Science.gov

Sample records for absorption liquid flow

  1. Combined mass and heat transfer during nonisothermal absorption in gas-liquid slug flow

    SciTech Connect

    Elperin, T.; Fominykh, A.

    1995-03-01

    A model of combined mass and heat transfer during nonisothermal gas absorption from a slug rising, in a channel filled with liquid is suggested. The expressions for coefficients of heat and mass transfer from a single slug are derived in the approximation of the thin concentration and heat boundary layers in a liquid phase. Under the assumptions of a perfect mixing of the dissolved -as in liquid plugs and uniform temperature distribution in liquid plugs, recurrent relations for the dissolved gas concentration and temperature in the n-th liquid plug and mass and heat fluxes from the n-th gas slug are derived. The total mass and heat fluxes in a gas-liquid slug flow are determined. In the limiting case of absorption without heat release the derived formulas recover the expressions for isothermal absorption in a gas-liquid slug flow.

  2. Polymer-supported ionic liquid solid phase extraction for trace inorganic and organic mercury determination in water samples by flow injection-cold vapor atomic absorption spectrometry.

    PubMed

    Escudero, Leticia B; Olsina, Roberto A; Wuilloud, Rodolfo G

    2013-11-15

    A simple and green technique named polymer-supported ionic liquid solid phase extraction (PSIL-SPE) was developed for mercury (Hg) species determination. Inorganic Hg (InHg) species was complexed with chloride ions followed by its introduction into a flow injection on-line system to quantitatively retain the anionic chlorocomplex (HgCl4(2-)) in a column packed with CYPHOS(®) IL 101-impregnated resin. The trapped InHg was then reduced with stannous chloride (SnCl2) and eluted with the same flow of reducing agent followed by cold vapor atomic absorption spectrometry (CV-AAS) detection. Organic mercury species (OrgHg) did not interact with the impregnated resin and were not retained into the column. Total concentration of OrgHg was evaluated by difference between total Hg and InHg concentration. A 95% extraction efficiency was achieved for InHg when the procedure was developed under optimal experimental conditions. The limit of detection obtained for preconcentration of 40 mL of sample was 2.4 ng L(-1) InHg. The relative standard deviation (RSD) was 2.7% (at 1 µg L(-1) InHg and n=10) calculated from the peak height of absorbance signals (Gaussian-shape and reproducible peaks). This work reports the first polymer-supported IL solid phase extraction approach implemented in a flow injection on-line system for determination of Hg species in mineral, tap and river water samples.

  3. Broadband microwave absorption spectrometer for liquid media

    SciTech Connect

    Mukherjee, P.; Gosnell, T.R.; Bigio, I.J.

    1988-12-01

    A broadband, continuous-sweep microwave spectrometer has been constructed for measurements of the absorption coefficient of aqueous solutions and other liquid media. The spectrometer makes use of the phase fluctuation optical heterodyne technique, which provides a direct measure of the microwave power deposited in the sample. Consequently, in contrast to the standard dielectrometric techniques that indirectly determine the absorption coefficient via separate measurements of the real and imaginary parts of the dielectric constant, this spectrometer directly measures the microwave absorption coefficient. Broadband spectra are obtained using a transmission line to couple microwave power into the liquid sample. The absorption spectrum for deionized water in the range 3--20 GHz is presented as an example and shows excellent agreement with calculated values of the absorption coefficient based on previously published dielectric data.

  4. Liquid/Gas Flow Mixers

    NASA Technical Reports Server (NTRS)

    Fabris, Gracio

    1994-01-01

    Improved devices mix gases and liquids into bubbly or foamy flows. Generates flowing, homogeneous foams or homogeneous dispersions of small, noncoalescing bubbles entrained in flowing liquids. Mixers useful in liquid-metal magnetohydrodynamic electric-power generator, froth flotation in mining industry, wastewater treatment, aerobic digestion, and stripping hydrocarbon contaminants from ground water.

  5. Liquid for absorption of solar heat

    SciTech Connect

    Nakamura, T.; Iwamoto, Y.; Kadotani, K.; Marui, T.

    1984-11-13

    A liquid for the absorption of solar heat, useful as an heat-absorbing medium in water heaters and heat collectors comprises: a dispersing medium selected from the group consisting of propylene glycol, mixture of propylene glycol with water, mixture of propylene glycol with water and glycerin, and mixture of glycerin with water, a dispersant selected from the group consisting of polyvinylpyrrolidone, caramel, and mixture of polyvinylpyrrolidone with caramel, and a powdered activated carbon as a black coloring material.

  6. Liquid-absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, S.

    1990-12-11

    A system is described for detecting trace concentrations of an analyte in air and includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container in which is disposed a wettable material extending substantially the entire length of the container. One end of the wettable material is continuously wetted with an analyte-sorbing liquid, which flows to the other end of the container. Sample air is flowed through the container in contact with the wetted material for trapping and preconcentrating the traces of analyte in the sorbing liquid, which is then collected at the other end of the container and discharged to the detector. The wetted material may be a wick comprising a bundle of fibers, one end of which is immersed in a reservoir of the analyte-sorbing liquid, or may be a liner disposed on the inner surface of the container, with the sorbing liquid being centrifugally dispersed onto the liner at one end thereof. The container is preferably vertically oriented so that gravity effects the liquid flow. 4 figs.

  7. Liquid-absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, Solomon

    1990-01-01

    A system for detecting trace concentrations of an analyte in air and includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container in which is disposed a wettable material extending substantially the entire length of the container. One end of the wettable material is continuously wetted with an analyte-sorbing liquid, which flows to the other end of the container. Sample air is flowed through the container in contact with the wetted material for trapping and preconcentrating the traces of analyte in the sorbing liquid, which is then collected at the other end of the container and discharged to the detector. The wetted material may be a wick comprising a bundle of fibers, one end of which is immersed in a reservoir of the analyte-sorbing liquid, or may be a liner disposed on the inner surface of the container, with the sorbing liquid being centrifugally dispersed onto the liner at one end thereof. The container is preferably vertically oriented so that gravity effects the liquid flow.

  8. High throughput liquid absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, Solomon; Bozen, Ralph M.

    1992-01-01

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis.

  9. High throughput liquid absorption preconcentrator sampling instrument

    DOEpatents

    Zaromb, S.; Bozen, R.M.

    1992-12-22

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis. 12 figs.

  10. High-intensity laser heating in liquids: Multiphoton absorption

    SciTech Connect

    Longtin, J.P.; Tien, C.L.

    1995-12-31

    At high laser intensities, otherwise transparent liquids can absorb strongly by the mechanism of multiphoton absorption, resulting in absorption and heating several orders of magnitude greater than classical, low-intensity mechanisms. The use of multiphoton absorption provides a new mechanism for strong, controlled energy deposition in liquids without bulk plasma formation, shock waves, liquid ejection, etc., which is of interest for many laser-liquid applications, including laser desorption of liquid films, laser particle removal, and laser water removal from microdevices. This work develops a microscopically based model of the heating during multiphoton absorption in liquids. The dependence on pulse duration, intensity, wavelength, repetition rate, and liquid properties is discussed. Pure water exposed to 266 nm laser radiation is investigated, and a novel heating mechanism for water is proposed that uses multiple-wavelength laser pulses.

  11. Laser absorption phenomena in flowing gas devices

    NASA Technical Reports Server (NTRS)

    Chapman, P. K.; Otis, J. H.

    1976-01-01

    A theoretical and experimental investigation is presented of inverse Bremsstrahlung absorption of CW CO2 laser radiation in flowing gases seeded with alkali metals. In order to motivate this development, some simple models are described of several space missions which could use laser powered rocket vehicles. Design considerations are given for a test call to be used with a welding laser, using a diamond window for admission of laser radiation at power levels in excess of 10 kW. A detailed analysis of absorption conditions in the test cell is included. The experimental apparatus and test setup are described and the results of experiments presented. Injection of alkali seedant and steady state absorption of the laser radiation were successfully demonstrated, but problems with the durability of the diamond windows at higher powers prevented operation of the test cell as an effective laser powered thruster.

  12. Research development of designing flow cells for optical absorption detectors.

    PubMed

    Yang, Sandong; Tang, Tao; Li, Tong; Wang, Fengyun; Hao, Qingli

    2016-02-01

    The optical absorption detector is one of the most commonly used detectors for high performance liquid chromatography (HPLC). As a core part of this kind of detector, the designs of flow cells, where light passes through samples for acquiring samples information, will affect the performance of a detector. In order to enhance the signal to noise ratio of detectors and reduce the bands broadening that come from flow cells, it is necessary to design a flow cell with a longer optical path length and a less cell volume while maintaining the luminous flux. However the limitations of the machining capacity make it difficult to increase the optical path length, reduce the cell volume and keep or increase the luminous flux simultaneously. It is a challenge to optimize the designing and machining of flow cells so as to improve the performance of detectors. This review discusses the development of designing flow cells based on the detection principle in some aspects of increasing the optical path length, reducing the cell volume, taking the advantages of total reflection and so on. At the same time, some of the designs are illustrated in detail. These various ideas and structures are significant references for designing flow cells and developing optical absorption detectors. PMID:27382716

  13. Liquid cooled counter flow turbine bucket

    DOEpatents

    Dakin, James T.

    1982-09-21

    Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.

  14. Optimal design of porous structures for the fastest liquid absorption.

    PubMed

    Shou, Dahua; Ye, Lin; Fan, Jintu; Fu, Kunkun

    2014-01-14

    Porous materials engineered for rapid liquid absorption are useful in many applications, including oil recovery, spacecraft life-support systems, moisture management fabrics, medical wound dressings, and microfluidic devices. Dynamic absorption in capillary tubes and porous media is driven by the capillary pressure, which is inversely proportional to the pore size. On the other hand, the permeability of porous materials scales with the square of the pore size. The dynamic competition between these two superimposed mechanisms for liquid absorption through a heterogeneous porous structure may lead to an overall minimum absorption time. In this work, we explore liquid absorption in two different heterogeneous porous structures [three-dimensional (3D) circular tubes and porous layers], which are composed of two sections with variations in radius/porosity and height. The absorption time to fill the voids of porous constructs is expressed as a function of radius/porosity and height of local sections, and the absorption process does not follow the classic Washburn's law. Under given height and void volume, these two-section structures with a negative gradient of radius/porosity against the absorption direction are shown to have faster absorption rates than control samples with uniform radius/porosity. In particular, optimal structural parameters, including radius/porosity and height, are found that account for the minimum absorption time. The liquid absorption in the optimized porous structure is up to 38% faster than in a control sample. The results obtained can be used a priori for the design of porous structures with excellent liquid management property in various fields.

  15. Absorption and emission in defective cholesteric liquid crystal cells

    NASA Astrophysics Data System (ADS)

    Gevorgyan, A. H.; Harutyunyan, M. Z.; Matinyan, G. K.; Oganesyan, K. B.; Rostovtsev, Yu V.; Kurizki, G.; Scully, M. O.

    2016-04-01

    We investigated peculiarities of absorption, emission and photonic density of states of a cholesteric liquid crystal with an isotropic defect layer inside. The influence of the defect layer position on absorption and emission in the system was studied. It was shown that for non-diffracting circularly polarized incident light absorption/emission is maximum if the defect is in the centre of the system; and for diffracting circularly polarized incident light absorption/emission is maximum if the defect is shifted from the centre of the system to its left border from where light is incident. We also investigated influence of the defect layer thickness and those parameters which characterize loss and gain on absorption and emission. The influence of anisotropic absorption in the cholesteric liquid crystal layer on photonic density states was investigated, too.

  16. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION

    SciTech Connect

    Liang Hu

    2004-09-30

    A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate of carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.

  17. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION

    SciTech Connect

    Liang Hu; Adeyinka A. Adeyiga

    2004-05-01

    A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate of carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.

  18. Liquid Bismuth Propellant Flow Sensor

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Stanojev, B. J.; Korman, V.

