Science.gov

Sample records for absorption linear dichroism

  1. Linear-Circular Dichroism of Four-Photon Absorption of Light in Semiconductors with a Complex Valence Band

    NASA Astrophysics Data System (ADS)

    Rasulov, R. Ya.; Rasulov, V. R.; Eshboltaev, I.

    2016-04-01

    Matrix elements of optical transitions occuring between the subbands of the valence band of a p-GaAs type semiconductor are calculated. Transitions associated with the non-simultaneous absorption of single photons and simultaneous absorption of two photons are taken into account. The expressions are obtained for the average values of the square modulus of matrix elements calculated with respect to the solid angle of the wave vector of holes. Linear-circular dichroism of four-photon absorption of light in semiconductors with a complex valence band is theoretically studied.

  2. Theory of x-ray absorption and linear dichroism at the Ca L23-edge of CaCO3

    NASA Astrophysics Data System (ADS)

    Krüger, Peter; Natoli, Calogero R.

    2016-05-01

    X-ray absorption calculations of Ca L23-edge spectra of calcium carbonate in its two main crystal phases, calcite and aragonite, are reported. The multichannel multiple scattering theory with a correlated particle-hole wave function and a partially screened core-hole potential is used. Very good agreement with experiment for both CaCO3 phases is obtained, while the independent particle approximation completely fails. For aragonite, appreciable linear dichroism is predicted in agreement with recent observations.

  3. Linear dichroism and resonant photoemission in Gd 011

    SciTech Connect

    Mishra, S.R.; Cummins, T.R.; Gammon, W.J.; van der Laan, G.; Goodman, K.W.; Tobin, J.G.

    1998-05-13

    Magnetic Linear Dichroism in Angular Distributions (MLDAD) from Photoelectron Emission was used to probe the nature of Resonant Photoemission. Gd 5p and Gd 4f emission were investigated. Using novel theoretical simulations, we were able to show that temporal matching is a requirement for ``True`` Resonant Photoemission, where the Resonant Photoemission retains the characteristics of Photoelectron Emission.

  4. Humidity-dependent dynamic infrared linear dichroism study of a poly(ester urethane)

    NASA Astrophysics Data System (ADS)

    Schoonover, Jon R.; Steckle, Warren P., Jr.; Cox, Jonathan D.; Johnston, Cliff T.; Wang, Yanqia; Gillikin, Angela M.; Palmer, Richard A.

    2007-05-01

    Fourier transform infrared techniques, infrared difference spectroscopy and dynamic infrared linear dichroism (DIRLD), have been utilized to explore the effects of humidity and water absorption on a poly(ester urethane). An environmental infrared microbalance cell was used to measure the infrared spectra as a function of humidity and accompanying weight change for the absorption-desorption processes. The infrared difference data indicate that exposure to humidity affects the hydrogen-bonding interactions in the polymer. Dynamic infrared linear dichroism studies in tensile deformation mode as a function of humidity demonstrate how changes in water content affect the orientational response of functional groups. Complex behavior as a function of humidity for functional groups involved in hydrogen bonding indicates that water absorbed by the polymer affects the micro-environments near these functional groups.

  5. Humidity-dependent dynamic infrared linear dichroism study of a poly(ester urethane).

    PubMed

    Schoonover, Jon R; Steckle, Warren P; Cox, Jonathan D; Johnston, Cliff T; Wang, Yanqia; Gillikin, Angela M; Palmer, Richard A

    2007-05-01

    Fourier transform infrared techniques, infrared difference spectroscopy and dynamic infrared linear dichroism (DIRLD), have been utilized to explore the effects of humidity and water absorption on a poly(ester urethane). An environmental infrared microbalance cell was used to measure the infrared spectra as a function of humidity and accompanying weight change for the absorption-desorption processes. The infrared difference data indicate that exposure to humidity affects the hydrogen-bonding interactions in the polymer. Dynamic infrared linear dichroism studies in tensile deformation mode as a function of humidity demonstrate how changes in water content affect the orientational response of functional groups. Complex behavior as a function of humidity for functional groups involved in hydrogen bonding indicates that water absorbed by the polymer affects the micro-environments near these functional groups. PMID:16950649

  6. Linear Dichroism of Chlorosomes from Chloroflexus Aurantiacus in Compressed Gels and Electric Fields

    PubMed Central

    van Amerongen, H.; Vasmel, H.; van Grondelle, R.

    1988-01-01

    The linear dichroism of chlorosomes from Chloroflexus aurantiacus was measured between 250 and 800 nm. To orient the chlorosomes we used a new way of compressing polyacrylamide gels, where the dimension of the gel along the measuring light-beam is kept constant. The press required for such a way of compressing is relatively easy to construct. A theoretical description is given to interpret the measured linear dichroism in terms of the orientation of the transition moments. The results obtained with the polyacrylamide gels are compared with the linear dichroism measurements for chlorosomes oriented in electric fields. Both the spectral features as well as the absolute size of the linear dichroism signals are in reasonable agreement. We find that the transition moment corresponding to the 741 nm bacteriochlorophyll c (Bchl c) absorption band makes an angle of 20° with the long axis of the chlorosome. For the 461 nm Bchl c band an angle of 30° is found. Both angles are significantly lower than the values reported so far in literature and they imply that Bchl c is highly organized in the chlorosomes. PMID:19431726

  7. An investigation of resonant photoemission in Gd with x-ray linear dichroism

    SciTech Connect

    Tobin, J G

    1998-07-01

    The constructive summing of direct and indirect channels above the absorption threshold of a core level can cause a massive increase in the emission cross section, leading to a phenomenon called "resonant photoemission". Using novel magnetic linear dichroism in angular distribution photoelectron spectroscopy experiments and theoretical simulations, we have probed the nature of the resonant photoemission process in Gd metal. It now appears that temporal matching as well as energy matching is a requirement for true resonant photoemission.

  8. Pulsed electric linear dichroism of triphenylmethane dyes adsorbed on montmorillonite K10 in aqueous media

    SciTech Connect

    Yamaoka, Kiwamu; Sasai, Ryo

    2000-05-01

    Electric linear dichroism (ELD) spectra of two cationic triphenylmethane dyes, crystal violet (CV) and malachite green (MG), bound to sodium montmorillonite K10 (MK-10) were studied at 20 C in aqueous media at two mixing ratios, D/S, of 0.10 and 0.24 in the 700- to 400 nm wavelength region and in the applied electric field strength range between 0 and 3 kV/cm. The specific parallel and perpendicular dichroism ({Delta}A{sub {parallel}}/A and {Delta}A{sub {perpendicular}}/A) spectra of dye-adsorbed MK-10 suspension were measured at a fixed field strength with an apparatus equipped with a 512-channel photodiode array detector. By changing the field strength over a wide range, a series of the reduced dichroism values of the bound dyes were measured at a fixed wavelength. By fitting these dichroism values to theoretical orientation functions, the intrinsic reduced dichroism ({Delta}A/A){sub int} spectra at the limiting high fields (ELD spectrum) were determined for CV and MG bound to MK-10. No appreciable difference was observed at the two D/S values. The ELD spectra of these bound dyes are undulatory but never constant, throughout their absorption region; thus, the dye plane does not lie flatly either on the surface or between layers of MK-10 particle.

  9. Ultrasensitive time-resolved linear dichroism spectral measurements using near-crossed linear polarizers

    NASA Astrophysics Data System (ADS)

    Che, Diping; Shapiro, Daniel B.; Esquerra, Raymond M.; Kliger, David S.

    1994-07-01

    A simple and sensitive technique is introduced to measure time-resolved linear dichroism of spectral transitions. This technique uses the fact that a linear dichroic sample rotates the polarization plane of linearly polarized light. The theoretical basis of the technique is presented using Mueller calculus and a detailed signal analysis is given to account for the effects of various optical imperfections. The results of this analysis are confirmed with the application of the technique to the time-resolved linear dichroism of bacteriorhodopsin in membrane patches (purple membrane) during its photocycle. These experimental results demonstrate the sentivity of the technique.

  10. Interaction of chlorophyll with light: Calculations of absorption spectra and dichroism with a new technique

    NASA Astrophysics Data System (ADS)

    Hamilton, Robert Bryan

    1999-12-01

    The response of a single chlorophyll molecule to light was studied using a semiempirical tight-binding model together with the Peierls substitution. Over a range of wavelengths, the absorption was calculated for unpolarized, linearly polarized, and circularly polarized light. The results are consistent with previous experiments, although detailed comparisons are not possible because the experiments involve chlorophyll molecules in more complicated environments. For unpolarized light, the absorption peaks in the red part of the visible spectrum. There is a secondary shoulder in the blue. For linearly polarized light, the absorption depends on wavelength and the direction of polarization. This can be understood as arising from the joint density of states for transitions at each photon energy, together with matrix-element effects (both of which are included in the present formulation). For circular polarization, the dichroism as a function of wavelength is slightly more subtle, but again can be understood in terms of matrix elements for the states involved in a transition at a given photon energy. We also found that an ``effective helicity'' is useful in understanding the circular dichroism. One advantage of the method used here is that it can be employed for other molecules that are important in photobiology-for example, retinal and melanin.

  11. Fluorescence Linear Dichroism Imaging for Quantifying Membrane Order

    PubMed Central

    Benninger, Richard K.P.

    2014-01-01

    The plasma membrane of a cell is an ordered environment, giving rise to anisotropic orientations and restricted motion of constituent lipids and proteins. The membrane environment is also dynamic and heterogeneous, which is important for the regulation of membrane-localized signaling. A number of fluorescent microscopy approaches enable the membrane order to be quantified with high spatial and temporal resolution. A polarization-resolved fluorescence method, termed fluorescent linear dichroism (fLD) imaging, can quantify the orientation of membrane bound fluorophores which allows spatially resolved measurement of membrane order and sub-resolution membrane topology (ruffling). Here we describe the detailed methods for performing fLD imaging in biological membrane environments such as the plasma membrane of living cells. This includes the preparation of the sample with appropriate fluorescent dyes, the requirements of the microscope system, the data collection protocol, and post-acquisition image processing, analysis, and interpretation. PMID:25331136

  12. Imaging linear birefringence and dichroism in cerebral amyloid pathologies

    PubMed Central

    Jin, Lee-Way; Claborn, Kacey A.; Kurimoto, Miki; Geday, Morten A.; Maezawa, Izumi; Sohraby, Faranak; Estrada, Marcus; Kaminksy, Werner; Kahr, Bart

    2003-01-01

    New advances in polarized light microscopy were used to image Congo red-stained cerebral amyloidosis in sharp relief. The rotating-polarizer method was used to separate the optical effects of transmission, linear birefringence, extinction, linear dichroism, and orientation of the electric dipole transition moments and to display them as false-color maps. These effects are typically convolved in an ordinary polarized light microscope. In this way, we show that the amyloid deposits in Alzheimer's disease plaques contain structurally disordered centers, providing clues to mechanisms of crystallization of amyloid in vivo. Comparisons are made with plaques from tissues of subjects having Down's syndrome and a prion disease. In plaques characteristic of each disease, the Congo red molecules are oriented radially. The optical orientation in amyloid deposited in blood vessels from subjects having cerebral amyloid angiopathy was 90° out of phase from that in the plaques, suggesting that the fibrils run tangentially with respect to the circumference of the blood vessels. Our result supports an early model in which Congo red molecules are aligned along the long fiber axis and is in contrast to the most recent binding models that are based on computation. This investigation illustrates that the latest methods for the optical analysis of heterogeneous substances are useful for in situ study of amyloid. PMID:14668440

  13. Theoretical study of the large linear dichroism of herapathite

    NASA Astrophysics Data System (ADS)

    Liang, Lei; Rulis, Paul; Kahr, Bart; Ching, W. Y.

    2009-12-01

    The remarkable linear dichroism of herapathite (HPT), the active component of polaroid, resisted explanation for more than 150 years because the crystal structure was not solved until very recently. The crystal structure with a formula unit of (C20H24N2O2H2)4ṡC2H4O2ṡ3SO4ṡ2I3ṡ6H2O in an orthorhombic cell has a slight disorder related to the positions of the six water molecules and the acetic-acid molecule. The electronic and optical properties of this complex crystal are here calculated on the basis of the newly described x-ray structure using a density-functional theory based method with local-orbital basis. The theoretical optical spectrum of HPT shows giant optical anisotropy as observed experimentally with an anisotropy factor on the order of 385 that can be ascribed to transitions between molecular levels of the 2I3- chains that are oriented along the crystalline b axis. It is shown that the key to achieve large anisotropy is to align the iodine ions in a quasi-one-dimensional chain via confinement in a clatharate channel formed by the quinine molecules. The solvent molecules in the crystal have a minimal effect. The implications of this work on biologically relevant systems are discussed.

  14. X-ray linear dichroism in cubic compounds: The case of Cr3+ in MgAl2O4

    NASA Astrophysics Data System (ADS)

    Juhin, Amélie; Brouder, Christian; Arrio, Marie-Anne; Cabaret, Delphine; Sainctavit, Philippe; Balan, Etienne; Bordage, Amélie; Seitsonen, Ari P.; Calas, Georges; Eeckhout, Sigrid G.; Glatzel, Pieter

    2008-11-01

    The angular dependence (x-ray linear dichroism) of the CrK pre-edge in MgAl2O4:Cr3+ spinel is measured by means of x-ray absorption near-edge structure spectroscopy and compared to calculations based on density functional theory (DFT) and ligand field multiplet (LFM) theory. We also present an efficient method, based on symmetry considerations, to compute the dichroism of the cubic crystal starting from the dichroism of a single substitutional site. DFT shows that the electric dipole transitions do not contribute to the features visible in the pre-edge and provides a clear vision of the assignment of the 1s→3d transitions. However, DFT is unable to reproduce quantitatively the angular dependence of the pre-edge, which is, on the other side, well reproduced by LFM calculations. The most relevant factors determining the dichroism of CrK pre-edge are identified as the site distortion and 3d-3d electronic repulsion. From this combined DFT, LFM approach is concluded that when the pre-edge features are more intense than 4% of the edge jump, pure quadrupole transitions cannot explain alone the origin of the pre-edge. Finally, the shape of the dichroic signal is more sensitive than the isotropic spectrum to the trigonal distortion of the substitutional site. This suggests the possibility to obtain quantitative information on site distortion from the x-ray linear dichroism by performing angular dependent measurements on single crystals.

  15. Conformation of membrane-bound proteins revealed by vacuum-ultraviolet circular-dichroism and linear-dichroism spectroscopy.

    PubMed

    Matsuo, Koichi; Maki, Yasuyuki; Namatame, Hirofumi; Taniguchi, Masaki; Gekko, Kunihiko

    2016-03-01

    Knowledge of the conformations of a water-soluble protein bound to a membrane is important for understanding the membrane-interaction mechanisms and the membrane-mediated functions of the protein. In this study we applied vacuum-ultraviolet circular-dichroism (VUVCD) and linear-dichroism (LD) spectroscopy to analyze the conformations of α-lactalbumin (LA), thioredoxin (Trx), and β-lactoglobulin (LG) bound to phosphatidylglycerol liposomes. The VUVCD analysis coupled with a neural-network analysis showed that these three proteins have characteristic helix-rich conformations involving several helical segments, of which two amphiphilic or hydrophobic segments take part in interactions with the liposome. The LD analysis predicted the average orientations of these helix segments on the liposome: two amphiphilic helices parallel to the liposome surface for LA, two hydrophobic helices perpendicular to the liposome surface for Trx, and a hydrophobic helix perpendicular to and an amphiphilic helix parallel to the liposome surface for LG. This sequence-level information about the secondary structures and orientations was used to formulate interaction models of the three proteins at the membrane surface. This study demonstrates the validity of a combination of VUVCD and LD spectroscopy in conformational analyses of membrane-binding proteins, which are difficult targets for X-ray crystallography and nuclear magnetic resonance spectroscopy. PMID:26756612

  16. Magnetic x-ray linear dichroism of ultrathin Fe-Ni alloy films

    SciTech Connect

    Schumann, F.O.; Willis, R.F.; Goodman, K.W.

    1997-04-01

    The authors have studied the magnetic structure of ultrathin Fe-Ni alloy films as a function of Fe concentration by measuring the linear dichroism of the 3p-core levels in angle-resolved photoemission spectroscopy. The alloy films, grown by molecular-beam epitaxy on Cu(001) surfaces, were fcc and approximately four monolayers thick. The intensity of the Fe dichroism varied with Fe concentration, with larger dichroisms at lower Fe concentrations. The implication of these results to an ultrathin film analogue of the bulk Invar effect in Fe-Ni alloys will be discussed. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  17. Probing Microscopic Orientation in Membranes by Linear Dichroism.

    PubMed

    Rocha, Sandra; Kogan, Maxim; Beke-Somfai, Tamás; Nordén, Bengt

    2016-03-29

    The cell membrane is an ordered environment, which anisotropically affects the structure and interactions of all of its molecules. Monitoring membrane orientation at a local level is rather challenging but could reward crucial information on protein conformation and interactions in the lipid bilayer. We monitored local lipid ordering changes upon varying the cholesterol concentration using polarized light spectroscopy and pyrene as a membrane probe. Pyrene, with a shape intermediate between a disc and a rod, can detect microscopic orientation variations at the level of its size. The global membrane orientation was determined using curcumin, a probe with nonoverlapping absorption relative to that of pyrene. While the macroscopic orientation of a liquid-phase bilayer decreases with increasing cholesterol concentration, the local orientation is improved. Pyrene is found to be sensitive to the local effects induced by cholesterol and temperature on the bilayer. Disentangling local and global orientation effects in membranes could provide new insights into functionally significant interactions of membrane proteins. PMID:26974226

  18. Infrared absorption and vibrational circular dichroism spectra of poly(vinyl ether) containing diastereomeric menthols as pendants

    NASA Astrophysics Data System (ADS)

    McCann, Jennifer L.; Rauk, Arvi; Wieser, Hal

    1997-06-01

    The absorption and vibrational circular dichroism (VCD) spectra in the 1700 to 830 cm -1 region are reported and qualitatively interpreted for poly(vinyl ether) with (+)-menthol (I), (+)-isomenthol (II) and (+)-neomenthol (III) as pendants.

  19. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    SciTech Connect

    Mishra, S.; Gammon, W.J.; Pappas, D.P.

    1997-04-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield.

  20. Simulation of Vacuum UV Absorption and Electronic Circular Dichroism Spectra of Methyl Oxirane: The Role of Vibrational Effects.

    PubMed

    Hodecker, Manuel; Biczysko, Malgorzata; Dreuw, Andreas; Barone, Vincenzo

    2016-06-14

    Vibrationally resolved one-photon absorption and electronic circular dichroism spectra of (R)-methyl oxirane were calculated with different electronic and vibronic models selecting, through an analysis of the convergence of the results, the best compromise between reliability and computational cost. Linear-response TD-DFT/CAM-B3LYP/SNST electronic computations in conjunction with the simple vertical gradient vibronic model were chosen and employed for systematic comparison with the available experimental data. Remarkable agreement between simulated and experimental spectra was achieved for both one-photon absorption and circular dichroism concerning peak positions, relative intensities, and general spectral shapes considering the computational efficiency of the chosen theoretical approach. The significant improvement of the results with respect to smearing of vertical electronic transitions by phenomenological Gaussian functions and the possible inclusion of solvent effects by polarizable continuum models at a negligible additional cost paves the route toward the simulation and analysis of spectral shapes of complex molecular systems in their natural environment. PMID:27159495

  1. Linear dichroism and optical anisotropy of silver nanoprisms in polymer films

    NASA Astrophysics Data System (ADS)

    Requena, S.; Doan, H.; Raut, S.; D’Achille, A.; Gryczynski, Z.; Gryczynski, I.; Strzhemechny, Y. M.

    2016-08-01

    We present optical studies of two different size distributions of silver triangular nanoprisms, one with a dipole resonance at 520 nm and the other with a dipole resonance at 650 nm, placed in different media. Significant wavelength-dependent depolarization of scattered light from the silver nanoprisms suspended in water indicates strong interference of multiple surface plasmon resonant modes in the same particle. We use this depolarization as a probe of light scattering by the nanoprisms in a lipid solution due to the rejection of a polarized background scattering. Also, the silver nanoprisms were embedded in a polyvinyl alcohol polymer matrix and oriented by stretching the polymer/nanoprism nanocomposite films. We observe significantly increased linear dichroism in the region associated with the plasmonic in-plane dipole mode upon stretching. Additionally, there is a weaker linear dichroism in the region associated with out-of-plane modes, which vanish in the extinction spectrum of the stretched nanocomposite film.

  2. Linear dichroism and optical anisotropy of silver nanoprisms in polymer films.

    PubMed

    Requena, S; Doan, H; Raut, S; D'Achille, A; Gryczynski, Z; Gryczynski, I; Strzhemechny, Y M

    2016-08-12

    We present optical studies of two different size distributions of silver triangular nanoprisms, one with a dipole resonance at 520 nm and the other with a dipole resonance at 650 nm, placed in different media. Significant wavelength-dependent depolarization of scattered light from the silver nanoprisms suspended in water indicates strong interference of multiple surface plasmon resonant modes in the same particle. We use this depolarization as a probe of light scattering by the nanoprisms in a lipid solution due to the rejection of a polarized background scattering. Also, the silver nanoprisms were embedded in a polyvinyl alcohol polymer matrix and oriented by stretching the polymer/nanoprism nanocomposite films. We observe significantly increased linear dichroism in the region associated with the plasmonic in-plane dipole mode upon stretching. Additionally, there is a weaker linear dichroism in the region associated with out-of-plane modes, which vanish in the extinction spectrum of the stretched nanocomposite film. PMID:27348419

  3. Cleavage of supercoiled plasmid DNA by autoantibody Fab fragment: application of the flow linear dichroism technique.

    PubMed Central

    Gololobov, G V; Chernova, E A; Schourov, D V; Smirnov, I V; Kudelina, I A; Gabibov, A G

    1995-01-01

    A highly effective method consisting of two affinity chromatography steps and ion-exchange and gel-filtration chromatography steps was developed for purification of autoantibodies from human sera with DNA-hydrolyzing activity. Antibody Fab fragment, which had been purified 130-fold, was shown to catalyze plasmid DNA cleavage. The flow linear dichroism technique was used for quantitative and qualitative studying of supercoiled plasmid DNA cleavage by these autoantibodies in comparison with DNase I and EcoRI restriction endonuclease. The DNA autoantibody Fab fragment was shown to hydrolyze plasmid DNA by Mg(2+)-dependent single-strand multiple nicking of the substrate. Kinetic properties of the DNA autoantibody Fab fragment were evaluated from the flow linear dichroism and agarose gel electrophoresis data and revealed a high affinity (Kobsm = 43 nM) and considerable catalytic efficiency (kappcat/Kobsm = 0.32 min-1.nM-1) of the reaction. Images Fig. 2 PMID:7816827

  4. Demonstration of X-ray linear dichroism imaging with hard X-rays.

    PubMed

    Sato, K; Okitsu, K; Ueji, Y; Matsushita, T; Amemiya, Y

    2000-11-01

    X-ray polarization-contrast images resulting from X-ray linear dichroism (XLD) in the hard X-ray region have been successfully recorded for the first time. The apparatus used consisted of an X-ray polarizer, double X-ray phase retarders and a high-spatial-resolution X-ray charge-coupled device (CCD) detector. The sample used was a hexagonal close packed (h.c.p.) cobalt single-crystal foil of thickness about 12 microm. The experiment was performed at X-ray energies of 23 and 29 eV above the cobalt K edge (7709 eV), at which the maximum linear dichroisms (approximately 3%) were observed, with their signs reversed, in the XLD spectrum measured with quadruple X-ray phase retarders. The contrasts in the images at the two X-ray energies were reversed as a result of the XLD in the sample. Furthermore, the values of the contrast in the images arising from the linear dichroism (approximately 3%) were in good agreement with those yielded by the XLD spectrum. PMID:16609223

  5. Linear birefringence and dichroism measurement in oil-based Fe3O4 magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Fung; Wang, Chia-Hung; Lee, Meng-Zhe

    2013-04-01

    To prepare dispersed Fe3O4 magnetic nanoparticles (MNPs), we adopt a co-precipitation method and consider surfactant amount, stirring speed, dispersion mode, and molar ratio of Fe3+/Fe2+. Via transmission electronic microscopy and X-ray diffractometry, we characterize the dispersibility and size of the products and determine the appropriate values of experimental parameters. The stirring speed is 1000 rpm in titration. There is simultaneous ultrasonic vibration and mechanical stirring in the titration and surface coating processes. The surfactant amount of oleic acid is 1.2 ml for molar ratios of Fe3+/Fe2+ as 1.7:1, 1.8:1, and 1.9:1. The average diameters of these Fe3O4 MNPs are 11 nm, and the ratios of saturation magnetization for these MNPs to that of bulk magnetite range from 45% to 65%, with remanent magnetization close to zero and low coercivity. Above all, the linear birefringence and dichroism measurements of the kerosene-based ferrofluid (FF) samples are investigated by a Stokes polarimeter. The influences of particle size distribution and magnetization in the birefringence and dichroism measurements of FFs are discussed.

  6. Linear birefringence and dichroism in citric acid coated Fe3O4 magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Fung; Tsai, Chun-Chin; Lee, Meng-Zhe

    2014-12-01

    To prepare highly dispersed water-based Fe3O4 magnetic nanoparticles (MNPs), we adopted the co-precipitation method and used citric acid (CA) as the surfactant. Via transmission electronic microscopy, dynamic light scattering, and X-ray diffractometry, we characterized the dispersibility and size of the products. Through two single-parameter experiments, including the pH value of suspension and the action of double centrifugations, the appropriate parameters' values were determined. Further, to produce CA coated MNPs with good magneto-optical properties as high retardance and low dichroism, the orthogonal design method was used to find the optimal parameters' values, including pH value of suspension after coating was 5, molar ratio of CA to Fe3O4 MNPs was 0.06, volume of CA was 40 ml, and coating temperature was 70 °C. Above all, the linear birefringence and dichroism of the best CA coated ferrofluid we produced were measured by a Stokes polarimeter as 23.6294° and 0.3411 under 64.5 mT, respectively. Thus, the biomedical applications could be performed hereafter.

  7. Temperature-induced structural changes in putidaredoxin: a circular dichroism and UV-VIS absorption study.

    PubMed

    Reipa, Vytas; Holden, Marcia; Mayhew, Martin P; Vilker, Vincent L

    2004-06-01

    Putidaredoxin (Pdx) is an 11,400-Da iron-sulfur protein that sequentially transfers two electrons to the cytochrome P450cam during the enzymatic cycle of the stereospecific camphor hydroxylation. We report two transitions in the Pdx UV-VIS absorption and circular dichroism (CD) temperature dependencies, occurring at 16.3+/-0.5 degrees C and 28.4+/-0.5 degrees C. The 16.3 degrees C transition is attributed to the disruption of the hydrogen bonding of the active center bridging sulfur atom with cysteine 45 and alanine 46. The transition at 28.4 degrees C occurs exclusively in the Pdx(ox) at very nearly the same temperature as the earlier reported biphasicity in the redox potential. The formal potential temperature slope constancy reflects the relative stability of the concentration ratio of both oxidation states. The lower temperature transition affects both Pdx(red) and Pdx(ox) to a comparable extent, and their concentration ratio remains constant. In contrast, the 28.4 degrees C transition preferentially destabilizes Pdx(ox) thereby accelerating the formal potential negative shift and lower redox reaction entropy. There is evidence to suggest that disrupting hydrogen bonding of the iron ligating cysteines 45, 39 with residues threonine 47, serine 44, glycine 41, and serine 42 causes the 28.4 degrees C transition. The sensitivity of the UV-VIS absorption and CD spectroscopy to subtle structural protein backbone transitions is demonstrated. PMID:15158732

  8. Binding of anti-prion agents to glycosaminoglycans: Evidence from electronic absorption and circular dichroism spectroscopy

    SciTech Connect

    Zsila, Ferenc . E-mail: zsferi@chemres.hu; Gedeon, Gabor

    2006-08-11

    The polyanionic glycosaminoglycans (GAGs) are intimately involved in the pathogenesis of protein conformational disorders such as amyloidosis and prion diseases. Several cationic agents are known to exhibit anti-prion activity but their mechanism of action is poorly understood. In this study, UV absorption and circular dichroism (CD) spectroscopic techniques were used to investigate the interaction between heparin and chondroitin-6-sulfate and anti-prion drugs including acridine, quinoline, and phenothiazine derivatives. UV band hypochromism of ({+-})-quinacrine, ({+-})-primaquine, tacrine, quinidine, chlorpromazine, and induced CD spectra of ({+-})-quinacrine upon addition of GAGs provided evidence for the GAG binding of these compounds. The association constants ({approx}10{sup 6}-10{sup 7} M{sup -1}) estimated from the UV titration curves show high-affinity drug-heparin interactions. Ionic strength-dependence of the absorption spectra suggested that the interaction between GAGs and the cationic drugs is principally electrostatic in nature. Drug binding differences of heparin and chondroitin-6-sulfate were attributed to their different negative charge density. These results call the attention to the alteration of GAG-prion/GAG-amyloid interactions by which these compounds might exert their anti-prion/anti-amyloidogenic activities.

  9. Probing Magnetic Susceptibility Anisotropy of Large-Diameter Armchair Carbon Nanotubes via Magnetic Linear Dichroism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Haroz, Erik; Kono, Junichiro; Searles, Thomas; Tu, Xiaomin; Zheng, Ming; Fagan, Jeffrey; McGill, Stephen; Smirnov, Dmitry

    2012-02-01

    We studied magnetic susceptibility anisotropy, via magnetic linear dichroism spectroscopy, of aqueous suspensions of single-walled carbon nanotubes in high magnetic fields up to 22T using a unique magnet system (Split-Florida Helix magnet). Specifically, we measured magnetic susceptibility anisotropies, δχ, of several armchair species ranging from (5,5)-(13,13) at room temperature over an excitation wavelength range of 400-900 nm. For large diameter armchairs such as (12,12) and (13,13), we have observed some of the strongest alignment in a static magnetic field due to their large diameters. Results will be discussed in comparison with detailed calculations involving the Aharonov-Bohm effect.

  10. Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy

    SciTech Connect

    Rehault, Julien; Helbing, Jan; Zanirato, Vinicio; Olivucci, Massimo

    2011-03-28

    We demonstrate strong amplification of polarization-sensitive transient IR signals using a pseudo-null crossed polarizer technique first proposed by Keston and Lospalluto [Fed. Proc. 10, 207 (1951)] and applied for nanosecond flash photolysis in the visible by Che et al. [Chem. Phys. Lett. 224, 145 (1994)]. We adapted the technique to ultrafast pulsed laser spectroscopy in the infrared using photoelastic modulators, which allow us to measure amplified linear dichroism at kilohertz repetition rates. The method was applied to a photoswitch of the N-alkylated Schiff base family in order to demonstrate its potential of strongly enhancing sensitivity and signal to noise in ultrafast transient IR experiments, to simplify spectra and to determine intramolecular transition dipole orientations.

  11. In situ azimuthal rotation device for linear dichroism measurements in scanning transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hernández-Cruz, D.; Hitchcock, A. P.; Tyliszczak, T.; Rousseau, M.-E.; Pézolet, M.

    2007-03-01

    A novel miniature rotation device used in conjunction with a scanning transmission x-ray microscope is described. It provides convenient in situ sample rotation to enable measurements of linear dichroism at high spatial resolution. The design, fabrication, and mechanical characterization are presented. This device has been used to generate quantitative maps of the spatial distribution of the orientation of proteins in several different spider and silkworm silks. Specifically, quantitative maps of the dichroic signal at the C 1s→π*amide transition in longitudinal sections of the silk fibers give information about the spatial orientation, degree of alignment, and spatial distribution of protein peptide bonds. A new approach for analyzing the dichroic signal to extract orientation distributions, in addition to magnitudes of aligned components, is presented and illustrated with results from Nephila clavipes dragline spider silk measured using the in situ rotation device.

  12. Experimental study of linear magnetic dichroism in photoionization satellite transitions of atomic rubidium

    SciTech Connect

    Jaenkaelae, K.; Alagia, M.; Feyer, V.; Richter, R.; Prince, K. C.

    2011-11-15

    Laser orientation in the initial state has been used to study the properties of satellite transitions in inner-shell photoionization of rubidium atoms. The linear magnetic dichroism in the angular distribution (LMDAD) has been utilized to probe the continuum waves of orbital angular momentum conserving monopole, and angular momentum changing conjugate satellites, accompanying the 4p ionization of atomic Rb. We show experimentally that LMDAD of both types of satellite transitions is nonzero and that LMDAD of monopole satellites, measured as a function of photon energy, mimics the LMDAD of direct photoionization, whereas the LMDAD of conjugate transitions deviates drastically from that trend. The results indicate that conjugate transitions cannot be described theoretically without explicit inclusion of electron-electron interaction. The present data can thus be used as a very precise test of current models for photoionization.

  13. Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Réhault, Julien; Zanirato, Vinicio; Olivucci, Massimo; Helbing, Jan

    2011-03-01

    We demonstrate strong amplification of polarization-sensitive transient IR signals using a pseudo-null crossed polarizer technique first proposed by Keston and Lospalluto [Fed. Proc. 10, 207 (1951)] and applied for nanosecond flash photolysis in the visible by Che et al. [Chem. Phys. Lett. 224, 145 (1994)]. We adapted the technique to ultrafast pulsed laser spectroscopy in the infrared using photoelastic modulators, which allow us to measure amplified linear dichroism at kilohertz repetition rates. The method was applied to a photoswitch of the N-alkylated Schiff base family in order to demonstrate its potential of strongly enhancing sensitivity and signal to noise in ultrafast transient IR experiments, to simplify spectra and to determine intramolecular transition dipole orientations.

  14. Calculated x-ray linear dichroism spectra for Gd-doped GaN

    NASA Astrophysics Data System (ADS)

    Cheiwchanchamnangij, Tawinan; Lambrecht, Walter

    2013-03-01

    Gd doped GaN has been claimed to be a dilute magnetic semiconductor with colossal magnetic moments. However, the origin of huge magnetic moments is still controversial. The x-ray linear dichroism (XLD) spectrum of the Gd L3 edge and the multiple scattering calculations from Ney et al. (J. Magn. Magn. Mater. 322, 1162 (2010)) suggested that about 15% of Gd atoms should be on antisites. In contrast, our first principle calculations indicate that once the Gd is put on the N site, it will move to the interstitial site and cause large structure relaxation. The formation energy of the system is, therefore, in the order of 10 eV per Gd atom which is extremely large. We show that XLD spectra for L-edges can be analyzed in terms of suitable linear combinations of the partial densities of states of the Gd d-electrons. Core-hole effects are also included. The XLD spectra extracted from our calculations of Gd on the Ga site is shown to fit the experimental spectrum and no Gd on the N site is needed.

  15. Linear Dichroism of Cyanine Dyes in Stretched Polyvinyl Alcohol Films: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Natarajan, L. V.; And Others

    1983-01-01

    Provides background information, procedures, and results of an undergraduate physical chemistry experiment on the polarization of absorption spectra of cyanine dyes in stretched polyvinyl alcohol films. The experiment gives a simple demonstration of the concept of linear dichromism and the validity of the TEM method used in the analyses. (JN)

  16. Theory of Kerr and Faraday rotations and linear dichroism in Topological Weyl Semimetals

    PubMed Central

    Kargarian, Mehdi; Randeria, Mohit; Trivedi, Nandini

    2015-01-01

    We consider the electromagnetic response of a topological Weyl semimetal (TWS) with a pair of Weyl nodes in the bulk and corresponding Fermi arcs in the surface Brillouin zone. We compute the frequency-dependent complex conductivities σαβ(ω) and also take into account the modification of Maxwell equations by the topological θ-term to obtain the Kerr and Faraday rotations in a variety of geometries. For TWS films thinner than the wavelength, the Kerr and Faraday rotations, determined by the separation between Weyl nodes, are significantly larger than in topological insulators. In thicker films, the Kerr and Faraday angles can be enhanced by choice of film thickness and substrate refractive index. We show that, for radiation incident on a surface with Fermi arcs, there is no Kerr or Faraday rotation but the electric field develops a longitudinal component inside the TWS, and there is linear dichroism signal. Our results have implications for probing the TWS phase in various experimental systems. PMID:26235120

  17. The tuning of light-matter coupling and dichroism in graphene for enhanced absorption: Implications for graphene-based optical absorption devices

    NASA Astrophysics Data System (ADS)

    Rakheja, Shaloo; Sengupta, Parijat

    2016-03-01

    The inter-band optical absorption in graphene characterized by its fine-structure constant has a universal value of 2.3% independent of the material parameters. However, for several graphene-based photonic applications, enhanced optical absorption is highly desired. In this work, we quantify the tunability of optical absorption in graphene via the Fermi level, angle of incidence of the incident polarized light, and the dielectric constants of the surrounding dielectric media in which graphene is embedded. The influence of impurities adsorbed on the surface of graphene on the Lorentzian broadening of the spectral function of the density of states is analytically evaluated within the equilibrium Green’s function formalism. In all the cases, we find that absorption of light graphene embedded in dielectric medium is significantly higher than 2.3%. We also compute the differential absorption of right and left circularly-polarized light in graphene that is uniaxially and optically strained. The preferential absorption or circular dichroism is investigated for armchair and zigzag strain and the interplay of k-space and velocity anisotropy is examined. Finally, we relate circular dichroism to the Berry curvature of gapped graphene and explain the connection to parameters that define the underlying Hamiltonian.

  18. Flexible bent rod model with a saturating induced dipole moment to study the electric linear dichroism of DNA fragments

    NASA Astrophysics Data System (ADS)

    Bertolotto, Jorge A.; Umazano, Juan P.

    2016-06-01

    In the present work we make a theoretical study of the steady state electric linear dichroism of DNA fragments in aqueous solution. The here developed theoretical approach considers a flexible bent rod model with a saturating induced dipole moment. The electric polarizability tensor of bent DNA fragments is calculated considering a phenomenological model which theoretical and experimental backgroung is presented here. The model has into account the electric polarizability longitudinal and transversal to the macroion. Molecular flexibility is described using an elastic potential. We consider DNA fragments originally bent with bending fluctuations around an average bending angle. The induced dipole moment is supposed constant once the electric field strength grows up at critical value. To calculate the reduced electric linear dichroism we determine the optical factor considering the basis of the bent DNA perpendicular to the molecular axis. The orientational distribution function has into account the anisotropic electric properties and the molecule flexibility. We applied the present theoretical background to fit electric dichroism experimental data of DNA fragments reported in the bibliography in a wide range of molecular weight and electric field. From these fits, values of DNA physical properties are estimated. We compare and discuss the results here obtained with the theoretical and experimental data presented by other authors. The original contributions of this work are: the inclusion of the transversal electric polarizability saturating with the electric field, the description of the electric properties with an electric polarizability tensor dependant on the bending angle and the use of an arc model originally bent.

  19. Compact optical cell system for vacuum ultraviolet absorption and circular dichroism spectroscopy and its application to aqueous solution sample.

    PubMed

    Tanaka, Masahito; Yagi-Watanabe, Kazutoshi; Kaneko, Fusae; Nakagawa, Kazumichi

    2008-09-01

    We have designed a compact optical cell for studying the absorption and circular dichroism (CD) of a solution sample in the vacuum ultraviolet (VUV) region using a temperature control unit. The cell size was 34 mm in diameter and 14 mm in length. Such compactness was obtained by coating the VUV scintillator onto the outside of the back window. Because this scintillator converts the transmitted VUV light to visible light, the outside of this cell is operated under atmospheric pressure. The temperature of the sample solution was maintained in the range of 5 degrees C to 80 degrees C using a temperature control unit with a Peltier thermoelectric element. Changes in the sample temperature were observed by monitoring the absorption intensity of water. Through the study of VUV-CD spectra of ammonium camphor-10-sulfonate aqueous solutions and the transmitted spectrum of an empty cell, it was concluded that this cell unit has sufficient performance for use in VUV spectroscopy. PMID:18473342

  20. Domain imaging on multiferroic BiFeO{sub 3}(001) by linear and circular dichroism in threshold photoemission

    SciTech Connect

    Sander, Anke; Christl, Maik; Chiang, Cheng-Tien; Alexe, Marin; Widdra, Wolf

    2015-12-14

    We demonstrate ferroelectric domain imaging at BiFeO{sub 3}(001) single crystal surfaces with laser-based threshold photoemission electron microscopy (PEEM). Work function differences and linear dichroism allow for the identification of the eight independent ferroelectric domain configurations in the PEEM images. There, the determined domain structure is consistent with piezoresponse force microscopy of the sample surface and can also be related to the circular dichroic PEEM images. Our results provide a method for efficient mapping of complex ferroelectric domains with laser-excited PEEM and may allow lab-based time-resolved studies of the domain dynamics in the future.

  1. A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption.

    PubMed

    Kamiński, Maciej; Cukras, Janusz; Pecul, Magdalena; Rizzo, Antonio; Coriani, Sonia

    2015-07-15

    We present a computational methodology to calculate the intensity of circular dichroism (CD) in spin-forbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet-singlet transitions in chiral compounds. The protocol is based on the response function formalism and is implemented at the level of time-dependent density functional theory. It has been employed to calculate the spin-forbidden circular dichroism and circularly polarized phosphorescence signals of valence n → π* and n ← π* transitions, respectively, in several chiral enones and diketones. Basis set effects in the length and velocity gauge formulations have been explored, and the accuracy achieved when employing approximate (mean-field and effective nuclear charge) spin-orbit operators has been investigated. CPP is shown to be a sensitive probe of the triplet excited state structure. In many cases the sign of the spin-forbidden CD and CPP signals are opposite. For the β,γ-enones under investigation, where there are two minima on the lowest triplet excited state potential energy surface, each minimum exhibits a CPP signal of a different sign. PMID:26126575

  2. Investigation of chromophore-chromophore interaction by electro-optic measurements, linear dichroism, x-ray scattering, and density-functional calculations

    SciTech Connect

    Apitz, D.; Bertram, R.P.; Benter, N.; Buse, K.; Hieringer, W.; Andreasen, J.W.; Nielsen, M.M.; Johansen, P.M.

    2005-09-01

    Free-beam interferometry and angle-resolved absorption spectra are used to investigate the linear electro-optic coefficients and the linear dichroism in photoaddressable bis-azo copolymer thin films. From the first- and second order parameters deduced, the chromophore orientation distribution is calculated and displayed for several poling temperatures and chromophore concentrations. The influence of dipole-dipole interaction on the overall polymer dynamics is discussed. The first order parameter, and therefore the Pockels effect, peaks for a poling temperature of around 10 deg. C above the glass transition. The decrease of the Pockels effect above this temperature region is triggered by a head-to-tail chromophore orientation, i.e., a transition to a microcrystalline phase, increasing the second order parameter. Comparison of the experimentally observed absorption spectra and those obtained by density-functional calculations support the picture of differently aligned bis-azo dye molecules in a trans,trans configuration. Complementary wide-angle x-ray scattering is recorded to confirm the various kinds of ordering in samples poled at different temperatures.

  3. X-ray absorption and magnetic circular dichroism studies of Co2FeAl in magnetic tunnel junctions

    SciTech Connect

    Ebke, D.; Kugler, Z.; Thomas, P.; Schebaum, O.; Schafers, M.; Nissen, D.; Schmalhorst, J.; Hutten, A.; Arenholz, E.; Thomas, A.

    2010-01-11

    The bulk magnetic moment and the element specific magnetic moment of Co{sub 2}FeAl thin films were examined as a function of annealing temperature by alternating gradient magnetometer (AGM) and X-ray absorption spectroscopy (XAS)/X-ray magnetic circular dichroism (XMCD), respectively. A high magnetic moment can be achieved for all annealing temperatures and the predicted bulk and interface magnetic moment of about 5 {tilde A}{sub B} are reached via heating. We will also present tunnel magnetoresistance (TMR) values of up to 153% at room temperature and 260% at 13 K for MgO based magnetic tunnel junctions (MTJs) with Co{sub 2}FeAl and Co-Fe electrodes.

  4. Observation of x-ray absorption magnetic circular dichroism in well-characterized iron-cobalt-platinum multilayers

    SciTech Connect

    Jankowski, A.F.; Waddill, G.D.; Tobin, J.G.

    1993-04-01

    Magnetic circular dichroism in the Fe 2p x-ray absorption is observed in multilayers of(Fe9.5{Angstrom}/Pt9.5{Angstrom}){sub 92}. The magnetization and helicity are both in the plane of this multilayer which is prepared by magnetron sputter deposition. This sample is part of a study to examine magnetization in the ternary multilayer system of FeCo/Pt. Lattice and layer pair spacings are measured using x-ray scattering. The atomic concentration profiles of the multilayer films are characterized using Auger electron spectroscopy coupled with depth profiling. Conventional and high resolution transmission electron microscopy are used to examine the thin film, growth morphology and atomic structure.

  5. UV and VUV spectrum of matrix-isolated In: an investigation by absorption, magnetic circular dichroism and emission yield spectroscopy

    NASA Astrophysics Data System (ADS)

    Schroeder, W.; Rotermund, H.-H.; Wiggenhauser, H.; Schrittenlacher, W.; Hormes, J.; Krebs, W.; Laaser, W.

    1986-05-01

    The electronic absorption spectra of In atoms isolated in neon, argon, krypton and xenon matrices have been measured in the energy range between 2.5 and 9.0 eV. This region includes the 5s 25p → 5s 26s and 5s 25p → 5s 25d resonance transitions, higher members of the corresponding s- and d-Rydberg series and the inner shell 5s 25p → 5s5p 2 transitions. A correlation of the absorption spectra with results obtained from magnetic circular dichroism and fluorescence measurements has made it possible to provide a detailed assignment of most of the features in the spectra in spite of the complexities associated with their behavior. For example, the transition to 5s 26s could not be detected in any of the matrices and the 5s 25d configuration was found to be strongly quenched in intensity as compared to the other transitions. In contrast, several Rydberg transitions could be observed for In in Ne. These were satisfactorily interpreted within the Frenkel formalism. Some of these observations have been rationalized by assuming that the average radius of the wavefunction for the excited state is the dominant parameter for the matrix interaction.

  6. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  7. Interstellar condensed (icy) amino acids and precursors: theoretical absorption and circular dichroism under UV and soft X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Da Pieve, F.; Avendaño-Franco, G.; De Proft, F.; Geerlings, P.

    2014-05-01

    The photophysics of interstellar ices and condensed molecules adsorbed on grains is of primary importance for studies on the origin of the specific handedness of complex organic molecules delivered to the early Earth and of the homochirality of the building blocks of life. Here, we present quantum mechanical calculations based on time-dependent density functional theory for the absorption and circular dichroism (CD) of isovaline and its chiral precursor 5-ethyl-5-methylhydantoin, both observed in meteoritic findings. The systems are considered in their geometrical conformation as extracted from a full solid (icy) matrix, as a shortcut to understand the behaviour of molecules with fixed orientation, and/or taking into account the full solid matrix. In the context of a possible `condensation-warming plus hydrolysis-recondensation' process, we obtain that: (i) for low-energy excitations, the `condensed' precursor has a stronger CD with respect to the amino acid, suggesting that the handedness of the latter could be biased by asymmetric photolysis of the precursor in cold environments; (ii) enantiomeric excess could in principle be induced more efficiently in both systems for excitation at higher energies (VUV). X-ray absorption near-edge spectroscopy and related CD results could serve as support for future experiments on ionization channels.

  8. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    SciTech Connect

    Lee, Geon Joon Sim, Geon Bo; Choi, Eun Ha; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  9. Fluorescence-Detected Linear Dichroism of Wood Cell Walls in Juvenile Serbian Spruce: Estimation of Compression Wood Severity.

    PubMed

    Savić, Aleksandar; Mitrović, Aleksandra; Donaldson, Lloyd; Simonović Radosavljević, Jasna; Bogdanović Pristov, Jelena; Steinbach, Gabor; Garab, Győző; Radotić, Ksenija

    2016-04-01

    Fluorescence-detected linear dichroism (FDLD) microscopy provides observation of structural order in a microscopic sample and its expression in numerical terms, enabling both quantitative and qualitative comparison among different samples. We applied FDLD microscopy to compare the distribution and alignment of cellulose fibrils in cell walls of compression wood (CW) and normal wood (NW) on stem cross-sections of juvenile Picea omorika trees. Our data indicate a decrease in cellulose fibril order in CW compared with NW. Radial and tangential walls differ considerably in both NW and CW. In radial walls, cellulose fibril order shows a gradual decrease from NW to severe CW, in line with the increase in CW severity. This indicates that FDLD analysis of cellulose fibril order in radial cell walls is a valuable method for estimation of CW severity. PMID:26858105

  10. Linear and nonlinear optical absorption coefficients of spherical dome shells

    NASA Astrophysics Data System (ADS)

    Guo, Kangxian; Liu, Guanghui; Huang, Lu; Zheng, Xianyi

    2015-08-01

    Linear and nonlinear optical absorption coefficients of spherical dome shells are theoretically investigated within analytical wave functions and numerical quantized energy levels. Our results show that the inner radius, the outer radius and the cut-off angle of spherical dome shells have great influences on linear and nonlinear optical absorption coefficients as well as the total optical absorption coefficients. It is found that with the increase of the inner radius and the outer radius, linear and nonlinear optical absorption coefficients exhibit a blueshift and a redshift, respectively. However, with the increase of the cut-off angle, linear and nonlinear optical absorption coefficients do not shift. Besides, the resonant peaks of linear and nonlinear optical absorption coefficients climb up and then decrease with increasing the cut-off angle. The influences of the incident optical intensity on the total optical absorption coefficients are studied. It is found that the bleaching effect occurs at higher incident optical intensity.

  11. X-ray absorption spectroscopy and magnetic circular dichroism studies of L10-Mn-Ga thin films

    NASA Astrophysics Data System (ADS)

    Glas, M.; Sterwerf, C.; Schmalhorst, J. M.; Ebke, D.; Jenkins, C.; Arenholz, E.; Reiss, G.

    2013-11-01

    Tetragonally distorted Mn3-xGax thin films with 0.1absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD). A highly textured L10 crystal structure of the Mn-Ga films was verified by X-ray diffraction measurements. For samples with e-beam evaporated MgO barrier no evidence for Mn-O was found whereas in samples with magnetron sputtered MgO, Mn-O was detected, even for the thickest interlayer thickness. Both XAS and XMCD measurements showed an increasing interfacial Mn-O amount with decreasing CoFeB interlayer thickness. Additional element specific full hysteresis loops determined an out-of-plane magnetization axis for the Mn and Co, respectively.

  12. X-ray absorption spectroscopy and magnetic circular dichroism studies of L1{sub 0}-Mn-Ga thin films

    SciTech Connect

    Glas, M. Sterwerf, C.; Schmalhorst, J. M.; Reiss, G.; Ebke, D.; Jenkins, C.; Arenholz, E.

    2013-11-14

    Tetragonally distorted Mn{sub 3−x}Ga{sub x} thin films with 0.1absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD). A highly textured L1{sub 0} crystal structure of the Mn-Ga films was verified by X-ray diffraction measurements. For samples with e-beam evaporated MgO barrier no evidence for Mn-O was found whereas in samples with magnetron sputtered MgO, Mn-O was detected, even for the thickest interlayer thickness. Both XAS and XMCD measurements showed an increasing interfacial Mn-O amount with decreasing CoFeB interlayer thickness. Additional element specific full hysteresis loops determined an out-of-plane magnetization axis for the Mn and Co, respectively.

  13. Measurement of electron-spin transports in GaAs quantum wells using a transmission-grating-sampled circular dichroism absorption spectroscopy

    SciTech Connect

    Yu, Hua-Liang; Fang, Shaoyin; Wen, Jinhui; Lai, Tianshu

    2014-11-07

    A transmission-grating-sampled circular dichroism absorption spectroscopy (TGS-CDAS) and its theoretical model are developed sensitively to measure decay dynamics of a transient spin grating (TSG). A binary transmission grating with the same period as TSG is set behind TSG. It allows only a same small part of each period in TSG measured by circular dichroism absorption effect of a probe. In this way, the zero average of spin-dependent effects measured over a whole period in TSG is avoided so that TGS-CDAS has a high sensitivity to spin evolution in TSG. Spin transport experiments are performed on GaAs/AlGaAs quantum wells. Experimental results prove the feasibility and reliability of TGS-CDAS.

  14. Measurement of electron-spin transports in GaAs quantum wells using a transmission-grating-sampled circular dichroism absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Hua-Liang; Fang, Shaoyin; Wen, Jinhui; Lai, Tianshu

    2014-11-01

    A transmission-grating-sampled circular dichroism absorption spectroscopy (TGS-CDAS) and its theoretical model are developed sensitively to measure decay dynamics of a transient spin grating (TSG). A binary transmission grating with the same period as TSG is set behind TSG. It allows only a same small part of each period in TSG measured by circular dichroism absorption effect of a probe. In this way, the zero average of spin-dependent effects measured over a whole period in TSG is avoided so that TGS-CDAS has a high sensitivity to spin evolution in TSG. Spin transport experiments are performed on GaAs/AlGaAs quantum wells. Experimental results prove the feasibility and reliability of TGS-CDAS.

  15. A theoretical framework for dichroism and the resonance-enhanced scattering of x-rays by magnetic materials: II. Quadrupolar absorption events

    NASA Astrophysics Data System (ADS)

    Lovesey, Stephen W.

    1996-12-01

    Previous work with the resonant scattering length that is based on an atomic model and dipolar absorption events is extended to encompass quadrupolar absorption events. The scattering length is the common element in calculations of the attenuation coefficient, dichroism and the cross-sections for elastic and inelastic resonance-enhanced scattering of x-rays by magnetic materials. Both jj-coupling and Russell - Saunders coupling schemes for the atomic electrons are utilized; included are tables of relevant Racah unit-tensor operators for the valence shell 0953-8984/8/50/025/img1.

  16. Theory and experiment of linear and nonlinear optical media and waveguides with anisotropy and dichroism

    NASA Astrophysics Data System (ADS)

    Purvinis, Georgeanne M.

    Organic crystals and certain polymer films, such as ionically self-assembled monolayer (ISAM) films, are lossy and anisotropic. These materials may have a large chi(2) nonlinear response, and thus are conceivably capable of efficient second order processes. Anomalous dispersion phase-matched second harmonic generation (ADPM-SHG) in organic media is a second order wavelength conversion process that phase matches like-order modes in a waveguide (ex: TM0o → TM02o ), thus maximizing the overlap integral. Demonstration of ADPM-SHG in economical and easily fabricated polymer ISAM film is the ultimate experimental goal of this research. In order to achieve demonstration of ADPM-SHG in an ISAM film, both theoretical and material research contributions are accomplished. The predominant analysis approaches in literature are based on the finite element method, which is approximate and computationally intensive, thus prohibiting arbitrary crystallographic media orientations in devices. This restricted treatment in the literature may be insufficient with ISAM films, as SHG occurs in a spectral region of residual absorption, the film is uniaxial, and the optic axis may not be aligned the waveguide coordinate system. Thus, the theory objectives of the dissertation research are: (1) develop an exact solution for finding the polarization states in lossy anisotropic media using a new complex orthogonal similarity transformation with the complex symmetric impermeability tensor, (2) develop a rigorous transverse resonance analysis to find the eigenmodes of general lossy anisotropic planar waveguides with arbitrary principal axes orientations, and (3) integrate the results of steps 1--2 to determine the conversion efficiency of an ISAM planar waveguide using ADPM-SHG, thus illustrating the importance of the dissertation research by highlighting the errors resulting in algorithms published in other works. Experimentally, the dissertation focuses on designing anionic and cationic

  17. Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser.

    PubMed

    Higley, Daniel J; Hirsch, Konstantin; Dakovski, Georgi L; Jal, Emmanuelle; Yuan, Edwin; Liu, Tianmin; Lutman, Alberto A; MacArthur, James P; Arenholz, Elke; Chen, Zhao; Coslovich, Giacomo; Denes, Peter; Granitzka, Patrick W; Hart, Philip; Hoffmann, Matthias C; Joseph, John; Le Guyader, Loïc; Mitra, Ankush; Moeller, Stefan; Ohldag, Hendrik; Seaberg, Matthew; Shafer, Padraic; Stöhr, Joachim; Tsukamoto, Arata; Nuhn, Heinz-Dieter; Reid, Alex H; Dürr, Hermann A; Schlotter, William F

    2016-03-01

    X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L(3,2)-edges. The high brightness of the X-ray free electron laser combined with high accuracy detection of incident and transmitted X-rays enables ultrafast X-ray magnetic circular dichroism studies of unprecedented sensitivity. This new capability is applied to a study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature. PMID:27036761

  18. Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Higley, Daniel J.; Hirsch, Konstantin; Dakovski, Georgi L.; Jal, Emmanuelle; Yuan, Edwin; Liu, Tianmin; Lutman, Alberto A.; MacArthur, James P.; Arenholz, Elke; Chen, Zhao; Coslovich, Giacomo; Denes, Peter; Granitzka, Patrick W.; Hart, Philip; Hoffmann, Matthias C.; Joseph, John; Le Guyader, Loïc; Mitra, Ankush; Moeller, Stefan; Ohldag, Hendrik; Seaberg, Matthew; Shafer, Padraic; Stöhr, Joachim; Tsukamoto, Arata; Nuhn, Heinz-Dieter; Reid, Alex H.; Dürr, Hermann A.; Schlotter, William F.

    2016-03-01

    X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L3,2-edges. The high brightness of the X-ray free electron laser combined with high accuracy detection of incident and transmitted X-rays enables ultrafast X-ray magnetic circular dichroism studies of unprecedented sensitivity. This new capability is applied to a study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature.

  19. Circular dichroism and optical absorption spectra of mononuclear and trinuclear chiral Cu(II) amino-alcohol coordinated compounds: A combined theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Valencia, Israel; Ávila-Torres, Yenny; Barba-Behrens, Norah; Garzón, Ignacio L.

    2015-04-01

    Studies on the physicochemical properties of biomimetic compounds of multicopper oxidases are fundamental to understand their reaction mechanisms and catalytic behavior. In this work, electronic, optical, and chiroptical properties of copper(II) complexes with amino-alcohol chiral ligands are theoretically studied by means of time-dependent density functional theory. The calculated absorption and circular dichroism spectra are compared with experimental measurements of these spectra for an uncoordinated pseudoephedrine derivative, as well as for the corresponding mononuclear and trinuclear copper(II)-coordinated complexes. This comparison is useful to gain insights into their electronic structure, optical absorption and optical activity. The optical absorption and circular dichroism bands of the pseudoephedrine derivative are located in the UV-region. They are mainly due to transitions originated from n to π anti-bonding orbitals of the alcohol and amino groups, as well as from π bonding to π anti-bonding orbitals of carboxyl and phenyl groups. In the case of the mononuclear and trinuclear compounds, additional signals in the visible spectral region are present. In both systems, the origin of these bands is due to charge transfer from ligand to metal and d-d transitions.

  20. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Schumann, F.O.

    1997-04-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.

  1. Magnetic and structural properties of Fe/Pd multilayers studied by magnetic x-ray dichroism and x-ray absorption spectroscopy

    SciTech Connect

    Mini, S.M. |; Fullerton, E.E.; Sowers, C.H.; Fontaine, A.; Pizzini, S.; Bommannavar, A.S.; Traverse, A.; Baudelet, F.

    1994-12-01

    The results of magnetic circular x-ray dichroism (MCXD) measurements and extended x-ray absorption fine structure measurements (EXAFS) of the Fe K-edges of textured Fe(110)/Pd(111) multilayers are reported. The EXAFS results indicates that the iron in the system goes from bcc to a more densely packed system as the thickness of the iron layer is decreased. The magnetic properties were measured by SQUID magnetometry from 5-350 K. For all the samples, the saturation magnetization was significantly enhanced over the bulk values indicating the interface Pd atoms are polarized by the Fe layer. The enhancement corresponds to a moment of {approx}2.5{mu}{sub B} per interface Pd atom.

  2. X-ray absorption and x-ray magnetic dichroism study on Ca3CoRhO6 and Ca3FeRhO6

    NASA Astrophysics Data System (ADS)

    Burnus, T.; Hu, Z.; Wu, Hua; Cezar, J. C.; Niitaka, S.; Takagi, H.; Chang, C. F.; Brookes, N. B.; Lin, H.-J.; Jang, L. Y.; Tanaka, A.; Liang, K. S.; Chen, C. T.; Tjeng, L. H.

    2008-05-01

    By using x-ray absorption spectroscopy at the RhL2,3 , CoL2,3 , and FeL2,3 edges, we find a valence state of Co2+/Rh4+ in Ca3CoRhO6 and of Fe3+/Rh3+ in Ca3FeRhO6 . X-ray magnetic circular dichroism spectroscopy at the CoL2,3 edge of Ca3CoRhO6 reveals a giant orbital moment of about 1.7μB , which can be attributed to the occupation of the minority-spin d0d2 orbital state of the high-spin Co2+ (3d7) ions in trigonal prismatic coordination. This active role of the spin-orbit coupling explains the strong magnetocrystalline anisotropy and Ising-type magnetism of Ca3CoRhO6 .

