit (M/L){sub stars} values do not exceed dynamically based M/L values. We also apply our models to stacked spectra of four metal-rich globular clusters in M31 and find an (M/L){sub stars} that implies fewer low-mass stars than a MW IMF, again agreeing with dynamical constraints. We discuss other possible explanations for the observed trends and conclude that variation in the IMF is the simplest and most plausible.

  10. A variable P v broad absorption line and quasar outflow energetics

    NASA Astrophysics Data System (ADS)

    Capellupo, D. M.; Hamann, F.; Barlow, T. A.

    2014-10-01

    Broad absorption lines (BALs) in quasar spectra identify high-velocity outflows that might exist in all quasars and could play a major role in feedback to galaxy evolution. The viability of BAL outflows as a feedback mechanism depends on their kinetic energies, as derived from the outflow velocities, column densities, and distances from the central quasar. We estimate these quantities for the quasar, Q1413+1143 (redshift ze = 2.56), aided by the first detection of P V λλ1118, 1128 BAL variability in a quasar. In particular, P V absorption at velocities where the C IV trough does not reach zero intensity implies that the C IV BAL is saturated and the absorber only partially covers the background continuum source (with characteristic size <0.01 pc). With the assumption of solar abundances, we estimate that the total column density in the BAL outflow is log NH ≳ 22.3 cm-2. Variability in the P V and saturated C IV BALs strongly disfavours changes in the ionization as the cause of the BAL variability, but supports models with high column density BAL clouds moving across our lines of sight. The observed variability time of 1.6 yr in the quasar rest frame indicates crossing speeds >750 km s-1 and a radial distance from the central black hole of ≲ 3.5 pc, if the crossing speeds are Keplerian. The total outflow mass is ˜4100 M⊙, the kinetic energy ˜4 × 1054 erg, and the ratio of the outflow kinetic energy luminosity to the quasar bolometric luminosity is ˜0.02 (at the minimum column density and maximum distance), which might be sufficient for important feedback to the quasar's host galaxy.

  11. BROAD ABSORPTION LINE VARIABILITY ON MULTI-YEAR TIMESCALES IN A LARGE QUASAR SAMPLE

    SciTech Connect

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Hall, P. B.; Anderson, S. F.; Hamann, F.; Lundgren, B. F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2013-11-10

    We present a detailed investigation of the variability of 428 C IV and 235 Si IV broad absorption line (BAL) troughs identified in multi-epoch observations of 291 quasars by the Sloan Digital Sky Survey-I/II/III. These observations primarily sample rest-frame timescales of 1-3.7 yr over which significant rearrangement of the BAL wind is expected. We derive a number of observational results on, e.g., the frequency of BAL variability, the velocity range over which BAL variability occurs, the primary observed form of BAL-trough variability, the dependence of BAL variability upon timescale, the frequency of BAL strengthening versus weakening, correlations between BAL variability and BAL-trough profiles, relations between C IV and Si IV BAL variability, coordinated multi-trough variability, and BAL variations as a function of quasar properties. We assess implications of these observational results for quasar winds. Our results support models where most BAL absorption is formed within an order-of-magnitude of the wind-launching radius, although a significant minority of BAL troughs may arise on larger scales. We estimate an average lifetime for a BAL trough along our line-of-sight of a few thousand years. BAL disappearance and emergence events appear to be extremes of general BAL variability, rather than being qualitatively distinct phenomena. We derive the parameters of a random-walk model for BAL EW variability, finding that this model can acceptably describe some key aspects of EW variability. The coordinated trough variability of BAL quasars with multiple troughs suggests that changes in 'shielding gas' may play a significant role in driving general BAL variability.

  12. Broad Absorption Line Variability on Multi-year Timescales in a Large Quasar Sample

    NASA Astrophysics Data System (ADS)

    Filiz Ak, N.; Brandt, W. N.; Hall, P. B.; Schneider, D. P.; Anderson, S. F.; Hamann, F.; Lundgren, B. F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2013-11-01

    We present a detailed investigation of the variability of 428 C IV and 235 Si IV broad absorption line (BAL) troughs identified in multi-epoch observations of 291 quasars by the Sloan Digital Sky Survey-I/II/III. These observations primarily sample rest-frame timescales of 1-3.7 yr over which significant rearrangement of the BAL wind is expected. We derive a number of observational results on, e.g., the frequency of BAL variability, the velocity range over which BAL variability occurs, the primary observed form of BAL-trough variability, the dependence of BAL variability upon timescale, the frequency of BAL strengthening versus weakening, correlations between BAL variability and BAL-trough profiles, relations between C IV and Si IV BAL variability, coordinated multi-trough variability, and BAL variations as a function of quasar properties. We assess implications of these observational results for quasar winds. Our results support models where most BAL absorption is formed within an order-of-magnitude of the wind-launching radius, although a significant minority of BAL troughs may arise on larger scales. We estimate an average lifetime for a BAL trough along our line-of-sight of a few thousand years. BAL disappearance and emergence events appear to be extremes of general BAL variability, rather than being qualitatively distinct phenomena. We derive the parameters of a random-walk model for BAL EW variability, finding that this model can acceptably describe some key aspects of EW variability. The coordinated trough variability of BAL quasars with multiple troughs suggests that changes in "shielding gas" may play a significant role in driving general BAL variability.

  13. Adaptation of TRIPND Field Line Tracing Code to a Shaped, Poloidal Divertor Geometry

    NASA Astrophysics Data System (ADS)

    Monat, P.; Moyer, R. A.; Evans, T. E.

    2001-10-01

    The magnetic field line tracing code TRIPND(T.E. Evans, Proc. 18th Conf. on Control. Fusion and Plasma Phys., Berlin, Germany, Vol. 15C, Part II (European Physical Society, 1991) p. 65.) has been modified to use the axisymmetric equilibrium magnetic fields from an EFIT reconstruction in place of circular equilibria with multi-filament current profile expansions. This adaptation provides realistic plasma current profiles in shaped geometries. A major advantage of this modification is that it allows investigation of magnetic field line trajectories in any device for which an EFIT reconstruction is available. The TRIPND code has been used to study the structure of the magnetic field line topology in circular, limiter tokamaks, including Tore Supra and TFTR and has been benchmarked against the GOURDON code used in Europe for magnetic field line tracing. The new version of the code, called TRIP3D, is used to investigate the sensitivity of various shaped equilibria to non-axisymmetric perturbations such as a shifted F coil or error field correction coils.

  14. A new perspective on the interstellar cloud surrounding the Sun from UV absorption line results

    NASA Astrophysics Data System (ADS)

    Gry, Cecile; Jenkins, Edward B.

    2015-01-01

    We offer a new, more inclusive, picture of the local interstellar medium, where it is composed of a single, monolithic cloud that surrounds the Sun in all directions. Our study of velocities based on Mg II and Fe II ultraviolet absorption lines indicates that the cloud has an average motion consistent with the velocity vector of gas impacting the heliosphere and does not behave like a rigid body: gas within the cloud is being differentially decelerated in the direction of motion, and the cloud is expanding in directions perpendicular to this flow, much like the squashing of a balloon. The outer boundary of the cloud is in average 10 pc away from us but is highly irregular, being only a few parsecs away in some directions, with possibly a few extensions up to 20 pc. Average H I volume densities vary between 0.03 and 0.1 cm3 over different sight lines. Metals appear to be significantly depleted onto grains, and there is a steady increase in this effect from the rear of the cloud to the apex of motion. There is no evidence that changes in the ionizing radiation influence the apparent abundances. Additional, secondary velocity components are detected in 60% of the sight lines. Almost all of them appear to be interior to the volume holding the gas that we identify with the main cloud. Half of the sight lines exhibit a secondary component moving at about - 7.2 km/s with respect to the main component, which may be the signature of an implosive shock propagating toward the cloud's interior.

  15. The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile.

    PubMed

    Zhang, Chunmin; He, Jian

    2006-12-25

    The principle of probing the upper atmospheric wind field, which is the Voigt profile spectral line shape, is presented for the first time. By the Fourier Transform of Voigt profile, with the Imaging Spectroscope and the Doppler effect of electromagnetic wave, the distribution and calculation formulae of the velocity field, temperature field, and pressure field of the upper atmosphere wind field are given. The probed source is the two major aurora emission lines originated from the metastable O(1S) and O(1D) at 557.7nm and 630.0nm. From computer simulation and error analysis, the Voigt profile, which is the correlation of the Gaussian profile and Lorentzian profile, is closest to the actual airglow emission lines. PMID:19532147

  16. Intrinsic Line Shape Measurements of the XRS Instrument on Astro-E2

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The XRS instrument on the Astro-E2 observatory contains a substantially improved microcalorimeter array over the Astro-E mission. In addition to roughly a factor of 2 improvement in the detector resolution at 6 keV, the detector response is shown to be almost perfectly gaussian. We have made measurements of the detector response of the flight instrument, using a double crystal monochrometer at 4 and 8 keV, a 55-Fe internal conversion source, and x-ray induced fluorescence from a number of targets including Ti, Cu, and GaAs. The detector response has been measured to be entirely gaussian to at least 2 orders of magnitude down from the peak of the line or line complex. This is in sharp contrast to the results from the XRS on Astro-E where many channels exhibited excess counts on the high energy side of the spectral lines. Here we present details of the line shape measurement as well as the detector response as measured during the XRS ground calibration including details of the line fits and line models.

  17. Sharp R-lines in absorption and emission of Cr3 in stoichiometric (VTE) LiNbO3

    NASA Astrophysics Data System (ADS)

    Fischer, C.; Kapphan, S.; Feng, Xi-Qi; Cheng, Ning

    R-line absorption and luminescence spectra of Cr3+ doped LiNbO3 show a distinct dependence on crystal stoichiometry. In the Cr3+ R-line region around 730 nm, up to five transitions can be observed in absorption and emission. In stoichiometric LiNbO3:Cr crystals the line width (FWHM) in both absorption and emission decreases by about a factor of 2.5 in comparison with the same transitions in congruent samples. The emission line at lowest energy in the R-line spectrum (λ = 734.5 nm) disappears completely in stoichiometric LiNbO3:Cr. This results, discussed together with models dealing with charge compensated Cr3+ pairs on Li and Nb sites and unpaired Cr3+ on Li site, is indicating a vanishing of the unpaired Cr3+Li with increasing [Li]/[Nb] ratio. Luminescence lifetime measurements in stoichiometric LiNbO3:Cr reveal values similar to results for congruent material of τ = 295 μs for the 731 nm line and τ = 268 μs for the 735 nm line, underlining the R-line character of these transitions.

  18. Impact of difference in absorption line parameters in spectroscopic databases on CO2 and CH4 atmospheric content retrievals

    NASA Astrophysics Data System (ADS)

    Chesnokova, T. Yu.; Chentsov, A. V.; Rokotyan, N. V.; Zakharov, V. I.

    2016-09-01

    The impact of uncertainties in CH4 and CO2 absorption line parameters in modern spectroscopic databases on the atmospheric transmission simulation in the near-infrared region is investigated. The atmospheric contents of CH4 and CO2 are retrieved from the absorption solar spectra measured by a ground-based Fourier transform spectrometer. Different spectroscopic databases are used in the forward radiative transfer model and a comparison of the retrieved results is made.

  19. Metal-line absorption at Z(sub abs) approximately Z(sub em) from associated galaxies

    NASA Technical Reports Server (NTRS)

    Ellingson, E.; Yee, H. K. C.; Bechtold, Jill; Dobrzycki, Adam

    1994-01-01

    For a preliminary study of whether C IV absorption at Z(sub abs) approximately Z(sub em) is related to associated galaxy companions, we have collected data from a sample of 10 quasars with 0.15 less than z less than 0.65 for which high-resolution optical and UV spectroscopy is available from the literature, and for which we have deep optical images and limited spectroscopy. We also present new optical spectra for two of our samples. Four of these quasars have associated C IV absorption systems. In thes four fields, there are eight galaxies with M(sub r) less than -19.0 mag within 35 kpc of the quasar (projected distance, assuming they are at the quasar redshift), which may be candidates for the associated C IV absorption. This observed density of galaxies near quasars with associated C IV absorption is significantly greater than that for a control sample of quasars chosen from the literature. This result suggests that galaxies near the quasar line of sight may be linked with associated C IV absorption. None of these quasars show associated Mg II absorption, despite the presence of galaxies very near the line of sight, suggesting a Mg II 'proximity effect,' where ionizing flux from the quasar destroys the Mg(+) from at least the outer parts of the galaxies. Three quasars are located in rich galaxy clusters, but none of these quasars are found to have associated C IV absorption. This suggests that galaxies in rich clusters associated with quasars are less likely to be metal-line absorbers. It is plausible that the extended galaxy halos which may be responsible for the absorptions are stripped from galaxies in these dense environments. While it seems that at Z approximately 0.6 rich clusters do not cause them, associated C IV absorption systems at higher redshift may be explained by associated clusters if there has been evolution in the properties of galaxy halos in dense environments.

  20. Spherically shaped micron-size particle-reinforced PMMA and PC composites for improving energy absorption capability

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-ick; Kang, Eung-Chun; Jang, Jae-Soon; Suhr, Jonghwan

    2011-04-01

    The focus of this study was to experimentally investigate spherically shaped micron-size particles reinforced polymethyl methacrylate (PMMA) and polycarbonate (PC) polymer composites for improving energy absorbing capabilities such as toughness and low-velocity impact resistance. In this study, a solution mixing method was developed to fabricate both PMMA and PC polymer composites with spherically shaped micron-size polyamide- nylon 6 (PA6) particles inclusions. The morphology of the fracture surfaces of polymer composites was examined by using optical microscopy and scanning electron microscopy. Strain-rate dependent response of both PMMA and PC polymer composites was investigated by characterizing tensile and flexural properties. Low-velocity penetration testing was performed for both polymer composites and the key results observed for energy absorption capabilities are discussed in this study.

  1. A novel control system for automatically locking a diode laser frequency to a selected gas absorption line

    NASA Astrophysics Data System (ADS)

    Dong, Lei; Yin, Wangbao; Ma, Weiguang; Jia, Suotang

    2007-05-01

    A novel control system has been developed for avoiding manual operation during traditional frequency locking. The control system uses a computer with a commercial data acquisition card. This accomplishes the whole operation of frequency locking, including generating ramp, searching locking point, engaging a proportional-integral-differential (PID) regulator at the proper time and outputting PID compensation signal. Moreover, a new method has also been employed to make the novel control system accurately identify the locking points of all absorption lines within the scanning range, so that the laser frequency can be automatically firmly brought onto any selected absorption line centre without any adjusting time. The operation of the system, the ability to identify absorption lines and the performance of the frequency locking were discussed in detail. Successful tests were made with two different lasers: external cavity diode lasers and distributed feedback diode lasers.

  2. BROAD ABSORPTION LINE DISAPPEARANCE ON MULTI-YEAR TIMESCALES IN A LARGE QUASAR SAMPLE

    SciTech Connect

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Hall, P. B.; Anderson, S. F.; Gibson, R. R.; Lundgren, B. F.; Myers, A. D.; Petitjean, P.; Ross, Nicholas P.; Shen Yue; York, D. G.; Bizyaev, D.; Brinkmann, J.; Malanushenko, E.; Oravetz, D. J.; Pan, K.; Simmons, A. E.; Weaver, B. A.

    2012-10-01

    We present 21 examples of C IV broad absorption line (BAL) trough disappearance in 19 quasars selected from systematic multi-epoch observations of 582 bright BAL quasars (1.9 < z < 4.5) by the Sloan Digital Sky Survey-I/II (SDSS-I/II) and SDSS-III. The observations span 1.1-3.9 yr rest-frame timescales, longer than have been sampled in many previous BAL variability studies. On these timescales, Almost-Equal-To 2.3% of C IV BAL troughs disappear and Almost-Equal-To 3.3% of BAL quasars show a disappearing trough. These observed frequencies suggest that many C IV BAL absorbers spend on average at most a century along our line of sight to their quasar. Ten of the 19 BAL quasars showing C IV BAL disappearance have apparently transformed from BAL to non-BAL quasars; these are the first reported examples of such transformations. The BAL troughs that disappear tend to be those with small-to-moderate equivalent widths, relatively shallow depths, and high outflow velocities. Other non-disappearing C IV BALs in those nine objects having multiple troughs tend to weaken when one of them disappears, indicating a connection between the disappearing and non-disappearing troughs, even for velocity separations as large as 10,000-15,000 km s{sup -1}. We discuss possible origins of this connection including disk-wind rotation and changes in shielding gas.

  3. AN INFRARED EXCESS IDENTIFIED IN RADIO-LOUD BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    DiPompeo, M. A.; Runnoe, J. C.; Brotherton, M. S.; Myers, A. D.

    2013-01-10

    If broad absorption line (BAL) quasars represent a high-covering-fraction evolutionary state (even if this is not the sole factor governing the presence of BALs), it is expected that they should show an excess of mid-infrared radiation compared to normal quasars. Some previous studies have suggested that this is not the case. We perform the first analysis of the IR properties of radio-loud BAL quasars, using IR data from WISE and optical (rest-frame ultraviolet) data from SDSS, and compare the BAL quasar sample with a well-matched sample of unabsorbed quasars. We find a statistically significant excess in the mid- to near-infrared luminosities of BAL quasars, particularly at rest-frame wavelengths of 1.5 and 4 {mu}m. Our sample was previously used to show that BALs are observed along many lines of sight toward quasars, but with an overabundance of more edge-on sources, suggesting that orientation factors into the appearance of BALs. The evidence here-of a difference in IR luminosities between BAL quasars and unabsorbed quasars-can be ascribed to evolution. This suggests that a merging of the current BAL paradigms is needed to fully describe the class.

  4. Magnetic Turbulence and Line Broadening in Simulations of Lyman-Alpha Absorption

    NASA Astrophysics Data System (ADS)

    Gurvich, Alex; Burkhart, Blakesley K.; Bird, Simeon

    2016-01-01

    We use the Illustris cosmological AREPO simulations to study the effects of gas turbulence and magnetic fields on measurements from the Lyman-Alpha forest. We generate simulated Lyman-Alpha spectra and plot the distributions of Column Density (CDD) and Doppler Width (b) both by adhering to the canonical method of fitting Voigt profiles to absorption lines and by directly measuring the column density and equivalent widths from snapshot data .We investigate the effects of additional unresolved gas turbulence in Illustris by adding an additional broadening term to the line profiles to mimic turbulent broadening. When we do this, we find a measurable effect in the CDD and an offset in the mean of the b distribution corresponding to the additional turbulence. We also compare different MHD runs in AREPO we find that the CDD can measurably differentiate between magnetic seed field at redshifts as low as z=0.1, but we do not find that the b distribution is affected at a detectable level. Our work suggests that the effects of turbulence and magnetic fields from z=2-0.1 can potentially be measured with these diagnostics. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  5. Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star.

    PubMed

    Cottam, J; Paerels, F; Mendez, M

    2002-11-01

    The fundamental properties of neutron stars provide a direct test of the equation of state of cold nuclear matter, a relationship between pressure and density that is determined by the physics of the strong interactions between the particles that constitute the star. The most straightforward method of determining these properties is by measuring the gravitational redshift of spectral lines produced in the neutron star photosphere. The equation of state implies a mass-radius relation, while a measurement of the gravitational redshift at the surface of a neutron star provides a direct constraint on the mass-to-radius ratio. Here we report the discovery of significant absorption lines in the spectra of 28 bursts of the low-mass X-ray binary EXO0748-676. We identify the most significant features with the Fe XXVI and XXV n = 2-3 and O VIII n = 1-2 transitions, all with a redshift of z = 0.35, identical within small uncertainties for the respective transitions. For an astrophysically plausible range of masses (M approximately 1.3-2.0 solar masses; refs 2-5), this value is completely consistent with models of neutron stars composed of normal nuclear matter, while it excludes some models in which the neutron stars are made of more exotic matter. PMID:12422210

  6. Bubble shape and breakage events in a vertical pipe at the boiler flow line

    NASA Astrophysics Data System (ADS)

    Fsadni, Andrew; Ge, Yunting

    2014-03-01

    The theoretical and experimental aspects concerning the typical bubble shape at the flow line of a standard domestic central heating system are investigated. This is done in support of the on-going research on two-phase flows in domestic central heating systems. Bubble nucleation and detachment at the primary heat exchanger wall of a domestic central heating boiler results in a bubbly two-phase flow in the system pipe work. Bubbly flow results in undesired cold spots at higher points in the system, consequently diminishing system performance. An experimental analysis was done on the bubble shape at the exit of the boiler through the application of photographic techniques. The results are presented in terms of the measured bubble aspect ratios at some principal system operating conditions. The dimensionless Eotvos and bubble Reynolds number were calculated and tabulated with the measured mean diameters. The data was subsequently correlated to the bubble shape regime diagram. Results suggest that most bubbles are quasi-spherical in shape with a noticeable elongation at lower bulk fluid Reynolds numbers.

  7. Total Absorption Spectroscopy Study of (92)Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape.

    PubMed

    Zakari-Issoufou, A-A; Fallot, M; Porta, A; Algora, A; Tain, J L; Valencia, E; Rice, S; Bui, V M; Cormon, S; Estienne, M; Agramunt, J; Äystö, J; Bowry, M; Briz, J A; Caballero-Folch, R; Cano-Ott, D; Cucoanes, A; Elomaa, V-V; Eronen, T; Estévez, E; Farrelly, G F; Garcia, A R; Gelletly, W; Gomez-Hornillos, M B; Gorlychev, V; Hakala, J; Jokinen, A; Jordan, M D; Kankainen, A; Karvonen, P; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Molina, F; Moore, I; Perez-Cerdán, A B; Podolyák, Zs; Penttilä, H; Regan, P H; Reponen, M; Rissanen, J; Rubio, B; Shiba, T; Sonzogni, A A; Weber, C

    2015-09-01

    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed. PMID:26382674

  8. Total Absorption Spectroscopy Study of 92Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    NASA Astrophysics Data System (ADS)

    Zakari-Issoufou, A.-A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; ńystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucoanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2015-09-01

    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. 92Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied 92Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.

  9. First detection of ionized helium absorption lines in infrared K band spectra of O-type stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Block, David L.; Geballe, T. R.; Hanson, Margaret M.

    1993-01-01

    We have obtained high SNR, moderate-resolution K band spectra of two early O-type main sequence stars, HD 46150 O5 V, and HD 46223 O4 V, in the Rosette Nebula. We report the detection, for the first time, of the 2.189 micron He II line in O-type stars. Also detected is the 2.1661 micron Br-gamma line in absorption. The 2.058 micron He I line appears to be present in absorption in both stars, although its appearance at our resolution is complicated by atmospheric features. These three lines can form the basis for a spectral classification system for hot stars in the K band that may be used at infrared wavelengths to elucidate the nature of those luminous stars in otherwise obscured H II and giant H II regions.

  10. Dependence of the Broad Absorption Line Quasar Fraction on Radio Luminosity

    NASA Astrophysics Data System (ADS)

    Shankar, Francesco; Dai, Xinyu; Sivakoff, Gregory R.

    2008-11-01

    We find that the fraction of classical broad absorption line quasars (BALQSOs) among the FIRST radio sources in the Sloan Data Release 3, is 20.5+ 7.3-5.9% at the faintest radio powers detected (L1.4 GHz ~ 1032 erg s-1), and rapidly drops to lesssim8% at L1.4 GHz ~ 3 × 1033 erg s-1. Similarly, adopting the broader absorption index (AI) definition of Trump et al., we find the fraction of radio BALQSOs to be 44+ 8.1-7.8%, reducing to 23.1+ 7.3-6.1% at high luminosities. While the high fraction at low radio power is consistent with the recent near-IR estimates by Dai et al., the lower fraction at high radio powers is intriguing and confirms previous claims based on smaller samples. The trend is independent of the redshift range, the optical and radio flux selection limits, or the exact definition of a radio match. We also find that at fixed optical magnitude, the highest bins of radio luminosity are preferentially populated by non-BALQSOs, consistent with the overall trend. We do find, however, that those quasars identified as AI-BALQSOs but not under the classical definition do not show a significant drop in their fraction as a function of radio power, further supporting independent claims that these sources, characterized by lower equivalent width, may represent an independent class from the classical BALQSOs. We find the balnicity index, a measure of the absorption trough in BALQSOs, and the mean maximum wind velocity to be roughly constant at all radio powers. We discuss several plausible physical models which may explain the observed fast drop in the fraction of the classical BALQSOs with increasing radio power, although none is entirely satisfactory. A strictly evolutionary model for the BALQSO and radio emission phases requires a strong fine-tuning to work, while a simple geometric model, although still not capable of explaining polar BALQSOs and the paucity of FRII BALQSOs, is statistically successful in matching the data if part of the apparent radio

  11. Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar

    NASA Astrophysics Data System (ADS)

    Sluse, D.; Hutsemékers, D.; Anguita, T.; Braibant, L.; Riaud, P.

    2015-10-01

    Testing the standard Shakura-Sunyaev model of accretion is a challenging task because the central region of quasars where accretion takes place is unresolved with telescopes. The analysis of microlensing in gravitationally lensed quasars is one of the few techniques that can test this model, yielding to the measurement of the size and of temperature profile of the accretion disc. We present spectroscopic observations of the gravitationally lensed broad absorption line quasar H1413+117, which reveal partial microlensing of the continuum emission that appears to originate from two separated regions: a microlensed region, corresponding the compact accretion disc; and a non-microlensed region, more extended and contributing to at least 30% of the total UV-continuum flux. Because this extended continuum is occulted by the broad absorption line clouds, it is not associated with the host galaxy, but rather with light scattered in the neighbourhood of the central engine. We measure the amplitude of microlensing of the compact continuum over the rest-frame wavelength range 1000-7000 Å. Following a Bayesian scheme, we confront our measurements to microlensing simulations of an accretion disc with a temperature varying as T ∝ R-1/ν. We find a most likely source half-light radius of R1/2 = 0.61 × 1016cm (i.e., 0.002 pc) at 0.18 μm, and a most-likely index of ν = 0.4. The standard disc (ν = 4/3) model is not ruled out by our data, and is found within the 95% confidence interval associated with our measurements. We demonstrate that, for H1413+117, the existence of an extended continuum in addition to the disc emission only has a small impact on the inferred disc parameters, and is unlikely to solve the tension between the microlensing source size and standard disc sizes, as previously reported in the literature. Based on observations made with ESO Telescopes at the Paranal Observatory (Chile). ESO program ID: 386.B-0337.Appendices A and B are available in electronic form

  12. Effect of nonlinear wave collapse on line shapes in a plasma

    NASA Astrophysics Data System (ADS)

    Hannachi, I.; Stamm, R.; Rosato, J.; Marandet, Y.

    2016-04-01

    The nonlinear interaction of waves can change the structural and radiative properties of plasmas. We describe the main features of a fully ionized unmagnetized plasma affected by strong Langmuir turbulence characterized by nonlinear wave collapse, and propose a simple model for evaluating the changes expected on a hydrogen line shape affected by such conditions. Our model is based on a stochastic renewal model using an exponential waiting time distribution and a half-normal probability density function for the electric-field magnitude of the turbulent wave packet. The first results obtained with a simulation calculation of the hydrogen \\text{L}α line show that strong Langmuir turbulence can provide an additional broadening to a Stark profile.

  13. CO{sub 2} isolated line shapes by classical molecular dynamics simulations: Influence of the intermolecular potential and comparison with new measurements

    SciTech Connect

    Larcher, G.; Tran, H. Schwell, M.; Chelin, P.; Landsheere, X.; Hartmann, J.-M.; Hu, S.-M.

    2014-02-28

    Room temperature absorption spectra of various transitions of pure CO{sub 2} have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 μm and 0.8 μm regions. Their spectral shapes have been calculated by requantized classical molecular dynamics simulations. From the time-dependent auto-correlation function of the molecular dipole, including Doppler and collisional effects, spectral shapes are directly computed without the use of any adjusted parameter. Analysis of the spectra calculated using three different anisotropic intermolecular potentials shows that the shapes of pure CO{sub 2} lines, in terms of both the Lorentz widths and non-Voigt effects, slightly depend on the used potential. Comparisons between these ab initio calculations and the measured spectra show satisfactory agreement for all considered transitions (from J = 6 to J = 46). They also show that non-Voigt effects on the shape of CO{sub 2} transitions are almost independent of the rotational quantum number of the considered lines.

  14. Detection of harmonics and recovery of the absorption line profile using logarithmic-transformed wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Cong, Menglong; Sun, Dandan

    2016-07-01

    A versatile signal processing strategy for eliminating the residual amplitude modulation (RAM) and distortion in tunable diode laser wavelength modulation spectroscopy is theoretically demonstrated and experimentally validated. The strategy involves logarithmic transformation and differential detection, which are achieved using a homemade circuit. Through the logarithmic transformation, the optical intensity modulation of the laser, which performs as the source of RAM and distortion, is separated from the absorption-induced power attenuation and further balanced during the differential detection. The first harmonic, which is proportional to the first-order derivative of the absorption line profile in the case of a small modulation index, is extracted along with the second harmonic and is integrated for the recovery of the absorption line profile. The experiments are carried out for CH4 at its R(3) absorption line of the 2ν3 overtone for validation of the system, and the derived results are found to be in good agreement with the theoretical simulations. These promising results indicate the high potential of the strategy for absorption spectrum-based determination of gas properties.

  15. Line Shape Parameters for CO_2 Transitions: Accurate Predictions from Complex Robert-Bonamy Calculations

    NASA Astrophysics Data System (ADS)

    Lamouroux, Julien; Gamache, Robert R.

    2013-06-01

    A model for the prediction of the vibrational dependence of CO_2 half-widths and line shifts for several broadeners, based on a modification of the model proposed by Gamache and Hartmann, is presented. This model allows the half-widths and line shifts for a ro-vibrational transition to be expressed in terms of the number of vibrational quanta exchanged in the transition raised to a power p and a reference ro-vibrational transition. Complex Robert-Bonamy calculations were made for 24 bands for lower rotational quantum numbers J'' from 0 to 160 for N_2-, O_2-, air-, and self-collisions with CO_2. In the model a Quantum Coordinate is defined by (c_1 Δν_1 + c_2 Δν_2 + c_3 Δν_3)^p where a linear least-squares fit to the data by the model expression is made. The model allows the determination of the slope and intercept as a function of rotational transition, broadening gas, and temperature. From these fit data, the half-width, line shift, and the temperature dependence of the half-width can be estimated for any ro-vibrational transition, allowing spectroscopic CO_2 databases to have complete information for the line shape parameters. R. R. Gamache, J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer. {{83}} (2004), 119. R. R. Gamache, J. Lamouroux, J. Quant. Spectrosc. Radiat. Transfer. {{117}} (2013), 93.

  16. Determination of the width of the absorption line of atomic iodine in optimization of the parameters of an iodine switch

    SciTech Connect

    Eroshenko, V.A.; Kirillov, G.A.; Mochalov, M.R.; Shemyakin, V.I.; Shurygin, V.K.

    1981-09-01

    A theoretical basis is given for the optimization of the parameters of an iodine switch. The results are reported of an experimental study of the pressure dependence of the width of the absorption line of atomic iodine. The broadening coefficient of molecular iodine is 3.2 MHz/Torr in the temperature range 800--1000 /sup 0/C.

  17. A VERY LARGE ARRAY SURVEY OF RADIO-SELECTED SDSS BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    DiPompeo, M. A.; Brotherton, M. S.; De Breuck, C.; Laurent-Muehleisen, Sally

    2011-12-10

    We have built a sample of 74 radio-selected broad absorption line (BAL) quasars from the Sloan Digital Sky Survey Data Release 5 and Faint Images of the Radio Sky at Twenty Centimeters, along with a well-matched sample of 74 unabsorbed 'normal' quasars. The sources have been observed with the NRAO Very Large Array/Expanded Very Large Array at 8.4 GHz (3.5 cm) and 4.9 GHz (6 cm). All sources have additional archival 1.4 GHz (21 cm) data. Here we present the measured radio fluxes, spectral indices, and our initial findings. The percentage of BAL quasars with extended structure (on the order of 10%) in our sample is similar to previous studies at similar resolutions, suggesting that BAL quasars are indeed generally compact, at least at arsecond resolutions. The majority of sources do not appear to be significantly variable at 1.4 GHz, but we find two previously unidentified BAL quasars that may fit into the 'polar' BAL category. We also identify a significant favoring of steeper radio spectral index for BAL compared to non-BAL quasars. This difference is apparent for several different measures of the spectral index and persists even when restricting the samples to only include compact objects. Because radio spectral index is a statistical indicator of viewing angle for large samples, these results suggest that BAL quasars do have a range of orientations but are more often observed farther from the jet axis compared to normal quasars.

  18. Application of flow injection on-line electrothermal atomic absorption spectrometry to the determination of rhodium.

    PubMed

    Sanchez Rojas, Fuensanta; Bosch Ojeda, Catalina; Cano Pavón, José Manuel

    2005-06-01

    A fully automated procedure for the determination of rhodium has been developed using flow injection (FI) on-line microcolumn preconcentration coupled with electrothermal atomic absorption spectrometry (ETAAS). The proposed FI manifold and its operation make possible the introduction of the total eluate volume into the graphite atomizer, avoiding the necessity for optimisation of subsampling the eluate. Rhodium is adsorbed on a microcolumn packed with 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). Under the optimum conditions, using a 60 s preconcentration time, a sample flow rate of 3.5 mL min(-1) and an injection volume of eluent of 50 microL, a linear calibration graph was obtained from 1 to at least 40 ng mL(-1) and the detection limit was 1 ng mL(-1). The proposed method has been successfully applied to the analysis of samples. Its performance was investigated against certified reference catalyst sample SRM-2557 and by recovery measurements on spiked samples (soil, foods and beverages).

  19. THE PITTSBURGH SLOAN DIGITAL SKY SURVEY Mg II QUASAR ABSORPTION-LINE SURVEY CATALOG

    SciTech Connect

    Quider, Anna M.; Nestor, Daniel B.; Turnshek, David A.; Rao, Sandhya M.; Weyant, Anja N.; Monier, Eric M.; Busche, Joseph R.