    2007-01-01

    Quantifying the propellant mass flow rate in liquid bismuth-fed electric propulsion systems has two challenging facets. First, the flow sensors must be capable of providing a resolvable measurement at propellant mass flow rates on the order of 10 mg/see with and uncertainty of less that 5%. The second challenge has to do with the fact that the materials from which the flow sensors are fabricated must be capable of resisting any of the corrosive effects associated with the high-temperature propellant. The measurement itself is necessary in order to properly assess the performance (thrust efficiency, Isp) of thruster systems in the laboratory environment. The hotspot sensor[I] has been designed to provide the bismuth propellant mass flow rate measurement. In the hotspot sensor, a pulse of thermal energy (derived from a current pulse and associated joule heating) is applied near the inlet of the sensor. The flow is "tagged" with a thermal feature that is convected downstream by the flowing liquid metal. Downstream, a temperature measurement is performed to detect a "ripple" in the local temperature associated with the passing "hotspot" in the propellant. By measuring the time between the upstream generation and downstream detection of the thermal feature, the flow speed can be calculated using a "time of flight" analysis. In addition, the system can be calibrated by measuring the accumulated mass exiting the system as a-function of time and correlating this with the time it takes the hotspot to convect through the sensor. The primary advantage of this technique is that it doesn't depend on an absolute measurement of temperature but, instead, relies on the observation of thermal features. This makes the technique insensitive to other externally generated thermal fluctuations. In this paper, we describe experiments performed using the hotspot flow sensor aimed at quantifying the resolution of the sensor technology. Propellant is expelled onto an electronic scale to

  19. Liquid metal Flow Meter - Final Report

    SciTech Connect

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  20. Terahertz absorption spectra and potential energy distribution of liquid crystals.

    PubMed

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-15

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave. PMID:26476072

  1. Tuning the Carbon Dioxide Absorption in Amino Acid Ionic Liquids.

    PubMed

    Firaha, Dzmitry S; Kirchner, Barbara

    2016-07-01

    One of the possible solutions to prevent global climate change is the reduction of CO2 emissions, which is highly desired for the sustainable development of our society. In this work, the chemical absorption of carbon dioxide in amino acid ionic liquids was studied through first-principles methods. The use of readily accessible and biodegradable amino acids as building blocks for ionic liquids makes them highly promising replacements for the widely applied hazardous aqueous solutions of amines. A detailed insight into the reaction mechanism of the CO2 absorption was obtained through state-of-the-art theoretical methods. This allowed us to determine the reason for the specific CO2 capacities found experimentally. Moreover, we have also conducted a theoretical design of ionic liquids to provide valuable insights into the precise tuning of the energetic and kinetic parameters of the CO2 absorption.

  2. Tuning the Carbon Dioxide Absorption in Amino Acid Ionic Liquids.

    PubMed

    Firaha, Dzmitry S; Kirchner, Barbara

    2016-07-01

    One of the possible solutions to prevent global climate change is the reduction of CO2 emissions, which is highly desired for the sustainable development of our society. In this work, the chemical absorption of carbon dioxide in amino acid ionic liquids was studied through first-principles methods. The use of readily accessible and biodegradable amino acids as building blocks for ionic liquids makes them highly promising replacements for the widely applied hazardous aqueous solutions of amines. A detailed insight into the reaction mechanism of the CO2 absorption was obtained through state-of-the-art theoretical methods. This allowed us to determine the reason for the specific CO2 capacities found experimentally. Moreover, we have also conducted a theoretical design of ionic liquids to provide valuable insights into the precise tuning of the energetic and kinetic parameters of the CO2 absorption. PMID:27214652

  3. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, Robert F.

    1987-01-01

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs.

  4. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, R.F.

    1987-11-24

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs. 4 figs.

  5. Advances in gas-liquid flows 1990

    SciTech Connect

    Kim, J.M. . Nuclear Reactor Lab.); Rohatgi, U.S. ); Hashemi, A. )

    1990-01-01

    Gas-liquid two-phase flows commonly occur in nature and industrial applications. Rain, clouds, geysers, and waterfalls are examples of natural gas-liquid flow phenomena, whereas industrial applications can be found in nuclear reactors, steam generators, boilers, condensers, evaporators, fuel atomization, heat pipes, electronic equipment cooling, petroleum engineering, chemical process engineering, and many others. The household-variety phenomena such as garden sprinklers, shower, whirlpool bath, dripping faucet, boiling tea pot, and bubbling beer provide daily experience of gas-liquid flows. The papers presented in this volume reflect the variety and richness of gas-liquid two-phase flow and the increasing role it plays in modern technology. This volume contains papers dealing with some recent development in gas-liquid flow science and technology, covering basic gas-liquid flows, measurements and instrumentation, cavitation and flashing flows, countercurrent flow and flooding, flow in various components and geometries liquid metals and thermocapillary effects, heat transfer, nonlinear phenomena, instability, and other special and general topics related to gas-liquid flows.

  6. Characterization of hydrophobic nanoporous particle liquids for energy absorption

    NASA Astrophysics Data System (ADS)

    Hsu, Yi; Liu, Yingtao

    2016-04-01

    Recently, the development of hydrophobic nanoporous technologies has drawn increased attention, especially for the applications of energy absorption and impact protection. Although significant amount of research has been conducted to synthesis and characterize materials to protect structures from impact damage, the tradition methods focused on converting kinetic energy to other forms, such as heat and cell buckling. Due to their high energy absorption efficiency, hydrophobic nanoporous particle liquids (NPLs) are one of the most attractive impact mitigation materials. During impact, such particles directly trap liquid molecules inside the non-wetting surface of nanopores in the particles. The captured impact energy is simply stored temporarily and isolated from the original energy transmission path. In this paper we will investigate the energy absorption efficiency of combinations of silica nanoporous particles and with multiple liquids. Inorganic particles, such as nanoporous silica, are characterized using scanning electron microscopy. Small molecule promoters, such as methanol and ethanol, are introduced to the prepared NPLs. Their effects on the energy absorption efficiency are studied in this paper. NPLs are prepared by dispersing the studied materials in deionized water. Energy absorption efficiency of these liquids are experimentally characterized using an Instron mechanical testing frame and in-house develop stainless steel hydraulic cylinder system.

  7. Absorption and Oxidation of Nitrogen Oxide in Ionic Liquids.

    PubMed

    Kunov-Kruse, Andreas J; Thomassen, Peter L; Riisager, Anders; Mossin, Susanne; Fehrmann, Rasmus

    2016-08-01

    A new strategy for capturing nitrogen oxide, NO, from the gas phase is presented. Dilute NO gas is removed from the gas phase by ionic liquids under ambient conditions. The nitrate anion of the ionic liquid catalyzes the oxidation of NO to nitric acid by atmospheric oxygen in the presence of water. The nitric acid is absorbed in the ionic liquid up to approximately one mole HNO3 per mole of the ionic liquid due to the formation of hydrogen bonds. The nitric acid can be desorbed by heating, thereby regenerating the ionic liquid with excellent reproducibility. Here, time-resolved in-situ spectroscopic investigations of the reaction and products are presented. The procedure reveals a new vision for removing the pollutant NO by absorption into a non-volatile liquid and converting it into a useful bulk chemical, that is, HNO3 . PMID:27384885

  8. Transdermal nicotine absorption handling e-cigarette refill liquids.

    PubMed

    Maina, Giovanni; Castagnoli, Carlotta; Passini, Valter; Crosera, Matteo; Adami, Gianpiero; Mauro, Marcella; Filon, Francesca Larese

    2016-02-01

    The concentrated nicotine in e-cigarette refill liquids can be toxic if inadvertently ingested or absorbed through the skin. Reports of poisonings due to accidental ingestion of nicotine on refill liquids are rapidly increasing, while the evaluation of nicotine dermally absorbed still lacks. For that reason we studied transdermal nicotine absorption after the skin contamination with e-liquid. Donor chambers of eight Franz diffusion cells were filled with 1 mL of 0.8 mg/mL nicotine e-liquid for 24 h. The concentration of nicotine in the receiving phase was determined by high-performance liquid chromatography (LOD:0.1 μg/mL). Nicotine was detectable in receiving solution 2 h after the start of exposure and increased progressively. The medium flux calculated was 4.82 ± 1.05 μg/cm(2)/h with a lag time of 3.9 ± 0.1 h. After 24 h, the nicotine concentration in the receiving compartment was 101.02 ± 22.35 μg/cm(2) corresponding to 3.04 mg of absorbed nicotine after contamination of a skin surface of 100 cm(2). Skin contamination with e-liquid can cause nicotine skin absorption: caution must be paid when handling refill e-liquids.

  9. Liquid-Flow Controller Responds To Pressure

    NASA Technical Reports Server (NTRS)

    Cox, George B., Jr.

    1990-01-01

    Mechanism controls flow of liquid in fuel-spraying head in combustion chamber responds nonlinearly to pressure of liquid. Shell of spraybar expands or contracts laterally as its internal pressure rises or falls, forcing collar down or up on entry tube. Area of window formed by slots in collar and entry tube thus increases or decreases. Drop in pressure through variable-area orifice increases much more with flow through orifice than does corresponding drop in pressure with flow through fixed-area orifice. In practical terms, lower pump pressure needed with variable orifice for given flow of liquid. Principle of operation applicable to spraying heads for other fluids.

  10. Development of an Ionic-Liquid Absorption Heat Pump

    SciTech Connect

    Holcomb, Don

    2011-03-29

    Solar Fueled Products (SFP) is developing an innovative ionic-liquid absorption heat pump (ILAHP). The development of an ILAHP is extremely significant, as it could result in annual savings of more than 190 billion kW h of electrical energy and $19 billion. This absorption cooler uses about 75 percent less electricity than conventional cooling and heating units. The ILAHP also has significant environmental sustainability benefits, due to reduced CO2 emissions. Phase I established the feasibility and showed the economic viability of an ILAHP with these key accomplishments: • Used the breakthrough capabilities provided by ionic liquids which overcome the key difficulties of the common absorption coolers. • Showed that the theoretical thermodynamic performance of an ILAHP is similar to existing absorption-cooling systems. • Established that the half-effect absorption cycle reduces the peak generator temperature, improving collector efficiency and reducing collector area. • Component testing demonstrated that the most critical components, absorber and generator, operate well with conventional heat exchangers. • Showed the economic viability of an ILAHP. The significant energy savings, sustainability benefits, and economic viability are compelling reasons to continue the ILAHP development.

  11. Electromagnetic flow rate meter. [for liquid metals

    NASA Technical Reports Server (NTRS)

    Banks, B. A. (Inventor)

    1974-01-01

    A liquid metal, whose flow rate is to be determined, is directed through a chamber made of electrically-insulating material on which there is impressed a magnetic field perpendicular to the direction of flow of the liquid metal. The magnetic field is made to increase in strength in a downstream direction of the flow of liquid metal. At least a pair of electrodes are disposed in the chamber traversely and perpendicular to the direction of flow and an ammeter is connected between the electrodes. Electrodes may be disposed in the top or the bottom of the chamber and each may be segmented. Oppositely disposed electrodes may be used with at least one dividing wall extending from each electrode to cause reversal of the direction of flow of the liquid metal. The magnetic field may be provided by electromagnets or permanent magnets such as shaded pole permanent magnets.

  12. Downhole gaseous liquid flow agitator

    SciTech Connect

    Kamilos, N.; Kennedy, D.D.; Lederhos, L.J. Jr.

    1989-03-14

    An apparatus is described for agitating and mixing of a gaseous phase and a liquid phase comprising: a first tube having non-blocking internal threads within the first tube to agitate a liquid phase adhering thereto with a gaseous phase passing therethrough, whereby a uniform gaseous phase and liquid phase mixture is formed; and a second tube connected to an end of the first tube having non-blocking internal threads of opposite handedness.