  3. Limiting resolution of linear absorption spectroscopy in thin gas cells

    NASA Astrophysics Data System (ADS)

    Izmailov, A. Ch.

    2010-06-01

    The most narrow sub-Doppler frequency resonances in the linear absorption of monochromatic radiation that propagates in the normal direction through a cell containing a layer of rarefied gas medium with a thickness smaller than or on the order of the wavelength of this radiation are theoretically studied. The calculation is performed using as an example a three-dimensional gas cell shaped like a rectangular parallelepiped. It is shown that the width and amplitude of considered sub-Doppler resonances (in the vicinity of centers of rather weak quantum transitions) significantly depend on the transit relaxation of atomic particles, which is determined by their transit times through the irradiated region of the cell both in longitudinal and in transverse directions. The restrictions of the approximation of the planar one-dimensional cell that was previously used in such calculations are determined. Possible applications of linear absorption resonances in ultrathin (nanometer) gas cells as references for optical frequency standards are discussed.

  4. Retinoic acid binding properties of the lipocalin member beta-lactoglobulin studied by circular dichroism, electronic absorption spectroscopy and molecular modeling methods.

    PubMed

    Zsila, Ferenc; Bikádi, Zsolt; Simonyi, Miklós

    2002-12-01

    Interaction between the Vitamin A derivative all-trans retinoic acid and the lipocalin member bovine beta-lactoglobulin (BLG) was studied by circular dichroism (CD) and electronic absorption spectroscopy at different pH values. In neutral and alkaline solutions achiral retinoic acid forms a non-covalent complex with the protein as indicated by the appearance of a negative Cotton effect around 347 nm associated to the narrowed and red shifted pi-pi(*) absorption band of the ligand. The induced optical activity is attributed to the helical distortion of the conjugated chain caused by the chiral protein binding environment. As the disappearing CD activity showed in the course of CD-pH titration experiment, retinoic acid molecules dissociate from BLG upon acidification but this release is completely reversible as proved by the reconstitution of the CD and absorption spectra after setting the pH back to neutral. This unique behavior of the complex is explained by the conformational change of BLG (Tanford transition) which involves a movement of the EF loop at the entrance of the central cavity from open to closed conformation in the course of pH lowering. From these results it was inferred that retinoic acid binds within the hydrophobic calyx of the beta-barrel. PMID:12429354

  5. X-ray magnetic circular dichroism and x-ray absorption spectroscopy of novel magnetic thin films

    SciTech Connect

    Brewer, M.A.; Ju, H.L.; Krishnan, K.M.

    1997-04-01

    The optimization of the magnetic properties of materials for a wide range of applications requires a dynamic iteration between synthesis, property measurements and characterization at appropriate length scales. The authors interest arises both from the increased appreciation of the degree to which magnetic properties can be influenced by tailored microstructures and the ability to characterize them by x-ray scattering/dichroism techniques. Preliminary results of this work at the ALS on `giant` moment in {alpha}{double_prime}-Fe{sub 16}N{sub 2} and `colossal` magnetoresistance in manganite perovskites is presented here. It has recently been claimed that {alpha}{double_prime}-Fe{sub 16}N{sub 2} possesses a giant magnetization of 2.9 T ({approximately}2300 emu/cc) when grown on lattice-matched In{sub 0.2}Ga{sub 0.8}As(001) and Fe/GaAs(001). However, attempts at growth on simpler substrates have resulted in only a modest enhancement in moment and often in multiphase mixtures. Theoretical calculations based on the band structure of Fe{sub 16}N{sub 2} predict values for the magnetization around 2.3 T ({approximately}1780 emu/cc), well below Sugita`s claims, but consistent with the magnetization reported by several other workers. Using appropriate sum rules applied to the integrated MCD spectrum, they hope to determine the magnetic moment of the iron species in the {alpha}{double_prime}-Fe{sub 16}N{sub 2} films and other phases and resolve the orbital and spin contributions to the moment. There is also rapidly growing interest in the `colossal magnetoresistance` effect observed in manganese oxides for both fundamental and commercial applications. To address some of these issues the authors have measured the electron energy loss spectra (EELS) of manganese perovskites at room temperature.

  6. A theoretical framework for absorption (dichroism) and the resonance-enhanced scattering of x-rays by magnetic materials: I

    NASA Astrophysics Data System (ADS)

    Lovesey, Stephen W.; Balcar, Ewald

    1996-12-01

    The scattering length common to the attenuation coefficient and cross-sections for the resonance-enhanced scattering of x-rays suffers from a dependence on a spectrum of virtual, intermediate states which contain next to no useful information about the environment of the atoms. It is the dependence of the scattering length on intermediate states that sets the x-ray techniques apart from neutron scattering and other techniques which directly probe properties of magnetic materials, and limits the usefulness of physical intuition in the interpretation of empirical x-ray data. As a step toward a legible interpretation, in a language of standard atomic variables, an investigation is reported of a modified scattering length constructed to possess a structure similar to the scattering length for magnetic neutron scattering, namely, it has the mathematical structure of a spherical tensor operator, to which all Racah's methods for electrons in an open valence shell can be applied. In the process of reaching this goal, the influence of the intermediate states on the scattering length is reduced by summing over a limited set of quantum numbers for the intermediate states. Topics covered in the investigation include the attenuation coefficient for x-rays passing through a foil of magnetic material, dichroism, and the cross-sections for resonance-enhanced elastic (Bragg) and inelastic scattering of x-rays by magnetic materials. The treatment of polarization in the primary beam admits states of partial polarization, described by a Stokes vector. Both jj-coupling and Russell - Saunders coupling schemes for the valence states are explored.

  7. Study of the Effect of the Pulse Width of the Excitation Source on the Two-Photon Absorption and Two-Photon Circular Dichroism Spectra of Biaryl Derivatives.

    PubMed

    Vesga, Yuly; Hernandez, Florencio E

    2016-09-01

    Herein we report on the expanded theoretical calculations and the experimental measurements of the two-photon absorption (TPA) and two-photon circular dichroism (TPCD) spectra of a series of optically active biaryl derivatives (R-BINOL, R-VANOL, and R-VAPOL) using femtosecond pulses. The comparative analysis of the experimental TPCD spectra obtained with our tunable amplified femtosecond system with those previously measured in our group on the same series of compounds in the picosecond regime reveals a decrease in the amplitude of the signal and an improvement in matching with the theory in the former. These results can be explained based on the negligible contribution of excited state absorption (ESA) using femtosecond pulses compared to the picosecond regime. We show how ESA affects both the strength of the signal and the shape of the TPA and TPCD spectra. TPA and TPCD spectra were obtained using the double L-scan technique over a broad spectral range (450-750 nm) using 90 fs pulses at 50 Hz repetition rate produced by an amplified femtosecond system. The theoretical calculations were performed using modern analytical response theory within the time-dependent density functional theory (TD-DFT) approach using CAM-B3LYP and 6-311++G(d,p) basis sets. PMID:27525702

  8. X-ray natural linear dichroism of graphitic materials across the carbon K-edge: Correction for perturbing high-order harmonics

    NASA Astrophysics Data System (ADS)

    Jansing, C.; Mertins, H. C.; Gaupp, A.; Sokolov, A.; Gilbert, M. C.; Wahab, H.; Timmers, H.

    2016-05-01

    Reflectivity measurements on graphitic materials such as graphene at energies across the carbon K-edge are frustrated by significant intensity loss due to adventitious carbon on beamline mirrors. Such intensity reduction enhances effects due to perturbing high-order harmonics in the beam. These effects distort the actual structure of the reflectance curve. In order to overcome this limitation, a correction technique has been developed and demonstrated first with measurements for highly ordered pyrolytic graphite. The same approach may be applied to other graphitic materials such as graphene and it may be used with other synchrotron beamlines. The fraction of high-order harmonics was determined by passing the incident beam through a 87 nm thin silicon nitride absorber that can be well modeled. Using the corrected measurements the x-ray natural linear dichroism of the sample has been determined.

  9. Local electronic states of Fe{sub 4}N films revealed by x-ray absorption spectroscopy and x-ray magnetic circular dichroism

    SciTech Connect

    Ito, Keita; Toko, Kaoru; Suemasu, Takashi; Takeda, Yukiharu; Saitoh, Yuji; Oguchi, Tamio; Kimura, Akio

    2015-05-21

    We performed x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements at Fe L{sub 2,3} and N K-edges for Fe{sub 4}N epitaxial films grown by molecular beam epitaxy. In order to clarify the element specific local electronic structure of Fe{sub 4}N, we compared experimentally obtained XAS and XMCD spectra with those simulated by a combination of a first-principles calculation and Fermi's golden rule. We revealed that the shoulders observed at Fe L{sub 2,3}-edges in the XAS and XMCD spectra were due to the electric dipole transition from the Fe 2p core-level to the hybridization state generated by σ* anti-bonding between the orbitals of N 2p at the body-centered site and Fe 3d on the face-centered (II) sites. Thus, the observed shoulders were attributed to the local electronic structure of Fe atoms at II sites. As to the N K-edge, the line shape of the obtained spectra was explained by the dipole transition from the N 1s core-level to the hybridization state formed by π* and σ* anti-bondings between the Fe 3d and N 2p orbitals. This hybridization plays an important role in featuring the electronic structures and physical properties of Fe{sub 4}N.

  10. Vibrational absorption and vibrational circular dichroism spectra of leucine in water under different pH conditions: hydrogen-bonding interactions with water.

    PubMed

    Poopari, Mohammad Reza; Zhu, Peiyan; Dezhahang, Zahra; Xu, Yunjie

    2012-11-21

    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy have been used to study leucine, a flexible branched-chain amino acid, in aqueous solution. The VA spectra in the range of 1800-1250 cm(-1) of leucine in D(2)O under three representative pHs from strongly acidic (pH = 1), near neutral (pH = 6), to strongly basic (pH = 13), have been measured. The related VCD spectrum has been obtained under near neutral condition. Searches have been carried out to identify the most stable conformers of the Zwitterionic, protonated, and deprotonated forms of leucine in water. The geometry optimization, harmonic frequency calculations, and VA and VCD intensities have been computed at the B3LYP/6-311++G(d,p) level with the implicit polarizable continuum solvation model. While the observed VA spectra under three pHs can be well interpreted with the inclusion of the implicit solvation model, both implicit and explicit solvation models have been found to be crucial for the adequate interpretation of the complex VCD features observed. Molecular dynamics simulations and radial distribution functions have been used to aid the modeling of the leucine-(water)(N) clusters. It has been recognized that the insertion of a water molecule between the COO(-) and NH(3) (+) functional groups in the explicit solvated clusters is critical to reproduce the VCD signatures observed. Furthermore, the inclusion of the implicit bulk water environment has been found to be essential to lock water molecules, which are directly hydrogen bonded to leucine, into the positions expected in solution. The application of the explicit and implicit solvation models simultaneously allows new insights into the hydrogen bonding network surrounding leucine in aqueous solution and the role of the surrounding bulk water in stabilizing such hydrogen-bonding network. PMID:23181307

  11. Vibrational absorption and vibrational circular dichroism spectra of leucine in water under different pH conditions: Hydrogen-bonding interactions with water

    NASA Astrophysics Data System (ADS)

    Poopari, Mohammad Reza; Zhu, Peiyan; Dezhahang, Zahra; Xu, Yunjie

    2012-11-01

    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy have been used to study leucine, a flexible branched-chain amino acid, in aqueous solution. The VA spectra in the range of 1800-1250 cm-1 of leucine in D2O under three representative pHs from strongly acidic (pH = 1), near neutral (pH = 6), to strongly basic (pH = 13), have been measured. The related VCD spectrum has been obtained under near neutral condition. Searches have been carried out to identify the most stable conformers of the Zwitterionic, protonated, and deprotonated forms of leucine in water. The geometry optimization, harmonic frequency calculations, and VA and VCD intensities have been computed at the B3LYP/6-311++G(d,p) level with the implicit polarizable continuum solvation model. While the observed VA spectra under three pHs can be well interpreted with the inclusion of the implicit solvation model, both implicit and explicit solvation models have been found to be crucial for the adequate interpretation of the complex VCD features observed. Molecular dynamics simulations and radial distribution functions have been used to aid the modeling of the leucine-(water)N clusters. It has been recognized that the insertion of a water molecule between the COO- and NH3+ functional groups in the explicit solvated clusters is critical to reproduce the VCD signatures observed. Furthermore, the inclusion of the implicit bulk water environment has been found to be essential to lock water molecules, which are directly hydrogen bonded to leucine, into the positions expected in solution. The application of the explicit and implicit solvation models simultaneously allows new insights into the hydrogen bonding network surrounding leucine in aqueous solution and the role of the surrounding bulk water in stabilizing such hydrogen-bonding network.

  12. Electrochromism-driven linearly and circularly polarised dichroism of poly(3,4-ethylenedioxythiophene) derivatives with chirality and liquid crystallinity.

    PubMed

    Matsushita, Satoshi; Jeong, Yong Soo; Akagi, Kazuo

    2013-03-01

    This review presents recent advances in the synthesis, electrochemical properties, and optical functions of poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives embodying chirality and liquid crystallinity. Various methods for preparing the optically active and liquid crystalline (LC) PEDOT derivatives, such as (i) the introduction of chiral substituents into polymer side chains, (ii) chemical or electrochemical polymerisation by using lipid assemblies as templates, (iii) electrochemical polymerisation in asymmetric LC reaction fields, and (iv) the addition of a chiral dopant to LC-PEDOT derivatives, are discussed. Throughout the review, linearly and/or circularly dichroic electrochromism, hierarchically controlled spiral structure, and aligned morphology are demonstrated to be promising for the development of multifunctional PEDOT derivatives. PMID:23282471

  13. Comparison of magnetic linear dichroism in 4f photoemission and 4d{endash}4f photoemission from Gd on Y(0001)

    SciTech Connect

    Gammon, W.J.; Mishra, S.R.; Pappas, D.P.; Goodman, K.W.; Tobin, J.G.; Schumann, F.O.; Willis, R.; Denlinger, J.D.; Rotenberg, E.; Warwick, A.; Smith, N.V.

    1997-05-01

    Magnetic linear dichroism (MLD) in 4d{endash}4f resonant and 4f nonresonant photoemission (PE) is studied from thin epitaxial gadolinium films. In an angle resolved and high-energy resolution mode, experiments were conducted with the electric-field vector of the incident light perpendicular to the sample magnetization. Our results show a significant difference in behavior of MLD in resonant PE as compared to that in nonresonant PE. Off-resonance, the MLD signal is dominated by a negative feature at the low binding energy side of the peak. Near the 4d{endash}4f resonance maximum, the MLD displays a plus{endash}minus shape, with a negative signal at the low binding energy side of the 4f peak and a positive signal at the high binding energy side. Analysis of MLD in 4d{endash}4f resonant PE may provide insight into interactions of the 4d core hole with the 4f core level in the intermediate state. {copyright} {ital 1997 American Vacuum Society.}

  14. Linear dichroism of microalgae, developing thylakoids and isolated pigment-protein complexes in stretched poly(vinyl alcohol) films at 77 K.

    PubMed

    Biggins, J; Svejkovský, J

    1980-10-01

    A variety of unicellular algae, thylakoids from higher plants in different stages of maturity and isolated pigment-protein complexes were oriented in stretched polyvinyl alcohol films. Low temperature linear dichroism (LD) spectra of Chlorella pyrenoidosa and higher plant thylakoids in the films were very similar to those obtained after orientation of similar samples using magnetic or electric fields. Positive LD bands corresponding to Chl a (670) and (682) and negative bands due to Chl a (658) and Chl b(648) were resolved in spectra of the light harvesting Chl a/b protein. Chl b (648) and Chl a (658) and (670) were not seen in the LD spectrum of thylakoids from plants grown in intermittent light, the Chl b-less mutant of barley, Euglena gracilis or the cyanobacteria, Phormidium luridum and Anacystis nidulans, but did appear upon chloroplast maturation in Romaine lettuce and during the greening of etiolated and intermittent light plants. The highly oriented long wavelength Chl a (682) in the light-harvesting complex may represent residual PS II whose peak dichroism is centered at 681 nm. The PS I preparation had a Chl a/b ratio of approx. 6 and the LD spectrum was positive with a maximum at 690-694 nm and a band of lower amplitude at 652 nm. The minor LD band was not observed in PS I preparations from organisms that lack chl b such as the cyanobacteria, intermittent light plants and the Chl b-less mutant of barley. We suggest that the 652 nm band is due to Chl b molecules associated with the antenna of PS I and are distinct from those on the light harvesting complex whose orientation is different. We also conclude that all the Chl a forms are oriented and that the long geometric axes of the pigment-protein complexes, as deduced from the configuration they assume in the stretched films, are axes that normally lie parallel to the plane of the native thylakoid. PMID:6774749

  15. Impact of energy-related pollutants on chromosome structure. Progress report, January 1-December 31, 1980. IQUID COLUMN CHROMATOGRAPHY; ABSORPTION SPECTRA; COMPUTER CODES; DICHROISM; EQUIPMENT INTERFACES; MICROPROCESSORS; SPECTROPHOTOMETERS; ; CARBON 13; COMPLEXES; NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Not Available

    1980-01-01

    Methods for rapidly analyzing methylated and ethylated nucleosides and bases by high pressure liquid chromatography were investigated. Deoxyribonucleotides were alkylated with alkyl iodides and dialkyl sulfates. Several unreported products of the reactions of methyl and ethyl iodide in dimethylsulfoxide were found and are being characterized. The Cary 219 UV-Vis spectrophotometer was interfaced to a microcomputer and several utility programs were written. Preliminary absorption and circular dichroism studies of the binding of ethidium to DNA and nucleosome cores showed binding to cores to be quite different from binding to DNA. Free radical and additional reactions of bisulfite with DNA in chromatin were examined. Free radical attack was minimal. Some conversion of cytosine to uracil was noted, but protein crosslinking to DNA was not detected. The first valid natural abundance /sup 13/C nmr spectra of double-stranded DNA and double-stranded DNA complexed with ethidium were obtained. These spectra suggested that DNA undergoes considerable internal motion. The data show that 13-C nmr studies of the conformational and motional properties of native DNA and of complexes of native DNA with small molecules are practical and promising. Studies of subnucleosomes derived from nucleosomes were completed. Based on these studies, a model of the linear arrangement of histone C-terminal and N-terminal chain regions along nucleosome DNA was proposed. The use of staphylococcal protease to probe histone conformations in nucleosomes was explored. Preliminary data indicate that H3 is much more susceptible to protease than other core histones, and is cleaved in its hydrophobic domain. A procedure for fractionating chromatin was alos developed. (ERB)

  16. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism

    SciTech Connect

    Wakabayashi, Masamitsu; Yokojima, Satoshi; Fukaminato, Tuyoshi; Ohtani, Hiroyuki; Nakamura, Shinichiro

    2015-04-21

    In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow.

  17. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Masamitsu; Yokojima, Satoshi; Fukaminato, Tuyoshi; Ohtani, Hiroyuki; Nakamura, Shinichiro

    2015-04-01

    In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow.

  18. Simulation of magnetic circular dichroism in the electron microscope

    NASA Astrophysics Data System (ADS)

    Rubino, Stefano; Schattschneider, Peter; Rusz, Jan; Verbeeck, Johan; Leifer, Klaus

    2010-12-01

    As electron energy-loss spectroscopy (EELS) and x-ray absorption spectroscopy (XAS) probe the same transitions from core-shell states to unoccupied states above the Fermi energy, it should always be possible to apply the two techniques to the same physical phenomena, such as magnetic dichroism, and obtain the same information. Indeed, the similarity in the expression of the electron and x-ray cross-sections had been already exploited to prove the equivalence of x-ray magnetic linear dichroism and anisotropy in EELS, by noting that the polarization vector of a photon plays the same role as the momentum transfer in electron scattering. Recently, the same was proven true for x-ray magnetic circular dichroism (XMCD) by establishing a new TEM technique called EMCD (electron energy-loss magnetic chiral dichroism) (Schattschneider P et al 2006 Nature 441 486-8), which makes use of special electron scattering conditions to force the absorption of a circularly polarized virtual photon. The intrinsic advantage of EMCD over XMCD is the high spatial resolution of electron microscopes, which are readily available. Among the particular obstacles in EMCD that do not exist for synchrotron radiation, is the notoriously low signal and the very particular scattering conditions necessary to observe a chiral dichroic signal. In spite of that, impressive progress has been made in recent years. The signal strength could be considerably increased, and some innovations such as using a convergent beam have been introduced. EMCD has evolved into several techniques, which make full use of the versatility of the TEM and energy filtering, spectroscopy or STEM conditions (Rubino S 2007 Magnetic circular dichroism in the transmission electron microscope PhD Thesis Vienna University of Technology, Vienna, Austria).

  19. Zero-field dichroism in the solar chromosphere.

    PubMed

    Sainz, R Manso; Bueno, J Trujillo

    2003-09-12

    We explain the linear polarization of the Ca ii infrared triplet observed close to the edge of the solar disk. In particular, we demonstrate that the physical origin of the enigmatic polarizations of the 866.2 and 854.2 nm lines lies in the existence of atomic polarization in their metastable (2)D(3)(/2, 5/2) lower levels, which produces differential absorption of polarization components (dichroism). To this end, we have solved the problem of the generation and transfer of polarized radiation by taking fully into account all the relevant optical pumping mechanisms in multilevel atomic models. We argue that "zero-field" dichroism may be of great diagnostic value in astrophysics. PMID:14525412

  20. Itinerant and localized magnetic moments in ferrimagnetic Mn{sub 2}CoGa thin films identified with x-ray magnetic linear dichroism: experiment and ab initio theory

    SciTech Connect

    Meinert, M.; Schmalhorst, J; Klewe, C.; Reiss, G.; Arenholz, E.; Bohnert, T.; Nielsch, K.

    2011-08-08

    Epitaxial thin films of the half-metallic X{sub a}-compound Mn{sub 2}CoGa (Hg{sub 2}CuTi prototype) were prepared by dc magnetron co-sputtering with different heat treatments on MgO (001) substrates. High-quality #12;lms with a bulk magnetization of 1.95(5) {mu}{sub #22;}B per unit cell were obtained. The average Mn magnetic moment and the Co moment are parallel, in agreement with theory. The x-ray magnetic circular dichroism spectra agree with calculations based on density functional theory and reveal the antiparallel alignment of the two inequivalent Mn moments. X-ray magnetic linear dichroism allows to distinguish between itinerant and localized Mn moments. It is shown that one of the two Mn moments has localized character, whereas the other Mn moment and the Co moment are itinerant.

  1. Absorption and Circular Dichroism Spectra of La{sub 3}Ga{sub 5}SiO{sub 14} Crystals Doped with Pr{sup 3+}, Ho{sup 3+}, and Er{sup 3+} Ions

    SciTech Connect

    Burkov, V. I.; Lysenko, O. A.; Mill, B. V.

    2010-11-15

    The absorption and circular dichroism (CD) spectra of La{sub 3}Ga{sub 5}SiO{sub 14} langasite crystals doped with Pr{sup 3+}, Ho{sup 3+}, and Er{sup 3+} ions have been studied in the wavelength range of 350-700 nm. The electronic transitions of these ions, which replace La3+ ions in the 3e position with the symmetry 2, are observed in the spectra. All transitions are active in both the absorption and CD spectra. The dipole strengths D{sub om}, rotational strengths R{sub om}, and anisotropy factors g have been calculated for well-resolved bands. Some features are noted for the spectra that were obtained, and their relationship with the structure disorder is considered.

  2. Toroidal circular dichroism

    NASA Astrophysics Data System (ADS)

    Raybould, T. A.; Fedotov, V. A.; Papasimakis, N.; Kuprov, I.; Youngs, I. J.; Chen, W. T.; Tsai, D. P.; Zheludev, N. I.

    2016-07-01

    We demonstrate that the induced toroidal dipole, represented by currents flowing on the surface of a torus, makes a distinct and indispensable contribution to circular dichroism. We show that toroidal circular dichroism supplements the well-known mechanism involving electric dipole and magnetic dipole transitions. We illustrate this with rigorous analysis of the experimentally measured polarization-sensitive transmission spectra of an artificial metamaterial, constructed from elements of toroidal symmetry. We argue that toroidal circular dichroism will be found in large biomolecules with elements of toroidal symmetry and should be taken into account in the interpretation of circular dichroism spectra of organics.

  3. Weak anisotropic x-ray magnetic linear dichroism at the Eu M4,5 edges of ferromagnetic EuO(001): evidence for 4f-state contributions.

    PubMed

    van der Laan, Gerrit; Arenholz, Elke; Schmehl, Andreas; Schlom, Darrell G

    2008-02-15

    We have observed a weak anisotropic x-ray magnetic linear dichroism (AXMLD) at the Eu M4,5 edges of ferromagnetic EuO(001), which indicates that the 4f states are not rotationally invariant. A quantitative agreement of the AXMLD is obtained with multiplet calculations where the 4f state is split by an effective cubic crystalline electrostatic field. The results indicate that the standard model of rare earths, where 4f electrons are treated as core states, is not correct and that the 4f orbitals contribute weakly to the magnetic anisotropy. PMID:18352515

  4. Electrodynamics of circular dichroism and its application in the construction of a circular polaroid

    NASA Astrophysics Data System (ADS)

    Volobuev, A. N.

    2016-03-01

    Electrodynamic principles of circular dichroism are developed using a concept of conducting circular structures in matter. A simplified representation of material equations for an optically active medium is obtained in the absence of a transition to the complex domain. A dependence of the absorption coefficient of a circular polarization as a component of the linearly polarized radiation on material parameters is found. Such parameters are analyzed to reveal a possibility of construction of a circular polaroid.

  5. Nuclear spin circular dichroism

    SciTech Connect

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  6. Method of oriented circular dichroism.

    PubMed Central

    Wu, Y; Huang, H W; Olah, G A

    1990-01-01

    We present a new method for determining the orientation of alpha-helical sections of proteins or peptides in membrane. To apply this method, membranes containing proteins must be prepared in a multilayer array. Circular dichroism (CD) spectra of the multilayer sample are then measured at the normal as well as oblique incident angles with respect to the bilayer planes; we call such spectra oriented circular dichroism (OCD). The procedure of OCD measurement, particularly the ways to avoid the spectral artifacts due to the effects of dielectric interfaces, linear dichroism and birefringence, and the method of data analysis are described in detail. To illustrate the method, we analyze the OCD of alamethicin in diphytanoylphosphatidylcholine multilayers. We conclude unambiguously that the helical section of alamethicin is parallel to the membrane normal when the sample is in the full-hydration state, but the helical section rotates to the plane of membrane when the sample is in a low-hydration state. We also obtained the parallel and perpendicular CD spectra of alpha-helix, and found them to be in agreement with previous theoretical calculations based on the exciton theory. These spectra are useful for analyzing protein orientations in future experiments. Images FIGURE 5 PMID:2344464

  7. Simultaneous measurements of mobility, dispersion, and orientation of DNA during steady-field gel electrophoresis coupling a fluorescence recovery after photobleaching apparatus with a fluorescence detected linear dichroism setup

    NASA Astrophysics Data System (ADS)

    Tinland, B.; Meistermann, L.; Weill, G.

    2000-06-01

    Orientation of molecules is responsible for the loss of separability during steady-field gel electrophoresis. In this work we develop a technique to measure simultaneously the relevant parameters involved in the separation mechanism: electrophoretic mobility, band broadening, and molecular orientation. To do that we have associated a fluorescence recovery after photobleaching (FRAP) apparatus with a fluorescence detected linear dichroism setup. This coupling allows one to follow the buildup of orientation during the FRAP experiment. Because orientation involves a change in the angular distribution of fluorescence, we have added a fluorescence polarization setup which can be used in parallel with the FRAP and gives an exact value of the steady-state orientation factor. We illustrate the possibilities of these combined experiments by analyzing the coupling of electrophoretic transport and orientation of λ DNA in 1% agarose gels.

  8. DEIMOS: A beamline dedicated to dichroism measurements in the 350–2500 eV energy range

    SciTech Connect

    Ohresser, P. Otero, E.; Choueikani, F.; Chen, K.; Stanescu, S.; Deschamps, F.; Moreno, T.; Polack, F.; Lagarde, B.; Daguerre, J.-P.; Marteau, F.; Scheurer, F.; Joly, L.; Muller, B.; Kappler, J.-P.; Bunau, O.; Sainctavit, Ph.

    2014-01-15

    The DEIMOS (Dichroism Experimental Installation for Magneto-Optical Spectroscopy) beamline was part of the second phase of the beamline development at French Synchrotron SOLEIL (Source Optimisée de Lumière à Energie Intermédiaire du LURE) and opened to users in March 2011. It delivers polarized soft x-rays to perform x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and x-ray linear dichroism in the energy range 350–2500 eV. The beamline has been optimized for stability and reproducibility in terms of photon flux and photon energy. The main end-station consists in a cryo-magnet with 2 split coils providing a 7 T magnetic field along the beam or 2 T perpendicular to the beam with a controllable temperature on the sample from 370 K down to 1.5 K.

  9. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    SciTech Connect

    Brabec, Jiri; Lin, Lin; Shao, Meiyue; Govind, Niranjan; Yang, Chao; Saad, Yousef; Ng, Esmond

    2015-10-06

    We present two iterative algorithms for approximating the absorption spectrum of molecules within linear response of time-dependent density functional theory (TDDFT) framework. These methods do not attempt to compute eigenvalues or eigenvectors of the linear response matrix. They are designed to approximate the absorption spectrum as a function directly. They take advantage of the special structure of the linear response matrix. Neither method requires the linear response matrix to be constructed explicitly. They only require a procedure that performs the multiplication of the linear response matrix with a vector. These methods can also be easily modified to efficiently estimate the density of states (DOS) of the linear response matrix without computing the eigenvalues of this matrix. We show by computational experiments that the methods proposed in this paper can be much more efficient than methods that are based on the exact diagonalization of the linear response matrix. We show that they can also be more efficient than real-time TDDFT simulations. We compare the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost.

  10. Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contributions

    SciTech Connect

    Dinh, Thanh-Chung; Renger, Thomas

    2015-01-21

    A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Q{sub y} transition dipole moments in Chl b homodimers is larger by about 9{sup ∘} than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b.

  11. Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: Importance of non-secular contributions

    NASA Astrophysics Data System (ADS)

    Dinh, Thanh-Chung; Renger, Thomas

    2015-01-01

    A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Qy transition dipole moments in Chl b homodimers is larger by about 9∘ than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b.

  12. On the Theory of the Shift Linear Photovoltaic Effect in Semiconductors of Tetrahedral Symmetry Under Two-Photon Absorption

    NASA Astrophysics Data System (ADS)

    Rasulov, R. Ya.; Rasulov, V. R.; Eshboltaev, I.

    2016-05-01

    An occurrence of the current of the shift linear photovoltaic effect under two-photon absorption of light in semiconductors without a center of symmetry with a complex band structure is theoretically analyzed. The contributions both from the simultaneous absorption of two photons and successive absorption of two single photons to the photocurrent are taken into account.

  13. Theoretical analysis of X-ray magnetic circular dichroism at the Yb L2, 3 absorption edges of YbInCu4 in high magnetic fields around the field-induced valence transition

    NASA Astrophysics Data System (ADS)

    Kotani, A.

    2012-01-01

    High-magnetic-field X-ray absorption spectra (XAS) and its X-ray magnetic circular dichroism (XMCD) at the Yb L2, 3 edges of YbInCu4 are calculated around the field-induced valence transition at about 30 T. The calculations are made by using a new theoretical framework with an extended single impurity Anderson model (SIAM) developed recently by the present author. Two parameters in SIAM, the 4 f level and the hybridization strength, are taken as different values in low- and high-magnetic-field phases of the field-induced valence transition. The calculated results are compared with recent experimental data measured by Matsuda et al. by utilizing a miniature pulsed magnet up to 40 T. The field-dependence of the calculated XMCD spectra is explained in detail on the basis of the field-dependence of the Yb 4 f wavefunctions in the ground state. Some possibilities are discussed on the negative XMCD signal observed experimentally at the L2 edge.

  14. Absorption cross-section and decay rate of rotating linear dilaton black holes

    NASA Astrophysics Data System (ADS)

    Sakalli, I.; Aslan, O. A.

    2016-02-01

    We analytically study the scalar perturbation of non-asymptotically flat (NAF) rotating linear dilaton black holes (RLDBHs) in 4-dimensions. We show that both radial and angular wave equations can be solved in terms of the hypergeometric functions. The exact greybody factor (GF), the absorption cross-section (ACS), and the decay rate (DR) for the massless scalar waves are computed for these black holes (BHs). The results obtained for ACS and DR are discussed through graphs.

  15. Optical-feedback cavity-enhanced absorption spectroscopy in a linear cavity: model and experiments

    NASA Astrophysics Data System (ADS)

    Manfred, Katherine M.; Ciaffoni, Luca; Ritchie, Grant A. D.

    2015-08-01

    Optical-feedback cavity-enhanced absorption spectroscopy is a highly sensitive trace gas sensing technique that relies on feedback from a resonant intracavity field to successively lock the laser to the cavity as the wavelength is scanned across a molecular absorption with a comb of resonant frequencies. V-shaped optical cavities have been favoured in the past in order to avoid additional feedback fields from non-resonant reflections that potentially suppress the locking to the resonant cavity frequency. A model of the laser-cavity coupling demonstrates, however, that the laser can stably lock to a resonant linear cavity, within certain constraints on the relative intensity of the two feedback sources. By mode mismatching the field into the linear cavity, we have shown that it is theoretically and practically possible to spatially filter out the unwanted non-resonant component in order for the resonant field to dominate the feedback competition at the laser. A 5.3 cw quantum cascade laser scanning across a absorption feature demonstrated stable locking to achieve a minimum detectable absorption coefficient of for 1-s averaging. Detailed investigations of feedback effects on the laser output verified the validity of our theoretical models.

  16. Circular dichroism from Fano resonances in planar chiral oligomers

    NASA Astrophysics Data System (ADS)

    Hopkins, Ben; Poddubny, Alexander N.; Miroshnichenko, Andrey E.; Kivshar, Yuri S.

    2015-05-01

    Here we present a general approach for describing the physics of Fano resonances in nanoparticle oligomers. It is shown that the interference of nonorthogonal collective eigenmodes is a sufficient condition to produce Fano resonances. We then show that such nonorthogonality between eigenmodes also permits the existence of a new form circular dichroism in the absorption and scattering cross-sections, even when circular dichroism is forbidden in the extinction cross-section.

  17. A sequential algorithm for the non-linear dual-sorption model of percutaneous drug absorption.

    PubMed

    Gumel, A B; Kubota, K; Twizell, E H

    1998-08-15

    A sequential algorithm is developed for the non-linear dual-sorption model developed by Chandrasekaran et al. [1,2] which monitors pharmacokinetic profiles in percutaneous drug absorption. In the experimental study of percutaneous absorption, it is often observed that the lag-time decreases with the increase in the donor concentration when two or more donor concentrations of the same compound are used. The dual-sorption model has sometimes been employed to explain such experimental results. In this paper, it is shown that another feature observed after vehicle removal may also characterize the dual-sorption model. Soon after vehicle removal, the plots of the drug flux versus time become straight lines on a semilogarithmic scale as in the linear model, but the half-life is prolonged thereafter when the dual-sorption model prevails. The initial half-life after vehicle removal with a low donor concentration is longer than that with a higher donor concentration. These features, if observed in experiments, may be used as evidence to confirm that the dual-sorption model gives an explanation to the non-linear kinetic behaviour of a permeant. PMID:9727298

  18. Some new progress on the light absorption properties of linear alkyl benzene solvent

    NASA Astrophysics Data System (ADS)

    Yu, Guang-You; Cao, De-Wen; Huang, Ai-Zhong; Yu, Lei; Loh, Chang-Wei; Wang, Wen-Wen; Qian, Zhi-Qiang; Yang, Hai-Bo; Huang, Huang; Xu, Zong-Qiang; Zhu, Xue-Yuan; Xu, Bin; Qi, Ming

    2016-01-01

    Linear alkyl benzene (LAB) will be used as the solvent in a liquid scintillator mixture for the JUNO antineutrino experiment. Its light absorption properties should therefore be understood prior to its effective use in the experiment. Attenuation length measurements at a light wavelength of 430 nm have been performed on samples of LAB prepared for the JUNO experiment. Inorganic impurities in LAB have also been studied for their possibilities of light absorption in our wavelength of interest. In view of a tentative plan by the JUNO collaboration to utilize neutron capture with hydrogen in the detector, we also present in this work a preliminary study on the carbon-hydrogen ratio and the attenuation length of the samples. Supported by China Ministry of Science and Technology(2013CB834300)

  19. Tunable Optical Limiting Action due to Non-linear Absorption in ZnO/Ag Nanocomposites

    NASA Astrophysics Data System (ADS)

    Radhu, S.; Vijayan, C.; Sandeep, Suchand; Philip, Reji

    2011-07-01

    ZnO/Ag nanocomposites with different silver concentration are successfully synthesized by solvothermal method. The characterization of the as- synthesized samples is done using XRD, UV-visible spectroscopy and HRTEM and the results indicate that the composites consist of silver nanoparticles attached to the ZnO nanoparticles. The optical non-linearity in these samples is studied using open aperture Z-scan technique and the experimental results agree well with a theoretical model involving two- photon absorption. It is found that the parameters of optical limiting can be tuned in a broad band by varying the silver concentration in the samples.

  20. On the Theory of the Ballistic Linear Photovoltaic Effect in Semiconductors of Tetrahedral Symmetry Under Two-Photon Absorption

    NASA Astrophysics Data System (ADS)

    Rasulov, R. Ya.; Rasulov, V. R.; Eshboltaev, I.

    2016-07-01

    The ballistic contribution to the current of linear photovoltaic effect under two-photon absorption of light is calculated and theoretically analyzed for the semiconductors of a tetrahedral symmetry with a complex band structure consisting of two closely spaced subbands. The transitions between the branches of one band in cases of the simultaneous absorption of two photons and successive absorption of two single photons are taken into account.

  1. SIMULTANEOUS MEASUREMENT OF CIRCULAR DICHROISM AND FLUORESCENCE POLARIZATION ANISOTROPY.

    SciTech Connect

    SUTHERLAND,J.C.

    2002-01-19

    Circular dichroism and fluorescence polarization anisotropy are important tools for characterizing biomolecular systems. Both are used extensively in kinetic experiments involving stopped- or continuous flow systems as well as titrations and steady-state spectroscopy. This paper presents the theory for determining circular dichroism and fluorescence polarization anisotropy simultaneously, thus insuring the two parameters are recorded under exactly the same conditions and at exactly the same time in kinetic experiments. The approach to measuring circular dichroism is that used in almost all conventional dichrographs. Two arrangements for measuring fluorescence polarization anisotropy are described. One uses a single fluorescence detector and signal processing with a lock-in amplifier that is similar to the measurement of circular dichroism. The second approach uses classic ''T'' format detection optics, and thus can be used with conventional photon-counting detection electronics. Simple extensions permit the simultaneous measurement of the absorption and excitation intensity corrected fluorescence intensity.

  2. Specific absorption rate calculations of magnetite, using a modified linear response model for applications in magnetic hyperthermia

    SciTech Connect

    Hernández S, A. E-mail: meduardo2001@hotmail.com; Cano, M. E. E-mail: meduardo2001@hotmail.com; Torres-Arenas, J.

    2014-11-07

    Currently the absorption of electromagnetic radiation by magnetic nanoparticles is studied for biomedical applications of cancer thermotherapy. Several experiments are conduced following the framework of the Rosensweig model, in order to estimate their specific absorption rate. Nevertheless, this linear approximation involves strong simplifications which constrain their accuracy and validity range. The main aim of this work is to incorporate the deviation of the sphericity assumption in particles shapes, to improve the determination of their specific absorption rate. The correction to the effective particles volume is computed as a measure of the apparent amount of magnetic material, interacting with the external AC magnetic field. Preliminary results using the physical properties of Fe3O4 nanoparticles, exhibit an important correction in their estimated specific absorption rate, as a function of the apparent mean particles radius. Indeed, we have observed using a small deviation (6% of the apparent radius), up to 40% of the predicted specific absorption rate by the Rosensweig linear approximation.

  3. Microscopic Modeling of Intersubband Optical Processes in Type II Semiconductor Quantum Wells: Linear Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Kolokolov, Kanstantin I.; Ning, Cun-Zheng

    2003-01-01

    Linear absorption spectra arising from intersubband transitions in semiconductor quantum well heterostructures are analyzed using quantum kinetic theory by treating correlations to the first order within Hartree-Fock approximation. The resulting intersubband semiconductor Bloch equations take into account extrinsic dephasing contributions, carrier-longitudinal optical phonon interaction and carrier-interface roughness interaction which is considered with Ando s theory. As input for resonance lineshape calculation, a spurious-states-free 8-band kp Hamiltonian is used, in conjunction with the envelop function approximation, to compute self-consistently the energy subband structure of electrons in type II InAs/AlSb single quantum well structures. We demonstrate the interplay of nonparabolicity and many-body effects in the mid-infrared frequency range for such heterostructures.

  4. X-Ray Dichroism in Photoelectron Spectroscopy for Direct Element Specific Surface Magnetometry of Nanomagnetic Structures

    NASA Astrophysics Data System (ADS)

    Tobin, James G.

    1997-03-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of xray absorption dichroism measurements and the theoretical framework provided by the "sum rules."[1] Unfortunately, sum rule analyses are hampered by several limitations [2], including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic Xray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al [3] demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now we [4] have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus [5], it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together [6], this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source. [7,8] This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract No. W-7405-ENG-48. 1. B.T. Thole et al, Phys. Rev. Lett. 68,1943 (1992); P. Carra et al. Phys. Rev. Lett. 70, 694 (1993). 2. J.G. Tobin et al Phys. Rev. B 52, 6530 (1995). 3. E. Tamura et al, Phys. Rev. Lett 73, 1533 (1994) 4. J.G. Tobin, K.W. Goodman, F.O. Schumann, R.F. Willis, J

  5. Cooperative enhancement versus additivity of two-photon-absorption cross sections in linear and branched squaraine superchromophores.

    PubMed

    Ceymann, Harald; Rosspeintner, Arnulf; Schreck, Maximilian H; Mützel, Carina; Stoy, Andreas; Vauthey, Eric; Lambert, Christoph

    2016-06-28

    The linear and nonlinear optical properties of a series of oligomeric squaraine dyes were investigated by one-photon absorption spectroscopy (1PA) and two-photon absorption (2PA) induced fluorescence spectroscopy. The superchromophores are based on two indolenine squaraine dyes with transoid (SQA) and cisoid configuration (SQB). Using these monomers, linear dimers and trimers as well as star-shaped trimers and hexamers with benzene or triphenylamine cores were synthesised and investigated. The red-shifted and intensified 1PA spectra of all superchromophores could well be explained by exciton coupling theory. In the linear chromophore arrangements we also found superradiance of fluorescence but not in the branched systems. Furthermore, the 2PA showed enhanced cross sections for the linear oligomers but only additivity for the branched systems. This emphasizes that the enhancement of the 2PA cross section in the linear arrangements is probably caused by orbital interactions of higher excited configurations. PMID:27264847

  6. Effect of hydrogenic impurity on linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot

    NASA Astrophysics Data System (ADS)

    Guo, Kangxian; Zhang, Zhongmin; Mou, Sen; Xiao, Bo

    2015-05-01

    The analytical expressions of linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot with a hydrogenic impurity are obtained by using the compact-density-matrix approach and iterative method. The wave functions and the energy levels are obtained by using the variational method. Numerical results show that the optical absorption coefficients and refractive index changes are strongly affected by the hydrogenic impurity.

  7. The formation of linear aggregates in magnetic hyperthermia: implications on specific absorption rate and magnetic anisotropy.

    PubMed

    Saville, Steven L; Qi, Bin; Baker, Jonathon; Stone, Roland; Camley, Robert E; Livesey, Karen L; Ye, Longfei; Crawford, Thomas M; Mefford, O Thompson

    2014-06-15

    The design and application of magnetic nanoparticles for use as magnetic hyperthermia agents has garnered increasing interest over the past several years. When designing these systems, the fundamentals of particle design play a key role in the observed specific absorption rate (SAR). This includes the particle's core size, polymer brush length, and colloidal arrangement. While the role of particle core size on the observed SAR has been significantly reported, the role of the polymer brush length has not attracted as much attention. It has recently been reported that for some suspensions linear aggregates form in the presence of an applied external magnetic field, i.e. chains of magnetic particles. The formation of these chains may have the potential for a dramatic impact on the biomedical application of these materials, specifically the efficiency of the particles to transfer magnetic energy to the surrounding cells. In this study we demonstrate the dependence of SAR on magnetite nanoparticle core size and brush length as well as observe the formation of magnetically induced colloidal arrangements. Colloidally stable magnetic nanoparticles were demonstrated to form linear aggregates in an alternating magnetic field. The length and distribution of the aggregates were dependent upon the stabilizing polymer molecular weight. As the molecular weight of the stabilizing layer increased, the magnetic interparticle interactions decreased therefore limiting chain formation. In addition, theoretical calculations demonstrated that interparticle spacing has a significant impact on the magnetic behavior of these materials. This work has several implications for the design of nanoparticle and magnetic hyperthermia systems, while improving understanding of how colloidal arrangement affects SAR. PMID:24767510

  8. Appraisal of Surface Hopping as a Tool for Modeling Condensed Phase Linear Absorption Spectra.

    PubMed

    Petit, Andrew S; Subotnik, Joseph E

    2015-09-01

    Whereas surface hopping is usually used to study populations and mean-field dynamics to study coherences, in two recent papers, we described a procedure for calculating dipole-dipole correlation functions (and therefore absorption spectra) directly from ensembles of surface hopping trajectories. We previously applied this method to a handful of one-dimensional model problems intended to mimic the gas phase. In this article, we now benchmark this new procedure on a set of multidimensional model problems intended to mimic the condensed phase and compare our results against other standard semiclassical methods. By comparison, we demonstrate that methods that include only dynamical information from one PES (the standard Kubo approaches) exhibit large discrepancies with the results of exact quantum dynamics. Furthermore, for model problems with nonadiabatic excited state dynamics but no quantized vibrational structure in the spectra, our surface hopping approach performs comparably to using Ehrenfest dynamics to calculate the electronic coherences. That being said, however, when quantized vibrational structures are present in the spectra but the electronic states are uncoupled, performing the dynamics on the mean PES still outperforms our present method. These benchmark results should influence future studies that use ensembles of independent semiclassical trajectories to model linear as well as multidimensional spectra in the condensed phase. PMID:26575927

  9. Linear absorption coefficient of beryllium in the 50-300-A wavelength range. [bandpass filter materials for ultraviolet astronomy instrumentation

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Lewis, M.; Petre, R.

    1983-01-01

    Transmittances of thin-film filters fabricated for an extreme-UV astronomy sounding-rocket experiment yield values for the linear absorption coefficient of beryllium in the 50-300-A wavelength range, in which previous measurements are sparse. The inferred values are consistent with the lowest data previously published and may have important consequences for extreme-UV astronomers.

  10. Density Transition Based Self-Focusing of cosh-Gaussian Laser Beam in Plasma with Linear Absorption

    NASA Astrophysics Data System (ADS)

    Niti, Kant; Manzoor, Ahmad Wani

    2015-07-01

    Density transition based self-focusing of cosh-Gaussian laser beam in plasma with linear absorption has been studied. The field distribution in the plasma is expressed in terms of beam width parameter, decentered parameter, and linear absorption coefficient. The differential equation for the beam width parameter is solved by following Wentzel-Kramers-Brillouin (WKB) and paraxial approximation through parabolic wave equation approach. The behaviour of beam width parameter with dimensionless distance of propagation is studied at optimum values of plasma density, decentered parameter and with different absorption levels in the medium. The results reveal that these parameters can affect the self-focusing significantly. Supported by a Financial Grant from CSIR, New Delhi, India, under Project No. 03(1277)/13/EMR-II

  11. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri; Hlongwane, Miranda; Heitmann, Uwe; Florek, Stefan

    2012-05-01

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 μg·L- 1 using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed.

  12. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    NASA Astrophysics Data System (ADS)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  13. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    PubMed Central

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  14. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    PubMed

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  15. Magnetic x-ray circular dichroism in Fe Co Pt multilayers

    SciTech Connect

    Tobin, J.G.; Jankowski, A.F.; Waddill, G.D.; Sterne, P.A.

    1994-04-01

    Magnetic x-ray circular dichroism in x-ray absorption has been used to investigate the ternary multilayer system, Fe Co Pt. Samples were prepared by planar magnetron sputter deposition and carefully characterized, using a variety of techniques such as grazing-incidence and high-angle x-ray scattering, Auger depth profiling and cross-section transmission electron microscopy. As previously reported, the Fe9.5{Angstrom} Pt9.5{Angstrom} exhibits a large dichroism in the Fe 2p absorption. Interestingly while the Co9.5{Angstrom} Pt9.5{Angstrom} has no measurable dichroism, the Fe4.7{Angstrom} Co4.7{Angstrom} Pt9.5{Angstrom} sample has a dichroism at both the Fe 2p and Co 2p absorption edges. These and other results are compared to slab calculation predictions. Possible explanations are discussed.

  16. Electromagnetic particle simulation of the effect of toroidicity on linear mode conversion and absorption of lower hybrid waves

    NASA Astrophysics Data System (ADS)

    Bao, J.; Lin, Z.; Kuley, A.; Wang, Z. X.

    2016-06-01

    Effects of toroidicity on linear mode conversion and absorption of lower hybrid (LH) waves in fusion plasmas have been studied using electromagnetic particle simulation. The simulation confirms that the toroidicity induces an upshift of parallel refractive index when LH waves propagate from the tokamak edge toward the core, which affects the radial position for the mode conversion between slow and fast LH waves. Furthermore, moving LH antenna launch position from low field side toward high field side leads to a larger upshift of the parallel refractive index, which helps the slow LH wave penetration into the tokamak core. The broadening of the poloidal spectrum of the wave-packet due to wave diffraction is also verified in the simulation. Both the upshift and broadening effects of the parallel spectrum of the wave-packet modify the parallel phase velocity and thus the linear absorption of LH waves by electron Landau resonance.

  17. Magnetic circular dichroism in EELS (abstract)

    SciTech Connect

    Harp, G.R.; Farrow, R.F.; Marks, R.F.

    1996-04-01

    We evaluate the possibility of using dichroic electron energy loss spectroscopy (DEELS) as an alternative to x-ray magnetic circular dichroism (XMCD). It is well known that electron energy loss spectroscopy and x-ray absorption spectroscopy are highly analogous, providing similar information. A simple semiclassical model suggests that DEELS might have a magnetic sensitivity similar to that of XMCD. This sensitivity will be reduced, however, by multiple scattering of the probe electron before and after the energy loss event. Thus it is difficult to predict the magnitude of the DEELS effect. Experiments were performed at the {ital L}-edge of polycrystalline Fe, Co, and Ni thin film samples with uniaxial in-plane magnetic anisotropy, prepared {ital in} {ital situ} with a magnetic bias field. Even in those most favorable cases, the DEELS effect is seen to be at least 10 times smaller than similar effects in XMCD. {copyright} {ital 1996 American Institute of Physics.}

  18. Magnetic circular dichroism of peralkylated tetrasilane conformers

    PubMed Central

    Fogarty, Heather A.; Imhof, Roman; Michl, Josef

    2004-01-01

    Magnetic circular dichroism (MCD) of five peralkylated tetrasilanes (1–5) conformationally constrained to angles ranging from nearly 0° to 180° and of the open chain tetrasilane Si4Me10 (6) shows a clear conformational dependence and permits the detection of previously hidden transitions. In the tetrasilane CH2Si4Me8 (1), with the smallest dihedral angle, comparison of MCD with absorption spectra reveals four low-energy electronic transitions. In the tetrasilanes 2–4, three distinct transitions are apparent. In tetrasilanes 5 and 6, MCD reveals the very weak transition that has been predicted to be buried under the first intense peak and to which the anomalous thermochromism of 6 and other short-chain oligosilanes has been attributed. PMID:15249672

  19. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    NASA Technical Reports Server (NTRS)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  20. Circular dichroism and magnetic circular dichroism of iron-sulfur proteins.

    PubMed

    Stephens, P J; Thomson, A J; Dunn, J B; Keiderling, T A; Rawlings, J; Rao, K K; Hall, D O

    1978-10-31

    Circular dichroism (CD) and magnetic circular dichroism (MCD) spectra are reported for the 2-Fe ferredoxins from Pseudomonas putida and Spirulina maxima, Chromatium HIPIP, the 4-Fe ferredoxin from Bacillus stearothermophilus, and the 8-Fe ferredoxin from Clostridium pasteurianum. The spectral range spans the near-infrared, visible, and near ultraviolet. In all cases except oxidized 2-Fe ferredoxins, electronic absorption is observed continuously from less than 5000 cm-1 to above 30,000 cm-1. The CD spectra of the two 2-Fe ferredoxins are similar. In contrast, the CD of the 4-Fe and 8-Fe proteins, for a given 4-Fe cluster oxidation level, varies considerable with protein. MCD is less sensitive to protein environment than is CD. In the 2-Fe proteins, MCD at 5 T is appreciably smaller than the CD; in the 4-Fe and 8-Fe proteins, MCD and CD are comparable in magnitude. Both CD and MCD are more highly structured than the corresponding absorption spectra. The CD and MCD spectra reported provide a broader base than heretofore available for the characterization of iron-sulfur proteins containing 2-Fe and 4-Fe clusters and for the evaluation of electronic structural models for these clusters. PMID:728385

  1. Dichroism and birefringence of natural violet diamond crystals

    SciTech Connect

    Konstantinova, A. F. Titkov, S. V.; Imangazieva, K. B.; Evdishchenko, E. A.; Sergeev, A. M.; Zudin, N. G.; Orekhova, V. P.

    2006-05-15

    Investigation of the optical properties of natural violet diamonds from the Yakutian kimberlites is performed. A red shift of the absorption edge is revealed in the absorption spectra of these crystals. This shift is indicative of the presence of a high concentration of nitrogen in the diamonds studied. Along with the strong band at 0.550 {mu}m, weaker bands at 0.390, 0.456 and 0.496 {mu}m are revealed. It is shown that violet diamond crystals have birefringence and dichroism of about 10{sup -5} and 10{sup -6}, respectively. When a light beam propagates perpendicularly to colored lamellas, the dichroism is much larger and the birefringence is smaller than in the case where the beam direction is parallel to lamellas.

  2. Communication: Broadband and ultrasensitive femtosecond time-resolved circular dichroism spectroscopy.

    PubMed

    Hiramatsu, Kotaro; Nagata, Takashi

    2015-09-28

    We report the development of broadband and sensitive time-resolved circular dichroism (TRCD) spectroscopy by exploiting optical heterodyne detection. Using this method, transient CD signals of submillidegree level can be detected over the spectral range of 415-730 nm. We also demonstrate that the broadband measurement with the aid of singular value decomposition enables the discrimination of genuine TRCD signals from artificial optical-anisotropy, such as linear birefringence and linear dichroism, induced by photoexcitation. PMID:26428989

  3. Nonlinear Interaction of Elliptical Laser Beam with Collisional Plasma: Effect of Linear Absorption

    NASA Astrophysics Data System (ADS)

    Keshav, Walia; Sarabjit, Kaur

    2016-01-01

    In the present work, nonlinear interaction of elliptical laser beam with collisional plasma is studied by using paraxial ray approximation. Nonlinear differential equations for the beam width parameters of semi-major axis and semi-minor axis of elliptical laser beam have been set up and solved numerically to study the variation of beam width parameters with normalized distance of propagation. Effects of variation in absorption coefficient and plasma density on the beam width parameters are also analyzed. It is observed from the analysis that extent of self-focusing of beam increases with increase/decrease in plasma density/absorption coefficient.

  4. Microwave Magnetochiral Dichroism in the Chiral-Lattice Magnet Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Okamura, Y.; Kagawa, F.; Seki, S.; Kubota, M.; Kawasaki, M.; Tokura, Y.

    2015-05-01

    Through broadband microwave spectroscopy in Faraday geometry, we observe distinct absorption spectra accompanying magnetoelectric (ME) resonance for oppositely propagating microwaves, i.e., directional dichroism, in the multiferroic chiral-lattice magnet Cu2OSeO3. The magnitude of the directional dichroism critically depends on the magnetic-field direction. Such behavior is well accounted for by considering the relative direction of the oscillating electric polarizations induced via the ME effect with respect to microwave electric fields. Directional dichroism in a system with an arbitrary form of ME coupling can be also discussed in the same manner.

  5. Microwave Magnetochiral Dichroism in the Chiral-Lattice Magnet Cu_{2}OSeO_{3}.

    PubMed

    Okamura, Y; Kagawa, F; Seki, S; Kubota, M; Kawasaki, M; Tokura, Y

    2015-05-15

    Through broadband microwave spectroscopy in Faraday geometry, we observe distinct absorption spectra accompanying magnetoelectric (ME) resonance for oppositely propagating microwaves, i.e., directional dichroism, in the multiferroic chiral-lattice magnet Cu_{2}OSeO_{3}. The magnitude of the directional dichroism critically depends on the magnetic-field direction. Such behavior is well accounted for by considering the relative direction of the oscillating electric polarizations induced via the ME effect with respect to microwave electric fields. Directional dichroism in a system with an arbitrary form of ME coupling can be also discussed in the same manner. PMID:26024193

  6. Synthesis and linear and nonlinear absorption properties of dendronised ruthenium(II) phthalocyanine and naphthalocyanine.

    PubMed

    Dasari, Raghunath R; Sartin, Matthew M; Cozzuol, Matteo; Barlow, Stephen; Perry, Joseph W; Marder, Seth R

    2011-04-21

    Ruthenium phthalocyanines and naphthalocyanines with axial dendronised pyridine ligands show high solubility in a variety of solvents, and exhibit solid-state absorption spectra that are comparable to those obtained in dilute solution, making them interesting candidates for optical limiting in the visible. PMID:21399800

  7. Investigation of linear optical absorption coefficients in core-shell quantum dot (QD) luminescent solar concentrators (LSCs)

    NASA Astrophysics Data System (ADS)

    Ebrahimipour, Bahareh Alsadat; Askari, Hassan Ranjbar; Ramezani, Ali Behjat

    2016-09-01

    The interlevel absorption coefficient of CdSe/ZnS and ZnS/CdSe core-shell Quantum Dot (QD) in luminescent solar concentrators (LSCs) is reported. By considering the quantum confinement effects, the wave functions and eigenenergies of electrons in the nonperturebative system consists of a core-shell QD have been numerically calculated under the frame work of effective-mass approximation by solving a three-dimensional Schrӧdinger equation. And then the absorption coefficient is obtained under density matrix approximation considering in the polymer sheets of the concentrator including the core-shell QDs. The effect of the hetero-structure geometry upon the energy spectrum and absorption coefficient associated to interlevel transitions was also considered. The results show that the core-shell QDs can absorb the photons with higher energy in solar spectrum as compared to the inverted core-shell. And with a small shell layer diameter, the core-shell QDs produce larger linear absorption coefficients and consequently higher efficiency values, however it is inversed for inverted core-shell QDs. The work described here gives a detailed insight into the promise of QD-based LSCs and the optoelectronic devices applications.

  8. Characterization of the Cu(Π) and Zn(Π) binding to the Amyloid-β short peptides by both the Extended X-ray Absorption Fine Structure and the Synchrotron Radiation Circular Dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyin; Sun, Shuaishuai; Xu, Jianhua; Zhang, Jing; Huang, Yan; Zhang, Bingbing; Tao, Ye

    2013-04-01

    Alzheimer's disease (AD) is a progressive and devastating neurodegenerative pathology, clinically characterized by dementia, cognitive impairment, personality disorders and memory loss. It is generally accepted that, misfolding of Aβ peptides is the key element in pathogenesis and the secondary structure of Aβ can be changed to major β-strand with reasons unknown yet. Many studies have shown that the misfolding may be linked with some biometals, mainly copper and zinc ions. To characterize interactions of Aβ and metal ions, we utilized both the extended X-ray fine structure spectroscopy (EXAFS) and the synchrotron radiation circular dichroism spectroscopy (SRCD). Aβ (13-22), Aβ (13-21), Aβ (E22G) and Aβ(HH-AA) were selected to study the mechanism of copper and zinc binding to Aβ. We found that Cu interaction with H13 and H14 residues led to the disappearance of the PPΠ, while the Cu binding E22 residue caused a remarkable conformation change to β-sheet enrichment. The Zn ion, in contrast, made little effect on the conformation and it coordinated to only one histidine (H residue) or not.