    2011-04-15

    We present a catalog of intervening Mg II quasar absorption-line systems in the redshift interval 0.36 {<=} z {<=} 2.28. The catalog was built from Sloan Digital Sky Survey Data Release Four (SDSS DR4) quasar spectra. Currently, the catalog contains {approx}17, 000 measured Mg II doublets. We also present data on the {approx}44, 600 quasar spectra which were searched to construct the catalog, including redshift and magnitude information, continuum-normalized spectra, and corresponding arrays of redshift-dependent minimum rest equivalent widths detectable at our confidence threshold. The catalog is available online. A careful second search of 500 random spectra indicated that, for every 100 spectra searched, approximately one significant Mg II system was accidentally rejected. Current plans to expand the catalog beyond DR4 quasars are discussed. Many Mg II absorbers are known to be associated with galaxies. Therefore, the combination of large size and well understood statistics makes this catalog ideal for precision studies of the low-ionization and neutral gas regions associated with galaxies at low to moderate redshift. An analysis of the statistics of Mg II absorbers using this catalog will be presented in a subsequent paper.

  20. MOSFIRE ABSORPTION LINE SPECTROSCOPY OF z > 2 QUIESCENT GALAXIES: PROBING A PERIOD OF RAPID SIZE GROWTH

    SciTech Connect

    Belli, Sirio; Ellis, Richard S.; Konidaris, Nick P.; Newman, Andrew B.

    2014-06-20

    Using the MOSFIRE near-infrared multi-slit spectrograph on the Keck 1 Telescope, we have secured high signal-to-noise ratio absorption line spectra for six massive galaxies with redshift 2 < z < 2.5. Five of these galaxies lie on the red sequence and show signatures of passive stellar populations in their rest-frame optical spectra. By fitting broadened spectral templates we have determined stellar velocity dispersions and, with broad-band Hubble Space Telescope and Spitzer photometry and imaging, stellar masses and effective radii. Using this enlarged sample of galaxies, we confirm earlier suggestions that quiescent galaxies at z > 2 have small sizes and large velocity dispersions compared to local galaxies of similar stellar mass. The dynamical masses are in very good agreement with stellar masses (log M {sub *}/M {sub dyn} = –0.02 ± 0.03), although the average stellar-to-dynamical mass ratio is larger than that found at lower redshift (–0.23 ± 0.05). By assuming evolution at fixed velocity dispersion, not only do we confirm a surprisingly rapid rate of size growth but we also consider the necessary evolutionary track on the mass-size plane and find a slope α = dlog R{sub e} /dlog M {sub *} ≳ 2 inconsistent with most numerical simulations of minor mergers. Both results suggest an additional mechanism may be required to explain the size growth of early galaxies.

  1. Fast outflows in broad absorption line quasars and their connection with CSS/GPS sources

    NASA Astrophysics Data System (ADS)

    Bruni , G.; Mack, K.-H.; Montenegro-Montes, F. M.; Brienza, M.; González-Serrano, J. I.

    2016-02-01

    Broad absorption line quasars are among the objects presenting the fastest outflows. The launching mechanism itself is not completely understood. Models in which they could be launched from the accretion disk, and then curved and accelerated by the effect of the radiation pressure, have been presented. We conducted an extensive observational campaign, from radio to optical band, to collect information about their nature and test the models present in the literature, the main dichotomy being between a young scenario and an orientation one. We found a variety of possible orientations, morphologies, and radio ages, not converging to a particular explanation for the BAL phenomenon. From our latest observations in the m- and mm-band, we obtained an indication of a lower dust abundance with respect to normal quasars, thus suggesting a possible feedback process on the host galaxy. Also, in the low-frequency regime we confirmed the presence of CSS components, sometime in conjunction with a GPS one already detected at higher frequencies. Following this, about 70 % of our sample turns out to be in a GPS or CSS+GPS phase. We conclude that fast outflows, responsible for the BAL features, can be more easily present among objects going through a restarting or just-started radio phase, where radiation pressure can substantially contribute to their acceleration.

  2. Understanding the symmetric line shape in the 17O MAS spectra for hexagonal ice

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Oki, Shinobu; Deguchi, Kenzo; Shimizu, Tadashi

    2016-06-01

    Solid-state 17O Magic-Angle Spinning (MAS) nuclear magnetic resonance (NMR) spectra of 17O-enriched hexagonal ice, [17O]-Ih, between 173 and 253 K were presented. Marked changes in the line shape were clearly observed, indicating water molecular reorientation in the crystal structure. At 173 K, molecular motions were considered to be frozen and analysis of the 1D MAS spectrum yielded the following parameters: quadrupole coupling constant (CQ) = 6.6 ± 0.2 MHz and asymmetry parameter (ηQ) = 0.95 ± 0.05. At 232 K and above, contrary to the conventional explanation, pseudo-symmetric line shapes appeared in the 17O MAS NMR spectra arising from the contribution of second-order quadrupole interactions. As a chemical exchange model to describe these isotropic 17O MAS NMR spectra, a modified Ratcliffe model, which consider the effects of proton disorder, was proposed, and the resulting theoretical spectra could well reproduce the experimental spectra.

  3. Continuum absorption spectra in the far wings of the Hg 1S0-->3P1 resonance line broadened by Ar

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Nakamura, T.; Okunishi, M.; Ohmori, K.; Chiba, H.; Ueda, K.

    1996-02-01

    Absolute reduced absorption coefficients for the Hg resonance line at 253.7 nm broadened by Ar were determined between 390 and 430 K in the spectral range from 20 to 1000 cm-1 on the red wing and from 20 to 400 cm-1 on the blue wing. The resultant reduced absorption coefficients are in fair agreement with those obtained by Petzold and Behmenburg [Z. Naturtorsch. Teil A 33, 1461 (1978)]. The observed A 30+<--X 10+ spectrum in the spectral range from 80 to 800 cm-1 on the red wing agrees remarkably well both in shape and magnitude with the quasistatic line shape calculated using the potential-energy curves of the HgAr van der Waals molecule given by Fuke, Saito, and Kaya [J. Chem. Phys. 81, 2591 (1984)], and Yamanouchi et al. [J. Chem. Phys. 88, 205 (1988)]. The blue-wing spectrum is interpreted as the B 31<--X 10+ free-free transition of HgAr by a simulation of the spectrum using uniform semiclassical treatment for the free-free Franck-Condon factor. The source of the satellites on the blue wing is attributed to the phase-interference effect arising from a stationary phase-shift difference between the B- and X-state translational wave functions. The stationary phase-shift difference arises owing to the existence of a maximum in the difference potential between the B and X states. The repulsive branches of the potential-energy curves of HgAr for the X and B states have been revised to give excellent agreement between the observed and calculated spectra, both in shape and magnitude.

  4. Spectral Line Shapes in the 2ν_3 Q Branch of 12CH_4

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.; Yu, Shanshan; Smith, Mary Ann H.; Ismail, Syed; Mantz, Arlan; Boudon, Vincent

    2016-06-01

    We will present the first experimental measurements of spectral line shapes (self- and air-broadened half width, pressure shift, and line mixing (via off-diagonal relaxation matrix element) coefficients and their temperature dependences, where appropriate, for transitions in the 2ν_3 Q branch manifolds of 12CH_4 in the 1.6 μ m region. Employing a multispectrum nonlinear least squares technique, we simultaneously fitted 23 high-resolution spectra of 12CH_4 and mixtures of 12CH_4 in air, recorded at different pressure-temperature combinations between 130 and 296 K. These data were recorded using the Bruker IFS 125 HR Fourier transform spectrometer at the Jet Propulsion Laboratory together with two coolable sample cells. By applying a set of constraints to the parameters of severely blended transitions, a self-consistent set of broadening, shift and line mixing parameters for CH_4-CH_4 and CH_4-air collisions were retrieved. A quadratic speed dependence parameter common for all transitions in each Q(J) manifold was determined. In addition to line shape parameters, line positions and line intensities were also measured for over 100 transitions in the whole Q branch region (5996.5 - 6007.7 cm-1). Comparisons of present results with values in HITRAN2012 will be provided. D.C. Benner, C.P. Rinsland, V. Malathy Devi, M.A. H. Smith, and D. Atkins. JQSRT 53 (1995) 705-721 K. Sung, A.W. Mantz, M.A.H. Smith, L.R. Brown, T.J. Crawford, V.M. Devi, D.C. Benner. J.Mol. Spectrosc. 162 (2010)124-134 A.W. Mantz, K. Sung, T.J. Crawford, L.R. Brown, M.A.H. Smith, V.M. Devi, D.C. Benner, J. Mol. Spectrosc. 304 (2014) 12-24. Research described in this paper are performed at the College of William and Mary, Jet Propulsion Laboratory, California Institute of Technology, Connecticut College, and NASA Langley Research Center under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  5. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    SciTech Connect

    Pascucci, I.; Simon, M. N.; Edwards, S.; Heyer, M.; Rigliaco, E.; Hillenbrand, L.; Gorti, U.; Hollenbach, D.

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.

  6. The Density Matrix of H20 - N2 In the Coordinate Representation: A Monte Carlo Calculation of the Far-Wing Line Shape

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1999-01-01

    The far-wing line shape theory within the binary collision and quasistatic framework has been developed using the coordinate representation. Within this formalism, the main computational task is the evaluation of multidimensional integrals whose variables are the orientational angles needed to specify the initial and final positions of the system during transition processes. Using standard methods, one is able to evaluate the 7-dimensional integrations required for linear molecular systems, or the 7-dimensional integrations for more complicated asymmetric-top (or symmetric-top) molecular systems whose interaction potential contains cyclic coordinates. In order to obviate this latter restriction on the form of the interaction potential, a Monte Carlo method is used to evaluate the 9-dimensional integrations required for systems consisting of one asymmetric-top (or symmetric-top) and one linear molecule, such as H20-N2. Combined with techniques developed previously to deal with sophisticated potential models, one is able to implement realistic potentials for these systems and derive accurate, converged results for the far-wing line shapes and the corresponding absorption coefficients. Conversely, comparison of the far-wing absorption with experimental data can serve as a sensitive diagnostic tool in order to obtain detailed information on the short-range anisotropic dependence of interaction potentials.

  7. Illustrating Surface Shape in Volume Data via Principal Direction-Driven 3D Line Integral Convolution

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria

    1997-01-01

    The three-dimensional shape and relative depth of a smoothly curving layered transparent surface may be communicated particularly effectively when the surface is artistically enhanced with sparsely distributed opaque detail. This paper describes how the set of principal directions and principal curvatures specified by local geometric operators can be understood to define a natural 'flow' over the surface of an object, and can be used to guide the placement of the lines of a stroke texture that seeks to represent 3D shape information in a perceptually intuitive way. The driving application for this work is the visualization of layered isovalue surfaces in volume data, where the particular identity of an individual surface is not generally known a priori and observers will typically wish to view a variety of different level surfaces from the same distribution, superimposed over underlying opaque structures. By advecting an evenly distributed set of tiny opaque particles, and the empty space between them, via 3D line integral convolution through the vector field defined by the principal directions and principal curvatures of the level surfaces passing through each gridpoint of a 3D volume, it is possible to generate a single scan-converted solid stroke texture that may intuitively represent the essential shape information of any level surface in the volume. To generate longer strokes over more highly curved areas, where the directional information is both most stable and most relevant, and to simultaneously downplay the visual impact of directional information in the flatter regions, one may dynamically redefine the length of the filter kernel according to the magnitude of the maximum principal curvature of the level surface at the point around which it is applied.

  8. Theoretical study of the spectral shift of the absorption line of Rb and Cs in liquid helium

    NASA Astrophysics Data System (ADS)

    Modesto-Costa, Lucas; Mukherjee, Prasanta K.; Canuto, Sylvio

    2015-07-01

    A combined and sequential use of Monte Carlo simulation and time-dependent density functional theory is made to obtain the excitation line shifts and widths of Rb and Cs embedded in liquid 4He. In each case calculations are made on 100 statistically uncorrelated configurations with Rb (Cs) surrounded by nearly 60 He atoms treated explicitly. Different basis sets and functionals are used for obtaining the blue shifts of the absorption lines 5s → 5p of Rb and 6s → 6p of Cs. Estimate of the line broadening is also made and results for both the shift and broadening are obtained in good agreement with experiment.

  9. Self- and CO2-broadened line shape parameters for infrared bands of HDO

    NASA Astrophysics Data System (ADS)

    Smith, Mary-Ann H.; Malathy Devi, V.; Benner, D. Chris; Sung, Keeyoon; Mantz, Arlan W.; Gamache, Robert R.; Villanueva, Geronimo L.

    2015-11-01

    Knowledge of CO2-broadened HDO line widths and their temperature dependence is required to interpret infrared spectra of the atmospheres of Mars and Venus. However, this information is currently absent in most spectroscopic databases. We have analyzed nine high-resolution, high signal-to-noise spectra of HDO and HDO+CO2 mixtures to obtain broadening coefficients and other line shape parameters for transitions of the ν2 and ν3 vibrational bands located at 7.13 and 2.70 μm, respectively. The gas samples were prepared by mixing equal amounts of high-purity distilled H2O and 99% enriched D2O. The spectra were recorded at different temperatures (255-296 K) using a 20.38 cm long coolable cell [1] installed in the sample compartment of the Bruker IFS125HR Fourier transform spectrometer at the Jet Propulsion Laboratory in Pasadena, CA. The retrieved HDO spectroscopic parameters include line positions, intensities, self- and CO2-broadened half-width and pressure-induced shift coefficients and the temperature dependences for CO2 broadening. These spectroscopic parameters were obtained by simultaneous multispectrum fitting [2] of the same interval in all nine spectra. A non-Voigt line shape with speed dependence was applied. Line mixing was also observed for several transition pairs. Preliminary results compare well with the few other measurements reported in the literature.[1] K. Sung et al., J. Mol. Spectrosc. 162, 124-134 (2010).[2] D. C. Benner et al., J. Quant. Spectrosc. Radiat Transfer 53, 705-721 (1995).The research performed at the College of William and Mary was supported by NASA’s Mars Fundamental Research Program (Grant NNX13AG66G). The research at Jet Propulsion Laboratory, California Institute of Technology, Connecticut College, Langley Research Center, and Goddard Space Flight Center was conducted under contracts and cooperative agreements with the National Aeronautics and Space Administration. RRG is pleased to acknowledge support of this study by the

  10. Highly Ionized Iron Absorption Lines from Outflowing Gases in the X-ray Spectrum of NGC 1365

    NASA Technical Reports Server (NTRS)

    Risaliti, G.; Bianchi, S.; Matt, G.; Baldi, A.; Elvis, M.; Fabbiano, G.; Zezas, A.

    2006-01-01

    We present the discovery of four absorption lines in the X-ray spectrum of the Seyfert galaxy NGC 1365, at energies between 6.7 and 8.3 keV. The lines are detected with high statistical confidence (from >20 sigma for the strongest to -4 sigma for the weakest) in two XMM-Newton observations 60 ks long. We also detect the same lines, with a lower signal-to-noise ratio (but still >2 sigma for each line), in two previous shorter (-10 ks) XMM-Newton observations. The spectral analysis identifies these features as Fe XXV and Fe XXVI Kalpha and Kbeta lines, outflowing with velocities varying between -1000 and -5000 km/s among the observations. These are the highest quality detections of such lines so far. The high equivalent widths [EW (Kalpha) approximately 100 eV] and the Kalpha/Kbeta ratios imply that the lines are due to absorption of the AGN continuum by a highly ionized gas with column density NH-5?1023 cm(exp -2) at a distance of -(50-100)RS from the continuum source.

  11. A dynamic model for anomalous figures: the shape of line-induced brightness modifications.

    PubMed

    Pinna, B; Sambin, M

    1991-01-01

    It is recognized that a fundamental role in the perception of anomalous figures is played by the intensity and shape of brightness modifications induced by line ends. The aim of this work was to study the structure of these modifications experimentally, by using variously arranged dots as probes. It was thus assumed that dots can measure activations generated inside abrupt line ends. The results show distribution of activation which differs according to dot distance and angle with respect to the continuation of the line near its end. These data do not agree with the predictions of information processing models in the literature on anomalous figures, which are based on perceptually postulated figures accounting for unlikely gaps. However, they do agree with the dynamic model proposed here, which is based on the idea that certain figure characteristics, eg the differential brightness of anomalous figures, depend on activation distribution which in turn depends on the organization of the forces in play. This idea is rooted in Gestalt theory. Another model supported by our experimental data is Grossberg's neural dynamic approach. In this case too, the basic idea is that of activation distribution which depends on the interaction of complex neural networks functioning according to special algorithms.

  12. L = 1.24 conjugate magnetic field line tracing experiments with barium shaped charges

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Peek, H. M.; Bottoms, P. J.; Rieger, E. P.

    1974-01-01

    Description of three experiments involving the injection of barium ions into magnetic flux tubes with the aid of high-explosive shaped charges with hollow conical liners of barium metal. In these experiments (called Alco, Bubia, and Loro, respectively) the explosive charges were detonated at altitudes above 500 km, producing jets of barium plasma with initial velocities ranging from 8 to 20 km/sec. The most interesting result of the experiments, which were carried out near L = 1.24 and were successful in tracing an entire field line some 7000 km to the conjugate ionosphere, was the observation that for Loro and probably Alco the direction and rate of drift of the two ends of the field line were identical, whereas those for Bubia differed significantly. In the case of the Bubia event significant differences in magnitude and direction at the conjugate points are noted, which lead to the conclusion that the field line could not have been equipotential during the interval of observation.

  13. Quasars as the formation sites of high-redshift ellipticals: a signature in the `associated' absorption-line systems?

    NASA Astrophysics Data System (ADS)

    Franceschini, A.; Gratton, R.

    1997-03-01

    Published data on the average metallicities and abundance ratios for absorption-line systems in high-redshift quasars suggest that a dichotomy may exist between the chemical composition of damped Lyman alpha (Lyalpha) systems (interpreted as intervening galaxies in the QSO line of sight) and the z_abs~=z_em absorption- line systems associated with the quasar. Intervening systems have smaller than solar metallicities, whereas associated absorbers have solar or greater than solar metallicities and small N/C ratios. While these results have to be confirmed by more precise abundance determinations, we argue that they may be explained by an early phase of efficient metal enrichment occurring only in the close environment of high-z QSOs, and characterized by an excess type-II supernova (SNII) activity. This is reminiscent of the SNII phase required to explain the abundance ratios (favouring alpha- over Fe-group elements) observed in the intracluster (IC) medium of local galaxy clusters. We explore the following scenario, to be tested by forthcoming observations of QSO absorption lines using very large optical telescopes. (a) Well-studied damped- Lyalpha, Lyalpha and metal lines in intervening systems trace only part of the history of metal production in the Universe - the one concerning slowly star-forming discs or dwarf irregulars. (b) The complementary class of early-type and bulge-dominated galaxies formed quickly (at z>~4-5) through a huge episode of star formation favouring high-mass stars. (c) The nucleus of the latter is the site of the subsequent formation of a quasar, which partly hides from view the dimmer host galaxy. (d) The products of a galactic wind, following the violent episode of star formation in the host galaxy and metal pollution of the IC medium in the forming cluster, could be directly observable in the z_abs~=z_em associated absorption systems on the QSO line of sight.

  14. Application of wavelet transforms to determine peak shape parameters for interference detection in graphite-furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Sadler, D. A.; Littlejohn, D.; Boulo, P. R.; Soraghan, J. S.

    1998-08-01

    A procedure to quantify the shape of the absorbance-time profile, obtained during graphite furnace atomic absorption spectrometry, has been used to detect interference effects caused by the presence of a concomitant salt. The quantification of the absorption profile is achieved through the use of the Lipschitz regularity, α0, obtained from the wavelet transform of the absorbance-time profile. The temporal position of certain features and their associated values of α0 provide a unique description of the shape of the absorbance-time profile. Changes to the position or values of α0 between standard and sample atomizations may be indicative of uncorrected interference effects. A weak, but linear, dependence was found of the value of α0 upon the analyte concentration for Cr and Cu. The ability of the Lipschitz regularity to detect interference effects was illustrated for Pb, Se and Cu. For Pb, the lowest concentration of NaCl added, 0.005% m/v, changed both the values of α0 and the peak height absorbance. For Se, no change in the peak height and peak area absorbance signals was detected up to a NaCl concentration of 0.25% m/v. The values of the associated Lipschitz regularities were found to be invariant to NaCl concentration up to this value. For Cu, a concentration of 0.05% m/v NaCl reduced the peak height and peak area absorbance signals by approximately 25% and significantly altered the values of α0.

  15. The HST quasar absorption line key project. 9: An emission-line study of PG 2251+113

    NASA Technical Reports Server (NTRS)

    Espey, Brian R.; Turnshek, David A.; Lee, Lincoln; Bergeron, Jacqueline; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Sargent, W. L. W.; Savage, Blair D.; Schneider, Donald P.

    1994-01-01

    We present Hubble Space Telescope (HST) and quasi-simultaneous ground-based observations of the z = 0.3252 QSO PG 2251+113. We find a correlation between line widths and the critical density for de-excitation of the forbidden emission lines observed in this object. We can show that this correlation also applies to the semiforbidden and possibly also the permitted lines which arise in the broad emission-line region. While this result was predicted from statistical studies, it has never previously been shown to hold in detail in any individual object. This relationship between the narrow and broad emission-line regions may help constrain dynamical models of both regions. We examine the implications of this result for a simple radial infall model of the emitting gas developed to explain the origin of narrow-line profiles.

  16. Jupiter’s Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    NASA Astrophysics Data System (ADS)

    Bjoraker, G. L.; Wong, M. H.; de Pater, I.; Ádámkovics, M.

    2015-09-01

    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use (a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and (b) pressure-broadened line profiles of deuterated methane (CH3D) at 4.66 μm to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter’s 5 μm spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that hot spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that hot spots in the North Equatorial Belt and South Equatorial Belt (SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32{}^\\circ S has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter’s belt-zone structure. We also constrained the vertical profile of H2O in an SEB hot spot and in the STZ. The hot spot is very dry for P < 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.

  17. Linear headache: a recurrent unilateral head pain circumscribed in a line-shaped area

    PubMed Central

    2014-01-01

    Background A headache circumscribed in a line-shaped area but not confined to the territory of one particular nerve had ever been described in Epicrania Fugax (EF) of which the head pain is moving and ultrashort. In a 25-month period from Feb 2012 to Mar 2014, we encountered 12 patients with a paroxysmal motionless head pain restricted in a linear trajectory. The head pain trajectory was similar to that of EF, but its all other features obviously different from those of EF. We named this distinctive but undescribed type of headache linear headache (LH). Methods A detailed clinical feature of the headache was obtained in all cases to differentiate with EF, trigeminal autonomic cephalalgias (TACs) and cranial neuralgia. Similarities and differences in clinical features were compared between LH and migraine. Results The twelve LH patients (mean age 43.9 ± 12.2) complained of a recurrent, moderate to severe, distending (n = 9), pressure-like (n = 3) or pulsating (n = 3) pain within a strictly unilateral line-shaped area. The painful line is distributed from occipital or occipitocervical region to the ipsilateral eye (n = 5), forehead (n = 6) or parietal region (n = 1). The pain line has a trajecory similar to that of EF but no characteristics of moving. The headache duration would be ranged from five minutes to three days, but usually from half day to one day in most cases (n = 8). Six patients had the accompaniment of nausea with or without vomiting, and two patients had the accompaniment of ipsilateral dizziness. The attacks could be either spontaneous (n = 10) or triggered by noise, depression and resting after physical activity (n = 1), or by stress and staying up late (n = 1). The frequency of attacks was variable. The patients had well response to flunarizine, sodium valproate and amitriptyline but not to carbamazepine or oxcarbazepine. LH is different from EF, trigeminal autonomic cephalalgias (TACs) and cranial neuralgia, but it had couple of features similar

  18. Spectral Line-Shape Model to Replace the Voigt Profile in Spectroscopic Databases

    NASA Astrophysics Data System (ADS)

    Lisak, Daniel; Ngo, Ngoc Hoa; Tran, Ha; Hartmann, Jean-Michel

    2014-06-01

    The standard description of molecular line shapes in spectral databases and radiative transfer codes is based on the Voigt profile. It is well known that its simplified assumptions of absorber free motion and independence of collisional parameters from absorber velocity lead to systematic errors in analysis of experimental spectra, and retrieval of gas concentration. We demonstrate1,2 that the partially correlated quadratic speed-dependent hardcollision profile3. (pCqSDHCP) is a good candidate to replace the Voigt profile in the next generations of spectroscopic databases. This profile takes into account the following physical effects: the Doppler broadening, the pressure broadening and shifting of the line, the velocity-changing collisions, the speed-dependence of pressure broadening and shifting, and correlations between velocity- and phase/state-changing collisions. The speed-dependence of pressure broadening and shifting is incorporated into the pCqSDNGP in the so-called quadratic approximation. The velocity-changing collisions lead to the Dicke narrowing effect; however in many cases correlations between velocityand phase/state-changing collisions may lead to effective reduction of observed Dicke narrowing. The hard-collision model of velocity-changing collisions is also known as the Nelkin-Ghatak model or Rautian model. Applicability of the pCqSDHCP for different molecular systems was tested on calculated and experimental spectra of such molecules as H2, O2, CO2, H2O in a wide span of pressures. For all considered systems, pCqSDHCP is able to describe molecular spectra at least an order of magnitude better than the Voigt profile with all fitted parameters being linear with pressure. In the most cases pCqSDHCP can reproduce the reference spectra down to 0.2% or better, which fulfills the requirements of the most demanding remote-sensing applications. An important advantage of pCqSDHCP is that a fast algorithm for its computation was developedab4,5 and allows

  19. Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances.

    PubMed

    Gallinet, Benjamin; Martin, Olivier J F

    2011-11-22

    The optical properties of plasmonic nanostructures supporting Fano resonances are investigated with an electromagnetic theory. Contrary to the original work of Fano, this theory includes losses in the materials composing the system. As a result, a more general formula is obtained for the response of the system and general conclusions for the determination of the resonance parameters are drawn. These predictions are verified with surface integral numerical calculations in a broad variety of plasmonic nanostructures including dolmens, oligomers, and gratings. This work presents a robust and consistent analysis of plasmonic Fano resonances and enables the control of their line shape based on Maxwell's equations. The insights into the physical understanding of Fano resonances gained this way will be of great interest for the design of plasmonic systems with specific spectral responses for applications such as sensing and optical metamaterials.

  20. Trapping of Water Drops by Line-Shaped Defects on Superhydrophobic Surfaces.

    PubMed

    Olin, Pontus; Lindström, Stefan B; Wågberg, Lars

    2015-06-16

    We have investigated the effect of line-shaped topographical defects on the motion of water drops across superhydrophobic wax surfaces using a high-speed video camera. The defects are introduced onto the superhydrophobic wax surfaces by a scratching procedure. It is demonstrated that the motion of a drop interacting with the defect can be approximated by a damped harmonic oscillator. Whether a drop passes or gets trapped by the defect is determined by the incident speed and the properties of the oscillator, specifically by the damping ratio and a nondimensional forcing constant representing the effects of gravity and pinning forces. We also show that it is possible to predict a critical trapping speed as well as an exit speed in systems with negligible viscous dissipation using a simple work-energy consideration. PMID:26010934

  1. Electron spectra line shape analysis of highly oriented pyrolytic graphite and nanocrystalline diamond.

    PubMed

    Lesiak, Beata; Zemek, Josef; Houdkova, Jana; Kromka, Alexander; Józwik, Adam

    2010-01-01

    The X-ray excited Auger electron spectroscopy (XAES), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES) methods were applied in investigating samples of nanocrystalline diamond and highly oriented pyrolytic graphite of various C sp(2)/sp(3) ratios, crystallinity conditions and grain sizes. The composition at the surface was estimated from the XPS. The C sp(2)/sp(3) ratio was evaluated from the width of the XAES first derivative C KLL spectra and from fitting of XPS C 1s spectra into components. The pattern recognition (PR) method applied for analyzing the spectra line shapes exhibited high accuracy in distinguishing different carbon materials. The PR method was found to be a potentially useful approach for identification, especially important for technological applications in fields of materials engineering and for controlling the chemical reaction products during synthesis.

  2. Dispersion and line shape of plasmon satellites in one, two, and three dimensions

    NASA Astrophysics Data System (ADS)

    Vigil-Fowler, Derek; Louie, Steven G.; Lischner, Johannes

    2016-06-01

    Using state-of-the-art many-body Green's function calculations based on the GW plus cumulant approach, we analyze the properties of plasmon satellites in the electron spectral function resulting from electron-plasmon interactions in one-, two-, and three-dimensional systems. Specifically, we show how their dispersion relation, line shape, and linewidth are related to the properties of the constituent electrons and plasmons. To gain insight into the many-body processes giving rise to the formation of plasmon satellites, we connect the GW plus cumulant approach to a many-body wave-function picture of electron-plasmon interactions and introduce the coupling-strength-weighted electron-plasmon joint density states as a powerful concept for understanding plasmon satellites.

  3. Measured Signatures of Low Energy, Physical Sputtering in the Line Shape of Neutral Carbon Emission

    SciTech Connect

    Brooks, N; Isler, R; Whyte, D; Fenstermacher, M; Groebner, R; Stangeby, P; Heidbrink, W; Jackson, G; Mahdavi, M; West, W

    2004-12-01

    The most important mechanisms for introducing carbon into the DIII-D divertors [Nucl. Fusion 42 (2002) 614] are physical and chemical sputtering. Previous investigations have indicated that operating conditions where one or the other of these is dominant can be distinguished by using CD and C{sub 2} emissions to infer C I influxes from dissociation of hydrocarbons and comparing to measured C I influxes. The present work extends these results through detailed analysis of the C I spectral line shapes. In general, it is found that the profiles are actually asymmetric and have shifted peaks. These features are interpreted as originating from a combination of an anisotropic velocity distribution from physical sputtering (the Thompson model) and an isotropic distribution from molecular dissociation. The present study utilizes pure helium plasmas to benchmark C I spectral profiles arising from physical sputtering alone.

  4. Experimental demonstration of an invisible cloak with irregular shape by using tensor transmission line metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Guo-Chang; Li, Chao; Fang, Guang-You

    2015-01-01

    We present the design and the experimental demonstration of an invisible cloak with irregular shape by using tensor transmission line (TL) metamaterials. The fabricated cloak consists of tensor TL unit cells exhibiting anisotropic effective material parameters, while the background medium consists of isotropic TL unit cells. The simulated and the measured field patterns around the cloak show a fairly good agreement, both demonstrate that the fabricated cloak can shield the cloaked interior area from electromagnetic fields without perturbing the external fields. The scattering of the cloaked perfect electric conductor (PEC) is minimized. Furthermore, the nonresonant property of the TL structure results in a relatively broad bandwidth of the realized cloak, which is clearly observed in our experiment. Project supported by the National Natural Science Foundation of China (Grant Nos.11174280, 60990323, and 60990320) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.YYYJ-1123).

  5. Stimulated echoes and two-dimensional nuclear magnetic resonance spectra for solids with simple line shapes

    NASA Astrophysics Data System (ADS)

    Geil, Burkhard; Diezemann, Gregor; Böhmer, Roland

    2008-03-01

    Nuclear magnetic resonance (NMR) experiments on ion conductors often yield rather unstructured spectra, which are hard to interpret if the relation between the actual translational motion of the mobile species and the changes of the NMR frequencies is not known. In order to facilitate a general analysis of experiments on solids with such spectra, different models for the stochastic evolution of the NMR frequencies are considered. The treated models involve random frequency jumps, diffusive evolutions, or approximately fixed frequency jumps. Two-dimensional nuclear magnetic resonance spectra as well as stimulated-echo functions for the study of slow and ultraslow translational dynamics are calculated for Gaussian equilibrium line shapes. The results are compared with corresponding ones from rotational models and with experimental data.

  6. Design and application of a fish-shaped lateral line probe for flow measurement

    NASA Astrophysics Data System (ADS)

    Tuhtan, J. A.; Fuentes-Pérez, J. F.; Strokina, N.; Toming, G.; Musall, M.; Noack, M.; Kämäräinen, J. K.; Kruusmaa, M.

    2016-04-01

    We introduce the lateral line probe (LLP) as a measurement device for natural flows. Hydraulic surveys in rivers and hydraulic structures are currently based on time-averaged velocity measurements using propellers or acoustic Doppler devices. The long-term goal is thus to develop a sensor system, which includes spatial gradients of the flow field along a fish-shaped sensor body. Interpreting the biological relevance of a collection of point velocity measurements is complicated by the fact that fish and other aquatic vertebrates experience the flow field through highly dynamic fluid-body interactions. To collect body-centric flow data, a bioinspired fish-shaped probe is equipped with a lateral line pressure sensing array, which can be applied both in the laboratory and in the field. Our objective is to introduce a new type of measurement device for body-centric data and compare its output to estimates of conventional point-based technologies. We first provide the calibration workflow for laboratory investigations. We then provide a review of two velocity estimation workflows, independent of calibration. Such workflows are required as existing field investigations consist of measurements in environments where calibration is not feasible. The mean difference for uncalibrated LLP velocity estimates from 0 to 50 cm/s under in a closed flow tunnel and open channel flume was within 4 cm/s when compared to conventional measurement techniques. Finally, spatial flow maps in a scale vertical slot fishway are compared for the LLP, direct measurements, and 3D numerical models where it was found that the LLP provided a slight overestimation of the current velocity in the jet and underestimated the velocity in the recirculation zone.

  7. Design and application of a fish-shaped lateral line probe for flow measurement.

    PubMed

    Tuhtan, J A; Fuentes-Pérez, J F; Strokina, N; Toming, G; Musall, M; Noack, M; Kämäräinen, J K; Kruusmaa, M

    2016-04-01

    We introduce the lateral line probe (LLP) as a measurement device for natural flows. Hydraulic surveys in rivers and hydraulic structures are currently based on time-averaged velocity measurements using propellers or acoustic Doppler devices. The long-term goal is thus to develop a sensor system, which includes spatial gradients of the flow field along a fish-shaped sensor body. Interpreting the biological relevance of a collection of point velocity measurements is complicated by the fact that fish and other aquatic vertebrates experience the flow field through highly dynamic fluid-body interactions. To collect body-centric flow data, a bioinspired fish-shaped probe is equipped with a lateral line pressure sensing array, which can be applied both in the laboratory and in the field. Our objective is to introduce a new type of measurement device for body-centric data and compare its output to estimates of conventional point-based technologies. We first provide the calibration workflow for laboratory investigations. We then provide a review of two velocity estimation workflows, independent of calibration. Such workflows are required as existing field investigations consist of measurements in environments where calibration is not feasible. The mean difference for uncalibrated LLP velocity estimates from 0 to 50 cm/s under in a closed flow tunnel and open channel flume was within 4 cm/s when compared to conventional measurement techniques. Finally, spatial flow maps in a scale vertical slot fishway are compared for the LLP, direct measurements, and 3D numerical models where it was found that the LLP provided a slight overestimation of the current velocity in the jet and underestimated the velocity in the recirculation zone.