  13. Simultaneous heat and mass transfer in absorption of gases in laminar liquid films

    SciTech Connect

    Grossman, G

    1982-09-01

    A theoretical analysis of the combined heat and mass transfer process taking place in the absorption of a gas or vapor into a laminar liquid film is described. This type of process, which occurs in many gas-liquid systems, often releases only a small amount of heat, making the process almost isothermal. In some cases, however, the heat of absorption is significant and temperature variations cannot be ignored. One example, from which the present study originated, is in absorption heat pumps where mass transfer is produced specifically to generate a temperature change. The model analyzed describes a liquid film that flows over an inclined plane and has its free surface in contact with stagnant vapor. The absorption process at the surface creates nonuniform temperature and concentration profiles in the film, which develop until equilibrium between the liquid and vapor is achieved. The energy and diffusion equations are solved simultaneously to give the temperature and concentration variations at the interface and the wall. Two cases of interest are considered: constant-temperature and adiabatic walls. The Nusselt and Sherwood numbers are expressed in terms of the operating parameters, from which heat and mass transfer coefficients can be determined. The Nusselt and Sherwood numbers are found to depend on the Peclet and Lewis numbers as well as on the equilibrium characteristics of the working materials.

  14. Convection flows driven by laser heating of a liquid layer.

    PubMed

    Rivière, David; Selva, Bertrand; Chraibi, Hamza; Delabre, Ulysse; Delville, Jean-Pierre

    2016-02-01

    When a fluid is heated by the absorption of a continuous laser wave, the fluid density decreases in the heated area. This induces a pressure gradient that generates internal motion of the fluid. Due to mass conservation, convection eddies emerge in the sample. To investigate these laser-driven bulk flows at the microscopic scale, we built a setup to perform temperature measurements with a fluorescent-sensitive dye on the one hand, and measured the flow pattern at different beam powers, using a particle image velocimetry technique on the other hand. Temperature measurements were also used in numerical simulations in order to compare predictions to the experimental velocity profiles. The combination of our numerical and experimental approaches allows a detailed description of the convection flows induced by the absorption of light, which reveals a transition between a thin and a thick liquid layer regime. This supports the basis of optothermal approaches for microfluidic applications. PMID:26986418

  15. Infrared absorption spectrum of liquid cryogen R-134a

    NASA Astrophysics Data System (ADS)

    Pikkula, Brian M.; Guiwan, Edword; Chao, Edward; Anvari, Bahman

    2004-07-01

    Cryogen spray cooling (CSC) is an effective method to minimize epidermal damage during laser treatment of various cutaneous anomalies such as port wine stains, excess hair, and facial rhytides. Radiometric temperature measurements provide a noninvasive method to estimate the skin surface temperature. Since the infrared absorption spectrum of the cryogen film has remained unknown, assumptions for those values may lead to inaccurate temperature estimations. We have constructed several high-pressure infrared transparent cuvettes to determine the absorption coefficient of room temperature R-134a in liquid phase using Fourier Transform Infrared Spectroscopy (FTIR) in the 2.5 - 14 μm spectral bandwidth. Results demonstrate that liquid R-134a has several absorption bands in the infrared, with those between 7 - 10.5 and 11.5 - 12.5 μm being the most prominent. Additionally, the absorption coefficient at two common radiometric bands, 3 - 5 and 7 - 11 μm differ by four orders of magnitude. Results of this study will lead to further improvements in interpreting radiometric temperature measurements when using CSC.

  16. Nanotube Electron Drag in Flowing Liquids.

    PubMed

    Král; Shapiro

    2001-01-01

    We show that electric current can be generated in metallic carbon nanotubes immersed in liquids flowing along them. Molecular layers of the liquid coat the nanotube, slip along its surface, and excite there a phonon wind, which drags free carriers in the tube. The induced electric current should allow building of nanoscale detectors or power cells.

  17. Radiation Force induced Liquid Flow within a Homogeneous Medium

    NASA Astrophysics Data System (ADS)

    Choi, Honggu; Joo, Boram; Jisung, Jeong; Oh, Kyunghwan; Yonsei Univ Collaboration

    2015-05-01

    The visualization of optical force required refractive index inhomogeneous boundary, or absorption to generate radiation pressure. However, the dilute liquid medium with low attenuation coefficient is affected by light carrying momentum, and generated flow. The optical force density within a dielectric medium oscillates, and their time averaged value was regarded as a vanishing parameter, however the existence of light carrying momentum within a dielectric media generates material momentum density and it results localized liquid flow. We used 980 nm fiber laser source guided along HI1060 single mode fiber which guides localized single mode Poynting vector, in order to generate effectively measureable radiation pressure during light propagation within deionized water. The micro beads with 2 micrometer diameter were deployed to visualize the flow and their location was out of beam to reject the effect of radiation pressure at the refractive index inhomogeneity between water and polymer beads.

  18. High-throughput liquid-absorption preconcentrator sampling methods

    DOEpatents

    Zaromb, Solomon

    1994-01-01

    A system for detecting trace concentrations of an analyte in air includes a preconcentrator for the analyte and an analyte detector. The preconcentrator includes an elongated tubular container comprising a wettable material. The wettable material is continuously wetted with an analyte-sorbing liquid which flows from one part of the container to a lower end. Sampled air flows through the container in contact with the wetted material with a swirling motion which results in efficient transfer of analyte vapors or aerosol particles to the sorbing liquid and preconcentration of traces of analyte in the liquid. The preconcentrated traces of analyte may be either detected within the container or removed therefrom for injection into a separate detection means or for subsequent analysis.

  19. A comparative flow visualization study of thermocapillary flow in drops in liquid-liquid systems

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rashidnia, N.

    1991-01-01

    Experiments are performed to visualize thermocapillary flow in drops in an immiscible host liquid. The host liquid used is silicone oil. Drops of three different liquids are used, viz, vegetable oil, water-methanol mixture anad pure methanol. Clear evidence of thermocapillary flow is seen in vegetable oil drops. For a mixture of water and methanol (approximately 50-50 by weight), natural convection is seen to dominate the flow outside the drop. Pure methanol drops exhibit thermocapillary flow, but dissolve in silicone oil. A small amount of water added to pure methanol significantly reduces the dissolution. Flow oscillations occur in this system for both isothermal and non-isothermal conditions.

  20. Geometry of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  1. X-ray absorption spectroscopy of liquid surface

    NASA Astrophysics Data System (ADS)

    Watanabe, Iwao; Tanida, Hajime; Kawauchi, Sigehiro; Harada, Makoto; Nomura, Masaharu

    1997-09-01

    An apparatus has been constructed for x-ray absorption spectroscopy of elements at air/aqueous solution interface. Its surface sensitivity is gained from glancing incidence of synchrotron radiation under total reflection condition. The absorption is detected by total conversion He ion-yield method. This apparatus was operated at the beam line 7C of Photon Factory, where the incident photon beam comes from a sagittal focus double-crystal monochromator via a 70-cm-long bent mirror. The mirror focuses the beam vertically and changes the beam direction downward by 1 mrad to irradiate solution surface. The essential requirement of this technique, ripple-free liquid surface at accurate position, was attained by introducing a trough on a floating boat, continuous surface level monitoring, and an automatic Z-stage control. The x-ray absorption edge jump demonstrated that surface concentration of bromide ion follows the Langmuir type adsorption for tetraalkylammonuim bromide solution. By comparing the jump values for surface-active and -inactive bromide salt solutions, the detecting depth of the present technique was determined to be 8.8 nm. An extended x-ray absorption fine structure analysis of bromide ion segregated to the surface by stearyltrimethylammonium cation indicated that its solvation structure is different from that of bulk.

  2. Liquid infused surfaces in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Fu, Matthew; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang; Wang, Karen; Lee, Kevin; Hultmark, Marcus

    2014-11-01

    A turbulent channel flow facility is used to measure the drag reduction capabilities and dynamic behavior of liquid-infused micro-patterned surfaces. Liquid infused surfaces have been proposed as a robust alternative to traditional air-cushion-based superhydrophobic surfaces. The mobile liquid lubricant creates a surface slip with the outer turbulent shear flow as well as an energetic sink to dampen turbulent fluctuations. Micro-manufactured surfaces can be mounted flush in the channel and exposed to turbulent flows. Two configurations are possible, both capable of producing laminar and turbulent flows. The first configuration allows detailed investigation of the infused liquid layer and the other allows well resolved pressure gradient measurements. Both of the configurations have high aspect ratios 15-45:1. Drag reduction for a variety of liquid-infused surface architectures is quantified by measuring pressure drop in the channel. Flow in the oil film is simultaneously visualized using fluorescent dye. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  3. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  4. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    PubMed

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  5. H I absorption toward cooling flows in clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Mcnamara, Brian R.; O'Connell, Robert W.; Bregman, Joel N.

    1990-01-01

    An H I survey of 14 cooling flow clusters and two noncooling flow clusters was conducted, and H I absorption features were detected against the nuclear radio continuum sources of two cooling flow dominant (CFD) galaxies, 2A 0335 + 096 and MKW3s. The absorption features are broad and redshifted with respect to the stellar absorption-line velocity of the CFDs by 90-225 km/s. This indicates that the H I is falling onto, and is probably gravitationally bound to, the CFDs. The kinematics of the H I clouds suggest a possible kinematic link between the warm and cold phases of the intracluster medium. The clouds are orders of magnitude smaller in radius and mass and larger in density than Galactic H I clouds. The detected CFDs have mass-accretion rates that are about 2.5 times larger than the CFDs that were not detected.

  6. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, E.S.; Woodruff, S.D.

    1984-06-19

    A refractive index and absorption detector are disclosed for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded. 10 figs.

  7. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, Edward S.; Woodruff, Steven D.

    1984-06-19

    A refractive index and absorption detector for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded.

  8. Liquid hydrogen flow problems in Kiwi reactors

    SciTech Connect

    Thurston, R.S.

    1992-09-01

    The Kiwi series of reactors were the first ones tested in the US Rover Program in the development of nuclear rocket engines for space propulsion. The early experiments with liquid hydrogen showed that parallel flow systems were prone to uneven flow distributions and violent fluctuations in pressure and flow that were capable of destroying a reactor core. Kiwi flow distribution problems were solved by using multiple feed lines into the nozzle cooling system and carefully balancing impedance among them. The violent pressure and flow fluctuations were eliminated after their cause was identified as resonance phenomena driven by the response to flow disturbances of heat transfer through a superheated hydrogen layer. Smooth flow operations were assured by rapidly bringing operating pressures beyond several times the critical pressure of hydrogen. After this initial rough start, solid core nuclear rocket engines successfully passed milestones of achievements during the remainder of the Rover program.

  9. Flow behavior in liquid molding

    NASA Technical Reports Server (NTRS)

    Hunston, D.; Phelan, F.; Parnas, R.

    1992-01-01

    The liquid molding (LM) process for manufacturing polymer composites with structural properties has the potential to significantly lower fabrication costs and increase production rates. LM includes both resin transfer molding and structural reaction injection molding. To achieve this potential, however, the underlying science base must be improved to facilitate effective process optimization and implementation of on-line process control. The National Institute of Standards and Technology (NIST) has a major program in LM that includes materials characterization, process simulation models, on-line process monitoring and control, and the fabrication of test specimens. The results of this program are applied to real parts through cooperative projects with industry. The key feature in the effort is a comprehensive and integrated approach to the processing science aspects of LM. This paper briefly outlines the NIST program and uses several examples to illustrate the work.

  10. Liquid phase controlled mass transfer in gas-liquid slug flow at low Reynolds numbers

    SciTech Connect

    Elperin, T.; Fominykh, A.