  9. Influence of the light propagation models on a linearized photoacoustic image reconstruction of the light absorption coefficient

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya

    2015-03-01

    Quantification of the optical properties of the tissues and blood by noninvasive photoacoustic (PA) imaging may provide useful information for screening and early diagnosis of diseases. Linearized 2D image reconstruction algorithm based on PA wave equation and the photon diffusion equation (PDE) can reconstruct the image with computational cost smaller than a method based on 3D radiative transfer equation. However, the reconstructed image is affected by the differences between the actual and assumed light propagations. A quantitative capability of a linearized 2D image reconstruction was investigated and discussed by the numerical simulations and the phantom experiment in this study. The numerical simulations with the 3D Monte Carlo (MC) simulation and the 2D finite element calculation of the PDE were carried out. The phantom experiment was also conducted. In the phantom experiment, the PA pressures were acquired by a probe which had an optical fiber for illumination and the ring shaped P(VDF-TrFE) ultrasound transducer. The measured object was made of Intralipid and Indocyanine green. In the numerical simulations, it was shown that the linearized image reconstruction method recovered the absorption coefficients with alleviating the dependency of the PA amplitude on the depth of the photon absorber. The linearized image reconstruction method worked effectively under the light propagation calculated by 3D MC simulation, although some errors occurred. The phantom experiments validated the result of the numerical simulations.

  10. Rotation and dichroism associated with microwave propagation in chiral composite samples

    SciTech Connect

    Umari, M.H.; Varadan, V.V.; Varadan, V.K. )

    1991-10-01

    Experimental results are presented on the angle of rotation and the axial ratio (dichroism) associated with the propagation of microwave waves in chiral composite samples (a phenomenon akin to optical rotation and optical dichroism). In the experiments the chiral composite samples tested were made in the form of planar slabs and consisted of low loss dielectric matrix materials in which miniature copper springs of left only, right only, or an equal mixture of left and right handedness were randomly distributed and oriented. The normally incident wave was linearly polarized. In the chiral sample the linearly polarized wave decomposes into left and right circularly polarized waves which propagate with different speeds and different attenuations leading to an elliptically polarized transmitted wave whose orientation (electromagnetic rotation) and axial ratio (dichroism) are proportional to the concentration of springs. Rotation and dichroism are shown to be zero in the equichiral samples. 10 refs.

  11. Picosecond circular dichroism spectroscopy: experiment, theory, and applications to protein dynamics

    NASA Astrophysics Data System (ADS)

    Xie, Sunney; Simon, John D.

    1990-05-01

    An experimental technique for measuring time dependent circular dichroism signals with picosecond resolution is described. The details of the experimental apparatus are presented. Theoretical modeling of the detected signal demonstrates that the circular dichroism signal can be isolated from contributions due to pump-induced linear dichroism and linear birefringence effects. The experimental apparatus is used to examine the comformation relaxation in myoglobin following the photoelimination of CO from carbonmonoxymyoglobin. Probing the circular dichroism of the N-band of the herne at 355 nm reveals a relaxation of several hundreds of picosecond, over two orders of magnitude slower than the photo-induced bond cleavage. These results are discussed in terms of the restructuring of the protein following photodissociation.

  12. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on

  13. Absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissues

    NASA Astrophysics Data System (ADS)

    Ivashko, Pavlo; Peresunko, Olexander; Zelinska, Natalia; Alonova, Marina

    2014-08-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  14. Applications of soft x-ray magnetic dichroism

    NASA Astrophysics Data System (ADS)

    van der Laan, G.

    2013-04-01

    Applications of x-ray magnetic circular and linear dichroism (XMCD and XMLD) are reviewed in the soft x-ray region, covering the photon energy range 0.4-2 keV, which includes important absorption edges such as the 3d transition metal L2,3 and rare earth M4,5. These techniques enable a broad range of novel and exciting studies such as on the electronic properties and magnetic ordering of novel nanostructured systems. XMCD has a sensitivity better than 0.01 monolayer (at the surface) and due to simple detection methods, such as electron yield and fluorescence yield, it has become a workhorse technique in physics and materials science. It is the only element-specific technique able to distinguish between the spin and orbital parts of the magnetic moments. The applications are vast, e.g., in x-ray holographic imaging, XMCD gives a spatial resolution of tens of nm. While many studies in the past were centered on physics, more recently new applications have emerged in areas such as chemistry, biology and earth and environmental sciences. For instance, XMCD allows the determination of the cation occupations in spinels and other ternary oxides. In scanning transmission x-ray microscopy (STXM), XMCD enables us to map biogenic magnetite redox changes resulting in a surprising degree of variation on the nanoscale. Another recent development is ferromagnetic resonance (FMR) detected by time-resolved XMCD which opens the door to element-, site- and layer-specific dynamical measurements. By exploiting the time structure of the pulsed synchrotron radiation from the storage ring the relative phase of precession in the individual magnetic layers of a multilayer stack can be determined.

  15. The infrared dichroism of transmembrane helical polypeptides.

    PubMed Central

    Axelsen, P H; Kaufman, B K; McElhaney, R N; Lewis, R N

    1995-01-01

    Polarized attenuated total internal reflectance techniques were applied to study the infrared dichroism of the amide I transition moment in two membrane-bound peptides that are known to form oriented transmembrane helices: gramicidin A in a supported phospholipid monolayer and Ac-Lys2-Leu24-Lys2-amide (L24) in oriented multibilayers. These studies were performed to test the ability of these techniques to determine the orientation of these peptides, to verify the value of optical parameters used to calculate electric field strengths, to examine the common assumptions regarding the amide I transition moment orientation, and to ascertain the effect of surface imperfections on molecular disorder. The two peptides exhibit marked differences in the shape and frequency of their amide I absorption bands. Yet both peptides are highly ordered and oriented with their helical axes perpendicular to the membrane surface. In the alpha-helix formed by L24, there is evidence for a mode with type E1 symmetry contributing to amide I, and the amide I transition moment must be more closely aligned with the peptide C=O (< 34 degrees) than earlier studies have suggested. These results indicate that long-standing assumptions about the orientation of amide I in a peptide require some revision, but that in general, infrared spectroscopy yields reliable information about the orientation of membrane-bound helical peptides. Images FIGURE 1 PMID:8599683

  16. Gauge-Invariant Formulation of Circular Dichroism.

    PubMed

    Raimbault, Nathaniel; de Boeij, Paul L; Romaniello, Pina; Berger, J A

    2016-07-12

    Standard formulations of magnetic response properties, such as circular dichroism spectra, are plagued by gauge dependencies, which can lead to unphysical results. In this work, we present a general gauge-invariant and numerically efficient approach for the calculation of circular dichroism spectra from the current density. First we show that in this formulation the optical rotation tensor, the response function from which circular dichroism spectra can be obtained, is independent of the origin of the coordinate system. We then demonstrate that its trace is independent of the gauge origin of the vector potential. We also show how gauge invariance can be retained in practical calculations with finite basis sets. As an example, we explain how our method can be applied to time-dependent current-density-functional theory. Finally, we report gauge-invariant circular dichroism spectra obtained using the adiabatic local-density approximation. The circular dichroism spectra we thus obtain are in good agreement with experiment. PMID:27295541

  17. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  18. The Non-Linear Relationship between Silicate Absorption Depth and IR Extinction in Dense Clouds

    NASA Astrophysics Data System (ADS)

    Chiar, Jean E.; Pendleton, Y.; Ennico, K.; Boogert, A.; Greene, T.; Lada, C.; Roellig, T.; Tielens, A.; Werner, M.; Whittet, D.

    2006-12-01

    Interstellar silicates are likely to be a part of all grains responsible for extinction in the diffuse interstellar medium (ISM) and dense clouds. A correlation between visual extinction (Av) and the depth of the 9.7 mu silicate feature (measured as optical depth, tau(9.7)) is expected if the dust species are well mixed. In the diffuse ISM, such a correlation is observed for lines of sight in the solar neighborhood. A previous study of the silicate absorption feature in the Taurus dark cloud showed a tendency for the correlation to break down at high Av (Whittet et al. 1988, MNRAS, 233, 321), but the scatter was large. We have acquired Spitzer Infrared Spectrograph data of several lines of sight in the IC 5146, Barnard 68, Chameleon I and Serpens dense clouds. To eliminate any uncertainties associated with adopting a specific extinction law, we investigated the relationship between tau(9.7) and E(J-K). Our data set spans E(J-K) between 0.3 and 8 mag (Av=between 2-35 mag.). All lines of sight show the 9.7 mu silicate feature. For E(J-K) greater than about 2 mag, tau(9.7) levels off, much like the trend observed in the Taurus data. There are two exceptions: one line of sight in Serpens, with E(J-K) 4 mag lies on the diffuse ISM line. Another line of sight with E(J-K) 8 mag, also in Serpens, lies well below the diffuse ISM line, but well above the “flat” trend of the other dense cloud sources. This particular line of sight also has a high ice column relative to the amount of visual/infrared extinction. The cause of the “flat” trend exhibited by most of the dense cloud points is undetermined. However, in general, it is unlikely that ice mantles would have any effect on the measured silicate feature since ices are transparent in the 10 mu region.

  19. Magnetic x-ray dichroism in ultrathin epitaxial films

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Cummins, T.R.

    1997-04-01

    The authors have used Magnetic X-ray Linear Dichroism (MXLD) and Magnetic X-ray Circular Dichroism (MXCD) to study the magnetic properties of epitaxial overlayers in an elementally specific fashion. Both MXLD and MXCD Photoelectron Spectroscopy were performed in a high resolution mode at the Spectromicroscopy Facility of the ALS. Circular Polarization was obtained via the utilization of a novel phase retarder (soft x-ray quarter wave plate) based upon transmission through a multilayer film. The samples were low temperature Fe overlayers, magnetic alloy films of NiFe and CoNi, and Gd grown on Y. The authors results include a direct comparison of high resolution angle resolved Photoelectron Spectroscopy performed in MXLD and MXCD modes as well as structural studies with photoelectron diffraction.

  20. Circular dichroism of chiral photonic crystal liquid layers with enclosed defect inside

    NASA Astrophysics Data System (ADS)

    Gevorgyan, Ashot; Kocharian, Armen; Vardanyan, Gagik

    2015-03-01

    The photonic crystals of artificial and self-organizing structures with spatial periodic changes in dielectric and magnetic properties have attracted considerable interest recently due to unusual physical properties and wide practical applications. The chiral periodic structure in the scale of optical wavelength gives rise to strong and characteristic circular dichroism responses at visible wavelengths. Here we investigate photonic density, circular dichroism and peculiarities of absorption and emission spectra at various eigen polarizations in multilayered one-dimensional chiral soft matter with two layers of CLCs and an isotropic defect layer inside. The circular dichroism is defined by differences in light energy absorption A=1-(R + T) by the system (R and T are the reflection and transmission coefficients, respectively) and A s , r are the light absorptions, if the incident light has left and right circular polarizations, respectively. This problem can be solved by the modified Ambartsumian's layer addition method. The influence of absorption and gain on the circular dichroism, absorption and emission spectra is established in cholesteric liquid crystal (CLC) cell with an isotropic defect layer inside.

  1. Photoinduced dichroism in Bacteriorhodopsin and its application to optical computing and information processing

    NASA Astrophysics Data System (ADS)

    Denis, Kevin; Aranda, Francisco J.

    1998-03-01

    The intensity dependence of the photoinduced dichroism in Bacteriorhodopsin (bR) films has potential application in optical image processing and optical computing. Under the illumination of linearly polarized actinic light of 570 nm wavelength, the photoinduced dichroism in a Bacteriorhodopsin film induces polarization rotation for a probe beam of the same wavelength. This behavior is a function of the life time of the M state in the Bacteriorhodopsin photocycle. We studied the dependence of the photoinduced dichroism on the pH environment in which the bR molecules are and on genetic mutation by replacement of the Aspartic amino acid in position 96 by Asparagine. The photoinduced probe polarization rotation can be exploited for optical Fourier processing and logic operations. The intensity dependence of the photoinduced dichroism in the different films has important implications on the applications for which they are suitable.

  2. Scaling of the L{sub 2,3} circular magnetic x-ray dichroism of Fe nitrides

    SciTech Connect

    Alouani, M. |; Wills, J.M.; Wilkins, J.W.

    1998-04-01

    We have implemented the calculation of the x-ray-absorption cross section for left- and right-circularly polarized x-ray beams within the local-density approximation by means of our all-electron full-relativistic and spin-polarized full-potential linear muffin-tin orbital method. We show that the L{sub 2,3} circular magnetic x-ray dichroism of Fe, Fe{sub 3}N, and Fe{sub 4}N compounds scales to a single curve when divided by the local magnetic moment. Sum rules determine the spin and orbital magnetic moment of iron atoms in these ordered iron nitrides. {copyright} {ital 1998} {ital The American Physical Society}

  3. Site-directed circular dichroism of proteins: 1Lb bands of Trp resolve position-specific features in tear lipocalin.

    PubMed

    Gasymov, Oktay K; Abduragimov, Adil R; Glasgow, Ben J

    2008-03-15

    The absorption spectra of N-acetyl-L-tryptophanamide in various solvents were resolved into the sums of the (1)L(a) and (1)L(b) components. The relative intensities of the 0-0 transitions of the (1)L(b) bands correlate linearly with the solvent polarity values (E(T)(N)). A novel strategy that uses a set of the experimental (1)L(b) bands was employed to resolve the near-UV circular dichroism (CD) spectra of tryptophanyl residues. Resolved spectral parameters from the single-tryptophan mutants of tear lipocalin (TL), F99W and Y87W, corroborate the fluorescence and structural data of TL. Analysis of the (1)L(b) bands of the Trp CD spectra in proteins is a valuable tool to obtain the local features. The dimethyl sulfoxide (DMSO)-like (1)L(b) band of Trp CD spectra may be used as a "fingerprint" to identify the tryptophanyl side chains in situations where the benzene rings of Trp have van der Waals interactions with the side chains of its nearest neighbor. In addition, the signs and intensities of the components hold information about the side chain conformations and dynamics in proteins. Combined with Trp mutagenesis, this method, which we call site-directed circular dichroism, is broadly applicable to various proteins to obtain the position-specific data. PMID:18047823

  4. Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot

    NASA Astrophysics Data System (ADS)

    Ahmed, S. Jbara; Zulkafli, Othaman; M, A. Saeed

    2016-05-01

    Based on the Schrödinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients. Project supported by the Ministry of Higher Education and Scientific Research in Iraq, Ibnu Sina Institute and Physics Department of Universiti Teknologi Malaysia (UTM RUG Vote No. 06-H14).

  5. Configuration of singular optical cones in gyrotropic crystals with dichroism

    SciTech Connect

    Merkulov, V. S.

    2015-02-15

    Optical conic singularities in crystals with linear dichroism and natural optical activity at the point of intersection of dispersion curves for the main refractive indices are considered. The possible existence of singularities like a nodal point, tangency point, triple point, and cusps of the first and second order is demonstrated. Forty-nine different types of irreducible fourth-order optical cones obtained by sequential bifurcations of eight main singular cones are established. The classification is based on the concept of roughness of systems depending on parameters.

  6. X-ray absorption and magnetic circular dichroism of LaCoO3 , La0.7Ce0.3CoO3 , and La0.7Sr0.3CoO3 films: Evidence for cobalt-valence-dependent magnetism

    NASA Astrophysics Data System (ADS)

    Merz, M.; Nagel, P.; Pinta, C.; Samartsev, A.; v. Löhneysen, H.; Wissinger, M.; Uebe, S.; Assmann, A.; Fuchs, D.; Schuppler, S.

    2010-11-01

    Epitaxial thin films of undoped LaCoO3 , of electron-doped La0.7Ce0.3CoO3 , and of hole-doped La0.7Sr0.3CoO3 exhibit ferromagnetic order with a transition temperature TC≈84K , 23 K, and 194 K, respectively. The spin-state structure for these compounds was studied by soft x-ray magnetic circular dichroism and by near-edge x-ray absorption fine structure at the CoL2,3 and OK edges. It turns out that superexchange between Co3+ high-spin and Co3+ low-spin states is responsible for the ferromagnetism in LaCoO3 . For La0.7Ce0.3CoO3 the Co3+ ions are in a low-spin state and the spin and orbital moments are predominantly determined by a Co2+ high-spin configuration. A spin blockade naturally explains the low transition temperature and the insulating characteristics of La0.7Ce0.3CoO3 . For La0.7Sr0.3CoO3 , on the other hand, the magnetic moments in the epitaxial films originate from high-spin Co3+ and high-spin Co4+ states. Ferromagnetism is induced by t2g double exchange between the two high-spin configurations. For all systems, a strong magnetic anisotropy is observed, with the magnetic moments essentially oriented within the film plane.

  7. Comparison of absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissue

    NASA Astrophysics Data System (ADS)

    Peresunko, O. P.; Zelinska, N. V.; Prydij, O. G.; Zymnyakov, D. A.; Ushakova, O. V.

    2013-12-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  8. Determination of Myoglobin Stability by Circular Dichroism Spectroscopy: Classic and Modern Data Analysis

    ERIC Educational Resources Information Center

    Mehl, Andrew F.; Crawford, Mary A.; Zhang, Lei

    2009-01-01

    Few laboratory procedures describe the use of circular dichroism (CD) at the undergraduate level. To increase the number of laboratory exercises using CD, a thermal denaturation study of myoglobin using CD is described to assess protein stability. Values obtained from a more classic linear data analysis approach are consistent with data analyzed…

  9. A multichannel magneto-chiral dichroism spectrometer

    NASA Astrophysics Data System (ADS)

    Kopnov, G.; Rikken, G. L. J. A.

    2014-05-01

    In this work, we describe a multichannel magneto-chiral dichroism spectrometer for the visible and near infrared wavelength ranges. The optical signal acquisition is based on commercially available Czerny-Turner spectrograph systems equipped with solid state detector arrays. The signal analysis method is based on post-processing phase sensitive detection, where the optical properties of the sample are modulated by an alternating external magnetic field. As an illustration of the performance of this spectrometer, magneto-chiral dichroism was measured in crystals of α - NiSO4 . 6H2O and good agreement with literature results was obtained.

  10. Years of Magnetic X-Ray Dichroism

    NASA Astrophysics Data System (ADS)

    van der Laan, Gerrit

    A historical overview of magnetic x-ray dichroism is presented. I describe the first theoretical and experimental results that have led to the development of this powerful technique for element-specific magnetometry. The theoretical progress of the sum rules is also described, starting with the spinorbit sum rule for the isotropic spectrum which led on to the spin and orbital moment sum rules for x-ray magnetic circular dichroism. The latter has been particularly useful to understand the magnetic anisotropy in thin films and multilayers. Further developments of circular dichroism in (resonant) photoemission and Auger, as well as x-ray detected optical activity, also are summarized. Currently, magnetic x-ray dichroism finds a wide application in x-ray spectroscopy and imaging for the study of magnetic materials and it is considered to be one of the most important discoveries in the field of magnetism in the last few decennia. It is hard to imagine modern research into magnetism without the aid of polarized x-rays.

  11. Towards AB Initio Calculation of the Circular Dichroism of Peptides

    NASA Astrophysics Data System (ADS)

    Molteni, E.; Onida, G.; Tiana, G.

    2012-08-01

    In this work we plan to use ab initio spectroscopy calculations to compute circular dichroism (CD) spectra of peptides. CD provides information on protein secondary structure content; peptides, instead, remain difficult to address, due to their tendency to adopt multiple conformations in equilibrium. Therefore peptides are an interesting test-case for ab initio calculation of CD spectra. As a first application, we focus on the (83-92) fragment of HIV-1 protease, which is known to be involved in the folding and dimerization of this protein. As a preliminary step, we performed classical molecular dynamics (MD) simulations, in order to obtain a set of representative conformers of the peptide. Then, on some of the obtained conformations, we calculated absorption spectra at the independent particle, RPA and TDLDA levels, showing the presence of charge transfer excitations, and their influence on spectral features.

  12. New trans-stilbene derivatives with large two-photon absorption cross-section and non-linear optical susceptibility values--a theoretical investigation.

    PubMed

    Kundi, Varun; Thankachan, Pompozhi Protasis

    2015-05-14

    A detailed theoretical study of linear and non-linear optical susceptibilities (NLOS), one- and two-photon absorption (OPA and TPA) properties for a series of push-pull trans-stilbene (TSB) derivatives with introduction of different electron donor (D) and acceptor (A) groups on either side of the TSB ring system is presented. The objective of the work is to design new TSB derivatives with large TPA cross-section values and to explore their linear and non-linear optical susceptibilities, OPA and TPA properties. We have used linear and quadratic response theory methods and CAM-B3LYP functional in conjunction with the 6-31+G* basis set for all property calculations. We have explained the results of the first hyperpolarizability and TP transition probability using two-state model (2SM) calculations, the results of which are in excellent agreement with the response theory methods. The TP tensor elements have been analysed to explain the large TP activity of molecules. Orbitals involved in the transition processes have been studied both qualitatively (molecular orbital pictures) and quantitatively (Λ-values) in order to explain the nature of charge transfer in different TSB derivatives. The study reveals that the novel derivatives TSBD-10, TSBD-11, TSBD-12 and TSBD-13 have large non-linear optical susceptibilities and TPA cross-section values, the largest being found for TSBD-13 (5560 G.M.). PMID:25894609

  13. Absorption of a linear (L2) and a cyclic (D4) siloxane using different oils: application to biogas treatment.

    PubMed

    Rojas Devia, Carolina; Subrenat, Albert

    2013-01-01

    Hydrophobic volatile methyl siloxanes (VMS), such as hexamethyldisiloxane (L2) and octamethylcyclotetrasiloxane (D4), present a low solubility in water. An alternative treatment by absorption into hydrophobic absorbents was therefore studied. For this purpose, three different absorbents, motor oil, cutting oil and a water-cutting oil mixture, were selected with the aim of re-using a waste product. The set of experiments was carried out in a bubble column, where parameters such as inlet concentration, residence time and temperature were studied. The best performance for the removal of both siloxanes, in terms of absorption capacity, was observed for motor oil, particularly for D4. In fact, motor oil removal efficiency for D 4 was 80%, whereas for L2 it was 60%, indicating that D 4 is more easily absorbed than L2. In the case of water-cutting oil, this showed a mass transfer enhancement from the gas phase to the liquid phase compared with water alone. Furthermore, a removal efficiency of 70% was observed for D 4, showing that the addition of an oil fraction to a water system improves the absorption of VMS. These results show that VMS absorption into oils could be a promising way to achieve their abatement. PMID:24617070

  14. Joint reconstruction of absorption and refractive properties in propagation-based x-ray phase-contrast tomography via a non-linear image reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yujia; Wang, Kun; Gursoy, Doga; Soriano, Carmen; De Carlo, Francesco; Anastasio, Mark A.

    2016-03-01

    Propagation-based X-ray phase-contrast tomography (XPCT) provides the opportunity to image weakly absorbing objects and is being explored actively for a variety of important pre-clinical applications. Quantitative XPCT image reconstruction methods typically involve a phase retrieval step followed by application of an image reconstruction algorithm. Most approaches to phase retrieval require either acquiring multiple images at different object-to-detector distances or introducing simplifying assumptions, such as a single-material assumption, to linearize the imaging model. In order to overcome these limitations, a non-linear image reconstruction method has been proposed previously that jointly estimates the absorption and refractive properties of an object from XPCT projection data acquired at a single propagation distance, without the need to linearize the imaging model. However, the numerical properties of the associated non-convex optimization problem remain largely unexplored. In this study, computer simulations are conducted to investigate the feasibility of the joint reconstruction problem in practice. We demonstrate that the joint reconstruction problem is ill-posed and sensitive to system inconsistencies. Particularly, the method can generate accurate refractive index images only if the object is thin and has no phase-wrapping in the data. However, we also observed that, for weakly absorbing objects, the refractive index images reconstructed by the joint reconstruction method are, in general, more accurate than those reconstructed using methods that simply ignore the object's absorption.

  15. Circular dichroism of planar chiral magnetic metamaterials.

    PubMed

    Decker, M; Klein, M W; Wegener, M; Linden, S

    2007-04-01

    We propose, fabricate, and study a double-layer chiral planar metamaterial that exhibits pronounced circular dichroism at near-infrared wavelengths. The antisymmetric oscillation modes of the two coupled layers allow local magnetic-dipole moments and enhanced polarization effects compared with similar single-layer systems where only electric-dipole moments occur. Experiment and rigorous theoretical calculations are in good agreement. PMID:17339960

  16. Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays

    NASA Astrophysics Data System (ADS)

    Sessoli, Roberta; Boulon, Marie-Emmanuelle; Caneschi, Andrea; Mannini, Matteo; Poggini, Lorenzo; Wilhelm, Fabrice; Rogalev, Andrei

    2015-01-01

    Magneto-chiral dichroism is a non-reciprocal--that is, directional--effect observed in magnetized chiral systems, featuring an unbalanced absorption of unpolarized light depending on the direction of the magnetization. Despite the fundamental interest in a phenomenon breaking both parity and time-reversal symmetries, magneto-chiral dichroism is one of the least investigated aspects of light-matter interaction most likely because of the weakness of the effect in most reported experiments. Here we have exploited the element selectivity of hard X-ray radiation to investigate the magneto-chiral properties of enantiopure crystals of two isostructural molecular helicoidal chains comprising either cobalt(II) or manganese(II) ions. A strong magneto-chiral dichroism, with Kuhn asymmetry of the order of a few per cent, has been observed in the cobalt chains system, whereas it is practically absent for the manganese derivative. The spectral features of the X-ray magneto-chiral dichroism signal differ significantly from the natural and magnetic dichroic contributions and have been rationalized here using the multipolar expansion of matter-radiation interaction.

  17. Exciton Theory for Supramolecular Chlorosomal Aggregates: 1. Aggregate Size Dependence of the Linear Spectra

    PubMed Central

    Prokhorenko, V. I.; Steensgaard, D. B.; Holzwarth, A. R.

    2003-01-01

    The interior of chlorosomes of green bacteria forms an unusual antenna system organized without proteins. The steady-spectra (absorption, circular dichroism, and linear dichroism) have been modeled using the Frenkel Hamiltonian for the large tubular aggregates of bacteriochlorophylls with geometries corresponding to those proposed for Chloroflexus aurantiacus and Chlorobium tepidum chlorosomes. For the Cf. aurantiacus aggregates we apply a structure used previously (V. I. Prokhorenko., D. B. Steensgaard, and A. R. Holzwarth, Biophys. J. 2000, 79:2105–2120), whereas for the Cb. tepidum aggregates a new extended model of double-tube aggregates, based on recently published solid-state nuclear magnetic resonance studies (B.-J. van Rossum, B. Y. van Duhl, D. B. Steensgaard, T. S. Balaban, A. R. Holzwarth, K. Schaffner, and H. J. M. de Groot, Biochemistry 2001, 40:1587–1595), is developed. We find that the circular dichroism spectra depend strongly on the aggregate length for both types of chlorosomes. Their shape changes from “type-II” (negative at short wavelengths to positive at long wavelengths) to the “mixed-type” (negative-positive-negative) in the nomenclature proposed in K. Griebenow, A. R. Holzwarth, F. van Mourik, and R. van Grondelle, Biochim. Biophys. Acta 1991, 1058:194–202, for an aggregate length of 30–40 bacteriochlorophyll molecules per stack. This “size effect” on the circular dichroism spectra is caused by appearance of macroscopic chirality due to circular distribution of the transition dipole moment of the monomers. We visualize these distributions, and also the corresponding Frenkel excitons, using a novel presentation technique. The observed size effects provide a key to explain many previously puzzling and seemingly contradictory experimental data in the literature on the circular and linear dichroism spectra of seemingly identical types of chlorosomes. PMID:14581217

  18. Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies

    SciTech Connect

    Wilson, Daniel; Rudolf, Denis Juschkin, Larissa; Weier, Christian; Adam, Roman; Schneider, Claus M.; Winkler, Gerrit; Frömter, Robert; Danylyuk, Serhiy; Bergmann, Klaus; Grützmacher, Detlev

    2014-10-15

    Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV–250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains.

  19. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure

    PubMed Central

    2012-01-01

    The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  20. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure.

    PubMed

    Barseghyan, Manuk G; Restrepo, Ricardo L; Mora-Ramos, Miguel E; Kirakosyan, Albert A; Duque, Carlos A

    2012-01-01

    : The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  1. Dynamic linear response of atoms in plasmas and photo-absorption cross-section in the dipole approximation

    NASA Astrophysics Data System (ADS)

    Caizergues, C.; Blenski, T.; Piron, R.

    2016-03-01

    We report results on the self-consistent linear response theory of quantum average-atoms in plasmas. The approach is based on the two first orders of the cluster expansion of the plasma susceptibility. A change of variable is applied, which allows us to handle the diverging free-free transitions contribution in the self-consistent induced electron density and potential. The method is first tested on the case of rare gas isolated neutral atoms. A test of the Ehrenfest-type sum rule is then performed in a case of an actual average-atom in a plasma. At frequencies much higher than the plasma frequency, the sum rule seems to be fulfilled within the accuracy of the numerical methods. Close to the plasma frequency, the method seems not to account for the cold-plasma dielectric function renormalization in the sum rule, which was correctly reproduced in the case of the Thomas-Fermi-Bloch self-consistent linear response. This suggests the need for a better accounting for the outgoing waves in the asymptotic boundary conditions.

  2. Evolution of linear absorption and nonlinear optical properties in V-shaped ruthenium(II)-based chromophores.

    PubMed

    Coe, Benjamin J; Foxon, Simon P; Harper, Elizabeth C; Helliwell, Madeleine; Raftery, James; Swanson, Catherine A; Brunschwig, Bruce S; Clays, Koen; Franz, Edith; Garín, Javier; Orduna, Jesús; Horton, Peter N; Hursthouse, Michael B

    2010-02-10

    In this article, we describe a series of complexes with electron-rich cis-{Ru(II)(NH(3))(4)}(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845-4859). They have been isolated as their PF(6)(-) salts and characterized by using various techniques including (1)H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru(III/II) waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities beta have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi* metal-to-ligand charge-transfer (MLCT) and pi --> pi* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant beta(0) responses as high as ca. 600 x 10(-30) esu. These pseudo-C(2v) chromophores show two substantial components of the beta tensor, beta(zzz) and beta(zyy), although the relative significance of these varies with the physical method applied. According to HRS, beta(zzz) dominates in all cases, whereas the Stark analyses indicate that beta(zyy) is dominant in the shorter chromophores, but beta(zzz) and beta(zyy) are similar for the extended species. In contrast, finite field calculations predict that beta(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand pi-systems are extended. Such unusual

  3. Structural, thermal, linear and nonlinear optical studies of an organic optical limiter based on reverse saturable absorption

    NASA Astrophysics Data System (ADS)

    Menezes, Anthoni Praveen; Raghavendra, S.; Jayarama, A.; Sarveshwara, H. P.; Dharmaprakash, S. M.

    2016-09-01

    A new derivative of chalcone, 3-(4-bromophenyl)-1-(pyridin-4-yl) prop-2-en-1-one (4BP4AP), crystallizing in centrosymmetric structure has been synthesized using the Claisen-Schmidt condensation reaction method. The FTIR and FT-Raman spectral studies were carried out on 4BP4AP for structural conformation. The single crystals were grown using slow evaporation solution growth technique. The single crystal XRD of the crystal shows that the crystal system of 4BP4AP is triclinic with space group P-1. Scanning electron microscope images enunciate the surface smoothness and the two dimensional growth mechanisms in the crystal. The crystal is transparent in the entire visible region as indicated by the UV-VIS-NIR spectrum. The thermal stability and phase transition of the compound was studied by thermogravimetric and differential scanning calorimetric analysis and found to be stable up to 200 °C. By performing the open aperture z-scan experiment, nonlinear absorption and optical limiting behavior of the crystal were studied. The crystal can be used for optoelectronic application due to its excellent photo-physical properties.

  4. How to calculate linear absorption spectra with lifetime broadening using fewest switches surface hopping trajectories: A simple generalization of ground-state Kubo theory

    SciTech Connect

    Petit, Andrew S.; Subotnik, Joseph E.

    2014-07-07

    In this paper, we develop a surface hopping approach for calculating linear absorption spectra using ensembles of classical trajectories propagated on both the ground and excited potential energy surfaces. We demonstrate that our method allows the dipole-dipole correlation function to be determined exactly for the model problem of two shifted, uncoupled harmonic potentials with the same harmonic frequency. For systems where nonadiabatic dynamics and electronic relaxation are present, preliminary results show that our method produces spectra in better agreement with the results of exact quantum dynamics calculations than spectra obtained using the standard ground-state Kubo formalism. As such, our proposed surface hopping approach should find immediate use for modeling condensed phase spectra, especially for expensive calculations using ab initio potential energy surfaces.

  5. Chiral Recognition of 2-Alkylalcohols with Magnetic Circular Dichroism Measurement of Porphyrin J-Aggregate on Silica Gel Plate.

    PubMed

    Watarai, Hitoshi; Kurahashi, Yuriko

    2016-05-01

    Simple chiral recognition method of 2-alkylalcohols on a silica gel plate was proposed by using the induced circular dichroism (ICD) of J-aggregates of diprotonated tetraphenylporphyrin and magnetic circular dichroism (MCD) spectrometry. To the silica gel on a glass slide including a chiral 2-alkylalcohol and 4 M sulfuric acid, the porphyrin in toluene was added and mixed. Then, the glass slide was used for in situ MCD measurement. The observed ICD spectra could recognize well the chirality of the alcohols and the ICD intensity normalized by the MCD intensity of the J-aggregate correlated linearly to the amount of the chiral alcohols in the silica gel. PMID:27074095

  6. Spin-Induced Polarizations and Nonreciprocal Directional Dichroism of the Room-Temperature Multiferroic BiFeO3

    DOE PAGESBeta

    Fishman, Randy Scott; Lee, Jun Hee; Bordacs, Sandor; Kezsmarki, Istvan; Nagel, Urmas; Room, Toomas

    2015-09-14

    A microscopic model for the room-temperature multiferroic BiFeO3 that includes two Dzyaloshinskii-Moriya interactions and single-ion anisotropy along the ferroelectric polarization predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field. Due to simultaneously broken time-reversal and spatial-inversion symmetries, the absorption of light changes as the magnetic field or the direction of light propagation is reversed. We discuss three physical mechanisms that may contribute to this absorption asymmetry known as directional dichroism: the spin current, magnetostriction, and single-ion anisotropy. We conclude that the directional dichroism in BiFeO3 is dominated by the spin-current polarization andmore » is insensitive to the magnetostriction and easy-axis anisotropy. With three independent spin-current parameters, our model accurately describes the directional dichroism observed for magnetic field along [1, -1, 0]. Since some modes are almost transparent to light traveling in one direction but opaque for light traveling in the opposite direction, BiFeO3 can be used as a room-temperature optical diode at certain frequencies in the GHz to THz range. This work demonstrates that an analysis of the directional dichroism spectra based on an effective spin model supplemented by first-principles calculations can produce a quantitative microscopic theory of the magnetoelectric couplings in multiferroic materials.« less

  7. Site-directed circular dichroism of proteins: 1Lb bands of Trp resolve position-specific features in tear lipocalin

    PubMed Central

    Gasymov, Oktay K.; Abduragimov, Adil R.; Glasgow, Ben J.

    2008-01-01

    The absorption spectra of N-acetyl-L-tryptophanamide in various solvents were resolved into the sums of the 1La and 1Lb components. The relative intensities of the 0-0 transitions of the 1Lb bands correlate linearly with the solvent polarity values (ETN). A novel strategy, which utilizes a set of the experimental 1Lb bands, was employed to resolve the near-UV CD spectra of tryptophanyl residues. Resolved spectral parameters from the single-tryptophan mutants of tear lipocalin (TL), F99W and Y87W, corroborate the fluorescence as well as structural data of TL. Analysis of the 1Lb bands of the Trp CD spectra in proteins is a valuable tool to obtain the local features. The “DMSO-like” 1Lb band of Trp CD spectra may be used as a “fingerprint” to identify the tryptophanyl side chains in situations where the benzene rings of Trp have van der Waals interactions with the side chains of its nearest neighbor. In addition, the signs and intensities of the components hold information about the side-chain conformations and dynamics in proteins. Combined with Trp mutagenesis, this method we call site-directed circular dichroism is broadly applicable to various proteins to obtain the position-specific data. PMID:18047823

  8. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra

    NASA Astrophysics Data System (ADS)

    Goings, Joshua J.; Li, Xiaosong

    2016-06-01

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.

  9. Heparin-induced circular dichroism of an achiral, bicyclic species.

    PubMed

    Stanley, Floyd E; Warner, Andrew M; McWilliams, Kayla M; Stalcup, Apryll M

    2011-01-01

    Antimalarial drugs have shown potential in suppressing the role of glycosaminoglycans (GAGs) in the pathology of prion protein conformational disorders (e.g. "Mad Cow" disease) by competing for sites of electrostatic interaction. In this study, circular dichroism (CD) and UV/Visible (UV/Vis) absorption spectroscopy techniques were used to investigate the interactions between N-methyl-N'-(7-chloro-4-quinolyl)-1,3-diaminopropane (QD), an achiral, bicyclic compound similar to previously investigated antimalarial drugs, and heparin, a complex GAG that is frequently used as a clinical anticoagulant. Relatively intense heparin-induced CD features were observed for QD and were noted to be radically different from previous studies using related chiral drugs, underscoring the importance of the Pfieffer effect on this and similar heparin research. Additionally, the induced CD for QD was observed to be highly dependent upon drug concentration, heparin concentration, system pH, equilibration time, and ionic strength. These results, in connection with recent work, provide new insight into the nature of the association between GAGs and antimalarial species. PMID:21125690

  10. Electronic circular dichroism behavior of chiral Phthiobuzone

    PubMed Central

    Li, Li; Wang, Lin; Si, Yikang

    2014-01-01

    Phthiobuzone is a bis(thiosemicarbazone) derivative with a single chiral center which has been used as a racemate in the clinical treatment of herpes and trachoma diseases. In this study, its two enantiomers were prepared from chiral amino acids and their absolute configurations were investigated by electronic circular dichroism (ECD) combined with modern quantum-chemical calculations using time-dependent density functional theory. It was found that solvation changed both the conformational distribution and the ECD spectrum of each conformer. The theoretical ECD spectra of the two enantiomers were in good agreement with the experimentally determined spectra of the corresponding isomers in dimethyl sulfoxide. The ECD behavior of the bis(thiosemicarbazone) chromophore in a chiral environment is also discussed. Our results indicate that ECD spectroscopy may be a useful tool for the stereochemical evaluation of chiral drugs. PMID:26579380

  11. Circular dichroism study of the hemocyanin thermostability

    NASA Astrophysics Data System (ADS)

    Nikolova Georgieva, Dessislava; Stoeva, Stanka; Abid Ali, Syed; Abbasi, Atiya; Genov, Nicolay; Voelter, Wolfgang

    1998-05-01

    Circular dichroism spectroscopy is used to investigate the thermostability of six arthropod hemocyanins (Hcs), representatives of the subphyla Crustacea (infraorder Brachyura) and Chelicerate (infraorders Xiphosura and Arachnida), and three molluscan Hcs from gastropod organisms. Melting points ( Tm) are determined from the temperature dependence of ellipticity of dioxygen-binding proteins from Maia squinado, Callinectes sapidus, Carcinus maenas, Limulus polyphemus, Buthus sindicus, Androctonus australis, Megathura crenulata, Haliotis tuberculata, and Rapana thomasiana. Both, arthropod and molluscan Hcs, are thermostable proteins with melting temperatures in the region 68-91°C. Binuclear dioxygen-binding sites contribute significantly to the thermostability and increase the Tm values of the apo-forms by 3-16°C. An elevated thermostability is observed in the case of the Limulus polyphemus Hc. One of the reasons is the high degree of hemocyanin oligomerization.

  12. Circular dichroism spectroscopy of membrane proteins.

    PubMed

    Miles, A J; Wallace, B A

    2016-09-21

    Circular dichroism (CD) spectroscopy is a well-established technique for studying the secondary structures, dynamics, folding pathways, and interactions of soluble proteins, and is complementary to the high resolution but generally static structures produced by X-ray crystallography, NMR spectroscopy, and cryo electron microscopy. CD spectroscopy has special relevance for the study of membrane proteins, which are difficult to crystallise and largely ignored in structural genomics projects. However, the requirement for membrane proteins to be embedded in amphipathic environments such as membranes, lipid vesicles, detergent micelles, bicelles, oriented bilayers, or nanodiscs, in order for them to be soluble or dispersed in solution whilst maintaining their structure and function, necessitates the use of different experimental and analytical approaches than those employed for soluble proteins. This review discusses specialised methods for collecting and analysing membrane protein CD data, highlighting where protocols for soluble and membrane proteins diverge. PMID:27347568

  13. PCDDB: the protein circular dichroism data bank, a repository for circular dichroism spectral and metadata

    PubMed Central

    Whitmore, Lee; Woollett, Benjamin; Miles, Andrew John; Klose, D. P.; Janes, Robert W.; Wallace, B. A.

    2011-01-01

    The Protein Circular Dichroism Data Bank (PCDDB) is a public repository that archives and freely distributes circular dichroism (CD) and synchrotron radiation CD (SRCD) spectral data and their associated experimental metadata. All entries undergo validation and curation procedures to ensure completeness, consistency and quality of the data included. A web-based interface enables users to browse and query sample types, sample conditions, experimental parameters and provides spectra in both graphical display format and as downloadable text files. The entries are linked, when appropriate, to primary sequence (UniProt) and structural (PDB) databases, as well as to secondary databases such as the Enzyme Commission functional classification database and the CATH fold classification database, as well as to literature citations. The PCDDB is available at: http://pcddb.cryst.bbk.ac.uk. PMID:21071417

  14. The temperature dependence of the optical anisotropy in magnetic fluids: birefringence and dichroism

    NASA Astrophysics Data System (ADS)

    Yusuf, N. A.; Manasrah, D. A.; Abdallah, M. A.; Abu-Safia, H.; Abu-Aljarayesh, I.

    1994-11-01

    The temperature dependence of birefringence, δ, and dichroism, Δ A, in Fe 3O 4 Isopar-M based magnetic fluids have been investigated in the temperature range 100 < T < 320 K and in magnetic fields up to 3 kOe. The results show that birefringence and dichroism for a given concentration and at a given field are zero below a certain temperature Ts, and then both increase with temperature until they reach a maximum at a temperature Tm, and then decrease with temperature for T > Tm. The values of Tm and Ts are found to vary with concentration and the applied field. The results also show that δ- H2 and Δ A-H2 curves deviate from linearity. This deviation is attributed to interparticle interactions, the orientation of pre-existing clusters, and the field-induced chain formation.

  15. Octupole Magnet For Soft X Ray Magnetic Dichroism Experiments: Design and Performance

    SciTech Connect

    Arenholz, Elke; Prestemon, Soren O.

    2004-05-12

    An octupole magnet endstation for soft x ray magnetic dichroism measurements has been developed at the Advanced Light Source. The system consists of an eight pole electromagnet that surrounds a small vacuum chamber. The magnet provides fields up to 0.9 T that can be applied in any direction relative to the incoming x ray beam. High precision magnetic circular and linear dichroism spectra can be obtained reversing the magnetic field for each photon energy in an energy scan. Moreover, the field dependence of all components of the magnetization vector can be studied in detail by choosing various angles of x ray incidence while keeping the relative orientation of magnetic field and sample fixed.

  16. Design and performance of an eight pole resistive magnet for softx-ray magnetic dichroism measurements

    SciTech Connect

    Arenholz, Elke; Prestemon, Soren O.

    2005-06-01

    To take full advantage of the strengths of soft x-ray magnetic dichroism (XMD) measurements for the detailed and quantitative characterization of multi-element magnetic materials, we developed an eight pole electromagnet that provides magnetic fields up to 0.9 T in any direction relative to the incoming x-ray beam. The setup allows us to measure magnetic circular and linear dichroism spectra as well as to thoroughly study magnetization reversal processes with very high precision. Design constraints and system optimization for maximum peak field are discussed. The predicted current-field relation is in excellent agreement with experimental findings. A brief discussion of the key technical difficulties in developing a similar superconducting device with peak fields of 5 T and ramping rates suitable for point-by-point full field reversal in an XMD experiment is presented.

  17. Octupole magnet for soft X ray magnetic dichroism experiments: Design and performance

    SciTech Connect

    Arenholz, Elke; Prestemon, Soren O.

    2003-08-24

    An octupole magnet endstation for soft x-ray magnetic dichroism measurements has been developed at the Advanced Light Source. The system consists of an eight pole electromagnet that surrounds a small vacuum chamber. The magnet provides fields up to 0.9 T that can be applied in any direction relative to the incoming x-ray beam. High precision magnetic circular and linear dichroism spectra can be obtained reversing the magnetic field for each photon energy in an energy scan. Moreover, the field dependence of all components of the magnetization vector can be studied in detail by choosing various angles of x-ray incidence while keeping the relative orientation of magnetic field and sample fixed.

  18. Photoemission and magnetic circular dichroism studies of magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Fujimori, Atsushi

    2005-03-01

    Recently, a series of novel ferromagnetic semiconductors have been synthesized using MBE and related techniques and have attracted much attention because of unknown mechanisms of carrier-induced ferromagnetism and potential applications as "spin electronics" devices. Some new materials show ferromagnetism even well above room temperature. Photoemission spectroscopy has been used to study the d orbitals of the dilute transition-metal atoms, mostly Mn, and their hybridization with the host band states [1]. Soft x-ray absorption spectroscopy (XAS) and magnetic circular dichroism (MCD) at the transition-metal 2p-3d absorption edges are useful techniques to study the valence and spin states of the transition-metal atoms. Furthermore, since MCD has different sensitivities to the ferromagnetic and paramagnetic components at different temperatures and magnetic fileds, if the sample is a mixture of ferromagnetic and non-ferromagnetic transition- metal atoms, it can be used to separate the two components and to study their electronic structures. In this talk, results are presented for the prototypical diluted ferromagnetic semiconductor Ga1-xMnxAs [2] and the room-temperature ferromagnets Zn1-xCoxO and Ti1-xCoxO2.I acknowledge collaboration with Y. Ishida, J.-I. Hwang, M. Kobayashi, Y. Takeda, Y. Saitoh, J. Okamoto, T. Okane, Y. Muramatsu, K. Mamiya, T. Koide, A. Tanaka, M. Tanaka, Hayashi, S. Ohya, T. Kondo, H. Munekata, H. Saeki, H. Tabata, T. Kawai, Y. Matsumoto, H. Koinuma, T. Fukumura and M. Kawasaki. This work was supported by a Grant-in-Aid for Scientific Research in Priority Area "Semiconductor nano-spintronics" (14076209) from MEXT, Japan.1. J. Okabayashi et al., Phys. Rev. B 64, 125304 (2001).2. A. Fujimori et al., J. Electron Spectrosc. Relat. Phenom., in press.

  19. Instrument for x-ray magnetic circular dichroism measurements at high pressures

    SciTech Connect

    Haskel, D.; Tseng, Y. C.; Lang, J. C.; Sinogeikin, S.

    2007-08-15

    An instrument has been developed for x-ray magnetic circular dichroism (XMCD) measurements at high pressures and low temperatures. This instrument couples a nonmagnetic copper-beryllium diamond anvil cell featuring perforated diamonds with a helium flow cryostat and an electromagnet. The applied pressure can be controlled in situ using a gas membrane and calibrated using Cu K-edge x-ray absorption fine structure measurements. The performance of this instrument was tested by measuring the XMCD spectra of the Gd{sub 5}Si{sub 2}Ge{sub 2} giant magnetocaloric material.

  20. Surface plasmon resonance prism coupler for enhanced circular dichroism sensing.

    PubMed

    Phan, Quoc-Hung; Lo, Yu-Lung; Huang, Chih-Ling

    2016-06-13

    A novel method for enhanced circular dichroism (CD) detection is proposed based on a surface plasmon resonance (SPR) prism coupler and a polarization scanning ellipsometry technique. An analytical model is derived to extract the CD and degree of polarization (DOP) properties of optical samples with and without scattering effects, respectively. The validity of the analytical model is confirmed by means of numerical simulations. The simulation results show that the proposed detection method has a sensitivity of 10-5~10-6 RIU (refractive index unit) for refractive indices in the range of 1.32~1.36 and 1.3100~1.3118. The practical feasibility of the proposed method is demonstrated by the experimental results for the sensitivity of the CD with the chlorophyllin samples with/without scattering effect. It is shown that for both types of sample, the extracted CD value increases linearly with the chlorophyll concentration over the considered range. In general, the results obtained in this study show that the measured CD response is highly sensitive to the polarization scanning angle. Consequently, the potential of polarization scanning ellipsometry for high-resolution CD detection is confirmed. PMID:27410300

  1. UV-CD12: synchrotron radiation circular dichroism beamline at ANKA

    PubMed Central

    Bürck, Jochen; Roth, Siegmar; Windisch, Dirk; Wadhwani, Parvesh; Moss, David; Ulrich, Anne S.

    2015-01-01

    Synchrotron radiation circular dichroism (SRCD) is a rapidly growing technique for structure analysis of proteins and other chiral biomaterials. UV-CD12 is a high-flux SRCD beamline installed at the ANKA synchrotron, to which it had been transferred after the closure of the SRS Daresbury. The beamline covers an extended vacuum-UV to near-UV spectral range and has been open for users since October 2011. The current end-station allows for temperature-controlled steady-state SRCD spectroscopy, including routine automated thermal scans of microlitre volumes of water-soluble proteins down to 170 nm. It offers an excellent signal-to-noise ratio over the whole accessible spectral range. The technique of oriented circular dichroism (OCD) was recently implemented for determining the membrane alignment of α-helical peptides and proteins in macroscopically oriented lipid bilayers as mimics of cellular membranes. It offers improved spectral quality <200 nm compared with an OCD setup adapted to a bench-top instrument, and accelerated data collection by a factor of ∼3. In addition, it permits investigations of low hydrated protein films down to 130 nm using a rotatable sample cell that avoids linear dichroism artifacts. PMID:25931105

  2. Circular dichroism of bradykinin and related peptides

    PubMed Central

    Brady, A. H.; Ryan, J. W.; Stewart, J. M.

    1971-01-01

    1. The circular dichroism of bradykinin and a number of its analogues and homologues was measured over the spectral range 200–300nm. All of the biologically active peptides showed maxima at 220nm and minima at 235nm. The spectra were independent of solvent and temperature. The vibronic transitions of phenylalanyl residues in the 250–280nm range showed no evidence of intra- or inter-molecular interactions. We take this as evidence that bradykinin and its biologically active analogues and homologues exist in solution as disordered chains. 2. None of the analogues with spectra unlike bradykinin possessed biological activity. However, peptides such as retro-bradykinin, des-6-serine-bradykinin, des-1-arginine-bradykinin and des-9-arginine-bradykinin produced spectra like that of bradykinin but were devoid of biological activity. Although we could not identify spectral features that were clearly correlated with biological activity, it appears unlikely that highly ordered peptides of the same amino acid composition as bradykinin would possess bradykinin-like effects. PMID:5117026

  3. Electronic and vibrational circular dichroism spectra of (R)-(-)-apomorphine

    NASA Astrophysics Data System (ADS)

    Abbate, Sergio; Longhi, Giovanna; Lebon, France; Tommasini, Matteo

    2012-09-01

    Apomorphine is a chiral drug molecule; notwithstanding its extraordinary importance, little attention has been paid to the characterization of its chiroptical properties. Here we report on its electronic circular dichroism (ECD) spectra, recorded in methanol and water, and vibrational circular dichroism (VCD) in methanol and dimethyl sulfoxide (DMSO) solutions. Density functional theory (DFT) calculations have allowed us to interpret the spectra and to evaluate the role of possible conformations, charge-states and interactions with counter ions.

  4. Relationship between the magnetic moment of Lu and the magnetic behavior of (Y{sub y}Lu{sub 1-y})(Co{sub 1-x}Al{sub x}){sub 2} from x-ray absorption spectroscopy and x-ray magnetic circular dichroism

    SciTech Connect

    Chaboy, J.; Piquer, C.; Laguna-Marco, M. A.; Kawamura, N.; Suzuki, M.; Takagaki, M.

    2007-02-01

    We present an x-ray magnetic circular dichroism (XMCD) study performed at both the Co K edge and the Lu L{sub 2,3} edges on (Y{sub y}Lu{sub 1-y})(Co{sub 1-x}Al{sub x}){sub 2} systems. The XMCD spectra reflect the different magnetic character of these systems, allowing us to monitor the transition from weak to strong ferromagnetism. The XMCD at the Lu L{sub 2,3} edges indicates the existence of an ordered 5d moment at the lutetium sites that is coupled antiparallel to the Co moment. Estimates of the magnetic moment of Lu have been obtained by applying the XMCD sum rules. Our results show that there is a correlation between the Lu 5d-induced magnetic moment and the magnetic character of the (Y{sub y}Lu{sub 1-y})(Co{sub 1-x}Al{sub x}){sub 2} compounds. These results suggest that the developing of the Lu moment plays an important role in reinforcing the magnetic interactions and favoring the ferromagnetic character of the Lu-rich compounds.

  5. Z-DNA: vacuum ultraviolet circular dichroism

    SciTech Connect

    Sutherland, J.C.; Griffin, K.P.; Keck, P.C.; Takacs, P.Z.

    1981-08-01

    In concentrated salt or ethanolic solutions, the self-complementary copolymer poly(dG-dC)-poly(dG-dC) forms a left-handed double-helical structure that has been termed Z-DNA. The first evidence for this structure came from changes observed in the circular dichroism (CD) spectrum between 230 and 300 nm for low- and high-salt solutions. In 3 M NaCl, the CD spectrum is approximately inverted compared to the B-form spectrum observed in low salt solution. We measured the vacuum ultraviolet CD spectrum of poly(dG-dC)-poly(dG-dC) down to 180 nm under conditions in which the 230- to 300-nm spectrum is inverted. Below 200 nm, where the B form exhibits the large positive peak at 187 nm that is characteristic of right-handed double-helical DNAs, the Z form exhibits a large negative peak at 194 nm and a positive band below 186 nm. Therefore, the Z-form vacuum ultraviolet CD spectrum resembles an inverted and red-shifted B-form spectrum. The magnitudes of the differences observed between the B and Z forms in the CD spectrum below 200 nm are about 10 times greater than those observed between 230 and 300 nm. The vacuum ultraviolet CD spectrum of poly(dG-dC)-poly(dG-dC) is 3 M C/sub 2/O/sub 4/ also is inverted compared to the B-form spectrum; however, between 230 and 300 nm, it is nonconservative with a negative maximum at 290 nm and a weak positive CD signal above 300 nm, presumably reflecting differential light scattering and indicating the existence of molecular aggregates. Our results suggest that the vacuum ultraviolet CD spectrum is sensitive to the handedness of doublehelical DNA structures.

  6. Z-DNA Vacuum ultraviolet circular dichroism

    SciTech Connect

    Sutherland, J.C.; Griffin, K.P.; Keck, P.C.; Takacs, P.Z.

    1981-08-01

    In concentrated salt or ethanolic solutions, the self-complementary copolymer poly(dG-dC).poly(dG-dC) forms a left-handed double-helical structure that has been termed ZDNA. The first evidence for this structure came from changes observed in the circular dichroism (CD) spectrum between 230 and 300 nm for low- and high-salt solutions (Pohl, F.M. and Jovin, T.M. (1972) J. Mol. Biol. 67, 675-696). In 3 M NaCl, the CD spectrum is approximately inverted compared to the B-form spectrum observed in low-salt solution. We measured the vacuum ultraviolet CD spectrum of poly(dG-dC).poly(dG-dC) down to 180 nm under conditions in which the 230 to 300 nm spectrum is inverted. Below 200 nm, where the B form exhibits the large positive peak at 187 nm that is characteristic of right-handed double-helical DNAs, the Z form exhibits a large negative peak at 194 nm and a positive band below 186 nm. Therefore, the Z-form vacuum ultraviolet CD spectrum resembles an inverted and red-shifted B-form spectrum. The magnitudes of the differences observed between the Band Z forms in the CD spectrum below 200 nm are about 10 times greater than those observed between 230 and 300 nm. The vacuum ultraviolet CD spectrum of poly(dG-dC).poly(dG-dC) in 3 M Cs/sub 2/SO/sub 4/ also is inverted compared to the B-form spectrum; however, between 230 and 300 nm, it is nonconservative with a negative maximum at 290 nm and a weak positive CD signal above 300 nm, presumably reflecting differential light scattering and indicating the existence of molecular aggregates. Our results suggest that the vacuum ultraviolet CD spectrum is sensitive to the handedness of double-helical DNA structures.

  7. X-ray magnetic circular dichroism imaging with hard X-rays.

    PubMed

    Sato, K; Ueji, Y; Okitsu, K; Matsushita, T; Amemiya, Y

    2001-05-01

    X-ray polarization-contrast images resulting from X-ray magnetic circular dichroism (XMCD) in the hard X-ray region have been successfully recorded for the first time. The apparatus used consisted of an X-ray polarizer, double X-ray phase retarders, and a high-spatial-resolution X-ray charge-coupled-device detector. The sample used was a hexagonal-close-packed cobalt polycrystal foil having a thickness of about 4 microns. The X-ray polarization-contrast image resulting from XMCD was observed at a photon energy of 10 eV above the cobalt K-absorption edge (7709 eV). The observed contrast in the image was reversed by inversion of the magnetic field. Furthermore, the contrast was reversed again at a photon energy of 32 eV above the cobalt K-absorption edge. PMID:11486407

  8. Structural circular birefringence and dichroism quantified by differential decomposition of spectroscopic transmission Mueller matrices from Cetonia aurata.

    PubMed

    Arwin, H; Mendoza-Galván, A; Magnusson, R; Andersson, A; Landin, J; Järrendahl, K; Garcia-Caurel, E; Ossikovski, R

    2016-07-15

    Transmission Mueller-matrix spectroscopic ellipsometry is applied to the cuticle of the beetle Cetonia aurata in the spectral range 300-1000 nm. The cuticle is optically reciprocal and exhibits circular Bragg filter features for green light. By using differential decomposition of the Mueller matrix, the circular and linear birefringence as well as dichroism of the beetle cuticle are quantified. A maximum value of structural optical activity of 560°/mm is found. PMID:27420518

  9. Anisotropic Circular Dichroism Signatures of Oriented Thylakoid Membranes and Lamellar Aggregates of LHCII

    SciTech Connect

    Miloslavina Y.; Hind G.; Lambrev, P. H.; Javorfi, T.; Varkonyi, Z.; Karlicky, V.; Wall, J. S.; Garab, G.

    2012-03-01

    In photosynthesis research, circular dichroism (CD) spectroscopy is an indispensable tool to probe molecular architecture at virtually all levels of structural complexity. At the molecular level, the chirality of the molecule results in intrinsic CD; pigment-pigment interactions in protein complexes and small aggregates can give rise to excitonic CD bands, while 'psi-type' CD signals originate from large, densely packed chiral aggregates. It has been well established that anisotropic CD (ACD), measured on samples with defined non-random orientation relative to the propagation of the measuring beam, carries specific information on the architecture of molecules or molecular macroassemblies. However, ACD is usually combined with linear dichroism and can be distorted by instrumental imperfections, which given the strong anisotropic nature of photosynthetic membranes and complexes, might be the reason why ACD is rarely studied in photosynthesis research. In this study, we present ACD spectra, corrected for linear dichroism, of isolated intact thylakoid membranes of granal chloroplasts, washed unstacked thylakoid membranes, photosystem II (PSII) membranes (BBY particles), grana patches, and tightly stacked lamellar macroaggregates of the main light-harvesting complex of PSII (LHCII). We show that the ACD spectra of face- and edge-aligned stacked thylakoid membranes and LHCII lamellae exhibit profound differences in their psi-type CD bands. Marked differences are also seen in the excitonic CD of BBY and washed thylakoid membranes. Magnetic CD (MCD) spectra on random and aligned samples, and the largely invariable nature of the MCD spectra, despite dramatic variations in the measured isotropic and anisotropic CD, testify that ACD can be measured without substantial distortions and thus employed to extract detailed information on the (supra)molecular organization of photosynthetic complexes. An example is provided showing the ability of CD data to indicate such an

  10. Anisotropic Circular Dichroism Signatures of Oriented Thylakoid Membranes and Lamellar Aggregates of LHCII

    SciTech Connect

    Miloslavina, Y.; Hind, G.; Lambrev, P. H.; Javorfi, T.; Varkonyi, Z.; Karlicky, V.; Wall, J. S.; Garab, G.