  8. Design and application of a fish-shaped lateral line probe for flow measurement.

    PubMed

    Tuhtan, J A; Fuentes-Pérez, J F; Strokina, N; Toming, G; Musall, M; Noack, M; Kämäräinen, J K; Kruusmaa, M

    2016-04-01

    We introduce the lateral line probe (LLP) as a measurement device for natural flows. Hydraulic surveys in rivers and hydraulic structures are currently based on time-averaged velocity measurements using propellers or acoustic Doppler devices. The long-term goal is thus to develop a sensor system, which includes spatial gradients of the flow field along a fish-shaped sensor body. Interpreting the biological relevance of a collection of point velocity measurements is complicated by the fact that fish and other aquatic vertebrates experience the flow field through highly dynamic fluid-body interactions. To collect body-centric flow data, a bioinspired fish-shaped probe is equipped with a lateral line pressure sensing array, which can be applied both in the laboratory and in the field. Our objective is to introduce a new type of measurement device for body-centric data and compare its output to estimates of conventional point-based technologies. We first provide the calibration workflow for laboratory investigations. We then provide a review of two velocity estimation workflows, independent of calibration. Such workflows are required as existing field investigations consist of measurements in environments where calibration is not feasible. The mean difference for uncalibrated LLP velocity estimates from 0 to 50 cm/s under in a closed flow tunnel and open channel flume was within 4 cm/s when compared to conventional measurement techniques. Finally, spatial flow maps in a scale vertical slot fishway are compared for the LLP, direct measurements, and 3D numerical models where it was found that the LLP provided a slight overestimation of the current velocity in the jet and underestimated the velocity in the recirculation zone. PMID:27131710

  9. QED Theory of Radiation Emission and Absorption Lines for Atoms and Ions in a Strong Laser Field

    SciTech Connect

    Glushkov, A. V.

    2008-10-22

    The results of numerical calculating the multi-photon resonance shift and width for transition 6S-6F in the atom of Cs (wavelength 1059nm) in a laser pulse of the Gaussian and soliton-like shapes are presented. QED theory of radiation atomic lines is used.

  10. Invisible Active Galactic Nuclei. II. Radio Morphologies and Five New H i 21cm Absorption Line Detectors

    NASA Astrophysics Data System (ADS)

    Yan, Ting; Stocke, John T.; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2016-03-01

    This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5 and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by

  11. The Use of Ab Initio Wavefunctions in Line-Shape Calculations for Water Vapor

    NASA Astrophysics Data System (ADS)

    Gamache, Robert R.; Lamouroux, Julien; Schwenke, David W.

    2014-06-01

    In semi-classical line-shape calculations, the internal motions of the colliding pair are treated via quantum mechanics and the collision trajectory is determined by classical dynamics. The quantum mechanical component, i.e. the determination of reduced matrix elements (RME) for the colliding pair, requires the wavefunctions of the radiating and the perturbing molecules be known. Here the reduced matrix elements for collisions in the ground vibrational state of water vapor are calculated by two methods and compared. First, wavefunctions determined by diagonalizing an effective (Watson) Hamiltonian are used to calculate the RMEs and, second, the ab initio wavefunctions of Partridge and Schwenke are used. While the ground vibrational state will yield the best approximation of the wavefunctions from the effective Hamiltonian approach, this study clearly identifies problems for states not included in the fit of the Hamiltonian and for extrapolated states. RMEs determined using ab initio wavefunctions use ˜100000 times more computational time; however, all ro-vibrational interactions are included. Hence, the ab initio approach will yield better RMEs as the number of vibrational quanta exchanged in the optical transition increases, resulting in improvements in calculated half-widths and line shifts. It is important to note that even for pure rotational transitions the use of ab initio wavefunctions will yield improved results.

  12. Real-time trace gas sensor using a multimode diode laser and multiple-line integrated cavity enhanced absorption spectroscopy.

    PubMed

    Karpf, Andreas; Rao, Gottipaty N

    2015-07-01

    We describe and demonstrate a highly sensitive trace gas sensor based on a simplified design that is capable of measuring sub-ppb concentrations of NO2 in tens of milliseconds. The sensor makes use of a relatively inexpensive Fabry-Perot diode laser to conduct off-axis cavity enhanced spectroscopy. The broad frequency range of a multimode Fabry-Perot diode laser spans a large number of absorption lines, thereby removing the need for a single-frequency tunable laser source. The use of cavity enhanced absorption spectroscopy enhances the sensitivity of the sensor by providing a pathlength on the order of 1 km in a small volume. Off-axis alignment excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration. Multiple-line integrated absorption spectroscopy (where one integrates the absorption spectra over a large number of rovibronic transitions of the molecular species) further improves the sensitivity of detection. Relatively high laser power (∼400  mW) is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity. The approach was demonstrated using a 407 nm diode laser to detect trace quantities of NO2 in zero air. Sensitivities of 750 ppt, 110 ppt, and 65 ppt were achieved using integration times of 50 ms, 5 s, and 20 s respectively.

  13. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  14. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  15. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  16. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    PubMed

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-01

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  17. A study of the H2O absorption line shifts in the visible spectrum region due to air pressure

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Browell, E. V.; Bykov, A. D.; Kapitanov, V. A.; Korotchenko, E. A.

    1990-01-01

    Results of measured and calculated shift coefficients are presented for 170 absorption lines of H2O in five vibrational-rotational bands. The measurements have been carried out using highly sensitive laser spectrometers with a resolution of at least 0.01/cm; the calculations are based on the Anderson-Tsao-Curnutte-Frost method. Good agreement is obtained between the theoretical and experimental values of the shift coefficients of H2O lines due to N2, O2, and air pressure.

  18. Broad Balmer Absorption Line Variability: Evidence of Gas Transverse Motion in the QSO SDSS J125942.80+121312.6

    NASA Astrophysics Data System (ADS)

    Shi, Xiheng; Zhou, Hongyan; Shu, Xinwen; Zhang, Shaohua; Ji, Tuo; Pan, Xiang; Sun, Luming; Zhao, Wen; Hao, Lei

    2016-03-01

    We report on the discovery of broad Balmer absorption lines variability in the QSO SDSS J125942.80+121312.6, based on the optical and near-infrared spectra taken from the SDSS-I, SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), and TripleSpec observations over a timescale of 5.8 years in the QSO's rest-frame. The blueshifted absorption profile of Hβ shows a variation of more than 5σ at a high velocity portion (\\gt 3000 {km} {{{s}}}-1) of the trough. We perform a detailed analysis for the physical conditions of the absorber using Balmer lines as well as metastable He i and optical Fe ii absorptions (λ4233 from b4P5/2 level and λ5169 from a6S5/2) at the same velocity. These Fe ii lines are identified in the QSO spectra for the first time. According to the photoionization simulations, we estimate a gas density of n({{H}})≈ {10}9.1 {{cm}}-3 and a column density of {N}{col}({{H}})≈ {10}23 {{cm}}-2 for the BOSS data, but the model fails to predict the variations of ionic column densities between the SDSS and BOSS observations if changes in ionizing flux are assumed. We thus propose transverse motion of the absorbing gas being the cause of the observed broad Balmer absorption line variability. In fact, we find that the changes in covering factors of the absorber can well-reproduce all of the observed variations. The absorber is estimated ∼0.94 pc away from the central engine, which is where the outflow likely experiences deceleration due to the collision with the surrounding medium. This scheme is consistent with the argument that LoBAL QSOs may represent the transition from obscured star-forming galaxies to classic QSOs.

  19. Recovery of acetylene absorption line profile basing on tunable diode laser spectroscopy with intensity modulation and photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Li; Thursby, Graham; Stewart, George; Arsad, Norhana; Uttamchandani, Deepak; Culshaw, Brian; Wang, Yiding

    2010-04-01

    A novel and direct absorption line recovery technique based on tunable diode laser spectroscopy with intensity modulation is presented. Photoacoustic spectroscopy is applied for high sensitivity, zero background and efficient acoustic enhancement at a low modulation frequency. A micro-electromechanical systems (MEMS) mirror driven by an electrothermal actuator is used for generating laser intensity modulation (without wavelength modulation) through the external reflection. The MEMS mirror with 10μm thick structure material layer and 100nm thick gold coating is formed as a circular mirror of 2mm diameter attached to an electrothermal actuator and is fabricated on a chip that is wire-bonded and placed on a PCB holder. Low modulation frequency is adopted (since the resonant frequencies of the photoacoustic gas cell and the electrothermal actuator are different) and intrinsic high signal amplitude characteristics in low frequency region achieved from measured frequency responses for the MEMS mirror and the gas cell. Based on the property of photoacoustic spectroscopy and Beer's law that detectable sensitivity is a function of input laser intensity in the case of constant gas concentration and laser path length, a Keopsys erbium doped fibre amplifier (EDFA) with opto-communication C band and high output power up to 1W is chosen to increase the laser power. High modulation depth is achieved through adjusting the MEMS mirror's reflection position and driving voltage. In order to scan through the target gas absorption line, the temperature swept method is adopted for the tunable distributed feed-back (DFB) diode laser working at 1535nm that accesses the near-infrared vibration-rotation spectrum of acetylene. The profile of acetylene P17 absorption line at 1535.39nm is recovered ideally for ~100 parts-per-million (ppm) acetylene balanced by nitrogen. The experimental signal to noise ratio (SNR) of absorption line recovery for 500mW laser power was ~80 and hence the

  20. Hydrogen Balmer beta: The separation between line peaks for plasma electron density diagnostics and self-absorption test

    NASA Astrophysics Data System (ADS)

    Ivković, Milivoje; Konjević, Nikola; Pavlović, Zoran

    2015-03-01

    We propose a diagnostic technique for the measurement of plasma electron number density, Ne, based on the wavelength separation between peaks, ΔλPS, of hydrogen Balmer beta line, Hβ. In favor of the proposed diagnostic technique we demonstrate high sensitivity of ΔλPS on Ne and low sensitivity on plasma elementary processes and plasma parameters that may distort the line profile. These properties of ΔλPS enable reliable Ne plasma diagnostics in the presence of considerable self-absorption. On the basis of available theoretical data tables for the Hβ line profiles, simple Ne=f(ΔλPS) formulas are proposed. Their validity is experimentally confirmed in a low initial pressure pulsed discharge for the Ne range of (0.2-7)*1023 m-3. The agreement of the proposed formulas with another diagnostic technique is well within 10%. In addition, the difference in Ne values obtained from peak separation and from the Hβ line width is successfully used as a self-absorption test for line profile.

  1. Absorption lines from magnetically driven winds in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Chakravorty, S.; Petrucci, P.-O.; Ferreira, J.; Henri, G.; Belmont, R.; Clavel, M.; Corbel, S.; Rodriguez, J.; Coriat, M.; Drappeau, S.; Malzac, J.

    2016-05-01

    Context. High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines suggesting the presence of outflowing winds. Furthermore, observations show that the disk winds are equatorial and they occur in the Softer (disk dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. Aims: We want to test whether the self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter. This mass loading is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Thus, the physical properties of the outflow depend on and are controlled by the global structure of the disk. Methods: We studied different MHD solutions characterized by different values of the disk aspect ratio (ɛ) and the ejection efficiency (p). We also generate two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be either from dissipation of energy due to MHD turbulence in the disk or from illumination of the disk surface. Warm solutions can have large (>0.1) values of p, which would imply larger wind mass loading at the base of the outflow. We use each of these MHD solutions to predict the physical parameters (distance, density, velocity, magnetic field, etc.) of an outflow. Motivated by observational results, we have put limits on the ionization parameter (ξ), column density, and timescales. Further constraints were derived for the allowed values of ξ from thermodynamic instability considerations, particularly for the Hard SED. These physical constraints were imposed on each of these outflows to select regions within it, which are consistent with the observed winds. Results: The cold MHD solutions are found to be

  2. The hydration dependence of CaCO3 absorption lines in the Far IR

    NASA Astrophysics Data System (ADS)

    Powell, Johnny; Emery, Logan P

    2014-06-01

    The far infrared (FIR) absorption lines of CaCO3 have been measured at a range of relative humidities (RH) between 33 and 92% RH using a Bruker 66v/S spectrometer. Hydration measurements on CaCO3 have been made in the mid-infrared (MIR) by [Al-Hosney, H.A. and Grassian, V.H., 2005, Phys. Chem. Chem. Phys., 7, 1266], and astrophysically-motivated temperature-dependent FIR measurements of CaCO3 in vacuum have also been reported [Posch, T., et al., 2007, Ap. J., 668, 993]. The custom sample cell constructed for these hydrated-FIR spectra is required because the 66v/S bench is under vacuum (3 mbar) during typical measurements. Briefly, the sample cell consists of two Thalium Bromoiodide (KRS-5) windows, four O-rings, a plastic ring for separating the windows and providing a volume for the saturated atmosphere. CaCO3 was deposited on KRS-5 windows using doubly-distilled water as an intermediary. The KRS-5 window with sample and assembled sample cell were placed in a desiccator with the appropriated saturated salt solution [Washburn, E.W. (Ed.), International Critical Tables of Numerical Data, Physics Chemistry and Technology, Vol. 1, (McGraw-Hill, New York, 1926), p. 67-68] and allowed to hydrate for 23 hours. For spectroscopy the desiccator was quickly opened and the second KRS-5 window placed in the cell to seal the chamber. A spectrum was then taken of the sample at the appropriate RH. The spectra taken characterize the adsorption of water vapor and CaCO3 that might occur in circumstellar environments [Melnick, G.J., et al. 2001, Nature, 412, 160].The MIR and FIR reflectance spectra of calcite (CaCO3) have been thoroughly studied by [Hellwege, K.H., et al., 1970, Z. Physik, 232, 61]. Five Lorentzian curves were fit to our data in the range from 378-222 cm-1/SUP> and each was able to be assigned to a known mode of CaCO3. The data does not support the conclusion of a hydration effect on these modes of CaCO3, but it does suggest a possible broadening of three modes

  3. K-H2 line shapes for the spectra of cool brown dwarfs

    NASA Astrophysics Data System (ADS)

    Allard, N. F.; Spiegelman, F.; Kielkopf, J. F.

    2016-05-01

    Observations of cooler and cooler brown dwarfs show that the contribution from broadening at many bars pressure is becoming important. The opacity in the red optical to near-IR region under these conditions is dominated by the extremely pressure-broadened wings of the alkali resonance lines, in particular, the K I resonance doublet at 0.77 μm. Collisions with H2 are preponderant in brown dwarf atmospheres at an effective temperature of about 1000 K; the H2 perturber densities reach several 1019 even in Jupiter-mass planets and exceed 1020 for super-Jupiters and older Y dwarfs. As a consequence, it appears that when the far wing absorption due to alkali atoms in a dense H2 atmosphere is significant, accurate pressure broadened profiles that are valid at high densities of H2 should be incorporated into spectral models. The opacity tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A21

  4. NEW PERSPECTIVE ON GALAXY OUTFLOWS FROM THE FIRST DETECTION OF BOTH INTRINSIC AND TRAVERSE METAL-LINE ABSORPTION

    SciTech Connect

    Kacprzak, Glenn G.; Cooke, Jeff; Martin, Crystal L.; Ho, Stephanie H.; Bouché, Nicolas; LeReun, Audrey; Schroetter, Ilane; Churchill, Christopher W.; Klimek, Elizabeth

    2014-09-01

    We present the first observation of a galaxy (z = 0.2) that exhibits metal-line absorption back-illuminated by the galaxy (down-the-barrel) and transversely by a background quasar at a projected distance of 58 kpc. Both absorption systems, traced by Mg II, are blueshifted relative to the galaxy systemic velocity. The quasar sight line, which resides almost directly along the projected minor axis of the galaxy, probes Mg I and Mg II absorption obtained from the Keck/Low Resolution Imaging Spectrometer as well as Lyα, Si II, and Si III absorption obtained from the Hubble Space Telescope/Cosmic Origins Spectrograph. For the first time, we combine two independent models used to quantify the outflow properties for down-the-barrel and transverse absorption. We find that the modeled down-the-barrel deprojected outflow velocities range between V {sub dtb} = 45-255 km s{sup –1}. The transverse bi-conical outflow model, assuming constant-velocity flows perpendicular to the disk, requires wind velocities V {sub outflow} = 40-80 km s{sup –1} to reproduce the transverse Mg II absorption kinematics, which is consistent with the range of V {sub dtb}. The galaxy has a metallicity, derived from Hα and N II, of [O/H] = –0.21 ± 0.08, whereas the transverse absorption has [X/H] = –1.12 ± 0.02. The galaxy star formation rate is constrained between 4.6-15 M {sub ☉} yr{sup –1} while the estimated outflow rate ranges between 1.6-4.2 M {sub ☉} yr{sup –1} and yields a wind loading factor ranging between 0.1-0.9. The galaxy and gas metallicities, the galaxy-quasar sight-line geometry, and the down-the-barrel and transverse modeled outflow velocities collectively suggest that the transverse gas originates from ongoing outflowing material from the galaxy. The ∼1 dex decrease in metallicity from the base of the outflow to the outer halo suggests metal dilution of the gas by the time it reached 58 kpc.

  5. New Perspective on Galaxy Outflows from the First Detection of Both Intrinsic and Traverse Metal-line Absorption

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn G.; Martin, Crystal L.; Bouché, Nicolas; Churchill, Christopher W.; Cooke, Jeff; LeReun, Audrey; Schroetter, Ilane; Ho, Stephanie H.; Klimek, Elizabeth

    2014-09-01

    We present the first observation of a galaxy (z = 0.2) that exhibits metal-line absorption back-illuminated by the galaxy (down-the-barrel) and transversely by a background quasar at a projected distance of 58 kpc. Both absorption systems, traced by Mg II, are blueshifted relative to the galaxy systemic velocity. The quasar sight line, which resides almost directly along the projected minor axis of the galaxy, probes Mg I and Mg II absorption obtained from the Keck/Low Resolution Imaging Spectrometer as well as Lyα, Si II, and Si III absorption obtained from the Hubble Space Telescope/Cosmic Origins Spectrograph. For the first time, we combine two independent models used to quantify the outflow properties for down-the-barrel and transverse absorption. We find that the modeled down-the-barrel deprojected outflow velocities range between V dtb = 45-255 km s-1. The transverse bi-conical outflow model, assuming constant-velocity flows perpendicular to the disk, requires wind velocities V outflow = 40-80 km s-1 to reproduce the transverse Mg II absorption kinematics, which is consistent with the range of V dtb. The galaxy has a metallicity, derived from Hα and N II, of [O/H] = -0.21 ± 0.08, whereas the transverse absorption has [X/H] = -1.12 ± 0.02. The galaxy star formation rate is constrained between 4.6-15 M ⊙ yr-1 while the estimated outflow rate ranges between 1.6-4.2 M ⊙ yr-1 and yields a wind loading factor ranging between 0.1-0.9. The galaxy and gas metallicities, the galaxy-quasar sight-line geometry, and the down-the-barrel and transverse modeled outflow velocities collectively suggest that the transverse gas originates from ongoing outflowing material from the galaxy. The ~1 dex decrease in metallicity from the base of the outflow to the outer halo suggests metal dilution of the gas by the time it reached 58 kpc.

  6. Metal-line absorption around z ≈ 2.4 star-forming galaxies in the Keck Baryonic Structure Survey

    NASA Astrophysics Data System (ADS)

    Turner, Monica L.; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.; Strom, Allison L.

    2014-11-01

    We study metal absorption around 854 z ≈ 2.4 star-forming galaxies taken from the Keck Baryonic Structure Survey. The galaxies examined in this work lie in the fields of 15 hyperluminous background quasi-stellar objects, with galaxy impact parameters ranging from 35 proper kpc (pkpc) to 2 proper Mpc (pMpc). Using the pixel optical depth technique, we present the first galaxy-centred 2D maps of the median absorption by O VI, N V, C IV, C III, and Si IV, as well as updated results for H I. At small galactocentric radii we detect a strong enhancement of the absorption relative to randomly located regions that extend out to at least 180 pkpc in the transverse direction, and ±240 km s-1 along the line of sight (LOS, ˜1 pMpc in the case of pure Hubble flow) for all ions except N V. For C IV (and H I) we detect a significant enhancement of the absorption signal out to 2 pMpc in the transverse direction, corresponding to the maximum impact parameter in our sample. After normalizing the median absorption profiles to account for variations in line strengths and detection limits, in the transverse direction we find no evidence for a sharp drop-off in metals distinct from that of H I. We argue instead that non-detection of some metal-line species in the extended circumgalactic medium is consistent with differences in the detection sensitivity. Along the LOS, the normalized profiles reveal that the enhancement in the absorption is more extended for O VI, C IV, and Si IV than for H I. We also present measurements of the scatter in the pixel optical depths, covering fractions, and equivalent widths as a function of projected galaxy distance. Limiting the sample to the 340 galaxies with redshifts measured from nebular emission lines does not decrease the extent of the enhancement along the LOS compared to that in the transverse direction. This rules out redshift errors as the source of the observed redshift-space anisotropy and thus implies that we have detected the signature

  7. Determination of vibration-rotation lines intensities from absorption Fourier spectra

    NASA Technical Reports Server (NTRS)

    Mandin, J. Y.

    1979-01-01

    The method presented allows the line intensities to be calculated from either their equivalent widths, heights, or quantities deduced from spectra obtained by Fourier spectrometry. This method has proven its effectiveness in measuring intensities of 60 lines of the molecule H2O with a precision of 10%. However, this method cannot be applied to isolated lines.

  8. Line shape and ray trace calculations in saturated X-ray lasers: Application to Ni-like silver

    NASA Astrophysics Data System (ADS)

    Benredjem, D.; Guilbaud, O.; Möller, C.; Klisnick, A.; Ros, D.; Dubau, J.; Calisti, A.; Talin, B.

    2006-05-01

    Longitudinal coherence length in X-ray lasers depends strongly on the shape of the amplified line. We have modelled an experiment performed at the LULI facility of Ecole Polytechnique. The experiment was devoted to the study of the temporal (longitudinal) coherence of the transient Ni-like silver 4d 4p transition X-ray laser at 13.9 nm. Accurate line shape calculations using PPP, a spectral line shape code, confirm that the Voigt profile is a good approximation for this X-ray laser line. This allows us to extensively use the Voigt shape in conditions where the amplifier, i.e. the plasma produced by the interaction of a high intensity laser with a slab target, is neither stationary nor homogeneous. Our calculations involve a ray trace code which is a post-processor to the hydrodynamic simulation EHYBRID. As the effect of saturation is important for the level populations and gains we include the interaction between the amplified beam and the medium using the Maxwell-Bloch formalism. While the FWHM of the spontaneous emission profile is ˜10 mÅ, the amplified X-ray line exhibits gain narrowing leading to the smaller width ˜3 mÅ. Comparison with experiment is discussed.

  9. 1E 0104.2 + 3153 - A broad absorption-line QSO viewed through a giant elliptical galaxy

    NASA Technical Reports Server (NTRS)

    Stocke, J. T.; Liebert, J.; Schild, R.; Gioia, I. M.; Maccacaro, T.

    1984-01-01

    The optical identification of the X-ray source 1E 0104.2 + 3153 is complicated by the close projection of a broad absorption-line (BAL) QSO (z = 2.027) 10 arcsec from a giant elliptical galaxy (z = 0.111) at the center of a compact group of galaxies. At only 1.2 de Vaucouleur radii (16 kpc for H sub 0 = 100 km/s Mpc) this QSO-galaxy projection is the closest yet discovered. Based upon current observations, the source of the X-ray emission cannot be conclusively determined. Present in the BAL QSO spectrum are extremely strong Ca II H and K absorption lines due to the intervening galaxy, the first optical detection of the cold interstellar medium in an elliptical galaxy. The strength of these lines (EW = 2 and 1 A) requires observation through several interstellar clouds in the line of sight to the QSO. By its proximity to the central regions of the elliptical galaxy and the relative distances of the galaxy and QSO, this QSO is a particularly good candidate for observing dramatic transient gravitational lensing phenomena due to halo stars in the foreground galaxy.

  10. X-ray absorption lines suggest matter infalling onto the central black-hole of Mrk 509

    NASA Astrophysics Data System (ADS)

    Dadina, M.; Cappi, M.; Malaguti, G.; Ponti, G.; de Rosa, A.

    2005-11-01

    Evidence for both red- and blue-shifted absorption lines due to ionized Fe in the X-ray spectrum of the Seyfert 1 galaxy Mrk 509 is reported. These features appear to be transient on time-scales as short as ~20 ks, and have been observed with two different satellites, BeppoSAX and XMM-Newton. The red- and blue-shifted lines are found at E˜5.5 keV and ~8.1-8.3 keV (rest-frame), respectively. The first is seen in one out of six BeppoSAX observations, the latter is seen by both satellites. Under the assumption that the absorption is due to either H- or He-like Iron, the implied velocities for the absorbing matter are v˜0.15-0.2 c, in both outward and inward directions. An alternative explanation in terms of gravitational red-shift for the ~5.5 keV line cannot be ruled out with the current data. We argue, however, that the temporal patterns and sporadic nature of the lines are more easily reconciled with models that predict important radial motions close to the central black hole, such as the "aborted jet" model, the "thundercloud" model, or magneto-hydrodynamical models of jets and accretion-disks.

  11. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA) (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Brown, Lisa V.; Zhao, Ke; Zheng, Bob Y.; Nordlander, Peter; Halas, Naomi J.

    2015-08-01

    Surface-enhanced infrared absorption (SEIRA) has been gaining substantial attention by using plasmonic nanoantennas to amplify near-field intensities so that it can extend IR spectroscopy to zeptomolar quantities and ultimately to the sigle-molecule level. Here we report a new nanoantenna for SEIRA detection, consisting of a fan-shaped Au structure positioned at a well-specified distance above a reflective plane with an intervening silica spacer layer. This antenna can be easily tuned to overlap vibrational modes within a broad spectral range from the near-IR into terahertz regimes. Our finite difference time domain (FDTD) simulations reveal a maximum SEIRA enhancement factor of 105 in the antenna junction area, which is corresponding to the experimental detection of 20-200 zeptomoles of octadecanethiol, using a standard commercial FTIR spectrometer. Our optimized antenna exhibits an order of magnitude greater SEIRA sensitivity than previous record-setting designs, which opens new opportunities for using infrared spectroscopy to analyze exceptionally small quantities of molecules.

  12. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    NASA Astrophysics Data System (ADS)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  13. Beyond Zeeman spectroscopy: Magnetic-field diagnostics with Stark-dominated line shapes

    SciTech Connect

    Tessarin, S.; Mikitchuk, D.; Doron, R.; Stambulchik, E.; Kroupp, E.; Maron, Y.; Hammer, D. A.; Jacobs, V. L.; Seely, J. F.; Oliver, B. V.; Fisher, A.

    2011-09-15

    A recently suggested spectroscopic approach for magnetic-field determination in plasma is employed to measure magnetic fields in an expanding laser-produced plasma plume in an externally applied magnetic field. The approach enables the field determination in a diagnostically difficult regime for which the Zeeman-split patterns are not resolvable, as is often encountered under the conditions characteristic of high-energy-density plasmas. Here, such conditions occur in the high-density plasma near the laser target, due to the dominance of Stark broadening. A pulsed-power system is used to generate magnetic fields with a peak magnitude of 25 T at the inner-electrode surface in a coaxial configuration. An aluminum target attached to the inner electrode surface is then irradiated by a laser beam to produce the expanding plasma that interacts with the applied azimuthal magnetic field. A line-shape analysis of the Al III 4s-4p doublet (5696 and 5722 A) enables the simultaneous determination of the magnetic field and the electron density. The measured magnetic fields are generally found to agree with those expected in a vacuum based on the pulsed-power system current. Examples of other transitions that can be used to diagnose a wide range of plasma and magnetic field parameters are presented.

  14. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  15. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.

    2016-01-01

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.

  16. Improved constraints on possible variation of physical constants from H i 21-cm and molecular QSO absorption lines

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Webb, J. K.; Flambaum, V. V.; Drinkwater, M. J.; Combes, F.; Wiklind, T.

    2001-11-01

    Quasar (QSO) absorption spectra provide an extremely useful probe of possible cosmological variation in various physical constants. Comparison of Hi 21-cm absorption with corresponding molecular (rotational) absorption spectra allows us to constrain variation in [formmu2]y≡α2gp, where α is the fine-structure constant and gp is the proton g-factor. We analyse spectra of two QSOs, PKS 1413+135 and TXS 0218+357, and derive values of [formmu3]Δy/y at absorption redshifts of [formmu4]z=0.2467 and 0.6847 by simultaneous fitting of the Hi 21-cm and molecular lines. We find [formmu5]Δy/y=(-0.20+/-0.44)×10-5 and [formmu6]Δy/y=(-0.16+/-0.54)×10-5 respectively, indicating an insignificantly smaller y in the past. We compare our results with other constraints from the same two QSOs given recently by Drinkwater et al. and Carilli et al., and with our recent optical constraints, which indicated a smaller α at higher redshifts.

  17. Origins of optical absorption and emission lines in AlN

    SciTech Connect

    Yan, Qimin; Janotti, Anderson; Van de Walle, Chris G.; Scheffler, Matthias

    2014-09-15

    To aid the development of AlN-based optoelectronics, it is essential to identify the defects that cause unwanted light absorption and to minimize their impact. Using hybrid functional calculations, we investigate the role of native defects and their complexes with oxygen, a common impurity in AlN. We find that Al vacancies are the source of the absorption peak at 3.4 eV observed in irradiated samples and of the luminescence signals at 2.78 eV. The absorption peak at ∼4.0 eV and higher, and luminescence signals around 3.2 and 3.6 eV observed in AlN samples with high oxygen concentrations are attributed to complexes of Al vacancies and oxygen impurities. We also propose a transition involving Al and N vacancies and oxygen impurities that may be a cause of the absorption band peaked at 2.9 eV.

  18. An Extreme, Blueshifted Iron-Line Profile in the Narrow-Line Seyfert 1 PG 1402+261: An Edge-on Accretion Disk or Highly Ionized Absorption?

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Porquet, D.; Turner, T. J.

    2004-11-01

    We report on a short XMM-Newton observation of the radio-quiet narrow-line Seyfert 1 galaxy PG 1402+261. The EPIC X-ray spectrum of PG 1402+261 shows a strong excess of counts between 6 and 9 keV in the rest frame. This feature can be modeled by an unusually strong (equivalent width 2 keV) and very broad (FWHM velocity of 110,000 km s-1) iron K-shell emission line. The line centroid energy at 7.3 keV appears blueshifted with respect to the iron Kα emission band between 6.4 and 6.97 keV, while the blue wing of the line extends to 9 keV in the quasar rest frame. The line profile can be fitted by reflection from the inner accretion disk, but an inclination angle of >60° is required to model the extreme blue wing of the line. Furthermore, the extreme strength of the line requires a geometry whereby the hard X-ray emission from PG 1402+261 above 2 keV is dominated by the pure-reflection component from the disk, while little or none of the direct hard power law is observed. Alternatively, the spectrum above 2 keV may be explained by an ionized absorber, if the column density is sufficiently high (NH>3×1023 cm-2) and if the matter is ionized enough to produce a deep (τ~1) iron K-shell absorption edge at 9 keV. This absorber could originate in a large column density, high-velocity outflow, perhaps similar to those that appear to be observed in several other high accretion rate active galactic nuclei. Further observations, especially at higher spectral resolution, are required to distinguish between the accretion disk reflection and outflow scenarios.

  19. Evolution of linear absorption and nonlinear optical properties in V-shaped ruthenium(II)-based chromophores.

    PubMed

    Coe, Benjamin J; Foxon, Simon P; Harper, Elizabeth C; Helliwell, Madeleine; Raftery, James; Swanson, Catherine A; Brunschwig, Bruce S; Clays, Koen; Franz, Edith; Garín, Javier; Orduna, Jesús; Horton, Peter N; Hursthouse, Michael B

    2010-02-10

    In this article, we describe a series of complexes with electron-rich cis-{Ru(II)(NH(3))(4)}(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845-4859). They have been isolated as their PF(6)(-) salts and characterized by using various techniques including (1)H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru(III/II) waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities beta have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi* metal-to-ligand charge-transfer (MLCT) and pi --> pi* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant beta(0) responses as high as ca. 600 x 10(-30) esu. These pseudo-C(2v) chromophores show two substantial components of the beta tensor, beta(zzz) and beta(zyy), although the relative significance of these varies with the physical method applied. According to HRS, beta(zzz) dominates in all cases, whereas the Stark analyses indicate that beta(zyy) is dominant in the shorter chromophores, but beta(zzz) and beta(zyy) are similar for the extended species. In contrast, finite field calculations predict that beta(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand pi-systems are extended. Such unusual

  20. Further constraints on variation of the fine-structure constant from alkali-doublet QSO absorption lines

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Webb, J. K.; Flambaum, V. V.; Prochaska, J. X.; Wolfe, A. M.

    2001-11-01

    Comparison of quasar (QSO) absorption-line spectra with laboratory spectra provides a precise probe for variability of the fine-structure constant, α, over cosmological time-scales. We constrain variation in α in 21 Keck/HIRES Siiv absorption systems using the alkali-doublet (AD) method in which changes in α are related to changes in the doublet spacing. The precision obtained with the AD method has been increased by a factor of 3: Δα/α=(-0.5+/-1.3)×10-5. We also analyse potential systematic errors in this result. Finally, we compare the AD method with the many-multiplet method, which has achieved an order of magnitude greater precision, and we discuss the future of the AD method.

  1. Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Webb, J. K.; Flambaum, V. V.; Dzuba, V. A.; Churchill, C. W.; Prochaska, J. X.; Barrow, J. D.; Wolfe, A. M.

    2001-11-01

    An experimental search for variation in the fundamental coupling constants is strongly motivated by modern high-energy physics theories. Comparison of quasar (QSO) absorption-line spectra with laboratory spectra provides a sensitive probe for variability of the fine-structure constant, α, over cosmological time-scales. We have previously developed and applied a new method providing an order-of-magnitude gain in precision over previous optical astrophysical constraints. Here we extend that work by including new quasar spectra of damped Lyman-α absorption systems. We also reanalyse our previous lower-redshift data and confirm our initial results. The constraints on α come from simultaneous fitting of absorption lines of subsets of the following species: Mgi, Mgii, Alii, Aliii, Siii, Crii, Feii, Niii and Znii. We present a detailed description of our methods and results based on an analysis of 49 quasar absorption systems (towards 28 QSOs) covering the redshift range [formmu2]0.5

  2. Electron spin resonance of interacting spins in n-Ge: II. Change in the width and shape of lines

    SciTech Connect

    Veinger, A. I.; Zabrodskii, A. G.; Tisnek, T. V. Goloshchapov, S. I.