    1995-09-01

    A model of mass transfer during isothermal gas absorption from slugs rising in a channel filled with liquid at small Reynolds numbers is suggested. Fluid flow in the region below the bottom of gas slugs is assumed laminar and therefore vortex rings are not formed at the trailing edge of a gas slug. It is assumed also that a flow of dissolved gas can be described by a point source of mass which is located at the bottom of a gas slug. Intensity of this point source of mass at the bottom of the first gas slug emerging into a pure liquid is equal to the total mass flux from the surface of the first slug. The second gas slug emerges into a liquid with concentration distribution formed by a point source of mass at the bottom of the first gas slug. The third gas slug emerges in a liquid with a concentration distribution formed by a point source of mass at the bottom of the second gas slug and so on. Using this model a recurrent relation for mass flux from the n-th gas slug is derived and the total mass flux from n gas slugs in a gas-liquid slug flow is determined.

  11. Gas-Liquid Flow in Pipelines

    SciTech Connect

    Thomas J. Hanratty

    2005-02-25

    A research program was carried out at the University of Illinois in which develops a scientific approach to gas-liquid flows that explains their macroscopic behavior in terms of small scale interactions. For simplicity, fully-developed flows in horizontal and near-horizontal pipes. The difficulty in dealing with these flows is that the phases can assume a variety of configurations. The specific goal was to develop a scientific understanding of transitions from one flow regime to another and a quantitative understanding of how the phases distribute for a give regime. These basic understandings are used to predict macroscopic quantities of interest, such as frictional pressure drop, liquid hold-up, entrainment in annular flow and frequency of slugging in slug flows. A number of scientific issues are addressed. Examples are the rate of atomization of a liquid film, the rate of deposition of drops, the behavior of particles in a turbulent field, the generation and growth of interfacial waves. The use of drag-reducing polymers that change macroscopic behavior by changing small scale interactions was explored.

  12. Compartmentalized Droplets for Continuous Flow Liquid-Liquid Interface Catalysis.

    PubMed

    Zhang, Ming; Wei, Lijuan; Chen, Huan; Du, Zhiping; Binks, Bernard P; Yang, Hengquan

    2016-08-17

    To address the limitations of batch organic-aqueous biphasic catalysis, we develop a conceptually novel method termed Flow Pickering Emulsion, or FPE, to process biphasic reactions in a continuous flow fashion. This method involves the compartmentalization of bulk water into micron-sized droplets based on a water-in-oil Pickering emulsion, which are packed into a column reactor. The compartmentalized water droplets can confine water-soluble catalysts, thus "immobilizing" the catalyst in the column reactor, while the interstices between the droplets allow the organic (oil) phase to flow. Key fundamental principles underpinning this method such as the oil phase flow behavior, the stability of compartmentalized droplets and the confinement capability of these droplets toward water-soluble catalysts are experimentally and theoretically investigated. As a proof of this concept, case studies including a sulfuric acid-catalyzed addition reaction, a heteropolyacid-catalyzed ring opening reaction and an enzyme-catalyzed chiral reaction demonstrate the generality and versatility of the FPE method. Impressively, in addition to the excellent durability, the developed FPE reactions exhibit up to 10-fold reaction efficiency enhancement in comparison to the existing batch reactions, indicating a unique flow interface catalysis effect. This study opens up a new avenue to allow conventional biphasic catalysis reactions to access more sustainable and efficient flow chemistry using an innovative liquid-liquid interface protocol. PMID:27429173

  13. Radiant power flow and absorptance in thin films.

    PubMed

    Baumeister, P W

    1969-02-01

    Equations are developed for the flow of radiant power, transmittance, and absorptance of an absorbing multilayer, in terms of its characteristic matrix and the admittance of the surrounding media. This is applied to the design of bandpass filters and absorbing coatings. Some uv bandpass filters which contain several aluminum films are designed.

  14. An optical absorption cell with vapor cross flow.

    NASA Technical Reports Server (NTRS)

    Hendrickson, P. E.; Walls, W. L.; Broersma, S.

    1973-01-01

    Description of a water vapor cross flow system that simulates meteorological conditions and effectively curbs any disturbing effects of walls and vacuum connections in an optical absorption cell. Vapor equilibrium is established within 30 min. A 6.3 micron infrared beam traverses the pressure, temperature, and humidity controlled vapor column. The effect of these thermodynamic parameters can be examined.

  15. A study of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1993-01-01

    This study was a theoretical and experimental investigation of thin liquid sheet flows in vacuum. A sheet flow created by a narrow slit of width, W, coalesces to a point at a distance, L, as a result of surface tension forces acting at the sheet edges. As the flow coalesces, the fluid accumulates in the sheet edges. The observed triangular shape of the sheet agrees with the calculated triangular result. Experimental results for L/W as a function of Weber number, We, agree with the calculated result, L/W = the sq. root of 8We. The edge cross sectional shape is found to oscillate from elliptic to 'cigar' like to 'peanut' like and then back to elliptic in the flow direction. A theoretical one-dimensional model was developed that yielded only elliptic solutions for the edge cross section. At the points where the elliptic shapes occur, there is agreement between theory and experiment.

  16. Absorption measurements in liquid core waveguides using cavity ring-down spectroscopy.

    PubMed

    Bescherer, Klaus; Barnes, Jack A; Loock, Hans-Peter

    2013-05-01

    Short liquid core waveguides (LCWs) were included into a fiber-loop cavity ring-down absorption spectrometer to reduce the detection limit over, both, single pass absorption in a LCW and cavity-enhanced absorption using a conventional fiber-loop cavity. LCWs of 5 and 10 cm length were interfaced with a pressure-flow system and a multimode fiber-loop cavity using concave fiber lenses with matching numerical apertures and diameters. Two red dyes, Allura Red AC and Congo Red, were detected with a 532 nm pulsed laser at a 5 nM limit of detection in a detection volume of less than 1 μL, corresponding to a minimal detectable absorbance of less than 4 × 10(-4) cm(-1) and a minimal detectable change in absorption cross section, σ(min) = V(det) × ε × C(LOD), of about 14 μm(2) (Allura Red AC) and 37 μm(2) (Congo Red). PMID:23480430

  17. Ionic Liquid Development for Absorption Heat Pump Applications

    SciTech Connect

    MAERZKE, Katie; MOZURKEWICH, George; Abdelaziz, Omar; Gluesenkamp, Kyle R; Schneider, William F; Morrison, Doug; Maginn, Prof. Edward

    2014-01-01

    Ionic liquids (ILs) are a unique class of solvents with many potential applications, including absorption heating/cooling. Due to the large number of possible combinations of cations and anions, it is possible to tune the IL to obtain the required properties for the application of interest. Many ILs are very hydrophilic, while even the most hydrophobic ILs often absorb significant amounts of water. The presence of water in an IL can have a large effect on the system properties. For instance, a small amount of dissolved water often leads to a dramatic reduction in the viscosity of the mixture. Dissolved water also affects the ionic conductivity of ILs and alters the solvation power of ILs for both polar and non-polar solutes. Knowledge of the phase diagram of these IL/water mixtures therefore is essential when designing absorption heating systems. Measuring isotherms often requires time consuming and/or expensive experiments, and does not necessarily lead to a deeper understanding of the molecular level interactions responsible for water-IL interactions. In contrast, molecular simulations are relatively inexpensive to perform, allowing one to screen potential ILs for a given application. Simulation also provides a detailed picture of how water and a given IL interact, thereby providing insight into ways of designing an IL to have a desired water solubility. Toward this end, atomistic-level Monte Carlo (MC) simulations have been performed to predict isotherms for a variety of IL/water mixtures. The simulations predict that exchanging some of the IL cations with a small metal cation can lead to an increase in the hydrophilicity of the IL, which impacts the capacity of the fluid and the enthalpy of mixing. Molecular dynamics simulations, which unlike Monte Carlo simulations capture timedependent properties, were also carried out to estimate the relative viscosities of the solutions.

  18. Turbulent diamagnetism in flowing liquid sodium.

    PubMed

    Spence, E J; Nornberg, M D; Jacobson, C M; Parada, C A; Taylor, N Z; Kendrick, R D; Forest, C B

    2007-04-20

    The nature of Ohm's law is examined in a turbulent flow of liquid sodium. A magnetic field is applied to the flowing sodium, and the resulting magnetic field is measured. The mean velocity field of the sodium is also measured in an identical-scale water model of the experiment. These two fields are used to determine the terms in Ohm's law, indicating the presence of currents driven by a turbulent electromotive force. These currents result in a diamagnetic effect, generating magnetic field in opposition to the dominant fields of the experiment. The magnitude of the fluctuation-driven magnetic field is comparable to that of the field induced by the sodium's mean flow.

  19. Absorption Filter Based Optical Diagnostics in High Speed Flows

    NASA Technical Reports Server (NTRS)

    Samimy, Mo; Elliott, Gregory; Arnette, Stephen

    1996-01-01

    Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.

  20. An automatic countercurrent liquid-liquid micro-extraction system coupled with atomic absorption spectrometry for metal determination.

    PubMed

    Mitani, Constantina; Anthemidis, Aristidis N

    2015-02-01

    A novel and versatile automatic sequential injection countercurrent liquid-liquid microextraction (SI-CC-LLME) system coupled with atomic absorption spectrometry (FAAS) is presented for metal determination. The extraction procedure was based on the countercurrent flow of aqueous and organic phases which takes place into a newly designed lab made microextraction chamber. A noteworthy feature of the extraction chamber is that it can be utilized for organic solvents heavier or lighter than water. The proposed method was successfully demonstrated for on-line lead determination and applied in environmental water samples using an amount of 120 μL of chloroform as extractant and ammonium diethyldithiophosphate as chelating reagent. The effect of the major experimental parameters including the volume of extractant, as well as the flow rate of aqueous and organic phases were studied and optimized. Under the optimum conditions for 6 mL sample consumption an enhancement factor of 130 was obtained. The detection limit was 1.5 μg L(-1) and the precision of the method, expressed as relative standard deviation (RSD) was 2.7% at 40.0 μg L(-1) Pb(II) concentration level. The proposed method was evaluated by analyzing certified reference materials and spiked environmental water samples. PMID:25435230

  1. Generation of volatile copper species after in situ ionic liquid formation dispersive liquid-liquid microextraction prior to atomic absorption spectrometric detection.

    PubMed

    Stanisz, Ewa; Zgoła-Grześkowiak, Agnieszka; Matusiewicz, Henryk

    2014-11-01

    The new procedure using in situ synthesis of ionic liquid extractant for dispersive liquid-liquid microextraction (in situ IL DLLME) combined with generation of volatile species prior to electrothermal atomic absorption spectrometry (ET AAS) for the determination of copper in soil samples was developed. Analytical signals were obtained without the back-extraction of copper from the IL phase prior to its determination. Under optimal conditions, the extraction in 10 mL of sample solution employing 8 μL of 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (HmimNTf2) (as the extraction solvent) was conducted. The ionic liquid served as two-task reagent: the efficient extractant and enhancement substance for generation step. The chemical generation of volatile species was performed by reduction of acidified copper solution (HCl 0.8 mol L(-1)) with NaBH4 (1.5%). Some essential parameters of the chemical generation such as NaBH4 and HCl concentrations, the kind and concentration of ionic liquid, carrier gas (Ar) flow rate, reaction and trapping time as well as pyrolysis and atomization temperatures were studied. For photogeneration the effect of the parameters such as the kind and concentration of low molecular weight organic acids and ionic liquid, carrier gas (Ar) flow rate, UV irradiation and ultrasonication time on the analytical signals were studied. The detection limit was found as 1.8 ng mL(-1) and the relative standard deviation (RSD) for seven replicate measurements of 100 µg mL(-1) in sample solution was 7%. The accuracy of the proposed method was evaluated by analysis of the certified reference materials. The measured copper contents in the reference materials were in satisfactory agreement with the certified values. The method was successfully applied to analysis of the soil and sediment samples.

  2. Generation of volatile copper species after in situ ionic liquid formation dispersive liquid-liquid microextraction prior to atomic absorption spectrometric detection.