    2011-06-12

    In photosynthesis research, circular dichroism (CD) spectroscopy is an indispensable tool to probe molecular architecture at virtually all levels of structural complexity. At the molecular level, the chirality of the molecule results in intrinsic CD; pigment-pigment interactions in protein complexes and small aggregates can give rise to excitonic CD bands, while 'psi-type' CD signals originate from large, densely packed chiral aggregates. It has been well established that anisotropic CD (ACD), measured on samples with defined non-random orientation relative to the propagation of the measuring beam, carries specific information on the architecture of molecules or molecular macroassemblies. However, ACD is usually combined with linear dichroism and can be distorted by instrumental imperfections, which given the strong anisotropic nature of photosynthetic membranes and complexes, might be the reason why ACD is rarely studied in photosynthesis research. In this study, we present ACD spectra, corrected for linear dichroism, of isolated intact thylakoid membranes of granal chloroplasts, washed unstacked thylakoid membranes, photosystem II (PSII) membranes (BBY particles), grana patches, and tightly stacked lamellar macroaggregates of the main light-harvesting complex of PSII (LHCII). We show that the ACD spectra of face- and edge-aligned stacked thylakoid membranes and LHCII lamellae exhibit profound differences in their psi-type CD bands. Marked differences are also seen in the excitonic CD of BBY and washed thylakoid membranes. Magnetic CD (MCD) spectra on random and aligned samples, and the largely invariable nature of the MCD spectra, despite dramatic variations in the measured isotropic and anisotropic CD, testify that ACD can be measured without substantial distortions and thus employed to extract detailed information on the (supra)molecular organization of photosynthetic complexes. An example is provided showing the ability of CD data to indicate such an

  11. Dynamics of photoinduced dichroism and birefringence in optically thick azopolymers

    SciTech Connect

    Ponomarev, Yu V; Ivanov, Yu V; Rumyantsev, Yu A; Gromchenko, A A

    2009-01-31

    Dynamics of photoinduced dichroism and birefringence have been studied experimentally and theoretically (with the help of the Dumont model) by using some comb-shaped azopolymers. It is shown that the dynamics of trans-isomer concentration and their angular distribution anisotropy can be restored from the experimentally found dichroism dynamics, with the concentration and anisotropy being averaged over the thickness for optically thick samples. At the initial stage of photoinduced anisotropy when the active role of the polymer matrix can be neglected, the experimental time dependence of dichroism is shown to comply well with the Dumont model even if the orientation memory is neglected, provided that only a part of trans-isomers participates in trans-isomerisation. (nonlinear optical phenomena)

  12. Chiral plasmonic DNA nanostructures with switchable circular dichroism

    NASA Astrophysics Data System (ADS)

    Schreiber, Robert; Luong, Ngoc; Fan, Zhiyuan; Kuzyk, Anton; Nickels, Philipp C.; Zhang, Tao; Smith, David M.; Yurke, Bernard; Kuang, Wan; Govorov, Alexander O.; Liedl, Tim

    2013-12-01

    Circular dichroism spectra of naturally occurring molecules and also of synthetic chiral arrangements of plasmonic particles often exhibit characteristic bisignate shapes. Such spectra consist of peaks next to dips (or vice versa) and result from the superposition of signals originating from many individual chiral objects oriented randomly in solution. Here we show that by first aligning and then toggling the orientation of DNA-origami-scaffolded nanoparticle helices attached to a substrate, we are able to reversibly switch the optical response between two distinct circular dichroism spectra corresponding to either perpendicular or parallel helix orientation with respect to the light beam. The observed directional circular dichroism of our switchable plasmonic material is in good agreement with predictions based on dipole approximation theory. Such dynamic metamaterials introduce functionality into soft matter-based optical devices and may enable novel data storage schemes or signal modulators.

  13. Irreversible Denaturation of Maltodextrin Glucosidase Studied by Differential Scanning Calorimetry, Circular Dichroism, and Turbidity Measurements

    PubMed Central

    Goyal, Megha; Chaudhuri, Tapan K.; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5–1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C). PMID

  14. Circular dichroism in the electron microscope: Progress and applications (invited)

    SciTech Connect

    Schattschneider, P.; Loeffler, S.; Ennen, I.; Stoeger-Pollach, M.; Verbeeck, J.

    2010-05-15

    According to theory, x-ray magnetic circular dichroism in a synchrotron is equivalent to energy loss magnetic chiral dichroism (EMCD) in a transmission electron microscope (TEM). After a synopsis of the development of EMCD, the theoretical background is reviewed and recent results are presented, focusing on the study of magnetic nanoparticles for ferrofluids and Heusler alloys for spintronic devices. Simulated maps of the dichroic strength as a function of atom position in the crystal allow evaluating the influence of specimen thickness and sample tilt on the experimental EMCD signal. Finally, the possibility of direct observation of chiral electronic transitions with atomic resolution in a TEM is discussed.

  15. Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-ray

    PubMed Central

    Sessoli, Roberta; Boulon, Marie-Emmanuelle; Caneschi, Andrea; Mannini, Matteo; Poggini, Lorenzo; Wilhelm, Fabrice; Rogalev, Andrei

    2014-01-01

    Magneto-chiral dichroism (MχD) is a non-reciprocal, i. e. directional, effect observed in magnetised chiral systems featuring an unbalanced absorption of unpolarised light depending on the direction of the magnetisation. Despite the fundamental interest in a phenomenon breaking both parity and time reversal symmetries, MχD is one of the least investigated aspects of light-matter interaction because of the weakness of the effect in most reported experiments. Here we have exploited the element selectivity of hard X-ray radiation to investigate the magneto-chiral properties of enentiopure crsytals of two isostructural molecular helicoidal chains comprising Cobalt(II) and Manganese (II) ions, respectively. A strong magneto-chiral dichroism, with Kuhn asymmetry of the order of a few percent, has been observed in the Cobalt chain system, while it is practically absent for the Manganese derivative. The spectral features of the XMχD signal differ significantly from the natural and magnetic dichroic contributions and have been here rationalized using the simple multipolar expansion of matter-radiation interaction. PMID:25729401

  16. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  17. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  18. The protein circular dichroism data bank, a Web-based site for access to circular dichroism spectroscopic data.

    PubMed

    Whitmore, Lee; Woollett, Benjamin; Miles, Andrew J; Janes, Robert W; Wallace, B A

    2010-10-13

    The Protein Circular Dichroism Data Bank (PCDDB) is a newly released resource for structural biology. It is a web-accessible (http://pcddb.cryst.bbk.ac.uk) data bank for circular dichroism (CD) and synchrotron radiation circular dichroism (SRCD) spectra and their associated experimental and secondary metadata, with links to protein sequence and structure data banks. It is designed to provide a public repository for CD spectroscopic data on macromolecules, to parallel the Protein Data Bank (PDB) for crystallographic, electron microscopic, and nuclear magnetic resonance spectroscopic data. Similarly to the PDB, it includes validation checking procedures to ensure good practice and the integrity of the deposited data. This paper reports on the first public release of the PCDDB, which provides access to spectral data that comprise standard reference datasets. PMID:20947015

  19. Analysis of conjugation of chloramphenicol and hemoglobin by fluorescence, circular dichroism and molecular modeling

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Liu, Wei; Sun, Ye; Yang, Xin-Ling; Sun, Ying; Zhang, Li

    2012-01-01

    Chloramphenicol is a low cost, broad spectrum, highly active antibiotic, and widely used in the treatment of serious infections, including typhoid fever and other life-threatening infections of the central nervous system and respiratory tract. The purpose of the present study was to examine the conjugation of chloramphenicol with hemoglobin (Hb) and compared with albumin at molecular level, utilizing fluorescence, UV/vis absorption, circular dichroism (CD) as well as molecular modeling. Fluorescence data indicate that drug bind Hb generate quenching via static mechanism, this corroborates UV/vis absorption measurements that the ground state complex formation with an affinity of 10 4 M -1, and the driving forces in the Hb-drug complex are hydrophilic interactions and hydrogen bonds, as derived from computational model. The accurate binding site of drug has been identified from the analysis of fluorescence and molecular modeling, α1β2 interface of Hb was assigned to possess high-affinity for drug, which located at the β-37 Trp nearby. The structural investigation of the complexed Hb by synchronous fluorescence, UV/vis absorption, and CD observations revealed some degree of Hb structure unfolding upon complexation. Based on molecular modeling, we can draw the conclusion that the binding affinity of drug with albumin is superior, compared with Hb. These phenomena can provide salient information on the absorption, distribution, pharmacology, and toxicity of chloramphenicol and other drugs which have analogous configuration with chloramphenicol.

  20. Spin-Induced Polarizations and Nonreciprocal Directional Dichroism of the Room-Temperature Multiferroic BiFeO3

    SciTech Connect

    Fishman, Randy Scott; Lee, Jun Hee; Bordacs, Sandor; Kezsmarki, Istvan; Nagel, Urmas; Room, Toomas

    2015-09-14

    A microscopic model for the room-temperature multiferroic BiFeO3 that includes two Dzyaloshinskii-Moriya interactions and single-ion anisotropy along the ferroelectric polarization predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field. Due to simultaneously broken time-reversal and spatial-inversion symmetries, the absorption of light changes as the magnetic field or the direction of light propagation is reversed. We discuss three physical mechanisms that may contribute to this absorption asymmetry known as directional dichroism: the spin current, magnetostriction, and single-ion anisotropy. We conclude that the directional dichroism in BiFeO3 is dominated by the spin-current polarization and is insensitive to the magnetostriction and easy-axis anisotropy. With three independent spin-current parameters, our model accurately describes the directional dichroism observed for magnetic field along [1, -1, 0]. Since some modes are almost transparent to light traveling in one direction but opaque for light traveling in the opposite direction, BiFeO3 can be used as a room-temperature optical diode at certain frequencies in the GHz to THz range. This work demonstrates that an analysis of the directional dichroism spectra based on an effective spin model supplemented by first-principles calculations can produce a quantitative microscopic theory of the magnetoelectric couplings in multiferroic materials.

  1. Circular Dichroism Method for Heat Capacity Determination of Proteins

    ERIC Educational Resources Information Center

    Jones, Cecil L.; Bailey, Chris; Bheemarti, Kiran Kumar

    2006-01-01

    Circular dichroism spectroscopy was used to measure the thermal unfolding of bovine pancreatic ribonuclease A (RNase A) with various concentrations of guanidine hydrochloride (GuHCl). A red shift in transition midpoint temperatures, T[subscript m], occurred with increasing concentration of the strong protein denaturant. van Hoff enthalpy changes,…

  2. Cyanobacterial phycobilisomes: selective dissociation monitored by fluorescence and circular dichroism

    SciTech Connect

    Rigbi, M.; Rosinski, J.; Siegelman, H.W.; Sutherland, J.C.

    1980-04-01

    Phycobilisomes are supramolecular assemblies of phycobiliproteins responsible for photosynthetic light collection in red algae and cyanobacteria. They can be selectively dissociated by reduction of temperature and buffer concentration. Phycobilisomes isolated from Fremyella diplosiphon transfer energy collected by C-phycoerythrin and C-phycocyanin to allophycocyanin. The energy transfer to allophycocyanin is nearly abolished at 2/sup 0/C, as indicated by a blue shift in fluorescence emission, and is accompanied by a decrease in the circular dichroism in the region of allophycocyanin absorbance. Further dissociation of the phycobilisomes can be attained by reduction of buffer concentration and holding at 2/sup 0/C. Energy transfer to C-phycocyanin is nearly abolished, and decreases occur in the circular dichroism in the region of C-phycocyanin and C-phycoerythrin absorbance. Complete dissociation of the phycobilisomes at low buffer concentration and 2/sup 0/C requires extended time. Energy transfer to C-phycocyanin is further reduced and the circular dichroism maximum of C-phycoerythrin at 575 nm is lost. Circular dichroism provides information on the hexamer-monomer transitions of the phycobiliproteins, whereas fluorescence is indicative of hexamer-hexamer interactions. We consider that hydrophobic interactions are fundamental to the maintenance of the structure and function of phycobilisomes.

  3. Dichroism for orbital angular momentum using parametric amplification

    NASA Astrophysics Data System (ADS)

    Lowney, J.; Roger, T.; Faccio, D.; Wright, E. M.

    2014-11-01

    We theoretically analyze parametric amplification as a means to produce dichroism based on the orbital angular momentum (OAM) of an incident signal field. The nonlinear interaction is shown to provide differential gain between signal states of differing OAM, the peak gain occurring at half the OAM of the pump field.

  4. Electronic structure and x-ray magnetic circular dichroism in A2FeReO6 (A =Ca ,Sr ,andBa ) oxides

    NASA Astrophysics Data System (ADS)

    Antonov, V. N.; Bekenov, L. V.; Ernst, A.

    2016-07-01

    A systematic electronic structure study of A2FeReO6 (A =Ba ,Sr ,andCa ) has been performed by employing the local-spin-density approximation (LSDA) and LSDA +U methods using the fully relativistic spin-polarized Dirac linear muffin-tin orbital band-structure method. We investigated the effects of the subtle interplay between spin-orbit coupling, electron correlations, and lattice distortion on the electronic structure of double perovskites. Ca2FeReO6 has a large distortion in the Fe-O-Re bond, and the electronic structure is mainly determined by electron correlations and lattice distortion. In the Ba -Sr -Ca row, the correlation effects at the Fe site are increased. The correlations at the Re site are small in the Ba- and Sr-based compounds but significant in Ca2FeReO6 . Ca2FeReO6 behaves like an insulator only if considered with a relatively large value of Coulomb repulsion Ueff=2.3 eV at the Re site in addition to Ueff=3.1 eV at the Fe site. Ca2FeReO6 possesses a phase transition at 140 K where the metal-insulator transition (MIT) occurs between metallic high-temperature and insulating low-temperature phases. The spin and orbital magnetic moments are linear functions of temperature before and after the MIT but change abruptly at the point of the phase transition. From theoretically calculated magnetocrystalline anisotropy energy (MAE), we found that the easy axis of magnetization for the low-temperature phase is along the b direction, in agreement with experimental data. We found that the major contribution to the MAE is due to the orbital magnetic anisotropy at the Re site. X-ray-absorption spectra and x-ray magnetic circular dichroism at the Re, Fe, and Ba L2 ,3 and Fe, Ca, and O K edges were investigated theoretically in the frame of the LSDA +U method. A qualitative explanation of the x-ray magnetic circular dichroism spectra shape is provided by an analysis of the corresponding selection rules, orbital character, and occupation numbers of individual orbitals

  5. Vibrational circular dichroism of tetraphenylporphyrin in peptide complexes? A computational study.

    PubMed

    Bour, P; Záruba, K; Urbanová, M; Setnicka, V; Matejka, P; Fiedler, Z; Král, V; Volka, K

    2000-05-01

    The Raman and absorption spectra of tetraphenylporphyrin (TPP) were calculated and compared to experiment. The computation was based on the harmonic molecular force field and electric tensors obtained ab initio at the BPW91/6-31G* level. Good agreement was found between experimental and calculated frequencies and intensities. In order to estimate whether induced optical activity in chiral complexes interferes with the signal of peptide vibrations, the vibrational circular dichroism (VCD) spectra of TPP were simulated. The magnetic field perturbation theory (MFP) and the gauge-invariant atomic orbitals (GIAO) were used for the simulation. Such spectra were compared to theoretical VCD intensities of a model tripeptide as well to experimental spectra of a complex of the peptide and tetrakis(p-sulfonatophenyl)porphyrin (TSPP). No significant contribution to VCD signal from the TPP residue was found in experimental spectra. Thus, possible peptide conformational changes occurring during the complexation can be monitored directly in the amide I frequency region. PMID:10790189

  6. Facility for combined in situ magnetron sputtering and soft x-ray magnetic circular dichroism

    SciTech Connect

    Telling, N. D.; Laan, G. van der; Georgieva, M. T.; Farley, N. R. S.

    2006-07-15

    An ultrahigh vacuum chamber that enables the in situ growth of thin films and multilayers by magnetron sputtering techniques is described. Following film preparation, x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements are performed by utilizing an in vacuum electromagnet. XMCD measurements on sputtered thin films of Fe and Co yield spin and orbital moments that are consistent with those obtained previously on films measured in transmission geometry and grown in situ by evaporation methods. Thin films of FeN prepared by reactive sputtering are also examined and reveal an apparent enhancement in the orbital moment for low N content samples. The advantages of producing samples for in situ XAS and XMCD studies by magnetron sputtering are discussed.

  7. Remediation of Cr(VI) by biogenic magnetic nanoparticles: An x-ray magnetic circular dichroism study

    SciTech Connect

    Telling, N. D.; Coker, V. S.; Cutting, R. S.; van der Laan, G.; Pearce, C. I.; Pattrick, R. A. D.; Arenholz, E.; Lloyd, J. R.

    2009-09-04

    Biologically synthesized magnetite (Fe{sub 3}O{sub 4}) nanoparticles are studied using x-ray absorption and x-ray magnetic circular dichroism following exposure to hexavalent Cr solution. By examining their magnetic state, Cr cations are shown to exist in trivalent form on octahedral sites within the magnetite spinel surface. The possibility of reducing toxic Cr(VI) into a stable, non-toxic form, such as a Cr{sup 3+}-spinel layer, makes biogenic magnetite nanoparticles an attractive candidate for Cr remediation.

  8. Tunable chirality and circular dichroism of a topological insulator with C2v symmetry as a function of Rashba and Dresselhaus parameters

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Bellotti, Enrico

    2016-01-01

    Polarization-sensitive devices rely on meta-materials to exhibit varying degrees of absorption of light of a given handedness. The chiral surface states of a topological insulator selectively absorb right- and left-circularly polarized light in the vicinity of the Dirac cone reaching its maximum of unity at the Γ point. In this letter, we show that a band gap open topological insulator with C2v symmetry, which is represented through a combination of Rashba and Dresselhaus Hamiltonians, alters the preferential absorption of left- and right-circularly polarized light allowing a smooth variation of the circular dichroism. This variation in circular dichroism, in a range of positive and negative values, is shown to be a function of the Rashba and Dresselhaus coupling parameters.

  9. Stereochemical Study of Sphingosine by Vibrational Circular Dichroism.

    PubMed

    Nakahashi, Atsufumi; C Siddegowda, Ananda Kumar; Hammam, Mostafa A S; Gowda, Siddabasave Gowda B; Murai, Yuta; Monde, Kenji

    2016-05-20

    Vibrational circular dichroism (VCD) was first applied to the stereochemical analysis of sphingosine. VCD patterns derived from the C═C stretch as well as other mid-infrared (IR) regions were practical markers to discriminate all the stereoisomers of intact sphingosine. Glutaraldehyde was found as an excellent derivatizing reagent for sphingosine which improves its solubility in VCD-friendly nonpolar solvents such as chloroform and enhances the VCD intensities by forming a rigid cyclized structure. PMID:27135615

  10. Magnetically induced optical activity and dichroism of gadolinium oxide nanoparticle-based ferrofluids

    SciTech Connect

    Paul, Nibedita; Devi, Manasi; Mohanta, Dambarudhar; Saha, Abhijit

    2012-02-15

    The present work reports on magnetically induced optical activity (such as Faraday rotation and linear dichroism) of pristine and gamma-irradiated gadolinium oxide (Gd{sub 2}O{sub 3}) nanoparticle-based ferrofluids. The ferrofluids were produced by dispersing N-cetyl-N,N,N-trimethyl ammonium bromide (CTAB)-coated {approx}9-nm-sized Gd{sub 2}O{sub 3} particles in a carrier fluid of ethanol. The ferrofluids were then irradiated with 1.25 MeV energetic gamma rays (dose: 868 Gy and 2.635 kGy). Irradiation-led formation of a number of point defects was revealed through high resolution electron microscopy. The interaction of light with the ionized point defects is believed to have caused substantial improvement in the magneto-optic response of irradiated magnetic fluids.

  11. Circular dichroism spectroscopy: An efficient approach for the quantitation of ampicillin in presence of cloxacillin.

    PubMed

    Rahman, Nafisur; Khan, Sumaiya

    2016-05-01

    Ampicillin exhibited a negative and a positive cotton effects on the circular dichroism (CD) spectra in the wavelength range of 200-280nm. Cloxacillin showed a positive cotton band peaking at 228nm. Three sensitive, precise and accurate CD spectroscopic methods have been developed for the determination of ampicillin and cloxacillin. Method A was used for the determination of ampicillin in presence of cloxacillin by measuring ellipticity at 206nm. Method B and C were employed to determine ampicillin and cloxacillin based on evaluation of ellipticity at 233nm and 228nm, respectively. Methods A, B and C showed linearity in the concentration range of 10-40μgmL(-1), 5-40μgmL(-1) ampicillin and 10-80μgmL(-1) cloxacillin, respectively. The method A was successfully applied to the determination of ampicillin in commercial dosage forms containing equivalent amount of cloxacillin. PMID:26909703

  12. Circular dichroism spectroscopy: An efficient approach for the quantitation of ampicillin in presence of cloxacillin

    NASA Astrophysics Data System (ADS)

    Rahman, Nafisur; Khan, Sumaiya

    2016-05-01

    Ampicillin exhibited a negative and a positive cotton effects on the circular dichroism (CD) spectra in the wavelength range of 200-280 nm. Cloxacillin showed a positive cotton band peaking at 228 nm. Three sensitive, precise and accurate CD spectroscopic methods have been developed for the determination of ampicillin and cloxacillin. Method A was used for the determination of ampicillin in presence of cloxacillin by measuring ellipticity at 206 nm. Method B and C were employed to determine ampicillin and cloxacillin based on evaluation of ellipticity at 233 nm and 228 nm, respectively. Methods A, B and C showed linearity in the concentration range of 10-40 μg mL- 1, 5-40 μg mL- 1 ampicillin and 10-80 μg mL- 1 cloxacillin, respectively. The method A was successfully applied to the determination of ampicillin in commercial dosage forms containing equivalent amount of cloxacillin.

  13. Enantiomeric Excess Sensitivity to Below One Percent by Using Femtosecond Photoelectron Circular Dichroism.

    PubMed

    Kastner, Alexander; Lux, Christian; Ring, Tom; Züllighoven, Stefanie; Sarpe, Cristian; Senftleben, Arne; Baumert, Thomas

    2016-04-18

    Photoelectron circular dichroism (PECD) is experimentally investigated with chiral specimens with varying amounts of enantiomeric excess (ee). As a prototype, we measure and analyze the photoelectron angular distribution from randomly oriented fenchone molecules in the gas phase that result from ionization with circularly polarized femtosecond laser pulses. The quantification of these measurements shows a linear dependence with respect to the ee values. In addition, differences in the ee values (denoted as detection limit) of below one percent can be distinguished for nearly enantiopure samples, as well as for almost racemates. In combination with the use of a reference, the assignment of absolute ee values is possible. The present measurement time is a few minutes, but this could be reduced. This table-top laser-based approach should facilitate widespread implementation in chiral analysis. PMID:26836316

  14. Chiral detection in high-performance liquid chromatography by vibrational circular dichroism.

    PubMed

    Tran, C D; Grishko, V I; Huang, G

    1994-09-01

    A novel chiral detector for high-performance liquid chromatography has been developed. This detector is based on the measurement of circular dichroism of chiral effluents in the infrared region, i.e., vibrational circular dichroism (VCD). In this instrument, a solid-state spectral tunable (from 2.4 to 3.5 microns) F-center laser was used as the light source. The linearly polarized laser beam was converted into left circularly polarized light (LCPL) and right circularly polarized light (RCPL) at 42 kHz by means of a photoelastic modulator. The intensity of the LCPL and RCPL transmitted through the sample was measured by a liquid nitrogen cooled indium antimonide detector. Double modulation was employed to reduce the noise associated with the laser beam. Specifically, the linearly polarized laser beam, prior to being converted to CPL, was modulated at 85 Hz by a mechanical chopper. Demodulation and amplification were accomplished with the use of two lock-in amplifiers. In its present configuration, the instrument can be used to measure the VCD of O-H groups. Its sensitivity is so high that it was able, for the first time, to detect chirally (with limits of detection of micrograms) (R)- and (S)-2,2,2-trifluoro-1-(9- anthryl)ethanol and (R)- and (S)-benzoin when these compounds were chromatographically separated from the corresponding racemic mixtures by a Chiralcel-OD column. The main advantage of this chiral detector is, however, its universality; i.e., it can be used to virtually detect any chiral compounds which has O-H group (e.g, aliphatic alcohols such as 2-octanol). PMID:7943734

  15. Thermochromic properties of the ferroelectric ?-doped ?: study of the temperature-induced dichroism

    NASA Astrophysics Data System (ADS)

    Valiente, Rafael; Rodríguez, Fernando

    1999-03-01

    A new thermochromic material formed by doping 0953-8984/11/12/014/img3 into the ferroelectric 0953-8984/11/12/014/img4 crystal is presented. The change of colour from green (room temperature) to red (low temperature) under polarized light observation is accompanied by a strong temperature-induced dichroism at low temperature. The origin of these phenomena is investigated through the polarized charge transfer spectra associated with 0953-8984/11/12/014/img3 complexes formed in the title compound, and their dependence on temperature in the 10-300 K range. Attention is paid to correlating the optical spectra with the local structure around 0953-8984/11/12/014/img3. The results are compared with those obtained in the tribromide 0953-8984/11/12/014/img7 and 0953-8984/11/12/014/img8, and the tetrabromide 0953-8984/11/12/014/img9 and 0953-8984/11/12/014/img10 crystals, where 0953-8984/11/12/014/img3 forms 0953-8984/11/12/014/img12 complexes of nearly 0953-8984/11/12/014/img13 symmetry, and tetrahedral distorted 0953-8984/11/12/014/img14 complexes of 0953-8984/11/12/014/img15 symmetry, respectively. An interesting feature is the presence of a strongly polarized absorption band at 15 800 0953-8984/11/12/014/img16 in 0953-8984/11/12/014/img17, which is responsible for the observed dichroism and thermochromism. The existence of this band is associated with the formation of highly distorted 0953-8984/11/12/014/img14 complexes in the monoclinic 0953-8984/11/12/014/img19 host crystal. The enhancement of dichroism exhibited by this crystal with decreasing temperature is noteworthy. The analysis of the spectra reveals that this unusual thermal behaviour can be explained in terms of thermally activated reorientations rather than structural changes of the 0953-8984/11/12/014/img3 complex.

  16. Recent Theoretical and Experimental Advances in the Electronic Circular Dichroisms of Planar Chiral Cyclophanes

    NASA Astrophysics Data System (ADS)

    Mori, Tadashi; Inoue, Yoshihisa

    The chiroptical properties, such as electronic and vibrational circular dichroism and optical rotation, of planar chiral cyclophanes have attracted much attention in recent years. Although the chemistry of cyclophanes has been extensively explored for more than 60 years, the studies on chiral cyclophanes are rather limited. Experimentally, the use of chiral stationary phases in HPLC becomes more popular and facilitates the enantiomer separation of chiral cyclophanes of interest. Almost all chiral cyclophanes can be readily separated, in analytical and preparative scales, most typically on a Daicel OD type column, which is based on cellulose tris(3,5-dimethylphenylcarbamate). The CD spectra of chiral cyclophanes are unique in their fairly large, significantly coupled Cotton effects observed in all the 1 B b, 1 L a, and 1 L b band regions. Theoretically, the time-dependent density functional theory, or TD-DFT, method becomes a cost-efficient, yet accurate, theoretical method to reproduce the electronic circular dichroisms and the absorption spectra of a variety of cyclophanes. The direct comparison of the experimental CD spectra with the theoretical ones readily leads to the unambiguous assignment of the absolute configuration of cyclophanes. In addition, the analysis of configuration interaction and molecular orbitals allows detailed interpretation of the electronic transitions and Cotton effects in the UV and CD spectra. Through the study of the CD spectra of chiral cyclophanes as model systems, the effects of intra- and intermolecular interactions on the chiroptical properties of molecules can be explored, and the results thus obtained are valuable in comprehensively elucidating the structure-chiroptical property relationship. In this review the recent progress in experimental and theoretical investigations of the electronic CD spectra of chiral cyclophanes is discussed.

  17. Irradiation induced ferromagnetism at room temperature in TiO{sub 2} thin films: X-ray magnetic circular dichroism characterizations

    SciTech Connect

    Thakur, Hardeep; Sharma, K. K.; Thakur, P.; Brookes, N. B.; Kumar, Ravi; Singh, A. P.; Kumar, Yogesh; Gautam, S.; Chae, K. H.

    2011-05-09

    We report on the room temperature ferromagnetism in the swift heavy ion (SHI) irradiated TiO{sub 2} thin films by x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) experiments at the O K and Ti L{sub 3,2} absorption edges. The XAS/XMCD measurements provide direct evidence of magnetic polarization of the O 2p and Ti 3d orbitals. The unquenched orbital magnetic moment within the O 2p shell is ferromagnetically coupled to the neighboring Ti moments, which illustrates the intense hybridization of the O 2p and Ti 3d orbitals induced by SHI irradiation.

  18. Induced Circular Dichroism in Phosphine Gold(I) Aryl Acetylide Urea Complexes through Hydrogen-Bonded Chiral Co-Assemblies.

    PubMed

    Dubarle-Offner, Julien; Moussa, Jamal; Amouri, Hani; Jouvelet, Benjamin; Bouteiller, Laurent; Raynal, Matthieu

    2016-03-14

    Phosphine gold(I) aryl acetylide complexes equipped with a central bis(urea) moiety form 1D hydrogen-bonded polymeric assemblies in solution that do not display any optical activity. Chiral co-assemblies are formed by simple addition of an enantiopure (metal-free) complementary monomer. Although exhibiting an intrinsically achiral linear geometry, the gold(I) aryl acetylide fragment is located in the chiral environment displayed by the hydrogen-bonded co-assemblies, as demonstrated by induced circular dichroism (ICD). PMID:26780877

  19. Non-reciprocal directional dichroism in the AFM phase of BiFeO3 at THz frequencies

    NASA Astrophysics Data System (ADS)

    Nagel, Urmas; Rõõm, T.; Farkas, D.; Szaller, D.; Bordács, S.; Kézsmárki, I.; Engelkamp, H.; Ozaki, Y.; Tomiaki, Y.; Ito, T.; Fishman, Randy S.

    We did THz absorption spectroscopy of BiFeO3 single crystals in the AFM phase, where the spin cycloid is destroyed in magnetic fields between 18 T and 32 T in Voigt geometry at 1.6 K. If B0 ∥ [ 1 1 0 ] , we see strong directional dichroism (DD) of absorption of the magnon mode with light propagating along the direction of the ferroelectric polarization k ∥ P ∥ [ 111 ] and eω ∥ [ 1 1 0 ] , bω ∥ [ 1 1 2 ] . The sign of DD can be reversed (i) by reversing the direction of B0 or (ii) by flipping the sample, thus reversing the propagation direction of light. The observed effect is caused by the strong magneto-electric coupling in the collinear AFM phase. Research sponsored by the Estonian Ministry of Education and Research (IUT23-3).

  20. Kaempferol-human serum albumin interaction: Characterization of the induced chirality upon binding by experimental circular dichroism and TDDFT calculations

    NASA Astrophysics Data System (ADS)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela

    2012-10-01

    The experimental induced circular dichroism (ICD) and absorption spectra of the achiral flavonoid kaempferol upon binding to human serum albumin (HSA) were correlated to electronic CD and UV-vis spectra theoretically predicted by time-dependent density functional theory (TDDFT). The neutral and four anionic species of kaempferol in various conformations were considered in the calculations. The appearance of the experimental ICD signal was rationalized in terms of kaempferol binding to HSA in a distorted, chiral, rigid conformation. The comparison between the experimental and simulated spectra allowed for the identification of the kaempferol species that binds to HSA, namely the anion generated by deprotonation of the hydroxyl group in position 7. This approach constitutes a convenient method for evidencing the binding species and for determining its conformation in the binding pocket of the protein. Its main advantage over the UV-vis absorption method lays in the fact that only the bound ligand species gives an ICD signal.

  1. Energy transfer among CP29 chlorophylls: calculated Förster rates and experimental transient absorption at room temperature.

    PubMed

    Cinque, G; Croce, R; Holzwarth, A; Bassi, R

    2000-10-01

    The energy transfer rates between chlorophylls in the light harvesting complex CP29 of higher plants at room temperature were calculated ab initio according to the Förster mechanism (Förster T. 1948, Ann. Physik. 2:55-67). Recently, the transition moment orientation of CP29 chlorophylls was determined by differential linear dichroism and absorption spectroscopy of wild-type versus mutant proteins in which single chromophores were missing (Simonetto R., Crimi M., Sandonà D., Croce R., Cinque G., Breton J., and Bassi R. 1999. Biochemistry. 38:12974-12983). In this way the Q(y) transition energy and chlorophyll a/b affinity of each binding site was obtained and their characteristics supported by reconstruction of steady-state linear dichroism and absorption spectra at room temperature. In this study, the spectral form of individual chlorophyll a and b ligands within the protein environment was experimentally determined, and their extinction coefficients were also used to evaluate the absolute overlap integral between donors and acceptors employing the Stepanov relation for both the emission spectrum and the Stokes shift. This information was used to calculate the time-dependent excitation redistribution among CP29 chlorophylls on solving numerically the Pauli master equation of the complex: transient absorption measurements in the (sub)picosecond time scale were simulated and compared to pump-and-probe experimental data in the Q(y) region on the native CP29 at room temperature upon selective excitation of chlorophylls b at 640 or 650 nm. The kinetic model indicates a bidirectional excitation transfer over all CP29 chlorophylls a species, which is particularly rapid between the pure sites A1-A2 and A4-A5. Chlorophylls b in mixed sites act mostly as energy donors for chlorophylls a, whereas site B5 shows high and bidirectional coupling independent of the pigment hosted. PMID:11023879

  2. Time Resolved X-ray Magnetic Circular Dichroism at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Schlotter, W.; Higley, D.; Jal, E.; Dakovski, G.; Yuan, E.; MacArthur, J.; Lutman, A.; Hirsch, K.; Granitzka, P.; Chen, Z.; Coslovich, G.; Hoffman, M.; Mitra, A.; Reid, A.; Hart, P.; Nuhn, H.-D.; Duerr, H.; Arenholz, E.; Shafer, P.; Dennes, P.; Joseph, J.; Guyader, L.; Tsukamoto, A.

    We demonstrate ultrafast time resolved X-ray Magnetic Circular Dichroism on optically switchable GdFeCo thin film samples. This method extends the element specificity of time resolved x-ray absorption spectroscopy to characterize the evolution of electron spin and orbital angular momenta. These measurements were enabled by a recent upgrade at the Linac Coherent Light Source (LCLS) to generate circularly polarized x-rays. Additionally these measurements were enhanced by new detection systems that benefit all x-ray absorption spectroscopy experiments performed in transmission. Consequently static XMCD data are in excellent agreement with similar measurements at synchrotron light sources. The LCLS is an x-ray free electron laser user facility accessible via a peer-reviewed proposal process. Acknowledgement: The Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  3. Non-Markovian Quantum State Diffusion for temperature-dependent linear spectra of light harvesting aggregates

    SciTech Connect

    Ritschel, Gerhard; Möbius, Sebastian; Eisfeld, Alexander; Suess, Daniel; Strunz, Walter T.

    2015-01-21

    Non-Markovian Quantum State Diffusion (NMQSD) has turned out to be an efficient method to calculate excitonic properties of aggregates composed of organic chromophores, taking into account the coupling of electronic transitions to vibrational modes of the chromophores. NMQSD is an open quantum system approach that incorporates environmental degrees of freedom (the vibrations in our case) in a stochastic way. We show in this paper that for linear optical spectra (absorption, circular dichroism), no stochastics is needed, even for finite temperatures. Thus, the spectra can be obtained by propagating a single trajectory. To this end, we map a finite temperature environment to the zero temperature case using the so-called thermofield method. The resulting equations can then be solved efficiently by standard integrators.

  4. A linear relationship between the Hall carrier concentration and the effective absorption coefficient measured by means of photothermal radiometry in IR semi-transparent n-type CdMgSe mixed crystals

    NASA Astrophysics Data System (ADS)

    Pawlak, M.; Maliński, M.; Firszt, F.; Pelzl, J.; Ludwig, A.; Marasek, A.

    2014-03-01

    In this work we demonstrate the ability to measure the effective infrared absorption coefficient in semiconductors by a photothermal infrared radiometry (PTR) experiment, and its correlation with the Hall carrier concentration. The amplitude and phase of the PTR signal were measured for Cd1-xMgxSe mixed crystals, with the magnesium content varying from x = 0 to x = 0.15. The PTR experiments were performed at room temperature in thermal reflection and transmission configurations using a mercury cadmium telluride infrared detector. The PTR data were analyzed in the frame of the one-dimensional heat transport model for infrared semi-transparent crystals. Based on the variation of the normalized PTR phase and amplitude on the modulation frequency, the thermal diffusivity and the effective infrared absorption coefficient were obtained by fitting the theoretical expression to experimental data and compared with the Hall carrier concentration determined by supplementary Hall experiments. A linear relationship between the effective infrared absorption coefficient and the Hall carrier concentration was found which is explained in the frame of the Drude theory. The uncertainty of the measured slope was 6%. The value of the slope depends on (1) the sample IR absorption spectrum and (2) the spectral range of the infrared detector. It has to be pointed out that this method is suitable for use in an industrial environment for a fast and contactless carrier concentration measurement. This method can be used for the characterization of other semiconductors after a calibration procedure is carried out. In addition, the PTR technique yields information on the thermal properties in the same experiment.

  5. Circular Dichroism in the Photoionization of Nanoparticles from Chiral Compounds

    SciTech Connect

    Paul, J.; Doerzbach, A.; Siegmann, K.

    1997-10-01

    The dichroism in photoemission from chiral molecules is observed for the first time. Particles consisting of chiral molecules are suspended in air and irradiated alternately with right and left circularly polarized uv light. We found a polarization dependence in the total photoelectric current. The asymmetries observed are of the order of 10{sup {minus}2} to 10{sup {minus}3} , as expected from perturbation theory, and reverse their sign when the handedness of the molecules is changed. {copyright} {ital 1997} {ital The American Physical Society}

  6. Magnetic circular dichroism study of DABCO in solution

    NASA Astrophysics Data System (ADS)

    Lin, C. T.; Mason, W. R.

    1986-12-01

    Two spectral features are observed for the magnetic circular dichroism (MCD) spectra of 1,4-diazabicyclo-[2.2.2]-octane (DABCO) in solution. First an intense positive A term is revealed in the range of 250-200 nm which provides an unambiguous assignment for a degenerate 1E' state. The energy at which Δɛ M = 0 is found to be sensitive to the solvent used. Second, a negative MCD feature with a minimum at 255.4 nm is observed for DABCO in ethanol, suggesting a 1A 2 state assignment.

  7. Plasmonic nanohelix metamaterials with tailorable giant circular dichroism

    NASA Astrophysics Data System (ADS)

    Gibbs, J. G.; Mark, A. G.; Eslami, S.; Fischer, P.

    2013-11-01

    Plasmonic nanohelix arrays are shown to interact with electromagnetic fields in ways not typically seen with ordinary matter. Chiral metamaterials (CMMs) with feature sizes small with respect to the wavelength of visible light are a promising route to experimentally achieve such phenomena as negative refraction without the need for simultaneously negative ɛ and μ. Here we not only show that giant circular dichroism in the visible is achievable with hexagonally arranged plasmonic nanohelix arrays, but that we can precisely tune the optical activity via morphology and lattice spacing. The discrete dipole approximation is implemented to support experimental data.

  8. Light absorption dichroism and magnetic configuration of weakly ferromagnetic CoCO 3

    NASA Astrophysics Data System (ADS)

    Litvinenko, Yu. G.; Verdyan, A. I.; Shapiro, V. V.

    1980-01-01

    Investigation of light interaction with magnetically ordered crystals [1] revealed a correlation between certain spectral characteristics of a crystal on the one hand and its magnetic properties on the other.

  9. Versatile transmission ellipsometry to study linear ferrofluid magneto-optics.

    PubMed

    Kooij, E S; Gâlcă, A C; Poelsema, B

    2006-12-01

    Linear birefringence and dichroism of magnetite ferrofluids are studied simultaneously using spectroscopic ellipsometry in transmission mode. It is shown that this versatile technique enables highly accurate characterisation of magneto-optical phenomena. Magnetic field-dependent linear birefringence and dichroism as well as the spectral dependence are shown to be in line with previous results. Despite the qualitative agreement with established models for magneto-optical phenomena, these fail to provide an accurate, quantitative description of our experimental results using the bulk dielectric function of magnetite. We discuss the results in relation to these models, and indicate how the modified dielectric function of the magnetite nanoparticles can be obtained. PMID:16997315

  10. Magnetic circular dichroism in the hard X-ray range

    NASA Astrophysics Data System (ADS)

    Rogalev, A.; Wilhelm, F.

    2015-12-01

    An overview of X-ray magnetic circular dichroism (XMCD) spectroscopy in the hard X-ray range is presented. A short historical overview shows how this technique has evolved from the early days of X-ray physics to become a workhorse technique in the modern magnetism research As with all X-ray spectroscopies, XMCD has the advantage of being element specific. Interpretation of the spectra based on magneto-optical sum rules can provide unique information about spin and orbital moment carried by absorbing atom in both amplitude and direction, can infer magnetic interactions from element selective magnetization curves, can allow separation of magnetic and non-magnetic components in heterogeneous systems. The review details the technology currently available for XMCD measurements in the hard X-ray range referring to the ESRF beamline ID12 as an example. The strengths of hard X-ray magnetic circular dichroism technique are illustrated with a wide variety of representative examples, such as actinide based ferromagnets, paramagnetism in metals, pure metallic nanoparticles, exchange spring magnets, half metallic ferromagnets, magnetism at interfaces, and dilute magnetic semiconductors. In this way, we aim to encourage researchers from various scientific communities to consider XMCD as a tool to understanding the electronic and magnetic properties of their samples.

  11. Spin polarization and magnetic dichroism in photoemission from core and valence states in localized magnetic systems. IV. Core-hole polarization in resonant photoemission

    NASA Astrophysics Data System (ADS)

    van der Laan, Gerrit; Thole, B. T.

    1995-12-01

    A simple theory is presented for core-hole polarization probed by resonant photoemission in a two-steps approximation. After excitation from a core level to the valence shell, the core hole decays into two shallower core holes under emission of an electron. The nonspherical core hole and the final state selected cause a specific angle and spin distribution of the emitted electron. The experiment is characterized by the ground-state moments, the polarization of the light, and the spin and angular distribution of the emitted electron. The intensity is a sum over ground-state expectation values of tensor operators times the probability to create a polarized core hole using polarized light, times the probability for decay of such a core hole into the final state. We give general expressions for the angle- and spin-dependent intensities in various regimes of Coulomb and spin-orbit interaction: LS, LSJ, and jjJ coupling. The core-polarization analysis, which generalizes the use of sum rules in x-ray absorption spectroscopy where the integrated peak intensities give ground-state expectation values of the spin and orbital moment operators, makes it possible to measure different linear combinations of these operators. As an application the 2p3/23p3p decay in ferromagnetic nickel is calculated using Hartree-Fock values for the radial matrix elements and phase factors, and compared with experiment, the dichroism is smaller in the 3P final state but stronger in the 1D, 1S peak.

  12. A circular dichroism sensor for Ni(2+) and Co(2+) based on L-cysteine capped cadmium sulfide quantum dots.

    PubMed

    Tedsana, Wimonsiri; Tuntulani, Thawatchai; Ngeontae, Wittaya

    2015-03-31

    A new circular dichroism sensor for detecting Ni(2+) and Co(2+) was proposed for the first time using chiral chelating quantum dots. The detection principle was based on changing of circular dichroism signals of the chiral quantum dots when forming a chiral complex with Ni(2+) or Co(2+). L-Cysteine capped cadmium sulfide quantum dots (L-Cyst-CdS QDs) were proposed as a chiral probe. The CD spectrum of L-Cyst-CdS QDs was significantly changed in the presence of Ni(2+) and Co(2+). On the other hand, other studied cations did not alter the original CD spectrum. Moreover, when increasing the concentration of Ni(2+) or Co(2+), the intensity of the CD spectrum linearly increased as a function of concentration and could be useful for the quantitative analysis. The proposed CD sensor showed linear working concentration ranges of 10-60 μM and 4-80 μM with low detection limits of 7.33 μМ and 1.13 μM for the detection of Ni(2+) and Co(2+), respectively. Parameters possibly affected the detection sensitivity such as solution pH and incubation time were studied and optimized. The proposed sensor was applied to detect Ni(2+) and Co(2+) in real water samples, and the results agreed well with the analysis using the standard ICP-OES. PMID:25813022

  13. Linear and nonlinear optical absorption coefficients and refractive index changes in GaN/Al{sub x}Ga{sub (1−x)}N double quantum wells operating at 1.55 μm

    SciTech Connect

    Dakhlaoui, Hassen

    2015-04-07

    In the present paper, the linear and nonlinear optical absorption coefficients and refractive index changes between the ground and the first excited states in double GaN/Al{sub x}Ga{sub (1−x)}N quantum wells are studied theoretically. The electronic energy levels and their corresponding wave functions are obtained by solving Schrödinger-Poisson equations self-consistently within the effective mass approximation. The obtained results show that the optical absorption coefficients and refractive index changes can be red- and blue-shifted through varying the left quantum well width and the aluminum concentration x{sub b2} of the central barrier, respectively. These structural parameters are found to present optimum values for carrying out the transition of 0.8 eV (1.55 μm). Furthermore, we show that the desired transition can also be achieved by replacing the GaN in the left quantum well with Al{sub y}Ga{sub (1−y)}N and by varying the aluminum concentration y{sub Al}. The obtained results give a new degree of freedom in optoelectronic device applications such as optical fiber telecommunications operating at (1.55 μm)

  14. Polarization dependent two-photon absorption spectroscopy on a naturally occurring biomarker (curcumin) in solution: A theoretical-experimental study

    NASA Astrophysics Data System (ADS)

    Tiburcio-Moreno, Jose A.; Alvarado-Gil, J. J.; Diaz, Carlos; Echevarria, Lorenzo; Hernández, Florencio E.

    2013-09-01

    We report on the theoretical-experimental analysis of the two-photon absorption (TPA) and two-photon circular-linear dichroism (TPCLD) spectra of (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin) in Tetrahydrofuran (THF) solution. The measurement of the full TPA spectrum of this molecule reveals a maximum TPA cross-section at 740 nm, i.e. more than 10 times larger than the maximum reported in the literature at 800 nm for the application of curcumin in bioimaging. The TPCLD spectrum exposes the symmetry of the main excited-states involved in the two-photon excitation process. TD-DFT calculations support the experimental results. These outcomes are expected to expand the application of natural-occurring dyes in bioimaging.

  15. Measurement of c-axis angular orientation in calcite (CaCO3) nanocrystals using X-ray absorption spectroscopy

    PubMed Central

    Gilbert, P. U. P. A.; Young, Anthony; Coppersmith, Susan N.

    2011-01-01

    We demonstrate that the ability to manipulate the polarization of synchrotron radiation can be exploited to enhance the capabilities of X-ray absorption near-edge structure (XANES) spectroscopy, to include linear dichroism effects. By acquiring spectra at the same photon energies but different polarizations, and using a photoelectron emission spectromicroscope (PEEM), one can quantitatively determine the angular orientation of micro- and nanocrystals with a spatial resolution down to 10 nm. XANES-PEEM instruments are already present at most synchrotrons, hence these methods are readily available. The methods are demonstrated here on geologic calcite (CaCO3) and used to investigate the prismatic layer of a mollusk shell, Pinctada fucata. These XANES-PEEM data reveal multiply oriented nanocrystals within calcite prisms, previously thought to be monocrystalline. The subdivision into multiply oriented nanocrystals, spread by more than 50°, may explain the excellent mechanical properties of the prismatic layer, known for decades but never explained. PMID:21693647

  16. X-ray Magnetic Circular Dichroism Study of La(1 - x)SrxMnO3 Thin Films

    NASA Astrophysics Data System (ADS)

    Kuang, Xilei; Xiao, Zhuyun; Moon, Eun Ju; May, Steven; Keavney, David; Liu, Yaohua; Cheng, X. M.

    2013-03-01

    The perovskite manganite La(1 - x)SrxMnO3 (LSMO) has attracted great attention recently due to its fundamental physics and potential applications in spintronics and data storage. In this work, we report a temperature-dependent x-ray magnetic circular dichroism (XMCD) study of epitaxial LSMO thin films deposited on orthorhombic NdGaO3 (NGO) substrates grown by the molecular beam epitaxy (MBE) method. Small angle x-ray reflectivity and atomic force microscopy (AFM) results confirmed good epitaxial quality. XMCD measurements were performed at beamline 4-ID-C of the Advanced Photon Source at Argonne National Laboratory. XMCD spectra were taken in a 0.5 tesla field at temperatures ranging from 5 K to 180 K after the 0.5 tesla field cool. The total electron yield absorption spectra showed the oxide state characteristics of Mn, and the shapes of the Mn and O dichroism spectra change with temperature. This work is supported by NSF DMR-1053854. Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357.

  17. Structure vs. excitonic transitions in self-assembled porphyrin nanotubes and their effect on light absorption and scattering.

    PubMed

    Arteaga, Oriol; Canillas, Adolf; El-Hachemi, Zoubir; Crusats, Joaquim; Ribó, Josep M

    2015-12-28

    The optical properties of diprotonated meso-tetrakis(4-sulphonatophenyl)porphyrin (TPPS(4)) J-aggregates of elongated thin particles (nanotubes in solution and ribbons when deposited on solid interfaces) are studied by different polarimetric techniques. The selective light extinction in these structures, which depends on the alignment of the nanoparticle with respect to the polarization of light, is contributed by excitonic absorption bands and by resonance light scattering. The optical response as a function of the polarization of light is complex because, although the quasi-one-dimensional structure confines the local fields along the nanotube axis, there are two orthogonal excitonic bands, of H- and J-character, that can work in favor of or against the field confinement. Results suggest that resonance light scattering is the dominant effect in solid state preparations, i.e. in collective groups (bundles) of ribbons but in diluted solutions, i.e. with isolated nanotubes, the absorption at the excitonic transitions remains dominant and linear dichroism spectra can be a direct probe of the exciton orientations. Therefore, by analyzing scattering and absorption data we can determine the alignment of the excitonic bands within the nanoparticle, i.e. of the orientation of the basic 2D porphyrin architecture in the nanoparticle. This is a necessary first step for understanding the directions of energy transport, charge polarization and non-linear optical properties in these materials. PMID:26584333

  18. Supramolecular Chemistry: Induced Circular Dichroism to Study Host-Guest Geometry

    ERIC Educational Resources Information Center

    Mendicuti, Francisco; Gonzalez-Alvarez, Maria Jose

    2010-01-01

    In this laboratory experiment, students obtain information about the structure of a host-guest complex from the interpretation of circular dichroism measurements. The value and sign of the induced circular dichroism (ICD) on an achiral chromophore guest when it complexes with a cyclodextrin can be related to the guest penetration and its…

  19. Theory of magnetic circular dichroism of nonresonant x-ray Raman scattering

    NASA Astrophysics Data System (ADS)

    Takahashi, Manabu; Hiraoka, Nozomu

    2015-09-01

    We develop a theory of magnetic circular dichroism (MCD) of hard x-ray Raman scattering (XRS) to analyze the MCD signal at iron L edge from pure ferromagnetic iron. The obtained formula of scattering amplitude has terms corresponding to the charge (Thomson) scattering process, and the orbital and spin scattering processes in the elastic x-ray magnetic scattering. The total scattering intensity is almost independent of incident photon helicity since it is mainly produced by the charge scattering. The weak MCD signals are caused primarily by interference between the charge scattering amplitude and each of the orbital and spin scattering amplitudes. The shape of the MCD spectra depends on angle αM between the wave vector of the incident photon and the magnetization vector. At αM=0∘ , the spin scattering is suppressed so that the MCD spectrum becomes analogous to that observed in the x-ray absorption spectroscopy. At αM=135∘ , the orbital scattering is suppressed, and the spin scattering plays central roles in producing the MCD signal. The magnitude of the MCD signal turns out to be proportional to the spin density of states projected onto the 3 d states in the unoccupied state. Consequently, the value of the integrated MCD signal is proportional to the spin moment in the 3 d states at the scattering site. The calculated MCD spectra with the help of a band structure calculation well reproduce the observed spectra.

  20. UV and circular dichroism thermal lens microscope for integrated chemical systems and HPLC on microchip

    NASA Astrophysics Data System (ADS)

    Mawatari, Kazuma; Kitamori, Takehiko

    2005-09-01

    Thermal lens microscope (TLM) is our original sensitive detector for non-fluorescent molecules in microspace. The principle is based on absorption of light followed by photothermal process. TLM has been successfully applied tosensitive detection on microchip, and TLM enabled various applications combined with microchip technologies. We are now developing HPLC microchips as one of the important separation techniques for analysis and synthesis. For HPLC microchip systems, direct and sensitive UV detection on microchip becomes key technology. Therefore, we extended applicability of TLM from visible to UV light absorbing samples by pulse UV laser excitation (UV-TLM). Quasi- continuous wave (QCW) method was applied for lock-in amplifier detection. By applying UV-TLM for biomolecules separation and detection, about two orders of higher sensitivity was achieved compared with UV spectrophotometer. For synthesis on microchip, recognition and detection of chiral samples become important in pharmaceutical field. Therefore, function of TLM was extended for selective detection of chiral samples by utilizing polarization modulation of excitation beam and resultant circular dichroism of sample (CD-TLM). The chirality of samples was detected selectively on microchip with two orders higher sensitivity than CD spectrophotometer. Finally, we explained the instrumentation using fiber optics and micro lens technology for achieving a miniaturized practical device.

  1. X-ray magnetic circular dichroism of Pseudomonas aeruginosa nickel(II) azurin.

    PubMed

    Funk, Tobias; Kennepohl, Pierre; Di Bilio, Angel J; Wehbi, William A; Young, Anthony T; Friedrich, Stephan; Arenholz, Elke; Gray, Harry B; Cramer, Stephen P

    2004-05-12

    We show that X-ray magnetic circular dichroism (XMCD) can be employed to probe the oxidation states and other electronic structural features of nickel active sites in proteins. As a calibration standard, we have measured XMCD and X-ray absorption (XAS) spectra for the nickel(II) derivative of Pseudomonas aeruginosa azurin (NiAz). Our analysis of these spectra confirms that the electronic ground state of NiAz is high-spin (S = 1); we also find that the L(3)-centroid energy is 853.1(1) eV, the branching ratio is 0.722(4), and the magnetic moment is 1.9(4) mu(B). Density functional theory (DFT) calculations on model NiAz structures establish that orbitals 3d(x2-y2) and 3d(z2) are the two valence holes in the high-spin Ni(II) ground state, and in accord with the experimentally determined orbital magnetic moment, the DFT results also demonstrate that both holes are highly delocalized, with 3d(x2-y2) having much greater ligand character. PMID:15125678

  2. Optical circular dichroism of vacuum-deposited film stacks

    NASA Astrophysics Data System (ADS)

    Fan, B.; Vithana, H. K. M.; Kralik, J. C.; Faris, S. M.

    1998-02-01

    We report on optical circular dichroism of chiral multilayer SiO x films obtained by a novel vacuum deposition technique. The film layers were deposited at an oblique incidence angle to render them optically anisotropic, and were stacked such that the optic axes of the layers spiral in a helical fashion about the substrate normal. The resulting film stacks display both wavelength and polarization selectivity, in analogy with organic cholesteric liquid crystals aligned in the planar texture. Reflectance spectra of two films of opposite chirality are presented. Both film stacks are tuned to reflect in the visible and were prepared using obliquely deposited SiO x. Calculated spectra using a Berreman's 4×4 matrix approach agree well with the experimental findings. It is concluded that vacuum-deposited chiral film stacks hold promise for use as high-efficiency polarizers and other novel optical components.

  3. Statistical effects in the absorption and optical activity of particulate suspensions.

    PubMed Central

    Bustamante, C; Maestre, M F

    1988-01-01

    The phenomenon of Duysens flattening of the absorption spectra resulting from the inhomogeneous distribution of the chromophores in the solution is analyzed. These inhomogeneities are treated as localized statistical fluctuations in the concentration of the absorbing species, by using the Gaussian distribution. A law of absorbance is obtained, and the effect of light scattering on the flattening is also characterized. The flattening in the circular dichroism spectra of particulate suspensions is then analyzed. It is shown that the degree of flattening of the circular dichroism of a suspension is, in general, different from the corresponding flattening of its absorption spectrum. A quantitative relationship between the two effects is established. PMID:3186738

  4. The high-field magnet endstation for X-ray magnetic dichroism experiments at ESRF soft X-ray beamline ID32.

    PubMed

    Kummer, K; Fondacaro, A; Jimenez, E; Velez-Fort, E; Amorese, A; Aspbury, M; Yakhou-Harris, F; van der Linden, P; Brookes, N B

    2016-03-01

    A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014. PMID:26917134

  5. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip.

    PubMed

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W; Hla, Saw-Wai; Rose, Volker

    2016-03-01

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain. PMID:26917146

  6. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    PubMed Central

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W.; Hla, Saw-Wai; Rose, Volker

    2016-01-01

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L 2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain. PMID:26917146

  7. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    DOE PAGESBeta

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W.; Hla, Saw -Wai; Rose, Volker

    2016-01-28

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the FeL2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  8. Refined structure-based simulation of plant light-harvesting complex II: linear optical spectra of trimers and aggregates.

    PubMed

    Müh, Frank; Renger, Thomas

    2012-08-01

    Linear optical spectra of solubilized trimers and small lamellar aggregates of the major light-harvesting complex II (LHCII) of higher plants are simulated employing excitonic couplings and site energies of chlorophylls (Chls) computed on the basis of the two crystal structures by a combined quantum chemical/electrostatic approach. A good agreement between simulation and experiment is achieved (except for the circular dichroism in the Chl b region), if vibronic transitions of Chls are taken into account. Site energies are further optimized by refinement fits of optical spectra. The differences between refined and directly calculated values are not significant enough to decide, whether the crystal structures are closer to trimers or aggregates. Changes in the linear dichroism spectrum upon aggregation are related to site energy shifts of Chls b601, b607, a603, a610, and a613, and are interpreted in terms of conformational changes of violaxanthin and the two luteins involving their ionone rings. Chl a610 is the energy sink at 77K in both conformations. An analysis of absorption spectra of trimers perpendicular and parallel to the C(3)-axis (van Amerongen et al. Biophys. J. 67 (1994) 837-847) shows that only Chl a604 close to neoxanthin is significantly reoriented in trimers compared to the crystal structures. Whether this pigment is orientated in aggregates as in the crystal structures, can presently not be determined faithfully. To finally decide about pigment reorientations that could be of relevance for non-photochemical quenching, further polarized absorption and fluorescence measurements of aggregates or detergent-depleted LHCII would be helpful. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. PMID:22387396

  9. Searching for minicharged particles via birefringence, dichroism and Raman spectroscopy of the vacuum polarized by a high-intensity laser wave

    SciTech Connect

    Villalba-Chávez, S. Müller, C.

    2013-12-15

    Absorption and dispersion of probe photons in the field of a high-intensity circularly polarized laser wave are investigated. The optical theorem is applied for determining the absorption coefficients in terms of the imaginary part of the vacuum polarization tensor. Compact expressions for the vacuum refraction indices and the photon absorption coefficients are obtained in various asymptotic regimes of interest. The outcomes of this analysis reveal that, far from the region relatively close to the threshold of the two-photon reaction, the birefringence and dichroism of the vacuum are small and, in some cases, strongly suppressed. On the contrary, in a vicinity of the region in which the photo-production of a pair occurs, these optical properties are manifest with lasers of moderate intensities. We take advantage of such a property in the search of minicharged particles by considering high-precision polarimetric experiments. In addition, Raman-like electromagnetic waves resulting from the inelastic part of the vacuum polarization tensor are suggested as an alternative form for finding exclusion limits on these hypothetical charge carriers. The envisaged parameters of upcoming high-intensity laser facilities are used for establishing upper bounds on the minicharged particles. -- Highlights: •Via dichroism and birefringence of the vacuum by a strong laser wave, minicharged particles can be probed. •The discovery potential is the highest in a vicinity of the first pair production threshold. •As alternative observable, Raman scattered waves are put forward.

  10. Magneto-Circular Dichroism Spectra of Cd1-xMnxTe-MnTe Multiple Quantum Well Prepared by Ionized-Cluster Beam Technique

    NASA Astrophysics Data System (ADS)

    Anno, Hiroaki; Koyanagi, Tsuyoshi; Matsubara, Kakuei

    1993-01-01

    Cd1-xMnxTe-MnTe multiple quantum wells were successfully grown on a sapphire (0001) substrate by the ionized-cluster beam deposition technique. In the magneto-circular dichroism spectra, peaks are observed at the energies where shoulders appear in the optical absorption spectra. The peaks shift toward higher energies as the Cd1-xMnxTe well width decreases. The magneto-optical effect is attributed to the Zeeman splitting of mini-band levels due to the spin exchange interaction between Mn2+ magnetic ions and electrons strongly confined in quantum wells.

  11. Dichroism and order parameter coupling in BiFeO3 Films

    NASA Astrophysics Data System (ADS)

    Barry, Mikel; Zhao, T.; Zavaliche, F.; Cruz, M. P.; Chu, Y. H.; Ramesh, R.; Scholl, A.; Doran, A.