    2008-11-15

    The effect of spin interaction on the width and shape of the electron spin resonance line in compensated and uncompensated n-Ge:As has been studied. It is shown that, in the case of a magnetic field oriented along the [100] axis, the width of the resonance line decreases irrespective of the degree of compensation as the critical concentration of the insulator-metal transition is approached, owing to enhancement of the exchange interaction of spins and to an increase in the spin relaxation time. When the magnetic field is directed along other axes, an additional line broadening appears in compensated samples. This broadening is determined by the influence exerted on the g factor by fluctuations of the internal electrostatic field via the stresses generated by these fluctuations. For well-conducting samples, in which the thickness of the skin layer becomes smaller than that of the sample, the line takes on an asymmetric (Dysonian) shape. In this case, the ratio between the wings of the derivative, characteristic of this line shape, is determined by the ratio between the rates of spin diffusion and spin relaxation.

  3. Detection of High Velocity Absorption Components in the He I Lines of Eta Carinae near the Time of Periastron

    NASA Technical Reports Server (NTRS)

    Richardson, Noel D.; St-Jean, Lucas; Gull, Theodore R.; Madura, Thomas; Hillier, D. John; Teodoro, Mairan; Moffat, Anthony; Corcoran, Michael; Damineli, Augusto

    2014-01-01

    We have obtained a total of 58 high spectral resolution (R90,000) spectra of the massive binary star eta Carinae since 2012 in an effort to continue our orbital and long-term echelle monitoring of this extreme binary (Richardson et al. 2010, AJ, 139, 1534) with the CHIRON spectrograph on the CTIO 1.5 m telescope (Tokovinin et al. 2013, PASP, 125, 1336) in the 45507500A region. We have increased our monitoring efforts and observation frequency as the periastron event of 2014 has approached. We note that there were multiple epochs this year where we observe unusual absorption components in the P Cygni troughs of the He I triplet lines. In particular, we note high velocity absorption components related to the following epochs for the following lines: He I 4713: HJD 2456754- 2456795 (velocity -450 to -560 kms) He I 5876: HJD 2456791- 2456819 (velocity -690 to -800 kms) He I 7065: HJD 2456791- 2456810 (velocity -665 to -730 kms) Figures: Note that red indicates a high-velocity component noted above. He I 4713: http:www.astro.umontreal.carichardson4713.png He I 5876: http:www.astro.umontreal.carichardson5876.png He I 7065: http:www.astro.umontreal.carichardson7065.png These absorptions are likely related to the wind-wind collision region and bow shock, as suggested by the high-velocity absorption observed by Groh et al. (2010, AA, 519, 9) in the He I 10830 Atransition. In these cases, we suspect that we look along an arm of the shock cone and that we will see a fast absorption change from the other collision region shortly after periastron. We suspect that this is related to the multiple-components of the He II 4686 line that was noted by Walter (ATel6334), and is confirmed in our data. Further, high spectral resolution data are highly encouraged,especially for resolving powers greater than 50,000.These observations were obtained with the CTIO 1.5 m telescope, operated by the SMARTS Consortium, and were obtained through both SMARTS and NOAO programs 2012A-0216,2012B-0194

  4. IOS and ECS line coupling calculation for the CO-He system - Influence on the vibration-rotation band shapes

    NASA Astrophysics Data System (ADS)

    Boissoles, J.; Boulet, C.; Robert, D.; Green, S.

    1987-09-01

    Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1-0 CO-He vibration-rotation band shape is then computed for the case of weakly overlapping lines in the 292-78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of Lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO-He system, based on either the strong collision model or exponential energy gap law, is also discussed.

  5. IOS and ECS line coupling calculation for the CO-He system: Influence on the vibration-rotation band shapes

    NASA Astrophysics Data System (ADS)

    Boissoles, J.; Boulet, C.; Robert, D.; Green, S.

    1987-09-01

    Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1-0 CO-He vibration-rotation band shape is then computed for the case of weakly overlapping lines in the 292-78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO-He system, based on either the strong collision model or exponential energy gap law, is also discussed.

  6. IOS and ECS line coupling calculation for the CO-He system - Influence on the vibration-rotation band shapes

    NASA Technical Reports Server (NTRS)

    Boissoles, J.; Boulet, C.; Robert, D.; Green, S.

    1987-01-01

    Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1-0 CO-He vibration-rotation band shape is then computed for the case of weakly overlapping lines in the 292-78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of Lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO-He system, based on either the strong collision model or exponential energy gap law, is also discussed.

  7. Digital signal processor-based high-precision on-line Voigt lineshape fitting for direct absorption spectroscopy.

    PubMed

    Xu, Lijun; Liu, Chang; Zheng, Deyan; Cao, Zhang; Cai, Weiwei

    2014-12-01

    To realize on-line high-accuracy measurement in direct absorption spectroscopy (DAS), a system-on-chip, high-precision digital signal processor-based on-line Voigt lineshape fitting implementation is introduced in this paper. Given that the Voigt lineshape is determined by the Gauss full width at half maximum (FWHM) and Lorentz FWHM, a look-up table, which covers a range of combinations of both, is first built to achieve rapid and accurate calculation of Voigt lineshape. With the look-up table and raw absorbance data in hand, Gauss-Newton nonlinear fitting module is implemented to obtain the parameters including both the Gauss and Lorentz FWHMs, which can be used to calculate the integrated absorbance. To realize the proposed method in hardware, a digital signal processor (DSP) is adopted to fit the Voigt lineshape in a real-time DAS measurement system. In experiment, temperature and H2O concentration of a flat flame are recovered from the transitions of 7444.36 cm(-1) and 7185.6 cm(-1) by the DSP-based on-line Voigt lineshape fitting and on-line integral of the raw absorbance, respectively. The results show that the proposed method can not only fit the Voigt lineshape on-line but also improve the measurement accuracy compared with those obtained from the direct integral of the raw absorbance. PMID:25554273

  8. Digital signal processor-based high-precision on-line Voigt lineshape fitting for direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Liu, Chang; Zheng, Deyan; Cao, Zhang; Cai, Weiwei

    2014-12-01

    To realize on-line high-accuracy measurement in direct absorption spectroscopy (DAS), a system-on-chip, high-precision digital signal processor-based on-line Voigt lineshape fitting implementation is introduced in this paper. Given that the Voigt lineshape is determined by the Gauss full width at half maximum (FWHM) and Lorentz FWHM, a look-up table, which covers a range of combinations of both, is first built to achieve rapid and accurate calculation of Voigt lineshape. With the look-up table and raw absorbance data in hand, Gauss-Newton nonlinear fitting module is implemented to obtain the parameters including both the Gauss and Lorentz FWHMs, which can be used to calculate the integrated absorbance. To realize the proposed method in hardware, a digital signal processor (DSP) is adopted to fit the Voigt lineshape in a real-time DAS measurement system. In experiment, temperature and H2O concentration of a flat flame are recovered from the transitions of 7444.36 cm-1 and 7185.6 cm-1 by the DSP-based on-line Voigt lineshape fitting and on-line integral of the raw absorbance, respectively. The results show that the proposed method can not only fit the Voigt lineshape on-line but also improve the measurement accuracy compared with those obtained from the direct integral of the raw absorbance.

  9. Time resolved metal line profile by near-ultraviolet tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vitelaru, C.; de Poucques, L.; Minea, T. M.; Popa, G.

    2011-03-01

    Pulsed systems are extensively used to produce active species such as atoms, radicals, excited states, etc. The tunable diode laser absorption spectroscopy (TD-LAS) is successfully used to quantify the density of absorbing species, but especially for stationary or slow changing systems. The time resolved-direct absorption profile (TR-DAP) measurement method by TD-LAS, with time resolution of μs is proposed here as an extension of the regular use of diode laser absorption spectroscopy. The spectral narrowness of laser diodes, especially in the blue range (˜0.01 pm), combined with the nanosecond fast trigger of the magnetron pulsed plasma and long trace recording on the oscilloscope (period of second scale) permit the detection of the sputtered titanium metal evolution in the afterglow (˜ms). TR-DAP method can follow the time-dependence of the temperature (Doppler profile) and the density (deduced from the absorbance) of any medium and heavy species in a pulsed system.

  10. Identifying the structure of near-threshold states from the line shape

    NASA Astrophysics Data System (ADS)

    Chen, Guo-Ying; Huo, Wen-Sheng; Zhao, Qiang

    2015-09-01

    We revisit the compositeness theorem proposed by Weinberg in an effective field theory (EFT) and explore criteria which are sensitive to the structure of S-wave threshold states. On a general basis, we show that the wave function renormalization constant Z, which is the probability of finding an elementary component in the wave function of a threshold state, can be explicitly introduced in the description of the threshold state. As an application of this EFT method, we describe the near-threshold line shape of the D*0D̅0 invariant mass spectrum in B→D*0D̅0K and determine a nonvanishing value of Z. It suggests that the X(3872) as a candidate of the D*0D̅0 molecule may still contain a small cc¯ core. This elementary component, on the one hand, explains its production in the B meson decay via a short-distance mechanism, and on the other hand, is correlated with the D*0D̅0 threshold enhancement observed in the D*0D̅0 invariant mass distributions. Meanwhile, we also show that if Z is non-zero, the near-threshold enhancement of the D*0D̅0 mass spectrum in the B decay will be driven by the short-distance production mechanism. Supported by National Natural Science Foundation of China (11147022, 11035006, 11305137), Chinese Academy of Sciences (KJCX2-EW-N01), Ministry of Science and Technology of China (2009CB825200), DFG and NSFC (11261130311) through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD”, and Doctor Foundation of Xinjiang University (BS110104)

  11. Flocculation of deformable emulsion droplets. 1: Droplet shape and line tension effects

    SciTech Connect

    Denkov, N.D.; Petsev, D.N.; Danov, K.D.

    1995-12-01

    A simple theoretical model which allows the study of the configuration and the interaction energy of a doublet of flocculated Brownian droplets was recently proposed (Denkov et al., Phys, Rev. Lett. 71, 3226 (1993)). In this model the equilibrium film radius and thickness are determined by minimizing the total pair interaction energy which is presented as a sum of explicit expressions for the different contributions (van der Waals, electrostatic, steric, depletion, surface extension, etc.). In the present study this simplified model is numerically verified by comparison with the results stemming from the real shape of the interacting droplets. In order to determine the real configuration of two drops in contact the authors solve numerically the augmented Laplace equation of capillarity which accounts for the interaction between the droplets. Then the total interaction energy is alteratively calculated by integrating the energy density along the surfaces of the droplets. The numerical comparison shows that the equilibrium film radius and thickness, as well as the interaction energy calculated by means of the simplified model, are in very good agreement with the results from the more detailed (but more complex) approach. Numerical calculations of the equilibrium line tensions acting at the film periphery, a function of the droplet radius, are performed. The obtained results are relevant also to flocs containing more than two particles since the theory predicts pairwise additivity of the interaction energy in most cases. The results can be useful in gaining a deeper understanding of the processes of stabilization of flocculation in emulsions. Emulsions of great importance in many areas of human activity such as oil recovery.

  12. Time-variability of the fine-structure constant expected from the Oklo constraint and the QSO absorption lines

    NASA Astrophysics Data System (ADS)

    Fujii, Yasunori

    2003-10-01

    The data from the QSO absorption lines indicating a nonzero time-variability of the fine-structure constant has been re-analyzed on the basis of a ``damped-oscillator'' fit, as motivated by the same type of behavior of a scalar field, dilaton, which mimics a cosmological constant to understand the accelerating universe. We find nearly as good fit to the latest data as the simple weighted mean. In this way, we offer a way to fit the more stringent result from the Oklo phenomenon, as well.

  13. A theoretical analysis of the X-ray cyclotron absorption lines of the isolated neutron star 1E1207.4-5209

    NASA Astrophysics Data System (ADS)

    Yuan, Ai-fang; Liu, Dang-bo; Chen, Lei; Ding, Li; You, Jun-hang

    2006-07-01

    As revealed by recent observations, in the X-ray continuum of the radio quiet isolated neutron star 1E1207.4-5209 there exist several equidistant absorption lines, and their energies are, respectively, 0.7, 1.4 and 2.1 keV. According to the theory of quantum cyclotron radiation under the quadrupolar approximation developed in recent years, we have clarified some existing doubts and affirmed that these lines are electron cyclotron absorption lines instead of proton cyclotron lines. Besides, the spatial orientation of the spin axis of this neutron star has been theoretically determined.

  14. HIGHLY IONIZED Fe-K ABSORPTION LINE FROM CYGNUS X-1 IN THE HIGH/SOFT STATE OBSERVED WITH SUZAKU

    SciTech Connect

    Yamada, S.; Yoshikawa, A.; Makishima, K.; Torii, S.; Noda, H.; Mineshige, S.; Ueda, Y.; Kubota, A.; Gandhi, P.; Done, C.

    2013-04-20

    We present observations of a transient He-like Fe K{alpha} absorption line in Suzaku observations of the black hole binary Cygnus X-1 on 2011 October 5 near superior conjunction during the high/soft state, which enable us to map the full evolution from the start to the end of the episodic accretion phenomena or dips for the first time. We model the X-ray spectra during the event and trace their evolution. The absorption line is rather weak in the first half of the observation, but instantly deepens for {approx}10 ks, and weakens thereafter. The overall change in equivalent width is a factor of {approx}3, peaking at an orbital phase of {approx}0.08. This is evidence that the companion stellar wind feeding the black hole is clumpy. By analyzing the line with a Voigt profile, it is found to be consistent with a slightly redshifted Fe XXV transition, or possibly a mixture of several species less ionized than Fe XXV. The data may be explained by a clump located at a distance of {approx}10{sup 10-12} cm with a density of {approx}10{sup (-13)-(-11)} g cm{sup -3}, which accretes onto and/or transits the line of sight to the black hole, causing an instant decrease in the observed degree of ionization and/or an increase in density of the accreting matter. Continued monitoring for individual events with future X-ray calorimeter missions such as ASTRO-H and AXSIO will allow us to map out the accretion environment in detail and how it changes between the various accretion states.

  15. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    SciTech Connect

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Hickox, R.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fabian, A. C.; Farrah, D.; Fiore, F.; Hailey, C. J.; Matt, G.; Ogle, P.; and others

    2013-08-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  16. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    NASA Technical Reports Server (NTRS)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; Fabian, A. C.; Farrah, D.; Fiore, F.; Fuerst, F.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R.; Madsen, K. K.; Matt, G.; Ogle, P.; Risaliti, G.; Saez, C.; Teng, S. H.; Walton, D. J.; Zhang, W. W.

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  17. An accelerated line-by-line option for MODTRAN combining on-the-fly generation of line center absorption within 0.1 cm-1 bins and pre-computed line tails

    NASA Astrophysics Data System (ADS)

    Berk, Alexander; Conforti, Patrick; Hawes, Fred

    2015-05-01

    A Line-By-Line (LBL) option is being developed for MODTRAN6. The motivation for this development is two-fold. Firstly, when MODTRAN is validated against an independent LBL model, it is difficult to isolate the source of discrepancies. One must verify consistency between pressure, temperature and density profiles, between column density calculations, between continuum and particulate data, between spectral convolution methods, and more. Introducing a LBL option directly within MODTRAN will insure common elements for all calculations other than those used to compute molecular transmittances. The second motivation for the LBL upgrade is that it will enable users to compute high spectral resolution transmittances and radiances for the full range of current MODTRAN applications. In particular, introducing the LBL feature into MODTRAN will enable first-principle calculations of scattered radiances, an option that is often not readily available with LBL models. MODTRAN will compute LBL transmittances within one 0.1 cm-1 spectral bin at a time, marching through the full requested band pass. The LBL algorithm will use the highly accurate, pressure- and temperature-dependent MODTRAN Padé approximant fits of the contribution from line tails to define the absorption from all molecular transitions centered more than 0.05 cm-1 from each 0.1 cm-1 spectral bin. The beauty of this approach is that the on-the-fly computations for each 0.1 cm-1 bin will only require explicit LBL summing of transitions centered within a 0.2 cm-1 spectral region. That is, the contribution from the more distant lines will be pre-computed via the Padé approximants. The status of the LBL effort will be presented. This will include initial thermal and solar radiance calculations, validation calculations, and self-validations of the MODTRAN band model against its own LBL calculations.

  18. Effect of photoions on the line shape of the Foerster resonance lines and microwave transitions in cold rubidium Rydberg atoms

    SciTech Connect

    Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Yakshina, E. A.; Ryabtsev, I. I.; Dyubko, S. F.; Alekseev, E. A.; Pogrebnyak, N. L.; Bezuglov, N. N.; Arimondo, E.

    2012-01-15

    Experiments are carried out on the spectroscopy of the Foerster resonance lines Rb(37P) + Rb(37P) {yields} Rb(37S) + Rb(38S) and microwave transitions nP {yields} n Prime S, n Prime D between Rydberg states of cold rubidium atoms in a magneto-optical trap (MOT). Under ordinary conditions, all spectra exhibit a linewidth of 2-3 MHz irrespective of the interaction time between atoms or between atoms and microwave radiation, although the limit resonance width should be determined by the inverse interaction time. The analysis of experimental conditions has shown that the main source of line broadening is the inhomogeneous electric field of cold photoions that are generated under the excitation of initial nP Rydberg states by broadband pulsed laser radiation. The application of an additional electric-field pulse that rapidly extracts photoions produced by a laser pulse leads to a considerable narrowing of lines of microwave resonances and the Foerster resonance. Various sources of line broadening in cold Rydberg atoms are analyzed.

  19. Interstellar absorption along the line of sight to Sigma Scorpii using Copernicus observations

    NASA Technical Reports Server (NTRS)

    Allen, M. M.; Snow, T. P.; Jenkins, E. B.

    1990-01-01

    From Copernicus observations of Sigma Sco, 57 individual lines of 11 elements plus the molecular species H2 and CO were identified. By using a profile-fitting technique, rather than curves of growth, it was possible to obtain column densities and Doppler b values for up to four separate components along this line of sight. Electron density in the major H I component was derived from the photoionization equilibrium of sulfur, obtaining, n(e) of about 0.3/cu cm. The neutral hydrogen density in the same component was also derived using fine-structure excitation of O I. An H II component is also present in which the electron density was n(e) about 20/cu cm. As a by-product of this analysis, previously undetermined oscillator strengths for two Mn II lines were obtained: for 1162.-017 A, f about 0.023 and for 1164.211 A, f about 0.0086.

  20. A Two-Line Absorption Instrument for Scramjet Temperature and Water Vapor Concentration Measurement in HYPULSE

    NASA Technical Reports Server (NTRS)

    Tsai, C. Y.

    1998-01-01

    A three beam water vapor sensor system has been modified to provide for near simultaneous temperature measurement. The system employs a tunable diode laser to scan spectral line of water vapor. The application to measurements in a scramjet combustor environment of a shock tunnel facility is discussed. This report presents and discusses die initial calibration of the measurement system.

  1. Absorption by ground-state lead atoms of the 283. 3-nm resonant line from a lead hollow cathode lamp. An absolute number density calibration

    SciTech Connect

    Simons, J.W. ); Oldenborg, R.C.; Baughcum, S.L. )

    1989-10-19

    An accurate absolute number density calibration curve for absorption by gaseous lead atoms of the 283.3-nm resonant line from a typical lead hollow cathode lamp is reported. This calibration shows the usual curvature in the Beer-Lambert plot for atomic absorption at moderate to high absorbances that is commonly attributed to self-absorption leading to line reversal in the source and/or preferential absorption at the line center when the absorber temperature is not much greater than the source Doppler temperature. A theoretical calculation utilizing a Doppler-limited Fourier transform spectrum of the 283.3-nm emission from the lamp and a tabulated value of the absorption cross section and accounting for the isotopic and nuclear hyperfine components in both the emission and absorption due to naturally occurring lead quantitatively reproduces the experimental calibration curve without any parameter adjustments. It is found that the curvature in the Beer-Lambert plot has more to do with the fact that the absorbing and emitting atoms are a mixture of isotopes giving several isotopic and nuclear hyperfine transitions at slightly different frequencies than it does with preferential absorption at line centers.

  2. Welcome to the 21st International Conference on Spectral Line Shapes

    NASA Astrophysics Data System (ADS)

    2012-12-01

    organizing committee of the conference has not forgotten about the cultural and tourism significance of the host city, with Hermitage and the Russian Museum, memorial museums of Pushkin and Dostoevsky, Mariinsky and Mikhailovsky Theaters being only a few of the many places to visit. Early June is the time of white nights, the best time to visit the environs of St. Petersburg with its many imperial palaces and parks, and attend multiple music and theater festivals. This is just the right time to take a break from physics overall and spectral line shapes in particular. On behalf of the Rector's Office let me wish the Conference every success, and do not forget to take some time out to enjoy your visit. Welcome! Professor N G Skvortsov Vice-Rector for Research St. Petersburg University

  3. Distribution of smile line, gingival angle and tooth shape among the Saudi Arabian subpopulation and their association with gingival biotype

    PubMed Central

    AlQahtani, Nabeeh A.; Haralur, Satheesh B.; AlMaqbol, Mohammad; AlMufarrij, Ali Jubran; Al Dera, Ahmed Ali; Al-Qarni, Mohammed

    2016-01-01

    Objectives: To determine the occurrence of smile line and maxillary tooth shape in the Saudi Arabian subpopulation, and to estimate the association between these parameters with gingival biotype. Materials and Methods: On the fulfillment of selection criteria, total 315 patients belong to Saudi Arabian ethnic group were randomly selected. Two frontal photographs of the patients were acquired. The tooth morphology, gingival angle, and smile line classification were determined with ImageJ image analyzing software. The gingival biotype was assessed by probe transparency method. The obtained data were analyzed with SPSS 19 (IBM Corporation, New York, USA) software to determine the frequency and association between other parameters and gingival biotype. Results: Among the clinical parameters evaluated, the tapering tooth morphology (56.8%), thick gingival biotype (53%), and average smile line (57.5%) was more prevalent. The statistically significant association was found between thick gingival biotype and the square tooth, high smile line. The high gingival angle was associated with thin gingival biotype. Conclusions: The study results indicate the existence of an association between tooth shape, smile line, and gingival angle with gingival biotype. PMID:27195228

  4. Effect of duct shape, Mach number, and lining construction on measured suppressor attenuation and comparison with theory

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Krejsa, E. A.; Coats, J. W.

    1972-01-01

    Noise attenuation was measured for several types of cylindrical suppressors that use a duct lining composed of honeycomb cells covered with a perforated plate. The experimental technique used gave attenuation data that were repeatable and free of noise floors and other sources of error. The suppressor length, the effective acoustic diameter, suppressor shape and flow velocity were varied. The agreement among the attenuation data and two widely used analytical models was generally satisfactory. Changes were also made in the construction of the acoustic lining to measure their effect on attenuation. One of these produced a very broadband muffler.

  5. Characterization of fine resolution field spectrometers using solar Fraunhofer lines and atmospheric absorption features.

    PubMed

    Meroni, Michele; Busetto, Lorenzo; Guanter, Luis; Cogliati, Sergio; Crosta, Giovanni Franco; Migliavacca, Mirco; Panigada, Cinzia; Rossini, Micol; Colombo, Roberto

    2010-05-20

    The accurate spectral characterization of high-resolution spectrometers is required for correctly computing, interpreting, and comparing radiance and reflectance spectra acquired at different times or by different instruments. In this paper, we describe an algorithm for the spectral characterization of field spectrometer data using sharp atmospheric or solar absorption features present in the measured data. The algorithm retrieves systematic shifts in channel position and actual full width at half-maximum (FWHM) of the instrument by comparing data acquired during standard field spectroscopy measurement operations with a reference irradiance spectrum modeled with the MODTRAN4 radiative transfer code. Measurements from four different field spectrometers with spectral resolutions ranging from 0.05 to 3.5nm are processed and the results validated against laboratory calibration. An accurate retrieval of channel position and FWHM has been achieved, with an average error smaller than the instrument spectral sampling interval.

  6. Possible evidence for a variable fine-structure constant from QSO absorption lines: systematic errors

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Webb, J. K.; Flambaum, V. V.; Churchill, C. W.; Prochaska, J. X.

    2001-11-01

    Comparison of quasar (QSO) absorption spectra with laboratory spectra allows us to probe possible variations in the fundamental constants over cosmological time-scales. In a companion paper we present an analysis of Keck/HIRES spectra and report possible evidence suggesting that the fine-structure constant, α, may have been smaller in the past: [formmu2]Δα/α=(-0.72+/-0.18)×10-5 over the redshift range [formmu3]0.5

  7. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere.

    PubMed

    Konopacky, Quinn M; Barman, Travis S; Macintosh, Bruce A; Marois, Christian

    2013-03-22

    Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging--spatially resolving the planet from its parent star--which enables high-resolution spectroscopy of self-luminous planets in jovian-like orbits. Here, we present a spectrum with numerous, well-resolved molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 astronomical units from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygen ratio that is greater than that of the host star, providing hints about the planet's formation.

  8. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere.

    PubMed

    Konopacky, Quinn M; Barman, Travis S; Macintosh, Bruce A; Marois, Christian

    2013-03-22

    Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging--spatially resolving the planet from its parent star--which enables high-resolution spectroscopy of self-luminous planets in jovian-like orbits. Here, we present a spectrum with numerous, well-resolved molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 astronomical units from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygen ratio that is greater than that of the host star, providing hints about the planet's formation. PMID:23493423

  9. Study on a W-band modified V-shaped microstrip meander-line traveling-wave tube

    NASA Astrophysics Data System (ADS)

    Shen, Fei; Wei, Yan-Yu; Xu, Xiong; Yin, Hai-Rong; Gong, Yu-Bin; Wang, Wen-Xiang

    2012-06-01

    The study on a miniaturized, low-voltage, wide-bandwidth, high-efficiency modified V-shaped microstrip meander-line slow-wave structure is presented. This structure is evolved from the original U-shaped microstrip meander-line slow-wave structure, combining the advantages of a traditional microstrip and a rectangular helix. In this paper, simulations of the electromagnetic characteristics and the beam-wave interaction of this structure are carried out. Our study shows that when the design voltage and the current of a sheet electron beam are set to be 4700 V and 100 mA, respectively, this miniature millimeter-wave power amplifier is capable of delivering 160-W output power with a corresponding gain of 37.3 dB and a maximum interaction efficiency of 34% at 97 GHz.

  10. The Hubble Space Telescope quasar absorption line key project. 6: Properties of the metal-rich systems

    NASA Technical Reports Server (NTRS)

    Bergeron, Jacqueline; Petitjean, Patrick; Sargent, W. L. W.; Bahcall, John N.; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Savage, Blair D.; Schneider, Donald P.

    1994-01-01

    We present an analysis of the properties of a sample of 18 metal-rich, low-redshift z(sub abs) much less than z(sub em) absorbers seen in low- and medium-resolution spectra obtained for the Quasar Absorption Line Key Project with the Hubble Space Telescope Faint Object Spectrograph (HST/FOS). For most of the C IV and Lyman-limit systems, observations in the optical wavelength range of the expected associated Mg II absorption are available. As at high redshift (z approximately 2), there are two subclasses of absorbers which are characterized by the presence or absence of MG II absorption. However, some low-redshift Mg II and Fe absorptions originate from regions optically thin to UV ionizing photons and thus, at low redshift, the low-ionization systems do not always trace high opacities, as is the case at high redshift. This implies that the mean ionization state of metal-rich, optically thin absorbing clouds falls with decreasing redshift, which is consistent with the hypothesis that the gas is photoionized by the metagalactic UV background radiation field. Two main constraints are derived from the analysis of the Lyman-limit sample, assuming photoionization models are valid. First, a low opacity to ionizing photons (tau(sub LL) approximately less than 1), as observed for several Mg II-Fe II systems at z approximately 0.5, sets limits on the ionization level of hydrogen, thus on the total hydrogen column density and the heavy element abundances, (Z/H) approximately -0.5 to -0.3. Second, the dimensions of individual Mg II clouds are smaller than at high redshift by a factor 3-10. At z approximately greater than 0.6, the O VI absorption doublet is detected in four of the five z(sub abs) much less than z(sub em) systems for which the O VI wavelength range has been observed, whereas the associated N V doublet is detected in only two cases. This suggests that the presence of a high-ionization O VI phase is a general property of z approximately 0.6-1 absorption systems

  11. Excitation of individual Raman Stokes lines of up-to ninth order using rectangular shaped optical pulses at 530 nm

    NASA Astrophysics Data System (ADS)

    Chen, Kang Kang; Alam, Shaif-ul; Codemard, Christophe A.; Malinowski, Andrew; Richardson, David J.

    2010-02-01

    We demonstrate the selective excitation of Raman Stokes lines of up-to 9th order with relatively high extinction ratio pumped by rectangular shaped optical pulses at 530 nm of 100 ns duration. The rectangular shaped optical pulses at 530 nm were generated by frequency doubling of an adaptively pulse shaped fiber MOPA operating at 1060 nm. This kind of pulse shape is optimal for frequency conversion since all parts of the pulse experiences the same Raman gain. Therefore, it is possible for a pulse to transfer all of its energy through sequential frequency Raman shifts to successive order Stokes components. Consequently, by adjusting the pump power it is possible to achieve selective excitation of the Raman shift with little residual pump powers. Here, we have achieved extinction ratio as much as 15 dB from successive Stokes lines by coupling 530 nm light in a 1 km long Pirelli Freelight fiber. In addition, we were able to obtain up-to 9th order Stokes shift by launching 5 W of average pump power to the Raman gain medium. Maximum Stokes shifted power of 54 mW was recorded for a launched pump power of 5W. We attribute this to the large background loss of silica fibre in the visible region.

  12. Study of the Many Fluorescent Lines and the Absorption Variability in GX 301-2 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Fuerst, F.; Suchy, S.; Kreykenbohm, I.; Barragan, L.; Wilms, J.; Pottschmidt, K.; Caballero, I.; Kretschmar, P.; Ferrigno, C.; Rothschild, R. E.

    2011-01-01

    We present an in-depth study of the High Mass X-ray Binary (HMXB) GX 301-2 during its pre-periastron flare using data from the XMM-Newton satellite. The energy spectrum shows a power law continuum absorbed by a large equivalent hydrogen column on the order of 10(exp 24)/ sq cm and a prominent Fe K-alpha fluorescent emission line. Besides the Fe K-alpha line, evidence for Fe K-Beta, Ni K-alpha, Ni K-Beta, S K-alpha, Ar K-alpha, Ca K-alpha, and Cr K-alpha fluorescent lines is found. The observed line strengths are consistent with fluorescence in a cold absorber. This is the first time that Cr K-alpha is seen in emission in the X-ray spectrum of a HMXB. In addition to the modulation by the strong pulse period of approx 685 sec the source is highly variable and shows different states of activity. We perform time-resolved as well as pulse-to-pulse resolved spectroscopy to investigate differences between these states of activity. We find that fluorescent line fluxes are strongly variable and generally follow the overall flux. The N-H value is variable by a factor of 2, but not correlated to continuum normalization. We find an interval of low flux in the light curve in which the pulsations cease almost completely, without any indication of an increasing absorption column. We investigate this dip in detail and argue that it is most likely that during the dip the accretion ceased and the afterglow of the fluorescent iron accounted for the main portion of the X-ray flux. A similar dip was found earlier in RXTE data, and we compare our findings to these results.

  13. [Simulation of TDLAS direct absorption based on HITRAN database].

    PubMed

    Qi, Ru-birn; He, Shu-kai; Li, Xin-tian; Wang, Xian-zhong

    2015-01-01

    Simulating of the direct absorption TDLAS spectrum can help to comprehend the process of the absorbing and understand the influence on the absorption signal with each physical parameter. Firstly, the basic theory and algorithm of direct absorption TDLAS is studied and analyzed thoroughly, through giving the expressions and calculating steps of parameters based on Lambert-Beer's law, such as line intensity, absorption cross sections, concentration, line shape and gas total partition functions. The process of direct absorption TDLAS is simulated using MATLAB programs based on HITRAN spectra database, with which the absorptions under a certain temperature, pressure, concentration and other conditions were calculated, Water vapor is selected as the target gas, the absorptions of which under every line shapes were simulated. The results were compared with that of the commercial simulation software, Hitran-PC, which showed that, the deviation under Lorentz line shape is less than 0. 5%, and that under Gauss line shape is less than 2. 5%, while under Voigt line shape it is less than 1%. It verified that the algorithm and results of this work are correct and accurate. The absorption of H2O in v2 + v3 band under different pressure and temperature is also simulated. In low pressure range, the Doppler broadening dominant, so the line width changes little with varied.pressure, while the line peak increases with rising pressure. In high pressure range, the collision broadening dominant, so the line width changes wider with increasing pressure, while the line peak approaches to a constant value with rising pressure. And finally, the temperature correction curve in atmosphere detection is also given. The results of this work offer the reference and instruction for the application of TDLAS direct absorption. PMID:25993843

  14. Atmospheric Profiling Combining the Features of GPS ro & Mls: Satellite to Satellite Occultations Near Water & Ozone Absorption Lines

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Ward, D.; Otarola, A. C.; McGhee, J.; Reed, H.; Erickson, D.

    2015-12-01

    Assessing climate models & their predictions requires observations that determine the state of the real climate system precisely and unambiguously, independently from models. For this purpose, we have been developing a new orbiting remote sensing system called the Active Temperature, Ozone & Moisture Microwave Spectrometer (ATOMMS) which is a cross between GPS RO and the Microwave Limb Sounder. ATOMMS actively probes water vapor, ozone & other absorption lines at cm & mm wavelengths in a satellite to satellite occultation geometry to simultaneously profile temperature, pressure, water vapor and ozone as well as other important constituents. Individual profiles of water vapor, temperature & pressure heights will extend from near the surface into the mesosphere with ~1%, 0.4K and 10 m precision respectively and still better accuracy, with 100 m vertical resolution. Ozone profiles will extend upward from the upper troposphere. Line of sight wind profiles will extend upwards from the mid-stratosphere. ATOMMS is a doubly differential absorption system which eliminates drift and both sees clouds and sees thru them, to deliver performance in clouds within a factor of 2 of the performance in clear skies. This all-weather sampling combined with insensitivity to surface emissivity avoids sampling biases that limit most existing satellite records. ATOMMS will profile slant liquid water in clouds & rain and as well as turbulence via scintillations ("twinkling of a star"). Using prototype ATOMMS instrumentation that we developed with funding from NSF, several ATOMMS ground field campaigns precisely measured water vapor, cloud amount, rainfall, turbulence and absorption line spectroscopy. ATOMMS's dynamic range was demonstrated as water vapor was derived to 1% precision in optical depths up to 17. We are developing high altitude aircraft to aircraft instrumentation to further demonstrate ATOMMS performance, refine spectroscopy & support future field campaigns. Our vision is a

  15. Intersstellar absorption lines between 2000 and 3000 A in nearby stars observed with BUSS. [Balloon Borne Ultraviolet Spectrophotometer

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Lenhart, H.; Van Der Hucht, K. A.; Kamperman, T. M.; Kondo, Y.