    PubMed

    Stanisz, Ewa; Zgoła-Grześkowiak, Agnieszka; Matusiewicz, Henryk

    2014-11-01

    The new procedure using in situ synthesis of ionic liquid extractant for dispersive liquid-liquid microextraction (in situ IL DLLME) combined with generation of volatile species prior to electrothermal atomic absorption spectrometry (ET AAS) for the determination of copper in soil samples was developed. Analytical signals were obtained without the back-extraction of copper from the IL phase prior to its determination. Under optimal conditions, the extraction in 10 mL of sample solution employing 8 μL of 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (HmimNTf2) (as the extraction solvent) was conducted. The ionic liquid served as two-task reagent: the efficient extractant and enhancement substance for generation step. The chemical generation of volatile species was performed by reduction of acidified copper solution (HCl 0.8 mol L(-1)) with NaBH4 (1.5%). Some essential parameters of the chemical generation such as NaBH4 and HCl concentrations, the kind and concentration of ionic liquid, carrier gas (Ar) flow rate, reaction and trapping time as well as pyrolysis and atomization temperatures were studied. For photogeneration the effect of the parameters such as the kind and concentration of low molecular weight organic acids and ionic liquid, carrier gas (Ar) flow rate, UV irradiation and ultrasonication time on the analytical signals were studied. The detection limit was found as 1.8 ng mL(-1) and the relative standard deviation (RSD) for seven replicate measurements of 100 µg mL(-1) in sample solution was 7%. The accuracy of the proposed method was evaluated by analysis of the certified reference materials. The measured copper contents in the reference materials were in satisfactory agreement with the certified values. The method was successfully applied to analysis of the soil and sediment samples. PMID:25127592

  3. Origin of Surface-Driven Passive Liquid Flows.

    PubMed

    Yd, Sumith; Maroo, Shalabh C

    2016-08-30

    Passive liquid flow occurs in nature in the transport of water up tall trees and is desired for high-heat flux removal in thermal management devices. Typically, liquid-vapor surface tension is used to generate passive flows (e.g., capillary and Marangoni flows). In this work, we perform a fundamental molecular study on passive liquid flow driven by the solid-liquid surface tension force. Such surface tension values are first estimated by placing a liquid film over the surface and simulating various surface temperatures, followed by which simulations are performed by differential heating of the liquid film over the surface. Very strong passive liquid flows are obtained that lead to steady-state, continuous, and high-heat flux removal close to the maximum theoretical limit, as predicted by the kinetic theory of evaporation. Nondimensional empirical relations are developed for surface tension gradient, flow velocity, and evaporation rate. PMID:27483012

  4. IHT: Tools for Computing Insolation Absorption by Particle Laden Flows

    SciTech Connect

    Grout, R. W.

    2013-10-01

    This report describes IHT, a toolkit for computing radiative heat exchange between particles. Well suited for insolation absorption computations, it is also has potential applications in combustion (sooting flames), biomass gasification processes and similar processes. The algorithm is based on the 'Photon Monte Carlo' approach and implemented in a library that can be interfaced with a variety of computational fluid dynamics codes to analyze radiative heat transfer in particle-laden flows. The emphasis in this report is on the data structures and organization of IHT for developers seeking to use the IHT toolkit to add Photon Monte Carlo capabilities to their own codes.

  5. Stability of Thin Liquid Sheet Flows

    NASA Technical Reports Server (NTRS)

    McConley, Marc W.; Chubb, Donald L.; McMaster, Matthew S.; Afjeh, Abdollah A.

    1997-01-01

    A two-dimensional, linear stability analysis of a thin nonplanar liquid sheet flow in vacuum is carried out. A sheet flow created by a narrow slit of W and tau attains a nonplanar cross section as a consequence of cylinders forming on the sheet edge under the influence of surface tension forces. The region where these edge cylinders join the sheet is one of high curvature, and this is found to be the location where instability is most likely to occur. The sheet flow is found to be unstable, but with low growth rates for symmetric wave disturbances and high growth rates for antisymmetric disturbances. By combining the symmetric and antisymmetric disturbance modes, a wide range of stability characteristics is obtained. The product of unstable growth rate and flow time is proportional to the width-to-thickness ratio of the sift generating the sheet Three-dimensional effects can alter these results, particularly when the sheet length-to-width ratio is not much greater than unity.

  6. Flow Induced Electrification of Liquid Insulated Systems.

    NASA Astrophysics Data System (ADS)

    Washabaugh, Andrew Patrick

    1995-01-01

    The transport or motion of semi-insulating liquids has led to flow induced static electrification and catastrophic failures in several industries. While techniques for reducing the hazard have been developed, the roles of seemingly important parameters are poorly understood. The objective of this thesis was to measure and understand the fundamental parameters of the flow electrification process that, together with the laws of electroquasistatics and physicochemical hydrodynamics, can be used to predict the performance of complex flow systems, with particular attention to transformer applications. A rotating cylindrical electrode apparatus, which provided cylindrical Couette flow, was used to simulate flow electrification in an electric power transformer. The apparatus had Shell Diala A transformer oil filling the annulus between coaxial cylindrical stainless steel electrodes that were either bare metal, or covered by a thin copper sheet and/or EHV-Weidmann HiVal pressboard insulation. Extensive experiments characterized the time transient and steady state behavior of the electrification through measurements of the volume charge density, the terminal voltage, and the terminal current as the system was driven out of equilibrium by changes in the flow rate (inner cylinder rotation rates of 100-1400 rpm, Reynolds numbers of 5 times 10^3-5 times 10^5), temperature (15-70 ^circ), insulation moisture content (0.5-20 ppm in the oil), applied voltage (0-2 kV DC), and concentration of the non-ionizable anti-static additive 1,2,3 benzotriazole (BTA, 0-60 ppm). Generally, the electrification increased with flow rate and temperature but the BTA appeared to cause competing effects: it decreased the volume charge density on the liquid side of the interface (by a factor of 4), which reduces the electrification, but also decreased the oil conductivity (by a factor of 10), which enhances the electrification. A critical oil BTA concentration of 5 -8 ppm minimized the electrification

  7. Flow of liquids in surface grooves

    SciTech Connect

    Rye, R.R.; Yost, F.G.; Mann, J.A. Jr.

    1996-01-24

    We have obtained detailed capillary kinetic data for flow of a series of alcohols with various surface tension to viscosity ratios, {gamma}/{mu}, spreading in open V-shaped grooves cut in Cu with three different groove angles. Two theoretical models which assume Poiseuille flow and static advancing contact angles were tested against the experimental data. One is a detailed hydrodynamic model with the basic driving force resulting from the pressure drop across a curved interface. The second depends on the total interfacial energy change, independent of the shape of the liquid interface. Both agree with the experimental data. Both predict numerical values in general agreement with experiment and with each other. In the threshold region where the transition occurs between filled and empty regions of the groove, the liquid height decreases linearly with distance, within experimental limitations, and forms an angle which roughly scales as the contact angle for a significant fraction of the threshold region. On the basis of the present detailed experimental data for both kinetics and threshold profile, the differences between experiment and theory and between the theoretical models are insufficient to allow a clear choice between the models. 20 refs., 11 figs., 3 tabs.

  8. Liquid-liquid extraction, photometric and atomic absorption spectrophotometric determination of mercury

    SciTech Connect

    Agrawal, Y.K.; Desai, T.A.

    1985-01-01

    A selective and sensitive spectrophotometric and atomic absorption spectrophotometric method is developed for the determination of traces of mercury with N-phenylcinnamohydroxamic acid (PCHA) in the environment. Mercury is extracted into a chloroform solution of PCHA at pH 8.5-10.0 and determined by AAS. The mercury hydroxamate binary complex is yellow in color having a maximum absorbance at 390 nm and molar absorptivity 4.3 x 10/sup 3/ l mol/sup -1/ cm/sup -1/, sandell sensitivity 0.0466 ..mu..g/cm/sup 2/. The ternary system using 1-(2-pyridylazo) 2-naphthol has molar absorptivity 8.82 x 10/sup 3/ l mol/sup -1/ cm/sup -1/ at 550 nm, sandell sensitivity 0.0228 ..mu..g/cm/sup 2/. Beer's law is obeyed in the concentration range of 2.37-38.0 ppm and 0.80-19.5 ppm of mercury for binary and ternary system, respectively. The extraction of Hg-PCHA binary system is studied with a liquid cation exchanger, bis-(2-ethyl hexyl) phosphoric acid (HDEHP) and found to have better selectivity than Hg-PCHA-PAN system. The molar absorptivity of the Hg-PCHA-HDEHP system is 8.82 x 10/sup 3/ l mol/sup -1/ cm/sup -1/ at 390 nm and Beer's law is obeyed in the concentration range of 0.47-20 ppm of mercury. The present method is applied to the determination of mercury in eye drops, aurvedic drugs and environmental samples. 24 references, 3 tables.

  9. Evolution of flow disturbances in cocurrent gas-liquid flows

    SciTech Connect

    McCready, M.J.

    1992-10-01

    Studies of interfacial waves in horizontal gas-liquid flows, close to neutral stability, suggest that the rate of evolution of the interface may be linked to nonlinear interactions between the fundamental mode and the subharmonic -- even if the subharmonic is linearly stable. The rate of evolution increases as the subharmonic becomes more unstable. A comparison of linear stability techniques used to predict the initial behavior of waves reveals similar predictions of growth rates and almost identical speeds between a two layer laminar Orr-Sommerfeld theory and an Orr-Sommerfeld theory when the effect of the (turbulent) gas flow enters as boundary conditions on the liquid layer. However, there is disagreement at small wavenumbers as to the point at which the growth curve crosses 0. This is a significant problem because longwave disturbances, in our case roll waves, form by growth of (initially) small amplitude waves that have frequencies which are 0.5 to 1 Hz, which is in the range where the two theories disagree about the sign of the growth rate. While nonlinear effects are probably involved in the formation of the peak (at least while its amplitude is small), the linear growth rate must play an important role when the amplitude is small.

  10. Measurement of the absorption coefficient of scattering liquid media by the calorimetric method

    NASA Astrophysics Data System (ADS)

    Butenin, A. V.; Kogan, B. Ya.

    2012-02-01

    Using the example of a number of hydrosols (gold nanorods and nanoshells, silver nanoshells, zinc phthalocyanine nanoparticles), we show that the absorption coefficient of a scattering liquid medium can be measured from its heating by a short-time laser irradiation. The degree of heating was determined from expansion of the liquid in an ampoule with a capillary (the principle of liquid thermometer). Irradiation was performed at a wavelength of 671 or 1069 nm. From the transmission of samples of hydrosols at these wave-lengths, the sum of the absorption and scattering coefficients has been determined. To measure the absorption spectra of scattering liquids by this method, a laser with a tunable radiation wavelength is required. In the case of monodisperse colloidal solutions, the method ensures the measurement of the absorption and scattering cross-section ratio of particles.

  11. Properties of Liquid Silicon Observed by Time-Resolved X-Ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, S. L.; Heimann, P. A.; Lindenberg, A. M.; Jeschke, H. O.; Garcia, M. E.; Chang, Z.; Lee, R. W.; Rehr, J. J.; Falcone, R. W.

    2003-10-01

    Time-resolved x-ray spectroscopy at the Si L edges is used to probe the electronic structure of an amorphous Si foil as it melts following absorption of an ultrafast laser pulse. Picosecond temporal resolution allows observation of the transient liquid phase before vaporization and before the liquid breaks up into droplets. The melting causes changes in the spectrum that match predictions of molecular dynamics and ab initio x-ray absorption codes.

  12. Dataset used to improve liquid water absorption models in the microwave

    SciTech Connect

    Turner, David

    2015-12-14

    Two datasets, one a compilation of laboratory data and one a compilation from three field sites, are provided here. These datasets provide measurements of the real and imaginary refractive indices and absorption as a function of cloud temperature. These datasets were used in the development of the new liquid water absorption model that was published in Turner et al. 2015.

  13. Disorder-induced absorption of far-infrared waves by acoustic modes in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Nenashev, A. V.; Wiemer, M.; Koch, M.; Dvurechenskii, A. V.; Gebhard, F.; Baranovskii, S. D.