    2006-03-01

    BiFeO3 is an attractive material because it is a possible multiferroic and lead-free replacement for ferroelectric memory cells and piezoelectric sensors and actuators. We are probing the possibility of coupling between ferroelectricity and antiferromagnetism in epitaxial thin films of this system. X-ray linear dichroism based PEEM images were obtained using a high spatial resolution photoelectron emission microscope (PEEM). This combination of XLD and PEEM provides high spatial resolution along with elemental and chemical specificity and surface sensitivity. A Piezoforce microscope (PFM) was used to switch the ferroelectric state in micron-sized regions of the film, which were subsequently probed using temperature dependent PEEM measurements. Temperature dependent structural measurements were carried out to probe the changes in the ferroelectric order parameter with temperature. We observe a strong change in XLD as the temperature is raised to and beyond the Neel temperature. We will present the results of our approaches to decouple the XLD responses that arise from purely the structural distortion (i.e., due to ferroelectricity) and that arising from the antiferromagnetic state, as well as the results of the coupling experiments. This work is supported by an LBL-LDRD program and by the ONR under a MURI program.

  12. Applied circular dichroism: a facile spectroscopic tool for configurational assignment and determination of enantiopurity.

    PubMed

    Okuom, Macduff O; Burks, Raychelle; Naylor, Crysta; Holmes, Andrea E

    2015-01-01

    In order to determine if electronic circular dichroism (ECD) is a good tool for the qualitative evaluation of absolute configuration and enantiopurity in the absence of chiral high performance liquid chromatography (HPLC), ECD studies were performed on several prescriptions and over-the-counter drugs. Cotton effects (CE) were observed for both S and R isomers between 200 and 300 nm. For the drugs examined in this study, the S isomers showed a negative CE, while the R isomers displayed a positive CE. The ECD spectra of both enantiomers were nearly mirror images, with the amplitude proportional to the enantiopurity. Plotting the differential extinction coefficient (Δε) versus enantiopurity at the wavelength of maximum amplitude yielded linear standard curves with coefficients of determination (R (2)) greater than 97% for both isomers in all cases. As expected, Equate, Advil, and Motrin, each containing a racemic mixture of ibuprofen, yielded no chiroptical signal. ECD spectra of Suphedrine and Sudafed revealed that each of them is rich in 1S,2S-pseudoephedrine, while the analysis of Equate vapor inhaler is rich in R-methamphetamine. PMID:25705549

  13. Applied Circular Dichroism: A Facile Spectroscopic Tool for Configurational Assignment and Determination of Enantiopurity

    PubMed Central

    Okuom, Macduff O.; Burks, Raychelle; Holmes, Andrea E.

    2015-01-01

    In order to determine if electronic circular dichroism (ECD) is a good tool for the qualitative evaluation of absolute configuration and enantiopurity in the absence of chiral high performance liquid chromatography (HPLC), ECD studies were performed on several prescriptions and over-the-counter drugs. Cotton effects (CE) were observed for both S and R isomers between 200 and 300 nm. For the drugs examined in this study, the S isomers showed a negative CE, while the R isomers displayed a positive CE. The ECD spectra of both enantiomers were nearly mirror images, with the amplitude proportional to the enantiopurity. Plotting the differential extinction coefficient (Δε) versus enantiopurity at the wavelength of maximum amplitude yielded linear standard curves with coefficients of determination (R2) greater than 97% for both isomers in all cases. As expected, Equate, Advil, and Motrin, each containing a racemic mixture of ibuprofen, yielded no chiroptical signal. ECD spectra of Suphedrine and Sudafed revealed that each of them is rich in 1S,2S-pseudoephedrine, while the analysis of Equate vapor inhaler is rich in R-methamphetamine. PMID:25705549

  14. The structural organization of dinucleosomes and oligonucleosomes. Electric dichroism and birefringence study.

    PubMed Central

    Houssier, C; Lasters, I; Muyldermans, S; Wyns, L

    1981-01-01

    The spatial organization of nucleosomes and linker DNA in dinucleosomes and oligonucleosomes of various chain lengths has been investigated through electric dichroism, birefringence and relaxation times measurements at low ionic strengths (0.5 to 2.2 mM). From the negative dichroism observed for all the samples, it is concluded that the nucleosome subunits in the oligonucleosome chain must lie with their disc planes closely parallel to the fibre axis. The large increase of the negative dichroism of dinucleosomes upon Hl removal is interpreted by the unwinding of the DNA tails and the internucleosomal segment. All the samples displayed, under bipolar pulses, a predominantly induced orientation mechanism. PMID:7312629

  15. Molecular magnetic dichroism in spectra of white dwarfs.

    PubMed

    Berdyugina, S V; Berdyugin, A V; Piirola, V

    2007-08-31

    We present novel calculations of the magnetic dichroism appearing in molecular bands in the presence of a strong magnetic field, which perturbs the internal structure of the molecule and results in net polarization due to the Paschen-Back effect. Based on that, we analyze new spectropolarimetric observations of the cool magnetic helium-rich white dwarf G99-37, which shows strongly polarized molecular bands in its spectrum. In addition to previously known molecular bands of the C2 Swan and CH A-X systems, we find a firm evidence for the violet CH B-X bands at 390 nm and C2 Deslandres-d'Azambuja bands at 360 nm. Combining the polarimetric observations with our model calculations, we deduce a dipole magnetic field of 7.5+/-0.5 MG with the positive pole pointing towards the Earth. We conclude that the developed technique is an excellent tool for studying magnetic fields on cool magnetic stars. PMID:17930997

  16. Electronic circular dichroism of fluorescent proteins: a computational study.

    PubMed

    Pikulska, Anna; Steindal, Arnfinn Hykkerud; Beerepoot, Maarten T P; Pecul, Magdalena

    2015-02-26

    The electronic circular dichroism (ECD) properties of the green fluorescent protein and other fluorescent proteins have been calculated with density functional theory. The influence of different embedding models on the ECD signal of the chromophore has been investigated by modeling the protein environment by the polarizable continuum model (QM/PCM), by the polarizable embedding model (PE-QM/MM), by treating the minimal environment quantum mechanically at the same footing as the chromophore (QM/QM), and by adding the remaining part of the protein by means of PCM (QM/QM/PCM). The rotatory strength is found to be more sensitive than the oscillatory strength to changes in the geometry of the chromophore and its surroundings and to the type of embedding model used. In general, explicit embedding of the surrounding protein (PE-QM/MM or QM/QM) induces an increase in the rotatory strength of the chromophore. Explicit inclusion of the whole protein through polarizable embedding is found to be an affordable embedding model that gives the correct sign of the rotatory strength for all fluorescent proteins. PCM is useful as a first approximation to protein environment effects, but as a rule seems to underestimate the rotatory strength. PMID:25646666

  17. Optical activity and circular dichroism of plasmonic nanorod assemblies

    NASA Astrophysics Data System (ADS)

    Khosravi Khorashad, Larousse; Liu, Na; Govorov, Alexander O.

    Plasmonic circular dichroism (CD) has offered an efficient spectroscopy method for the electronic, chemical, and structural properties of different types of light active molecules in the subwavelength regime. Among the different chiral geometries of metal nanoparticles utilized by the plasmonic CD spectroscopy, gold nanorods (AuNRs) have shown strong CD signals in the visible frequency range. In this work, we theoretically study the CD signals of AuNR arrangements in order to mimic structures and chemical bonds of chiral biomolecules. In particular, our twisted three-AuNR geometries resemble a molecular structure of tartaric acid. This molecule played an important role in the discovery of chemical chirality. In our study, we show that the strength of CD signals changes dramatically by tuning the interparticle distances and angles. Since the CD signals are typically weak, we develop reliable computational approaches to calculate the plasmonic CD. Manipulating interparticle distances, size, and molecular bond angles result in full control over peak positions, handedness, and positive and negative bands which are observed in the CD spectra. This work has been supported under the grant from Volkswagen Foundation. We also acknowledge the financial support of Condensed Matter and Surface Science program of Ohio University.

  18. Magnetochiral dichroism resonant with electromagnons in a helimagnet.

    PubMed

    Kibayashi, S; Takahashi, Y; Seki, S; Tokura, Y

    2014-01-01

    Cross-coupling between magnetism and electricity in a solid can be hosted by multiferroics with both magnetic and ferroelectric orders. In multiferroics, the collective spin excitations active for both electric and magnetic fields, termed electromagnons, play a crucial role in the elementary process of magnetoelectric (ME) coupling. Here we report the colossal dynamical (optical) ME effect, or more specifically the magnetochiral (MCh) effect, in the electromagnon resonance for the screw spin helimagnet CuFe(1-x)Ga(x)O2 (x = 0.035). The MCh effect shows up as the nonreciprocal directional dichroism; the extinction coefficient is different for counter-propagating lights, as large as by 400%. The MCh effect derived from the screw spin order is proved by control of the magnetic helicity of helimagnetism and its magnetization. The results point to the general presence of the MCh effect in helimagnets, paving a way to the ME control of electromagnetic wave in the giga- to tera-hertz region. PMID:25081477

  19. Magnetochiral dichroism resonant with electromagnons in a helimagnet

    NASA Astrophysics Data System (ADS)

    Kibayashi, S.; Takahashi, Y.; Seki, S.; Tokura, Y.

    2014-08-01

    Cross-coupling between magnetism and electricity in a solid can be hosted by multiferroics with both magnetic and ferroelectric orders. In multiferroics, the collective spin excitations active for both electric and magnetic fields, termed electromagnons, play a crucial role in the elementary process of magnetoelectric (ME) coupling. Here we report the colossal dynamical (optical) ME effect, or more specifically the magnetochiral (MCh) effect, in the electromagnon resonance for the screw spin helimagnet CuFe1-xGaxO2 (x=0.035). The MCh effect shows up as the nonreciprocal directional dichroism; the extinction coefficient is different for counter-propagating lights, as large as by 400%. The MCh effect derived from the screw spin order is proved by control of the magnetic helicity of helimagnetism and its magnetization. The results point to the general presence of the MCh effect in helimagnets, paving a way to the ME control of electromagnetic wave in the giga- to tera-hertz region.

  20. Circular dichroism study of the carbohydrate-modified opioid peptides

    NASA Astrophysics Data System (ADS)

    Horvat, Štefica; Otvos, Laszlo; Urge, Laszlo; Horvat, Jaroslav; Čudić, Mare; Varga-Defterdarović, Lidija

    1999-09-01

    The conformational preferences of enkephalins and the related glycoconjugates in which free or protected carbohydrate moieties were linked to the opioid peptides through an ether, ester or amide bond were investigated by circular dichroism spectroscopy in water, trifluoroethanol and water-trifluoroethanol mixtures. The analysis of the spectra revealed that the conformation of the enkephalin molecule is very sensitive to slight changes in the peptide structure around the C-terminal region. It was found that the type II β-turn structures are populated in N-terminal tetrapeptide enkephalin fragment, while leucine-enkephalin amide feature a type I (III) β-turn structure in solution. Incorporation of the sugar moiety into opioid peptide compound did not significantly influence the overall conformation of the peptide backbone, although minor intensity changes may reflect shifts in the population of the different turn systems. These small structural alterations can be responsible for the receptor-subtype selectivity of the various carbohydrate-modified enkephalin analogs.

  1. Circular dichroism in laser-assisted proton-hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Niederhausen, Thomas; Feuerstein, Bernold; Thumm, Uwe

    2004-08-01

    We investigate the effects of a strong laser field on the dynamics of electron capture and emission in ion-atom collisions within a reduced dimensionality model of the scattering system in which the motion of the active electron and the laser electric field vector are confined to the scattering plane. We examine the probabilities for electron capture and ionization as a function of the laser intensity, the projectile impact parameter b , and the laser phase ϕ that determines the orientation of the laser electric field with respect to the internuclear axis at the time of closest approach between target and projectile. Our results for the b -dependent ionization and capture probabilities show a strong dependence on both ϕ and the helicity of the circularly polarized laser light. For intensities above 5×1012W/cm2 our model predicts a noticeable circular dichroism in the capture probability for slow proton-hydrogen collisions, which persists after averaging over ϕ . Capture and electron emission probabilities defer significantly from results for laser-unassisted collisions. Furthermore, we find evidence for a charge-resonance-enhanced ionization mechanism that may enable the measurement of the absolute laser phase ϕ .

  2. Circular dichroism in laser-assisted proton-hydrogen collisions

    SciTech Connect

    Niederhausen, Thomas; Feuerstein, Bernold; Thumm, Uwe

    2004-08-01

    We investigate the effects of a strong laser field on the dynamics of electron capture and emission in ion-atom collisions within a reduced dimensionality model of the scattering system in which the motion of the active electron and the laser electric field vector are confined to the scattering plane. We examine the probabilities for electron capture and ionization as a function of the laser intensity, the projectile impact parameter b, and the laser phase {phi} that determines the orientation of the laser electric field with respect to the internuclear axis at the time of closest approach between target and projectile. Our results for the b-dependent ionization and capture probabilities show a strong dependence on both {phi} and the helicity of the circularly polarized laser light. For intensities above 5x10{sup 12} W/cm{sup 2} our model predicts a noticeable circular dichroism in the capture probability for slow proton-hydrogen collisions, which persists after averaging over {phi}. Capture and electron emission probabilities defer significantly from results for laser-unassisted collisions. Furthermore, we find evidence for a charge-resonance-enhanced ionization mechanism that may enable the measurement of the absolute laser phase {phi}.

  3. Electronic structure, noncollinear magnetism, and x-ray magnetic circular dichroism in the Mn3ZnC perovskite

    NASA Astrophysics Data System (ADS)

    Antonov, V. N.; Harmon, B. N.; Yaresko, A. N.; Shpak, A. P.

    2007-04-01

    Mn3ZnC possesses a magnetic phase transition at Tt=233K from a ferromagnetic phase to a ferrimagnetic one with a noncollinear magnetic structure. The transition is accompanied by a structural change from cubic to tetragonal. The experimentally measured x-ray magnetic circular dichroism (XMCD) at the MnK edge shows a drastic change at the magnetic phase transition, which is associated with the appearance of the noncollinear magnetic structure. The electronic structure and XMCD spectra of the Mn3ZnC were investigated theoretically from first principles, using the fully relativistic Dirac linear muffin-tin orbital band-structure method for both the high-temperature cubic and low-temperature tetragonal noncollinear phases. Densities of valence states, spin, and orbital magnetic moments are analyzed and discussed. The origin of the XMCD spectra in the Mn3ZnC compound is examined. The calculated results are compared with the experimental data.

  4. Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials

    PubMed Central

    Khanikaev, A. B.; Arju, N.; Fan, Z.; Purtseladze, D.; Lu, F.; Lee, J.; Sarriugarte, P.; Schnell, M.; Hillenbrand, R.; Belkin, M. A.; Shvets, G.

    2016-01-01

    Optical activity and circular dichroism are fascinating physical phenomena originating from the interaction of light with chiral molecules or other nano objects lacking mirror symmetries in three-dimensional (3D) space. While chiral optical properties are weak in most of naturally occurring materials, they can be engineered and significantly enhanced in synthetic optical media known as chiral metamaterials, where the spatial symmetry of their building blocks is broken on a nanoscale. Although originally discovered in 3D structures, circular dichroism can also emerge in a two-dimensional (2D) metasurface. The origin of the resulting circular dichroism is rather subtle, and is related to non-radiative (Ohmic) dissipation of the constituent metamolecules. Because such dissipation occurs on a nanoscale, this effect has never been experimentally probed and visualized. Using a suite of recently developed nanoscale-measurement tools, we establish that the circular dichroism in a nanostructured metasurface occurs due to handedness-dependent Ohmic heating. PMID:27329108

  5. A complex-polarization-propagator protocol for magneto-chiral axial dichroism and birefringence dispersion.

    PubMed

    Cukras, Janusz; Kauczor, Joanna; Norman, Patrick; Rizzo, Antonio; Rikken, Geert L J A; Coriani, Sonia

    2016-05-21

    A computational protocol for magneto-chiral dichroism and magneto-chiral birefringence dispersion is presented within the framework of damped response theory, also known as complex polarization propagator theory, at the level of time-dependent Hartree-Fock and time-dependent density functional theory. Magneto-chiral dichroism and magneto-chiral birefringence spectra in the (resonant) frequency region below the first ionization threshold of R-methyloxirane and l-alanine are presented and compared with the corresponding results obtained for both the electronic circular dichroism and the magnetic circular dichroism. The additional information content yielded by the magneto-chiral phenomena, as well as their potential experimental detectability for the selected species, is discussed. PMID:27118603

  6. Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials.

    PubMed

    Khanikaev, A B; Arju, N; Fan, Z; Purtseladze, D; Lu, F; Lee, J; Sarriugarte, P; Schnell, M; Hillenbrand, R; Belkin, M A; Shvets, G

    2016-01-01

    Optical activity and circular dichroism are fascinating physical phenomena originating from the interaction of light with chiral molecules or other nano objects lacking mirror symmetries in three-dimensional (3D) space. While chiral optical properties are weak in most of naturally occurring materials, they can be engineered and significantly enhanced in synthetic optical media known as chiral metamaterials, where the spatial symmetry of their building blocks is broken on a nanoscale. Although originally discovered in 3D structures, circular dichroism can also emerge in a two-dimensional (2D) metasurface. The origin of the resulting circular dichroism is rather subtle, and is related to non-radiative (Ohmic) dissipation of the constituent metamolecules. Because such dissipation occurs on a nanoscale, this effect has never been experimentally probed and visualized. Using a suite of recently developed nanoscale-measurement tools, we establish that the circular dichroism in a nanostructured metasurface occurs due to handedness-dependent Ohmic heating. PMID:27329108

  7. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  8. Magnetic circular dichroism and computational study of mononuclear and dinuclear iron(IV) complexes

    PubMed Central

    Xue, Genqiang; Krivokapic, Itana; Petrenko, Taras

    2015-01-01

    High-valent iron(IV)-oxo species are key intermediates in the catalytic cycles of a range of O2-activating iron enzymes. This work presents a detailed study of the electronic structures of mononuclear ([FeIV(O)(L)(NCMe)]2+, 1, L = tris(3,5-dimethyl-4-methoxylpyridyl-2-methyl)amine) and dinuclear ([(L)FeIV(O)(μ-O)FeIV(OH)(L)]3+, 2) iron(IV) complexes using absorption (ABS), magnetic circular dichroism (MCD) spectroscopy and wave-function-based quantum chemical calculations. For complex 1, the experimental MCD spectra at 2–10 K are dominated by a broad positive C-term band between 12000 and 18000 cm−1. As the temperature increases up to ~20 K, this feature is gradually replaced by a derivative-shaped signal. The computed MCD spectra are in excellent agreement with experiment, which reproduce not only the excitation energies and the MCD signs of key transitions but also their temperature-dependent intensity variations. To further corroborate the assignments suggested by the calculations, the individual MCD sign for each transition is independently determined from the corresponding electron donating and accepting orbitals. Thus, unambiguous assignments can be made for the observed transitions in 1. The ABS/MCD data of complex 2 exhibit ten features that are assigned as ligand-field transitions or oxo- or hydroxo-to-metal charge transfer bands, based on MCD/ABS intensity ratios, calculated excitation energies, polarizations, and MCD signs. In comparison with complex 1, the electronic structure of the FeIV=O site is not significantly perturbed by the binding to another iron(IV) center. This may explain the experimental finding that complexes 1 and 2 have similar reactivities toward C-H bond activation and O-atom transfer. PMID:26417426

  9. Circular dichroism study of the interaction between mutagens and bilirubin bound to different binding sites of serum albumins.

    PubMed

    Orlov, Sergey; Goncharova, Iryna; Urbanová, Marie

    2014-05-21

    Although recent investigations have shown that bilirubin not only has a negative role in the organism but also exhibits significant antimutagenic properties, the mechanisms of interactions between bilirubin and mutagens are not clear. In this study, interaction between bilirubin bound to different binding sites of mammalian serum albumins with structural analogues of the mutagens 2-aminofluorene, 2,7-diaminofluorene and mutagen 2,4,7-trinitrofluorenone were investigated by circular dichroism and absorption spectroscopy. Homological human and bovine serum albumins were used as chiral matrices, which preferentially bind different conformers of bilirubin in the primary binding sites and make it observable by circular dichroism. These molecular systems approximated a real system for the study of mutagens in blood serum. Differences between the interaction of bilirubin bound to primary and to secondary binding sites of serum albumins with mutagens were shown. For bilirubin bound to secondary binding sites with low affinity, partial displacement and the formation of self-associates were observed in all studied mutagens. The associates of bilirubin bound to primary binding sites of serum albumins are formed with 2-aminofluorene and 2,4,7-trinitrofluorenone. It was proposed that 2,7-diaminofluorene does not interact with bilirubin bound to primary sites of human and bovine serum albumins due to the spatial hindrance of the albumins binding domains. The spatial arrangement of the bilirubin bound to serum albumin along with the studied mutagens was modelled using ligand docking, which revealed a possibility of an arrangement of the both bilirubin and 2-aminofluorene and 2,4,7-trinitrofluorenone in the primary binding site of human serum albumin. PMID:24589992

  10. Strain-induced changes in the electronic structure of MnCr(2)O(4) thin films probed by x-ray magnetic circular dichroism.

    PubMed

    van der Laan, G; Chopdekar, R V; Suzuki, Y; Arenholz, E

    2010-08-01

    We show that the angular dependence of x-ray magnetic circular dichroism (XMCD) is strongly sensitive to strain-induced electronic structure changes in magnetic transition metal oxides. We observe a pronounced dependence of the XMCD spectral shape on the experimental geometry as well as nonvanishing XMCD with distinct spectral features in transverse geometry in compressively strained MnCr(2)O(4) films. The angular dependent XMCD can be described as a sum over an isotropic and anisotropic contribution, the latter linearly proportional to the axial distortion due to strain. The XMCD spectra are well reproduced by atomic multiplet calculations. PMID:20868013

  11. A magnetic circular dichroism and optically detected magnetic resonance investigation of Fe2+ and Fe3+ centres in KTaO3

    NASA Astrophysics Data System (ADS)

    Reyher, H. J.; Hausfeld, N.; Pape, M.

    2000-12-01

    A cubic and an axial Fe2+ centre, Fe2+Ta and Fe2+Ta-VO, are found in reduced Fe-doped KTaO3 crystals in conjunction with their trivalent partners. These four defects are characterized by optically detected magnetic resonance (ODMR) via the magnetic circular dichroism (MCD) of the absorption. The g-values are determined by and interpreted using crystal-field terms. For all centres, the optical absorption bands are identified by the tagged-MCD method. The main MCD bands of the divalent ions are attributed to the well known 5T2→{5E} crystal-field transition in the 10 000 cm-1 region. Bands at higher energies are interpreted as intervalence transfer transitions to conduction band-like states.

  12. Time-Resolved X-Ray Magnetic Circular Dichroism - A Selective Probe of Magnetization Dynamics on Nanosecond Timescales

    NASA Astrophysics Data System (ADS)

    Pizzini, Stefania; Vogel, Jan; Bonfim, Marlio; Fontaine, Alain

    Many synchrotron radiation techniques have been developed in the last 15 years for studying the magnetic properties of thin-film materials. The most attractive properties of synchrotron radiation are its energy tunability and its time structure. The first property allows measurements in resonant conditions at an absorption edge of each of the magnetic elements constituting the probed sample, and the latter allows time-resolved measurements on subnanosecond timescales. In this review, we introduce some of the synchrotron-based techniques used for magnetic investigations. We then describe in detail X-ray magnetic circular dichroism (XMCD) and how time-resolved XMCD studies can be carried out in the pump-probe mode. Finally, we illustrate some applications to magnetization reversal dynamics in spin valves and tunnel junctions, using fast magnetic field pulses applied along the easy magnetization axis of the samples. Thanks to the element-selectivity of X-ray absorption spectroscopy, the magnetization dynamics of the soft (Permalloy) and the hard (cobalt) layers can be studied independently. In the case of spin valves, this allowed us to show that two magnetic layers that are strongly coupled in a static regime can become uncoupled on nanosecond timescales.Present address: Universidade Federal do Paraná, Centro Politécnico CP 19011, Curitiba - PR CEP 81531-990, Brazil

  13. Cadmium binding studies to the earthworm Lumbricus rubellus metallothionein by electrospray mass spectrometry and circular dichroism spectroscopy

    SciTech Connect

    Ngu, Thanh T.; Sturzenbaum, Stephen R.; Stillman, Martin J. . E-mail: Martin.Stillman@uwo.ca

    2006-12-08

    The earthworm Lumbricus rubellus has been found to inhabit cadmium-rich soils and accumulate cadmium within its tissues. Two metallothionein (MT) isoforms (1 and 2) have been identified and cloned from L. rubellus. In this study, we address the metalation status, metal coordination, and structure of recombinant MT-2 from L. rubellus using electrospray ionization mass spectrometry (ESI-MS), UV absorption, and circular dichroism (CD) spectroscopy. This is the first study to show the detailed mass and CD spectral properties for the important cadmium-containing earthworm MT. We report that the 20-cysteine L. rubellus MT-2 binds seven Cd{sup 2+} ions. UV absorption and CD spectroscopy and ESI-MS pH titrations show a distinct biphasic demetalation reaction, which we propose results from the presence of two metal-thiolate binding domains. We propose stoichiometries of Cd{sub 3}Cys{sub 9} and Cd{sub 4}Cys{sub 11} based on the presence of 20 cysteines split into two isolated regions of the sequence with 11 cysteines in the N-terminal and 9 cysteines in the C-terminal. The CD spectrum reported is distinctly different from any other metallothionein known suggesting quite different binding site structure for the peptide.

  14. [Circular dichroism of DNA liquid-crystalline dispersion particles].

    PubMed

    Semenov, S V; Yevdokimov, Yu M

    2015-01-01

    The optical activity of DNA liquid-crystalline dispersions is being investigated based on a theory for absorption of electromagnetic waves by large molecular aggregates. The impact on the dispersions-optical properties, exerted by the interaction between the complexes of nucleic acid molecules and nanoparticles, is being considered. PMID:26016021

  15. Temperature-insensitive laser frequency locking near absorption lines

    NASA Astrophysics Data System (ADS)

    Kostinski, Natalie; Olsen, Ben A.; Marsland, Robert; McGuyer, Bart H.; Happer, William

    2011-03-01

    Combined magnetically induced circular dichroism and Faraday rotation of an atomic vapor are used to develop a variant of the dichroic atomic vapor laser lock that eliminates lock sensitivity to temperature fluctuations of the cell. Operating conditions that eliminate first-order sensitivity to temperature fluctuations can be determined by low-frequency temperature modulation. This temperature-insensitive gyrotropic laser lock can be accurately understood with a simple model, that is in excellent agreement with observations in potassium vapor at laser frequencies in a 2 GHz range about the 770.1 nm absorption line. The methods can be readily adapted for other absorption lines.

  16. Temperature-insensitive laser frequency locking near absorption lines

    SciTech Connect

    Kostinski, Natalie; Olsen, Ben A.; Marsland, Robert III; McGuyer, Bart H.; Happer, William

    2011-03-15

    Combined magnetically induced circular dichroism and Faraday rotation of an atomic vapor are used to develop a variant of the dichroic atomic vapor laser lock that eliminates lock sensitivity to temperature fluctuations of the cell. Operating conditions that eliminate first-order sensitivity to temperature fluctuations can be determined by low-frequency temperature modulation. This temperature-insensitive gyrotropic laser lock can be accurately understood with a simple model, that is in excellent agreement with observations in potassium vapor at laser frequencies in a 2 GHz range about the 770.1 nm absorption line. The methods can be readily adapted for other absorption lines.

  17. FAST TRACK COMMUNICATION: Generalized geometrical model for photoionization of polarized atoms: II. Magnetic dichroism in the 3p photoemission from the K 3p64s 2S1/2 ground state

    NASA Astrophysics Data System (ADS)

    Grum-Grzhimailo, A. N.; Cubaynes, D.; Heinecke, E.; Hoffmann, P.; Zimmermann, P.; Meyer, M.

    2010-10-01

    The generalized geometrical model for photoionization from polarized atoms is extended to include mixing of configurations in the initial atomic and/or the final photoion states. The theoretical results for angle-resolved linear and circular magnetic dichroism are in good agreement with new high-resolution photoelectron data for 3p-1 photoionization of potassium atoms polarized in the K 3p64s 2S1/2 ground state by laser optical pumping.

  18. Scanning differential polarization microscope: Its use to image linear and circular differential scattering

    SciTech Connect

    Mickols, W.; Maestre, M.F.

    1988-06-01

    A differential polarization microscope that couples the sensitivity of single-beam measurement of circular dichroism and circular differential scattering with the simultaneous measurement of linear dichroism and linear differential scattering has been developed. The microscope uses a scanning microscope stage and single-point illumination to give the very shallow depth of field found in confocal microscopy. This microscope can operate in the confocal mode as well as in the near confocal condition that can allow one to program the coherence and spatial resolution of the microscope. This microscope has been used to study the change in the structure of chromatin during the development of sperm in Drosophila.

  19. Laser-driven electron dynamics for circular dichroism in mass spectrometry: from one-photon excitations to multiphoton ionization.

    PubMed

    Kröner, Dominik

    2015-07-15

    The distinction of enantiomers is a key aspect of chemical analysis. In mass spectrometry the distinction of enantiomers has been achieved by ionizing the sample with circularly polarized laser pulses and comparing the ion yields for light of opposite handedness. While resonant excitation conditions are expected to be most efficient, they are not required for the detection of a circular dichroism (CD) in the ion yield. However, the prediction of the size and sign of the circular dichroism becomes challenging if non-resonant multiphoton excitations are used to ionize the sample. Employing femtosecond laser pulses to drive electron wavepacket dynamics based on ab initio calculations, we attempt to reveal underlying mechanisms that determine the CD under non-resonant excitation conditions. Simulations were done for (R)-1,2-propylene oxide, using time-dependent configuration interaction singles with perturbative doubles (TD-CIS(D)) and the aug-cc-pVTZ basis set. Interactions between the electric field and the electric dipole and quadrupole as well as between the magnetic field and the magnetic dipole were explicitly accounted for. The ion yield was determined by treating states above the ionization potential as either stationary or non-stationary with energy-dependent lifetimes based on an approved heuristic approach. The observed population dynamics do not allow for a simple interpretation, because of highly non-linear interactions. Still, the various transition pathways are governed by resonant enantiospecific n-photon excitation, with preferably high transition dipole moments, which eventually dominate the CD in the ionized population. PMID:26151731

  20. Four-wave mixing using polarization grating induced thermal grating in liquids exhibiting circular dichroism

    SciTech Connect

    Nunes, J.A.; Tong, W.G.; Chandler, D.W.; Rahn, L.A.

    1995-04-01

    A novel four-wave mixing technique for the detection of circular dichroism in optically active liquid samples is demonstrated. When two cross-polarized laser beams are crossed at a small angle in a circular dichroic liquid a weak thermal grating is produced with a phase depending on the sign of the circular dichroism. The authors show that the polarization of one of the beams can be modified to allow coherent interference with an intensity-grating induced thermal grating. A probe beam scattering from the composite grating results in a signal that reveals the sign and magnitude of the circular dichroism. The use of this technique to optimize the signal-to-noise ratio in the presence of scattered light and laser intensity noise is discussed.

  1. Isotope effect on the circular dichroism spectrum of methyl α-D-glucopyranoside in aqueous solution

    PubMed Central

    Kanematsu, Yusuke; Kamiya, Yukiko; Matsuo, Koichi; Gekko, Kunihiko; Kato, Koichi; Tachikawa, Masanori

    2015-01-01

    H/D isotope effect on the circular dichroism spectrum of methyl α-D-glucopyranoside in aqueous solution has been analyzed by multicomponent density functional theory calculations using the polarizable continuum model. By comparing the computational spectra with the corresponding experimental spectrum obtained with a vacuum-ultraviolet circular dichroism spectrophotometer, it was demonstrated that the isotope effect provides insights not only into the isotopic difference of the intramolecular interactions of the solutes, but also into that of the solute–solvent intermolecular interaction. PMID:26658851

  2. Structure vs. excitonic transitions in self-assembled porphyrin nanotubes and their effect on light absorption and scattering

    NASA Astrophysics Data System (ADS)

    Arteaga, Oriol; Canillas, Adolf; El-Hachemi, Zoubir; Crusats, Joaquim; Ribó, Josep M.

    2015-12-01

    The optical properties of diprotonated meso-tetrakis(4-sulphonatophenyl)porphyrin (TPPS4) J-aggregates of elongated thin particles (nanotubes in solution and ribbons when deposited on solid interfaces) are studied by different polarimetric techniques. The selective light extinction in these structures, which depends on the alignment of the nanoparticle with respect to the polarization of light, is contributed by excitonic absorption bands and by resonance light scattering. The optical response as a function of the polarization of light is complex because, although the quasi-one-dimensional structure confines the local fields along the nanotube axis, there are two orthogonal excitonic bands, of H- and J-character, that can work in favor of or against the field confinement. Results suggest that resonance light scattering is the dominant effect in solid state preparations, i.e. in collective groups (bundles) of ribbons but in diluted solutions, i.e. with isolated nanotubes, the absorption at the excitonic transitions remains dominant and linear dichroism spectra can be a direct probe of the exciton orientations. Therefore, by analyzing scattering and absorption data we can determine the alignment of the excitonic bands within the nanoparticle, i.e. of the orientation of the basic 2D porphyrin architecture in the nanoparticle. This is a necessary first step for understanding the directions of energy transport, charge polarization and non-linear optical properties in these materials.The optical properties of diprotonated meso-tetrakis(4-sulphonatophenyl)porphyrin (TPPS4) J-aggregates of elongated thin particles (nanotubes in solution and ribbons when deposited on solid interfaces) are studied by different polarimetric techniques. The selective light extinction in these structures, which depends on the alignment of the nanoparticle with respect to the polarization of light, is contributed by excitonic absorption bands and by resonance light scattering. The optical

  3. Polarized x-ray-absorption spectroscopy of the uranyl ion: Comparison of experiment and theory

    SciTech Connect

    Hudson, E.A.; Allen, P.G.; Terminello, L.J.; Denecke, M.A.; Reich, T.

    1996-07-01

    The x-ray linear dichroism of the uranyl ion (UO{sub 2}{sup 2+}) in uranium {ital L}{sub 3}-edge extended x-ray-absorption fine structure (EXAFS), and {ital L}{sub 1}- and {ital L}{sub 3}-edge x-ray-absorption near-edge structure (XANES), has been investigated both by experiment and theory. A striking polarization dependence is observed in the experimental XANES and EXAFS for an oriented single crystal of uranyl acetate dihydrate [UO{sub 2}(CH{sub 3}CO{sub 2}){sub 2}{center_dot}2H{sub 2}O], with the x-ray polarization vector aligned either parallel or perpendicular to the bond axis of the linear uranyl cation (O-U-O). Single-crystal results are compared to experimental spectra for a polycrystalline uranyl acetate sample and to calculations using the {ital ab} {ital initio} multiple-scattering (MS) code FEFF 6. Theoretical XANES spectra for uranyl fluoride (UO{sub 2}F{sub 2}) reproduce all the features of the measured uranyl acetate spectra. By identifying scattering paths which contribute to individual features in the calculated spectrum, a detailed understanding of the {ital L}{sub 1}-edge XANES is obtained. MS paths within the uranyl cation have a notable influence upon the XANES. The measured {ital L}{sub 3}-edge EXAFS is also influenced by MS, especially when the x-ray polarization is parallel to the uranyl species. These MS contributions are extracted from the total EXAFS and compared to calculations. The best agreement with the isolated MS signal is obtained by using nonoverlapped muffin-tin spheres in the FEFF 6 calculation. This contrasts the {ital L}{sub 1}-edge XANES calculations, in which overlapping was required for the best agreement with experiment. {copyright} {ital 1996 The American Physical Society.}

  4. Polarized x-ray-absorption spectroscopy of the uranyl ion: Comparison of experiment and theory

    NASA Astrophysics Data System (ADS)

    Hudson, E. A.; Allen, P. G.; Terminello, L. J.; Denecke, M. A.; Reich, T.

    1996-07-01

    The x-ray linear dichroism of the uranyl ion (UO2+2) in uranium L3-edge extended x-ray-absorption fine structure (EXAFS), and L1- and L3-edge x-ray-absorption near-edge structure (XANES), has been investigated both by experiment and theory. A striking polarization dependence is observed in the experimental XANES and EXAFS for an oriented single crystal of uranyl acetate dihydrate [UO2(CH3CO2)2.2H2O], with the x-ray polarization vector aligned either parallel or perpendicular to the bond axis of the linear uranyl cation (O-U-O). Single-crystal results are compared to experimental spectra for a polycrystalline uranyl acetate sample and to calculations using the ab initio multiple-scattering (MS) code FEFF 6. Theoretical XANES spectra for uranyl fluoride (UO2F2) reproduce all the features of the measured uranyl acetate spectra. By identifying scattering paths which contribute to individual features in the calculated spectrum, a detailed understanding of the L1-edge XANES is obtained. MS paths within the uranyl cation have a notable influence upon the XANES. The measured L3-edge EXAFS is also influenced by MS, especially when the x-ray polarization is parallel to the uranyl species. These MS contributions are extracted from the total EXAFS and compared to calculations. The best agreement with the isolated MS signal is obtained by using nonoverlapped muffin-tin spheres in the FEFF 6 calculation. This contrasts the L1-edge XANES calculations, in which overlapping was required for the best agreement with experiment.

  5. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  6. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  7. A Simple Spreadsheet Program to Simulate and Analyze the Far-UV Circular Dichroism Spectra of Proteins

    ERIC Educational Resources Information Center

    Abriata, Luciano A.

    2011-01-01

    A simple algorithm was implemented in a spreadsheet program to simulate the circular dichroism spectra of proteins from their secondary structure content and to fit [alpha]-helix, [beta]-sheet, and random coil contents from experimental far-UV circular dichroism spectra. The physical basis of the method is briefly reviewed within the context of…

  8. Vibronic Coupling Explains the Different Shape of Electronic Circular Dichroism and of Circularly Polarized Luminescence Spectra of Hexahelicenes.

    PubMed

    Liu, Yanli; Cerezo, Javier; Mazzeo, Giuseppe; Lin, Na; Zhao, Xian; Longhi, Giovanna; Abbate, Sergio; Santoro, Fabrizio

    2016-06-14

    We present the simulation of the absorption (ABS), electronic circular dichroism (ECD), emission (EMI), and circularly polarized luminescence (CPL) spectra for the weak electronic transition between the ground (S0) and the lowest excited state (S1) of hexahelicene, 2-methylhexahelicene, 2-bromohexahelicene, and 5-azahexahelicene. Vibronic contributions have been computed at zero Kelvin and at room temperature in harmonic approximation including Duschinsky effects and accounting for both Franck-Condon and Herzberg-Teller contributions. Our results nicely capture the effects of the different substituents on the experimental spectra. They also show that HT effects dominate the shape of ECD and CPL spectra where they even induce changes of signs; HT effects are also relevant in ABS and EMI, tuning the relative intensities of the different vibronic bands. HT effects are the main reason for the differences in the line shapes of ABS and ECD and of EMI and CPL spectra and for the mirror-symmetry breaking between ABS and EMI and between ECD and CPL spectra. In order to check the robustness of our results, given also that few examples of calculations of vibronic CPL spectra exist, we adopted both adiabatic and vertical approaches to define the model potential energy surfaces of the (S0) and the (S1) states; moreover we expanded the electric and magnetic dipole transition moments around both the S0 and S1 equilibrium geometries. PMID:27120334

  9. Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism

    DOE PAGESBeta

    Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; van Veenendaal, M.; Rebizant, J.; Lander, G. H.; Zhu, J. -X.; Thompson, J. D.; Bauer, E. D.

    2015-01-14

    Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M₄,₅ edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [μL = 2.8(1)μB/Pu] and spin moments [μS = –2.0(1)μB/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of Lz and Sz are in excellent agreement with the values thatmore » have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. We demonstrate that a split M₅ as well as a narrow M₄ XMCD signal may serve as a signature of 5f electron localization in actinide compounds.« less

  10. Magnetic field induced directional dichroism of spin waves in multiferroic BiFeO3 at THz frequencies

    NASA Astrophysics Data System (ADS)

    Nagel, Urmas; Rõõm, T.; Bordács, S.; Kézsmárki, I.; Yi, H. T.; Cheong, S.-W.; Lee, Jun Hee; Fishman, Randy S.

    2015-03-01

    Using far infrared spectroscopy in high magnetic fields we show that spin excitations in BiFeO3 simultaneously interact with the electric and magnetic field components of light resulting in directional dichroism (DD) of absorption. DD in BiFeO3 arises because an applied static magnetic field induces a toroidal moment in the cycloidal spin structure. Strong DD is observed even in the room-temperature state of the material. The results are explained on the microscopic level as an interplay of five different interactions: isotropic exchange couplings between nearest and next nearest neighbors, an easy-axis anisotropy along the ferroelectric polarization, Dzyaloshinskii-Moriya (DM) interaction that creates the cycloid and DM interaction that causes spin canting. Research sponsored by the Estonian Ministry of Education and Research (IUT23-3), Estonian Science Foundation (ETF8703), and U.S. Department of Energy (JL), Office of Science, Materials Sciences and Engineering Division (RF and JL) and Office of Basis En.

  11. Circular Dichroism in Mass Spectrometry: Quantum Chemical Investigations for the Differences between (R)-3-Methylcyclopentanone and Its Cation.

    PubMed

    Kröner, Dominik; Gaebel, Tina

    2015-08-27

    In mass spectrometry enantiomers can be distinguished by multiphoton ionization employing circular polarized laser pulses. The circular dichroism (CD) is detected from the normalized difference in the ion yield after excitation with light of opposite handedness. While there are cases in which fragment and parent ions exhibit the same sign of the CD in the ion yield, several experiments show that they might also differ in sign and magnitude. Supported by experimental observations it has been proposed that the parent ion, once it has been formed, is further excited by the laser, which may result in a change of the CD in the ion yield of the formed fragments compared to the parent ion. To gain a deeper insight in possible excitation pathways we calculated and compared the electronic CD absorption spectra of neutral and cationic (R)-3-methylcyclopentanone, applying density functional theory. In addition, electron wavepacket dynamics were used to compare the CD of one- and two-photon transitions. Our results support the proposed subsequent excitation of the parent ion as a possible origin of the difference of the CD in the ion yield between parent ion and fragments. PMID:26214257

  12. Comparative Analysis of IR and Vibrational Circular Dichroism Spectra for a Series of Camphor-Related Molecules

    NASA Astrophysics Data System (ADS)

    Abbate, Sergio; Burgi, Luigi Filippo; Gangemi, Fabrizio; Gangemi, Roberto; Lebon, France; Longhi, Giovanna; Pultz, Vaughan M.; Lightner, David A.

    2009-09-01

    The absorption spectra and vibrational circular dichroism (VCD) spectra in the mid-IR range 1600-950 cm-1 of 10 camphor-related compounds have been recorded and compared to DFT calculated spectra at the B3PW91/TZ2P level and have been examined together with the corresponding data of the parent molecules. The rigidity of the bridged structure common to all compounds investigated permits (a) identification of three spectroscopic regions in the mid-IR range that can be "used" separately by the interested stereochemist for structural diagnosis and assignment of some major characteristics of the VCD spectra in these regions to what we call "skeletal chiral sense" and (b) recognition of possible conformers for flexible substituent groups, when present. VCD spectra of the 10 molecules have been recorded and analyzed also in the CH-stretching region, 3100-2800 cm-1. Here, we have been able to identify and characterize features of vibrational excitons by comparison of data within the 10-molecule class. To find a theoretical justification of result (a), we have examined the potential energy distribution of the normal modes in the mid-IR range, the partitioning of the calculated rotational strengths in terms of contributions from all couples of internal coordinates, the angle formed by the two vectors, the electric dipole transition moment and the magnetic dipole transition moment, and finally the overlap of normal modes of different molecules. A discussion is provided as to the usability of the introduced algorithms.

  13. Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism

    SciTech Connect

    Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; van Veenendaal, M.; Rebizant, J.; Lander, G. H.; Zhu, J. -X.; Thompson, J. D.; Bauer, E. D.

    2015-01-14

    Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M₄,₅ edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [μL = 2.8(1)μB/Pu] and spin moments [μS = –2.0(1)μB/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of Lz and Sz are in excellent agreement with the values that have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. We demonstrate that a split M₅ as well as a narrow M₄ XMCD signal may serve as a signature of 5f electron localization in actinide compounds.

  14. Theoretical Calculation of Electronic Circular Dichroism of a Hexahydroxydiphenoyl-Containing Flavanone Glycoside

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Time-dependent density functional theory (TDDFT) was employed for theoretical calculation of electronic circular dichroism (ECD) of a hexahydroxydiphenoyl (HHDP)-containing flavanone glycoside, mattucinol-7-O-[4'',6''-O-(aS)-hexahydroxydiphenoyl]-ß-d-glucopyranoside (2). It identified the roles of t...

  15. Circular dichroism study on the diastereoselective self-assembly of bacteriochlorophyll cs

    NASA Astrophysics Data System (ADS)

    Balaban, Teodor S.; Holzwarth, Alfred R.; Schaffner, Kurt

    1995-04-01

    Circular dichroism (CD) spectra of self-assembled bacteriochlorophyll cs (BChl cs) aggregates show a pronounced dependency on the solvent, the concentration and on the stereochemistry of the 3 1-hydroxy groups. In n-hexane a psi-type CD is obtained due to the formation of nanostructural aggregates.

  16. Circular Dichroism Investigation of Dess-Martin Periodinane Oxidation in the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Reed, Nicole A.; Rapp, Robert D.; Hamann, Christian S.; Artz, Pamela G.

    2005-01-01

    Dess-Martin periodinane oxidation is an experiment that provides an avenue to the introduction of Circular Dichroism (CD) spectroscopy in organic chemistry curriculum as a diagnostic tool for examination of the results of a familiar reaction, and absolute configuration. From the experiment, students increased their understanding of CD theory and…

  17. EFFECT OF SOLVENT AND TEMPERATURE ON SECONDARY AND TERTIARY STRUCTURE OF ZEIN BY CIRCULAR DICHROISM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circular dichroism studies were performed on various samples of commercial zein to determine how the secondary and tertiary structure changes with different solvents, temperatures or pH. It was found that alcoholic solvent type and common denaturants, such as SDS and low amounts of urea, had little...

  18. Enantioselective femtosecond laser photoionization spectrometry of limonene using photoelectron circular dichroism.

    PubMed

    Rafiee Fanood, Mohammad M; Janssen, Maurice H M; Powis, Ivan

    2015-04-14

    Limonene is ionized by circularly polarized 420 nm femtosecond laser pulses. Ion mass and photoelectron energy spectra identify the dominant (2 + 1) multiphoton ionization mechanism, aided by TDDFT calculations of the Rydberg excitations. Photoelectron circular dichroism measurements on pure enantiomers reveal a chiral asymmetry of ±4 %. PMID:25744283

  19. Magnetic Circular Dichroism Studies XXV. A Preliminary Investigation of Microsomal Cytochromes*

    PubMed Central

    Dolinger, Peter M.; Kielczewski, Michael; Trudell, James R.; Barth, Günter; Linder, Robert E.; Bunnenberg, Edward; Djerassi, Carl

    1974-01-01

    The application of magnetic circular dichroism as an optical probe for simultaneous identification and determination of at least two microsomal cytochromes is demonstrated. The assignments of the bands in the spectra of microsomal suspensions are made from the spectra of soluble preparations of cytochrome P-450 obtained from Pseudomonas putida and of cytochrome b5 obtained from rat livers. PMID:4521811

  20. Static and dynamic infrared linear dichroic study of a polyester/polyurethane copolymer using step-scan FT-IR and a photoelastic modulator

    SciTech Connect

    Wang, H.; Palmer, R.A.; Graff, D.K.; Schoonover, J.R.

    1999-06-01

    Dynamic infrared linear dichroism (DIRLD) measurements of films of a thermo-plastic polyester/polyurethane random copolymer (Estane 5703, B. F. Goodrich) are reported. Step-scan Fourier transform infrared (FT-IR) is used for dynamic measurements, and a photoelastic modulator (PEM) is used to create broadband polarization modulation as the carrier frequency for the strain modulation. A novel modulation/demodulation strategy has been employed that simplifies the triple-modulation experiment into a double-modulation experiment; the theory is thoroughly discussed. Both static and dynamic dichroic absorption difference spectra have been measured on the prestretched polymer film. The results are of high signal-to-noise ratio (SNR) and clearly indicate the static and dynamic orientation of the transition dipole moments due to the tensile deformation. The dynamic orientation responses are primarily in phase with the perturbation. The orientation magnitudes of the infrared absorption bands are quantified and compared, and the orientations of the hard and soft domains are differentiated. To assist in the interpretation of the dynamically measured data, we also describe a static linear dichroic measurement using a wire-grid polarizer and FT-IR in the rapid-scan mode for a sample incrementally drawn until the point of breaking. The orientation functions of selected bands have been calculated, and the static results agree with the dynamic data, indicating the dependency of the dynamic orientation response on the preorientation state. {copyright} {ital 1999} {ital Society for Applied Spectroscopy}

  1. B850 pigment-protein complex of Rhodopseudomonas sphaeroides: Extinction coefficients, circular dichroism, and the reversible binding of bacteriochlorophyll

    PubMed Central

    Clayton, Roderick K.; Clayton, Betty J.

    1981-01-01

    Chromatophores of Rhodopseudomonas sphaeroides yield the antenna complex B850 in either of two states, depending on the method of isolation. Methods using dodecyl (= lauryl) dimethylamine oxide yield B850 with an absorption spectrum like that in vivo: the bands at 800 and 850 nm, due to the bacteriochlorophyll (Bchl) components Bchl-800 and Bchl-850, are in ratio A800/A850 = 0.65 ± 0.05. When B850 is isolated by methods using dodecyl sulfate, the Bchl-800 is attenuated or absent. Bchl assays of these materials and of the isolated antenna complex B875 yielded the following extinction coefficients, ±SD, on the basis of the molarity of Bchl: For B875, ε875 = 126 ± 8 mM-1 cm-1. For B850 in the normal (high-Bchl-800) state, ε850 = 132 ± 10 mM-1 cm-1. For the individual components of Bchl in B850, ε850 of Bchl-850 = 184 ± 13 mM-1 cm-1 and ε800 of Bchl-800 = 213 ± 28 mM-1 cm-1. With these coefficients the molecular ratio of Bchl-850 to Bchl-800 equals 1.8 ± 0.4 for B850 in the high-Bchl-800 state. Starting with B850 depleted of Bchl-800, the addition of dodecyldimethylamine oxide restored the 800-nm absorption band. The 850-nm band became shifted toward the blue, narrowed, and slightly attenuated, and its associated circular dichroism became 20% more intense. Free Bchl added with dodecyldimethylamine oxide accelerated the restoration of Bchl-800 and retarded the attenuation of Bchl-850. We conclude that free Bchl can interact reversibly with a binding site for Bchl-800 in the B850 complex, with dodecyl sulfate favoring dissociation and dodecyldimethylamine oxide promoting association. Thus the reversible dissociation of a native chlorophyll-protein complex has now been demonstrated. PMID:16593090

  2. Element-resolved orbital polarization in (III,Mn)As ferromagnetic semiconductors from K -edge x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Wadley, P.; Freeman, A. A.; Edmonds, K. W.; van der Laan, G.; Chauhan, J. S.; Campion, R. P.; Rushforth, A. W.; Gallagher, B. L.; Foxon, C. T.; Wilhelm, F.; Smekhova, A. G.; Rogalev, A.

    2010-06-01

    Using x-ray magnetic circular dichroism (XMCD), we determine the element-specific character and polarization of unoccupied states near the Fermi level in (Ga,Mn)As and (In,Ga,Mn)As thin films. The XMCD at the AsK absorption edge consists of a single peak located on the low-energy side of the edge, which increases with the concentration of ferromagnetic Mn moments. The XMCD at the MnK edge is more detailed and is strongly concentration dependent, which is interpreted as a signature of hole localization for low Mn doping. The results indicate a markedly different character of the polarized holes in low-doped insulating and high-doped metallic films, with a transfer of the hole orbital magnetic moment from Mn to As sites on crossing the metal-insulator transition.

  3. Room-Temperature Ferromagnetism of Cu-Doped ZnO Films Probed by Soft X-Ray Magnetic Circular Dichroism

    SciTech Connect

    Herng, T.S.; Ku, W.; Qi, D.-C.; Berlijn, T.; Yi, J.B.; Yang, K.S.; Dai, Y.; Feng, Y.P.; Santoso, I.; Sanchez-Hanke, C.; Gao, X.Y.; Wee, A.T.S.; Ding, J.; Rusydi, A.

    2010-11-08

    We report direct evidence of room-temperature ferromagnetic ordering in O-deficient ZnO:Cu films by using soft x-ray magnetic circular dichroism and x-ray absorption. Our measurements have revealed unambiguously two distinct features of Cu atoms associated with (i) magnetically ordered Cu ions present only in the oxygen-deficient samples and (ii) magnetically disordered regular Cu{sup 2+} ions present in all the samples. We find that a sufficient amount of both oxygen vacancies (V{sub O}) and Cu impurities is essential to the observed ferromagnetism, and a non-negligible portion of Cu impurities is uninvolved in the magnetic order. Based on first-principles calculations, we propose a microscopic 'indirect double-exchange' model, in which alignments of localized large moments of Cu in the vicinity of the V{sub O} are mediated by the large-sized vacancy orbitals.

  4. Relation between electronic structure and magnetic anisotropy in amorphous TbCo films probed by x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Ueno, T.; Inami, N.; Sagayama, R.; Wen, Z.; Hayashi, M.; Mitani, S.; Kumai, R.; Ono, K.

    2016-05-01

    Magnetic anisotropy of amorphous TbCo films was investigated by x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD) and synchrotron radiation x-ray diffraction (XRD). The easy magnetization axis was out-of-plane and in-plane for the as-deposited and annealed films, respectively. Remarkable features observed with regard to annealing were a peak-energy shift and increased asymmetry in the Co L 2,3 XMCD spectra and variations of the fine structures in the Tb M 4,5 XMCD spectra. A quantitative analysis of the XMCD results revealed that the Co 3d spin magnetic moment decreased and the orbital magnetic moment increased with annealing. On the other hand, both Tb 4f spin and orbital magnetic moments decreased with annealing. In contrast to the clear change in XAS and XMCD by annealing, no significant change in the amorphous structure was detected by XRD.

  5. Overcoming the existent computational challenges in the ab initio calculations of the two-photon circular dichroism spectra of large molecules using a fragment-recombination approach

    NASA Astrophysics Data System (ADS)

    Diaz, Carlos; Echevarria, Lorenzo; Hernández, Florencio E.

    2013-05-01

    Herein we report on the development of a fragment-recombination approach (FRA) that allows overcoming the computational limitations found in the ab initio calculation of the two-photon circular dichroism (TPCD) spectra of large optically active molecules. Through the comparative analysis of the corresponding theoretical TPCD spectra of the fragments and that of the entire molecule, we prove that TPCD is an additive property. We also demonstrate that the same property apply to two-photon absorption (TPA). TPCD-FRA is expected to find great applications in the structural-analysis of large catalysts and polypeptides due to its reduced computational complexity, cost and time, and to reveal fingerprints in the obscure spectral region between the near and far UV.

  6. Soft x-ray magnetic circular dichroism study of valence and spin states in FeT2O4 (T = V, Cr) spinel oxides

    NASA Astrophysics Data System (ADS)

    Kang, J.-S.; Hwang, Jihoon; Kim, D. H.; Lee, Eunsook; Kim, W. C.; Kim, C. S.; Lee, Han-Koo; Kim, J.-Y.; Han, S. W.; Hong, S. C.; Kim, Bongjae; Min, B. I.

    2013-05-01

    Electronic structures of spinel oxides FeT2O4 (T = V, Cr) have been investigated by employing soft x-ray magnetic circular dichroism (XMCD) and soft x-ray absorption spectroscopy (XAS). XAS reveals that Cr and V ions are trivalent, and that Fe ions are nearly divalent in FeT2O4 (T = V, Cr). Finite XMCD signals are observed in FeV2O4 at T = 80 K, while they are very weak in FeCr2O4. XMCD shows that Fe spins are antiparallel to V and Cr spins, with the V and Cr spins being canted from Fe spins, which suggests a Yafet-Kittel type triangular spin configuration in FeT2O4 (T = V, Cr).

  7. Direct observation of high-spin states in manganese dimer and trimer cations by x-ray magnetic circular dichroism spectroscopy in an ion trap

    SciTech Connect

    Zamudio-Bayer, V.; Hirsch, K.; Langenberg, A.; Kossick, M.; Ławicki, A.; Lau, J. T.; Terasaki, A.; Issendorff, B. von

    2015-06-21

    The electronic structure and magnetic moments of free Mn{sub 2}{sup +} and Mn{sub 3}{sup +} are characterized by 2p x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap that is coupled to a synchrotron radiation beamline. Our results directly show that localized magnetic moments of 5 μ{sub B} are created by 3d{sup 5}({sup 6}S) states at each ionic core, which are coupled ferromagnetically to form molecular high-spin states via indirect exchange that is mediated in both cases by a delocalized valence electron in a singly occupied 4s derived antibonding molecular orbital with an unpaired spin. This leads to total magnetic moments of 11 μ{sub B} for Mn{sub 2}{sup +} and 16 μ{sub B} for Mn{sub 3}{sup +}, with no contribution of orbital angular momentum.

  8. Optical Absorption in Liquid Semiconductors

    NASA Astrophysics Data System (ADS)

    Bell, Florian Gene

    An infrared absorption cell has been developed which is suitable for high temperature liquids which have absorptions in the range .1-10('3) cm('-1). The cell is constructed by clamping a gasket between two flat optical windows. This unique design allows the use of any optical windows chemically compatible with the liquid. The long -wavelength limit of the measurements is therefore limited only by the choice of the optical windows. The thickness of the cell can easily be set during assembly, and can be varied from 50 (mu)m to .5 cm. Measurements of the optical absorption edge were performed on the liquid alloy Se(,1-x)Tl(,x) for x = 0, .001, .002, .003, .005, .007, and .009, from the melting point up to 475(DEGREES)C. The absorption was found to be exponential in the photon energy over the experimental range from 0.3 eV to 1.2 eV. The absorption increased linearly with concentration according to the empirical relation (alpha)(,T)(h(nu)) = (alpha)(,1) + (alpha)(,2)x, and the absorption (alpha)(,1) was interpreted as the absorption in the absence of T1. (alpha)(,1) also agreed with the measured absorption in 100% Se at corresponding temperatures and energies. The excess absorption defined by (DELTA)(alpha) = (alpha)(,T)(h(nu))-(alpha)(,1) was interpreted as the absorption associated with Tl and was found to be thermally activated with an activation energy E(,t) = 0.5 eV. The exponential edge is explained as absorption on atoms immersed in strong electric fields surrounding ions. The strong fields give rise to an absorption tail similar to the Franz-Keldysh effect. A simple calculation is performed which is based on the Dow-Redfield theory of absorption in an electric field with excitonic effects included. The excess absorption at low photon energies is proportional to the square of the concentration of ions, which are proposed to exist in the liquid according to the relation C(,i) (PROPORTIONAL) x(' 1/2)(.)e('-E)t('/kT), which is the origin of the thermal activation

  9. Electronic circular dichroism of highly conjugated π-systems: breakdown of the Tamm-Dancoff/configuration interaction singles approximation.

    PubMed

    Bannwarth, Christoph; Grimme, Stefan

    2015-04-16

    We show that the electronic circular dichroism (ECD) of delocalized π-systems represents a worst-case scenario for Tamm-Dancoff approximated (TDA) linear response methods. We mainly consider density functional theory (TDA-DFT) variants together with range-separated hybrids, but the conclusions also apply for other functionals as well as the configuration interaction singles (CIS) approaches. We study the effect of the TDA for the computation of ECD spectra in some prototypical extended π-systems. The C76 fullerene, a chiral carbon nanotube fragment, and [11]helicene serve as model systems for inherently chiral, π-chromophores. Solving the full linear response problem is inevitable in order to obtain accurate ECD spectra for these systems. For the C76 fullerene and the nanotube fragment, TDA and CIS approximated methods yield spectra in the origin-independent velocity gauge formalism of incorrect sign which would lead to the assignment of the opposite (wrong) absolute configuration. As a counterexample, we study the ECD of an α-helix polypeptide chain. Here, the lowest-energy transitions are dominated by localized excitations within the individual peptide units, and TDA methods perform satisfactorily. The results may have far-reaching implications for simple semiempirical methods which often employ TDA and CIS for huge molecules. Our recently presented simplified time-dependent DFT approach proves to be an excellent low-cost linear response method which together with range-separated density functionals like ωB97X-D3 produces ECD spectra in very good agreement with experiment. PMID:25798823

  10. Design and construction of a compact end-station at NSRRC for circular-dichroism spectra in the vacuum-ultraviolet region.