    1986-01-01

    Spectra obtained between 2000 and 3000 A with the Balloon Borne Ultraviolet Spectrophotometer (BUSS) payload were examined for interstellar absorption lines. In bright stars, with spectral types between O9V and F5V, such lines were measured of Mg I, Mg II, Cr II, Mn II, Fe II and Zn II, with Cr II and Zn II data of especially high quality. Column densities were derived and interstellar abundances were determined for the above species. It was found that metal depletion increases with increasing E(B-V); Fe was most affected and Zn showed a small depletion for E(B-V) greater than 0.3 towards Sco-Oph. The metal column densities, derived for Alpha-And, Kappa-Dra, Alpha-Com, Alpha-Aql, and 29 Cyg were used to infer N(H I). It was shown that the ratio of Mg I to Na I is instrumental in determining the ionization structure along each line of sight. The spectra of Aql stars confirms the presence of large gas densities near Alpha-Oph. Moreover, data indicated that the Rho-Oph N(H I) value needs to be altered to 35 x 10 to the 20th/sq cm, based on observed ion ratios and analysis of the Copernicus L-alpha profile.

  16. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering

    PubMed Central

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-01-01

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces. PMID:26891773

  17. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering.

    PubMed

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-01-01

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces. PMID:26891773

  18. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering.

    PubMed

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-02-19

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces.

  19. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-02-01

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces.

  20. In-Line Capacitance Sensor for Real-Time Water Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Perusich, Stephen A.

    2010-01-01

    A capacitance/dielectric sensor was designed, constructed, and used to measure in real time the in-situ water concentration in a desiccant water bed. Measurements were carried out with two experimental setups: (1) passing nitrogen through a humidity generator and allowing the gas stream to become saturated at a measured temperature and pressure, and (2) injecting water via a syringe pump into a nitrogen stream. Both water vapor generating devices were attached to a downstream vertically-mounted water capture bed filled with 19.5 g of Moisture Gone desiccant. The sensor consisted of two electrodes: (1) a 1/8" dia stainless steel rod placed in the middle of the bed and (2) the outer shell of the stainless steel bed concentric with the rod. All phases of the water capture process (background, heating, absorption, desorption, and cooling) were monitored with capacitance. The measured capacitance was found to vary linearly with the water content in the bed at frequencies above 100 kHz indicating dipolar motion dominated the signal; below this frequency, ionic motion caused nonlinearities in the water concentration/capacitance relationship. The desiccant exhibited a dielectric relaxation whose activation energy was lowered upon addition of water indicating either a less hindered rotational motion or crystal reorientation.

  1. Distances to diffuse interstellar clouds from IRAS measurements and observations of optical absorption lines

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Strom, C. J.; Good, J. C.

    1991-01-01

    Distances to diffuse interstellar clouds were determined from the amount of ultraviolet radiation that penetrates into the cloud and that arises from a nearby B star. The environment around 67 Ophiuchi, 20 Aquilae, kappa Aquilae, and 9 Cephei were studied. The intensities at 60 and 100 micron, as measured by IRAS, were used to derive dust temperatures for the clouds. Enhanced dust temperatures would indicate an influence of the star's radiation field on a cloud. Observation of molecular absorption were compared to the results of simplified chemical models in order to search for enhanced photodissociation that is caused by the star. Enhanced dust temperatures were observed for clouds in the vicinities of 20 Aql, kappa Agl, and 9 Cep. The range of the star's influence was found to be typically 1-5 pc. On the other hand, chemical analyses of the molecular data, which pertain to foreground gas, did not reveal the presence of enhanced dissociative flux from the sample of stars. Thus, upper limits were derived for the distances from the sun to the foreground material.

  2. X-Ray Weak Broad-Line Quasars: Absorption or Intrinsic X-Ray Weakness

    NASA Technical Reports Server (NTRS)

    Risaliti, Guido; Mushotzky, Richard F. (Technical Monitor)

    2004-01-01

    XMM observations of X-ray weak quasars have been performed during 2003. The data for all but the last observation are now available (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed these data, and obtained interesting preliminary scientific results. Out of the eight sources, 4 are confirmed to be extrimely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confirmed to be highly variable both in flux (by factors 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects, an article is in preparation. Preliminary results have been presented at an international workshop on AGN surveys in December 2003, in Cozumel (Mexico). In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations, and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations will be performed in early 2004, and will complement the XMM data, in order to understand whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circumnuclear material.

  3. Limits on variations in fundamental constants from 21-cm and ultraviolet Quasar absorption lines.

    PubMed

    Tzanavaris, P; Webb, J K; Murphy, M T; Flambaum, V V; Curran, S J

    2005-07-22

    Quasar absorption spectra at 21-cm and UV rest wavelengths are used to estimate the time variation of x [triple-bond] alpha(2)g(p)mu, where alpha is the fine structure constant, g(p) the proton g factor, and m(e)/m(p) [triple-bond] mu the electron/proton mass ratio. Over a redshift range 0.24 < or = zeta(abs) < or = 2.04, (Deltax/x)(weighted)(total) = (1.17 +/- 1.01) x 10(-5). A linear fit gives x/x = (-1.43 +/- 1.27) x 10(-15) yr(-1). Two previous results on varying alpha yield the strong limits Deltamu/mu = (2.31 +/- 1.03) x 10(-5) and Deltamu/mu=(1.29 +/- 1.01) x10(-5). Our sample, 8 x larger than any previous, provides the first direct estimate of the intrinsic 21-cm and UV velocity differences 6 km s(-1).

  4. Studying Absorption Line Feature in the Relativistic Jet Source GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    The galactic superluminal source GRS 1915+105 is among the most interesting objects in our Galaxy. It is subject to erratic accretion instabilities with energization of relativistic jets producing X-ray, optical and radio emission. This source was observed by ASCA on Sept. 27, 1994, April 20, 1995, October 23, 1996 and April 25, 1997 as part of a long timescale investigation. We detected strong variability of the source, and in particular the existence of burst/dip structure in October 1996 and April 1997. Clear evidence of transient absorption features at 6.7, 7.0 and 8.0 keV was obtained for the first time in September 1994 and April 1995. Given the phenomenology of plasmoid energization and ejection, these transient spectral features might be produced by material entrained in the radio jets or in other high-velocity outflows. Our contribution to the interpretation is to incorporate these observations into a overall theoretical picture for GRS 1915+105 also taking into account other observations by XTE and BSAX. The emerging picture is complex. The central source is subject to (most likely) super-Eddington instabilities mediated by magnetic field build-up, reconnection and dissipation in the form of blobs that eventually leads to the formation of transient spectral features from the surrounding of the plasmoid emitting region. A comprehensive theoretical investigation is in progress.

  5. Excitation ahead of shock fronts in krypton measured by single line laser absorption

    NASA Astrophysics Data System (ADS)

    Boetticher, W.; Kilpin, D.

    1984-12-01

    The absorption of single-mode radiation (from a dye laser tuned to 587.25 and 557.18 nm) by Kr in front of shock waves with Mach numbers 12-21 in a 50-mm-diameter 4.4-m-long free-position driver shock tube at preshock pressures 0.7-2.7 kPa is measured to determine the number densities of the metastable 5s(1 1/2)2 and 5s(1 1/2)1 precursor states (1s5 and 1s4 in Paschen notation, respectively). The measurement technique and calculations follow those of Ernst (1982). The results are presented in tables and graphs and characterized in comparison with previous findings. The time constant of the exponential rise of the precursor is found to be about 8 microsec, and the concentration of 1s5 + 1s4 for Mach 20 is calculated as about 10 ppm, in agreement (to within a factor of 5) with model predictions for Ar and Xe.

  6. Interstellar absorption along the line of sight to Theta Carinae using Copernicus observations

    NASA Technical Reports Server (NTRS)

    Allen, M. M.; Jenkins, E. B.; Snow, T. P.

    1992-01-01

    A profile fitting technique is employed to identify the velocities and Doppler b values for H I and H II clouds along the line of sight to Theta Car. Total abundances and depletions for 12 elements, plus column densities for the J = 0 to J = 5 rotational levels of H2 are obtained. Electron densities for both clouds are calculated from the ratios of the fine-structure levels of C II and N II, obtaining 0.08/cu cm and 1.2/cu cm. The fine-structure levels of C I, which led to 120/cu cm, are used to calculate the neutral hydrogen density for the H I region. D I is also present in the data from the Theta Car line of sight, yielding a D/H ratio of 5 x 10 exp -6. Elemental depletions are calculated for the H I region as well. Comparison of the results for Theta Car and those for Zeta Oph and Alpha Vir shows that the absolute depletions are different; however, the relative depletions are remarkably stable for different physical conditions.

  7. Line shape parameters of PH3 transitions in the Pentad near 4-5 μm: Self-broadened widths, shifts, line mixing and speed dependence

    NASA Astrophysics Data System (ADS)

    Malathy Devi, V.; Benner, D. Chris; Kleiner, Isabelle; Sams, Robert L.; Fletcher, Leigh N.

    2014-08-01

    Accurate knowledge of spectroscopic line parameters of PH3 is important for remote sensing of the outer planets, especially Jupiter and Saturn. In a recent study, line positions and intensities for the Pentad bands of PH3 have been reported from analysis of high-resolution, high signal-to noise room-temperature spectra recorded with two Fourier transform spectrometers (2014) [1]. The results presented in this study were obtained during the analysis of positions and intensities, but here we focus on the measurements of spectral line shapes (e.g. widths, shifts, line mixing) for the 2ν4, ν2 + ν4, ν1 and ν3 bands. A multispectrum nonlinear least squares curve fitting technique employing a non-Voigt line shape to include line mixing and speed dependence of the Lorentz width was employed to fit the spectra simultaneously. The least squares fittings were performed on five room-temperature spectra recorded at various PH3 pressures (∼2-50 Torr) with the Bruker IFS-125HR Fourier transform spectrometer (FTS) located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington. Over 840 Lorentz self-broadened half-width coefficients, 620 self-shift coefficients and 185 speed dependence parameters were measured. Line mixing was detected for transitions in the 2ν4, ν1 and ν3 bands, and their values were quantified for 10 A+A- pairs of transitions via off-diagonal relaxation matrix element formalism. The dependences of the measured half-width coefficients on the J and K rotational quanta of the transitions are discussed. The self-width coefficients for the ν1 and ν3 bands from this study are compared to the self-width coefficients for transitions with the same rotational quanta (J, K) reported for the Dyad (ν2 and ν4) bands. The measurements from present study should be useful for the development of a reliable theoretical modeling of pressure-broadened widths, shifts and line mixing in symmetric top molecules with C3v symmetry in general, and of PH3

  8. Ca II AND Na I QUASAR ABSORPTION-LINE SYSTEMS IN AN EMISSION-SELECTED SAMPLE OF SDSS DR7 GALAXY/QUASAR PROJECTIONS. I. SAMPLE SELECTION

    SciTech Connect

    Cherinka, B.; Schulte-Ladbeck, R. E.

    2011-10-15

    The aim of this project is to identify low-redshift host galaxies of quasar absorption-line systems by selecting galaxies that are seen in projection onto quasar sightlines. To this end, we use the Seventh Data Release of the Sloan Digital Sky Survey to construct a parent sample of 97,489 galaxy/quasar projections at impact parameters of up to 100 kpc to the foreground galaxy. We then search the quasar spectra for absorption-line systems of Ca II and Na I within {+-}500 km s{sup -1} of the galaxy's velocity. This yields 92 Ca II and 16 Na I absorption systems. We find that most of the Ca II and Na I systems are sightlines through the Galactic disk, through high-velocity cloud complexes in our halo, or Virgo Cluster sightlines. Placing constraints on the absorption line rest equivalent width significance ({>=}3.0{sigma}), the local standard of rest velocity along the sightline ({>=}345 km s{sup -1}), and the ratio of the impact parameter to the galaxy optical radius ({<=}5.0), we identify four absorption-line systems that are associated with low-redshift galaxies at high confidence, consisting of two Ca II systems (one of which also shows Na I) and two Na I systems. These four systems arise in blue, {approx}L*{sub r} galaxies. Tables of the 108 absorption systems are provided to facilitate future follow-up.

  9. VERY LONG BASELINE ARRAY MULTI-FREQUENCY POLARIMETRIC IMAGING OF RADIO-LOUD BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Hayashi, Takayuki J.; Nagai, Hiroshi; Doi, Akihiro

    2013-07-20

    We conducted the first multi-frequency polarimetric imaging of four broad absorption line (BAL) quasars using the Very Long Baseline Array at milliarcsecond resolutions to investigate the inclination of the nonthermal jet and test the hypothesis that radio sources in BAL quasars are still young. Among these four sources, J0928+446, J1018+0530, and J1405+4056 show one-sided structures in parsec scales and polarized emission detected in the core. These characteristics are consistent with those of blazars. We set constraints on viewing angles to <66 Degree-Sign for these jets in the framework of a Doppler beaming effect. J1159+0112 exhibits an unpolarized gigahertz-peaked spectrum component and several discrete blobs with steep spectra on both sides of the central component across {approx}1 kpc. These properties are consistent with those of young radio sources. We discuss the structures of jets and active galactic nucleus wind.

  10. Dramatically Variable C IV Mini-Broad Absorption Line System in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, T.; Eracleous, M.; Charlton, J. C.; Chartas, G.; Kashikawa, N.

    2008-10-01

    We observed the quasar HS 1603+3820 (z_{em} = 2.542, first discovered by Dobrzycki et al. 1996) six times over an interval of 4.2 yrs (1.2 yrs in the quasar rest frame) using the High Dispersion Spectrograph on Subaru telescope. The purpose was to study the mini-broad absorption line (mini-BAL; FWHM ˜ 1,000 km s^{-1}) that is blue-shifted from the quasar by ˜ 9,500 km s^{-1}. We found significant time variability, which supported the physical association of the mini-BAL gas with an outflow from the quasar. We have narrowed down the cause of the variability to two possible scenarios. We also used archival Chandra x-ray data to study the x-ray properties of this quasar. The results constrain the location of the absorbing gas relative to the overall outflow.

  11. Line shapes of optical Feshbach resonances near the intercombination transition of bosonic ytterbium

    SciTech Connect

    Borkowski, M.; Ciurylo, R.; Tojo, S.; Enomoto, K.; Takahashi, Y.

    2009-07-15

    The properties of bosonic ytterbium photoassociation spectra near the intercombination transition {sup 1}S{sub 0}-{sup 3}P{sub 1} are studied theoretically at ultralow temperatures. We demonstrate how the shapes and intensities of rotational components of optical Feshbach resonances are affected by mass tuning of the scattering properties of the two colliding ground-state atoms. Particular attention is given to the relationship between the magnitude of the scattering length and the occurrence of shape resonances in higher partial waves of the van der Waals system. We develop a mass-scaled model of the excited-state potential that represents the experimental data for different isotopes. The shape of the rotational photoassociation spectrum for various bosonic Yb isotopes can be qualitatively different.

  12. A FOURTH H I 21 cm ABSORPTION SYSTEM IN THE SIGHT LINE OF MG J0414+0534: A RECORD FOR INTERVENING ABSORBERS

    SciTech Connect

    Tanna, A.; Webb, J. K.; Curran, S. J.; Whiting, M. T.; Bignell, C.

    2013-08-01

    We report the detection of a strong H I 21 cm absorption system at z = 0.5344, as well as a candidate system at z = 0.3389, in the sight line toward the z = 2.64 quasar MG J0414+0534. This, in addition to the absorption at the host redshift and the other two intervening absorbers, takes the total to four (possibly five). The previous maximum number of 21 cm absorbers detected along a single sight line is two and so we suspect that this number of gas-rich absorbers is in some way related to the very red color of the background source. Despite this, no molecular gas (through OH absorption) has yet been detected at any of the 21 cm redshifts, although, from the population of 21 cm absorbers as a whole, there is evidence for a weak correlation between the atomic line strength and the optical-near-infrared color. In either case, the fact that so many gas-rich galaxies (likely to be damped Ly{alpha} absorption systems) have been found along a single sight line toward a highly obscured source may have far-reaching implications for the population of faint galaxies not detected in optical surveys, a possibility which could be addressed through future wide-field absorption line surveys with the Square Kilometer Array.

  13. Frequency doubling of 1560nm diode laser via PPLN and PPKTP crystals and frequency stabilization to rubidium absorption line

    NASA Astrophysics Data System (ADS)

    Guo, Shanlong; Yang, Jianfeng; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-11-01

    In our experiment, a polarization-maintaining (PM) fiber-pigtailed butterfly-sealed 1560nm distributed-feedback (DFB) laser diode is amplified by a 5-Watt EDFA, then a multiple-period PPLN crystal (1mm×10mm×20mm) and a single-period PPKTP crystal (1mm×2mm×30mm) are utilized to perform SHG via single pass configuration. The second harmonic power of ~ 239 mW@780 nm for PPLN and ~ 210 mW@780 nm for PPKTP are obtained with ~5W@1560 nm laser input, corresponding to SHG efficiency of ~ 5.2% for PPLN and ~ 4.4% for PPKTP, respectively. Finally the 1560 nm laser diode's frequency is locked to rubidium absorption line via SHG and rubidium absorption spectroscopy, the laser frequency drift for free-running case is ~ 56 MHz in 30 s, the residual frequency after being locked drift is ~ +/- 3.5 MHz.

  14. Atmospheric profiling via satellite to satellite occultations near water and ozone absorption lines for weather and climate

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Ward, D.; Otarola, A. C.; McGhee, J.; Stovern, M.; Sammler, K.; Reed, H.; Erickson, D.; McCormick, C.; Griggs, E.

    2016-05-01

    Significantly reducing weather and climate prediction uncertainty requires global observations with substantially higher information content than present observations provide. While GPS occultations have provided a major advance, GPS observations of the atmosphere are limited by wavelengths chosen specifically to minimize interaction with the atmosphere. Significantly more information can be obtained via satellite to satellite occultations made at wavelengths chosen specifically to characterize the atmosphere. Here we describe such a system that will probe cm- and mmwavelength water vapor absorption lines called the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS). Profiling both the speed and absorption of light enables ATOMMS to profile temperature, pressure and humidity simultaneously, which GPS occultations cannot do, as well as profile clouds and turbulence. We summarize the ATOMMS concept and its theoretical performance. We describe field measurements made with a prototype ATOMMS instrument and several important capabilities demonstrated with those ground based measurements including retrieving temporal variations in path-averaged water vapor to 1%, in clear, cloudy and rainy conditions, up to optical depths of 17, remotely sensing turbulence and determining rain rates. We conclude with a vision of a future ATOMMS low Earth orbiting satellite constellation designed to take advantage of synergies between observational needs for weather and climate, ATOMMS unprecedented orbital remote sensing capabilities and recent cubesat technological innovations that enable a constellation of dozens of very small spacecraft to achieve many critical, but as yet unfulfilled, monitoring and forecasting needs.

  15. Unraveling the mysteries of the Leo Ring: An absorption line study of an unusual gas cloud

    SciTech Connect

    Rosenberg, J. L.; Haislmaier, Karl; Giroux, M. L.; Keeney, B. A.; Schneider, S. E.

    2014-07-20

    Since the discovery of the large (2 × 10{sup 9} M{sub ☉}) intergalactic cloud known as the Leo Ring in the 1980s, the origin of this object has been the center of a lively debate. Determining the origin of this object is still important as we develop a deeper understanding of the accretion and feedback processes that shape galaxy evolution. We present Hubble Space Telescope/Cosmic Origins Spectrograph observations of three sightlines near the ring, two of which penetrate the high column density neutral hydrogen gas visible in 21 cm observations of the object. These observations provide the first direct measurement of the metallicity of the gas in the ring, an important clue to its origin. Our best estimate of the metallicity of the ring is ∼10% Z{sub ☉}, higher than expected for primordial gas but lower than expected from an interaction. We discuss possible modifications to the interaction and primordial gas scenarios that would be consistent with this metallicity measurement.

  16. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Gibert, Fabien; Barnes, Bruce W.; Ismail, Syed; Petros, Mulugeta; Petzar, Paul J.; Yu, Jirong; Modlin, Edward A.; Davis, Kenneth J.; Singh, Upendra N.

    2008-03-01

    A 2 μm wavelength, 90 mJ, 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 2.9 GHz from the center of a CO2 absorption line. Once detuned from the line center the laser wavelength is actively locked to keep the wavelength within 1.9 MHz standard deviation about the setpoint. This wavelength control allows optimization of the optical depth for a differential absorption lidar (DIAL) measuring atmospheric CO2 concentrations. The laser transmitter has been coupled with a coherent heterodyne receiver for measurements of CO2 concentration using aerosol backscatter; wind and aerosols are also measured with the same lidar and provide useful additional information on atmospheric structure. Range-resolved CO2 measurements were made with <2.4% standard deviation using 500 m range bins and 6.7 min⁡ (1000 pulse pairs) integration time. Measurement of a horizontal column showed a precision of the CO2 concentration to <0.7% standard deviation using a 30 min⁡ (4500 pulse pairs) integration time, and comparison with a collocated in situ sensor showed the DIAL to measure the same trend of a diurnal variation and to detect shorter time scale CO2 perturbations. For vertical column measurements the lidar was setup at the WLEF tall tower site in Wisconsin to provide meteorological profiles and to compare the DIAL measurements with the in situ sensors distributed on the tower up to 396 m height. Assuming the DIAL column measurement extending from 153 m altitude to 1353 m altitude should agree with the tower in situ sensor at 396 m altitude, there was a 7.9 ppm rms difference between the DIAL and the in situ sensor using a 30 min⁡ rolling average on the DIAL measurement.

  17. A far-wing line shape theory which satisfies the detailed balance principle

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Hartmann, J.-M.; Boulet, C.

    1995-01-01

    A far-wing theory in which the validity of the detailed balance principle is maintained in each step of the derivation is presented. The role of the total density matrix including the initial correlations is analyzed rigorously. By factoring out the rapidly varying terms in the complex-time development operator in the interaction representation, better approximate expressions can be obtained. As a result, the spectral density can be expressed in terms of the line-coupling functions in which two coupled lines are arranged symmetrically and whose frequency detunings are omega - 1/2(omega(sub ji) + omega (sub j'i'). Using the approximate values omega - omega(sub ji) results in expressions that do not satisfy the detailed balance principle. However, this principle remains satisfied for the symmetrized spectral density in which not only the coupled lines are arranged symmetrically, but also the initial and final states belonging to the same lines are arranged symmetrically as well.

  18. Interstellar absorption lines in the spectrum of sigma Sco using Copernicus observations

    NASA Technical Reports Server (NTRS)

    Allen, M. M.; Snow, T. P.

    1986-01-01

    Since the launch of Copernicus in 1972, studies have been made of the depletion of gas-phase elements onto dust grains. A few stars have been studied in detail, resulting in a standard depletion pattern which has since been used for comparison. Recent developments, however, have suggested that this standard pattern may need to be re-examined. Some weak, semi-forbidden lines were detected recently which may be able to resolve some of the ambiguities. Studies of single elements have shown that depletion of carbon and oxgyen are much smaller than previously determined. The high resolution ultraviolet spectral scans of sigma Sco were originally made in 1973, but have only recently been analyzed. All these stars are bright and moderately reddened. All four stars will be analyzed in detail, but sigma Sco is the first one completed. The data has broad coverage of ions, making these stars excellent candidates for determination of accurate depletions. A profile-fitting analysis was used rather than curves-of-growth in order to determine separate abundances and depletions in components separated by several km/sec.

  19. Three Highly Stable Cobalt MOFs Based on "Y"-Shaped Carboxylic Acid: Synthesis and Absorption of Anionic Dyes.

    PubMed

    Yan, Wei; Han, Li-Juan; Jia, Hai-Lang; Shen, Kang; Wang, Ting; Zheng, He-Gen

    2016-09-01

    Three Co(II) metal-organic frameworks (MOFs) were synthesized employing a rational design approach. On the basis of the different structures of three complexes, we tested their absorption properties toward two anionic dyes. The absorption results indicate that not only uncoordinated functional groups in the structure play an important role in adsorbing capacity but also physical forces can affect absorbing ability. Water stability testing shows that three crystals display high stability in aqueous solutions with different pH values. To our delight, the framework integrity of three complexes can be well-retained even after absorbing dyes. PMID:27525379

  20. Brush border membrane vesicle and Caco-2 cell line: Two experimental models for evaluation of absorption enhancing effects of saponins, bile salts, and some synthetic surfactants

    PubMed Central

    Moghimipour, Eskandar; Tabassi, Sayyed Abolghassem Sajadi; Ramezani, Mohammad; Handali, Somayeh; Löbenberg, Raimar

    2016-01-01

    The aim of this study was to investigate the influence of absorption enhancers in the uptake of hydrophilic compounds. The permeation of the two hydrophilic drug models gentamicin and 5 (6)-carboxyfluorescein (CF) across the brush border membrane vesicles and Caco-2 cell lines were evaluated using total saponins of Acanthophyllum squarrosum, Quillaja saponaria, sodium lauryl sulfate, sodium glycocholate, sodium taurodeoxycholate, and Tween 20 as absorption enhancers. Transepithelial electrical resistance (TEER) measurement was utilized to assess the paracellular permeability of cell lines. Confocal laser scanning microscopy (CLSM) was performed to obtain images of the distribution of CF in Caco-2 cells. These compounds were able to loosen tight junctions, thus increasing paracellular permeability. CLSM confirmed the effect of these absorption enhancers on CF transport across Caco-2 lines and increased the Caco-2 permeability via transcellular route. It was also confirmed that the decrease in TEER was transient and reversible after removal of permeation enhancers. PMID:27429925

  1. Brush border membrane vesicle and Caco-2 cell line: Two experimental models for evaluation of absorption enhancing effects of saponins, bile salts, and some synthetic surfactants.

    PubMed

    Moghimipour, Eskandar; Tabassi, Sayyed Abolghassem Sajadi; Ramezani, Mohammad; Handali, Somayeh; Löbenberg, Raimar

    2016-01-01

    The aim of this study was to investigate the influence of absorption enhancers in the uptake of hydrophilic compounds. The permeation of the two hydrophilic drug models gentamicin and 5 (6)-carboxyfluorescein (CF) across the brush border membrane vesicles and Caco-2 cell lines were evaluated using total saponins of Acanthophyllum squarrosum, Quillaja saponaria, sodium lauryl sulfate, sodium glycocholate, sodium taurodeoxycholate, and Tween 20 as absorption enhancers. Transepithelial electrical resistance (TEER) measurement was utilized to assess the paracellular permeability of cell lines. Confocal laser scanning microscopy (CLSM) was performed to obtain images of the distribution of CF in Caco-2 cells. These compounds were able to loosen tight junctions, thus increasing paracellular permeability. CLSM confirmed the effect of these absorption enhancers on CF transport across Caco-2 lines and increased the Caco-2 permeability via transcellular route. It was also confirmed that the decrease in TEER was transient and reversible after removal of permeation enhancers. PMID:27429925

  2. An STIS Atlas of Ca II Triplet Absorption Line Kinematics in Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Batcheldor, D.; Axon, D.; Valluri, M.; Mandalou, J.; Merritt, D.

    2013-09-01

    The relations observed between supermassive black holes and their host galaxies suggest a fundamental link in the processes that cause these two objects to evolve. A more comprehensive understanding of these relations could be gained by increasing the number of supermassive black hole mass (M •) measurements. This can be achieved, in part, by continuing to model the stellar dynamics at the centers of galactic bulges using data of the highest possible spatial resolution. Consequently, we present here an atlas of galaxies in the Space Telescope Imaging Spectrograph (STIS) data archive that may have spectra suitable for new M • estimates. Archived STIS G750M data for all non-barred galactic bulges are co-aligned and combined, where appropriate, and the radial signal-to-noise ratios calculated. The line-of-sight velocity distributions from the Ca II triplet are then determined using a maximum penalized likelihood method. We find 19 out of 42 galaxies may provide useful new M • estimates since they are found to have data that is comparable in quality with data that has been used in the past to estimate M •. However, we find no relation between the signal-to-noise ratio in the previously analyzed spectra and the uncertainties of the black hole masses derived from the spectra. We also find that there is a very limited number of appropriately observed stellar templates in the archive from which to estimate the effects of template mismatching. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  3. X-RAYS FROM A RADIO-LOUD COMPACT BROAD ABSORPTION LINE QUASAR 1045+352 AND THE NATURE OF OUTFLOWS IN RADIO-LOUD BROAD ABSORPTION LINE QUASARS

    SciTech Connect

    Kunert-Bajraszewska, Magdalena; Katarzynski, Krzysztof; Siemiginowska, Aneta; Janiuk, Agnieszka

    2009-11-10

    We present new results on X-ray properties of radio-loud broad absorption line (BAL) quasars and focus on broadband spectral properties of a high-ionization BAL (HiBAL) compact steep spectrum (CSS) radio-loud quasar 1045+352. This HiBAL quasar has a very complex radio morphology indicating either strong interactions between a radio jet and the surrounding interstellar medium or a possible re-start of the jet activity. We detected 1045+352 quasar in a short 5 ksec Chandra ACIS-S observation. We applied theoretical models to explain spectral energy distribution of 1045+352 and argue that non-thermal, inverse-Compton (IC) emission from the innermost parts of the radio jet can account for a large fraction of the observed X-ray emission. In our analysis, we also consider a scenario in which the observed X-ray emission from radio-loud BAL quasars can be a sum of IC jet X-ray emission and optically thin corona X-ray emission. We compiled a sample of radio-loud BAL quasars that were observed in X-rays to date and report no correlation between their X-ray and radio luminosity. However, the radio-loud BAL quasars show a large range of X-ray luminosities and absorption columns. This is consistent with the results obtained earlier for radio-quiet BAL quasars and may indicate an orientation effect in BAL quasars or more complex dependence between X-ray emission, radio emission, and an orientation based on the radio morphology.

  4. Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes

    NASA Astrophysics Data System (ADS)

    Attota, Ravikiran; Dixson, Ronald G.

    2014-07-01

    We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm-40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.

  5. A genetic algorithm for fitting Lorentzian line shapes in Mössbauer spectra

    NASA Astrophysics Data System (ADS)

    Ahonen, Hannu; de Souza Júnior, Paulo A.; Garg, Vijayendra K.

    1997-05-01

    A genetic algorithm was implemented for finding an approximative solution to the problem of fitting a combination of Lorentzian lines to a measured Mössbauer spectrum. This iterative algorithm exploits the idea of letting several solutions (individuals) compete with each other for the opportunity of being selected to create new solutions (reproduction). Each solution was represented as a string of binary digits (chromosome). New individuals were created by pairwise exchanging bits in the binary representations of two selected solutions (crossover). In addition, the bits in the new solutions may be switched randomly from zero to one or conversely (mutation). The input of the program that implements the genetic algorithm consists of the measured spectrum, the maximum velocity, the peak positions and the expected number of Lorentzian lines in the spectrum. Each line is represented with the help of three variables, which correspond to its intensity, full line width at half maxima and peak position. An additional parameter was associated to the background level in the spectrum. A χ2 test was used for determining the quality of each parameter combination (fitness). The results of the genetic algorithm have been compared with those obtained by a widely used commercial program. The preliminary results obtained seem to be very promising and encourage to further development of the algorithm and its implementation.

  6. Application of data acquisition systems for on-line definition and control of wind tunnel shape

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1979-01-01

    Improvements in wind tunnel design to reduce test and flight discrepancies are analyzed. Flexible wall streamlining, criteria for tunnel streamlining, and error assessment are discussed. It is concluded that the concept of self-streamlining wind tunnels is suited for on-line computer control.

  7. D IR Line Shapes for Determining the Structure of a Peptide in a Bilayer

    NASA Astrophysics Data System (ADS)

    Woys, Ann Marie; Lin, Y. S.; Skinner, J. S.; Zanni, M. T.; Reddy, A. S.; de Pablo, J. J.

    2010-06-01

    Structure of the antimicrobial peptide, ovispirin, on a lipid bilayer was determined using 2D IR spectroscopy and spectra calculated from molecular dynamics simulations. Ovispirin is an 18 residue amphipathic peptide that binds parallel to the membrane in a mostly alpha helical conformation. 15 of the 18 residues were ^1^3C^1^8O isotopically labeled on the backbone to isolate the amide I vibration at each position. 2D IR spectra were collected for each labeled peptide in 3:1 POPC/POPG vesicles, and peak width along the diagonal was measured. The diagonal line width is sensitive to the vibrator's electrostatic environment, which varies through the bilayer. We observe an oscillatory line width spanning 10 to 24 cm-1 and with a period of nearly 3.6 residues. To further investigate the position of ovispirin in a bilayer, molecular dynamics simulations determined the peptide depth to be just below the lipid headgroups. The trajectory of ovispirin at this depth was used to calculate 2D IR spectra, from which the diagonal line width is measured. Both experimental and simulated line widths are similar in periodicity and suggest a kink in the peptide backbone and the tilt in the bilayer. A. Woys, Y. S. Lin, A. S. Reddy, W. Xiong, J. J. de Pablo, J. S. Skinner, and M. T. Zanni, JACS 132, 2832-2838 (2010).

  8. Experimental investigations of absorption and dispersion profiles of a strongly driven transition: [ital ssV]-shaped three-level system with a strong probe

    SciTech Connect

    Wei, C.; Manson, N.B.; Martin, J.P.D. )

    1995-02-01

    This paper reports on experimental investigations of absorption, dispersion, and amplitude profiles of the Autler-Townes doublet in a [ital ssV]-shaped three-level system where the probe field intensities varied from weak to strong. The experiments were carried out on the ground-state hyperfine transitions of the nitrogen-vacancy color center in diamond using the Raman heterodyne technique, a sensitive optically detected magnetic resonance technique. A strong pump field is on resonance with the [ital I][sub [ital z

  9. An EPR line shape study of anisotropic rotational reorientation and slow tumbling in liquid and frozen jojoba oil

    NASA Astrophysics Data System (ADS)

    Hwang, J. S.; Al-Rashid, W. A.