    2016-08-01

    A mechanism of light absorption at THz frequencies in nematic liquid crystals based on intermolecular dynamics is proposed. In this mechanism, the energy conservation is supplied by acoustic phonons, whereas momentum conservation is provided by static spatial fluctuations of the director field. The mechanism predicts a continuous absorption spectrum in a broad frequency range.

  14. Are cold flows detectable with metal absorption lines?

    NASA Astrophysics Data System (ADS)

    Kimm, Taysun; Slyz, Adrianne; Devriendt, Julien; Pichon, Christophe

    2011-05-01

    Cosmological simulations have shown that dark matter haloes are connected to each other by large-scale filamentary structures. Cold gas flowing within this ‘cosmic web’ is believed to be an important source of fuel for star formation at high redshift. However, the presence of such filamentary gas has never been observationally confirmed despite the fact that its covering fraction within massive haloes at high redshift is predicted to be significant (˜25 per cent). In this Letter, we investigate in detail whether such cold gas is detectable using low-ionization metal absorption lines, such as C IIλ1334, as this technique has a proven observational record for detecting gaseous structures. Using a large statistical sample of galaxies from the MARENOSTRUM N-body+ adaptive mesh refinement (AMR) cosmological simulation, we find that the typical covering fraction of the dense, cold gas in 1012 M⊙ haloes at z˜ 2.5 is lower than expected (˜5 per cent). In addition, the absorption signal by the interstellar medium of the galaxy itself turns out to be so deep and so broad in velocity space that it completely drowns that of the filamentary gas. A detectable signal might be obtained from a cold filament exactly aligned with the line of sight, but this configuration is so unlikely that it would require surveying an overwhelmingly large number of candidate galaxies to tease it out. Finally, the predicted metallicity of the cold gas in filaments is extremely low (≤10-3 Z⊙). If this result persists when higher resolution runs are performed, it would significantly increase the difficulty of detecting filamentary gas inflows using metal lines. However, even if we assume that filaments are enriched to Z⊙, the absorption signal that we compute is still weak. We are therefore led to conclude that it is extremely difficult to observationally prove or disprove the presence of cold filaments as the favourite accretion mode of galaxies using low-ionization metal absorption

  15. Heat Transfer Characteristics of Liquid-Gas Taylor Flows incorporating Microencapsulated Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Howard, J. A.; Walsh, P. A.

    2014-07-01

    This paper presents an investigation on the heat transfer characteristics associated with liquid-gas Taylor flows in mini channels incorporating microencapsulated phase change materials (MPCM). Taylor flows have been shown to result in heat transfer enhancements due to the fluid recirculation experienced within liquid slugs which is attributable to the alternating liquid slug and gas bubble flow structure. Microencapsulated phase change materials (MPCM) also offer significant potential with increased thermal capacity due to the latent heat required to cause phase change. The primary aim of this work was to examine the overall heat transfer potential associated with combining these two novel liquid cooling technologies. By investigating the local heat transfer characteristics, the augmentation/degradation over single phase liquid cooling was quantified while examining the effects of dimensionless variables, including Reynolds number, liquid slug length and gas void fraction. An experimental test facility was developed which had a heated test section and allowed MPCM-air Taylor flows to be subjected to a constant heat flux boundary condition. Infrared thermography was used to record high resolution experimental wall temperature measurements and determine local heat transfer coefficients from the thermal entrance point. 30.2% mass particle concentration of the MPCM suspension fluid was examined as it provided the maximum latent heat for absorption. Results demonstrate a significant reduction in experimental wall temperatures associated with MPCM-air Taylor flows when compared with the Graetz solution for conventional single phase coolants. Total enhancement in the thermally developed region is observed to be a combination of the individual contributions due to recirculation within the liquid slugs and also absorption of latent heat. Overall, the study highlights the potential heat transfer enhancements that are attainable within heat exchange devices employing MPCM

  16. Synthesis of electroactive ionic liquids for flow battery applications

    SciTech Connect

    Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry

    2015-09-01

    The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.

  17. Analysis of gas absorption to a thin liquid film in the presence of a zero-order chemical reaction

    NASA Technical Reports Server (NTRS)

    Rajagopalan, S.; Rahman, M. M.

    1995-01-01

    The paper presents a detailed theoretical analysis of the process of gas absorption to a thin liquid film adjacent to a horizontal rotating disk. The film is formed by the impingement of a controlled liquid jet at the center of the disk and subsequent radial spreading of liquid along the disk. The chemical reaction between the gas and the liquid film can be expressed as a zero-order homogeneous reaction. The process was modeled by establishing equations for the conservation of mass, momentum, and species concentration and solving them analytically. A scaling analysis was used to determine dominant transport processes. Appropriate boundary conditions were used to solve these equations to develop expressions for the local concentration of gas across the thickness of the film and distributions of film height, bulk concentration, and Sherwood number along the radius of the disk. The partial differential equation for species concentration was solved using the separation of variables technique along with the Duhamel's theorem and the final analytical solution was expressed using confluent hypergeometric functions. Tables for eigenvalues and eigenfunctions are presented for a number of reaction rate constants. A parametric study was performed using Reynolds number, Ekman number, and dimensionless reaction rate as parameters. At all radial locations, Sherwood number increased with Reynolds number (flow rate) as well as Ekman number (rate of rotation). The enhancement of mass transfer due to chemical reaction was found to be small when compared to the case of no reaction (pure absorption), but the enhancement factor was very significant when compared to pure absorption in a stagnant liquid film. The zero-order reaction processes considered in the present investigation included the absorption of oxygen in aqueous alkaline solutions of sodiumdithionite and rhodium complex catalyzed carbonylation of methanol. Present analytical results were compared to previous theoretical

  18. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids.

    PubMed

    Zhang, Jianmin; Zhang, Suojiang; Dong, Kun; Zhang, Yanqiang; Shen, Youqing; Lv, Xingmei

    2006-05-15

    A new type of "task specific ionic liquid", tetrabutylphosphonium amino acid [P(C4)4][AA], was synthesized by the reaction of tetrabutylphosphonium hydroxide [P(C4)4][OH] with amino acids, including glycine, L-alanine, L-beta-alanine, L-serine, and L-lysine. The liquids produced were characterized by NMR, IR spectroscopies, and elemental analysis, and their thermal decomposition temperature, glass transition temperature, electrical conductivity, density, and viscosity were recorded in detail. The [P(C4)4][AA] supported on porous silica gel effected fast and reversible CO2 absorption when compared with bubbling CO2 into the bulk of the ionic liquid. No changes in absorption capacity and kinetics were found after four cycles of absorption/desorption. The CO2 absorption capacity at equilibrium was 50 mol % of the ionic liquids. In the presence of water (1 wt %), the ionic liquids could absorb equimolar amounts of CO2. The CO2 absorption mechanisms of the ionic liquids with and without water were different. PMID:16528787

  19. Photoacoustic technique for simultaneous measurements of thermal effusivity and absorptivity of pigments in liquid solution.

    PubMed

    Balderas-López, J A; Díaz-Reyes, J; Zelaya-Angel, O

    2011-12-01

    A photoacoustic (PA) methodology, in the transmission configuration, for simultaneous measurements of thermal effusivity and molar absorption coefficient (absorptivity) for pigments in liquid solution is introduced. The analytical treatment involves a self-normalization procedure for the PA signal, as a function of the modulation frequency, for a strong absorbing material in the thermally thin regime, when the light travels across the sample under study. Two fitted parameters are obtained from the analysis of the self-normalized PA amplitude and phase, one of them proportional to the sample's optical absorption coefficient and from which, taking it for a series of samples at different concentrations, the pigment's absorptivity in liquid solution can be measured, the other one yields the sample's thermal effusivity. Methylene blue's absorptivity in distilled water was measured with this methodology at 658 nm, finding good agreement with the corresponding one reported in the literature.

  20. Capillary-Driven Flow in Liquid Filaments Connecting Orthogonal Channels

    NASA Technical Reports Server (NTRS)

    Allen, Jeffrey S.

    2005-01-01

    Capillary phenomena plays an important role in the management of product water in PEM fuel cells because of the length scales associated with the porous layers and the gas flow channels. The distribution of liquid water within the network of gas flow channels can be dramatically altered by capillary flow. We experimentally demonstrate the rapid movement of significant volumes of liquid via capillarity through thin liquid films which connect orthogonal channels. The microfluidic experiments discussed provide a good benchmark against which the proper modeling of capillarity by computational models may be tested. The effect of surface wettability, as expressed through the contact angle, on capillary flow will also be discussed.

  1. Flow of Saturated Liquid Nitrogen Through Micro-Scale Orifices

    NASA Astrophysics Data System (ADS)

    Jankowski, T. A.; Schmierer, E. N.; Prenger, F. C.; Ashworth, S. P.

    2008-03-01

    The flow of saturated liquid nitrogen through micro-scale orifices has been characterized experimentally. Measurements of pressure drop and flow rate were made with liquid nitrogen flowing through orifices ranging in diameter from 50 micron to 370 micron, with orifice length-to-diameter ratios ranging from 1.5 to 10. The design of the experimental apparatus, the instrumentation used, and the experimental uncertainties are presented. Obstacles encountered while attempting to obtain repeatable and reliable results at cryogenic temperatures are discussed. Finally, experimentally measured discharge coefficients are shown to agree with a model for single-phase liquid flow through micro-orifice tubes.

  2. Ab initio calculation of the electronic absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  3. Ab initio calculation of the electronic absorption spectrum of liquid water

    SciTech Connect

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  4. Two-phase liquid-liquid flows generated by impinging liquid jets

    NASA Astrophysics Data System (ADS)

    Tsaoulidis, Dimitrios; Li, Qi; Angeli, Panagiota

    2015-11-01

    Two-phase flows in intensified small-scale systems find increasing applications in (bio)chemical analysis and synthesis, fuel cells, polymerisation, and separation processes (solvent extraction). Current nuclear spent fuel reprocessing separation technologies have been developed many decades ago and have not taken account recent advances on process intensification which can drive down plant size and economics. In this work, intensified impinging jets will be developed to create dispersions by bringing the two liquid phases into contact through opposing small channels. A systematic set of experiments has been undertaken, to investigate the hydrodynamic characteristics, to develop predictive models, and enable comparisons with other contactors. Drop size distribution and mixing intensity will be investigated for liquid-liquid mixtures as a function of various parameters using high speed imaging and conductivity probes.

  5. Liquid jet pumps for two-phase flows

    SciTech Connect

    Cunningham, R.G.

    1995-06-01

    Isothermal compression of a bubbly secondary fluid in a mixing-throat and diffuser is described by a one-dimensional flow model of a liquid-jet pump. Friction-loss coefficients used in the four equations may be determined experimentally, or taken from the literature. The model reduces to the liquid-jet gas compressor case if the secondary liquid is zero. Conversely, a zero secondary-gas flow reduces the liquid-jet gas and liquid (LJGL) model to that of the familiar liquid-jet liquid pump. A ``jet loss`` occurs in liquid-jet pumps if the nozzle tip is withdrawn from the entrance plane of the throat, and jet loss is included in the efficiency equations. Comparisons are made with published test data for liquid-jet liquid pumps and for liquid-jet gas compressors. The LJGL model is used to explore jet pump responses to two-phase secondary flows, nozzle-to-throat area ratio, and primary-jet velocity. The results are shown in terms of performance curves versus flow ratios. Predicted peak efficiencies are approximately 50 percent. Under sever operating conditions, LJGL pump performance curves exhibit maximum-flow ratios or cut-offs. Cut-offs occurs when two-phase secondary-flow steams attain sonic values at the entry of the mixing throat. A dimensionless number correlates flow-ratio cut-offs with pump geometry and operating conditions. Throat-entry choking of the secondary flow can be predicted, hence avoided, in designing jet pumps to hand two-phase fluids.