    PubMed

    Liu, Szu Heng; Lin, Yi Hung; Huang, Liang Jen; Luo, Shiang Wen; Tsai, Wan Lin; Chiang, Su Yu; Fung, Hok Sum

    2010-11-01

    A synchrotron-radiation-based circular-dichroism end-station has been implemented at beamline BL04B at the National Synchrotron Radiation Research Center (NSRRC) in Taiwan for biological research. The design and performance of this compact end-station for measuring circular-dichroism spectra in the vacuum-ultraviolet region are described. The linearly polarized light from the beamline is converted to modulated circularly polarized light with a LiF photoelastic modulator to provide a usable wavelength region of 130-330 nm. The light spot at the sample position is 5 mm × 5 mm at a slit width of 300 µm and provides a flux greater than 1 × 10(11) photons s(-1) (0.1% bandwidth)(-1). A vacuum-compatible cell made of two CaF(2) windows has a variable path length from 1.3 µm to 1 mm and a temperature range of 253-363 K. Measured CD spectra of (1S)-(+)-10-camphorsulfonic acid and proteins demonstrated the ability of this system to extend the wavelength down to 172 nm in aqueous solution and 153 nm in hexafluoro-2-propanol. PMID:20975221

  11. Circular dichroism of Eu/sup 3 +/ and Nd/sup 3 +/ in a K/sub 3/Nd/sub 2/(NO/sub 3/)/sub 9/ single crystal

    SciTech Connect

    Chatterjee, P.K.; Chowdhury, M.

    1982-06-01

    The low-resolution circular dichroism in (CD) and absorption spectra of doped Nd/sup 3 +/ crystals primarily with a view to verify the expectations regarding low-resolution lanthanide optical activity is presented. In order to compare the CD of the Nd/sup 3 +/ transition, which are commonly considered as electric-dipole allowed, with that of primarily magnetic-dipole-allowed Eu/sup 3 +/ transitions having an identical environment, we have grown and studied a single crystal of K/sub 3/Nd/sub 2/(NO/sub 3/)/sub 9/ with Eu/sup 3 +/ as dopant.

  12. Linear Collisions

    ERIC Educational Resources Information Center

    Walkiewicz, T. A.; Newby, N. D., Jr.

    1972-01-01

    A discussion of linear collisions between two or three objects is related to a junior-level course in analytical mechanics. The theoretical discussion uses a geometrical approach that treats elastic and inelastic collisions from a unified point of view. Experiments with a linear air track are described. (Author/TS)

  13. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  14. Birefringence and anisotropic optical absorption in porous silicon

    SciTech Connect

    Efimova, A. I. Krutkova, E. Yu.; Golovan', L. A.; Fomenko, M. A.; Kashkarov, P. K.; Timoshenko, V. Yu.

    2007-10-15

    The refractive indices and the coefficients of optical absorption by free charge carriers and local vibrations in porous silicon (por-Si) films, comprising nanometer-sized silicon residues (nanocrystals) separated by nanometer-sized pores (nanopores) formed in the course of electrochemical etching of the initial single crystal silicon, have been studied by polarization-resolved IR absorption spectroscopy techniques. It is shown that the birefringence observed in por-Si is related to the anisotropic shapes of nanocrystals and nanopores, while the anisotropy (dichroism) of absorption by the local vibrational modes is determined predominantly by the microrelief of the surface of nanocrystals. It is demonstrated that silicon-hydrogen surface bonds in nanocrystals can be restored by means of selective hydrogen thermodesorption with the formation of a considerable number of H-terminated surface Si-Si dimers.

  15. Novel approach for non-invasive glucose sensing using vibrational contrast CD absorption measurements (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vladislav V.; Tovar, Carlos; Hokr, Brett; Petrov, Georgi I.

    2016-03-01

    Noninvasive glucose sensing is a Holy Grail of diabetes mellitus management. Unfortunately, despite a number of innovative concepts and a long history of continuous instrumental improvements, the problem remains largely unsolved. Here we propose and experimentally demonstrate the first successful implementation of a novel strategy based on vibrational overtone circular dichroism absorption measurements. Such an approach uses a short-wavelength infrared excitation (1000-2000 nm), which takes the advantage of lower light scattering and intrinsic chemical contrast provided by the chemical structure of D-glucose molecule. We model the propagation of circular polarized light in scattering medium using Monte Carlo simulations to show the feasibility of such approach in turbid medium and demonstrate the proof of principle using optical detection. We also investigate the possibility of using ultrasound detection through circular dichroism absorption measurements to achieve simple and sensitive glucose monitoring.

  16. First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands

    PubMed Central

    Dolamic, Igor; Knoppe, Stefan; Dass, Amala; Bürgi, Thomas

    2012-01-01

    Bestowing chirality to metals is central in fields such as heterogeneous catalysis and modern optics. Although the bulk phase of metals is symmetric, their surfaces can become chiral through adsorption of molecules. Interestingly, even achiral molecules can lead to locally chiral, though globally racemic, surfaces. A similar situation can be obtained for metal particles or clusters. Here we report the first separation of the enantiomers of a gold cluster protected by achiral thiolates, Au38(SCH2CH2Ph)24, achieved by chiral high-performance liquid chromatography. The chirality of the nanocluster arises from the chiral arrangement of the thiolates on its surface, forming 'staple motifs'. The enantiomers show mirror-image circular dichroism responses and large anisotropy factors of up to 4×10−3. Comparison with reported circular dichroism spectra of other Au38 clusters reveals that the influence of the ligand on the chiroptical properties is minor. PMID:22531183

  17. Circular dichroism in a three-dimensional semiconductor chiral photonic crystal

    SciTech Connect

    Takahashi, S.; Ota, Y.; Tatebayashi, J.; Tajiri, T.; Iwamoto, S.; Arakawa, Y.

    2014-08-04

    Circular dichroism covering the telecommunication band is experimentally demonstrated in a semiconductor-based three-dimensional chiral photonic crystal (PhC). We design a rotationally stacked woodpile PhC structure where neighboring layers are rotated by 60° and three layers construct a single helical unit. The mirror-asymmetric PhC made from GaAs with sub-micron periodicity is fabricated by a micro-manipulation technique. Due to the large contrast of refractive indices between GaAs and air, the experimentally obtained circular dichroism extends over a wide wavelength range, with the transmittance of right-handed circularly polarized incident light being 85% and that of left-handed light being 15% at a wavelength of 1.3 μm. The obtained results show good agreement with numerical simulations.

  18. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  19. Fourier Transform Vibrational Circular Dichroism Of Carbonyl Stretching Modes In N-urethanyl-a-amino acids

    NASA Astrophysics Data System (ADS)

    Chernovitz, Anita C.; Freedman, Teresa B.; Nafie, Laurence A.

    1985-12-01

    The vibrational circular dichroism (VCD) spectra of the N-t-BOC and N-CBZ-derivatives of alanine, proline, phenylalanine and valine in 0.2M CHC13 solutions all exhibit a characteristic, strong bisignate couplet in the carbonyl stretching region. The VCD couplet is interpreted in terms of the coupled oscillation of the urethane and acid carbonyl groups in an intramolecularly hydrogen-bonded structure.

  20. MICROFLUIDIC MIXERS FOR THE INVESTIGATION OF PROTEIN FOLDING USING SYNCHROTRON RADIATION CIRCULAR DICHROISM SPECTROSCOPY

    SciTech Connect

    Kane, A; Hertzog, D; Baumgartel, P; Lengefeld, J; Horsley, D; Schuler, B; Bakajin, O

    2006-03-20

    The purpose of this study is to design, fabricate and optimize microfluidic mixers to investigate the kinetics of protein secondary structure formation with Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The mixers are designed to rapidly initiate protein folding reaction through the dilution of denaturant. The devices are fabricated out of fused silica, so that they are transparent in the UV. We present characterization of mixing in the fabricated devices, as well as the initial SRCD data on proteins inside the mixers.

  1. Magnetic dichroism in angle-resolved hard x-ray photoemission from buried layers

    NASA Astrophysics Data System (ADS)

    Kozina, Xeniya; Fecher, Gerhard H.; Stryganyuk, Gregory; Ouardi, Siham; Balke, Benjamin; Felser, Claudia; Schönhense, Gerd; Ikenaga, Eiji; Sugiyama, Takeharu; Kawamura, Naomi; Suzuki, Motohiro; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Sukegawa, Hiroaki; Wang, Wenhong; Inomata, Koichiro; Kobayashi, Keisuke

    2011-08-01

    This work reports the measurement of magnetic dichroism in angular-resolved photoemission from in-plane magnetized buried thin films. The high bulk sensitivity of hard x-ray photoelectron spectroscopy (HAXPES) in combination with circularly polarized radiation enables the investigation of the magnetic properties of buried layers. HAXPES experiments with an excitation energy of 8 keV were performed on exchange-biased magnetic layers covered by thin oxide films. Two types of structures were investigated with the IrMn exchange-biasing layer either above or below the ferromagnetic layer: one with a CoFe layer on top and another with a Co2FeAl layer buried beneath the IrMn layer. A pronounced magnetic dichroism is found in the Co and Fe 2p states of both materials. The localization of the magnetic moments at the Fe site conditioning the peculiar characteristics of the Co2FeAl Heusler compound, predicted to be a half-metallic ferromagnet, is revealed from the magnetic dichroism detected in the Fe 2p states.

  2. Circular Dichroism of DNA G-Quadruplexes: Combining Modeling and Spectroscopy To Unravel Complex Structures.

    PubMed

    Gattuso, Hugo; Spinello, Angelo; Terenzi, Alessio; Assfeld, Xavier; Barone, Giampaolo; Monari, Antonio

    2016-03-31

    We report on the comparison between the computational and experimental determination of electronic circular dichroism spectra of different guanine quadruplexes obtained from human telomeric sequences. In particular the difference between parallel, antiparallel, and hybrid structures is evidenced, as well as the induction of transitions between the polymorphs depending on the solution environment. Extensive molecular dynamics simulations (MD) are used to probe the conformational space of the different quadruplexes, and subsequently state-of-the-art hybrid quantum mechanics/molecular mechanics (QM/MM) techniques coupled with excitonic semiempirical Hamiltonian are used to simulate the macromolecular induced circular dichroism. The coupling of spectroscopy and molecular simulation allows an efficient one-to-one mapping between structures and optical properties, offering a way to disentangle the rich, yet complicated, quantity of information embedded in circular dichroism spectra. We show that our methodology is robust and efficient and allows us to take into account subtle conformational changes. As such, it could be used as an efficient tool to investigate structural modification upon DNA/drug interactions. PMID:26943487

  3. A broadband silicon quarter-wave retarder for far-infrared spectroscopic circular dichroism

    NASA Astrophysics Data System (ADS)

    Xi, Xiaoxiang; Smith, R. J.; Stanislavchuk, T. N.; Sirenko, A. A.; Gilbert, S. N.; Tu, J. J.; Carr, G. L.

    2014-11-01

    The high brightness, broad spectral coverage and pulsed characteristics of infrared synchrotron radiation enable time-resolved spectroscopy under throughput-limited optical systems, as can occur with the high-field magnet cryostat systems used to study electron dynamics and cyclotron resonance by far-infrared techniques. A natural extension for magnetospectroscopy is to sense circular dichroism, i.e. the difference in a material's optical response for left and right circularly polarized light. A key component for spectroscopic circular dichroism is an achromatic 1 4 wave retarder functioning over the spectral range of interest. We report here the development of an in-line retarder using total internal reflection in high-resistivity silicon. We demonstrate its performance by distinguishing electronic excitations of differing handedness for GaAs in a magnetic field. This 1 4 wave retarder is expected to be useful for far-infrared spectroscopy of circular dichroism in many materials.

  4. Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy - An Enhanced Method for Examining Protein Conformations and Protein Interactions

    SciTech Connect

    B Wallace; R Janes

    2011-12-31

    CD (circular dichroism) spectroscopy is a well-established technique in structural biology. SRCD (synchrotron radiation circular dichroism) spectroscopy extends the utility and applications of conventional CD spectroscopy (using laboratory-based instruments) because the high flux of a synchrotron enables collection of data at lower wavelengths (resulting in higher information content), detection of spectra with higher signal-to-noise levels and measurements in the presence of absorbing components (buffers, salts, lipids and detergents). SRCD spectroscopy can provide important static and dynamic structural information on proteins in solution, including secondary structures of intact proteins and their domains, protein stability, the differences between wild-type and mutant proteins, the identification of natively disordered regions in proteins, and the dynamic processes of protein folding and membrane insertion and the kinetics of enzyme reactions. It has also been used to effectively study protein interactions, including protein-protein complex formation involving either induced-fit or rigid-body mechanisms, and protein-lipid complexes. A new web-based bioinformatics resource, the Protein Circular Dichroism Data Bank (PCDDB), has been created which enables archiving, access and analyses of CD and SRCD spectra and supporting metadata, now making this information publicly available. To summarize, the developing method of SRCD spectroscopy has the potential for playing an important role in new types of studies of protein conformations and their complexes.

  5. Molecular organization of the antifungal and anticancer drug 2-(2,4-dihydroxyphenylo)-5,6-dichlorobenzothiazole (dHBBT) in solution and in lipid membranes studied by means of electronic absorption spectroscopy.

    PubMed

    Gagoś, Mariusz; Niewiadomy, Andrzej; Gruszecki, Wiesław I

    2004-10-25

    2-(2,4-Dihydroxyphenylo)-5,6-dichlorobenzthiazole (dHBBT) is a new drug from the group of chemical compounds characterized by documented antifungal, antibacterial, cytostatic as well as antitumour activity. Despite general knowledge regarding pharmacological importance of dHBBT its interaction to biomembranes has not been investigated. In this work, we present the electronic absorption spectroscopic study on molecular organization of dHBBT in organic solvents and on its localization and molecular organization within model lipid membranes formed with dipalmitoylphosphatidylcholine (DPPC). The spectroscopic measurements are interpreted within the framework of the exciton splitting theory. It is concluded that complex absorption spectrum of dHBBT both in the organic solvents and incorporated to DPPC represents superposition of two spectral forms: representing monomers and hypsochromically shifted spectrum representing molecular dimers. Analysis of the temperature dependencies of the absorption spectra of dHBBT incorporated to DPPC liposomes suggests localization of the drug in the polar head-group region of the membrane or in the region of the polar-nonpolar interface. Linear dichroism measurements of dHBBT incorporated to DPPC multibilayers reveal roughly vertical orientation of the drug molecules with respect to the plane of the membrane. A model is presented of molecular organization of dHBBT in lipid membranes. Potential effects of dHBBT on membrane physical properties is briefly discussed. PMID:15488713

  6. Magnetic circular dichroism spectroscopic characterization of the NOS-like protein from Geobacillus stearothermophilus (gsNOS).

    PubMed

    Kinloch, Ryan D; Sono, Masanori; Sudhamsu, Jawahar; Crane, Brian R; Dawson, John H

    2010-03-01

    Nitric oxide synthase (NOS) catalyzes the NADPH- and O(2)-dependent oxidation of l-arginine (l-Arg) to nitric oxide (NO) and citrulline via an N(G)-hydroxy-l-arginine (NHA) intermediate. Mammalian NOSs have been studied quite extensively; other eukaryotes and some prokaryotes appear to express NOS-like proteins comparable to the oxygenase domain of mammalian NOSs. In this study, a recombinant NOS-like protein from the thermostable bacterium Geobacillus stearothermophilus (gsNOS) has been characterized using magnetic circular dichroism (MCD) and UV-Vis absorption spectroscopic techniques. Spectral comparisons of ligand complexes (with O(2), NO and CO) of substrate-bound (l-Arg or NHA) gsNOS, including the key oxyferrous complex studied at -50 degrees C in cryogenic mixed solvents, with analogous mammalian NOS complexes indicate overall spectroscopic similarities between gsNOS and mammalian NOSs. However, more detailed spectral comparisons reflect subtle structural differences between gsNOS and mammalian NOSs. This may be due to an incomplete tetrahydrobiopterin (BH(4))-binding site and low BH(4)-binding affinity, which may become even lower in the presence of cryosolvent in gsNOS. Although BH(4)-binding may be altered, gsNOS appears to require the pterin for NO production since formation of the stable ferric-NO product complex was only observed when excess BH(4) (>150muM) over gsNOS was present upon single turnover reaction in which O(2) was bubbled into dithionite-reduced NHA-bound protein solution at -35 degrees C or -50 degrees C. PMID:20110129

  7. Naturally crystalline hemoglobin of the nematode Mermis nigrescens. An in situ microspectrophotometric study of chemical properties and dichroism.

    PubMed Central

    Burr, A H; Harosi, F I

    1985-01-01

    A dichroic microspectrophotometer was used to measure isotropic and dichroic absorbance spectra of this unique cytoplasmic hemoglobin and its derivatives. A perfusion slide enabled changing the media bathing the Mermis head. The native spectrum, which has an exceptionally low alpha-band extinction, was shown to be entirely due to oxyhemoglobin. The CO-hemoglobin spectrum is more typical, however, the alpha- and beta-bands are unusually closely spaced. A ferric hemochrome was formed on oxidation with ferricyanide or hydroxylamine and was readily converted to ferric hemoglobin cyanide on adding cyanide. Aquoferric hemoglobin and ferric hemoglobin fluoride were not easily formed. Deoxyhemoglobin, identified by its typical absorption spectrum, was formed only under the extremely low O2 pressures attainable in the presence of dithionite. A glucose oxidase, catalase solution deoxygenated hemoglobin in human erythrocytes but not in adjacent Mermis preparations. The affinity for O2 is much greater than for CO. Also, spectral evidence points to an oxyheme environment that is different than in vertebrate hemoglobin and myoglobin. The polarization ratio (PR) magnitude and the PR spectrum were unaffected by perfusion with high refractive index solvents; therefore, form dichroism due to the rodlike crystals is negligible. Maximum extinction is approximately perpendicular to the long axis of the microscopic crystals, which are oriented parallel to the body axis within the hypodermal cells. The PR spectra of the hemoglobin derivatives strongly resemble the corresponding spectra previously reported of single crystals made of horse hemoglobin, whale myoglobin, or Aplysia myoglobin and change appropriately when the ligand is changed. This confirms that the intracellular crystals of Mermis are of oxyhemoglobin. PMID:3986282

  8. Zeeman Splitting of Ferromagnetic GaMnAs on InP Observed by Magnetic Circular Dichroism in Reflection Mode

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Bsatee, M.; Jadwisienczak, W. M.

    2016-08-01

    Systematic investigations of Ga1- x Mn x As grown on InP with different Mn concentrations have been conducted using magnetic circular dichroism (MCD) in reflection mode. The MCD spectrum of Ga0.97Mn0.03As/InP was decomposed into two dispersion curves originating from E 1 and E 1 + Δ1 optical transitions using the energy derivative of a Gaussian function. The Zeeman splitting energy E 1 at the L critical point (0.6 meV) of ferromagnetic Ga0.97Mn0.03As/InP was estimated using a rigid band shift model. Based on the relationship between E 1 and E 0 (Γ critical point) observed in Cd1- x Mn x Te dilute magnetic semiconductor (DMS), the Zeeman splitting energy E 1 (9.6 meV) of ferromagnetic Ga1- x Mn x As/InP was calculated. In addition, it was established that the peaks in the MCD spectra at L critical points shift toward the lower energy side as the Mn concentration is increased, and the observed shift saturates for Mn content of x = 0.001. Furthermore, the measured absorption spectra for Ga1- x Mn x As/InP did not show noticeable peak shifts with increasing Mn content. This suggests that the s, p- d exchange interaction induced in Ga1- x Mn x As/InP has localized nature due to the presence of a Mn rigid sphere of influence.

  9. Determination of bromhexine in cough-cold syrups by absorption spectrophotometry and multivariate calibration using partial least-squares and hybrid linear analyses. Application of a novel method of wavelength selection.

    PubMed

    Goicoechea, H C; Olivieri, A C

    1999-07-12

    The mucolitic bromhexine [N-(2-amino-3,5-dibromobenzyl)-N-methylcyclohexylamine] has been determined in cough suppressant syrups by multivariate spectrophotometric calibration, together with partial least-squares (PLS-1) and hybrid linear analysis (HLA). Notwithstanding the spectral overlapping between bromhexine and syrup excipients, as well as the intrinsic variability of the latter in unknown samples, the recoveries are excellent. A novel method of wavelength selection was also applied, based on the concept of net analyte signal regression, as adapted to the HLA methodology. This method allows one to improve the performance of both PLS-1 and HLA in samples containing nonmodeled interferences. PMID:18967655

  10. Characterization of intermolecular structure of β(2)-microglobulin core fragments in amyloid fibrils by vacuum-ultraviolet circular dichroism spectroscopy and circular dichroism theory.

    PubMed

    Matsuo, Koichi; Hiramatsu, Hirotsugu; Gekko, Kunihiko; Namatame, Hirofumi; Taniguchi, Masaki; Woody, Robert W

    2014-03-20

    Intermolecular structures are important factors for understanding the conformational properties of amyloid fibrils. In this study, vacuum-ultraviolet circular dichroism (VUVCD) spectroscopy and circular dichroism (CD) theory were used for characterizing the intermolecular structures of β2-microglobulin (β2m) core fragments in the amyloid fibrils. The VUVCD spectra of β2m20-41, β2m21-31, and β2m21-29 fragments in the amyloid fibrils exhibited characteristic features, but they were affected not only by the backbone conformations but also by the aromatic side-chain conformations. To estimate the contributions of aromatic side-chains to the spectra, the theoretical spectra were calculated from the simulated structures of β2m21-29 amyloid fibrils with various types of β-sheet stacking (parallel or antiparallel) using CD theory. We found that the experimental spectrum of β2m21-29 fibrils is largely affected by aromatic-backbone couplings, which are induced by the interaction between transitions within the aromatic and backbone chromophores, and these couplings are sensitive to the type of stacking among the β-sheets of the fibrils. Further theoretical analyses of simulated structures incorporating mutated aromatic residues suggested that the β2m21-29 fibrils are composed of amyloid accumulations in which the parallel β-sheets stack in an antiparallel manner and that the characteristic Phe-Tyr interactions among the β-sheet stacks affect the aromatic-backbone coupling. These findings indicate that the coupling components, which depend on the characteristic intermolecular structures, induce the spectral differences among three fragments in the amyloid fibrils. These advanced spectral analyses using CD theory provide a useful method for characterizing the intermolecular structures of protein and peptide fragment complexes. PMID:24512563

  11. Detailed assignment of the magnetic circular dichroism and UV-vis spectra of five-coordinate high-spin ferric [Fe(TPP)(Cl)].

    PubMed

    Paulat, Florian; Lehnert, Nicolai

    2008-06-01

    High-spin (hs) ferric heme centers occur in the catalytic or redox cycles of many metalloproteins and exhibit very complicated magnetic circular dichroism (MCD) and UV-vis absorption spectra. Therefore, detailed assignments of the MCD spectra of these species are missing. In this study, the electronic spectra (MCD and UV-vis) of the five-coordinate hs ferric model complex [Fe(TPP)(Cl)] are analyzed and assigned for the first time. A correlated fit of the absorption and low-temperature MCD spectra of [Fe(TPP)(Cl)] lead to the identification of at least 20 different electronic transitions. The assignments of these spectra are based on the following: (a) variable temperature and variable field saturation data, (b) time-dependent density functional theory calculations, (c) MCD pseudo A-terms, and (d) correlation to resonance Raman (rRaman) data to validate the assignments. From these results, a number of puzzling questions about the electronic spectra of [Fe(TPP)(Cl)] are answered. The Soret band in [Fe(TPP)(Cl)] is split into three components because one of its components is mixed with the porphyrin A2u72-->Eg82/83 (pi-->pi*) transition. The broad, intense absorption feature at higher energy from the Soret band is due to one of the Soret components and a mixed sigma and pi chloro to iron CT transition. The high-temperature MCD data allow for the identification of the Q v band at 20 202 cm(-1), which corresponds to the C-term feature at 20 150 cm(-1). Q is not observed but can be localized by correlation to rRaman data published before. Finally, the low energy absorption band around 650 nm is assigned to two P-->Fe charge transfer transitions, one being the long sought after A1u(HOMO)-->d pi transition. PMID:18438984

  12. X-ray magnetic circular dichroism on La2/3Ca1/3Mn0.97Fe0.03O3 thin films

    NASA Astrophysics Data System (ADS)

    Figueroa, Adriana I.; Campillo, Gloria E.; Baker, Alexander A.; Osorio, Jaime A.; Arnache, Oscar L.; van der Laan, Gerrit

    2015-11-01

    The element-selective technique of X-ray magnetic circular dichroism (XMCD) has been used to study the magnetic properties of La2/3Ca1/3Mn0.97Fe0.03O3 (LCMFO) thin films. XMCD measurements below the ferromagnetic ordering temperature at the Mn and Fe L2,3 absorption edges allow the determination of the contributions and relative orientations of the Mn and Fe magnetic moments. A reduction in the Mn L2,3 XMCD signal of the LCMFO sample compared to that for the parent La2/3Ca1/3MnO3 (LCMO) system reveals important modifications in the electronic and magnetic properties with the presence of Fe. The Fe L2,3 X-ray absorption (XAS) for the LCMFO film is characteristic of Fe3+, and the comparison with multiplet calculations shows that the Fe dopants occupy octahedral sites in the crystal, which is consistent with Fe3+ substituting Mn3+ in LCMO. The magnetic moments of Mn and Fe are found to align antiparallel, which suggests the presence of Mn-O-Fe superexchange coupling. This result is consistent with macroscopic magnetometry measurements on the LCMFO system, which show a decrease in saturation magnetization of LCMO with Fe doping.

  13. Structure of epitaxial (Fe,N) codoped rutile TiO2 thin films by x-ray absorption

    SciTech Connect

    Kaspar, Tiffany C.; Ney, A.; Mangham, Andrew N.; Heald, Steve M.; Joly, Yves; Ney, V.; Wilhelm, F.; Rogalev, A.; Yakou, Flora; Chambers, Scott A.

    2012-07-23

    Homoepitaxial thin films of Fe:TiO2 and (Fe,N):TiO2 were deposited on rutile(110) by molecular beam epitaxy. X-ray absorption near edge spectroscopy (XANES) spectra were collected at the Ti L-edge, Fe L-edge, O K-edge, N K-edge, and Ti K-edge. No evidence of structural disorder associated with a high concentration of oxygen vacancies is observed. Substitution of Fe for Ti could not be confirmed, although secondary phase Fe2O3 and metallic Fe can be ruled out. The similarity of the N K-edge spectra to O, and the presence of a strong x-ray linear dichroism (XLD) signal for the N K-edge, indicates that N is substitutional for O in the rutile lattice, and is not present as a secondary phase such as TiN. Simulations of the XANES spectra qualitatively confirm substitution, although N appears to be present in more than one local environment. Neither Fe:TiO2 nor (Fe,N):TiO2 exhibit intrinsic room temperature ferromagnetism, despite the presence of mixed valence Fe(II)/Fe(III) in the reduced (Fe,N):TiO2 film.

  14. Structure of epitaxial (Fe,N) codoped rutile TiO2 thin films by x-ray absorption

    NASA Astrophysics Data System (ADS)

    Kaspar, T. C.; Ney, A.; Mangham, A. N.; Heald, S. M.; Joly, Y.; Ney, V.; Wilhelm, F.; Rogalev, A.; Yakou, F.; Chambers, S. A.

    2012-07-01

    Homoepitaxial thin films of Fe:TiO2 and (Fe,N):TiO2 were deposited on rutile(110) by molecular beam epitaxy. X-ray absorption near edge spectroscopy (XANES) spectra were collected at the Ti L-edge, Fe L-edge, Ti K-edge, O K-edge, and N K-edge. No evidence of structural disorder associated with a high concentration of oxygen vacancies is observed. Substitution of Fe for Ti could be inferred, and secondary phases such as Fe2O3, Fe3O4, and FeTiO3 can be ruled out. The similarity of the N K-edge spectra to O, and the presence of a strong x-ray linear dichroism signal for the N K-edge, indicates that N is substitutional for O in the rutile lattice and is not present as a secondary phase such as TiN. Simulations of the XANES spectra confirm substitution, although N appears to be present in more than one local environment. Neither Fe:TiO2 nor (Fe,N):TiO2 exhibit intrinsic room temperature ferromagnetism, despite the presence of mixed valent Fe(II)/Fe(III) in the reduced (Fe,N):TiO2 film.

  15. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    SciTech Connect

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M.; Powis, Ivan

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  16. Magnetic circular x-ray dichroisms of Fe-Ni alloys at K edge.

    SciTech Connect

    Freeman, A. J.; Gofron, K. J.; Kimball, C. W.; Lee, P. L.; Montano, P. A.; Rao, F.; Wang, X.

    1997-04-03

    Magnetic Circular X-ray Dichroism (MCXD) studies at K edges of Fe-Ni alloys reveal changes of the MCXD signal with composition and crystal structure. We observe that the signal at the invar composition is of comparable strength as other compositions. Moreover, the edge position is strongly dependent on lattice constant. First principles calculations demonstrate that the shape and strength of the signal strongly depends on the crystal orientation, composition, and lattice constant. We find direct relation between the MCXD signal and the p DOS. We find that the MCXD at K edge probes the magnetism due to itinerant electrons.

  17. Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells

    NASA Astrophysics Data System (ADS)

    Avitabile, Concetta; D'Andrea, Luca Domenico; Romanelli, Alessandra

    2014-03-01

    Studying how antimicrobial peptides interact with bacterial cells is pivotal to understand their mechanism of action. In this paper we explored the use of Circular Dichroism to detect the secondary structure of two antimicrobial peptides, magainin 2 and cecropin A, with E. coli bacterial cells. The results of our studies allow us to gain two important information in the context of antimicrobial peptides- bacterial cells interactions: peptides fold mainly due to interaction with LPS, which is the main component of the Gram negative bacteria outer membrane and the time required for the folding on the bacterial cells depends on the peptide analyzed.

  18. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    NASA Astrophysics Data System (ADS)

    Lehmann, C. Stefan; Ram, N. Bhargava; Powis, Ivan; Janssen, Maurice H. M.

    2013-12-01

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  19. Chiral imaging of collagen by second-harmonic generation circular dichroism

    PubMed Central

    Lee, H.; Huttunen, M. J.; Hsu, K.-J.; Partanen, M.; Zhuo, G.-Y.; Kauranen, M.; Chu, S.-W.

    2013-01-01

    We provide evidence that the chirality of collagen can give rise to strong second-harmonic generation circular dichroism (SHG-CD) responses in nonlinear microscopy. Although chirality is an intrinsic structural property of collagen, most of the previous studies ignore that property. We demonstrate chiral imaging of individual collagen fibers by using a laser scanning microscope and type-I collagen from pig ligaments. 100% contrast level of SHG-CD is achieved with sub-micrometer spatial resolution. As a new contrast mechanism for imaging chiral structures in bio-tissues, this technique provides information about collagen morphology and three-dimensional orientation of collagen molecules. PMID:23761852

  20. Metal chelates anchored to poly-l-peptides and linear d,l-α-peptides with promising nanotechnological applications

    NASA Astrophysics Data System (ADS)

    Punzi, P.; Giordano, C.; Marino, F.; Morosetti, S.; De Santis, P.; Scipioni, A.

    2012-10-01

    Regular configurationally alternating amino acid sequences generate cyclic and linear helical peptides with a local β-conformation able to self-assemble in nanowires and nanoscaffolds directed and stabilized by hydrogen bonds. The possibility of modulating the chemical profile of the various amino acid residues containing reactive side chains means that peptides could be flexible templates for creating various building blocks. A method for the design of molecules with potential spintronic properties is described. Peptides containing lysine residues, the side chains of which are bridged through the formation of metal chelates via Schiff bases, could provide stable molecular channels. When metal chelates with high electron spin states are used, their coupling could generate materials that are interesting due to their magnetic properties as well as for the patterning of nanometric lattices driven by their orientation under a magnetic field. With this aim, three alternating d- and l-lysine-containing octapeptides are synthesized and the formation of their bis(pyridoxalaldimine) copper(II) chelate derivatives is shown by absorption and circular dichroism spectroscopies.

  1. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  2. Linear Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds

    These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.

    Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Rodina, N. P.; Yudenko, A. N.; Terterov, I. N.; Eliseev, I. E.

    2013-08-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested.

  4. Circular Dichroism is Sensitive to Monovalent Cation Binding in Monensin Complexes.

    PubMed

    Nedzhib, Ahmed; Kessler, Jiří; Bouř, Petr; Gyurcsik, Béla; Pantcheva, Ivayla

    2016-05-01

    Monensin is a natural antibiotic that exhibits high affinity to certain metal ions. In order to explore its potential in coordination chemistry, circular dichroism (CD) spectra of monensic acid A (MonH) and its derivatives containing monovalent cations (Li(+) , Na(+) , K(+) , Rb(+) , Ag(+) , and Et4 N(+) ) in methanolic solutions were measured and compared to computational models. Whereas the conventional CD spectroscopy allowed recording of the transitions down to 192 nm, synchrotron radiation circular dichroism (SRCD) revealed other bands in the 178-192 nm wavelength range. CD signs and intensities significantly varied in the studied compounds, in spite of their similar crystal structure. Computational modeling based on the Density Functional Theory (DFT) and continuum solvent model suggests that the solid state monensin structure is largely conserved in the solutions as well. Time-dependent Density Functional Theory (TDDFT) simulations did not allow band-to-band comparison with experimental spectra due to their limited precision, but indicated that the spectral changes were caused by a combination of minor conformational changes upon the monovalent cation binding and a direct involvement of the metal electrons in monensin electronic transitions. Both the experiment and simulations thus show that the CD spectra of monensin complexes are very sensitive to the captured ions and can be used for their discrimination. Chirality 28:420-428, 2016. © 2016 Wiley Periodicals, Inc. PMID:27062535

  5. Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams

    NASA Astrophysics Data System (ADS)

    Feng, C.; Wang, Z. B.; Lee, S.; Jiao, J.; Li, L.

    2012-05-01

    Recently it was shown by experiments that circular dichroism (CD) can be observed in the metamaterials of non-chiral structures when they were subjected to obliquely incident light (E. Plum, et al., Physical Review Letters 102, 113902, 2009). By far, external chirality simulation was only done for a particle array embedded in a homogenous medium (V. Yannopapas, Optics Letters 34, 5, 2009); no attempt has been made on simulating and modelling of circular dichroism in layered metamaterials (e.g., thin film on substrate structure). In this paper, we present the simulation of CD effect in layered external chiral metamaterials using CST software, theoretically investigate this intriguing phenomenon through a frequency domain finite integration technique, and optimize the metamaterial unit cell configurations (size, periodicity and film thickness) to maximize the CD phenomenon in near-infrared spectrum range. We show that the CD effect can be enhanced by five times using an optimized unit cell configuration, which is more than three times higher than the existing maximum theoretical results. The CD generation mechanism was elaborated with the help of induced surface current distributions.

  6. Angle and temperature dependence of magnetic circular dichroism in core-level photoemission from Gd(0001)

    SciTech Connect

    Denecke, R.; Morais, J.; Ynzunza, R. X.; Menchero, J. G.; Liesegang, J.; Rice, M.; Kortright, J.; Hussain, Z.; Fadley, C. S.

    1997-04-01

    Magnetic dichroism in core-level photoelectron emission from solids represents a promising new element-specific probe of surface and interface atomic structure and magnetic order. One way of measuring such effects is by using photoelectrons excited by circular polarized radiation, thus leading to magnetic circular dichroism (MCD) if the intensity with right-circular polarized (RCP) light is not equal to that with left-circular polarized (LCP) light. The spin-integrated photoelectron intensity in a certain emission direction also in general depends on the direction of the magnetization in a magnetic material. In fact, if the magnetization lies in a surface mirror plane, then inverting its direction can provide a second way of measuring MCD. Purely atomic theoretical models have been successful in explaining many aspects of such data. By varying the emission direction one also probes the geometric structure of the sample. But such MCD in photoelectron angular distributions (MCDAD) then has to be interpreted also in terms of photoelectron diffraction. Measuring the temperature dependence of such MCD effects also provides a useful tool for studying magnetic transition temperatures. The authors have here studied such effects in core-level emission from Gd(0001).

  7. A Solid Phase Vibrational Circular Dichroism Study of Polypeptide-Surfactant Interaction.

    PubMed

    Novotná, Pavlína; Urbanová, Marie

    2015-12-01

    We studied the interaction of poly-l-lysine (PLL) and poly-l-arginine (PLAG) with sodium dodecyl sulfate (SDS) surfactant and the interaction of poly-l-glutamic acid (PLGA) and poly-l-aspartic acid (PLAA) with tetradecyltrimethylammonium bromide (TTAB) surfactant using vibrational circular dichroism (VCD) spectroscopy in the region of C-H stretching vibration and in the Amide I region both in solution and in mulls. A chirality transfer from polypeptides to achiral surfactants was observed in the C-H stretching region, where measurements in solution were impossible. This observation was enabled by a special sample treatment technique using lyophilization and the preparation of mulls. This technique demonstrated itself as an interesting and beneficial tool for VCD measurements. In addition, we observed that SDS changed the secondary structure of PLL to the β-sheet and of PLAG to the α-helix. TTAB disrupted the PLGA and PLAA structure. These results were obtained in the mull but were confirmed by the VCD spectra measured in solution and by electronic circular dichroism. The chirality transfer from the polypeptides to SDS was caused by polypeptides ordered into a specific conformation during the interaction, while in the TTBA system it was induced primarily by the chirality of the amino acid residues. PMID:26413930

  8. Directional dichroism of THz radiation in Sr2CoSi2O7

    NASA Astrophysics Data System (ADS)

    Rõõm, Toomas; Nagel, U.; Kocsis, V.; Szaller, D.; Kézsmárki, I.; Tokunaga, Y.; Taguchi, Y.; Tokura, Y.

    2014-03-01

    The microscopic mechanism of magnetoelectric coupling in akermanite-like Co-oxide multiferroics is unique because the local electric polarization mainly arises from the hybridization of Co ion and its ligands orbitals and is less affected by the details of the actual magnetic order of Co spins. As a consequence of this magnetoelectric effect, the spin waves located in the THz range exhibit giant directional dichroism in Ba2CoGe2O7 [S. Bordacs et al., Nature Physics 8, 734 (2012)]. Here we studied spin excitations in a sister compound Sr2CoSi2O7 in magnetic fields up to 17 T. We found that the giant directional dichroism at THz frequencies is present below the Neel temperature (TN) where the spins are ordered antiferromagnetically and persists as well above TN due to the large uniform magnetization and electric polarization induced by the external magnetic field. The relation of the observed ac magnetoelectric effect to the dc magnetoelectric effect studied by Akaki et al. [Phys. Rev. B 86, 060413(R) (2012)] is also discussed. The support by the Estonian Ministry of Education and Research (SF0690029s09) and Estonian Science Foundation (ETF8703, ETF8170) is acknowledged.

  9. Time-resolved magnetic circular dichroism spectroscopy of photolyzed carbonmonoxy cytochrome c oxidase (cytochrome aa3).

    PubMed Central

    Goldbeck, R A; Dawes, T D; Einarsdóttir, O; Woodruff, W H; Kliger, D S

    1991-01-01

    Nanosecond time-resolved magnetic circular dichroism (TRMCD) and time-resolved natural circular dichroism (TRCD) measurements of photolysis products of the CO complex of eukaryotic cytochrome c oxidase (CcO-CO) are presented. TRMCD spectra obtained at 100 ns and 10 microseconds after photolysis are diagnostic of pentacoordinate cytochrome a3Fe2+, as would be expected for simple photodissociation. Other time-resolved spectroscopies (UV-visible and resonance Raman), however, show evidence for unusual Fea3(2+) coordination after CO photolysis (Woodruff, W. H., O. Einarsdóttir, R. B. Dyer, K. A. Bagley, G. Palmer, S. J. Atherton, R. A. Goldbeck, T. D. Dawes, and D. S. Kliger. 1991. Proc. Nat. Acad. Sci. U.S.A. 88:2588-2592). Furthermore, time-resolved IR experiments have shown that photodissociated CO binds to CuB+ prior to recombining with Fea3(2+) (Dyer, R. B., O. Einarsdóttir, P. M. Killough, J. J. López-Garriga, and W. H. Woodruff. 1989. J. Am. Chem. Soc. 111:7657-7659). A model of the CcO-CO photolysis cycle which is consistent with all of the spectroscopic results is presented. A novel feature of this model is the coordination of a ligand endogenous to the protein to the Fe axial site vacated by the photolyzed CO and the simultaneous breaking of the Fe-imidazole(histidine) bond. PMID:1653049

  10. Two-photon circular dichroism of molecular structures simulating L-tryptophan residues in proteins with secondary structures

    NASA Astrophysics Data System (ADS)

    Vesga, Yuly; Diaz, Carlos; Higgs, Mary; Hernandez, Florencio E.

    2014-05-01

    Herein, we report on the calculation and the comparative analysis of the theoretical two-photon circular dichroism (TPCD) spectra of L-tryptophan (Trp) residues in proteins with secondary structures (α-helix, β-strand and random coil) conformation, down to the far-UV region (FUV). The examination of the TPCD spectra of the different conformers in each configuration reveals distinctive fingerprints in the FUV, a dark spectral region for electronic circular dichroism (ECD). Our results show the potential of FUV-TPCD to identify and study protein structures in a region never assessed before but filled with important structural information.

  11. Enhanced squeezing by absorption

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2016-04-01

    Absorption is usually expected to be detrimental to quantum coherence effects. However, there have been few studies into the situation for complex absorption spectra. We consider the resonance fluorescence of excitons in a semiconductor quantum well. The creation of excitons requires absorption of the incoming pump-laser light. Thus, the absorption spectrum of the medium acts as a spectral filter for the emitted light. Surprisingly, absorption can even improve quantum effects, as is demonstrated for the squeezing of the resonance fluorescence of the quantum-well system. This effect can be explained by an improved phase matching due to absorption.

  12. Slow light and saturable absorption

    NASA Astrophysics Data System (ADS)

    Selden, A. C.

    2009-06-01

    Quantitative analysis of slow light experiments utilising coherent population oscillation (CPO) in a range of saturably absorbing media, including ruby and alexandrite, Er3+:Y2SiO5, bacteriorhodopsin, semiconductor quantum devices and erbium-doped optical fibres, shows that the observations may be more simply interpreted as saturable absorption phenomena. A basic two-level model of a saturable absorber displays all the effects normally associated with slow light, namely phase shift and modulation gain of the transmitted signal, hole burning in the modulation frequency spectrum and power broadening of the spectral hole, each arising from the finite response time of the non-linear absorption. Only where hole-burning in the optical spectrum is observed (using independent pump and probe beams), or pulse delays exceeding the limits set by saturable absorption are obtained, can reasonable confidence be placed in the observation of slow light in such experiments. Superluminal (“fast light”) phenomena in media with reverse saturable absorption (RSA) may be similarly explained.

  13. Solvation dependence observed in the electronic dissymmetry factor spectra: how much information are we missing by analyzing the circular dichroism spectra alone?

    PubMed

    Covington, Cody L; Polavarapu, Prasad L

    2016-05-18

    A study utilizing the newly developed electronic dissymmetry factor (EDF) spectral analysis reveals that for [1,1'-binaphthalene]-2,2'-diol (BN) the experimental EDF spectra show differences due to solvent complexation following the trend in solvent polarity, that are not apparent in the electronic circular dichroism (ECD) or corresponding electronic absorption (EA) spectra. Large experimental EDF spectral magnitudes for BN are seen to peak in regions with no corresponding peaks in the EA spectrum and only a shoulder in the ECD spectrum. This observation indicates that EDF analysis is a new complementary method to conventional ECD analysis of chiral molecules. TD-DFT calculations predict similar EDF peaks as in the experimental EDF spectra, however, the experimentally observed solvation dependent behaviour of the EDF peaks was not reproduced in the calculations. Studies on 6,6'-dibromo-[1,1'-binaphthalene]-2,2'-diol also show similar characteristics in the EDF spectra, though not as pronounced and with different solvent effects. This report thus identifies a new means of chiral molecular structural analysis, hitherto unnoticed, and establishes the use of the dissymmetry factor spectrum as yielding new insight, but at no added cost. PMID:27149694

  14. First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO3

    DOE PAGESBeta

    Kezsmarki, I.; Fishman, Randy Scott

    2016-04-18

    Due to the complicated magnetic and crystallographic structures of BiFeO3, its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a firstprinciples approach, we uncover all possibleMEcouplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO3. First-principles calculations are used to understand the microscopic origins of theMEcouplings.Wefind that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamicME effects in BiFeO3. A model motivated by first principles reproduces the absorption difference of counter-propagating light beams calledmore » non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic MEcouplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hiddenMEcouplings on the atomic scale and for exploiting opticalMEeffects in the next generation of technological devices such as optical diodes.« less

  15. Determination of the absolute configuration of pentacoordinate chiral phosphorus compounds in solution by using vibrational circular dichroism spectroscopy and density functional theory.

    PubMed

    Yang, Guochun; Xu, Yunjie; Hou, Jianbo; Zhang, Hui; Zhao, Yufen

    2010-02-22

    Vibrational circular dichroism (VCD) spectroscopic measurements and density functional theory (DFT) calculations have been used to obtain the absolute structural information about four sets of diastereomers of pentacoordinate spirophosphoranes derived separately from l- (or d-) valine and l- (or d-) leucine for the first time. Each compound contains three stereogenic centers: one at the phosphorus center and two at the amino acid ligands. Extensive conformational searches for the compounds have been carried out and their vibrational absorption (VA) and VCD spectra have been simulated at the B3LYP/6-311++G** level. Although both VA and VCD spectra are highly sensitive to the structural variation of the apical axis, that is, the O-P-O or N-P-O arrangement, the rotamers generated by the aliphatic amino side chains show little effect on both. The dominant experimental VCD features in the 1100-1500 cm(-1) region were found to be controlled by the chirality at the phosphorus center, whereas those at the C=O stretching region are determined by the chirality of the amino acid ligands. The good agreement between the experimental VA and VCD spectra in CDCl(3) solution and the simulated ones allows us to assign the absolute configurations of these pentacoordinate phosphorus compounds with high confidence. This study shows that the VCD spectroscopy complemented with DFT calculations is a powerful and reliable method for determining the absolute configurations and dominating conformers of synthetic phosphorus coordination complexes in solution. PMID:20077536

  16. Magnetic states of Mn and Co atoms at Co2MnGe/MgO interfaces seen via soft x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Asakura, D.; Koide, T.; Yamamoto, S.; Tsuchiya, K.; Shioya, T.; Amemiya, K.; Singh, V. R.; Kataoka, T.; Yamazaki, Y.; Sakamoto, Y.; Fujimori, A.; Taira, T.; Yamamoto, M.

    2010-11-01

    The magnetic states of Mn and Co atoms in Co-rich Co2MnGe Heusler alloy thin films facing an MgO barrier were studied by means of soft x-ray magnetic circular dichroism (XMCD). In particular, the Co2MnGe film-thickness dependence of the Mn and Co magnetic moments was investigated. With a decrease in the Co2MnGe film thickness to 1-2 monolayers (MLs), the spin magnetic moment of Mn decreased and the MnL2,3 -edge x-ray absorption spectra (XAS) showed a Mn2+ -like multiplet structure in MnO, in contrast to samples thicker than 4 ML, indicating that the Mn atoms of the 1 and 2 ML samples were oxidized. The Co spin magnetic moment increased slightly with decreasing thickness. A Co2+ -like multiplet structure in CoO was not observed in all the CoL2,3 -edge XAS and XMCD, indicating that, even in the ultrathin samples, the Co atoms were not oxidized, and were more strongly spin polarized than those in the thicker samples. Co spin magnetic moments of 1.40-1.77μB larger than the theoretical value for ideal stoichiometric Co2MnGe (˜1μB) and the Co-rich film composition imply the presence of Co antisites that would lower the spin polarization.

  17. Proximity effects and exchange bias in Co/MnF2(111) heterostructures studied by x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Suturin, S. M.; Fedorov, V. V.; Banshchikov, A. G.; Baranov, D. A.; Koshmak, K. V.; Torelli, P.; Fujii, J.; Panaccione, G.; Amemiya, K.; Sakamaki, M.; Nakamura, T.; Tabuchi, M.; Pasquali, L.; Sokolov, N. S.

    2013-01-01

    Cobalt nano-structured ultrathin films were grown on orthorhombic MnF2 by molecular beam epitaxy on CaF2 epitaxial layers deposited on Si(111) substrates. The Co film was grown at room temperature. It was found to be polycrystalline, forming nano-islands with height≈diameter≤10 nm. X-ray absorption evidences the chemical stability of the Co/MnF2 interface. Remarkably, x-ray magnetic circular dichroism (XMCD) demonstrates that the Co induces a net magnetization on the Mn ions close to the interface. The magnetic moments of these Mn ions couple antiparallel to the Co and rotate upon field reversal following the magnetization of the Co both below and high above the Néel temperature of MnF2 (TN = 67 K). The density of coupled Mn moments is found to be temperature dependent, with an equivalent thickness of ˜1.5 MnF2 monolayers at 20 K, decreasing to about ˜0.5 ML as the temperature is raised to 300 K. Interestingly, the intensity of the Mn XMCD signal appears to be related to the coercivity of the Co layer. This behavior is interpreted in terms of the competition between thermal fluctuations, exchange coupling between Co and Mn at the interface and, at low temperature, the antiferromagnetic order in MnF2.

  18. Formation and temperature stability of G-quadruplex structures studied by electronic and vibrational circular dichroism spectroscopy combined with ab initio calculations.

    PubMed

    Nový, Jakub; Böhm, Stanislav; Králová, Jarmila; Král, Vladimír; Urbanová, Marie

    2008-02-01

    Variations in the structure of d(GGGA)(5) oligonucleotide in the presence of Li(+), Na(+), and K(+) ions and its temperature stability were studied using electronic and vibrational circular dichroism, IR absorption, and ab initio calculations with the Becke 3-Lee-Yang-Parr functional at the 6-31G** level. The samples were characterized by nondenaturing gel electrophoresis. Oligonucleotide d(GGGA)(5) in the presence of Li(+) forms a nonplanar single tetramer, with angles of 102 degrees and 171 degrees between neighboring guanine bases. This tetramer changes its geometry at temperatures >50 degrees C, but does not form a quadruplex structure. In the presence of Na(+), the d(GGGA)(5) structure was optimized to almost planar tetramers with an angle of 177 degrees between neighboring guanines. The spectral results suggest that it stacks into a quadruplex helical structure. This quadruplex structure decayed to a single tetramer at temperatures >60 degrees C. The Hartree-Fock energies imply that d(GGGA)(5) prefers to form complexes with Na(+) rather than Li(+). The d(GGGA)(5) structure in the presence of monovalent ions is stabilized against thermal denaturation in the order Li(+) < Na(+) < K(+). PMID:17960602

  19. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Güler, Günnur; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2016-05-01

    Enzymatically-induced degradation of bovine serum albumin (BSA) by serine proteases (trypsin and α-chymotrypsin) in various concentrations was monitored by means of Fourier transform infrared (FT-IR) and ultraviolet circular dichroism (UV-CD) spectroscopy. In this study, the applicability of both spectroscopies to monitor the proteolysis process in real time has been proven, by tracking the spectral changes together with secondary structure analysis of BSA as proteolysis proceeds. On the basis of the FTIR spectra and the changes in the amide I band region, we suggest the progression of proteolysis process via conversion of α-helices (1654 cm- 1) into unordered structures and an increase in the concentration of free carboxylates (absorption of 1593 and 1402 cm- 1). For the first time, the correlation between the degree of hydrolysis and the concentration of carboxylic groups measured by FTIR spectroscopy was revealed as well. The far UV-CD spectra together with their secondary structure analysis suggest that the α-helical content decreases concomitant with an increase in the unordered structure. Both spectroscopic techniques also demonstrate that there are similar but less spectral changes of BSA for the trypsin attack than for α-chymotrypsin although the substrate/enzyme ratio is taken the same.

  20. Ab initio ground state and L{sub 2,3} x-ray magnetic circular dichroism of Mn-based Heusler alloys

    SciTech Connect

    Galanakis, I.; Ostanin, S.; Alouani, M.; Dreysse, H.; Wills, J. M.

    2000-02-01

    Relativistic full-potential calculations within the generalized gradient approximation (GGA) for a series of Mn-based Heusler alloys are presented. Calculated equilibrium lattice parameters deviate less than 1.2% from the experimental values. The main features of a half metallic system are present in the density of states for the PtMnSb and NiMnSb. We predict that PdMnSb shows half metallic character under hydrostatic pressure. The substitution of Sb in PtMnSb by Sn or Te destroys the minority spin band gap. Spin and orbital magnetic moments for all the systems are in good agreement with previous calculations and experimental data. L{sub 2,3} x-ray absorption and x-ray magnetic circular dichroism (XMCD) spectra are calculated for all the five compounds. Pt spectra present big deviations from system to system in the PtMnY (Y=Sn,Sb,Te) compounds while Mn spectra show only small deviations. For all these spectra GGA underestimates the L{sub 3}/L{sub 2} integrated branching ratio and produces a much smaller L{sub 2} peak intensity for the Ni site in NiMnSb. The XMCD sum rules are used to compute the spin and orbital magnetic moments and the results are compared to the direct calculations. (c) 2000 The American Physical Society.

  1. Intestinal folate absorption

    PubMed Central

    Strum, Williamson; Nixon, Peter F.; Bertino, Joseph B.; Binder, Henry J.

    1971-01-01

    Intestinal absorption of the monoglutamate form of the principal dietary and circulating folate compound, 5-methyltetrahydrofolic acid (5-MTHF), was studied in the rat utilizing a synthetic highly purified radiolabeled diastereoisomer. Chromatography confirmed that the compound was not altered after transfer from the mucosa to the serosa. Accumulation against a concentration gradient was not observed in duodenal, jejunal, or ileal segments at 5-MTHF concentration from 0.5 to 500 nmoles/liter. Unidirectional transmural flux determination also did not indicate a significant net flux. Mucosal to serosal transfer of 5-MTHF was similar in all segments of the intestine and increased in a linear fashion with increased initial mucosal concentrations. Further, no alteration in 5-MTHF transfer was found when studied in the presence of metabolic inhibitors or folate compounds. These results indicate that 5-MTHF is not absorbed by the rat small intestine by a carrier-mediated system and suggest that 5-MTHF transfer most likely represents diffusion. Images PMID:5564397

  2. D-xylose absorption

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  3. Transition-density-fragment interaction approach for exciton-coupled circular dichroism spectra

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kazuhiro J.

    2010-09-01

    A transition-density-fragment interaction (TDFI) method for exciton-coupled circular dichroism (ECCD) spectra is proposed. The TDFI method was previously developed for excitation-energy transfer, which led to the successful estimation of the electronic coupling energy between donor and accepter molecules in xanthorhodopsin [K. J. Fujimoto and S. Hayashi, J. Am. Chem. Soc. 131, 14152 (2009)]. In the present study, the TDFI scheme is extended to the ECCD spectral calculation based on the matrix method and is applied to a dimerized retinal (all-trans N-retinylidene-L-alanine Schiff base) chromophore. Compared with the dipole-dipole and transition charge from ESP methods, TDFI has a much improved description of the electronic coupling. In addition, the matrix method combined with TDFI can reduce the computational costs compared with the full quantum-mechanical calculation. These advantages of the present method make it possible to accurately evaluate the CD Cotton effects observed in experiment.

  4. Induced birefringence and dichroism in azo polymers. Comparison between amorphous and liquid crystalline polymers

    SciTech Connect

    Natansohn, A.; Brown, D.; Rochon, P.

    1993-12-31

    Macroscopic order can be induced in amorphous high-Tg azo polymers (usually containing electron-donor - electron-acceptor substituted azobenzene moieties) by exposure to polarized light. The phenomenon is based on a series of trans-cis-trans isomerization cycles and the induced birefringence is typically of 2x10{sup {minus}2}. The ordered domains can be returned to randomness ({open_quotes}erased{close_quotes}) using circularly polarized light. This paper will present a comparison between amorphous and liquid crystalline azo polymers. The most significant difference between these two types of polymers is that any other type of concert with the azo moiety. Consequently the dichroism and birefringence induced in the liquid crystalline polymers can be one order of magnitude higher than in the amorphous polymers. At the same time, however, the time required to achieve saturation also increases by at least one order of magnitude.

  5. Molecular Design Guidelines for Large Magnetic Circular Dichroism Intensities in Lanthanide Complexes.

    PubMed

    Kitagawa, Yuichi; Wada, Satoshi; Yanagisawa, Kei; Nakanishi, Takayuki; Fushimi, Koji; Hasegawa, Yasuchika

    2016-03-16

    Magneto optical devices based on the Faraday effects of lanthanide ion have attracted much attention. Recently, large Faraday effects were found in nano-sized multinuclear lanthanide complexes. In this study, the Faraday rotation intensities were estimated for lanthanide nitrates [Ln(III) (NO3 )3 ⋅n H2 O: Ln=Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm) and Eu(III) complexes with β-diketone ligands, using magnetic circular dichroism. Eu ions exhibit the largest Faraday rotation intensity for (7) F0 →(5) D1 transitions, and high-symmetry fields around the Eu ions induce larger Faraday effects. The molecular design for the enhancement of Faraday effects in lanthanide complexes is discussed. PMID:26789658

  6. Structural characterization of hydroperoxide lyase in dodecyl maltoside by using circular dichroism.

    PubMed

    Panagakou, I; Touloupakis, E; Ghanotakis, D F

    2013-01-01

    Fatty acid hydroperoxide lyase (HPL) is a membrane protein, member of the lipoxygenase pathway, which holds a central role in plant defense. Green bell pepper fatty acid hydroperoxide lyase, overexpressed in Escherichia coli, was purified and solubilized in two different non ionic detergents, Triton X-100 and dodecyl maltoside (DM). DM is considered to be more useful compared to Triton X-100, as it allows characterization of the protein with spectroscopic techniques, for which Triton X-100 was inapplicable. Circular dichroism demonstrated that HPL's secondary structure in DM consists of 13.53 % α-helix, 32.73 % β-sheet, 21.76 % turn and 31.13 % unordered. PMID:23076732

  7. Circular dichroism and Raman spectroscopic study of the spider venom toxin V50F17

    NASA Astrophysics Data System (ADS)

    Alix, A. J. P.; Berjot, M.; Dauchez, M. A. M.; Dhalluin, C.; Lippens, G.

    1999-05-01

    V50F17 is a small 45 amino acid neurotoxin fractionated (F17) from the venom V50 of the spider Segestria florentina, which has eight cysteine residues constituting four disulfide bridges. Using circular dichroism data and vibrational Raman data at both pH 2.9 and 7.0 and preliminary NMR results obtained at pH 2.9, we derived structural information for this small protein. From these data, it is seen that it is possible to characterise well the local conformation of the disulfide bridges and the overall shape of the globular protein. Moreover, using optical spectroscopic data, it is shown that consequent local and/or global modifications are obtained on changing the pH. Results of the secondary structure states, the local conformations of the disulfide bridges, the exposure of side chains of residues and particularly of Tyr41 are discussed.

  8. Orbital Rashba effect and its detection by circular dichroism angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jin-Hong; Kim, Choong H.; Rhim, Jun-Won; Han, Jung Hoon

    2012-05-01

    We show, by way of tight-binding and first-principles calculations, that a one-to-one correspondence between an electron's crystal momentum k and nonzero orbital angular momentum (OAM) is a generic feature of surface bands. The OAM forms a chiral structure in momentum space much as its spin counterpart in Rashba model does, as a consequence of the inherent inversion symmetry breaking at the surface but not of spin-orbit interaction. This is the orbital counterpart of conventional Rashba effect and may be called the “orbital Rashba effect.” The circular dichroism (CD) angle-resolved photoemission (ARPES) method is an efficient way to detect this new order, and we derive formulas explicitly relating the CD-ARPES signal to the existence of OAM in the band structure. The cases of degenerate p- and d-orbital bands are considered.

  9. Photoelectron circular dichroism of the randomly oriented chiral molecules glyceraldehyde and lactic acid

    NASA Astrophysics Data System (ADS)

    Powis, Ivan

    2000-01-01

    The differing interaction of left and right circularly polarized light with chiral molecules is shown to lead to different angular distributions of the photoelectrons created by photoionization of a given enantiomer, even when the target molecules are randomly oriented. Numerical calculations are presented to demonstrate the magnitude of this effect for the C3H6O3 structural isomers lactic acid and glyceraldehyde, including two different conformations of the latter. Circular dichroism in the angular distributions (CDAD) of the valence electrons of these biomolecules is most pronounced close to threshold, but tends to vanish as the electron kinetic energy approaches 20 eV and above. CDAD signals are predicted to range, typically, from 10% to 40% and sometimes to more than 60% of the differential cross section.