    Spin probe investigation of jojoba oil was carried out by electron paramagnetic rresonance (EPR) spectroscopy. The spin probe used was 2,2,6,6-tetramethyl-4-piperidone- N-oxide. The EPR line shape studies were carried out in the lower temperature range of 192 to 275 K to test the applicability of the stochastic Liouville theory in the simulation of EPR line shapes where earlier relaxation theories do not apply. In an earlier study, this system was analysed by employing rotational diffusion at the fast-motional region. The results show that PD-Tempone exhibits asymmetric rotational diffusion with N = 3.3 at an axis z'= Y in the plane of the molecule and perpendicular to the NO bond direction. In this investigation we have extended the temperature range to lower temperatures and observed slow tumbling EPR spectra. It is shown that the stochastic Liouville method can be used to simulate all but two of the experimentally observed EPR spectra in the slow-motional region and details of the slow-motional line shape are sensitive to the anisotropy of rotation and showed good agreement for a moderate jump model. From the computer simulation of EPR line shapes it is found that the information obtained on τ R, and N in the motional-narrowing region can be extrapolated into the slow-tumbling region. It is also found that ln (τ R) is linear in 1/ T in the temperature range studied and the resulting activation energy for rotation is 51 kJ/mol. The two EPR spectra at 240 and 231 K were found to exhibit the effects of anisotropic viscosity observed by B IRELL for nitroxides oriented in tubular cavities in inclusion crystals in which the molecule is free to rotate about the long axis but with its rotation hindered about the other two axes because of the cavity geometry. These results proved that the slow-tumbling spectra were very sensitive to the effects of anisotropy in the viscosity.

  10. Investigating the structural origin of trpzip2 temperature dependent unfolding fluorescence line shape based on a Markov state model simulation.

    PubMed

    Song, Jian; Gao, Fang; Cui, Raymond Z; Shuang, Feng; Liang, Wanzhen; Huang, Xuhui; Zhuang, Wei

    2012-10-25

    Vibrationally resolved fluorescence spectra of the β-hairpin trpzip2 peptide at two temperatures as well as during a T-jump unfolding process are simulated on the basis of a combination of Markov state models and quantum chemistry schemes. The broad asymmetric spectral line shape feature is reproduced by considering the exciton-phonon couplings. The temperature dependent red shift observed in the experiment has been attributed to the state population changes of specific chromophores. Through further theoretical study, it is found that both the environment's electric field and the chromophores' geometry distortions are responsible for tryptophan fluorescence shift. PMID:22994891

  11. X-Ray Line-Shape Diagnostics and Novel Stigmatic Imaging Schemes For the National Ignition Facility

    SciTech Connect

    M. Bitter,, K.W. Hill, N.A. Pablant, L.F. Delgado-Aparicio, P. Beiersdorfer, E. Wang, and M. Sanchez del Rio

    2011-08-15

    In response to a recent solicitation from the US Department of Energy we proposed the development of a new x-ray line-shape diagnostic and novel stigmatic imaging schemes for the National Ignition Facility (NIF). These diagnostics are based on the imaging properties of spherically bent crystals, explained in Fig. 1, which have already been successfully applied to the diagnosis of extended tokamak plasmas for measurements of the ion-temperature and toroidal flow-velocity profiles [United States Patent: US 6, 259, 763 B1] and refs. [1, 2].

  12. The 13CH4 absorption spectrum in the Icosad range (6600-7692 cm-1) at 80 K and 296 K: Empirical line lists and temperature dependence

    NASA Astrophysics Data System (ADS)

    Campargue, A.; Béguier, S.; Zbiri, Y.; Mondelain, D.; Kassi, S.; Karlovets, E. V.; Nikitin, A. V.; Rey, M.; Starikova, E. N.; Tyuterev, Vl. G.

    2016-08-01

    The 13CH4 absorption spectrum has been recorded at 296 K and 80 K in the Icosad range between 6600 and 7700 cm-1. The achieved noise equivalent absorption of the spectra recorded by differential absorption spectroscopy (DAS) is about αmin ≈ 1.5 × 10-7 cm-1. Two empirical line lists were constructed including 17,792 and 24,139 lines at 80 K and 296 K, respectively. For comparison, the HITRAN database provides only 1040 13CH4 lines in the region determined from methane spectra with natural isotopic abundance. Empirical values of the lower state energy level, Eemp, were systematically derived from the intensity ratios of the lines measured at 80 K and 296 K. Overall 10,792 Eemp values were determined providing accurate temperature dependence for most of the 13CH4 absorption in the region (93% and 82% at 80 K and 296 K, respectively). The quality of the derived empirical values of the lower state rotational quantum number, Jemp, is illustrated by their clear propensity to be close to an integer. A good agreement is achieved between our small Jemp values, with previous accurate determinations obtained by applying the 2T method to jet and 80 K spectra. The line lists at 296 K and 80 K which are provided as Supplementary material will be used for future rovibrational assignments based on accurate variational calculations.

  13. Resonances in photoabsorption: Predissociation line shapes in the 3pπD{sup 1}Π{sup +}{sub u} ← Χ{sup 1}Σ{sub g}{sup +} system in H{sub 2}

    SciTech Connect

    Mezei, J. Zs.; Schneider, I. F.; Glass-Maujean, M.; Jungen, Ch.

    2014-08-14

    The predissociation of the 3pπD{sup 1}Π{sub u}{sup +},v≥3,N=1, N = 2, and N = 3 levels of diatomic hydrogen is calculated by ab initio multichannel quantum defect theory combined with a R-matrix type approach that accounts for interfering predissociation and autoionization. The theory yields absorption line widths and shapes that are in good agreement with those observed in the high-resolution synchrotron vacuum-ultraviolet absorption spectra obtained by Dickenson et al. [J. Chem. Phys. 133, 144317 (2010)] at the DESIRS beamline of the SOLEIL synchrotron. The theory predicts further that many of the D state resonances with v ⩾ 6 exhibit a complex fine structure which cannot be modeled by the Fano profile formula and which has not yet been observed experimentally.

  14. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Yaqoob, T.; Braito, V.; Dadina, M.

    2010-10-01

    Context. Blue-shifted Fe K absorption lines have been detected in recent years between 7 and 10 keV in the X-ray spectra of several radio-quiet AGNs. The derived blue-shifted velocities of the lines can often reach mildly relativistic values, up to 0.2-0.4c. These findings are important because they suggest the presence of a previously unknown massive and highly ionized absorbing material outflowing from their nuclei, possibly connected with accretion disk winds/outflows. Aims: The scope of the present work is to statistically quantify the parameters and incidence of the blue-shifted Fe K absorption lines through a uniform analysis on a large sample of radio-quiet AGNs. This allows us to assess their global detection significance and to overcome any possible publication bias. Methods: We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. A simple uniform model composed by an absorbed power-law plus Gaussian emission and absorption lines provided a good fit for all the data sets. We derived the absorption lines parameters and calculated their detailed detection significance making use of the classical F-test and extensive Monte Carlo simulations. Results: We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies higher than 7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3 × 10-8, and their detection have been independently confirmed by a spectral analysis of the MOS data, with associated random probability <10-7. We identify the lines as Fe XXV and Fe XXVI K-shell resonant absorption. They are systematically blue-shifted, with a velocity distribution ranging from zero up to ~0.3c, with a peak and mean value at ~0.1c. We detect variability of the lines on both EWs and blue-shifted velocities among different XMM-Newton observations

  15. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.

    PubMed

    Najim, Mohd; Modi, Gaurav; Mishra, Yogendra Kumar; Adelung, Rainer; Singh, Dharmendra; Agarwala, Vijaya

    2015-09-21

    A viable lightweight absorber is the current need for stealth technology as well as microwave absorption. Several microwave absorbers have been developed, but it is still a challenge to fabricate an absorber that facilitates microwave absorption in broad bandwidth or covers the maximum portion of the frequency range 2-18 GHz, the commonly used range for radar and other applications. Therefore, it is highly required to develop a wide bandwidth absorber that can provide microwave absorption in the most part of the frequency range 2-18 GHz while simultaneously being lightweight and can be fabricated in desired bulk quantities by the cost-effective synthesis methods. In this paper, an attempt has been made to design an ultra-wide bandwidth absorber with enhanced microwave absorption response by using nickel-phosphorus coated tetrapod-shaped ZnO (Ni-P coated T-ZnO). In the Ni-P coated T-ZnO absorber, ZnO acts as a good dielectric contributor, while Ni as a magnetic constituent to obtain a microwave absorbing composite material, which has favorable absorption properties. Ni-P coated ZnO nano-microstructures are synthesized by a simple and scalable two-step process. First, tetrapod-shaped ZnO (T-ZnO) structures have been grown by the flame transport synthesis (FTS) approach in a single step process and then they have been coated with Ni-P by an electroless coating technique. Their morphology, degree of crystallinity and existing phases were studied in detail by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. The complex permittivity and permeability of the "as-fabricated" T-ZnO and Ni-P coated T-ZnO have been measured in the frequency range of 4-14 GHz and their microwave absorption properties are computed using the coaxial transmission-reflection method. The strongest reflection loss (RL) peak value of -36.41 dB has been obtained at a frequency of ∼8.99 GHz with coating thickness of 3.4 mm for the Ni

  16. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.

    PubMed

    Najim, Mohd; Modi, Gaurav; Mishra, Yogendra Kumar; Adelung, Rainer; Singh, Dharmendra; Agarwala, Vijaya

    2015-09-21

    A viable lightweight absorber is the current need for stealth technology as well as microwave absorption. Several microwave absorbers have been developed, but it is still a challenge to fabricate an absorber that facilitates microwave absorption in broad bandwidth or covers the maximum portion of the frequency range 2-18 GHz, the commonly used range for radar and other applications. Therefore, it is highly required to develop a wide bandwidth absorber that can provide microwave absorption in the most part of the frequency range 2-18 GHz while simultaneously being lightweight and can be fabricated in desired bulk quantities by the cost-effective synthesis methods. In this paper, an attempt has been made to design an ultra-wide bandwidth absorber with enhanced microwave absorption response by using nickel-phosphorus coated tetrapod-shaped ZnO (Ni-P coated T-ZnO). In the Ni-P coated T-ZnO absorber, ZnO acts as a good dielectric contributor, while Ni as a magnetic constituent to obtain a microwave absorbing composite material, which has favorable absorption properties. Ni-P coated ZnO nano-microstructures are synthesized by a simple and scalable two-step process. First, tetrapod-shaped ZnO (T-ZnO) structures have been grown by the flame transport synthesis (FTS) approach in a single step process and then they have been coated with Ni-P by an electroless coating technique. Their morphology, degree of crystallinity and existing phases were studied in detail by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. The complex permittivity and permeability of the "as-fabricated" T-ZnO and Ni-P coated T-ZnO have been measured in the frequency range of 4-14 GHz and their microwave absorption properties are computed using the coaxial transmission-reflection method. The strongest reflection loss (RL) peak value of -36.41 dB has been obtained at a frequency of ∼8.99 GHz with coating thickness of 3.4 mm for the Ni

  17. On the origin of the Z-shaped narrow-line region in the Seyfert galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Veilleux, Sylvain; Tully, R. B.; Bland-Hawthorn, Jonathan

    1993-01-01

    A kinematic study has been carried out of the line-emitting gas in the Seyfert galaxy NGC 3516. The existence of two curved filaments in the central 2.5 kpc of this galaxy, which give Z-shaped appearance to its NLR. A precessing twin-jet model in which the line-emitting material is entrained by a precessing radio jet and kept ionized by the nuclear ionization field can explain the kinematic data of the brightest emission rather well. If this model is valid, this would make NGC 3516 the least luminous known active galaxy with a precessing jet. An alternative scenario assumes that the curved inner filaments represent gas entrained by a radio jet which is deflected by ram pressure from the rotation interstellar medium of the galaxy.

  18. Unveiling the intrinsic X-ray properties of broad absorption line quasars with a relatively unbiased sample

    SciTech Connect

    Morabito, Leah K.; Dai, Xinyu; Leighly, Karen M.; Sivakoff, Gregory R.; Shankar, Francesco

    2014-05-01

    There is growing evidence of a higher intrinsic fraction of broad absorption line quasars (BALQSOs) than that obtained in optical surveys, on which most previous X-ray studies of BALQSOs have focused. Here we present Chandra observations of 18 BALQSOs at z ∼ 2, selected from a near-infrared (Two Micron All Sky Survey) sample, where the BALQSO fraction is likely to be close to the intrinsic fraction. We measure photon indices using the stacked spectra of the optically faint (i – K{sub s} ≥ 2.3 mag) and optically bright (i – K{sub s} < 2.3 mag) samples to be Γ ≅ 1.5-2.1. We constrain their intrinsic column density by modeling the X-ray fractional hardness ratio, finding a mean column density of 3.5 × 10{sup 22} cm{sup –2} assuming neutral absorption. We incorporate Sloan Digital Sky Survey optical measurements (rest frame UV) to study the broadband spectral index between the X-ray and UV bands, and compare this to a large sample of normal quasars. We estimate that the optically faint BALQSOs are X-ray weaker than the optically bright ones, and the entire sample of BALQSOs are intrinsically X-ray weak when compared to normal active galactic nuclei (AGNs). Correcting for magnification of X-ray emission via gravitational lensing by the central black hole viewed at large inclination angles makes these BALQSOs even more intrinsically X-ray weak. Finally, we estimate AGN kinetic feedback efficiencies of a few percent for an X-ray wind of 0.3c in high-ionization BALQSOs. Combined with energy carried by low-ionization BALQSOs and UV winds, the total kinetic energy in BALQSOs can be sufficient to provide AGN kinetic feedback required to explain the co-evolution between black holes and host galaxies.

  19. Measurements of mesospheric water vapour, aerosols and temperatures with the Spectral Absorption Line Imager (SALI-AT)

    NASA Astrophysics Data System (ADS)

    Shepherd, M. G.; Mullins, M.; Brown, S.; Sargoytchev, S. I.

    2001-08-01

    Water vapour concentration is one of the most important, yet one of the least known quantities of the mesosphere. Knowledge of water vapour concentration is the key to understanding many mesospheric processes, including the one that is primary focus of our investigation, mesospheric clouds (MC). The processes of formation and occurrence parameters of MC constitute an interesting problem in their own right, but recently evidence has been provided which suggests that they are a critical indicator of atmospheric change. The aim of the SALI-AT experiment is to make simultaneous (although not strictly collocated) measurements of water vapour, aerosols and temperature in the mesosphere and the mesopause region under twilight condition in the presence of mesospheric clouds. The water vapour will be measured in the regime of solar occultation utilizing a water vapour absorption band at 936 nm wavelength employing the SALI (Spectral Absorption Line Imager) instrument concept. A three-channel zenith photometer, AT-3, with wavelengths of 385 nm, 525 nm, and 1040 nm will measure Mie and Rayleigh scattering giving both mesospheric temperature profiles and the particle size distribution. Both instruments are small, low cost and low mass. It is envisioned that the SALI-AT experiment be flown on a small rocket - the Improved Orion/Hotel payload configuration, from the Andoya Rocket range, Norway. Alternatively the instrument can be flown as a "passenger" on larger rocket carrying other experiments. In either case flight costs are relatively low. Some performance simulations are presented showing that the instrument we have designed will be sufficiently sensitive to measure water vapor in concentrations that are expected at the summer mesopause, about 85 km height.

  20. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    SciTech Connect

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.; and others

    2014-10-10

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  1. Satellite and Opacity Effects on Resonance Line Shapes Produced from Short-Pulse Laser Heated Foils

    SciTech Connect

    Shepherd, R; Audebert, P; Chen, H-K; Fournier, K B; Peyreusse, O; Moon, S; Lee, R W; Price, D; Klein, L; Gauthier, J C; Springer, P

    2002-12-03

    We measure the He-like, time-resolved emission from thin foils consisting of 250 {angstrom} of carbon-250 {angstrom} of aluminum and 500 {angstrom} aluminum illuminated with a 150 fs laser pulse at an intensity of 1 x 10{sup 19} W/cm{sup 2}. Dielectronic satellite contributions to the 1s{sup 2}-1s2p({sup 1}P), 1s{sup 2}-1s3p({sup 1}P), and 1s{sup 2}1s4p({sup 1}P) line intensities are modeled using the configuration averaged code AVERROES and is found to be significant for all three resonance lines. The contribution of opacity broadening is inferred from the data and found to be significant only in the 1s{sup 2}-1s2p({sup 1}P).

  2. Path integral formalism for the spectral line shape in plasmas: Lyman-{alpha} with fine structure

    SciTech Connect

    Bedida, N.; Meftah, M. T.; Boland, D.; Stamm, R.

    2008-10-22

    We examine in this work the expression of the dipolar autocorrelation function for an emitter in the plasma using the path integrals formalism. The results for Lyman alpha lines with fine structure are retrieved in a compact formula. The expression of the dipolar autocorrelation function takes into account the ions dynamics and the fine structure effects. The electron's effect is represented by the impact operator {phi}{sub e} in the final formula.

  3. Determination of the Boltzmann constant by means of precision measurements of H2(18)O line shapes at 1.39  μm.

    PubMed

    Moretti, L; Castrillo, A; Fasci, E; De Vizia, M D; Casa, G; Galzerano, G; Merlone, A; Laporta, P; Gianfrani, L

    2013-08-01

    We report on a new implementation of Doppler broadening thermometry based on precision absorption spectroscopy by means of a pair of offset-frequency locked extended-cavity diode lasers at 1.39  μm. The method consists in the highly accurate observation of the shape of the 4(4,1)→4(4,0) line of the H2(18)O ν1+ν3 band, in a water vapor sample at thermodynamic equilibrium. A sophisticated and extremely refined spectral analysis procedure is adopted for the retrieval of the Doppler width as a function of the gas pressure, taking into account the Dicke narrowing effect, the speed dependence of relaxation rates, and the physical correlation between velocity-changing and dephasing collisions. A spectroscopic determination of the Boltzmann constant with a combined (type A and type B) uncertainty of 24 parts over 10(6) is reported. This is the best result obtained so far by means of an optical method. Our determination is in agreement with the recommended CODATA value. PMID:23971548

  4. The Hubble Space Telescope Quasar Absorption Line Key Project. 10: Galactic H I 21 centimeter emission toward 143 quasars and active Galactic nuclei

    NASA Technical Reports Server (NTRS)

    Lockman, Felix J.; Savage, Blair D.

    1995-01-01

    Sensitive H I 21 cm emission line spectra have been measured for the directions to 143 quasars and active galactic nuclei (AGNs) chosen from the observing lists for the Hubble Space Telescope (HST) Quasar Absorption Line Key Project. Narrow-band and wide-band data were obtained with the National Radio Astronomy Observatory (NRAO) 43 m radio telescope for each object. The narrow-band data have a velocity resolution of 1 km/s, extend from -220 to +170 km/s, and are corrected for stray 21 cm radiation. The wide-band data have a resolution of 4 km/s and extend from -1000 to +1000 km/s. The data are important for the interpretation of ultraviolet absorption lines near zero redshift in Key Project spectra. Twenty-two percent of the quasars lie behind Galactic high-velocity H I clouds with absolute value of V(sub LSR) greater than 100 km/s whose presence can increase the equivalent width of interstellar absorption lines significantly. This paper contains the emission spectra and measures of the H I velocities and column densities along the sight line to each quasar. We discuss how the measurements can be used to estimate the visual and ultraviolet extinction toward each quasar and to predict the approximate strength of the strong ultraviolet resonance lines of neutral gas species in the HST Key Project spectra.

  5. The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data and accurate ab initio line list up to 35000 cm(-1).

    PubMed

    Campargue, Alain; Kassi, Samir; Pachucki, Krzysztof; Komasa, Jacek

    2012-01-14

    Five very weak transitions-O(2), O(3), O(4), O(5) and Q(5)-of the first overtone band of H(2) are measured by very high sensitivity CW-Cavity Ring Down Spectroscopy (CRDS) between 6900 and 7920 cm(-1). The noise equivalent absorption of the recordings is on the order of α(min)≈ 5 × 10(-11) cm(-1) allowing for the detection of the O(5) transition with an intensity of 1.1 × 10(-30) cm per molecule, the smallest intensity value measured so far for an H(2) absorption line. A Galatry profile was used to reproduce the measured line shape and derive the line strengths. The pressure shift of the O(2) and O(3) lines was accurately determined from a series of recordings with pressure ranging between 10 and 700 Torr. From an exhaustive review of the literature data, the list of H(2) absorption lines detected so far has been constructed. It includes a total of 39 transitions ranging from the S(0) pure rotational line near 354 cm(-1) up to the S(1) transition of the (5-0) band near 18,908 cm(-1). These experimental values are compared to a highly accurate theoretical line list constructed for pure H(2) at 296 K (0-35,000 cm(-1), intensity cut off of 1 × 10(-34) cm per molecule). The energy levels and transition moments were computed from high level quantum mechanics calculations. The overall agreement between the theoretical and experimental values is found to be very good for the line positions. Some deviations for the intensities of the high overtone bands (V > 2) are discussed in relation with possible pressure effects affecting the retrieved intensity values. We conclude that the hydrogen molecule is probably a unique case in rovibrational spectroscopy for which first principles theory can provide accurate spectroscopic parameters at the level of the performances of the state of the art experimental techniques.

  6. Nustar Reveals an Intrinsically X-ray Weak Broad Absorption Line Quasar in the Ultraluminous Infrared Galaxy Markarian 231

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Brandt. W. N.; Harrison, F. A.; Luo, B.; Alexander, D. M.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Fabian, A. C.; Farrah, D.; Fiore, F.; Gandhi, P.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R. C.; Madsen, K. K.; Ptak, A. F.; Rigby, Jane Rebecca; Risaliti, G.; Saz, C.; Stern, D.; Veilleux, S.; Walton, D. J.; Wik, D. R.; Zhang, W. W.

    2014-01-01

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin N(sub H) approx. 1.2(sup +0.3) sub-0.3) x 10(exp 23) / sq cm) column. The intrinsic X-ray luminosity L(sub 0.5-30 Kev) approx. 1.0 x 10(exp 43) erg /s) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is approx. 0.03% compared to the typical values of 2-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope alpha(sub 0X) approx. -1.7. It is a local example of a low-ionization broad absorption line (LoBAL) quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  7. Resonant infiltration of an opal: Reflection line shape and contribution from in-depth regions.

    PubMed

    Maurin, Isabelle; Bloch, Daniel

    2015-06-21

    We analyze the resonant variation of the optical reflection on an infiltrated artificial opal made of transparent nanospheres. The resonant infiltration is considered as a perturbation in the frame of a previously described one-dimensional model based upon a stratified effective index. We show that for a thin slice of resonant medium, the resonant response oscillates with the position of this slice. We derive that for adequate conditions of incidence angle, this spatially oscillating behavior matches the geometrical periodicity of the opal and hence the related density of resonant infiltration. Close to these matching conditions, the resonant response of the global infiltration varies sharply in amplitude and shape with the incidence angle and polarization. The corresponding resonant reflection originates from a rather deep infiltration, up to several wavelengths or layers of spheres. Finally, we discuss the relationship between the present predictions and our previous observations on an opal infiltrated with a resonant vapor. PMID:26093572

  8. Resonant infiltration of an opal: Reflection line shape and contribution from in-depth regions

    NASA Astrophysics Data System (ADS)

    Maurin, Isabelle; Bloch, Daniel

    2015-06-01

    We analyze the resonant variation of the optical reflection on an infiltrated artificial opal made of transparent nanospheres. The resonant infiltration is considered as a perturbation in the frame of a previously described one-dimensional model based upon a stratified effective index. We show that for a thin slice of resonant medium, the resonant response oscillates with the position of this slice. We derive that for adequate conditions of incidence angle, this spatially oscillating behavior matches the geometrical periodicity of the opal and hence the related density of resonant infiltration. Close to these matching conditions, the resonant response of the global infiltration varies sharply in amplitude and shape with the incidence angle and polarization. The corresponding resonant reflection originates from a rather deep infiltration, up to several wavelengths or layers of spheres. Finally, we discuss the relationship between the present predictions and our previous observations on an opal infiltrated with a resonant vapor.

  9. Resonant infiltration of an opal: Reflection line shape and contribution from in-depth regions.

    PubMed

    Maurin, Isabelle; Bloch, Daniel

    2015-06-21

    We analyze the resonant variation of the optical reflection on an infiltrated artificial opal made of transparent nanospheres. The resonant infiltration is considered as a perturbation in the frame of a previously described one-dimensional model based upon a stratified effective index. We show that for a thin slice of resonant medium, the resonant response oscillates with the position of this slice. We derive that for adequate conditions of incidence angle, this spatially oscillating behavior matches the geometrical periodicity of the opal and hence the related density of resonant infiltration. Close to these matching conditions, the resonant response of the global infiltration varies sharply in amplitude and shape with the incidence angle and polarization. The corresponding resonant reflection originates from a rather deep infiltration, up to several wavelengths or layers of spheres. Finally, we discuss the relationship between the present predictions and our previous observations on an opal infiltrated with a resonant vapor.

  10. Electron line shape and transmission function of the KATRIN monitor spectrometer

    SciTech Connect

    Slezák, M.

    2013-12-30

    Knowledge of the neutrino mass is of particular interest in modern neutrino physics. Besides the neutrinoless double beta decay and cosmological observation information about the neutrino mass is obtained from single beta decay by observing the shape of the electron spectrum near the endpoint. The KATRIN β decay experiment aims to push the limit on the effective electron antineutrino mass down to 0.2 eV/c{sup 2}. To reach this sensitivity several systematic effects have to be under control. One of them is the fluctuations of the absolute energy scale, which therefore has to be continuously monitored at very high precision. This paper shortly describes KATRIN, the technique for continuous monitoring of the absolute energy scale and recent improvements in analysis of the monitoring data.

  11. On the line-shape analysis of Compton profiles and its application to neutron scattering

    NASA Astrophysics Data System (ADS)

    Romanelli, G.; Krzystyniak, M.

    2016-05-01

    Analytical properties of Compton profiles are used in order to simplify the analysis of neutron Compton scattering experiments. In particular, the possibility to fit the difference of Compton profiles is discussed as a way to greatly decrease the level of complexity of the data treatment, making the analysis easier, faster and more robust. In the context of the novel method proposed, two mathematical models describing the shapes of differenced Compton profiles are discussed: the simple Gaussian approximation for harmonic and isotropic local potential, and an analytical Gauss-Hermite expansion for an anharmonic or anisotropic potential. The method is applied to data collected by VESUVIO spectrometer at ISIS neutron and muon pulsed source (UK) on Copper and Aluminium samples at ambient and low temperatures.

  12. Laser frequency stabilization using a dispersive line shape induced by Doppler Effect.

    PubMed

    Wang, Qing; Qi, Xianghui; Liu, Shuyong; Yu, Jiachen; Chen, Xuzong

    2015-02-01

    We report a simple and robust Doppler-free spectroscopic technique to stabilize a laser frequency to the atomic transition. By employing Doppler Effect on the atomic beam, we obtained a very stable dispersive signal with a high signal-to-noise ratio and no Doppler-background, which served as an error signal to electronically stabilize a laser frequency without modulation. For validating the performance of this technique, we locked a DFB laser to the (133)Cs D2 line and observed an efficient suppression of the frequency noise and a long-term reduction of the frequency drifts in a laboratory environment.

  13. Laser frequency stabilization using a dispersive line shape induced by Doppler Effect.

    PubMed

    Wang, Qing; Qi, Xianghui; Liu, Shuyong; Yu, Jiachen; Chen, Xuzong

    2015-02-01

    We report a simple and robust Doppler-free spectroscopic technique to stabilize a laser frequency to the atomic transition. By employing Doppler Effect on the atomic beam, we obtained a very stable dispersive signal with a high signal-to-noise ratio and no Doppler-background, which served as an error signal to electronically stabilize a laser frequency without modulation. For validating the performance of this technique, we locked a DFB laser to the (133)Cs D2 line and observed an efficient suppression of the frequency noise and a long-term reduction of the frequency drifts in a laboratory environment. PMID:25836158

  14. Anomalous Dynamical Line Shapes in a Quantum Magnet at Finite Temperature

    SciTech Connect

    Tennant D. A.; James A.; Lake, B.; Essler, F.H.L.; Notbohm, S.; Mikeska, H.-J.; Fielden, J.; Kogerler,, P.; Canfield, P.C.; Telling, M.T.F.

    2012-01-04

    The effect of thermal fluctuations on the dynamics of a gapped quantum magnet is studied using inelastic neutron scattering on copper nitrate, a model material for the spin-1/2, one-dimensional (1D) bond alternating Heisenberg chain. A large, highly deuterated, single-crystal sample of copper nitrate is produced using a solution growth method and measurements are made using the high-resolution backscattering spectrometer OSIRIS at the ISIS Facility. Theoretical calculations and numerical analysis are combined to interpret the physical origin of the thermal effects observed in the magnetic spectra. The primary observations are (1) a thermally induced central peak due to intraband scattering, which is similar to Villain scattering familiar from soliton systems in 1D, and (2) the one-magnon quasiparticle pole is seen to develop with temperature into an asymmetric continuum of scattering. We relate this asymmetric line broadening to a thermal strongly correlated state caused by hard-core constraints and quasiparticle interactions. These findings are a counter example to recent assertions of the universality of line broadening in 1D systems and are applicable to a broad range of quantum systems.

  15. On-line preconcentration and determination of chromium in parenteral solutions by flow injection-flame atomic absorption spectrometry.

    PubMed

    Wuilloud, Gustavo M; Wuilloud, Rodolfo G; de Wuilloud, Jorgelina C A; Olsina, Roberto A; Martinez, Luis D

    2003-02-01

    An on-line chromium preconcentration and determination system implemented with flame atomic absorption spectrometry (FAAS) associated to flow injection (FI) was studied. For the retention of chromium, 4-(2-Thiazolylazo)-resorcinol (TAR) and Amberlite XAD-16 were used, at pH 5.0. The Cr-TAR complex was removed from the micro-column with ethanol. An enrichment factor of 50 was obtained for the preconcentration of 50 ml of sample solution. The detection limit value for the preconcentration of 50 ml of aqueous solution of Cr was 20 ng l(-1). The precision for ten replicate determinations at the 5 microg l(-1) Cr levels was 2.9% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the preconcentration system for chromium was linear with a correlation coefficient of 0.9997 at levels near the detection limits up to at least 100 microg l(-1). The method was successfully applied to the determination of chromium in parenteral solution samples.

  16. An automated on-line minicolumn preconcentration cold vapour atomic absorption spectrometer: application to determination of cadmium in water samples.

    PubMed

    Sahan, Serkan; Sahin, Uğur

    2012-01-15

    A method was developed for on-line solid phase preconcentration and cold vapour atomic absorption spectrometric determination of Cd(II) in aqueous samples. Lewatit Monoplus TP207 iminodiacetate chelating resin was used for the separation and preconcentration of Cd(II) ions at pH 4.0. The whole system was labmade. The influence of analytical parameters such as concentration of eluent and sodium tetrahydroborate solution, flow rate of eluent, sample, and Ar, and matrix ions were investigated. A preconcentration factor of 20 and a detection limit (3s(b)) of 2.1ngL(-1), along with a sampling frequency of 28h(-1) were achieved with 1.4min of sample loading time and with 2.8mL sample consumption. The relative standard deviation (R.S.D.) was 2.5% for 0.05μgL(-1) Cd(II) level. The developed method was used for Cd(II) analysis in water samples. The certified reference material (LGC6019) experimental results are in good agreement with the certified value.

  17. Measurements of the absorption line strength of hydroperoxyl radical in the ν3 band using a continuous wave quantum cascade laser.

    PubMed

    Sakamoto, Yosuke; Tonokura, Kenichi

    2012-01-12

    Mid-infrared absorption spectroscopy has been applied to the detection of the hydroperoxyl (HO(2)) radical in pulsed laser photolysis combined with a laser absorption kinetics reactor. Transitions of the ν(3) vibrational band assigned to the O-O stretch mode were probed with a thermoelectrically cooled, continuous wave mid-infrared distributed feedback quantum cascade laser (QCL). The HO(2) radicals were generated with the photolysis of Cl(2)/CH(3)OH/O(2) mixtures at 355 nm. The absorption cross section at each pressure was determined by three methods at 1065.203 cm(-1) for the F(1), 13(1,13) ← 14(1,14) transition in the ν(3) band. From these values, the absolute absorption cross section at zero pressure was estimated. The relative line strengths of other absorptions in the feasible emitting frequency range of the QCL from 1061.17 to 1065.28 cm(-1) were also measured, and agreed with values reproduced from the HITRAN database. The ν(3) band absorption strength was estimated from the analytically obtained absolute absorption cross section and the calculated relative intensity by spectrum simulation, to be 21.4 ± 4.2 km mol(-1), which shows an agreement with results of quantum chemical calculations. PMID:22148191

  18. Measurements of the absorption line strength of hydroperoxyl radical in the ν3 band using a continuous wave quantum cascade laser.

    PubMed

    Sakamoto, Yosuke; Tonokura, Kenichi

    2012-01-12

    Mid-infrared absorption spectroscopy has been applied to the detection of the hydroperoxyl (HO(2)) radical in pulsed laser photolysis combined with a laser absorption kinetics reactor. Transitions of the ν(3) vibrational band assigned to the O-O stretch mode were probed with a thermoelectrically cooled, continuous wave mid-infrared distributed feedback quantum cascade laser (QCL). The HO(2) radicals were generated with the photolysis of Cl(2)/CH(3)OH/O(2) mixtures at 355 nm. The absorption cross section at each pressure was determined by three methods at 1065.203 cm(-1) for the F(1), 13(1,13) ← 14(1,14) transition in the ν(3) band. From these values, the absolute absorption cross section at zero pressure was estimated. The relative line strengths of other absorptions in the feasible emitting frequency range of the QCL from 1061.17 to 1065.28 cm(-1) were also measured, and agreed with values reproduced from the HITRAN database. The ν(3) band absorption strength was estimated from the analytically obtained absolute absorption cross section and the calculated relative intensity by spectrum simulation, to be 21.4 ± 4.2 km mol(-1), which shows an agreement with results of quantum chemical calculations.