  6. Surface relaxation in liquid water and methanol studied by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Kevin R.; Schaller, R. D.; Co, D. T.; Saykally, R. J.; Rude, Bruce S.; Catalano, T.; Bozek, J. D.

    2002-10-01

    X-ray absorption spectroscopy is a powerful probe of local electronic structure in disordered media. By employing extended x-ray absorption fine structure spectroscopy of liquid microjets, the intermolecular O-O distance has been observed to undergo a 5.9% expansion at the liquid water interface, in contrast to liquid methanol for which there is a 4.6% surface contraction. Despite the similar properties of liquid water and methanol (e.g., abnormal heats of vaporization, boiling points, dipole moments, etc.), this result implies dramatic differences in the surface hydrogen bond structure, which is evidenced by the difference in surface tension of these liquids. This result is consistent with surface vibrational spectroscopy, which indicates both stronger hydrogen bonding and polar ordering at the methanol surface as a consequence of "hydrophobic packing" of the methyl group.

  7. Twin-peaks absorption spectra of excess electron in ionic liquids

    NASA Astrophysics Data System (ADS)

    Musat, Raluca M.; Kondoh, Takafumi; Yoshida, Yoichi; Takahashi, Kenji

    2014-07-01

    The solvated electron in room temperature ionic liquids (RTILs) has been the subject of several investigations and several reports exist on its nature and absorption spectrum. These studies concluded that the solvated electron exhibits an absorption spectrum peaking in the 1000-1400 nm region; a second absorption band peaking in the UV region has been assigned to the hole or dication radicals simultaneously formed in the system. Here we report on the fate of the excess electron in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, P14+/NTf2- using nanosecond pulse radiolysis. Scavenging experiments allowed us to record and disentangle the complex spectrum measured in P14+/NTf2-. We identified a bi-component absorption spectrum, due to the solvated electron, the absorption maxima located at 1080 nm and around 300 nm, as predicted by previous ab-initio molecular dynamics simulations for the dry excess electron. We also measured the spectra using different ionic liquids and confirmed the same feature of two absorption peaks. The present results have important implications for the characterization of solvated electrons in ionic liquids and better understanding of their structure and reactivity.

  8. Holdup of the liquid slug in two phase intermittent flow

    SciTech Connect

    Barnea, D.; Brauner, N.

    1985-01-01

    A physical model for the prediction of gas holdup in liquid slugs in horizontal and vertical two phase pipe slug flow is presented. This model can also be used to yield the transitio between elongated bubbles and slug flow within the intermittent flow pattern. In addition a previously published model for predicting the stable slug length in vertical upward slug flow is extended here for the case of horizontal slug flow.

  9. Liquid-intake flow around the tip of butterfly proboscis.

    PubMed

    Lee, Sang Joon; Lee, Seung Chul; Kim, Bo Heum

    2014-05-01

    Butterflies drink liquid through a slender proboscis using a large pressure gradient induced by the systaltic operation of a muscular pump inside their head. Although the proboscis is a naturally well-designed coiled micro conduit for liquid uptake and deployment, it has been regarded as a simple straw connected to the muscular pump. There are few studies on the transport of liquid food in the proboscis of a liquid-feeding butterfly. To understand the liquid-feeding mechanism in the proboscis of butterflies, the intake flow around the tip of the proboscis was investigated in detail. In this study, the intake flow was quantitatively visualized using a micro-PIV (particle image velocimetry) velocity field measurement technique. As a result, the liquid-feeding process consists of an intake phase, an ejection phase and a rest phase. When butterflies drink pooled liquid, the liquid is not sucked into the apical tip of the proboscis, but into the dorsal linkage aligned longitudinally along the proboscis. To analyze main characteristics of the intake flow around a butterfly proboscis, a theoretical model was established by assuming that liquid is sucked into a line sink whose suction rate linearly decreases proximally. In addition, the intake flow around the tip of a female mosquito׳s proboscis which has a distinct terminal opening was also visualized and modeled for comparison. The present results would be helpful to understand the liquid-feeding mechanism of a butterfly.

  10. Visualization of three-dimensional liquid flow on sieve trays

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling

    2004-03-01

    This paper presents the simulated result of three-dimensional liquid velocity profile on sieve trays by using a computational flow dynamics (CFD) model with considerations of volume fraction of gas and liquid and the interfacial forces. The Κ-ɛ equation is used for the closure of basic equations. For the first time the three-dimensional liquid flow on a distillation column with ten trays under total reflux is visualized. The simulation was carried out with an Origin 200 Server Workstation of SGI Company using Star-CD V3.1 program. Simulation provides the detailed information of the distribution of 3D liquid velocity on the distillation column.

  11. Gas/liquid flow measurement using coriolis-based flow meters

    SciTech Connect

    Liu, K.T.; Nguyen, T.V.

    1991-07-09

    This patent describes a method of determining total mass flow rate and phase distribution of individual components in a flowing gas/liquid stream. It comprises flowing at least a first gas/liquid stream through a Coriolis-based flow meter, the first gas/liquid stream having a first known total mass flow rate and component phase distribution; obtaining a first apparent total mass flow rate output and a first apparent density output from the Coriolis- based mass flow meter; correlating the first known total mass flow rate and phase distribution with the first apparent mass flow rate output and the first apparent density output obtained from the Coriolis-based mass flow meter to determine a set of correlation equations; flowing a second gas/liquid stream through the Coriolis-based mass flow meter; obtaining a second apparent mass flow rate output and a second apparent density output from the Coriolis-based mass flow meter; calculating a total mass flow rate and a component phase distribution of the second gas/liquid stream based on the correlation equations and the second apparent mass flow rate output and the second apparent density output.

  12. Cavitation Instability in Subcooled Liquid Nitrogen Nozzle Flows

    NASA Astrophysics Data System (ADS)

    Niiyama, Kazuki; Nozawa, Masakazu; Ohira, Katsuhide; Oike, Mamoru

    Subcooled cryogenic fluids are used in many fields such as a propellant for liquid propulsion rocket systems and a coolant for superconducting systems. However, the fundamental characteristics of subcooled cryogenic cavitating flows have not been clarified. Therefore, a visualization experiment for a cryogenic cavitating flow passing through a converging-diverging nozzle was carried out with liquid nitrogen in the subcooled condition. The results indicate that the cavitation instability is caused by the intersection of the speed of sound in a gas-liquid two-phase flow with the required velocity for cavitation inception and cavitation conservation.

  13. Enhanced light absorption in graphene via a liquid-crystalline optical diode

    NASA Astrophysics Data System (ADS)

    Pantazi, Aikaterini Iria; Yannopapas, Vassilios

    2016-09-01

    We demonstrate theoretically that light absorption in graphene can be boosted via a light-trapping mechanism based on a liquid-crystalline optical diode. The optical diode consists of twisted-nematic and nematic liquid-crystalline slabs. In particular, we show that, using a proper optical-diode setup, the absorption in a single graphene layer can be enhanced by a factor of four. By varying the pitch of the twisted-nematic liquid-crystalline slabs comprising the diode, one can tune the operating spectral region of the diode and thus enhance the absorption of graphene within a desired spectral window. Our calculations are based on Berreman's 4×4 method which treats anisotropic, isotropic and/ or inhomogeneous layered systems on equal footing.

  14. CFD Analysis for Flow of Liquids in Coils

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Tarun Kanti; Das, Sudip Kumar

    2016-04-01

    The effects of liquid flow rate, coil diameter, pseudo plasticity of the liquids on the frictional pressure drop for the flow through helical coils have been reported through experimental investigation. Numerical modeling is carried using Fluent 6.3 software to find its applicability in the flow system. The Computational Fluid Dynamics (CFD) simulations are carried out using laminar non-Newtonian pseudo plastic power law model for laminar flow and k-ɛ model for turbulent flow for water. Water and dilute solution of Sodium Carboxy Methyl Cellulose (SCMC) as a non-Newtonian pseudo plastic fluid used for the study. Both hexahedral and tetrahedral grids are used for this simulation. The CFD results show the very good agreement with the experimental values. The comparison of the non-Newtonian liquid flow and water are also reported.

  15. The use of infrared absorption to determine density of liquid hydrogen.

    NASA Technical Reports Server (NTRS)

    Unland, H. D.; Timmerhaus, K. D.; Kropschot, R. H.

    1972-01-01

    Experimental evaluation of the use of infrared absorption for determining the density of liquid hydrogen, and discussion of the feasibility of an airborne densitometer based on this concept. The results indicate that infrared absorption of liquid hydrogen is highly sensitive to the density of hydrogen, and, under the operating limitations of the equipment and experimental techniques used, the determined values proved to be repeatable to an accuracy of 2.7%. The desiderata and limitations of an in-flight density-determining device are outlined, and some of the feasibility problems are defined.

  16. Nonlinear absorption in ionic liquids with transition metallic atoms in the anion

    NASA Astrophysics Data System (ADS)

    Nóvoa-López, José A.; López Lago, Elena; Seijas, Julio A.; Pilar Vázquez-Tato, M.; Troncoso, Jacobo; de la Fuente, Raúl; Salgueiro, José R.; Michinel, Humberto

    2016-02-01

    Nonlinear absorption has been investigated by open aperture Z-scan in ionic liquids obtained by combination of 1-butyl-3-methyl-imidazolium cations with anions containing a transition metal (Co, Zn, Cu or Ni) and thiocyanate groups. The laser source was a Ti:Sapphire oscillator (80-fs pulses, λ = 810 nm, repetition rate of 80.75 MHz). All liquids present quite low heat capacities that favor the development of strong thermal effects. Thermal effects and nonlinear absorption make them potential materials for optical limiting purposes.

  17. Determination of tetraalkyllead compounds in gasoline by liquid chromatography-atomic absorption spectrometry

    USGS Publications Warehouse

    Messman, J.D.; Rains, T.C.

    1981-01-01

    A liquid chromatography-atomic absorption spectrometry (LC-AAS) hybrid analytical technique is presented for metal speciation measurements on complex liquid samples. The versatility and inherent metal selectivity of the technique are Illustrated by the rapid determination of five tetraalkyllead compounds in commercial gasoline. Separation of the individual tetraalkyllead species is achieved by reversed-phase liquid chromatography using an acetonitrile/water mobile phase. The effluent from the liquid Chromatograph Is introduced directly into the aspiration uptake capillary of the nebulizer of an air/acetylene flame atomic absorption spectrometer. Spectral interferences due to coeluting hydrocarbon matrix constituents were not observed at the 283.3-nm resonance line of lead used for analysis. Detection limits of this LC-AAS hydrid analytical technique, based on a 20-??L injection, are approximately 10 ng Pb for each tetraalkyllead compound.

  18. Sewage sludge dewatering using flowing liquid metals

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

  19. Thaw flow control for liquid heat transport systems

    DOEpatents

    Kirpich, Aaron S.

    1989-01-01

    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  20. Absorption spectra of shocked liquid CS/sub 2/

    SciTech Connect

    Dallman, J.C.

    1985-01-01

    The importance of shock initiation of high explosives (HE) was understood as early as 1863 when Alfred Nobel introduced the detonator as a means of detonating nitroglycerine. The critical pressure rise times required to achieve shock initiation and steady propagation of detonation are determined by the chemical and mechanical properties of an explosive. Although progress has been made in the understanding of the effects of mechanical properties, the detailed effects of high pressures on chemical reaction mechanisms are still only poorly understood. This paper reports the results of two experiments using CS/sub 2/, which is known to undergo electronic state transitions when shocked to high pressures. The goal of these experiments was to examine the known shock-generated expansion of CS/sub 2/ absorption bands while generating the shocks with a flyer plate system driven by high explosives.

  1. Probe measures gas and liquid mass flux in high mass flow ratio two-phase flows

    NASA Technical Reports Server (NTRS)

    Burick, R. J.