  10. Induced circular dichroism of thioflavin T interacting with acetylcholinesterase: A computational study

    NASA Astrophysics Data System (ADS)

    Rybicka, Anna; Pecul, Magdalena

    2015-12-01

    Induced circular dichroism of thioflavin T (ThT) intercalated in acetylcholinesterase has been modeled by means of density functional theory. ThT in acetylcholinesterase is reported to be flat and thus cannot exhibit induced CD associated with a 'chiral twist' mechanism, i.e. stabilization of one of the enantiomeric forms by a chiral environment. Even so, the presence of aromatic side chains forming the cavity in which ThT is bound is predicted to induce substantial Cotton effect in ThT, of the magnitude comparable to the one predicted to originate from a 'chiral twist' mechanism. The predicted Cotton effect originates mostly from deformation of electron density of ThT by the presence of the aromatic rings, the contribution from crystallization water molecules being one order of magnitude smaller.

  11. Infrared, Raman and ultraviolet with circular dichroism analysis and theoretical calculations of tedizolid

    NASA Astrophysics Data System (ADS)

    Michalska, Katarzyna; Mizera, Mikołaj; Lewandowska, Kornelia; Cielecka-Piontek, Judyta

    2016-07-01

    Tedizolid is the newest antibacterial agent from the oxazolidinone class. For its identification, FT-IR (2000-400 cm-1) and Raman (2000-400 cm-1) analyses were proposed. Studies of the enantiomeric purity of tedizolid were conducted based on ultraviolet-circular dichroism (UV-CD) analysis. Density functional theory (DFT) with the B3LYP hybrid functional and 6-311G(2df,2pd) basis set was used for support of the analysis of the FT-IR and Raman spectra. Theoretical methods made it possible to conduct HOMO and LUMO analysis, which was used to determine the charge transfer for two tedizolid enantiomers. Molecular electrostatic potential maps were calculated with the DFT method for both tedizolid enantiomers. The relationship between the results of ab initio calculations and knowledge about the chemical-biological properties of R- and S-tedizolid enantiomers is also discussed.

  12. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism

    PubMed Central

    Dolamic, Igor; Varnholt, Birte; Bürgi, Thomas

    2015-01-01

    The transfer of chirality from one set of molecules to another is fundamental for applications in chiral technology and has likely played a crucial role for establishing homochirality on earth. Here we show that an intrinsically chiral gold cluster can transfer its handedness to an achiral molecule adsorbed on its surface. Solutions of chiral Au38(2-PET)24 (2-PET=2-phenylethylthiolate) cluster enantiomers show strong vibrational circular dichroism (VCD) signals in vibrations of the achiral adsorbate. Density functional theory (DFT) calculations reveal that 2-PET molecules adopt a chiral conformation. Chirality transfer from the cluster to the achiral adsorbate is responsible for the preference of one of the two mirror images. Intermolecular interactions between the adsorbed molecules on the crowded cluster surface seem to play a dominant role for the phenomena. Such chirality transfer from metals to adsorbates likely plays an important role in heterogeneous enantioselective catalysis. PMID:25960309

  13. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    DOE PAGESBeta

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strongmore » as those obtained by nanodiffraction methods.« less

  14. Magnetic circular dichroism of non-local surface lattice resonances in magnetic nanoparticle arrays.

    PubMed

    Kataja, Mikko; Pourjamal, Sara; van Dijken, Sebastiaan

    2016-02-22

    Subwavelength metallic particles support plasmon resonances that allow extreme confinement of light down to the nanoscale. Irradiation with left- and right hand circularly polarized light results in the excitation of circular plasmon modes with opposite helicity. The Lorenz force lifts the degeneracy of the two modes in magnetic nanoparticles. Consequently, the confinement and frequency of localized surface plasmon resonances can be tuned by an external magnetic field. In this paper, we experimentally demonstrate this effect for nickel nanoparticles using magnetic circular dichroism (MCD). Besides, we show that non-local surface lattice resonances in periodic arrays of the same nanoparticles significantly enhance the MCD signal. A numerical model based on the modified long wavelength approximation is used to reproduce the main features in the experimental spectra and provide design rules for large MCD effects in sensing applications. PMID:26907013

  15. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    SciTech Connect

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strong as those obtained by nanodiffraction methods.

  16. Enhanced circular dichroism based on the dual-chiral metamaterial in terahertz regime

    NASA Astrophysics Data System (ADS)

    Jian, Shao; Jie, Li; Ying-Hua, Wang; Jia-Qi, Li; Zheng-Gao, Dong; Lin, Zhou

    2016-05-01

    The obvious circular dichroism (CD) and optical activity can be obtained based on the chiral metamaterial due to the plasmon-enhanced effect, which is very attractive for future compact devices with enhanced capabilities of light manipulation. In this paper, we propose a dual-chiral metamaterial composed of bilayer asymmetric split ring resonators (ASRR) that are in mirror-symmetry shape. It is demonstrated that the CD can get enhancement in the terahertz regime. Moreover, the CD can be further improved by modulating the asymmetry of ASRR. The enhanced CD effect in the terahertz regime has great potential applications in sensing, biomedical imaging, and molecular recognition. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174051, 11374049, and 11204139), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131283), and the Fundamental Research Funds for the Central Universities, China.

  17. Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials.

    PubMed

    Cao, Tun; Zhang, Lei; Simpson, Robert E; Wei, Chenwei; Cryan, Martin J

    2013-11-18

    A metal/phase-change material/metal tri-layer planar chiral metamaterial in the shape of a gammadion is numerically modelled. The chiral metamaterial is integrated with Ge2Sb2Te5 phase-change material (PCM) to accomplish a wide tuning range of the circular dichroism (CD) in the mid-infrared wavelength regime. A photothermal model is used to study the temporal variation of the temperature of the Ge2Sb2Te5 layer and to show the potential for fast switching the phase of Ge2Sb2Te5 under a low incident light intensity of 0.016mW/μm2. PMID:24514301

  18. Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality

    PubMed Central

    Hu, Li; Huang, Yingzhou; Fang, Liang; Chen, Guo; Wei, Hua; Fang, Yurui

    2015-01-01

    In this work, the circular dichroisms (CD) of nanorice heterodimers consisting of two parallel arranged nanorices with the same size but different materials are investigated theoretically. Symmetry-breaking is introduced by using different materials and oblique incidence to achieve strong CD at the vicinity of Fano resonance peaks. We demonstrate that all Au-Ag heterodimers exhibit multipolar Fano resonances and strong CD effect. A simple quantitative analysis shows that the structure with larger Fano asymmetry factor has stronger CD. The intensity and peak positions of the CD effect can be flexibly tuned in a large range by changing particle size, shape, the inter-particle distance and surroundings. Furthermore, CD spectra exhibit high sensitivity to ambient medium in visible and near infrared regions. Our results here are beneficial for the design and application of high sensitive CD sensors and other related fields. PMID:26538460

  19. Ultrafast conformational changes in biomolecules studied by time-resolved circular dichroism

    NASA Astrophysics Data System (ADS)

    Changenet-Barret, P.; Hache, F.

    2015-10-01

    Circular dichroism (CD) is known to be a very sensitive probe of molecular conformation, and it is in particular widely used in biochemistry. Measuring the CD as a function of time is therefore very appealing to access information on the dynamics of conformational changes in molecules or biomolecules. We have implemented such a time-resolved experiments in two complementary configurations: a sub-picosecond pump-probe one and a microsecond detection of CD coupled to a T-jump experiment. We present two experiments based on these techniques: the ultrafast motion of the carbonyl group in the chromophore of the Photoactive Yellow Protein after photoexcitation and the dynamics of thermal denaturation in model peptides.

  20. Dodine as a transparent protein denaturant for circular dichroism and infrared studies.

    PubMed

    Guin, Drishti; Sye, Kori; Dave, Kapil; Gruebele, Martin

    2016-05-01

    The fungicide dodine combines the cooperative denaturation properties of guanidine with the mM denaturation activity of SDS. It was previously tested only on two small model proteins. Here we show that it can be used as a chemical denaturant for phosphoglycerate kinase (PGK), a much larger two-domain enzyme. In addition to its properties as a chemical denaturant, dodine facilitates thermal denaturation of PGK, and we show for the first time that it also facilitates pressure denaturation of a protein. Much higher quality circular dichroism and amide I' infrared spectra of PGK can be obtained in dodine than in guanidine, opening the possibility for use of dodine as a denaturant when UV or IR detection is desirable. One caution is that dodine denaturation, like other detergent-based denaturants, is less reversible than guanidine denaturation. PMID:26941080

  1. Classical Magnetic Dipole Moments for the Simulation of Vibrational Circular Dichroism by ab Initio Molecular Dynamics.

    PubMed

    Thomas, Martin; Kirchner, Barbara

    2016-02-01

    We present a new approach for calculating vibrational circular dichroism spectra by ab initio molecular dynamics. In the context of molecular dynamics, these spectra are given by the Fourier transform of the cross-correlation function of magnetic dipole moment and electric dipole moment. We obtain the magnetic dipole moment from the electric current density according to the classical definition. The electric current density is computed by solving a partial differential equation derived from the continuity equation and the condition that eddy currents should be absent. In combination with a radical Voronoi tessellation, this yields an individual magnetic dipole moment for each molecule in a bulk phase simulation. Using the chiral alcohol 2-butanol as an example, we show that experimental spectra are reproduced very well. Our approach requires knowing only the electron density in each simulation step, and it is not restricted to any particular electronic structure method. PMID:26771403

  2. Reaction monitoring using mid-infrared laser-based vibrational circular dichroism.

    PubMed

    Rüther, Anja; Pfeifer, Marcel; Lórenz-Fonfría, Víctor A; Lüdeke, Steffen

    2014-09-01

    Changes in vibrational circular dichroism (VCD) were recorded on-line during a chemical reaction. The chiral complex nickel-(-)-sparteine chloride was hydrolyzed to free (-)-sparteine base in a biphasic system of sodium hydroxide solution and chloroform (CHCl(3)). Infrared (IR) and VCD spectra were iteratively recorded after pumping a sample from the CHCl(3) phase through a lab-built VCD spectrometer equipped with a tunable mid-IR quantum cascade laser light source, which allows for VCD measurements even in the presence of strongly absorbing backgrounds. Time-dependent VCD spectra were analyzed by singular value decomposition and global exponential fitting. Spectral features corresponding to the complex and free (-)-sparteine could be clearly identified in the fitted amplitude spectrum, which was associated with an exponential decay with an apparent time constant of 127 min (t(½) = 88 min). PMID:24623312

  3. Communication: SHG-detected circular dichroism imaging using orthogonal phase-locked laser pulses

    NASA Astrophysics Data System (ADS)

    Jarrett, Jeremy W.; Liu, Xiaoying; Nealey, Paul F.; Vaia, Richard A.; Cerullo, Giulio; Knappenberger, Kenneth L.

    2015-04-01

    We demonstrate a novel method for second harmonic generation-detected circular dichroism (CD) imaging based on the use of phase-locked, temporally delayed femtosecond laser pulses. The polarization state of the fundamental wave was controllably changed over 2π rad by using a birefringent delay line, which provided attosecond inter-pulse delays for orthogonal phase-locked replicas; the achievable phase stability was 14 as. By introducing either a positive or negative delay of ˜667 as, we induced a ±π/2 phase shift between the orthogonally polarized pulses, resulting in left circularly polarized or right circularly polarized light. CD imaging performance using the pulse sequence was compared to results obtained for plasmonic nanoantennas using a rotating quarter-wave plate. The pulse sequence is expected to simplify polarization-resolved optical imaging by reducing experimental artifacts and decreasing image acquisition times. This method can be easily extended to other CD spectroscopy measurements.

  4. Spin polarization and magnetic dichroism in core-level photoemission from ferromagnets

    SciTech Connect

    Menchero, J G

    1997-05-01

    In this thesis we present a theoretical investigation of angle- and spin-resolved core-level photoemission from ferromagnetic Fe and Ni. We also consider magneto-dichroic effects due to reversal of the photon helicity or reversal of the sample magnetization direction. In chapter 1, we provide a brief outline of the history of photoemission, and show how it has played an important role in the development of modern physics. We then review the basic elements of the theory of core-level photoemission, and discuss the validity of the some of the commonly-used approximations. In chapter 2, we present a one-electron theory to calculate spin- and angle-resolved photoemission spectra for an arbitrary photon polarization. The Hamiltonian includes both spin-orbit and exchange interactions. As test cases for the theory, we calculate the spin polarization and magnetic dichroism for the Fe 2p core level, and find that agreement with experiment is very good.

  5. Photoelectron circular dichroism of bicyclic ketones from multiphoton ionization with femtosecond laser pulses.

    PubMed

    Lux, Christian; Wollenhaupt, Matthias; Sarpe, Cristian; Baumert, Thomas

    2015-01-12

    Photoelectron circular dichroism (PECD) is a CD effect up to the ten-percent regime and shows contributions from higher-order Legendre polynomials when multiphoton ionization is compared to single-photon ionization. We give a full account of our experimental methodology for measuring the multiphoton PECD and derive quantitative measures that we apply on camphor, fenchone and norcamphor. Different modulations and amplitudes of the contributing Legendre polynomials are observed despite the similarity in chemical structure. In addition, we study PECD for elliptically polarized light employing tomographic reconstruction methods. Intensity studies reveal dissociative ionization as the origin of the observed PECD effect, whereas ionization of the intermediate resonance is dominating the signal. As a perspective, we suggest to make use of our tomographic data as an experimental basis for a complete photoionization experiment and give a prospect of PECD as an analytic tool. PMID:25492564

  6. Hexamminecobalt(III)-induced condensation of calf thymus DNA: circular dichroism and hydration measurements

    PubMed Central

    Kankia, Besik I.; Buckin, Vitaly; Bloomfield, Victor A.

    2001-01-01

    The interaction of hexamminecobalt(III), Co(NH3)63+, with 160 and 3000–8000 bp length calf thymus DNA has been investigated by circular dichroism, acoustic and densimetric techniques. The acoustic titration curves of 160 bp DNA revealed three stages of interaction: (i) Co(NH3)63+ binding up to the molar ratio [Co(NH3)63+]/[P] = 0.25, prior to DNA condensation; (ii) a condensation process between [Co(NH3)63+]/[P] = 0.25 and 0.30; and (iii) precipitation after [Co(NH3)63+]/[P] = 0.3. In the case of 3000–8000 bp DNA only two processes were observed: (i) binding up to [Co(NH3)63+]/[P] = 0.3; and (ii) precipitation after this point. In agreement with earlier observations, long DNA aggregates without changes in its B-form circular dichroism spectrum, while short DNA demonstrates a positive B→Ψ transition after [Co(NH3)63+]/[P] = 0.25. From ultrasonic and densimetric measurements the effects of Co(NH3)63+ binding on volume and compressibility have been obtained. The binding of Co(NH3)63+ to both short and long DNA is characterized by similar changes in volume and compressibility calculated per mole Co(NH3)63+: ΔV = 9 cm3 mol–1 and Δκ = 33 × 10–4 cm3 mol–1 bar–1. The positive sign of the parameters indicates dehydration, i.e. water release from Co(NH3)63+ and the atomic groups of DNA. This extent of water displacement would be consistent with the formation of two direct, hydrogen bonded contacts between the cation and the phosphates of DNA. PMID:11433025

  7. Characterisation of Conformational and Ligand Binding Properties of Membrane Proteins Using Synchrotron Radiation Circular Dichroism (SRCD).

    PubMed

    Hussain, Rohanah; Siligardi, Giuliano

    2016-01-01

    Membrane proteins are notoriously difficult to crystallise for use in X-ray crystallographic structural determination, or too complex for NMR structural studies. Circular dichroism (CD) is a fast and relatively easy spectroscopic technique to study protein conformational behaviour in solution. The advantage of synchrotron radiation circular dichroism (SRCD) measured with synchrotron beamlines compared to the CD from benchtop instruments is the extended spectral far-UV region that increases the accuracy of secondary structure estimations, in particular under high ionic strength conditions. Membrane proteins are often available in small quantities, and for this SRCD measured at the Diamond B23 beamline has successfully facilitated molecular recognition studies. This was done by probing the local tertiary structure of aromatic amino acid residues upon addition of chiral or non-chiral ligands using long pathlength cells (1-5 cm) of small volume capacity (70 μl-350 μl). In this chapter we describe the use of SRCD to qualitatively and quantitatively screen ligand binding interactions (exemplified by Sbma, Ace1 and FsrC proteins); to distinguish between functionally similar drugs that exhibit different mechanisms of action towards membrane proteins (exemplified by FsrC); and to identify suitable detergent conditions to observe membrane protein-ligand interactions using stabilised proteins (exemplified by inositol transporters) as well as the stability of membrane proteins (exemplified by GalP, Ace1). The importance of the in solution characterisation of the conformational behaviour and ligand binding properties of proteins in both far- andnear-UV regions and the use of high-throughput CD (HT-CD) using 96- and 384-well multiplates to study the folding effects in various protein crystallisation buffers are also discussed. PMID:27553234

  8. 4-Arylflavan-3-ols as Proanthocyanidin Models: Absolute Configuration via Density Functional Calculation of Electronic Circular Dichroism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Density functional theory/B3LYP has been employed to optimize the conformations of selected 4-arylflavan-3-ols and their phenolic methyl ether 3-O-acetates. The electronic circular dichroism spectra of the major conformers have been calculated using time-dependent density functional theory to valida...

  9. Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy.

    PubMed Central

    Sreerama, N.; Venyaminov, S. Y.; Woody, R. W.

    1999-01-01

    A simple approach to estimate the number of alpha-helical and beta-strand segments from protein circular dichroism spectra is described. The alpha-helix and beta-sheet conformations in globular protein structures, assigned by DSSP and STRIDE algorithms, were divided into regular and distorted fractions by considering a certain number of terminal residues in a given alpha-helix or beta-strand segment to be distorted. The resulting secondary structure fractions for 29 reference proteins were used in the analyses of circular dichroism spectra by the SELCON method. From the performance indices of the analyses, we determined that, on an average, four residues per alpha-helix and two residues per beta-strand may be considered distorted in proteins. The number of alpha-helical and beta-strand segments and their average length in a given protein were estimated from the fraction of distorted alpha-helix and beta-strand conformations determined from the analysis of circular dichroism spectra. The statistical test for the reference protein set shows the high reliability of such a classification of protein secondary structure. The method was used to analyze the circular dichroism spectra of four additional proteins and the predicted structural characteristics agree with the crystal structure data. PMID:10048330

  10. Itinerant Ferromagnetism in the As 4 p Conduction Band of Ba0.6K0.4Mn2As2 Identified by X-Ray Magnetic Circular Dichroism

    NASA Astrophysics Data System (ADS)

    Ueland, B. G.; Pandey, Abhishek; Lee, Y.; Sapkota, A.; Choi, Y.; Haskel, D.; Rosenberg, R. A.; Lang, J. C.; Harmon, B. N.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.

    2015-05-01

    X-ray magnetic circular dichroism (XMCD) measurements on single-crystal and powder samples of Ba0.6K0.4Mn2As2 show that the ferromagnetism below TC≈100 K arises in the As 4 p conduction band. No XMCD signal is observed at the Mn x-ray absorption edges. Below TC, however, a clear XMCD signal is found at the As K edge which increases with decreasing temperature. The XMCD signal is absent in data taken with the beam directed parallel to the crystallographic c axis indicating that the orbital magnetic moment lies in the basal plane of the tetragonal lattice. These results show that the previously reported itinerant ferromagnetism is associated with the As 4 p conduction band and that distinct local-moment antiferromagnetism and itinerant ferromagnetism with perpendicular easy axes coexist in this compound at low temperature.

  11. Itinerant ferromagnetism in the As 4p conduction band of Ba_{0.6}K_{0.4}Mn_{2}As_{2} identified by X-ray magnetic circular dichroism.

    PubMed

    Ueland, B G; Pandey, Abhishek; Lee, Y; Sapkota, A; Choi, Y; Haskel, D; Rosenberg, R A; Lang, J C; Harmon, B N; Johnston, D C; Kreyssig, A; Goldman, A I

    2015-05-29

    X-ray magnetic circular dichroism (XMCD) measurements on single-crystal and powder samples of Ba_{0.6}K_{0.4}Mn_{2}As_{2} show that the ferromagnetism below T_{C}≈100  K arises in the As 4p conduction band. No XMCD signal is observed at the Mn x-ray absorption edges. Below T_{C}, however, a clear XMCD signal is found at the As K edge which increases with decreasing temperature. The XMCD signal is absent in data taken with the beam directed parallel to the crystallographic c axis indicating that the orbital magnetic moment lies in the basal plane of the tetragonal lattice. These results show that the previously reported itinerant ferromagnetism is associated with the As 4p conduction band and that distinct local-moment antiferromagnetism and itinerant ferromagnetism with perpendicular easy axes coexist in this compound at low temperature. PMID:26066451

  12. Stereospecific ligands and their complexes. Part XIX. Synthesis, characterization, circular dichroism and antimicrobial activity of oxalato and malonato-(S,S)-ethylenediamine-N,N‧-di-2-(3-methyl)butanoato-chromate(III) complexes

    NASA Astrophysics Data System (ADS)

    Ilić, Dragoslav; Jevtić, Verica V.; Radojević, Ivana D.; Vasić, Sava M.; Stefanović, Olgica D.; Čomić, Ljiljana R.; Vasojević, Miorad M.; Jelić, Miodrag Ž.; Koval'chuk, Tatyana V.; Loginova, Natalia V.; Trifunović, Srećko R.

    2013-10-01

    The s-cis-[Cr(S,S-eddv)L]-complexes (1,2) (S,S-eddv = (S,S)-ethylenediamine-N,N‧-di-2-(3-methyl)butanoato ion; L = oxalate or malonate ion) were prepared. The complexes were purified by ion-exchange chromatography. The geometry of the complexes has been supposed on the basis of the infrared and electronic absorption spectra, and the absolute configurations of the isolated s-cis-[Cr(S,S-eddv)L]-complexes have been predicted on the basis of their circular dichroism (CD) spectra. Also, the results of thermal decomposition have been discussed. Antimicrobial activity of the prepared complexes (1-4) was investigated against 28 species of microorganisms. Testing was performed by microdilution method and minimum inhibitory concentrations (MIC) and minimum microbicidal concentration (MMC) have been determined. Complexes demonstrated in generally low antibacterial and antifungal activity.

  13. Itinerant ferromagnetism in the As 4p conduction band of Ba0.6K0.4Mn2As2 identified by x-ray magnetic circular dichroism

    DOE PAGESBeta

    Ueland, B. G.; Pandey, Abhishek; Lee, Y.; Sapkota, A.; Choi, Y.; Haskel, D.; Rosenberg, R. A.; Lang, J. C.; Harmon, B. N.; Johnston, D. C.; et al

    2015-05-27

    In this study, x-ray magnetic circular dichroism (XMCD) measurements on single-crystal and powder samples of Ba0.6K0.4Mn2As2 show that the ferromagnetism below TC ≈ 100 K arises in the As 4p conduction band. No XMCD signal is observed at the Mn x-ray absorption edges. Below TC, however, a clear XMCD signal is found at the As K edge which increases with decreasing temperature. The XMCD signal is absent in data taken with the beam directed parallel to the crystallographic c axis indicating that the orbital magnetic moment lies in the basal plane of the tetragonal lattice. These results show that themore » previously reported itinerant ferromagnetism is associated with the As 4p conduction band and that distinct local-moment antiferromagnetism and itinerant ferromagnetism with perpendicular easy axes coexist in this compound at low temperature.« less

  14. Excitation dynamics in Phycoerythrin 545: modeling of steady-state spectra and transient absorption with modified Redfield theory.

    PubMed

    Novoderezhkin, Vladimir I; Doust, Alexander B; Curutchet, Carles; Scholes, Gregory D; van Grondelle, Rienk

    2010-07-21

    We model the spectra and excitation dynamics in the phycobiliprotein antenna complex PE545 isolated from the unicellular photosynthetic cryptophyte algae Rhodomonas CS24. The excitonic couplings between the eight bilins are calculated using the CIS/6-31G method. The site energies are extracted from a simultaneous fit of the absorption, circular dichroism, fluorescence, and excitation anisotropy spectra together with the transient absorption kinetics using the modified Redfield approach. Quantitative fit of the data enables us to assign the eight exciton components of the spectra and build up the energy transfer picture including pathways and timescales of energy relaxation, thus allowing a visualization of excitation dynamics within the complex. PMID:20643051

  15. Light Scattering and Absorption Studies of Sickle Cell Hemoglobin

    NASA Astrophysics Data System (ADS)

    Kim-Shapiro, Daniel

    1997-11-01

    exponentially. The length of this delay time depends on the concentration of deoxy-HbS. The kinetics of polymerization was described by a novel double nucleation mechanism. These light scattering studies led to the understanding that many cells could travel through oxygen deficient tissue without sickling due to the delay time in polymerization. Some treatment strategies involve prolonging the delay time. Less work has been done in trying to understand polymer melting. Such investigations are important in order to determine whether polymers that reach the lungs melt before they enter the oxygen deficient tissues. I have initially addressed this problem by exploring the kinetics of oxygen binding to the polymers. These studies were conducted using time-resolved linear dichroism following laser photolysis. Preliminary studies in my laboratory indicate that polymer melting is slow enough to be an important consideration in understanding sickle cell disease. One of the most common therapies for sickle cell disease that is currently used involves administering the drug, hydroxyurea. The mechanism by which this drug benefits patients is not fully understood. One of its mechanisms (as determined by light scattering and absorption studies) involves increasing the delay time for polymerization.

  16. UV-visible microscope spectrophotometric polarization and dichroism with increased discrimination power in forensic analysis

    NASA Astrophysics Data System (ADS)

    Purcell, Dale Kevin

    Microanalysis of transfer (Trace) evidence is the application of a microscope and microscopical techniques for the collection, observation, documentation, examination, identification, and discrimination of micrometer sized particles or domains. Microscope spectrophotometry is the union of microscopy and spectroscopy for microanalysis. Analytical microspectroscopy is the science of studying the emission, reflection, transmission, and absorption of electromagnetic radiation to determine the structure or chemical composition of microscopic-size materials. Microscope spectrophotometry instrument designs have evolved from monochromatic illumination which transmitted through the microscope and sample and then is detected by a photometer detector (photomultiplier tube) to systems in which broad-band (white light) illumination falls incident upon a sample followed by a non-scanning grating spectrometer equipped with a solid-state multi-element detector. Most of these small modern spectrometers are configured with either silicon based charged-couple device detectors (200-950 nm) or InGaAs based diode array detectors (850-2300 nm) with computerized data acquisition and signal processing being common. A focus of this research was to evaluate the performance characteristics of various modern forensic (UV-Vis) microscope photometer systems as well as review early model instrumental designs. An important focus of this research was to efficiently measure ultraviolet-visible spectra of microscopically small specimens for classification, differentiation, and possibly individualization. The first stage of the project consisted of the preparation of microscope slides containing neutral density filter reference materials, molecular fluorescence reference materials, and dichroic reference materials. Upon completion of these standard slide preparations analysis began with measurements in order to evaluate figures of merit for comparison of the instruments investigated. The figures of

  17. The Search for Anyon Superconductivity: do High - Superconductors Exhibit a Spontaneous T-Violating Circular Dichroism?

    NASA Astrophysics Data System (ADS)

    Lawrence, Taylor Walton

    The subject of this thesis is an investigation of whether a class of cuprate compounds having superconducting transition temperatures as high as 100 K change the optical properties of reflected light in such a way that would indicate the violation of time-reversal symmetry (T-violation), analogous to that observed in ferromagnets. Such an effect could be interpreted as evidence that anyons are the fundamental microscopic charge carriers responsible for the superconductivity. An "anyon" is a new, fundamental, excitation of a strongly -correlated two-dimensional electron gas which can obey particle-exchange statistics anywhere between the Fermi -Dirac or Bose-Einstein limits. In this thesis, I report on an experiment in which I attempted to reproduce the data originally reported by K. B. Lyons, et al., of AT&T Bell Laboratories. Their data purportedly showed that certain high temperature superconducting compounds exhibit a spontaneous circular dichroism in reflection, below about 200 K. I show a simple extension to their original experiment, which I discovered, that discriminates against an important spurious term, and makes my apparatus exclusively sensitive to T-violating circular dichroism. I found no evidence for a temperature dependent signal in both thin films and an untwinned single crystal of YBa _2Cu_3O _{7-delta} (T_ {rm c} ~ 90 K), to an accuracy approaching 10^{ -6}. However, my data does show a temperature independent "background" signal which is correlated with the optical quality of the sample's surface. I offer a detailed explanation of the origins of this background signal, and show how it can become a temperature dependent signal when there are changes to the surface properties of the sample due to condensation of residual gases in a poor vacuum. Although this experiment shows no evidence for the macroscopic breakdown of time-reversal symmetry, anyons could still be at the heart of high temperature superconductivity, since there are numerous

  18. Room-temperature photomagnetism in the spinel ferrite (Mn,Zn,Fe)3O4 as seen via soft x-ray magnetic circular dichroism

    SciTech Connect

    Bettinger, J.S.; Piamonteze, C.; Chopdekar, R.V.; Liberati, M.; Arenholz, E.; Suzuki, Y.

    2009-08-01

    We have used X-ray magnetic circular dichroism (XMCD) in conjunction with multiplet simulations to directly probe the origin of photomagnetism in nanocrystalline (Mn,Zn,Fe){sub 3}O{sub 4}. A photomagnetic effect at room temperature has been observed in these films with HeNe illumination. We have verified an intervalence charge transfer among octahedral Fe cations to account for the increase in magnetization observed at and above room temperature in small magnetic fields. Using XMCD, we demonstrate that the dichroism of Fe in octahedral sites increases by 18% at room temperature while the dichroism of Fe in tetrahedral sites does not change.

  19. Nonlinear microwave absorption in weak-link Josephson junctions

    SciTech Connect

    Xie, L.M.; Wosik, J.; Wolfe, J.C.

    1996-12-01

    A model, based on the resistively shunted junction theory, is developed and used to study microwave absorption in weak-link Josephson junctions in high-{ital T}{sub {ital c}} superconductors. Both linear and nonlinear cases of microwave absorption in Josephson junctions are analyzed. A comparison of the model with microwave absorption loop theory is presented along with a general condition for the applicability of both models. The nonlinear case was solved numerically and the threshold points of sharp microwave absorption are presented. At these points, a 2{pi} phase quantization takes place within each microwave cycle, leading to an onset of a sharp rise of absorption. Existence of the 2{pi} dynamic quantization is the key to the interpretation of nonlinear microwave absorption data. The nonlinear microwave absorption model is extended to the study of nonuniformly coupled junctions, and a general statement for the applicability of such a model is presented. {copyright} {ital 1996 The American Physical Society.}

  20. Circular dichroism spectroscopy of complexes of semiconductor quantum dots with chlorin e6

    NASA Astrophysics Data System (ADS)

    Kundelev, Evgeny V.; Orlova, Anna O.; Maslov, Vladimir G.; Baranov, Alexsander V.; Fedorov, Anatoly V.

    2016-04-01

    Experimental investigation of circular dichroism (CD) spectra of complexes based on ZnS:Mn/ZnS and CdSe/ZnS QDs and chlorin e6 (Ce6) molecules in aqua solutions at different pH level, in methanol and in DMSO were carried out. The changes in CD spectra of Ce6 upon its bonding in complex with semiconductor QDs were analyzed. Application of CD spectroscopy allowed to obtain the CD spectrum of luminescent Ce6 dimer for the first time, and to discover a nonluminescent Ce6 aggregate, preliminary identified as a "tetramer", dissymmetry factor of which is 40 times larger than that for its monomer. The analysis of obtained data showed that in complexes with QDs Ce6 can be either in the monomeric form or in the form of non-luminescent tetramer. The interaction of relatively unstable luminescent Ce6 dimerwith QDs leads to its partial monomerization and formation complexes with chlorin e6 in monomeric form.

  1. Radiation damage to a DNA-binding protein. Combined circular dichroism and molecular dynamics simulation analysis.

    PubMed

    Mazier, S; Villette, S; Goffinont, S; Renouard, S; Maurizot, J C; Genest, D; Spotheim-Maurizot, M

    2008-11-01

    The E. coli lactose operon, the paradigm of gene expression regulation systems, is the best model for studying the effect of radiation on such systems. The operon function requires the binding of a protein, the repressor, to a specific DNA sequence, the operator. We have previously shown that upon irradiation the repressor loses its operator binding ability. The main radiation-induced lesions of the headpiece have been identified by mass spectrometry. All tyrosine residues are oxidized into 3,4-dihydroxyphenylalanine (DOPA). In the present study we report a detailed characterization of the headpiece radiation-induced modification. An original approach combining circular dichroism measurements and the analysis of molecular dynamics simulation of headpieces bearing DOPA-s instead of tyrosines has been applied. The CD measurements reveal an irreversible modification of the headpiece structure and stability. The molecular dynamics simulation shows a loss of stability shown by an increase in internal dynamics and allows the estimation of the modifications due to tyrosine oxidation for each structural element of the protein. The changes in headpiece structure and stability can explain at least in part the radiation-induced loss of binding ability of the repressor to the operator. This conclusion should hold for all proteins containing radiosensitive amino acids in their DNA-binding site. PMID:18959464

  2. Origin-independent two-photon circular dichroism calculations in coupled cluster theory.

    PubMed

    Friese, Daniel H; Hättig, Christof; Rizzo, Antonio

    2016-05-21

    We present the first origin-independent approach for the treatment of two-photon circular dichroism (TPCD) using coupled cluster methods. The approach is assessed concerning its behavior on the choice of the basis set and different coupled cluster methods. We also provide a comparison of results from CC2 with those from density functional theory using the CAM-B3LYP functional. Concerning the basis set we note that in most cases an augmented triple zeta basis or a doubly augmented double zeta basis is needed for reasonably converged results. In the comparison of different coupled cluster methods results from CCSD, CC3 and CC2 have been found to be quite similar in most cases, while CCS results differ remarkably from the results at the higher levels. However, this proof-of-principle study also shows that further benchmarking of DFT and CC2 against accurate coupled cluster reference values (e.g. CCSD or CC3) is needed. PMID:27140590

  3. Circular dichroism in valence photoelectron spectroscopy of free unoriented chiral molecules: Camphor and bromocamphor

    SciTech Connect

    Lischke, T.; Boewering, N.; Schmidtke, B.; Mueller, N.; Khalil, T.; Heinzmann, U.

    2004-08-01

    The circular dichroism in the photoelectron angular distribution was investigated for valence photoionization of randomly oriented pure enantiomers of camphor and bromocamphor molecules using circularly polarized light in the vacuum ultraviolet. The forward-backward electron emission spectra were recorded simultaneously with two spectrometers at several opposite angles relative to the propagation direction of the photon beam and compared for each of the two substances. Measurements were also carried out for reversed light helicity and opposite molecular handedness. For the left- and right-handed enantiomers of both molecules we observed asymmetries of comparable magnitude up to several percent. The measured asymmetry parameters vary strongly for different orbital binding energies and also for the selected photon energies in the valence region. The results for both molecules are compared. They suggest a strong influence of the final states on the asymmetry, depending on the chiral geometry of the molecular electronic structure, as well as a significant dependence on the initial states involved. They also confirm theoretical predictions describing the effect in pure electric-dipole approximation.

  4. Giant spin splitting, strong valley selective circular dichroism and valley-spin coupling induced in silicene

    NASA Astrophysics Data System (ADS)

    Qu, Jinfeng; Peng, Xiangyang; Xiao, Di; Zhong, Jianxin

    2016-08-01

    Silicene is a potential candidate for valleytronics. However, in comparison with the transition metal dichalcogenides (TMDs), silicene has a tiny energy gap and zero spin splitting at its Dirac valleys, being unfavorable for valleytronic applications. Based on first principles calculations, we find that by proximity with Bi(111) bilayer, the Dirac valleys of silicene acquire a sizable energy gap and giant spin splittings, which are even larger than the splittings of Mo S2 . Our calculations show that the silicene over Bi layer exhibits a strong valley-contrasting circular dichroism, enabling selective optical pumping of valley carriers. Due to the time reversal symmetry and the breaking of inversion symmetry, the Berry curvatures and the spin splittings are opposite at the K and K' valleys of silicene, and hence the valley and spin are locked and can be simultaneously polarized. In this way, silicene and likely other similar Dirac materials can be comparable to TMDs in valleytronics, which not only adds a new dimension to the properties of silicene but also expands the members of the valleytronic family.

  5. Resolving near-ultraviolet circular dichroism spectra of single trp mutants in tear lipocalin.

    PubMed

    Gasymov, Oktay K; Abduragimov, Adil R; Yusifov, Taleh N; Glasgow, Ben J

    2003-07-15

    Near-ultraviolet circular dichroism (near-UV CD) spectra of tryptophan residues in proteins are complicated because the line shapes are derived from the overlap of both the 1L(a) and the 1L(b) electronic bands that vary independently. Contributing to this complexity, tryptophan near-UV CD spectra differ in the relative amplitude of the 0-0 vibronic band compared to the rest of the 1L(b) spectrum, an inherent feature that may result in poor fitting. To resolve this problem, a computer program that incorporated the separation of the 0-0 transition of 1L(b) component from the rest of the 1L(b) was written in LabVIEW and its amplitude was allowed to vary independently. This method showed dramatically improved fitting of 1L(a) and 1L(b) components in the near-UV CD tryptophan spectra in tear lipocalin mutants featuring low intensity of the 0-0 1L(b) component. Side chain dynamic characteristics (mobility and accessibility to the solvent) identified from different spectroscopic techniques were related to differences in Trp near-UV CD spectra. This method is broadly applicable to different types of Trp near-UV CD spectra. PMID:12814635

  6. Probing tertiary structure of proteins using single Trp mutations with circular dichroism at low temperature.

    PubMed

    Gasymov, Oktay K; Abduragimov, Adil R; Glasgow, Ben J

    2014-01-30

    Trp is the most spectroscopically informative aromatic amino acid of proteins. However, the near-UV circular dichroism (CD) spectrum of Trp is complicated because the intensity and sign of (1)La and (1)Lb bands vary independently. To resolve vibronic structure and gain site-specific information from complex spectra, deconvolution was combined with cooling and site-directed tryptophan substitution. Low temperature near-UV CD was used to probe the local tertiary structure of a loop and α-helix in tear lipocalin. Upon cooling, the enhancement of the intensities of the near-UV CD was not uniform, but depends on the position of Trp in the protein structure. The most enhanced (1)Lb band was observed for Trp at position 124 in the α-helix segment matching the known increased conformational mobility during ligand binding. Some aspects of the CD spectra of W28 and W130 were successfully linked to specific rotamers of Trp previously obtained from fluorescence lifetime measurements. The discussion was based on a framework that the magnitude of the energy differences in local conformations governs the changes in the CD intensities at low temperature. The Trp CD spectral classification of Strickland was modified to facilitate the recognition of pseudo peaks. Near-UV CD spectra harbor abundant information about the conformation of proteins that site directed Trp CD can report. PMID:24404774

  7. Probing Tertiary Structure of Proteins Using Single Trp Mutations with Circular Dichroism at Low Temperature

    PubMed Central

    2015-01-01

    Trp is the most spectroscopically informative aromatic amino acid of proteins. However, the near-UV circular dichroism (CD) spectrum of Trp is complicated because the intensity and sign of 1La and 1Lb bands vary independently. To resolve vibronic structure and gain site-specific information from complex spectra, deconvolution was combined with cooling and site-directed tryptophan substitution. Low temperature near-UV CD was used to probe the local tertiary structure of a loop and α-helix in tear lipocalin. Upon cooling, the enhancement of the intensities of the near-UV CD was not uniform, but depends on the position of Trp in the protein structure. The most enhanced 1Lb band was observed for Trp at position 124 in the α-helix segment matching the known increased conformational mobility during ligand binding. Some aspects of the CD spectra of W28 and W130 were successfully linked to specific rotamers of Trp previously obtained from fluorescence lifetime measurements. The discussion was based on a framework that the magnitude of the energy differences in local conformations governs the changes in the CD intensities at low temperature. The Trp CD spectral classification of Strickland was modified to facilitate the recognition of pseudo peaks. Near-UV CD spectra harbor abundant information about the conformation of proteins that site directed Trp CD can report. PMID:24404774

  8. Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism

    PubMed Central

    Cao, Tun; Wei, Chenwei; Mao, Libang

    2015-01-01

    Control of the polarization of light is highly desirable for detection of material’s chirality since biomolecules have vibrational modes in the optical region. Here, we report an ultrafast tuning of pronounced circular conversion dichroism (CCD) in the mid-infrared (M-IR) region, using an achiral phase change metamaterial (PCMM). Our structure consists of an array of Au squares separated from a continuous Au film by a phase change material (Ge2Sb2Te5) dielectric layer, where the Au square patches occupy the sites of a rectangular lattice. The extrinsically giant 2D chirality appears provided that the rectangular array of the Au squares is illuminated at an oblique incidence, and accomplishes a wide tunable wavelength range between 2664 and 3912 nm in the M-IR regime by switching between the amorphous and crystalline states of the Ge2Sb2Te5. A photothermal model is investigated to study the temporal variation of the temperature of the Ge2Sb2Te5 layer, and shows the advantage of fast transiting the phase of Ge2Sb2Te5 of 3.2 ns under an ultralow incident light intensity of 1.9 μW/μm2. Our design is straightforward to fabricate and will be a promising candidate for controlling electromagnetic (EM) wave in the optical region. PMID:26423517

  9. The circular dichroism and X-ray diffraction of DNA condensed from ethanolic solutions.

    PubMed Central

    Gray, D M; Edmondson, S P; Lang, D; Vaughan, M

    1979-01-01

    It is known that DNA in aqueous-ethanol solutions undergoes a B to A conformational change between 60% and 80% (w/w) ethanol. We have found that precipitates formed by adding salt to DNA in 60% and 80% ethanolic solutions can be very different. DNA precipitated from 60% ethanol forms a fine condensate that only slowly settles out of suspension and shows a characteristic differential scattering of circularly polarized light at long wavelengths. DNA precipitated from 80% ethanol forms a flocculent aggregate that exhibits the CD spectral features of the A conformation. Data from circular dichroism spectra of natural and synthetic nucleic acids and from X-ray diffraction patterns of the precipitates show that DNA molecules precipitated from 60% and 80% ethanol are, respectively, in the B and A conformation. Therefore, the different secondary conformations of DNA in ethanolic solutions are maintained during precipitation under these conditions. These results are of general importance for the preparation and study of condensed forms of DNA, since a relatively small change in the extent of dehydration can change the secondary conformation of DNA and markedly affect the character of a subsequent precipitate. Images PMID:572544

  10. Introducing DInaMo: A Package for Calculating Protein Circular Dichroism Using Classical Electromagnetic Theory.

    PubMed

    Uporov, Igor V; Forlemu, Neville Y; Nori, Rahul; Aleksandrov, Tsvetan; Sango, Boris A; Mbote, Yvonne E Bongfen; Pothuganti, Sandeep; Thomasson, Kathryn A

    2015-01-01

    The dipole interaction model is a classical electromagnetic theory for calculating circular dichroism (CD) resulting from the π-π* transitions of amides. The theoretical model, pioneered by J. Applequist, is assembled into a package, DInaMo, written in Fortran allowing for treatment of proteins. DInaMo reads Protein Data Bank formatted files of structures generated by molecular mechanics or reconstructed secondary structures. Crystal structures cannot be used directly with DInaMo; they either need to be rebuilt with idealized bond angles and lengths, or they need to be energy minimized to adjust bond lengths and bond angles because it is common for crystal structure geometries to have slightly short bond lengths, and DInaMo is sensitive to this. DInaMo reduces all the amide chromophores to points with anisotropic polarizability and all nonchromophoric aliphatic atoms including hydrogens to points with isotropic polarizability; all other atoms are ignored. By determining the interactions among the chromophoric and nonchromophoric parts of the molecule using empirically derived polarizabilities, the rotational and dipole strengths are determined leading to the calculation of CD. Furthermore, ignoring hydrogens bound to methyl groups is initially explored and proves to be a good approximation. Theoretical calculations on 24 proteins agree with experiment showing bands with similar morphology and maxima. PMID:26370961

  11. Structural basis of human erythrocyte glucose transporter function in proteoliposome vesicles: circular dichroism measurements.

    PubMed Central

    Chin, J J; Jung, E K; Chen, V; Jung, C Y

    1987-01-01

    The secondary structural compositions of the human erythrocyte glucose transporter in proteoliposome vesicles were assessed on the basis of circular dichroism (CD) spectra measured in the absence and in the presence of D-glucose or an inhibitor, cytochalasin B. We designed and used a scattered-light-collecting device, which corrects CD spectra for optical artifacts originating from light scattering. Relative contents of eight types of secondary structure were estimated by using basis spectra generated by the eigenvector method based on CD spectra of 15 proteins of known structure. Results indicate that the glucose transporter is composed of approximately 82% alpha-helices, 10% beta-turns, and 8% other random structure, with no beta-strands. In the presence of an excess of D-glucose, the alpha-helical content is reduced by more than 10% and there is a significant increase in the random structure content. Cytochalasin B does not appear to affect the secondary structural composition of the transporter to any significant degree. PMID:3473495

  12. Conformational state of DNA in chromatin subunits. Circular dichroism, melting, and ethidium bromide binding analysis.

    PubMed Central

    Lawrence, J J; Chan, D C; Piette, L H

    1976-01-01

    This study compares some physical properties of DNA in native chromatin and mono-, di-, trinucleosomes obtained after mild micrococcal nuclease digestion. Melting curves and derivatives are shown to be very similar from one sample to another although a shift from 79 to 82 degrees C is observed between the mainly monophasic peak of multimers and chromatin. Careful analysis of the positive band of the circular dichroism spectra shows the appearance of a shoulder at 275nm, the intensity of which increases from the mono- to the di- and trinucleosome. This shoulder is maximum for native chromatin. At the same time binding isotherms of ethidium - bromide are characterized by two highly fluorescent binding sites for all the samples but the product KN of the apparent binding constant of the higher affinity binding sites by the apparent number of those sites increases from the mono- to the di- and trinucleosome. There again the valus is maximum for native chromatin. Such results strongly suggest that the native state of chromatin requires something more than the indefinite repeat of an elementary subunit. Images PMID:1005108

  13. Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism.

    PubMed

    Cao, Tun; Wei, Chenwei; Mao, Libang

    2015-01-01

    Control of the polarization of light is highly desirable for detection of material's chirality since biomolecules have vibrational modes in the optical region. Here, we report an ultrafast tuning of pronounced circular conversion dichroism (CCD) in the mid-infrared (M-IR) region, using an achiral phase change metamaterial (PCMM). Our structure consists of an array of Au squares separated from a continuous Au film by a phase change material (Ge2Sb2Te5) dielectric layer, where the Au square patches occupy the sites of a rectangular lattice. The extrinsically giant 2D chirality appears provided that the rectangular array of the Au squares is illuminated at an oblique incidence, and accomplishes a wide tunable wavelength range between 2664 and 3912 nm in the M-IR regime by switching between the amorphous and crystalline states of the Ge2Sb2Te5. A photothermal model is investigated to study the temporal variation of the temperature of the Ge2Sb2Te5 layer, and shows the advantage of fast transiting the phase of Ge2Sb2Te5 of 3.2 ns under an ultralow incident light intensity of 1.9 μW/μm(2). Our design is straightforward to fabricate and will be a promising candidate for controlling electromagnetic (EM) wave in the optical region. PMID:26423517

  14. Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism

    NASA Astrophysics Data System (ADS)

    Cao, Tun; Wei, Chenwei; Mao, Libang

    2015-10-01

    Control of the polarization of light is highly desirable for detection of material’s chirality since biomolecules have vibrational modes in the optical region. Here, we report an ultrafast tuning of pronounced circular conversion dichroism (CCD) in the mid-infrared (M-IR) region, using an achiral phase change metamaterial (PCMM). Our structure consists of an array of Au squares separated from a continuous Au film by a phase change material (Ge2Sb2Te5) dielectric layer, where the Au square patches occupy the sites of a rectangular lattice. The extrinsically giant 2D chirality appears provided that the rectangular array of the Au squares is illuminated at an oblique incidence, and accomplishes a wide tunable wavelength range between 2664 and 3912 nm in the M-IR regime by switching between the amorphous and crystalline states of the Ge2Sb2Te5. A photothermal model is investigated to study the temporal variation of the temperature of the Ge2Sb2Te5 layer, and shows the advantage of fast transiting the phase of Ge2Sb2Te5 of 3.2 ns under an ultralow incident light intensity of 1.9 μW/μm2. Our design is straightforward to fabricate and will be a promising candidate for controlling electromagnetic (EM) wave in the optical region.

  15. Circular dichroism measurements at an x-ray free-electron laser with polarization control.

    PubMed

    Hartmann, G; Lindahl, A O; Knie, A; Hartmann, N; Lutman, A A; MacArthur, J P; Shevchuk, I; Buck, J; Galler, A; Glownia, J M; Helml, W; Huang, Z; Kabachnik, N M; Kazansky, A K; Liu, J; Marinelli, A; Mazza, T; Nuhn, H-D; Walter, P; Viefhaus, J; Meyer, M; Moeller, S; Coffee, R N; Ilchen, M

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source. PMID:27587106

  16. Structural Transition of Bombyx mori Liquid Silk Studied with Vibrational Circular Dichroism Spectroscopy.

    PubMed

    Morisaku, Toshinori; Arai, Sho; Konno, Kohzo; Suzuki, Yu; Asakura, Tetsuo; Yui, Hiroharu

    2015-01-01

    We investigated the structural transition from liquid silk to silk fibers with vibrational circular dichroism spectroscopy. Liquid silk showed a major right-handed optically active band at around 1650 cm(-1) and a minor one at around 1680 cm(-1). The former disappeared over time, while the intensity in the latter increased. With the former wavenumber, liquid silk mainly adopted a random-coil structure. In contrast, the latter may reflect an intermediate structure in the transition. Furthermore, two right-handed bands at around 1630 and 1660 cm(-1) appeared with the disappearance of the major band, and then the wavenumber of the former shifted to around 1620 cm(-1). The shift results from the decrease in the frequency of the CO stretching mode due to the stacking of the β-sheet that comprises fibers. The band at 1660 cm(-1) may reflect another intermediate structure due to its strong correlation with that at 1620 cm(-1) in terms of their temporal change in intensity. PMID:26256598

  17. Solvent-induced conformational changes in cyclic peptides: a vibrational circular dichroism study.

    PubMed

    Merten, Christian; Li, Fee; Bravo-Rodriguez, Kenny; Sanchez-Garcia, Elsa; Xu, Yunjie; Sander, Wolfram

    2014-03-28

    The three-dimensional structure of a peptide is strongly influenced by its solvent environment. In the present study, we study three cyclic tetrapeptides which serve as model peptides for β-turns. They are of the general structure cyclo(Boc-Cys-Pro-X-Cys-OMe) with the amino acid X being either glycine (1), or L- or D-leucine (L- or D-2). Using vibrational circular dichroism (VCD) spectroscopy, we confirm previous NMR results which showed that D-2 adopts predominantly a βII turn structure in apolar and polar solvents. Our results for L-2 indicate a preference for a βI structure over βII. With increasing solvent polarity, the preference for 1 is shifted from βII towards βI. This conformational change goes along with the breaking of an intramolecular hydrogen bond which stabilizes the βII conformation. Instead, a hydrogen bond with a solvent molecule can stabilize the βI turn conformation. PMID:24513908

  18. Magnetic Circular Dichroism Spectroscopy of meso-Tetraphenylporphyrin-Derived Hydroporphyrins and Pyrrole-Modified Porphyrins.

    PubMed

    Rhoda, Hannah M; Akhigbe, Joshua; Ogikubo, Junichi; Sabin, Jared R; Ziegler, Christopher J; Brückner, Christian; Nemykin, Victor N

    2016-07-28

    A large set of free-base and transition-metal 5,10,15,20-tetraphenyl-substituted chlorins, bacteriochlorins, and isobacteriochlorins and their pyrrole-modified analogues were investigated by combined UV-visible spectroscopy, magnetic circular dichroism (MCD), density functional theory (DFT), and time-dependent DFT (TDDFT) approaches and their spectral characteristics were compared to those of the parent compounds, free-base tetraphenylporphyrin 1H2 and chlorin 2H2. It was shown that the nature of the pyrroline substituents in the chlorin derivatives dictates their specific UV-vis and MCD spectroscopic signatures. In all hydroporphyrin-like cases, MCD spectroscopy suggests that the ΔHOMO is smaller than the ΔLUMO for the macrocycle-centered frontier molecular orbitals. DFT and TDDFT calculations were able to explain the large broadening of the UV-vis and MCD spectra of the chlorin diones and their derivatives compared to the other hydroporphyrins and hydroporphyrin analogues. This study contributes to the further understanding of the electronic effects of replacing a pyrrole in porphyrins by pyrrolines or other five-membered heterocycles (oxazoles and imidazoles). PMID:27400337

  19. Electronic Circular Dichroism of [16]Helicene With Simplified TD-DFT: Beyond the Single Structure Approach.

    PubMed

    Bannwarth, Christoph; Seibert, Jakob; Grimme, Stefan

    2016-05-01

    The electronic circular dichroism (ECD) spectrum of the recently synthesized [16]helicene and a derivative comprising two triisopropylsilyloxy protection groups was computed by means of the very efficient simplified time-dependent density functional theory (sTD-DFT) approach. Different from many previous ECD studies of helicenes, nonequilibrium structure effects were accounted for by computing ECD spectra on "snapshots" obtained from a molecular dynamics (MD) simulation including solvent molecules. The trajectories are based on a molecule specific classical potential as obtained from the recently developed quantum chemically derived force field (QMDFF) scheme. The reduced computational cost in the MD simulation due to the use of the QMDFF (compared to ab-initio MD) as well as the sTD-DFT approach make realistic spectral simulations feasible for these compounds that comprise more than 100 atoms. While the ECD spectra of [16]helicene and its derivative computed vertically on the respective gas phase, equilibrium geometries show noticeable differences, these are "washed" out when nonequilibrium structures are taken into account. The computed spectra with two recommended density functionals (ωB97X and BHLYP) and extended basis sets compare very well with the experimental one. In addition we provide an estimate for the missing absolute intensities of the latter. The approach presented here could also be used in future studies to capture nonequilibrium effects, but also to systematically average ECD spectra over different conformations in more flexible molecules. Chirality 28:365-369, 2016. © 2016 Wiley Periodicals, Inc. PMID:27071653

  20. A split beam method for measuring time-resolved circular dichroism

    NASA Astrophysics Data System (ADS)

    Wenzel, Stephan; Buss, Volker

    1997-04-01

    An improvement to the Lewis-Kliger method for measuring transient circular dichroism on the nanosecond time scale is described. The method uses a single-probe beam that is split into two different beams of plane polarized light entering the sample and a retarder from opposite directions in different succession. Rochon polarizers are used as high-quality polarizing beam splitters to select the slow axis component of the emerging elliptical polarized light beams. The intensities of the light beams are determined by an imaging spectrograph coupled to an intensified charge coupled device detector. The split beam method reduces the need for very precise calibration of the central strain plate acting as a retarder and controlling the ellipticity of the probe light. The necessary calculations are simple and can be shown to be equivalent to the formulas derived by Lewis and Kliger. The static CD spectrum of vitamin B12 is presented and compared to a spectrum obtained with a commercial instrument and standard technique. The time resolution of the instrument is demonstrated by observation of photobleaching of carbon monoxy myoglobin from horse heart muscle.

  1. Band modification in (Ga, Mn)As evidenced by new measurement scheme - photoresistance magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Huang, X. J.; Wang, L. G.; Chen, L.; Zhao, J. H.; Zheng, H. Z.

    2012-11-01

    A new scheme for measuring magneto-optical (MO) effect is developed in the present work, called photoresistance magnetic circular dichroism (PR-MCD). It detects the differential photoresistance of materials between two circularly polarized excitations. That allows us to detect the MO effect induced mainly by interband transitions, as evidenced by the appearance of a clear long wavelength cutoff at 840 nm in PR-MCD spectrum. Our results provide unambiguous evidence that the host semiconductor band structure of (Ga, Mn)As is indeed modified by the strong exchange interactions. It is also found that the interband-induced MO effect decays rather fast with increasing temperatures as compared to MO effects observed in conventional MCD measurements. Moreover, our PR-MCD measurements show interesting feature of diluted magnetic semiconductor Ga1- x Mn x As of a high mole fraction x. PR-MCD signal persists in a reentrant insulating phase at temperatures blow half of Curie temperature (~80 K), and disappears right above it. Such an intrigue feature might be self-consistently explained by recent theory, developed for diluted magnetic semiconductors in the strong correlation regime.

  2. Introducing DInaMo: A Package for Calculating Protein Circular Dichroism Using Classical Electromagnetic Theory

    PubMed Central

    Uporov, Igor V.; Forlemu, Neville Y.; Nori, Rahul; Aleksandrov, Tsvetan; Sango, Boris A.; Mbote, Yvonne E. Bongfen; Pothuganti, Sandeep; Thomasson, Kathryn A.

    2015-01-01

    The dipole interaction model is a classical electromagnetic theory for calculating circular dichroism (CD) resulting from the π-π* transitions of amides. The theoretical model, pioneered by J. Applequist, is assembled into a package, DInaMo, written in Fortran allowing for treatment of proteins. DInaMo reads Protein Data Bank formatted files of structures generated by molecular mechanics or reconstructed secondary structures. Crystal structures cannot be used directly with DInaMo; they either need to be rebuilt with idealized bond angles and lengths, or they need to be energy minimized to adjust bond lengths and bond angles because it is common for crystal structure geometries to have slightly short bond lengths, and DInaMo is sensitive to this. DInaMo reduces all the amide chromophores to points with anisotropic polarizability and all nonchromophoric aliphatic atoms including hydrogens to points with isotropic polarizability; all other atoms are ignored. By determining the interactions among the chromophoric and nonchromophoric parts of the molecule using empirically derived polarizabilities, the rotational and dipole strengths are determined leading to the calculation of CD. Furthermore, ignoring hydrogens bound to methyl groups is initially explored and proves to be a good approximation. Theoretical calculations on 24 proteins agree with experiment showing bands with similar morphology and maxima. PMID:26370961

  3. High Field Magnetic Circular Dichroism in Ferromagnetic InMnSb and InMnAs

    NASA Astrophysics Data System (ADS)

    Meeker, M. A.; Magill, B. A.; Khodaparast, G. A.; Saha, D.; Stanton, C. J.; McGill, S.; Wessels, B. W.

    An understanding of the fundamental interactions in narrow gap ferromagnetic semiconductors such as InMnAs and InMnSb has been developed primarily from static magnetization and electrical transport measurements. In this study, to provide a better understanding of the coupling of the Mn impurities to the conduction and valence bands through the sp-d exchange interactions, we have performed magnetic circular dichroism measurements (MCD) on MOVPE grown InMnAs and InMnSb. In our samples, the Mn content varies from 2% to 10.7% and all the samples have Curie temperatures above 300 K. The samples were photo-excited using a Quartz Tungsten Halogen lamp with energies ranging between 0.92-1.45 eV, and in magnetic fields up to 31 T. The temperatures ranged from 15-190 K. Comparison of the observed MCD with theoretical calculations provides a direct method to probe the band structure including the temperature dependence of the spin-orbit split-off bandgap and g-factors, as well as a means to estimate the sp-d coupling constants. Supported by the AFOSR through grant FA9550-14-1-0376, NSF-Career Award DMR-0846834 , NSF-DMR-60035274 , NSF-DMR-1305666, NSF MRI program (DMR-1229217).