  19. Determination of cobalt in biological samples by line-source and high-resolution continuum source graphite furnace atomic absorption spectrometry using solid sampling or alkaline treatment

    NASA Astrophysics Data System (ADS)

    Ribeiro, Anderson Schwingel; Vieira, Mariana Antunes; da Silva, Alessandra Furtado; Borges, Daniel L. Gallindo; Welz, Bernhard; Heitmann, Uwe; Curtius, Adilson José

    2005-06-01

    Two procedures for the determination of Co in biological samples by graphite furnace atomic absorption spectrometry (GF AAS) were compared: solid sampling (SS) and alkaline treatment with tetramethylammonium hydroxide (TMAH) using two different instruments for the investigation: a conventional line-source (LS) atomic absorption spectrometer and a prototype high-resolution continuum source atomic absorption spectrometer. For the direct introduction of the solid samples, certified reference materials (CRM) were ground to a particle size ≤50 μm. Alkaline treatment was carried out by placing about 250 mg of the sample in polypropylene flasks, adding 2 mL of 25% m/v tetramethylammonium hydroxide and de-ionized water. Due to its unique capacity of providing a 3-D spectral plot, a high-resolution continuum source (HR-CS) graphite furnace atomic absorption spectrometry was used as a tool to evaluate potential spectral interferences, including background absorption for both sample introduction procedures, revealing that a continuous background preceded the atomic signal for pyrolysis temperatures lower than 700 °C. Molecular absorption bands with pronounced rotational fine structure appeared for atomization temperatures >1800 °C probably as a consequence of the formation of PO. After optimization had been carried out using high resolution continuum source atomic absorption spectrometry, the optimized conditions were adopted also for line-source atomic absorption spectrometry. Six biological certified reference materials were analyzed, with calibration against aqueous standards, resulting in agreement with the certified values (according to the t-test for a 95% confidence level) and in detection limits as low as 5 ng g -1.

  20. Three and four generalized Lorentzian approximations for the Voigt line shape.

    PubMed

    Puerta, J; Martin, P

    1981-11-15

    Three and four generalized Lorentzians in two variables have been obtained to approximate the Voigt function by using the asymptotical Padé method. The accuracy has been greatly improved with respect to the one and two generalized Lorentzian approximations reported in a previous paper. Furthermore, the four Lorentzian function is always positive for all values of the normalized collision width and line separation. This approximation gives an accuracy for most of the values of better than 0.0001, and in the worst region the absolute error is ~0.001. In the limits of low and high pressure adequate limit functions are obtained. A four generalized Lorentzian gives a reliable and easily calculable approximation to the Voigt function for most of the experimental needs. PMID:20372294

  1. Abundances of O, Mg, S, Cr, Mn, Ti, Ni and Zn from absorption lines of neutral gas in the Large Magellanic Cloud in front of R136

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Fitzpatrick, E. L.; Savage, B. D.

    1985-01-01

    Weak absorption lines of C I, O I, Mg I, Mg II, Si I, Si II, P I, Cl I, Cr II, Mn II, Fe I, Ni II, Zn II, CO and C2 are detected in neutral gas in front of the 30 Doradus H II region by IUE spectra of R 136. The Large Magellanic Cloud abundances from the absorption lines are a factor of 2 or 3 below those of the Milky Way, in agreement with emission line study results. Neutral gas density and temperature are estimated from the observed excitation and ionization to be about 300/cu cm and 100 K, respectively; this implies a gas pressure of 30,000/cu cm K.

  2. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.

    PubMed

    Jain, Prashant K; Lee, Kyeong Seok; El-Sayed, Ivan H; El-Sayed, Mostafa A

    2006-04-13

    The selection of nanoparticles for achieving efficient contrast for biological and cell imaging applications, as well as for photothermal therapeutic applications, is based on the optical properties of the nanoparticles. We use Mie theory and discrete dipole approximation method to calculate absorption and scattering efficiencies and optical resonance wavelengths for three commonly used classes of nanoparticles: gold nanospheres, silica-gold nanoshells, and gold nanorods. The calculated spectra clearly reflect the well-known dependence of nanoparticle optical properties viz. the resonance wavelength, the extinction cross-section, and the ratio of scattering to absorption, on the nanoparticle dimensions. A systematic quantitative study of the various trends is presented. By increasing the size of gold nanospheres from 20 to 80 nm, the magnitude of extinction as well as the relative contribution of scattering to the extinction rapidly increases. Gold nanospheres in the size range commonly employed ( approximately 40 nm) show an absorption cross-section 5 orders higher than conventional absorbing dyes, while the magnitude of light scattering by 80-nm gold nanospheres is 5 orders higher than the light emission from strongly fluorescing dyes. The variation in the plasmon wavelength maximum of nanospheres, i.e., from approximately 520 to 550 nm, is however too limited to be useful for in vivo applications. Gold nanoshells are found to have optical cross-sections comparable to and even higher than the nanospheres. Additionally, their optical resonances lie favorably in the near-infrared region. The resonance wavelength can be rapidly increased by either increasing the total nanoshell size or increasing the ratio of the core-to-shell radius. The total extinction of nanoshells shows a linear dependence on their total size, however, it is independent of the core/shell radius ratio. The relative scattering contribution to the extinction can be rapidly increased by increasing

  3. Depth and Shape of the 0.94-microm Water Vapor Absorption Band for Clear and Cloudy Skies.

    PubMed

    Volz, F E

    1969-11-01

    Sky radiation near zenith and solar radiation in the rhosigmatau band region were recorded by means of a rotating interference filter (lambda0.98-0.88 microm) and a silicon detector. Although the spectral resolution of the simple spectrometer was not high, the water vapor content of the cloud free atmosphere was obtained with reasonable accuracy. The band depth of the radiation from thin, bright clouds was only slightly greater than that of the cloud free atmosphere, but dense and dark clouds showed deep bands mainly caused by increased path length as a result of multiple scattering. Considerable distortion of the band due to absorption by liquid water is observed in the radiation from very dark and dense clouds, and sometimes during snowfall. Some laboratory measurements are also discussed.

  4. CHANDRA VIEW OF THE WARM-HOT INTERGALACTIC MEDIUM TOWARD 1ES 1553+113: ABSORPTION-LINE DETECTIONS AND IDENTIFICATIONS. I

    SciTech Connect

    Nicastro, F.; Zappacosta, L.; Elvis, M.; Krongold, Y.; Mathur, S.; Gupta, A.; Danforth, C.; Shull, J. M.; Barcons, X.; Borgani, S.; Branchini, E.; Cen, R.; Dave, R.; Kaastra, J.; Paerels, F.; Piro, L.; Takei, Y.

    2013-06-01

    We present the first results from our pilot 500 ks Chandra Low Energy Transmission Grating Large Program observation of the soft X-ray brightest source in the z {approx}> 0.4 sky, the blazar 1ES 1553+113, aimed to secure the first uncontroversial detections of the missing baryons in the X-rays. We identify a total of 11 possible absorption lines, with single-line statistical significances between 2.2{sigma} and 4.1{sigma}. Six of these lines are detected at high single-line statistical significance (3.6 {<=} {sigma} {<=} 4.1), while the remaining five are regarded as marginal detections in association with either other X-ray lines detected at higher significance and/or far-ultraviolet (FUV) signposts. Three of these lines are consistent with metal absorption at z {approx_equal} 0, and we identify them with Galactic O I and C II. The remaining eight lines may be imprinted by intervening absorbers and are all consistent with being high-ionization counterparts of FUV H I and/or O VI intergalactic medium signposts. In particular, five of these eight possible intervening absorption lines (single-line statistical significances of 4.1{sigma}, 4.1{sigma}, 3.9{sigma}, 3.8{sigma}, and 2.7{sigma}), are identified as C V and C VI K{alpha} absorbers belonging to three WHIM systems at z{sub X} = 0.312, z{sub X} = 0.237, and (z{sub X} ) = 0.133, which also produce broad H I (and O VI for the z{sub X} = 0.312 system) absorption in the FUV. For two of these systems (z{sub X} = 0.312 and 0.237), the Chandra X-ray data led the a posteriori discovery of physically consistent broad H I associations in the FUV (for the third system the opposite applies), so confirming the power of the X-ray-FUV synergy for WHIM studies. The true statistical significances of these three X-ray absorption systems, after properly accounting for the number of redshift trials, are 5.8{sigma} (z{sub X} = 0.312; 6.3{sigma} if the low-significance O V and C V K{beta} associations are considered), 3.9{sigma} (z

  5. Laser line illumination scheme allowing the reduction of background signal and the correction of absorption heterogeneities effects for fluorescence reflectance imaging.

    PubMed

    Fantoni, Frédéric; Hervé, Lionel; Poher, Vincent; Gioux, Sylvain; Mars, Jérôme I; Dinten, Jean-Marc

    2015-10-01

    Intraoperative fluorescence imaging in reflectance geometry is an attractive imaging modality as it allows to noninvasively monitor the fluorescence targeted tumors located below the tissue surface. Some drawbacks of this technique are the background fluorescence decreasing the contrast and absorption heterogeneities leading to misinterpretations concerning fluorescence concentrations. We propose a correction technique based on a laser line scanning illumination scheme. We scan the medium with the laser line and acquire, at each position of the line, both fluorescence and excitation images. We then use the finding that there is a relationship between the excitation intensity profile and the background fluorescence one to predict the amount of signal to subtract from the fluorescence images to get a better contrast. As the light absorption information is contained both in fluorescence and excitation images, this method also permits us to correct the effects of absorption heterogeneities. This technique has been validated on simulations and experimentally. Fluorescent inclusions are observed in several configurations at depths ranging from 1 mm to 1 cm. Results obtained with this technique are compared with those obtained with a classical wide-field detection scheme for contrast enhancement and with the fluorescence by an excitation ratio approach for absorption correction. PMID:26442963

  6. Balancing a U-Shaped Assembly Line by Applying Nested Partitions Method

    SciTech Connect

    Bhagwat, Nikhil V.

    2005-01-01

    In this study, we applied the Nested Partitions method to a U-line balancing problem and conducted experiments to evaluate the application. From the results, it is quite evident that the Nested Partitions method provided near optimal solutions (optimal in some cases). Besides, the execution time is quite short as compared to the Branch and Bound algorithm. However, for larger data sets, the algorithm took significantly longer times for execution. One of the reasons could be the way in which the random samples are generated. In the present study, a random sample is a solution in itself which requires assignment of tasks to various stations. The time taken to assign tasks to stations is directly proportional to the number of tasks. Thus, if the number of tasks increases, the time taken to generate random samples for the different regions also increases. The performance index for the Nested Partitions method in the present study was the number of stations in the random solutions (samples) generated. The total idle time for the samples can be used as another performance index. ULINO method is known to have used a combination of bounds to come up with good solutions. This approach of combining different performance indices can be used to evaluate the random samples and obtain even better solutions. Here, we used deterministic time values for the tasks. In industries where majority of tasks are performed manually, the stochastic version of the problem could be of vital importance. Experimenting with different objective functions (No. of stations was used in this study) could be of some significance to some industries where in the cost associated with creation of a new station is not the same. For such industries, the results obtained by using the present approach will not be of much value. Labor costs, task incompletion costs or a combination of those can be effectively used as alternate objective functions.

  7. The effect of vertical velocity probability distribution shape on cloud activation of aerosols: off-line calculations

    NASA Astrophysics Data System (ADS)

    Tonttila, J.; Romakkaniemi, S.; Räisänen, P.; Kokkola, H.; Järvinen, H.

    2012-04-01

    Off-line calculations of cloud activation of aerosols using a probability density function (PDF) for vertical velocity (w) are performed. The focus is on the variation of the shape of the PDF using two functional formulations: the Normal distribution PDF and the Pearson type IV PDF. The Normal distribution provides a familiar example, as it has been widely used to approximate vertical velocity distributions in numerous applications, including climate models. Pearson type IV distribution provides an alternative that, to our knowledge, has not been employed before to describe the vertical velocity PDF. The advantage of the Pearson distribution is its versatility in representing skewed and more peaked distribution shapes compared to the Normal distribution, though this is obtained at the expense of increased mathematical complexity. The experiments are performed using a box model, in which the environmental conditions, including the aerosol size distribution (bi-modal) and chemical composition (ammonium-sulphate particles) are prescribed as constants. Measured size distributions comprising clean and polluted cases are used. Cloud activation of aerosols is calculated by integrating over the positive side of the PDF of w, which yields the mean number of activated particles (Nact). The mean, variance, and skewness of the PDFs along with the type of the PDF itself are altered in order to explore the effect of the PDF shape on the activation process. All experiments are repeated for three well-documented activation parameterizations: Lin & Leaitch, Abdul-Razzak & Ghan and Fountoukis & Nenes. The results show that for symmetric distributions of w (skewness = 0) there is a maximum difference of 10-15 % in Nact between the cases with w given by the Normal distribution, and the more peaked Pearson distribution. The largest differences are seen for the most polluted cases. Nact in clean cases will saturate rather quickly with respect to the maximum supersaturation and, hence

  8. Nd:GdVO4 slab laser with line-shaped end-pumping profile operating at 912 nm

    NASA Astrophysics Data System (ADS)

    Hong, H.; Liu, Q.; Liu, H.; Fu, X.; Gong, M.

    2011-05-01

    A continuous-wave laser with line-shaped end-pumping profile operating at 912 nm is presented. The maximum output power of 7.82 W is obtained, with a slop efficiency of 24.7% and beam quality factors of M {/x 2} ˜ 20, M {/y 2} ˜ 1.3. To the best of our knowledge, this is the first laser diode bar directly pumped Nd:GdVO4 slab laser based on the quasi-three-level 4 F 3/2 → 4 F 9/2 transition in neodymium. Furthermore, we disclose that the experimental setups can be improved by inserting a plano-concave cylindrical lens in the cavity to form a new quasi-concentric resonator to improve die mode-matching in x-direction.

  9. Development of a method for building the shaped lining of heating furnace floors with a walking hearth

    SciTech Connect

    Pirogov, Y.A.; Belov, A.N.; Korchakov, V.G.; Savel'ev, V.N.; Semenov, G.A.; Svyatolutskaya, V.M.

    1986-01-01

    This paper presents a method of making shaped linings of the floors of heating furnaces of ramming mixtures without the use of racks of heat-resistant steel. The blocks were made of high-alumina mixtures for the walking floor in which round or hexagonal billets are heated. By the mass-spectrometric method it was established that in thermal decomposition of the phosphate binder in the proposed ramming mixtures, the mixtures are liberated in the form of PO and PO/sub 2/ molecules. The products of the reaction of orthophosphoric acid with clay are characterized by the lowest resistance to thermal decomposition, which is an indication of the necessity of limiting its content in the ramming mixture to eliminate the danger of phosphorous contamination of the metal being heated.

  10. Interplay of quark and meson degrees of freedom in near-threshold states: A practical parametrization for line shapes

    NASA Astrophysics Data System (ADS)

    Guo, F.-K.; Hanhart, C.; Kalashnikova, Yu. S.; Matuschek, P.; Mizuk, R. V.; Nefediev, A. V.; Wang, Q.; Wynen, J.-L.

    2016-04-01

    We propose a practical parametrization for the line shapes of near-threshold states compatible with all requirements of unitarity and analyticity. The coupled-channel system underlying the proposed parametrization includes bare poles and an arbitrary number of elastic and inelastic channels treated fully nonperturbatively. The resulting formulas are general enough to be used for a simultaneous analysis of the data in all available production and decay channels of the (system of) state(s) under consideration for a quite wide class of reactions. As an example, we fit the experimental data currently available for several decay channels for the charged Zb(') states in the spectrum of bottomonia and find a good overall description of the data. We find the present data to be consistent with the Zb(10610 ) as a virtual state and with the Zb(10650 ) as a resonance, both residing very close to the B B¯* and B*B¯* threshold, respectively.

  11. THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. I. DATA AND EMPIRICAL TRENDS

    SciTech Connect

    Van Dokkum, Pieter G.; Conroy, Charlie

    2012-11-20

    The strength of gravity-sensitive absorption lines in the integrated light of old stellar populations is one of the few direct probes of the stellar initial mass function (IMF) outside of the Milky Way. Owing to the advent of fully depleted CCDs with little or no fringing it has recently become possible to obtain accurate measurements of these features. Here, we present spectra covering the wavelength ranges 0.35-0.55 {mu}m and 0.72-1.03 {mu}m for the bulge of M31 and 34 early-type galaxies from the SAURON sample, obtained with the Low Resolution Imaging Spectrometer on Keck. The signal-to-noise ratio is {approx}> 200 A{sup -1} out to 1 {mu}m, which is sufficient to measure gravity-sensitive features for individual galaxies and to determine how they depend on other properties of the galaxies. Combining the new data with previously obtained spectra for globular clusters in M31 and the most massive elliptical galaxies in the Virgo cluster, we find that the dwarf-sensitive Na I {lambda}8183, 8195 doublet and the FeH {lambda}9916 Wing-Ford band increase systematically with velocity dispersion, while the giant-sensitive Ca II {lambda}8498, 8542, 8662 triplet decreases with dispersion. These trends are consistent with a varying IMF, such that galaxies with deeper potential wells have more dwarf-enriched mass functions. In a companion paper, we use a comprehensive stellar population synthesis model to demonstrate that IMF effects can be separated from age and abundance variations and quantify the IMF variation among early-type galaxies.

  12. THE DIAGNOSTIC O VI ABSORPTION LINE IN DIFFUSE PLASMAS: COMPARISON OF NON-EQUILIBRIUM IONIZATION STRUCTURE SIMULATIONS TO FUSE DATA

    SciTech Connect

    De Avillez, Miguel A.; Breitschwerdt, Dieter

    2012-12-20

    The nature of the interstellar O VI in the Galactic disk is studied by means of a multi-fluid hydrodynamical approximation, tracing the detailed time-dependent evolution of the ionization structure of the plasma. Our focus is to explore the signature of any non-equilibrium ionization condition present in the interstellar medium using the diagnostic O VI ion. A detailed comparison between the simulations and FUSE data is carried out by taking lines of sight (LOS) measurements through the simulated Galactic disk, covering an extent of 4 kpc from different vantage points. The simulation results bear a striking resemblance with the observations: (1) the N(O VI) distribution with distance and angle fall within the minimum and maximum values of the FUSE data; (2) the column density dispersion with distance is constant for all the LOS, showing a mild decrease at large distances; (3) O VI has a clumpy distribution along the LOS; and (4) the time-averaged midplane density for distances >400 pc has a value of (1.3-1.4) Multiplication-Sign 10{sup -8} cm{sup -3}. The highest concentration of O VI by mass occurs in the thermally stable (10{sup 3.9} K < T {<=} 10{sup 4.2} K; 20%) and unstable (10{sup 4.2} K < T < 10{sup 5} K; 50%) regimes, both well below its peak temperature in collisional ionization equilibrium, with the corresponding volume filling factors oscillating with time between 8%-20% and 4%-5%, respectively. These results may also be relevant for intergalactic metal absorption systems at high redshifts.

  13. Enhanced lines and box-shaped features in the gamma-ray spectrum from annihilating dark matter in the NMSSM

    NASA Astrophysics Data System (ADS)

    Cerdeño, D. G.; Peiró, M.; Robles, S.

    2016-04-01

    We study spectral features in the gamma-ray emission from dark matter (DM) annihilation in the Next-to-Minimal Supersymmetric Standard Model (NMSSM), with either neutralino or right-handed (RH) sneutrino DM . We perform a series of scans over the NMSSM parameter space, compute the DM annihilation cross section into two photons and the contribution of box-shaped features, and compare them with the limits derived from the Fermi-LAT search for gamma-ray lines using the latest Pass 8 data. We implement the LHC bounds on the Higgs sector and on the masses of supersymmetric particles as well as the constraints on low-energy observables. We also consider the recent upper limits from the Fermi-LAT satellite on the continuum gamma-ray emission from dwarf spheroidal galaxies (dSphs). We show that in the case of the RH sneutrino the constraint on gamma-ray spectral features can be more stringent than the dSph bounds. This is due to the Breit-Wigner enhancement near the ubiquitous resonances with a CP even Higgs and the contribution of scalar and pseudoscalar Higgs final states to box-shaped features. By contrast, for neutralino DM, the di-photon final state is only enhanced in the resonance with a Z boson and box-shaped features are even more suppressed. Therefore, the observation of spectral features could constitute a discriminating factor between both models. In addition, we compare our results with direct DM searches, including the SuperCDMS and LUX limits on the elastic DM-nucleus scattering cross section and show that some of these scenarios would be accessible to next generation experiments. Thus, our findings strengthen the idea of complementarity among distinct DM search strategies.

  14. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    DOE PAGES

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; et al

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted aftermore » the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered« less

  15. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    SciTech Connect

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Aysto, J.; Bowry, M.; Briz Monago, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucoanes, A.; Eloma, V.; Estvez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttil, H.; Regan, P. H.; Shiba, T.; Rissanen, J.; Rubio, B.; Weber, C.

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted after the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered

  16. The study of micro-arc discharges during cathodic plasma electrolysis of refractory metals using the spectral line shape of Na I lines

    NASA Astrophysics Data System (ADS)

    Jovović, Jovica; Stojadinović, Stevan; Tadić, Nenad; Vasilić, Rastko; Šišović, Nikola M.

    2016-03-01

    The micro-arc discharges during cathodic plasma electrolysis of refractory metals (Zr, Ti, Ta) are studied by means of optical emission spectroscopy. The fitting procedure based on three mutually shifted profiles is developed to analyze the complex line shape of Na I 568.64 nm and 615.86 nm doublets. Each profile includes effects of instrumental, Doppler, Stark, van der Waals and resonance broadening. The results show the existence of three discharge zones with electron number density values Ne1=7× 1014 \\text{cm}-3 , Ne2=(0.5\\text{--}1)× 1016 \\text{cm}-3 and Ne3= (1.5\\text{--}2.8)× 1016 \\text{cm}-3 while those of sodium ground-state atoms are Ng1=1.4×1017 \\text{cm}-3 , Ng2=3.6×1017 \\text{cm}-3 and Ng3=(1.7\\text{--}3.7)×1018 \\text{cm}-3 .

  17. Investigation of SO3 absorption line for in situ gas detection inside combustion plants using a 4-μm-band laser source.

    PubMed

    Tokura, A; Tadanaga, O; Nishimiya, T; Muta, K; Kamiyama, N; Yonemura, M; Fujii, S; Tsumura, Y; Abe, M; Takenouchi, H; Kenmotsu, K; Sakai, Y

    2016-09-01

    We have investigated 4-μm-band SO3 absorption lines for in situSO3 detection using a mid-infrared laser source based on difference frequency generation in a quasi-phase-matched LiNbO3 waveguide. In the wavelength range of 4.09400-4.10600 μm, there were strong SO3 absorption lines. The maximum absorption coefficient at a concentration of 170 ppmv was estimated to be about 3.2×10-5  cm-1 at a gas temperature of 190°C. In coexistence with H2O, the reduction of the SO3 absorption peak height was observed, which was caused by sulfuric acid formation. We discuss a method of using an SO3 equilibrium curve to derive the total SO3 molecule concentration. PMID:27607263

  18. Spectroscopy of Bright Quasars with the Hubble Space Telescope and Lyman-Alpha Absorption Lines in the Redshift Range 0.5 < Z < 1.7

    NASA Astrophysics Data System (ADS)

    Impey, C. D.; Petry, C. E.; Malkan, M. A.; Webb, W.

    1996-06-01

    We report ultraviolet spectroscopy of three bright quasars obtained with the Faint Object Spectrograph of the Hubble Space Telescope. The good quality spectra covering the range 1800-3300 A result from spectropolarimetry acquired for these targets, the interpretation of which has been published elsewhere. Objective algorithms were used to select absorption lines whose strength exceeded 4 times the rms noise in the nearby continuum, resulting in 109 significant lines for PG 1222+228, 91 significant lines for PG 1634+706, and 19 significant lines for PG 2302+029. Most of the spectral range covers the region with a high density of lines due to intervening absorbers, blueward of the Lyman- α emission line. In PG 1222+228, we identify about 35% of the lines as being associated with the seven metal line systems already known in this quasar. Three have seven or more metal lines identified. An additional 12% are either galactic lines or Lyman-α, Lyman-β pairs with no associated metals. In PG 1634 + 706, nearly 42% of the absorption lines are identified with metal systems. Some are associated with the two metal line systems previously known in this quasar, others are associated with two newly identified C IV Systems at z = 0.6540 and z = 0.9057. Another 19% are galactic lines or Lyman-α, Lyman-β pairs with no associated metals. Six galactic lines are identified in the spectrum of PG 2302 + 029; no lines due to intervening absorbers could be identified. The data for PG 1222 + 228 and PG 1634 + 706 can be used to estimate the number density of Lyman-α absorbers in the redshift range 0.5 < z < 1.7. Above an effective rest equivalent width of 0.4 A there are 25 Lyman-α lines in PG 1222 + 228 in the wavelength range 2300- 3300 A, and 11 Lyman-α lines in PG 1634 + 706 in the wavelength range 1865-2650 A. We have been able to demonstrate that the identification procedure and the method of fitting lines in blended regions is unlikely to contribute systematic errors beyond

  19. Air-Broadened Line Shapes in the 2ν_3 R Branch of ^{12}CH_4 Between 6014 and 6100 CM^{-1}

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, K.; Brown, L. R.; Crawford, T. J.; Yu, Shanshan; Smith, M. A. H.; Mantz, A. W.

    2013-06-01

    Complete and accurate information on line shape parameters of 2ν_3 methane transitions for air broadening as a function of temperature is critical not only for the correct interpretation of the observed atmospheric spectra but also for the development of a reliable theoretical model. For this reason, we obtained a series of high-resolution, high S/N spectra of high-purity ^{12}CH_4 and ^{12}CH_4 broadened with dry air at temperatures in the 130 to 295 K range using the Bruker IFS 125HR Fourier transform spectrometer at JPL. Two absorption cells were used in the experiment, a White cell with path length of 13 m for room temperature spectra and a 21 m Herriott cell for cold sample spectra. The 15 spectra used in the analysis consisted of 3 low pressure (0.26 to 2.57 Torr) spectra with pure ^{12}CH_4 and 12 air-broadened spectra with total sample pressures of 79-805 Torr and volume mixing ratios of methane between 0.23 and 1%. A multispectrum least-squares fitting technique was employed to fit all 15 spectra simultaneously. Preliminary results for select R(J) manifolds will be presented. A. W. Mantz, K. Sung, L. R. Brown, et al., abstract submitted to this Symposium. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. Atkins, JQSRT {53} (1995) 705-721. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  20. INFRARED ABSORPTION LINES TOWARD NGC 7538 IRS 1: ABUNDANCES OF H{sub 2}, H{sub 3}{sup +}, AND CO

    SciTech Connect

    Goto, Miwa; Geballe, T. R.; Usuda, Tomonori E-mail: tgeballe@gemini.edu

    2015-06-10

    We report high-resolution near-infrared absorption spectroscopy of H{sub 2}, H{sub 3}{sup +}, and CO toward the young high mass object NGC 7538 IRS 1. The v = 1–0 H{sub 2} S(0) line and lines in the CO v = 2–0 band were detected; the v = 1–0 H{sub 2} S(1) line and the v = 1–0 H{sub 3}{sup +} lines [R(1, 1){sup l}, R(1, 0), R(1, 1){sup u}] were not detected. The line of sight traverses two clouds, with temperatures 45 and 259 K and with roughly equal column densities of CO. Assuming that H{sub 2} is at the same temperature as CO and that the two species are uniformly mixed, [H{sub 2}]/[CO] = 3600 ± 1200. NGC 7538 is the most distant object from the Galactic center for which [H{sub 2}]/[CO] has been directly measured using infrared absorption spectroscopy.

  1. The Hubble Space Telescope quasar absorption line key project. I - First observational results, including Lyman-alpha and Lyman-limit systems

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Sargent, W. L. W.; Savage, Blair D.; Schneider, Donald P.; Turnshek, David A.

    1993-01-01

    Spectra are presented for 37 quasars with small and moderate redshifts; the quasars were observed with the Faint Object Spectrograph of the HST. New higher resolution measurements of the absorption lines in the UV spectra of 11 quasars with emission-line redshifts that lie between 0.3 and 1.0 are reported. Calibrated spectra and continuum fits are shown for each object. A total of 104 extragalactic Ly-alpha systems are identified, nine of which are found at the same redshifts as metal-line systems. The local number density of Ly-alpha systems with rest equivalent widths larger than 0.32 A and without detected metal lines is about 15.1 +/- 4.3 Ly-alpha systems per unit redshift with gamma = 0.30 +/- 0.62 and W* = 0.22 +/- 0.02 A. A total of 10 Lyman-limit systems with an optical depth greater than 0.4 are identified. The paucity of damped Ly-alpha lines at small and moderate redshifts shows that the number density of damped absorption systems decreases with decreasing redshift.

  2. Calculated Hanle transmission and absorption spectra of the {sup 87}Rb D{sub 1} line with residual magnetic field for arbitrarily polarized light

    SciTech Connect

    Noh, Heung-Ryoul; Moon, Han Seb

    2010-09-15

    This paper reports a theoretical study on the transmission spectra of an arbitrarily polarized laser beam through a rubidium cell with or without a buffer gas in Hanle-type coherent population trapping (CPT). This study examined how laser polarization, transverse magnetic field, and collisions with buffer gas affects the spectrum. The transmission spectrum due to CPT and the absorption spectrum due to the level crossing absorption (LCA) were calculated according to the laser polarization. The results show that the LCA is strongly dependent on the transverse magnetic field and interaction time of the atoms with a laser light via collisions with the buffer gas. In addition, the spectral shape of the calculated Hanle spectrum is closely related to the direction between the (stray) transverse magnetic field and polarization of the laser.

  3. The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (I) Rovibrational lines

    NASA Astrophysics Data System (ADS)

    Vasilchenko, S.; Konefal, M.; Mondelain, D.; Kassi, S.; Čermák, P.; Tashkun, S. A.; Perevalov, V. I.; Campargue, A.

    2016-11-01

    The absorption of carbon dioxide is very weak near 2.3 μm which makes this transparency window of particular interest for the study of Venus' lower atmosphere. As a consequence of the weakness of the transitions located in this region, previous experimental data are very scarce and spectroscopic databases provide calculated line lists which should be tested and validated by experiment. In this work, we use the Cavity Ring Down Spectroscopy (CRDS) technique for a high sensitivity characterization of the CO2 absorption spectrum in two spectral intervals of the 2.3 μm window: 4248-4257 and 4295-4380 cm-1 which were accessed using a Distributed Feed Back (DFB) diode laser and a Vertical External Cavity Surface Emitting Laser (VECSEL) as light sources, respectively. The achieved sensitivity (noise equivalent absorption, αmin, on the order of 5×10-10 cm-1) allowed detecting numerous new transitions with intensity values down to 5×10-30 cm/molecule. The rovibrational assignments were performed by comparison with available theoretical line lists in particular those obtained at IAO Tomsk using the global effective operator approach. Hot bands of the main isotopologue and 16O12C18O bands were found to be missing in the HITRAN database while they contribute importantly to the absorption in the region. Additional CRDS spectra of a CO2 sample highly enriched in 18O were recorded in order to improve the spectroscopy of this isotopologue. As a result about 700 lines of 16O12C18O, 16O12C17O, 17O12C18O, 12C18O2 and 13C18O2 were newly measured. The status of the different databases (HITRAN, CDSD, variational calculations) in the important 2.3 μm transparency window is discussed. Possible improvements to correct evidenced deficiencies are suggested.

  4. Physical states and finite-size effects in Kitaev's honeycomb model: Bond disorder, spin excitations, and NMR line shape

    NASA Astrophysics Data System (ADS)

    Zschocke, Fabian; Vojta, Matthias

    2015-07-01

    Kitaev's compass model on the honeycomb lattice realizes a spin liquid whose emergent excitations are dispersive Majorana fermions and static Z2 gauge fluxes. We discuss the proper selection of physical states for finite-size simulations in the Majorana representation, based on a recent paper by F. L. Pedrocchi, S. Chesi, and D. Loss [Phys. Rev. B 84, 165414 (2011), 10.1103/PhysRevB.84.165414]. Certain physical observables acquire large finite-size effects, in particular if the ground state is not fermion-free, which we prove to generally apply to the system in the gapless phase and with periodic boundary conditions. To illustrate our findings, we compute the static and dynamic spin susceptibilities for finite-size systems. Specifically, we consider random-bond disorder (which preserves the solubility of the model), calculate the distribution of local flux gaps, and extract the NMR line shape. We also predict a transition to a random-flux state with increasing disorder.

  5. Ophthalmoplegia starting with a headache circumscribed in a line-shaped area: a subtype of ophthalmoplegic migraine?

    PubMed Central

    2014-01-01

    Recurrent painful ophthalmoplegic neuropathy (RPON), formerly named ophthalmoplegic migraine (OM), is a rare condition characterized by the association of unilateral headaches and the ipsilateral oculomotor nerve palsy. The third cranial nerve is most commonly involved in the recurrent attacks. But it is still debated whether a migraine or an oculomotor neuropathy may be the primary cause of this disorder. Here, we report an elder patient who had a recurrent ophthalmoplegia starting with an unilateral headache circumscribed in an area shaped in a line linking the posterior-parietal region and the ipsilateral eye. And the headache had couple of features similar to that of migraine, such as past history of recurrent migraine attacks, accompaniments of nausea, vomiting, and phonophobia, response to flunarizine and sodium valproate. We may herein report a subtype of OM but not a RPON. This case report indicates that OM may exist as an entity and some OM may be wrongly grouped under the category of RPON in the current international headache classification. PMID:24739597

  6. Fano line-shape control and superluminal light using cavity quantum electrodynamics with a partially transmitting element

    NASA Astrophysics Data System (ADS)

    Li, Jiahua; Yu, Rong; Liu, Jiuyang; Ding, Chunling; Wu, Ying

    2016-05-01

    We study the probe-field transmission in cavity quantum electrodynamics (cavity-QED) systems with a partially transmitting element (PTE), where the PTE is used to control and tune the amplitude of the weak probe field propagating along a single waveguide channel in the structure. We derive analytic formulas utilized to determine the transmission coefficient of the probe field within the framework of quantum optics. Using experimentally accessible parameters, it is clearly shown that the asymmetric Fano-resonance line shape can be formed and manipulated by means of the added PTE. Furthermore, we reveal that there exists superluminal light with large intensity transmission in the transport spectrum of the waveguide-coupled cavity-QED system. This superluminal-light propagation effect, which exhibits the anomalous phase shift and is characterized by the negative group delay, can be enhanced by properly choosing the system parameters. The obtained results may be used for designing switching, modulation, and sensing for nanophotonic applications and ultrafast on-chip signal processing in telecom applications.