  4. Co-occurrence of circular dichroism and asymmetric transmission in twist nanoslit-nanorod Arrays.

    PubMed

    Wang, Yongkai; Wen, Xiaojing; Qu, Yu; Wang, Li; Wan, Rengang; Zhang, Zhongyue

    2016-07-25

    Circular dichroism (CD) and asymmetric transmission (AT) are important in the field of negative refractive index media and perfect polarization converters. A large difference between T++ and T-- in the transmission matrix T leads to a large CD effect, whereas a large difference between T-+ and T+- leads to a large AT effect. To achieve large CD and AT effects simultaneously, we theoretically analyzed the transmission matrix T and proposed the chiral plasmonic nanostructure of twist nanoslit-nanorod arrays (TNNAs) in this study. Results calculated by the finite element method show that, at around resonant wavelengths, the spectra of T++ and T-- correspondingly present peaks and valleys leading to a large CD effect. Meanwhile one of the spectra for T-+ and T+- presents valleys and another presents peaks leading to a large AT effect. More importantly, the magnitude of CD is equivalent to that of AT. In addition, the CD and AT effects strongly depend on the geometric parameters of TNNAs. Overall, these results are useful for designing chiral plasmonic nanostructures with large CD and AT effects. PMID:27464094

  5. Utilization of circular dichroism experiment to distinguish acanthoside D and eleutheroside E.

    PubMed

    Kil, Yun-Seo; Park, Ji-Yeon; Kim, Youngmee; Nam, Sang-Jip; Kim, Sung-Jin; Kim, Yeong Shik; Seo, Eun Kyoung

    2015-11-01

    Two lignan glycosides, acanthoside D (1) (=liriodendrin, (+)-syringaresinol di-O-β-D-glucopyranoside) and eleutheroside E (2) have been confused each other for so long time, and hard to be distinguished each other. Now, this two compounds need to be defined properly so that all the commercial mistakes and confusions should not be made. They have identical planar structures except for the configurations at C-7 and C-8 in each structure according to the chemistry database, SciFinder(®). The systematic name of acanthoside D is [(1S,3aR,4S,6aR)-tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl]bis(2,6-dimethoxy-4,1-phenylene) bis-β-D-glucopyranoside (1), and the name of eleutheroside E is [(1R,3aR,4S,6aS)-tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl]bis(2,6-dimethoxy-4,1-phenylene) bis-β-D-glucopyranoside (2). The differences at two chiral centers do not make any differences in the NMR spectra. Thus, the circular dichroism were utilized to dissolve this difficult problem. Acanthoside D (1) showed a positive Cotton effect at 200 nm, whereas eleutheroside E (2) exhibited a negative cotton effect at 200 nm. The absolute structure of acanthoside D was also confirmed by X-ray crystallography. PMID:25802110

  6. Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array

    PubMed Central

    Cao, Tun; Wei, Chenwei; Mao, Libang; Li, Yang

    2014-01-01

    Giant chiroptical responses routinely occur in three dimensional chiral metamaterials (MMs), but their resonance elements with complex subwavelength chiral shapes are challenging to fabricate in the optical region. Here, we propose a new paradigm for obtaining strong circular conversion dichroism (CCD) based on extrinsic 2D chirality in multilayer achiral MMs, showing that giant chiroptical response can be alternatively attained without complex structures. Our structure consists of an array of thin Au squares separated from a continuous Au film by a GaAs dielectric layer, where the Au squares occupy the sites of a rectangular lattice. This structure gives rise to a pronounced extrinsically 2D-chiral effect (CCD) in the mid-infrared (M-IR) region under an oblique incidence, where the 2D-chiral effect is due to the mutual orientation of the Au squares array and the incident light propagation direction; the large magnitude of CCD due to the large difference between left-to-left and right-to-right circularly polarized reflectance conversion efficiencies. PMID:25501766

  7. Plasmon-Mediated Two-Photon Photoluminescence-Detected Circular Dichroism in Gold Nanosphere Assemblies.

    PubMed

    Jarrett, Jeremy W; Zhao, Tian; Johnson, Jeffrey S; Liu, Xiaoying; Nealey, Paul F; Vaia, Richard A; Knappenberger, Kenneth L

    2016-03-01

    We report plasmon-mediated two-photon photoluminescence (TPPL)-detected circular dichroism (CD) from colloidal metal nanoparticle assemblies. Two classes of solid gold nanosphere (SGN) dimers-heterodimers and homodimers-were examined using polarization-resolved TPPL, second harmonic generation (SHG), and one-photon photoluminescence (OPPL). Unambiguous CD was detected in both the TPPL and SHG signals, and the magnitudes of the CD responses in these measurements showed agreement for individual nanostructures. Heterodimers gave larger CD responses (average TPPL-CDR = 0.62 ± 0.33; average SHG-CDR = 0.51 ± 0.21) than homodimers (average TPPL-CDR = 0.19 ± 0.04; average SHG-CDR = 0.18 ± 0.06). OPPL-CD was not detected for either structure. Analysis of dimer emission properties suggested the CD responses were determined by properties of the one-photon-resonant mode excited by the laser. Average TPPL signals were (4.3 ± 0.6)× larger than those for SHG. Because signal amplitude is a primary determinant for spatial accuracies and precisions obtained from optical microscopy, CD contrast generated from plasmon-mediated TPPL, which we report for the first time, can extend the suite of super-resolution imaging techniques. PMID:26854357

  8. X-ray Magnetic circular dichroism study of hexagonal YbFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Sinha, Kishan; Xu, Xiaoshan; Liu, Yaohua; Keavney, David; Cheng, X. M.

    Multiferroic materials exhibit multiple ferroic orders simultaneously and thus have potential applications in information technology, sensing, and actuation. Hexagonal YbFeO3 is a promising candidate for a multiferroic material with room temperature ferromagnetism because of the expected enhanced Fe moment and higher transition temperature due to the exchange interaction between magnetic Yb and Fe ions. Here we report an x-ray magnetic circular dichroism (XMCD) study of (0001) Hexagonal YbFO3 thin films deposited on (111) yttria-stabilized zirconia substrates via pulsed laser deposition. XMCD spectra for the Fe L2,3 edges and Yb M5 edge were measured with the magnetic field applied parallel to the x-ray propagation direction and 20 degree away from the film normal at beamline 4ID-C of the APS at ANL. Field dependence of the XMCD spectra show that Fe and Yb each has a ferromagnetic ordering at around 6.7 K but with opposite orientations in between. The saturation magnetic moment for Fe is determined by the sum rules to be 0.07 μB / Fe cation at around 6.7 K, about 4 times larger than that in Hexagonal LuFeO3.

  9. Suppressed Magnetic Circular Dichroism and Valley-Selective Magnetoabsorption due to the Effective Mass Anisotropy in Bismuth

    NASA Astrophysics Data System (ADS)

    de Visser, Pieter J.; Levallois, Julien; Tran, Michaël K.; Poumirol, Jean-Marie; Nedoliuk, Ievgeniia O.; Teyssier, Jérémie; Uher, Ctirad; van der Marel, Dirk; Kuzmenko, Alexey B.

    2016-07-01

    We measure the far-infrared reflectivity and Kerr angle spectra on a high-quality crystal of pure semimetallic bismuth as a function of magnetic field, from which we extract the conductivity for left- and right-handed circular polarizations. The high spectral resolution allows us to separate the intraband Landau level transitions for electrons and holes. The hole transition exhibits 100% magnetic circular dichroism; it appears only for one polarization as expected for a circular cyclotron orbit. However, the dichroism for electron transitions is reduced to only 13 ±1 %, which is quantitatively explained by the large effective mass anisotropy of the electron pockets of the Fermi surface. This observation is a signature of the mismatch between the metric experienced by the photons and the electrons. It allows for a contactless measurement of the effective mass anisotropy and provides a direction towards valley polarized magnetooptical pumping with elliptically polarized light.

  10. Suppressed Magnetic Circular Dichroism and Valley-Selective Magnetoabsorption due to the Effective Mass Anisotropy in Bismuth.

    PubMed

    de Visser, Pieter J; Levallois, Julien; Tran, Michaël K; Poumirol, Jean-Marie; Nedoliuk, Ievgeniia O; Teyssier, Jérémie; Uher, Ctirad; van der Marel, Dirk; Kuzmenko, Alexey B

    2016-07-01

    We measure the far-infrared reflectivity and Kerr angle spectra on a high-quality crystal of pure semimetallic bismuth as a function of magnetic field, from which we extract the conductivity for left- and right-handed circular polarizations. The high spectral resolution allows us to separate the intraband Landau level transitions for electrons and holes. The hole transition exhibits 100% magnetic circular dichroism; it appears only for one polarization as expected for a circular cyclotron orbit. However, the dichroism for electron transitions is reduced to only 13±1%, which is quantitatively explained by the large effective mass anisotropy of the electron pockets of the Fermi surface. This observation is a signature of the mismatch between the metric experienced by the photons and the electrons. It allows for a contactless measurement of the effective mass anisotropy and provides a direction towards valley polarized magnetooptical pumping with elliptically polarized light. PMID:27419590

  11. Detailed structural study of β-artemether: Density functional theory (DFT) calculations of Infrared, Raman spectroscopy, and vibrational circular dichroism

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Chen, Jianchao; Li, Linwei; Zhou, Zhixu; Geng, Yiding; Sun, Tiemin

    2015-10-01

    In this study, the experimental and theoretical studies on the structure of β-artemether are presented. The optimized molecular structure, Mulliken atomic charges, vibrational spectra (IR, Raman and vibrational circular dichroism), and molecular electrostatic potential have been calculated by density functional theory (DFT) using B3LYP method with the 6-311++G (2d, p) basis set. Reliable vibrational assignments for Artemether have been made on the basis of potential energy distribution (PED). The vibrational circular dichroism (VCD) has been explored by ab initio calculations, and then was used to compare with the experimental VCD. The consistence between them confirmed the absolute configuration of Artemether. In addition, HOMO-LUMO of the title compound as well as thermo-dynamical parameters has illustrated the stability of β-artemether.

  12. Photoelectron circular dichroism of chiral molecules studied with a continuum-state-corrected strong-field approximation

    NASA Astrophysics Data System (ADS)

    Dreissigacker, Ingo; Lein, Manfred

    2014-05-01

    Motivated by recent experiments on circular dichroism in the photoelectron momentum distributions from strong-field ionization of chiral molecules [C. Lux et al., Angew. Chem. Int. Ed. 51, 5001 (2012), 10.1002/anie.201109035; C. S. Lehmann et al., J. Chem. Phys. 139, 234307 (2013), 10.1063/1.4844295], we investigate the origin of this effect theoretically. We show that it is not possible to describe photoelectron circular dichroism with the commonly used strong-field approximation due to its plane-wave nature. We therefore apply the Born approximation to the scattering state and use this as a continuum-state correction in the strong-field approximation. We obtain electron distributions for the molecules camphor and fenchone. In order to gain physical insight into the process, we study the contributions of individual molecular orientations.

  13. Magnetic circular dichroism in the X-ray fluorescence spectra of iron and a glassy-metal iron alloy

    NASA Astrophysics Data System (ADS)

    Hague, C. F.; Mariot, J.-M.

    1995-05-01

    Magnetic circular dichroism (MCD) in the X-ray fluorescence of iron has been examined using white bending magnet radiation at Super-ACO. A new spectrometer fitted with a position sensitive detector provided data with improved statistics compared to earlier results. The origin of a dip observed in the Lα dichroic signal but not in the Lβ dichroic signal is reinterpreted. As a guide to interpretation we have also measured the MCD of glassy FeNiBMo.

  14. Computational Study of the Structure, the Flexibility, and the Electronic Circular Dichroism of Staurosporine - a Powerful Protein Kinase Inhibitor

    NASA Astrophysics Data System (ADS)

    Karabencheva-Christova, Tatyana G.; Singh, Warispreet; Christov, Christo Z.

    2014-07-01

    Staurosporine (STU) is a microbial alkaloid which is an universal kinase inhibitor. In order to understand its mechanism of action it is important to explore its structure-properties relationships. In this paper we provide the results of a computational study of the structure, the chiroptical properties, the conformational flexibility of STU as well as the correlation between the electronic circular dichroism (ECD) spectra and the structure of its complex with anaplastic lymphoma kinase.

  15. Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jianzhong; Ning, C. Z.

    2004-01-01

    We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well

  16. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  17. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  18. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-06-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  19. Percutaneous absorption of drugs.

    PubMed

    Wester, R C; Maibach, H I

    1992-10-01

    The skin is an evolutionary masterpiece of living tissue which is the final control unit for determining the local and systemic availability of any drug which must pass into and through it. In vivo in humans, many factors will affect the absorption of drugs. These include individual biological variation and may be influenced by race. The skin site of the body will also influence percutaneous absorption. Generally, those body parts exposed to the open environment (and to cosmetics, drugs and hazardous toxic substances) are most affected. Treating patients may involve single daily drug treatment or multiple daily administration. Finally, the body will be washed (normal daily process or when there is concern about skin decontamination) and this will influence percutaneous absorption. The vehicle of a drug will affect release of drug to skin. On skin, the interrelationships of this form of administration involve drug concentration, surface area exposed, frequency and time of exposure. These interrelationships determine percutaneous absorption. Accounting for all the drug administered is desirable in controlled studies. The bioavailability of the drug then is assessed in relationship to its efficacy and toxicity in drug development. There are methods, both quantitative and qualitative, in vitro and in vivo, for studying percutaneous absorption of drugs. Animal models are substituted for humans to determine percutaneous absorption. Each of these methods thus becomes a factor in determining percutaneous absorption because they predict absorption in humans. The relevance of these predictions to humans in vivo is of intense research interest. The most relevant determination of percutaneous absorption of a drug in humans is when the drug in its approved formulation is applied in vivo to humans in the intended clinical situation. Deviation from this scenario involves the introduction of variables which may alter percutaneous absorption. PMID:1296607

  20. DNA Electronic Circular Dichroism on the Inter-Base Pair Scale: An Experimental-Theoretical Case Study of the AT Homo-Oligonucleotide.

    PubMed

    Di Meo, Florent; Pedersen, Morten N; Rubio-Magnieto, Jenifer; Surin, Mathieu; Linares, Mathieu; Norman, Patrick

    2015-02-01

    A successful elucidation of the near-ultraviolet electronic circular dichroism spectrum of a short double-stranded DNA is reported. Time-dependent density functional theory methods are shown to accurately predict spectra and assign bands on the microscopic base-pair scale, a finding that opens the field for using circular dichroism spectroscopy as a sensitive nanoscale probe of DNA to reveal its complex interactions with the environment. PMID:26261947

  1. K-edge x-ray dichroism investigation of Fe1-xCoxSi: Experimental evidence for spin polarization crossover

    NASA Astrophysics Data System (ADS)

    Hearne, G. R.; Diguet, G.; Baudelet, F.; Itié, J.-P.; Manyala, N.

    2015-04-01

    Both Fe and Co K-edge x-ray magnetic circular dichroism (XMCD) have been employed as element-specific probes of the magnetic moments in the composition series of the disordered ferromagnet Fe1-xCoxSi (for x=0.2, 0.3, 0.4, 0.5). A definitive single peaked XMCD profile occurs for all compositions at both Fe and Co K-edges. The Fe 4p orbital moment, deduced from the integral of the XMCD signal, has a steep dependence on x at low doping levels and evolves to a different (weaker) dependence at x≥0.3, similar to the behavior of the magnetization in the Co composition range studied here. It is systematically higher, by at least a factor of two, than the corresponding Co orbital moment for most of the composition series. Fine structure beyond the K-edge absorption (limited range EXAFS) suggests that the local order (atomic environment) is very similar across the series, from the perspective of both the Fe and Co absorbing atom. The variation in the XMCD integral across the Co composition range has two regimes, that which occurs below x=0.3 and then evolves to different behavior at higher doping levels. This is more conspicuously present in the Fe contribution. This is rationalized as the evolution from a half-metallic ferromagnet at low Co doping to that of a strong ferromagnet at x>0.3 and as such, spin polarization crossover occurs. The Fermi level is tuned from the majority spin band for x<0.3 where a strongly polarized majority spin electron gas prevails, to a regime where minority spin carriers dominate at higher doping. The evolution of the Fe-derived spin polarized (3d) bands, indirectly probed here via the 4p states, is the primary determinant of the doping dependence of the magnetism in this alloy series.

  2. First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO3

    NASA Astrophysics Data System (ADS)

    Lee, Jun Hee; Kézsmáki, István; Fishman, Randy S.

    2016-04-01

    Due to the complicated magnetic and crystallographic structures of BiFeO3, its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a first-principles approach, we uncover all possible ME couplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO3. First-principles calculations are used to understand the microscopic origins of the ME couplings. We find that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamic ME effects in BiFeO3. A model motivated by first principles reproduces the absorption difference of counter-propagating light beams called non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic ME couplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hidden ME couplings on the atomic scale and for exploiting optical ME effects in the next generation of technological devices such as optical diodes. This manuscript has been written by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan.

  3. Magnetism of an ultrathin Mn film on Co(100) and the effect of oxidation studied by x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Yonamoto, Yoshiki; Yokoyama, Toshihiko; Amemiya, Kenta; Matsumura, Daiju; Ohta, Toshiaki

    2001-06-01

    The electronic and magnetic structures of a Mn ultrathin film grown on a 3-ML (monolayer) Co film have been investigated during stepwise oxidation by means of O K-, Mn LIII,II-, and Co LIII,II-edge x-ray-absorption spectroscopy and Mn LIII,II-, and Co LIII,II-edge x-ray magnetic circular dichroism (XMCD). Without O2, strong interaction between the Mn and Co 3d orbitals was suggested and Mn-Co ferromagnetic coupling was confirmed. We observed significant suppression of the d hole number and the spin and orbital moments of Co after Mn deposition compared to those before Mn deposition. These findings imply that the Mn d electrons are transferred to the minority-spin levels of Co. At 0.5-L (Langmuir) O2 exposure, the spin and orbital moments of Co do not change noticeably, while the Mn LIII,II-edge XMCD almost completely vanishes. After 5.5-L O2 exposure, an antiparallel spin alignment between Mn and Co was observed. The estimated orbital moments of Mn is reduced from 0.06 (before oxidation) to <0.005μB (after oxidation). It is concluded that unoxidized Mn is in the d5+d6 state while oxidized Mn is in the d5 high-spin state. Such variance of the electron configuration of Mn can explain the unusual magnetic properties. Antiferromagnetic coupling between Co and oxidized Mn may originate from the d5 high-spin configuration of Mn rather than from the superexchange interaction between Mn and Co via the O atom.

  4. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  5. Oriented Circular Dichroism: A Method to Characterize Membrane-Active Peptides in Oriented Lipid Bilayers.

    PubMed

    Bürck, Jochen; Wadhwani, Parvesh; Fanghänel, Susanne; Ulrich, Anne S

    2016-02-16

    The structures of membrane-bound polypeptides are intimately related to their functions and may change dramatically with the lipid environment. Circular dichroism (CD) is a rapid analytical method that requires relatively low amounts of material and no labeling. Conventional CD is routinely used to monitor the secondary structure of peptides and proteins in solution, for example, in the presence of ligands and other binding partners. In the case of membrane-active peptides and transmembrane proteins, these measurements can be applied to, and remain limited to, samples containing detergent micelles or small sonicated lipid vesicles. Such traditional CD analysis reveals only secondary structures. With the help of an oriented circular dichroism (OCD) setup, however, based on the preparation of macroscopically oriented lipid bilayers, it is possible to address the membrane alignment of a peptide in addition to its conformation. This approach has been mostly used for α-helical peptides so far, but other structural elements are conceivable as well. OCD analysis relies on Moffitt's theory, which predicts that the electronic transition dipole moments of the backbone amide bonds in helical polypeptides are polarized either parallel or perpendicular to the helix axis. The interaction of the electric field vector of the circularly polarized light with these transitions results in an OCD spectrum of a membrane-bound α-helical peptide, which exhibits a characteristic line shape and reflects the angle between the helix axis and the bilayer normal. For parallel alignment of a peptide helix with respect to the membrane surface (S-state), the corresponding "fingerprint" CD band around 208 nm will exhibit maximum negative amplitude. If the helix changes its alignment via an obliquely tilted (T-state) to a fully inserted transmembrane orientation (I-state), the ellipticity at 208 nm decreases and the value approaches zero due to the decreased interactions between the field and the

  6. X-ray magnetic-circular-dichroism study of Ni/Fe (001) multilayers

    SciTech Connect

    Lin, T.; Schwickert, M.M.; Tomaz, M.A.; Chen, H.; Harp, G.R.

    1999-06-01

    The structure and magnetic properties of Fe/Ni(001) multilayers are studied using x-ray diffraction, magneto-optical Kerr effect magnetometry, and x-ray magnetic circular dichroism. Multilayers are deposited with constant Fe layers (12 {Angstrom}) and wedged Ni layers (0{endash}30 {Angstrom}), repeated 20 times, to explore the magnetic moment and the structure dependence upon thickness of Ni (t{sub Ni}). Up to t{sub Ni}{approx}16 {Angstrom} (11 ML), both the Fe and the Ni have a bct structure, similar to the bulk structure of bcc Fe. The magnetic moments of Ni in the bct region are nearly constant at 0.85{mu}{sub B} for a Ni thickness t{sub Ni} in the range 3 {Angstrom}{lt}t{sub Ni}{lt}16 {Angstrom}. This represents a significant enhancement over the moment in bulk fcc Ni (0.59{mu}B). The Fe/Ni multilayer undergoes a crystalline phase transition between 16 {Angstrom}{lt}t{sub Ni}{lt}23 {Angstrom}, beyond which both the Fe and Ni have an fct structure. In the fct region, the Ni magnetic moment is close to its bulk value and the Fe magnetic moment drops to 1.5{mu}{sub B}, which is {approximately}70{percent} of its bulk value. The crystalline phase transition is also accompanied by a rotation of the magnetic easy axis by 45{degree} in the plane of the film. {copyright} {ital 1999} {ital The American Physical Society}

  7. The secondary structure of echistatin from 1H-NMR, circular-dichroism and Raman spectroscopy.

    PubMed

    Saudek, V; Atkinson, R A; Lepage, P; Pelton, J T

    1991-12-01

    Detailed biophysical studies have been carried out on echistatin, a member of the disintegrin family of small, cysteine-rich, RGD-containing proteins, isolated from the venom of the saw-scaled viper Echis carinatus. Analysis of circular-dichroism spectra indicates that, at 20 degrees C, echistatin contains no alpha-helix but contains mostly beta-turns and beta-sheet. Two isobestic points are observed as the temperature is raised, the conformational changes associated with that observed between 40 degrees C and 72 degrees C being irreversible. Raman spectra also indicate considerable beta-turn and beta-sheet (20%) structure and an absence of alpha-helical structure. Three of the four disulphide bridges are shown to be in an all-gauche conformation, while the fourth adopts a trans-gauche-gauche conformation. The 1H-NMR spectrum of echistatin has been almost fully assigned. A single conformation was observed at 27 degrees C with the four proline residues adopting only the trans conformation. A large number of backbone amide protons were found to exchange slowly, but no segments of the backbone were found to be in either alpha-helical or beta-sheet conformation. A number of turns could be characterised. An irregular beta-hairpin contains the RGD sequence in a mobile loop at its tip. Two of the four disulphide cross-links have been identified from the NMR spectra. The data presented in this paper will serve to define the structure of echistatin more closely in subsequent studies. PMID:1761037

  8. Synchrotron radiation circular dichroism spectroscopy study of recombinant T β4 folding

    NASA Astrophysics Data System (ADS)

    Huang, Yung-Chin; Chu, Hsueh-Liang; Chen, Peng-Jen; Chang, Chia-Ching

    Thymosin beta 4 (T β4) is a 43-amino acid small peptide, has been demonstrated that it can promote cardiac repair, wound repair, tissue protection, and involve in the proliferation of blood cell precursor stem cells of bone marrow. Moreover, T β4 has been identified as a multifunction intrinsically disordered protein, which is lacking the stable tertiary structure. Owing to the small size and disordered character, the T β4 protein degrades rapidly and the storage condition is critical. Therefore, it is not easy to reveal its folding mechanism of native T β4. However, recombinant T β4 protein (rT β4), which fused with a 5-kDa peptide in its amino-terminal, is stable and possesses identical function of T β4. Therefore, rT β4 can be used to study its folding mechanism. By using over-critical folding process, stable folding intermediates of rT β4 can be obtained. Structure analysis of folding intermediates by synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies indicate that rT β4 is a random coli major protein and its hydrophobic region becomes compact gradually. Moreover, the rT β4 folding is a two state transition. Thermal denaturation analysis indicates that rT β4 lacks stable tertiary structure. These results indicated that rT β4, similar to T β4, is an intrinsically disordered protein. Research is supported by MOST, Taiwan. MOST 103-2112-M-009-011-MY3. Corresponding author: Chia-Ching Chang; ccchang01@faculty.nctu.edu.tw.

  9. Phase Fluctuation Absorption Spectroscopy of Small Particles

    NASA Astrophysics Data System (ADS)

    Fluckiger, David Ulrich

    The purpose of this dissertation is to establish a viable mass measurement technique for in situ aerosol. Adaptation of the photothermal effect in a Mach-Zehnder interferometer provided high mass sensitivity in an instrument employing Phase Fluctuation Laser Optical Heterodyne (PFLOH) absorption spectroscopy. The theory of aerosol absorption of electromagnetic energy and subsequent thermalization in continuum, Rayleigh regime region is presented. From this theory the general behavior of PFLOH detection of aerosol is described and shown to give a signal proportional to the absorption species mass. Furthermore the signal is shown to be linear in excitation energy and modulation frequency, and scalable. The instrument is calibrated and shown to behave as predicted. PFLOH detection is then used in determining the mass size distribution of the aerosol component of the ozone-isoprene and ozone -(alpha)-pinene products as a function of isoprene and (alpha) -pinene concentration.

  10. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  11. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  12. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  13. Dipeptide absorption in man

    PubMed Central

    Hellier, M. D.; Holdsworth, C. D.; McColl, I.; Perrett, D.

    1972-01-01

    A quantitative perfusion method has been used to study intestinal absorption of two dipeptides—glycyl-glycine and glycyl-l-alanine—in normal subjects. In each case, the constituent amino acids were absorbed faster when presented as dipeptides than as free amino acids, suggesting intact dipeptide transport. During absorption constituent amino acids were measured within the lumen and it is suggested that these represent amino acids which have diffused back to the lumen after absorption as dipeptide. Portal blood analyses during absorption of a third dipeptide, glycyl-l-lysine, have shown that this dipeptide, known to be transported intact from the intestinal lumen, is hydrolysed to its constitutent amino acids before it reaches portal venous blood. PMID:4652039

  14. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  15. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  16. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  17. Determination of the absolute configuration of chiral α-aryloxypropanoic acids using vibrational circular dichroism studies: 2-(2-chlorophenoxy) propanoic acid and 2-(3-chlorophenoxy) propanoic acid

    NASA Astrophysics Data System (ADS)

    He, Jiangtao; Polavarapu, Prasad L.

    2005-05-01

    The enantiomers of 2-(2-chlorophenoxy) propanoic acid and 2-(3-chlorophenoxy) propanoic acid were resolved on a chiral HPLC column and investigated using mid-infrared vibrational circular dichroism (VCD). Experimental infrared vibrational absorption and VCD spectra were measured in CDCl 3 solution in the 2000-900 cm -1 region and compared with the ab initio predictions of absorption and VCD spectra. The predicted spectra were obtained with density functional theory using B3LYP/6-31G* basis set for the stable and dominant conformers. But the predicted spectra did not provide unambiguous structural information due to intermolecular hydrogen bonding in solution. To eliminate the hydrogen bonding effects, the acids were converted to the corresponding methyl esters and the experimental absorbance and VCD spectra of methyl esters were measured. B3LYP predicted spectra were also obtained for the stable and dominant conformers of the esters. From a comparison of the experimental VCD spectra of methyl esters with corresponding ab initio predictions, the absolute configurations of esters, and therefore of their parent acids, are unambiguously determined to be (+)-( R).

  18. Scanning imaging absorption spectrometer for atmospheric chartography

    NASA Technical Reports Server (NTRS)

    Burrows, John P.; Chance, Kelly V.

    1991-01-01

    The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY is an instrument which measures backscattered, reflected, and transmitted light from the earth's atmosphere and surface. SCIAMACHY has eight spectral channels which observe simultaneously the spectral region between 240 and 1700 nm and selected windows between 1940 and 2400 nm. Each spectral channel contains a grating and linear diode array detector. SCIAMACHY observes the atmosphere in nadir, limb, and solar and lunar occultation viewing geometries.

  19. In-vivo absorption properties of algal pigments

    NASA Astrophysics Data System (ADS)

    Bidigare, Robert R.; Ondrusek, Michael E.; Morrow, John H.; Kiefer, Dale A.

    1990-09-01

    Estimates of the in vivo specific absorption coefficients (m2 mg'; 400-750 nm, 2 nm intervals) for the major algal pigment groups (chlorophylls, carotenoids and phycobilins) are presented. "Unpackaged" absorption coefficients were initially obtained by measuring the absorption properties of pure pigment standards spectrophotometrically and "shifting" their absorption maxima to match in vivo positions. Two approaches for estimating the phytoplankton absorption coefficient (spectral reconstruction and spectral decomposition) are compared by linear regression analysis, incorporating concurrent measurements of particulate absorption and pigmentation performed in the Sargasso Sea. Results suggest that "pigment package" effects are minimal for natural assemblages of open-oceanic phytoplankton and that accessory pigments do not always co-vary with chlorophyll a over depth and time.

  20. Phase equilibrium in poly(rA).poly(rU) complexes with Cd2+ and Mg2+ ions, studied by ultraviolet, infrared, and vibrational circular dichroism spectroscopy.

    PubMed

    Blagoi, Yurii; Gladchenko, Galina; Nafie, Laurence A; Freedman, Teresa B; Sorokin, Victor; Valeev, Vladimir; He, Yanan

    2005-08-01

    Ultraviolet (UV) and infrared (IR) absorption and vibrational circular dichroism (VCD) spectroscopy were used to study conformational transitions in the double-stranded poly(rA). poly(rU) and its components-single-stranded poly(rA) and poly(rU) in buffer solution (pH 6.5) with 0.1M Na+ and different Mg2+ and Cd2+ (10(-6) to 10(-2) M) concentrations. Transitions were induced by elevated temperature that changed from 10 up to 96 degrees C. IR absorption and VCD spectra in the base-stretching region were obtained for duplex, triplex, and single-stranded forms of poly(rA) . poly(rU) at [Mg2+],[Cd2+]/[P] = 0.3. For single-stranded polynucleotides, the kind of conformational transition (ordering --> disordering --> compaction, aggregation) is conditioned by the dominating type of Me2+-polymer complex that in turn depends on the ion concentration range. The phase diagram obtained for poly(rA) . poly(rU) has a triple point ([Cd2+] approximately 10(-4)M) at which the helix-coil (2 --> 1) transition is replaced with a disproportion transition 2AU --> A2U + poly(rA) (2 --> 3) and the subsequent destruction of the triple helix (3 --> 1). The 2 --> 1 transitions occur in the narrow temperature interval of 2 degrees -5 degrees . Unlike 2 --> 1 and 3 --> 1 melting, the disproportion 2 --> 3 transition is a slightly cooperative one and observed over a wide temperature range. At [Me2+] approximately 10(-3) M, the temperature interval of A2U stability is not less than 20 degrees C. In the case of Cd2+, it increases with the rise of ion concentration due to the decrease of T(m) (2-->3). The T(m) (3-->1) value is practically unchanged up to [Cd2+] approximately 10(-3)M. Differences between diagrams for Mg(2+) and Cd2+ result from the various kinds of ion binding to poly(rA).poly-(rU) and poly(rA). PMID:15892121

  1. DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL.

    PubMed

    Nahon, Laurent; de Oliveira, Nelson; Garcia, Gustavo A; Gil, Jean-François; Pilette, Bertrand; Marcouillé, Olivier; Lagarde, Bruno; Polack, François

    2012-07-01

    DESIRS is a new undulator-based VUV beamline on the 2.75 GeV storage ring SOLEIL (France) optimized for gas-phase studies of molecular and electronic structures, reactivity and polarization-dependent photodynamics on model or actual systems encountered in the universe, atmosphere and biosphere. It is equipped with two dedicated endstations: a VUV Fourier-transform spectrometer (FTS) for ultra-high-resolution absorption spectroscopy (resolving power up to 10(6)) and an electron/ion imaging coincidence spectrometer. The photon characteristics necessary to fulfill its scientific mission are: high flux in the 5-40 eV range, high spectral purity, high resolution, and variable and well calibrated polarizations. The photon source is a 10 m-long pure electromagnetic variable-polarization undulator producing light from the very near UV up to 40 eV on the fundamental emission with tailored elliptical polarization allowing fully calibrated quasi-perfect horizontal, vertical and circular polarizations, as measured with an in situ VUV polarimeter with absolute polarization rates close to unity, to be obtained at the sample location. The optical design includes a beam waist allowing the implementation of a gas filter to suppress the undulator high harmonics. This harmonic-free radiation can be steered toward the FTS for absorption experiments, or go through a highly efficient pre-focusing optical system, based on a toroidal mirror and a reflective corrector plate similar to a Schmidt plate. The synchrotron radiation then enters a 6.65 m Eagle off-plane normal-incidence monochromator equipped with four gratings with different groove densities, from 200 to 4300 lines mm(-1), allowing the flux-to-resolution trade-off to be smoothly adjusted. The measured ultimate instrumental resolving powers are 124000 (174 µeV) around 21 eV and 250000 (54 µeV) around 13 eV, while the typical measured flux is in the 10(10)-10(11) photons s(-1) range in a 1

  2. Excited electronic states of limonene: A circular dichroism and photoelectron spectroscopy study of d-limonene

    NASA Astrophysics Data System (ADS)

    Brint, P.; Meshulam, Edna; Gedanken, Aharon

    1984-08-01

    The excited states of limonene are discussed in the light of vacuum-UV absorption, VUVCD and photoelectron spectroscopy measurements. Only one π → π* transition arising from the double bond of the ring is observed. The CD sign of the π → π* transition does not obey the octant rule formulated for chiral olefins.

  3. Effects of dispersion and absorption in resonant Bragg diffraction of x-rays.

    PubMed

    Lovesey, S W; Scagnoli, V; Dobrynin, A N; Joly, Y; Collins, S P

    2014-03-26

    Resonant diffraction of x-rays by crystals with anisotropic optical properties is investigated theoretically, to assess how the intensity of a Bragg spot is influenced by effects related to dispersion (birefringence) and absorption (dichroism). Starting from an exact but opaque expression, simple analytic results are found to expose how intensity depends on dispersion and absorption in the primary and secondary beams and, also, the azimuthal angle (rotation of the crystal about the Bragg wavevector). If not the full story for a given application, our results are more than adequate to explore consequences of dispersion and absorption in the intensity of a Bragg spot. Results are evaluated for antiferromagnetic copper oxide, and low quartz. For CuO, one of our results reproduces all salient features of a previously published simulation of the azimuthal-angle dependence of a magnetic Bragg peak. It is transparent in our analytic result that dispersion and absorption effects alone cannot reproduce published experimental data. Available data for the azimuthal-angle dependence of space-group forbidden reflections (0,0, l), with l ≠ 3n, of low quartz depart from symmetry imposed by the triad axis of rotation symmetry. The observed asymmetry can be induced by dispersion and absorption even though absorption coefficients are constant, independent of the azimuthal angle, in this class of reflections. PMID:24599265

  4. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  5. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  6. Harnessing the electromagnetic absorptions of metamaterials for positive applications

    NASA Astrophysics Data System (ADS)

    Xiang, Yuanjiang; Zou, Yanhong; Luo, Hailu; Dai, Xiaoyu; Wen, Shuangchun; Fan, Dianyuan

    2010-08-01

    Absorption or loss is inevitable for the metal-based metamaterials (MMs) due to the intrinsic loss of the metal, and constitutes a major hurdle to the practical realization of most applications such as a sub-wavelength lens. Thus, to reduce the losses becomes one of the major challenges in the MM field. However, the inevitable loss can also be harnessed to take a positive role in the applications of MMs such as stealth technology or other types of cloaking devices. In this presentation, after a brief review of the advances in MMs-based absorbers, we present several schemes to fulfill the desired electromagnetic absorption properties, both linear and nonlinear. For linear absorption, we have experimentally demonstrated that the absorption performance of an ordinary microwave absorbing material can be evidently improved by using the electric resonance resulting from an array of subwavelength metallic circuit elements. For nonlinear absorption, we show theoretically that the active linear magnetic permeability induces a nonlinear absorption, similar to the two-photon absorption (TPA), of electric field in a lossy MM with a Kerr-type nonlinear polarization.

  7. Expedient synthesis of novel pregnane-NSAIDs prodrugs, XRD, stereochemistry of their C-20 derivatives by circular dichroism, conformational analysis, their DFT and TD-DFT studies

    NASA Astrophysics Data System (ADS)

    Singh, Ranvijay Pratap; Sharma, Sonia; Kant, Rajni; Amandeep; Singh, Praveer; Sethi, Arun

    2016-02-01

    Four novel pregnane-NSAIDs prodrugs 3β-(2-(6-methoxynaphthalene-2yl) propionoxy)-16α-methoxy-pregn-5-ene-20-one (3), 16α-methoxy-pregn-5-ene-20-one-3yl-2(4-iso butyl phenyl) propanoate (4), 3β-(2-(6-methoxynaphthalene-2yl) propionoxy) 20-hydroxy-16α-methoxy-pregn-5-ene (5) and 20-hydroxy-16α-methoxy-pregn-5-ene-20-one-3yl-2(4-iso butyl phenyl) propanoate (6) have been synthesized. They were analyzed experimentally by spectroscopic techniques like 1H, 13C NMR, FT-IR, UV-visible spectroscopy, mass spectrometry and correlated by theoretical calculations. The structure and conformations of 3 was established by single crystal X-ray diffraction, which crystallized in orthorhombic form having P212121 space group. Absolute configuration of C-20 hydroxy derivatives 5 and 6 was established by circular dichroism (CD) analysis. Conformational analysis of 5 was carried out to determine the most stable conformation. The electronic properties, such as frontier orbitals, band gap energies, oscillator strength and wavelength have been calculated using time dependent density functional theory (TD-DFT). The vibrational wavenumbers have been calculated using DFT method and assigned with the help of potential energy distribution (PED). Global and local reactivity descriptors have been computed to predict reactivity and reactive sites in the molecule. First hyperpolarizability (β0) of synthesized compounds has been computed to evaluate non-linear optical (NLO) response. Molecular electrostatic potential (MEP) for synthesized compounds have also been determined to check their electrophilic or nucleophilic reactivity as well as reaction path.

  8. The Role of Heme Chirality in the Circular Dichroism of Heme Proteins

    NASA Astrophysics Data System (ADS)

    Woody, Robert W.; Pescitelli, Gennaro

    2014-07-01

    The rotational strength (R) of the Soret transition in sperm-whale myoglobin (SW Mb), the hemoglobin from Chironomus thummi thummi (CTT Hb), and human hemoglobin (hHb) has been calculated using 20 high-resolution (< 1:5 Å) crystal structures. The intrinsic rotational strength due to heme non-planarity was calculated using π-electron theory and time-dependent density functional theory (TDDFT). Calculations on model protoporphyrins with a planar nucleus and with various torsional angles for the 2- and 4-vinyl substituents showed maximum R of ±0.70 Debye-Bohr magneton (1 DBM = 0.9273 · 10-38 cgs units). Viewing the heme so that the 2- and 4-vinyls are in a counterclockwise relationship, if a vinyl points toward the viewer, it contributes positively to R. Calculations of the intrinsic R for explicit heme geometries of SW Mb, CTT Hb, and hHb gave averages of 0.40±0.09, ±0:44±0.04, and +0.32±0.11 DBM, respectively. Coupling of the Soret transition with aromatic side-chain and peptide backbone transitions was also considered. For SW Mb, the magnitudes of the contributions decreased in the order Rint > Raro > Rpep. For CTT Hb and hHB, the orders were, respectively, Rint > Rpep > Raro and Rint > Raro ≈ Rpep. Human Hb ɑ chains showed the same trend as CTT Hb. Only in the hHb β chains did Raro predominate, with the order Raro > Rint > Rpep. The total predicted Rtot for SW Mb, CTT Hb, and hHb averaged +0.77±0.10 (0.56 - 0.80), -0.37±0.12 (-0.5), and +0.31±0.17 DBM (0.23 - 0.50), respectively. (Values in parentheses are experimental values.) Thus, contrary to the currently accepted view, coupling with aromatic side-chain or peptide transitions is not the dominant factor in the Soret circular dichroism (CD) of these proteins. The Soret CD is dominated by intrinsic CD of the heme chromophore, of which vinyl torsion is the major determinant. This result suggests an explanation for the large effect of heme isomerism on the Soret CD of Mb and Hb. Rotation about the

  9. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew; Wilks, Scott; Tabak, Max; Libby, Stephen; Baring, Matthew

    2014-10-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top relativistic particle accelerators, ultrafast charged particle imaging systems and fast ignition inertial confinement fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. In this presentation, using a relativistic Rankine-Hugoniot-like analysis, we show how to derive the theoretical maximum and minimum of f. These boundaries constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. Close agreement is shown with several dozens of published experimental data points and simulation results, helping to confirm the theory. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  10. [Study of the circular dichroism for tribasic complex of amine derivative of beta-cyclodextrindien-Cu2+ -benzoic acid].

    PubMed

    Hu, J; Zhang, H; Shen, B

    1998-02-01

    The circular dichroism spectra of beta-cyclodextrindien, beta-cyclodextrindien-Cu2+ complex, beta-cyclodextrindien-benzoic acid complex, tribasic complex of beta-cyclodextrindien-Cu2+ -benzoic acid were determined by using JASCO J-20C automatic recording spectropolarimeter. The attribution of the bands obtained were made according to the order of orbit energy of Cu2+ complex and benzoic acid, and the coordination structure of tribasic complex of amine derivative of beta-cyclodextrindien-Cu2+ -benzoic acid were decided acording to the structure character of Cu2+ complex and KAJART sector rule of inclusion complex of beta-cyclodextrindien with aromatic compounds. PMID:15810322

  11. Pseudo-planar conjugated swastikas metamaterial with giant circular dichroism and negative refraction at near-infrared region

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Gao, Lin; Liao, Honghua

    2016-02-01

    In this paper, a pseudo-planar conjugated swastikas metamaterial (MM) was proposed and investigated numerically at near-infrared region. Numerical results show that the circular dichroism (CD) is more than 25 dB at resonance frequencies. Owing to the stronger chirality, the refractive indices for right-handed and left-handed circularly polarized waves are negative. The surface current distributions are studied to explain mechanism of the chiral behaviors. The pseudo-planar MM is easy to fabricate and thus lead to many applications in photonic devices due to its giant CD effect and negative refraction.

  12. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    DOE PAGESBeta

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  13. All-optical switching in granular ferromagnets caused by magnetic circular dichroism

    PubMed Central

    Ellis, Matthew O. A.; Fullerton, Eric E.; Chantrell, Roy W.

    2016-01-01

    Magnetic recording using circularly polarised femto-second laser pulses is an emerging technology that would allow write speeds much faster than existing field driven methods. However, the mechanism that drives the magnetisation switching in ferromagnets is unclear. Recent theories suggest that the interaction of the light with the magnetised media induces an opto-magnetic field within the media, known as the inverse Faraday effect. Here we show that an alternative mechanism, driven by thermal excitation over the anisotropy energy barrier and a difference in the energy absorption depending on polarisation, can create a net magnetisation over a series of laser pulses in an ensemble of single domain grains. Only a small difference in the absorption is required to reach magnetisation levels observed experimentally and the model does not preclude the role of the inverse Faraday effect but removes the necessity that the opto-magnetic field is 10 s of Tesla in strength. PMID:27466066

  14. All-optical switching in granular ferromagnets caused by magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Ellis, Matthew O. A.; Fullerton, Eric E.; Chantrell, Roy W.

    2016-07-01

    Magnetic recording using circularly polarised femto-second laser pulses is an emerging technology that would allow write speeds much faster than existing field driven methods. However, the mechanism that drives the magnetisation switching in ferromagnets is unclear. Recent theories suggest that the interaction of the light with the magnetised media induces an opto-magnetic field within the media, known as the inverse Faraday effect. Here we show that an alternative mechanism, driven by thermal excitation over the anisotropy energy barrier and a difference in the energy absorption depending on polarisation, can create a net magnetisation over a series of laser pulses in an ensemble of single domain grains. Only a small difference in the absorption is required to reach magnetisation levels observed experimentally and the model does not preclude the role of the inverse Faraday effect but removes the necessity that the opto-magnetic field is 10 s of Tesla in strength.

  15. All-optical switching in granular ferromagnets caused by magnetic circular dichroism.

    PubMed

    Ellis, Matthew O A; Fullerton, Eric E; Chantrell, Roy W

    2016-01-01

    Magnetic recording using circularly polarised femto-second laser pulses is an emerging technology that would allow write speeds much faster than existing field driven methods. However, the mechanism that drives the magnetisation switching in ferromagnets is unclear. Recent theories suggest that the interaction of the light with the magnetised media induces an opto-magnetic field within the media, known as the inverse Faraday effect. Here we show that an alternative mechanism, driven by thermal excitation over the anisotropy energy barrier and a difference in the energy absorption depending on polarisation, can create a net magnetisation over a series of laser pulses in an ensemble of single domain grains. Only a small difference in the absorption is required to reach magnetisation levels observed experimentally and the model does not preclude the role of the inverse Faraday effect but removes the necessity that the opto-magnetic field is 10 s of Tesla in strength. PMID:27466066

  16. Percutaneous absorption from soil.

    PubMed

    Andersen, Rosa Marie; Coman, Garrett; Blickenstaff, Nicholas R; Maibach, Howard I

    2014-01-01

    Abstract Some natural sites, as a result of contaminants emitted into the air and subsequently deposited in soil or accidental industrial release, have high levels of organic and non-organic chemicals in soil. In occupational and recreation settings, these could be potential sources of percutaneous exposure to humans. When investigating percutaneous absorption from soil - in vitro or vivo - soil load, particle size, layering, soil "age" time, along with the methods of performing the experiment and analyzing the results must be taken into consideration. Skin absorption from soil is generally reduced compared with uptake from water/acetone. However, the absorption of some compounds, e.g., pentachlorophenol, chlorodane and PCB 1254, are similar. Lipophilic compounds like dichlorodiphenyltrichloroethane, benzo[A]pyrene, and metals have the tendency to form reservoirs in skin. Thus, one should take caution in interpreting results directly from in vitro studies for risk assessment; in vivo validations are often required for the most relevant risk assessment. PMID:25205703

  17. Polarization Rotation and Circular Dichroism Near the Potassium D2 Lines

    NASA Astrophysics Data System (ADS)

    Conover, Charles; Thiha, Htet; Dahnke, Jennifer

    2010-03-01

    We have experimentally measured the Faraday rotation and the differential absorption of the two circular polarizations for light tuned near the D2 line in potassium (766.7 nm). In particular we have explored the vapor temperature and magnetic field dependence of the frequency of the zero crossings of the lineshapes from the circular analyzer and the balanced polarimeter used in the measurements. These signals are routinely used as frequency references for laser locking and we discuss the sensitivity to experimental parameters.

  18. Multiplasmon Absorption in Graphene

    NASA Astrophysics Data System (ADS)

    Jablan, Marinko; Chang, Darrick E.

    2015-06-01

    We show that graphene possesses a strong nonlinear optical response in the form of multiplasmon absorption, with exciting implications in classical and quantum nonlinear optics. Specifically, we predict that graphene nanoribbons can be used as saturable absorbers with low saturation intensity in the far-infrared and terahertz spectrum. Moreover, we predict that two-plasmon absorption and extreme localization of plasmon fields in graphene nanodisks can lead to a plasmon blockade effect, in which a single quantized plasmon strongly suppresses the possibility of exciting a second plasmon.

  19. Chaotic Systems with Absorption

    NASA Astrophysics Data System (ADS)

    Altmann, Eduardo G.; Portela, Jefferson S. E.; Tél, Tamás

    2013-10-01

    Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions Dq obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D1 in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results.

  20. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  1. A linear programming manual

    NASA Technical Reports Server (NTRS)

    Tuey, R. C.

    1972-01-01

    Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.

  2. Linear integrated circuits

    NASA Astrophysics Data System (ADS)

    Young, T.

    This book is intended to be used as a textbook in a one-semester course at a variety of levels. Because of self-study features incorporated, it may also be used by practicing electronic engineers as a formal and thorough introduction to the subject. The distinction between linear and digital integrated circuits is discussed, taking into account digital and linear signal characteristics, linear and digital integrated circuit characteristics, the definitions for linear and digital circuits, applications of digital and linear integrated circuits, aspects of fabrication, packaging, and classification and numbering. Operational amplifiers are considered along with linear integrated circuit (LIC) power requirements and power supplies, voltage and current regulators, linear amplifiers, linear integrated circuit oscillators, wave-shaping circuits, active filters, DA and AD converters, demodulators, comparators, instrument amplifiers, current difference amplifiers, analog circuits and devices, and aspects of troubleshooting.

  3. Inferring surface solar absorption from broadband satellite measurements

    NASA Technical Reports Server (NTRS)

    Cess, Robert D.; Vulis, Inna L.

    1989-01-01

    An atmospheric solar radiation model and surface albedo models that include wavelength dependence and surface anisotropy are combined to study the possibility of inferring the surface solar absorption from satellite measurements. The model includes ocean, desert, pasture land, savannah, and bog surface categories. Problems associated with converting narrowband measurements to broadband quantities are discussed, suggesting that it would be easier to infer surface solar absorption from broadband measurements directly. The practice of adopting a linear relationship between planetary and surface albedo to estimate surface albedos from satellite measurements is examined, showing that the linear conversion between broadband planetary and surface albedos is strongly dependent on vegetation type. It is suggested that there is a linear slope-offset relationship between surface and surface-atmosphere solar absorption.

  4. Absorption Of Crushing Energy In Square Composite Tubes

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1992-01-01

    Report describes investigation of crash-energy-absorbing capabilities of square-cross-section tubes of two matrix/fiber composite materials. Both graphite/epoxy and Kevlar/epoxy tubes crushed in progressive and stable manner. Ratio between width of cross section and thickness of wall determined to affect energy-absorption significantly. As ratio decreases, energy-absorption capability increases non-linearly. Useful in building energy-absorbing composite structures.

  5. Optimized Spiral Metal-Gallium-Nitride Nanowire Cavity for Ultra-High Circular Dichroism Ultraviolet Lasing at Room Temperature

    NASA Astrophysics Data System (ADS)

    Liao, Wei-Chun; Liao, Shu-Wei; Chen, Kuo-Ju; Hsiao, Yu-Hao; Chang, Shu-Wei; Kuo, Hao-Chung; Shih, Min-Hsiung

    2016-05-01

    Circularly polarized laser sources with small footprints and high efficiencies can possess advanced functionalities in optical communication and biophotonic integrated systems. However, the conventional lasers with additional circular-polarization converters are bulky and hardly compatible with nanophotonic circuits, and most active chiral plasmonic nanostructures nowadays exhibit broadband emission and low circular dichroism. In this work, with spirals of gallium nitride (GaN) nanowires (NWRs) covered by a metal layer, we demonstrated an ultrasmall semiconductor laser capable of emitting circularly-polarized photons. The left- and right-hand spiral metal nanowire cavities with varied periods were designed at ultraviolet wavelengths to achieve the high quality factor circular dichroism metastructures. The dissymmetry factors characterizing the degrees of circular polarizations of the left- and right-hand chiral lasers were 1.4 and ‑1.6 (±2 if perfectly circular polarized), respectively. The results show that the chiral cavities with only 5 spiral periods can achieve lasing signals with the high degrees of circular polarizations.

  6. Optimized Spiral Metal-Gallium-Nitride Nanowire Cavity for Ultra-High Circular Dichroism Ultraviolet Lasing at Room Temperature

    PubMed Central

    Liao, Wei-Chun; Liao, Shu-Wei; Chen, Kuo-Ju; Hsiao, Yu-Hao; Chang, Shu-Wei; Kuo, Hao-Chung; Shih, Min-Hsiung

    2016-01-01

    Circularly polarized laser sources with small footprints and high efficiencies can possess advanced functionalities in optical communication and biophotonic integrated systems. However, the conventional lasers with additional circular-polarization converters are bulky and hardly compatible with nanophotonic circuits, and most active chiral plasmonic nanostructures nowadays exhibit broadband emission and low circular dichroism. In this work, with spirals of gallium nitride (GaN) nanowires (NWRs) covered by a metal layer, we demonstrated an ultrasmall semiconductor laser capable of emitting circularly-polarized photons. The left- and right-hand spiral metal nanowire cavities with varied periods were designed at ultraviolet wavelengths to achieve the high quality factor circular dichroism metastructures. The dissymmetry factors characterizing the degrees of circular polarizations of the left- and right-hand chiral lasers were 1.4 and −1.6 (±2 if perfectly circular polarized), respectively. The results show that the chiral cavities with only 5 spiral periods can achieve lasing signals with the high degrees of circular polarizations. PMID:27220650

  7. Optimized Spiral Metal-Gallium-Nitride Nanowire Cavity for Ultra-High Circular Dichroism Ultraviolet Lasing at Room Temperature.

    PubMed

    Liao, Wei-Chun; Liao, Shu-Wei; Chen, Kuo-Ju; Hsiao, Yu-Hao; Chang, Shu-Wei; Kuo, Hao-Chung; Shih, Min-Hsiung

    2016-01-01

    Circularly polarized laser sources with small footprints and high efficiencies can possess advanced functionalities in optical communication and biophotonic integrated systems. However, the conventional lasers with additional circular-polarization converters are bulky and hardly compatible with nanophotonic circuits, and most active chiral plasmonic nanostructures nowadays exhibit broadband emission and low circular dichroism. In this work, with spirals of gallium nitride (GaN) nanowires (NWRs) covered by a metal layer, we demonstrated an ultrasmall semiconductor laser capable of emitting circularly-polarized photons. The left- and right-hand spiral metal nanowire cavities with varied periods were designed at ultraviolet wavelengths to achieve the high quality factor circular dichroism metastructures. The dissymmetry factors characterizing the degrees of circular polarizations of the left- and right-hand chiral lasers were 1.4 and -1.6 (±2 if perfectly circular polarized), respectively. The results show that the chiral cavities with only 5 spiral periods can achieve lasing signals with the high degrees of circular polarizations. PMID:27220650

  8. Structural alterations of human serum albumin caused by glycative and oxidative stressors revealed by circular dichroism analysis.

    PubMed

    Monacelli, Fiammetta; Storace, Daniela; D'Arrigo, Cristina; Sanguineti, Roberta; Borghi, Roberta; Pacini, Davide; Furfaro, Anna L; Pronzato, Maria A; Odetti, Patrizio; Traverso, Nicola

    2013-01-01

    The aim of this work was to evaluate the ability of oxidative and glycative stressors to modify properties of human serum albumin (HSA) by analyzing markers of glycation (pentosidine) and oxidation (advanced oxidative protein products (AOPPs)) and assessing fluorescence and circular dichroism. HSA was incubated for up to 21 days with ribose, ascorbic acid (AA) and diethylenetriamine pentacetate (DTPA) in various combinations in order to evaluate influences of these substances on the structure of HSA. Ribose was included as a strong glycative molecule, AA as a modulator of oxidative stress, and DTPA as an inhibitor of metal-catalyzed oxidation. Ribose induced a significant increase in pentosidine levels. AA and DTPA prevented the accumulation of pentosidine, especially at later time points. Ribose induced a mild increase in AOPP formation, while AA was a strong inducer of AOPP formation. Ribose, in combination with AA, further increased the formation of AOPP. DTPA prevented the AA-induced generation of AOPP. Ribose was also a potent inducer of fluorescence at 335nm ex/385nm em, which is typical of pentosidine. AA and DTPA prevented this fluorescence. Circular dichroism showed complex results, in which AA and DTPA were strong modifiers of the percentages of the alpha-helical structure of HSA, while ribose affected the structure of HSA only at later time points. PMID:23702842

  9. A Second Look at Mini-Protein Stability: Analysis of FSD-1 Using Circular Dichroism, Differential Scanning Calorimetry, and Simulations

    PubMed Central

    Feng, Jianwen A.; Kao, Jeff; Marshall, Garland R.

    2009-01-01

    Abstract Mini-proteins that contain <50 amino acids often serve as model systems for studying protein folding because their small size makes long timescale simulations possible. However, not all mini-proteins are created equal. The stability and structure of FSD-1, a 28-residue mini-protein that adopted the ββα zinc-finger motif independent of zinc binding, was investigated using circular dichroism, differential scanning calorimetry, and replica-exchange molecular dynamics. The broad melting transition of FSD-1, similar to that of a helix-to-coil transition, was observed by using circular dichroism, differential scanning calorimetry, and replica-exchange molecular dynamics. The N-terminal β-hairpin was found to be flexible. The FSD-1 apparent melting temperature of 41°C may be a reflection of the melting of its α-helical segment instead of the entire protein. Thus, despite its attractiveness due to small size and purposefully designed helix, sheet, and turn structures, the status of FSD-1 as a model system for studying protein folding should be reconsidered. PMID:19917235

  10. Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations

    PubMed Central

    Lees, Jonathan G; Janes, Robert W

    2008-01-01

    Background A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction methods with the empirically determined values from the spectroscopic data on datasets of proteins for which both crystal structures and spectroscopic data are available. Results In this study we show that the sequence prediction methods have accuracies nearly comparable to those of spectroscopic methods. However, we also demonstrate that combining the spectroscopic and sequences techniques produces significant overall improvements in secondary structure determinations. In addition, combining the extra information content available from synchrotron radiation circular dichroism data with sequence methods also shows improvements. Conclusion Combining sequence prediction with experimentally determined spectroscopic methods for protein secondary structure content significantly enhances the accuracy of the overall results obtained. PMID:18197968

  11. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  12. Total absorption Cherenkov spectrometers

    NASA Astrophysics Data System (ADS)

    Malinovski, E. I.

    2015-05-01

    A short review of 50 years of work done with Cherenkov detectors in laboratories at the Lebedev Physical Institute is presented. The report considers some issues concerning the use of Cherenkov total absorption counters based on lead glass and heavy crystals in accelerator experiments.

  13. Cholesterol Absorption and Metabolism.

    PubMed

    Howles, Philip N

    2016-01-01

    Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results. PMID:27150091

  14. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic nature of lipids, dietary fat is handled differently than protein or carbohydrate with respect with digestion and absorption. Dietary fats are broken down throughout the gastrointestinal system. A unique group of enzymes and cofactors allows this process to proceed in an eff...

  15. ZINC ABSORPTION BY INFANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc is a vital mineral in human nutrition, and rare cases of overt zinc deficiency are well described in term and preterm infants. A variety of methods have been developed to assess zinc absorption, retention, and balance in humans, either using mass (metabolic) balance or stable isotope-based METH...

  16. Absorption driven focus shift

    NASA Astrophysics Data System (ADS)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  17. Linear-Algebra Programs

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  18. First operation of circular dichroism measurements with periodic photon-helicity switching by a variably polarizing undulator at BL23SU at SPring-8

    NASA Astrophysics Data System (ADS)

    Agui, A.; Yoshigoe, A.; Nakatani, T.; Matsushita, T.; Saitoh, Y.; Yokoya, A.; Tanaka, H.; Miyahara, Y.; Shimada, T.; Takeuchi, M.; Bizen, T.; Sasaki, S.; Takao, M.; Aoyagi, H.; Kudo, T. P.; Satoh, K.; Wu, S.; Hiramatsu, Y.; Ohkuma, H.

    2001-08-01

    This article presents the first operation of the magnetic circular dichroism (MCD) measurement system with periodic photon-helicity switching. The measurements were performed at the newly constructed soft x-ray beamline—BL23SU— at the third-generation synchrotron radiation facility, SPring-8. The monochromator control system was synchronized to the movement of the magnetic row (phase shift) of an APPLE-2 (Sasaki) type variably polarizing undulator. The periodic phase shift of the undulator provided the switching of helicity polarizing soft x rays up to 0.1 Hz. The closed-orbit distortion of the storage ring was controlled to avoid optical axis disturbances at this beamline as well as at other beamlines. The circular dichroism spectra with helicity switching by APPLE-2 show the possibility of high-sensitivity MCD measurements. This method promotes precise MCD measurements and can be a powerful technique to study magnetism as well as dichroism.

  19. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (<0.1micron) were also collected at site T0 and T1 (Universidad Technologica de Tecamac, State of Mexico) from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. Samples were collected on quartz fiber filters with high volume impactor samplers. Continuous absorption spectra of these aerosol samples have been obtained in the laboratory from 280 to 900nm with the use of an integrating sphere coupled to a UV spectrometer (Beckman DU with a Labsphere accessory). The integrating sphere allows the detector to collect and spatially integrate the total radiant flux reflected from the sample and therefore allows for the measurement of absorption on highly reflective or diffusely scattering samples. These continuous spectra have also been used to obtain the

  20. Absorption Features in Soil Spectra Assessment.

    PubMed

    Vašát, Radim; Kodešová, Radka; Borůvka, Luboš; Jakšík, Ondřej; Klement, Aleš; Drábek, Ondřej

    2015-12-01

    From a wide range of techniques appropriate to relate spectra measurements with soil properties, partial least squares (PLS) regression and support vector machines (SVM) are most commonly used. This is due to their predictive power and the availability of software tools. Both represent exclusively statistically based approaches and, as such, benefit from multiple responses of soil material in the spectrum. However, physical-based approaches that focus only on a single spectral feature, such as simple linear regression using selected continuum-removed spectra values as a predictor variable, often provide accurate estimates. Furthermore, if this approach extends to multiple cases by taking into account three basic absorption feature parameters (area, width, and depth) of all occurring features as predictors and subjecting them to best subset selection, one can achieve even higher prediction accuracy compared with PLS regression. Here, we attempt to further extend this approach by adding two additional absorption feature parameters (left and right side area), as they can be important diagnostic markers, too. As a result, we achieved higher prediction accuracy compared with PLS regression and SVM for exchangeable soil pH, slightly higher or comparable for dithionite-citrate and ammonium oxalate extractable Fe and Mn forms, but slightly worse for oxidizable carbon content. Therefore, we suggest incorporating the multiple linear regression approach based on absorption feature parameters into existing working practices. PMID:26555184