  7. High-resolution line-shape spectroscopy during a laser pulse based on Dual-Broad-Band-CARS interferometry

    SciTech Connect

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M E-mail: Al_Vereshchagin@mail.r E-mail: stelmakh@kapella.gpi.r

    2006-07-31

    A high-resolution spectroscopic method is developed for recording Raman spectra of molecular transitions in transient objects during a laser pulse with a resolution of {approx}0.1 cm{sup -1}. The method is based on CARS spectroscopy using a Fabry-Perot interferometer for spectral analysis of the CARS signal and detecting a circular interferometric pattern on a two-dimensional multichannel photodetector. It is shown that the use of the Dual-Broad-Band-CARS configuration to obtain the CARS process provides the efficient averaging of the spectral-amplitude noise of the CARS signal generated by a laser pulse and, in combination with the angular integration of the two-dimensional interference pattern, considerably improves the quality of interferograms. The method was tested upon diagnostics of the transient oxygen-hydrogen flame where information on the shapes of spectral lines of the Q-branch of hydrogen molecules required for measuring temperature was simultaneously obtained and used. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  8. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  9. Spectral aspects of the determination of Si in organic and aqueous solutions using high-resolution continuum source or line source flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia; Pilarczyk, Janusz; Gościniak, Łukasz

    2016-06-01

    High-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) was applied to reveal and investigate spectral interference in the determination of Si. An intensive structured background was observed in the analysis of both aqueous and xylene solutions containing S compounds. This background was attributed to absorption by the CS molecule formed in the N2O-C2H2 flame. The lines of the CS spectrum at least partially overlap all five of the most sensitive Si lines investigated. The 251.611 nm Si line was demonstrated to be the most advantageous. The intensity of the structured background caused by the CS molecule significantly depends on the chemical form of S in the solution and is the highest for the most-volatile CS2. The presence of O atoms in an initial S molecule can diminish the formation of CS. To overcome this S effect, various modes of baseline fitting and background correction were evaluated, including iterative background correction (IBC) and utilization of correction pixels (WRC). These modes were used either independently or in conjunction with least squares background correction (LSBC). The IBC + LSBC mode can correct the extremely strong interference caused by CS2 at an S concentration of 5% w:w in the investigated solution. However, the efficiency of this mode depends on the similarity of the processed spectra and the correction spectra in terms of intensity and in additional effects, such as a sloping baseline. In the vicinity of the Si line, three lines of V were recorded. These lines are well-separated in the HR-CS FAAS spectrum, but they could be a potential source of overcorrection when using line source flame atomic absorption spectrometry (LS FAAS). The expected signal for the 251.625 nm Fe line was not registered at 200 mg L- 1 Fe concentration in the solution, probably due to the diminished population of Fe atoms in the high-temperature flame used. The observations made using HR-CS FAAS helped to establish a "safe" level

  10. SDSS J163459.82+204936.0: A Ringed Infrared-luminous Quasar with Outflows in Both Absorption and Emission Lines

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hong-Yan; Jiang, Ning; Wu, Xufen; Lyu, Jianwei; Shi, Xiheng; Shu, Xinwen; Jiang, Peng; Ji, Tuo; Wang, Jian-Guo; Wang, Shu-Fen; Sun, Luming

    2016-05-01

    SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L IR = 1011.91 {L}ȯ . We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR ≈ 140 {M}ȯ yr‑1, estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in Hβ, He i λλ5876, 10830, and other emission lines consistently with an offset velocity of ≈900 {km} {{{s}}}-1, as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He i λ10830 and the bulk blueshifting of [O iii]λ5007), while there exist blueshifted broad absorption lines (BALs) in Na i D and He i λλ3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 104 < n H ≲ 105 cm‑3, ionization parameter 10‑1.3 ≲ U ≲ 10‑0.7 , and column density 1022.5 ≲ N H ≲ 1022.9 cm‑2, which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of ˜48–65 pc from the nucleus and that the kinetic luminosity of the outflow is 1044–1046 {erg} {{{s}}}-1. J1634+2049 has a off-centered galactic ring on the scale of ˜30 kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the co-evolution scenario invoking galaxy

  11. SDSS J163459.82+204936.0: A Ringed Infrared-luminous Quasar with Outflows in Both Absorption and Emission Lines

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Zhou, Hong-Yan; Jiang, Ning; Wu, Xufen; Lyu, Jianwei; Shi, Xiheng; Shu, Xinwen; Jiang, Peng; Ji, Tuo; Wang, Jian-Guo; Wang, Shu-Fen; Sun, Luming

    2016-05-01

    SDSS J163459.82+204936.0 is a local (z = 0.1293) infrared-luminous quasar with L IR = 1011.91 {L}⊙ . We present a detailed multiwavelength study of both the host galaxy and the nucleus. The host galaxy, appearing as an early-type galaxy in the optical images and spectra, demonstrates violent, obscured star formation activities with SFR ≈ 140 {M}⊙ yr-1, estimated from either the polycyclic aromatic hydrocarbon emission or IR luminosity. The optical to NIR spectra exhibit a blueshifted narrow cuspy component in Hβ, He i λλ5876, 10830, and other emission lines consistently with an offset velocity of ≈900 {km} {{{s}}}-1, as well as additional blueshifting phenomena in high-ionization lines (e.g., a blueshifted broad component of He i λ10830 and the bulk blueshifting of [O iii]λ5007), while there exist blueshifted broad absorption lines (BALs) in Na i D and He i λλ3889, 10830, indicative of the active galactic nucleus outflows producing BALs and emission lines. Constrained mutually by the several BALs in the photoionization simulations with Cloudy, the physical properties of the absorption line outflow are derived as follows: density 104 < n H ≲ 105 cm-3, ionization parameter 10-1.3 ≲ U ≲ 10-0.7 , and column density 1022.5 ≲ N H ≲ 1022.9 cm-2, which are similar to those derived for the emission line outflows. This similarity suggests a common origin. Taking advantages of both the absorption lines and outflowing emission lines, we find that the outflow gas is located at a distance of ˜48-65 pc from the nucleus and that the kinetic luminosity of the outflow is 1044-1046 {erg} {{{s}}}-1. J1634+2049 has a off-centered galactic ring on the scale of ˜30 kpc that is proved to be formed by a recent head-on collision by a nearby galaxy for which we spectroscopically measure the redshift. Thus, this quasar is a valuable object in the transitional phase emerging out of dust enshrouding as depicted by the co-evolution scenario invoking galaxy merger (or

  12. Absorption Line Survey of H3+ toward the Galactic Center Sources. II. Eight Infrared Sources within 30 pc of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Goto, Miwa; Usuda, Tomonori; Nagata, Tetsuya; Geballe, T. R.; McCall, Benjamin J.; Indriolo, Nick; Suto, Hiroshi; Henning, Thomas; Morong, Christopher P.; Oka, Takeshi

    2008-11-01

    Infrared absorption lines of H+3, including the metastable R(3,3)l line, have been observed toward eight bright infrared sources associated with hot and massive stars located in and between the Galactic center cluster and the Quintuplet cluster 30 pc to the east. The absorption lines with high-velocity dispersion arise in the Galaxy's central molecular zone (CMZ) as well as in foreground spiral arms. The temperature and density of the gas in the CMZ, as determined from the relative strengths of the H3+ lines, are T = 200-300 K and n <= 50-200 cm-3. The detection of high column densities of H3+ toward all eight stars implies that this warm and diffuse gaseous environment is widespread in the CMZ. The products of the ionization rate and path length for these sight lines are 1000 and 10 times higher than in dense and diffuse clouds in the Galactic disk, respectively, indicating that the ionization rate, ζ, is not less than 10-15 s-1 and that L is at least on the order of 50 pc. The warm and diffuse gas is an important component of the CMZ, in addition to the three previously known gaseous environments: (1) cold molecular clouds observed by radio emission of CO and other molecules; (2) hot (T = 104-106 K) and highly ionized diffuse gas (ne = 10-100 cm-3) seen in radio recombination lines, far infrared atomic lines, and radio-wave scattering; and (3) ultrahot (T = 107-108 K) X-ray emitting plasma. Its prevalence significantly changes the understanding of the environment of the CMZ. The sight line toward GC IRS 3 is unique in showing an additional H3+ absorption component, which is interpreted as being due to either a cloud associated with circumnuclear disk or the "50 km s-1 cloud" known from radio observations. An infrared pumping scheme is examined as a mechanism to populate the (3,3) metastable level in this cloud. Based on data collected at Subaru Telescope, operated by the National Astronomical Observatory of Japan.

  13. The Hubble Space Telescope quasar absorption line key project. v. redshift evolution of lyman limit absorption in the spectra of a large sample of quasars

    NASA Technical Reports Server (NTRS)

    Stengler-Larrea, Erik A.; Boksenberg, Alec; Steidel, Charles, C.; Sargent, W. L. W.; Bacall, John N.; Bergeron, Jacqueline; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Savage, Blair D.

    1995-01-01

    Using a sample of 119 QSOs, containing objects we have selected having previously available high quality ground-based and IUE spectral observations, together with Hubble Space Telescope (HST) observations of 26 QSOs from Bahcall et al. (1993, 1995) and Impey et al. (1995) and new optical observations of 41 objects by Steidel & Sargent (1995), we study the redshift evolution of Lyman limit absorption systems (LLSs; tau greater than 1.0) over the reshift range 0.32 less than or equal to z(sub LLS) less than or equal to 4.11. The HST observations significantly improve the determination of the low redshift (0.4 less than or equal to z(sub LLS) less than or equal to 1.4) distribution. We find the effect which may have been responsible for the apparent strong evolution at a(sub LLS) greater than or equal to 2.5 found by Lanzetta (1991), which led him to consider a broken, not single power law as a better description of the redshift distribution of LLSs. After removing objects which may bias our sample, leaving a total of 169 QSOs, we find the distribution is well described by a single power law, and obtain for the number density as a function of redshift the form N(z) = N(sub 0)(1 + z)(exp gamma) with gamma = 1.50 =/- 0.39 and N(sub 0) = 0.25(sup -0.10)(sub +0.17), consistent with a constant comoving density of absorbers in a Firedmann universe with q(sub 0) = 0 but indicating evolution if q(sub 0) = 1/2.

  14. Discovery of a cyclotron absorption line in the spectrum of the binary X-ray pulsar 4U 1538 - 52 observed by Ginga

    NASA Technical Reports Server (NTRS)

    Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro

    1990-01-01

    A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.

  15. Terminal velocity of wind, mass loss, and absorption lines of the central star of the planetary nebula 75 + 35.1 deg

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.; Bruhweiler, Frederick C.

    1989-01-01

    The high-galactic latitude planetary nebula 75 + 35.1 deg was observed in the high-dispersion mode of the International Ultraviolet Explorer (IUE) satellite in the wavelength range 1150-1950 A. The N V resonance doublet at 1240 A and O V subordinate line at 1371 A exhibit strong stellar P Cygni profiles with absorption extending to -2150 km/s and -1000 km/s, respectively. Application of the first moment method implies a mass-loss rate of M = (1-3) x 10 to the -8th solar mass/yr. The high ionization of the wind lines and the presence of strong Fe VI and Fe V lines in the stellar photosphere support that this object is quite hot. A Teff of 75,000 + or - 10,000 K was adopted, although Tc = 94,000 K was found previously from low-resolution IUE data.

  16. Terminal velocity of wind, mass loss, and absorption lines of the central star of the planetary nebula 75 + 35. 1 deg

    SciTech Connect

    Feibelman, W.A.; Bruhweiler, F.C. Catholic Univ. of America, Washington, DC )

    1989-12-01

    The high-galactic latitude planetary nebula 75 + 35.1 deg was observed in the high-dispersion mode of the International Ultraviolet Explorer (IUE) satellite in the wavelength range 1150-1950 A. The N V resonance doublet at 1240 A and O V subordinate line at 1371 A exhibit strong stellar P Cygni profiles with absorption extending to -2150 km/s and -1000 km/s, respectively. Application of the first moment method implies a mass-loss rate of M = (1-3) x 10 to the -8th solar mass/yr. The high ionization of the wind lines and the presence of strong Fe VI and Fe V lines in the stellar photosphere support that this object is quite hot. A Teff of 75,000 + or - 10,000 K was adopted, although Tc = 94,000 K was found previously from low-resolution IUE data. 18 refs.

  17. Flow injection on-line dilution for zinc determination in human saliva with electrothermal atomic absorption spectrometry detection.

    PubMed

    Burguera-Pascu, Margarita; Rodríguez-Archilla, Alberto; Burguera, José Luis; Burguera, Marcela; Rondón, Carlos; Carrero, Pablo

    2007-09-26

    An automated method is described for the determination of zinc in human saliva by electrothermal atomic absorption spectrometry (ET AAS) after on-line dilution of samples with a significant reduction of sample consumption per analysis (<0.4 mL including the dead volume of the system). In order to fulfill this aim without changing the sample transport conduits during the experiments, a flow injection (FI) dilution system was constructed. Its principal parts are: one propulsion device (peristaltic pump, PP) for either samples, standards or washing solution all located in an autosampler tray and for the surfactant solution (Triton X-100) used as diluent, and a two-position time based solenoid injector (TBSI(1)) which allowed the introduction of 10 microL of either solution in the diluent stream. To avoid unnecessary waste of samples, the TBSI(1) also permitted the recirculation of the solutions to their respective autosampler cups. The downstream diluted solution fills a home made sampling arm assembly. The sequential deposition of 20 microL aliquots of samples or standards on the graphite tube platform was carried out by air displacement with a similar time based solenoid injector (TBSI(2)). The dilution procedure and the injection of solutions into the atomizer are computer controlled and synchronized with the operation of the temperature program. Samples or standards solutions were submitted to two drying steps (at 90 and 130 degrees C), followed by pyrolysis and atomization at 700 and 1700 degrees C, respectively. The aqueous calibration was linear up to 120.0 microgL(-1) for diluted standard solutions/samples and its slope was similar (p>0.05) to the standard addition curve, indicating lack of matrix effect. The precision tested by repeated analysis of real saliva samples was less than 3% and the detection limit (3sigma) was of 0.35 microgL(-1). To test the accuracy of the proposed procedure, recovery tests were performed, obtaining mean recovery of added zinc of

  18. Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jianzhong; Ning, C. Z.

    2004-01-01

    We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well

  19. Results of Monitoring the Dramatically Variable C IV Mini-Broad Absorption Line System in the Quasar HS 1603+3820

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Eracleous, Michael; Charlton, Jane C.; Kashikawa, Nobunari

    2007-05-01

    We present six new and two previously published high-resolution spectra of the quasar HS 1603+3820 (zem=2.542) taken over an interval of 4.2 yr (1.2 yr in the quasar rest frame). The observations were made with the High Dispersion Spectrograph on the Subaru telescope and the Medium Resolution Spectrograph on the Hobby-Eberly Telescope. The purpose was to study the narrow absorption lines (NALs). We use time variability and coverage fraction analysis to separate intrinsic absorption lines, which are physically related to the quasar, from intervening absorption lines. By fitting models to the line profiles, we derive the parameters of the respective absorbers as a function of time. Only the mini-BAL system at zabs~2.43 (vshift~9500 km s-1) shows both partial coverage and time variability, although two NAL systems possibly show evidence of partial coverage. We find that all the troughs of the mini-BAL system vary in concert and its total equivalent width variations resemble those of the coverage fraction. However, no other correlations are seen between the variations of different model parameters. Thus, the observed variations cannot be reproduced by a simple change of ionization state or by motion of a homogeneous parcel of gas across the cylinder of sight. We propose that the observed variations are a result of rapid continuum fluctuations, coupled with coverage fraction fluctuations caused by a clumpy screen of variable optical depth located between the continuum source and the mini-BAL gas. An alternative explanation is that the observed partial coverage signature is the result of scattering of continuum photons around the absorber, thus the equivalent width of the mini-BAL can vary as the intensity of the scattered continuum changes. Based on data collected at the Subaru telescope, which is operated by the National Astronomical Observatory of Japan.

  20. Constraints on Porosity and Mass Loss in O-star Winds from the Modeling of X-ray Emission Line Profile Shapes

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.; Cohen, David H.; Sundqvist, Jon O.; Owocki, Stanley P.

    2013-01-01

    We fit X-ray emission line profiles in high resolution XMM-Newton and Chandra grating spectra of the early O supergiant Zeta Pup with models that include the effects of porosity in the stellar wind. We explore the effects of porosity due to both spherical and flattened clumps. We find that porosity models with flattened clumps oriented parallel to the photosphere provide poor fits to observed line shapes. However, porosity models with isotropic clumps can provide acceptable fits to observed line shapes, but only if the porosity effect is moderate. We quantify the degeneracy between porosity effects from isotropic clumps and the mass-loss rate inferred from the X-ray line shapes, and we show that only modest increases in the mass-loss rate (40%) are allowed if moderate porosity effects (h(sub infinity) less than approximately R(sub *)) are assumed to be important. Large porosity lengths, and thus strong porosity effects, are ruled out regardless of assumptions about clump shape. Thus, X-ray mass-loss rate estimates are relatively insensitive to both optically thin and optically thick clumping. This supports the use of X-ray spectroscopy as a mass-loss rate calibration for bright, nearby O stars

  1. Simultaneous assessment of cholesterol absorption and synthesis in humans using on-line gas chromatography/ combustion and gas chromatography/pyrolysis/isotope-ratio mass spectrometry.

    PubMed

    Gremaud, G; Piguet, C; Baumgartner, M; Pouteau, E; Decarli, B; Berger, A; Fay, L B

    2001-01-01

    A number of dietary components and drugs are known to inhibit the absorption of dietary and biliary cholesterol, but at the same time can compensate by increasing cholesterol synthesis. It is, therefore, necessary to have a convenient and accurate method to assess both parameters simultaneously. Hence, we validated such a method in humans using on-line gas chromatography(GC)/combustion and GC/pyrolysis/isotope-ratio mass spectrometry (IRMS). Cholesterol absorption was measured using the ratio of [(13)C]cholesterol (injected intravenously) to [(18)O]cholesterol (administered orally). Simultaneously, cholesterol synthesis was measured using the deuterium incorporation method. Our methodology was applied to 12 mildly hypercholesterolemic men that were given a diet providing 2685 +/- 178 Kcal/day (mean +/- SD) and 255 +/- 8 mg cholesterol per day. Cholesterol fractional synthesis rates ranged from 5.0 to 10.5% pool/day and averaged 7.36% +/- 1.78% pool/day (668 +/- 133 mg/day). Cholesterol absorption ranged from 36.5-79.9% with an average value of 50.8 +/- 15.4%. These values are in agreement with already known data obtained with mildly hypercholesterolemic Caucasian males placed on a diet similar to the one used for this study. However, our combined IRMS method has the advantage over existing methods that it enables simultaneous measurement of cholesterol absorption and synthesis in humans, and is therefore an important research tool for studying the impact of dietary treatments on cholesterol parameters.

  2. H2O and O2 Absorption-Line Abundances in the Coma of Comet 67P/Churyumov-Gerasimenko Measured by the R-Alice Ultraviolet Spectrograph

    NASA Astrophysics Data System (ADS)

    Keeney, Brian A.; Stern, S. Alan; Schindhelm, Eric; A'Hearn, Michael F.; Bertaux, Jean-Loup; Bieler, Andre; Feaga, Lori M.; Feldman, Paul D.; Parker, Joel Wm; Steffl, Andrew Joseph; Weaver, Harold A.

    2016-10-01

    The Alice far-UV spectrograph, aboard the ESA Rosetta spacecraft, has observed emissions in the wavelength range 800-2000 Å from the coma of Comet 67P/Churyumov-Gerasimenko since before orbital insertion in September 2014. We present novel observations of the cometary coma in absorption against the stellar continuum of UV-bright stars that were targeted or serendipitously observed near the comet's nucleus between April 2015 and February 2016 at heliocentric radii ranging from 1.2 to 2.4 AU. These spectra show clear signatures of absorption from gaseous H2O and O2. The observed H2O column densities agree well with values found by Rosetta's VIRTIS instrument (Bockelée-Morvan et al. 2015, A&A, 583, A6) and can be reasonably described by a simple Haser model. However, the absorption-derived O2/H2O ratio is somewhat larger than the 1-10% range reported by Rosetta's ROSINA mass spectrometer (Bieler et al. 2015, Nature, 526, 678) from September 2014 through March 2015 at heliocentric radii of 2.1-3.2 AU. We explore potential causes for this discrepancy, including systematic biases in the absorption-line measurements and seasonal variations in O2/H2O as the comet approaches perihelion.

  3. Unveiling the X-ray/UV properties of disk winds in active galactic nuclei using broad and mini-broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Giustini, M.

    2016-05-01

    We present the results of the uniform analysis of 46 XMM-Newton observations of six BAL and seven mini-BAL QSOs belonging to the Palomar-Green Quasar catalogue. Moderate-quality X-ray spectroscopy was performed with the EPIC-pn, and allowed to characterise the general source spectral shape to be complex, significantly deviating from a power law emission. A simple power law analysis in different energy bands strongly suggests absorption to be more significant than reflection in shaping the spectra. If allowing for the absorbing gas to be either partially covering the continuum emission source or to be ionised, large column densities of the order of 1022-1024 cm-2 are inferred. When the statistics was high enough, virtually every source was found to vary in spectral shape on various time scales, from years to hours. All in all these observational results are compatible with radiation driven accretion disk winds shaping the spectra of these intriguing cosmic sources.

  4. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy.

    PubMed

    Chen, Shun-Li; Fu, Li; Gan, Wei; Wang, Hong-Fei

    2016-01-21

    In this report, we show that the ability to measure the sub-1 cm(-1) resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the -CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4'-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm(-1) peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm(-1) and 21.6 ± 0.4 cm(-1), respectively, for the -CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm(-1) agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm(-1) and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm(-1). These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general. PMID:26801040

  5. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Shun-Li; Fu, Li; Gan, Wei; Wang, Hong-Fei

    2016-01-01

    In this report, we show that the ability to measure the sub-1 cm-1 resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the -CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4'-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm-1 peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm-1 and 21.6 ± 0.4 cm-1, respectively, for the -CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm-1 agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm-1 and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm-1. These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general.

  6. MISALIGNMENT OF THE JET AND THE NORMAL TO THE DUSTY TORUS IN THE BROAD ABSORPTION LINE QSO FIRST J155633.8+351758

    SciTech Connect

    Reynolds, Cormac; Punsly, Brian; O'Dea, Christopher P. E-mail: brian.punsly@comdev-usa.com

    2013-08-10

    We performed Very Long Baseline Array observations of the broad absorption line quasar FIRST J155633.8+351758, ''the first radio loud BALQSO''. Our observations at 15.3 GHz partially resolved a secondary component at position angle (P.A.) Almost-Equal-To 35 Degree-Sign . We combine this determination of the radio jet projection on the sky plane, with the constraint that the jet is viewed within 14. Degree-Sign 3 of the line of sight (as implied by the high variability brightness temperature) and with the P.A. of the optical/UV continuum polarization in order to study the quasar geometry. Within the context of the standard model, the data indicates a ''dusty torus'' (scattering surface) with a symmetry axis tilted relative to the accretion disk normal and a polar broad absorption line outflow aligned with the accretion disk normal. We compare this geometry to that indicated by the higher resolution radio data, brightness temperature, and optical/UV continuum polarization P.A. of a similar high optical polarization BALQSO, Mrk 231. A qualitatively similar geometry is found in these two polar BALQSOs; the continuum polarization is determined primarily by the tilt of the dusty torus.

  7. Theory of damped quantum rotation in nuclear magnetic resonance spectra. III. Nuclear permutation symmetry of the line shape equation.

    PubMed

    Szymański, S

    2009-12-28

    The damped quantum rotation (DQR) theory describes manifestations in nuclear magnetic resonance spectra of the coherent and stochastic dynamics of N-fold molecular rotors composed of indistinguishable particles. The standard jump model is only a limiting case of the DQR approach; outside this limit, the stochastic motions of such rotors have no kinematic description. In this paper, completing the previous two of this series, consequences of nuclear permutation symmetry for the properties of the DQR line shape equation are considered. The systems addressed are planar rotors, such as aromatic hydrocarbons' rings, occurring inside of molecular crystals oriented in the magnetic field. Under such conditions, oddfold rotors can have nontrivial permutation symmetries only for peculiar orientations while evenfold ones always retain their intrinsic symmetry element, which is rotation by 180 degrees about the N-fold axis; in specific orientations the latter can gain two additional symmetry elements. It is shown that the symmetry selection rules applicable to the classical rate processes in fluids, once recognized as having two diverse aspects, macroscopic and microscopic, are also rigorously valid for the DQR processes in the solid state. However, formal justification of these rules is different because the DQR equation is based on the Pauli principle, which is ignored in the jump model. For objects like the benzene ring, exploitation of these rules in simulations of spectra using the DQR equation can be of critical significance for the feasibility of the calculations. Examples of such calculations for the proton system of the benzene ring in a general orientation are provided. It is also shown that, because of the intrinsic symmetries of the evenfold rotors, many of the DQR processes, which such rotors can undergo, are unobservable in NMR spectra.

  8. The absorption spectrum of D2: ultrasensitive cavity ring down spectroscopy of the (2-0) band near 1.7 μm and accurate ab initio line list up to 24,000 cm(-1).

    PubMed

    Kassi, Samir; Campargue, Alain; Pachucki, Krzysztof; Komasa, Jacek

    2012-05-14

    Eleven very weak electric quadrupole transitions Q(2), Q(1), S(0)-S(8) of the first overtone band of D(2) have been measured by very high sensitivity CW-cavity ring down spectroscopy (CRDS) between 5850 and 6720 cm(-1). The noise equivalent absorption of the recordings is on the order of α(min) ≈ 3 × 10(-11) cm(-1). By averaging a high number of spectra, the noise level was lowered to α(min) ≈ 4 × 10(-12) cm(-1) in order to detect the S(8) transition which is among the weakest transitions ever detected in laboratory experiments (line intensity on the order of 1.8 × 10(-31) cm/molecule at 296 K). A Galatry profile was used to reproduce the measured line shape and derive the line strengths. The pressure shift and position at zero pressure limit were determined from recordings with pressures ranging between 10 and 750 Torr. A highly accurate theoretical line list was constructed for pure D(2) at 296 K. The intensity threshold was fixed to a value of 1 × 10(-34) cm/molecule at 296 K. The obtained line list is provided as supplementary material. It extends up to 24,000 cm(-1) and includes 201 transitions belonging to ten v-0 cold bands (v = 0-9) and three v-1 hot bands (v = 1-3). The energy levels include the relativistic and quantum electrodynamic corrections as well as the effects of the finite nuclear mass. The quadrupole transition moments are calculated using highly accurate adiabatic wave functions. The CRDS line positions and intensities of the first overtone band are compared to the corresponding calculated values and to previous measurements of the S(0)-S(3) lines. The agreement between the CRDS and theoretical results is found within the claimed experimental uncertainties (on the order of 1 × 10(-3) cm(-1) and 2% for the positions and intensities, respectively) while the previous S(0)-S(3) measurements showed important deviations for the line intensities.

  9. Broadening of the infrared absorption lines at reduced temperatures. II - Carbon monoxide in an atmosphere of carbon dioxide.

    NASA Technical Reports Server (NTRS)

    Tubbs, L. D.; Williams, D.

    1972-01-01

    The strengths of the rotational lines in the R branch of the CO fundamental have been determined at temperatures of 298, 202, and 132 K by means of a high-resolution spectrograph. The results can be used to determine line strengths at other temperatures by means of the Herman-Wallis relation or by considerations of the populations of the rotational levels in the ground vibrational state. Parameters describing the self-broadening and carbon dioxide broadening of CO lines have been determined at 298 and 202 K. The results are compared with other recent experimental and theoretical studies.

  10. Strong absorption by interstellar hydrogen fluoride: Herschel/HIFI observations of the sight-line to G10.6-0.4 (W31C)

    NASA Astrophysics Data System (ADS)

    Neufeld, D. A.; Sonnentrucker, P.; Phillips, T. G.; Lis, D. C.; de Luca, M.; Goicoechea, J. R.; Black, J. H.; Gerin, M.; Bell, T.; Boulanger, F.; Cernicharo, J.; Coutens, A.; Dartois, E.; Kazmierczak, M.; Encrenaz, P.; Falgarone, E.; Geballe, T. R.; Giesen, T.; Godard, B.; Goldsmith, P. F.; Gry, C.; Gupta, H.; Hennebelle, P.; Herbst, E.; Hily-Blant, P.; Joblin, C.; Kołos, R.; Krełowski, J.; Martín-Pintado, J.; Menten, K. M.; Monje, R.; Mookerjea, B.; Pearson, J.; Perault, M.; Persson, C.; Plume, R.; Salez, M.; Schlemmer, S.; Schmidt, M.; Stutzki, J.; Teyssier, D.; Vastel, C.; Yu, S.; Cais, P.; Caux, E.; Liseau, R.; Morris, P.; Planesas, P.

    2010-07-01

    We report the detection of strong absorption by interstellar hydrogen fluoride along the sight-line to the submillimeter continuum source G10.6-0.4 (W31C). We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 1232.4763 GHz J = 1-0 HF transition in the upper sideband of the Band 5a receiver. The resultant spectrum shows weak HF emission from G10.6-0.4 at LSR velocities in the range -10 to -3 km s-1, accompanied by strong absorption by foreground material at LSR velocities in the range 15 to 50 km s-1. The spectrum is similar to that of the 1113.3430 GHz 111-000 transition of para-water, although at some frequencies the HF (hydrogen fluoride) optical depth clearly exceeds that of para-H2O. The optically-thick HF absorption that we have observed places a conservative lower limit of 1.6×1014 cm-2 on the HF column density along the sight-line to G10.6-0.4. Our lower limit on the HF abundance, 6×10-9 relative to hydrogen nuclei, implies that hydrogen fluoride accounts for between ~30% and 100% of the fluorine nuclei in the gas phase along this sight-line. This observation corroborates theoretical predictions that - because the unique thermochemistry of fluorine permits the exothermic reaction of F atoms with molecular hydrogen - HF will be the dominant reservoir of interstellar fluorine under a wide range of conditions. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  11. Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption

    NASA Technical Reports Server (NTRS)

    Barnes, James C.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1989-01-01

    Amplified spontaneous emission, ASE, generated by a Ti:Al2O3 laser amplifier has been measured as a function of pump energy, and thus gain, using the atomic absorption of rubidium, Rb, gas at 0.780 micron. By tuning the Ti:Al2O3 laser, the Rb cell could selectively absorb the narrow spectral bandwidth laser radiation while transmitting the wide spectral bandwidth ASE. Transmission of laser amplifier pulses through a Rb absorption cell, measured at various temperatures, thus allows the measurement of the weak ASE in the vicinity of the strong laser pulse. A model for the transmission of Rb as a function of temperature and wavelength has been developed. The measured transmissions are in good agreement with the transmission model predictions.

  12. The detailed balance requirement and general empirical formalisms for continuum absorption

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1994-01-01

    Two general empirical formalisms are presented for the spectral density which take into account the deviations from the Lorentz line shape in the wing regions of resonance lines. These formalisms satisfy the detailed balance requirement. Empirical line shape functions, which are essential to provide the continuum absorption at different temperatures in various frequency regions for atmospheric transmission codes, can be obtained by fitting to experimental data.

  13. Unveiling the X-ray/UV properties of AGN winds using Broad and mini-Broad Absorption Line Quasars

    NASA Astrophysics Data System (ADS)

    Giustini, M.

    2015-07-01

    BAL/mini-BALs are observed in the UV spectra of ˜ 20-30% of optically selected AGN as broad absorption troughs blueshifted by several thousands km/s, indicative of powerful nuclear winds. They could be representative of the average AGN if their winds cover only 20-30% of the continuum source, and/or represent an evolutionary state analogous to the high-soft state of BHB, when the jet emission is quenched and strong X-ray absorbing equatorial disk winds are virtually ubiquitous. High-quality, possibly time-resolved X-ray/UV studies are crucial to assess the global amount and 'character' of absorption in BAL/mini-BAL QSOs and to constrain the physical mechanism responsible for the launch and acceleration of their winds, therefore placing them in the broader context of AGN geometry and evolution. I will review here the known X-ray properties of BAL/mini-BAL QSOs, and present new results from a comprehensive X-ray spectral analysis of all the Palomar-Green BAL/mini-BAL QSOs with available XMM-Newton observations, for a total of 51 pointings of 14 different sources. These will include the most recent results from a high-quality simultaneous XMM/HST observational campaign on the mini-BAL QSO PG 1126-041, that unveiled with stunning details the X-ray/UV connection in action in an AGN disk wind through correlated X-ray/UV absorption variability.

  14. Infrared heterodyne spectroscopy of astronomical and laboratory sources at 8.5 micron. [absorption line profiles of nitrogen oxide and black body emission from Moon and Mars

    NASA Technical Reports Server (NTRS)

    Mumma, M.; Kostiuk, T.; Cohen, S.; Buhl, D.; Vonthuna, P. C.

    1974-01-01

    The first infrared heterodyne spectrometer using tuneable semiconductor (PbSe) diode lasers has been constructed and was used near 8.5 micron to measure absorption line profiles of N2O in the laboratory and black body emission from the Moon and from Mars. Spectral information was recorded over a 200 MHz bandwidth using an 8-channel filter bank. The resolution was 25 MHz and the minimum detectable (black body) power was 1 x 10 to the minus 16th power watts for 8 minutes of integration. The results demonstrate the usefulness of heterodyne spectroscopy for the study of remote and local sources in the infrared.

  15. Investigation of broadening and shift of vapour absorption lines of H{sub 2}{sup 16}O in the frequency range 7184 – 7186 cm{sup -1}

    SciTech Connect

    Nadezhdinskii, A I; Pereslavtseva, A A; Ponurovskii, Ya Ya

    2014-10-31

    We present the results of investigation of water vapour absorption spectra in the 7184 – 7186 cm{sup -1} range that is of particular interest from the viewpoint of possible application of the data obtained for monitoring water vapour in the Earth's stratosphere. The doublet of H{sub 2}{sup 16}O near ν = 7185.596 cm{sup -1} is analysed. The coefficients of broadening and shift of water vapour lines are found in the selected range in mixtures with buffer gases and compared to those obtained by other authors. (laser spectroscopy)

  16. Prospects for determining the cosmological helium-3 to helium-4 ratio via absorption-line studies of the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Hurwitz, M.; Bowyer, S.

    1985-01-01

    The prospects for determining the interstellar (He-3)/(He-4) ratio via absorption-line studies in the extreme ultraviolet are considered. A high-resolution extreme-ultraviolet spectrometer fed by a 1-meter-class telescope similar to that discussed in the Far Ultraviolet Spectroscopic Explorer Report (1983) is assumed, and it is found that detection of He-3 may be possible with less than three days of observing time. To measure the (He-3)