    1972-01-01

    Deceleration probe constructed of two concentric tubes with separator inlet operates successfully in flow fields where ratio of droplet flow rate to gas flow rate ranges from 1.0 to 20, and eliminates problems of local flow field disturbances and flooding. Probe is effective tool for characterization of liquid droplet/gas spray fields.

  2. Investigation the flushing flow of liquid methane in Laval nozzle

    NASA Astrophysics Data System (ADS)

    Snigerev, B. A.; Tukmakov, A. L.; Tonkonog, V. G.

    2016-06-01

    Turbulent flushing flow of methane in Laval nozzles are investigated. To describe the motion of vapor-liquid mixture are used Favre averaged over the set of equations including the equations conservation of mass, momentum, and energy for a homogeneous mixture consisting from liquid and vapour phases. Numerical flow simulation based on cavitation approach using an additional transport equation for the volume fraction of the liquid phase. The study of the expiry of boiling methane at different degrees of underheating and the back pressures in the Laval nozzle are performed.

  3. Ways of intensifying liquid dispersion in gas flow

    NASA Astrophysics Data System (ADS)

    Bazarov, V. G.

    Ways of intensifying liquid dispersion in gas flow are examined with a view to increasing the efficiency of the existing atomizing nozzles. It is noted that the most economical method of dispersion intensification, without using any additional power, is the excitation of auto-oscillations in liquid and gas flows. Several methods of generating auto-oscillations in commonly used centrifugal nozzles are discussed. Other developments include the spraying of viscous and contaminated fluids in a field of forced pressure, velocity, and vorticity fluctuations, and also gas saturation of liquids prior to spraying in nozzles with porous elements.

  4. Multiphase flow of miscible liquids: jets and drops

    NASA Astrophysics Data System (ADS)

    Walker, Travis W.; Logia, Alison N.; Fuller, Gerald G.

    2015-05-01

    Drops and jets of liquids that are miscible with the surrounding bulk liquid are present in many processes from cleaning surfaces with the aid of liquid soaps to the creation of biocompatible implants for drug delivery. Although the interactions of immiscible drops and jets show similarities to miscible systems, the small, transient interfacial tension associated with miscible systems create distinct outcomes such as intricate droplet shapes and breakup resistant jets. Experiments have been conducted to understand several basic multiphase flow problems involving miscible liquids. Using high-speed imaging of the morphological evolution of the flows, we have been able to show that these processes are controlled by interfacial tensions. Further multiphase flows include investigating miscible jets, which allow the creation of fibers from inelastic materials that are otherwise difficult to process due to capillary breakup. This work shows that stabilization from the diminishing interfacial tensions of the miscible jets allows various elongated morphologies to be formed.

  5. Drop coalescence and liquid flow in a single Plateau border.

    PubMed

    Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe

    2015-05-01

    We report a comprehensive study of the flow of liquid triggered by injecting a droplet into a liquid foam microchannel, also called a Plateau border. This drop-injected experiment reveals an intricate dynamics for the liquid redistribution, with two contrasting regimes observed, ruled either by inertia or viscosity. We devoted a previous study [A. Cohen et al., Phys. Rev. Lett. 112, 218303 (2014)] to the inertial imbibition regime, unexpected at such small length scales. Here we report other features of interest of the drop-injected experiment, related to the coalescence of the droplet with the liquid microchannel, to both the inertial and viscous regimes, and to the occurrence of liquid flow through the soap films as well as effects of the interfacial rheology. The transition between the two regimes is investigated and qualitatively accounted for. The relevance of our results to liquid foam drainage is tackled by considering the flow of liquid at the nodes of the network of interconnected microchannels. Extensions of our study to liquid foams are discussed. PMID:26066250

  6. Drop coalescence and liquid flow in a single Plateau border

    NASA Astrophysics Data System (ADS)

    Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe

    2015-05-01

    We report a comprehensive study of the flow of liquid triggered by injecting a droplet into a liquid foam microchannel, also called a Plateau border. This drop-injected experiment reveals an intricate dynamics for the liquid redistribution, with two contrasting regimes observed, ruled either by inertia or viscosity. We devoted a previous study [A. Cohen et al., Phys. Rev. Lett. 112, 218303 (2014), 10.1103/PhysRevLett.112.218303] to the inertial imbibition regime, unexpected at such small length scales. Here we report other features of interest of the drop-injected experiment, related to the coalescence of the droplet with the liquid microchannel, to both the inertial and viscous regimes, and to the occurrence of liquid flow through the soap films as well as effects of the interfacial rheology. The transition between the two regimes is investigated and qualitatively accounted for. The relevance of our results to liquid foam drainage is tackled by considering the flow of liquid at the nodes of the network of interconnected microchannels. Extensions of our study to liquid foams are discussed.

  7. Emittance Measurements for a Thin Liquid Sheet Flow

    NASA Technical Reports Server (NTRS)

    Englehart, Amy N.; McConley, Marc W.; Chubb, Donald L.

    1996-01-01

    The Liquid Sheet Radiator (LSR) is an external flow radiator that uses a triangular-shaped flowing liquid sheet as the radiating surface. It has potentially much lower mass than solid wall radiators such as pumped loop and heat pipe radiators, along with being nearly immune to micrometeoroid penetration. The LSR has an added advantage of simplicity. Surface tension causes a thin (100-300 microns) liquid sheet to coalesce to a point, causing the sheet flow to have a triangular shape. Such a triangular sheet is desirable since it allows for simple collection of the flow at a single point. A major problem for all external flow radiators is the requirement that the working fluid be of very low (approx. 10(sup -8) torr) vapor pressure to keep evaporative losses low. As a result, working fluids are limited to certain oils (such as used in diffusion pumps) for low temperatures (300-400 K) and liquid metals for higher temperatures. Previous research on the LSR has been directed at understanding the fluid mechanics of thin sheet flows and assessing the stability of such flows, especially with regard to the formation of holes in the sheet. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. The latest research has been directed at determining the emittance of thin sheet flows. The emittance was calculated from spectral transmittance data for the Dow Corning 705 silicone oil. By experimentally setting up a sheet flow, the emittance was also determined as a function of measurable quantities, most importantly, the temperature drop between the top of the sheet and the temperature at the coalescence point of the sheet. Temperature fluctuations upstream of the liquid sheet were a potential problem in the analysis and were investigated.

  8. Contactless Inductive Bubble Detection in a Liquid Metal Flow

    PubMed Central

    Gundrum, Thomas; Büttner, Philipp; Dekdouk, Bachir; Peyton, Anthony; Wondrak, Thomas; Galindo, Vladimir; Eckert, Sven

    2016-01-01

    The detection of bubbles in liquid metals is important for many technical applications. The opaqueness and the high temperature of liquid metals set high demands on the measurement system. The high electrical conductivity of the liquid metal can be exploited for contactless methods based on electromagnetic induction. We will present a measurement system which consists of one excitation coil and a pickup coil system on the opposite sides of the pipe. With this sensor we were able to detect bubbles in a sodium flow inside a stainless steel pipe and bubbles in a column filled with a liquid Gallium alloy. PMID:26751444

  9. Contactless Inductive Bubble Detection in a Liquid Metal Flow.

    PubMed

    Gundrum, Thomas; Büttner, Philipp; Dekdouk, Bachir; Peyton, Anthony; Wondrak, Thomas; Galindo, Vladimir; Eckert, Sven

    2016-01-01

    The detection of bubbles in liquid metals is important for many technical applications. The opaqueness and the high temperature of liquid metals set high demands on the measurement system. The high electrical conductivity of the liquid metal can be exploited for contactless methods based on electromagnetic induction. We will present a measurement system which consists of one excitation coil and a pickup coil system on the opposite sides of the pipe. With this sensor we were able to detect bubbles in a sodium flow inside a stainless steel pipe and bubbles in a column filled with a liquid Gallium alloy. PMID:26751444

  10. Effect of bile diversion on satiety and fat absorption from liquid and solid dietary sources

    SciTech Connect

    Doty, J.E.; Gu, Y.G.; Meyer, J.H.

    1988-12-01

    In previous studies, liquid fat has been used to determine the effect of bile diversion on fat absorption. Since protein digests, in addition to bile salts, are capable of solubilizing lipids, we hypothesized that fat incorporated in the protein-rich matrix of solid food would be less sensitive to bile diversion than fat ingested as an oil or liquid. Using (3H)glycerol triether as a nonabsorbable fat recovery marker, we determined how much (14C)triolein was absorbed from solid (chicken liver) and liquid (margarine) dietary sources. After a standard liquid/solid meal with either the chicken liver or margarine labeled, midintestinal chyme was collected for 6 hr, extracted, and counted for 14C and 3H activity. Zero, eighty, or one hundred percent of endogenous bile was diverted. Fat absorption from both chicken liver and margarine was nearly complete by midintestine with 0% diversion and was little affected by diversion of 80% of bile. Complete biliary diversion significantly decreased fat absorption from margarine (87.9 +/- 4.4 to 37.2 +/- 9.2%, P less than 0.05) but reduced (14C)triolein absorption from chicken liver less consistently and insignificantly (78.8 +/- 6.9 to 43.9 +/- 10.6%). These data indicate that fat absorption is not solely dependent on bile and support the hypothesis that fat ingested in a cellular matrix is less dependent on bile than liquid fat. Using these same animals but with the midintestinal cannulas plugged to expose the distal intestine to unabsorbed luminal nutrients, we also demonstrated that bile diversion of an initial meal reduced food consumption at a meal offered 3 hr later.

  11. Flow patterns in free liquid film caused by thermocapillary effect

    NASA Astrophysics Data System (ADS)

    Ueno, Ichiro; Fei, Linhao; Kowata, Yosuke; Kaneko, Toshihiro; Pettit, Donald

    2015-11-01

    The basic flow patterns realized in a thin free liquid film driven by the thermocapillary effect are focused. Spetial attention is paied to the effect of the volume ratio of the liquid film to the hole sustaining the film on the flow patterns. We prepare a thin liquid film of less than 0 . 5 mm in thickness in order to stably realize the film under normal gravity. Liquid has in general negative temperature coefficient of it surface tension; that is, the fluid is driven to the colder to hotter regions by the non-uniform surface-tension distribution. In the case of thin free liquid film, however, it is found that a unique flow pattern is induced. One of the present authors, DRP, carried out a series of experiments under microgravity condition in the International Space Station (ISS) in 2003. He prepared a ring made of metal, and formed a thin film of water inside the ring. Once he added a non-uniform temperature distribution to the film by placing a heated iron at one end of the ring, a net flow toward the heated iron was realized. In order to understand flow patterns, we focus on the flow structures of the thermocapillary convection in a cross section normal to the end walls as well as the surface temperature distributions.

  12. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    NASA Technical Reports Server (NTRS)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  13. A study of vapor-liquid flow in porous media

    SciTech Connect

    Satik, Cengiz; Yortsos, Yanis C.

    1994-01-20

    We study the heat transfer-driven liquid-to-vapor phase change in single-component systems in porous media by using pore network models and flow visualization experiments. Experiments using glass micromodels were conducted. The flow visualization allowed us to define the rules for the numerical pore network model. A numerical pore network model is developed for vapor-liquid displacement where fluid flow, heat transfer and capillarity are included at the pore level. We examine the growth process at two different boundary conditions.

  14. The air-liquid flow in a microfluidic airway tree.

    PubMed

    Song, Yu; Baudoin, Michael; Manneville, Paul; Baroud, Charles N

    2011-09-01

    Microfluidic techniques are employed to investigate air-liquid flows in the lung. A network of microchannels with five generations is made and used as a simplified model of a section of the pulmonary airway tree. Liquid plugs are injected into the network and pushed by a flow of air; they divide at every bifurcation until they reach the exits of the network. A resistance, associated with the presence of one plug in a given generation, is defined to establish a linear relation between the driving pressure and the total flow rate in the network. Based on this resistance, good predictions are obtained for the flow of two successive plugs in different generations. The total flow rate of a two-plug flow is found to depend not only on the driving pressure and lengths of the plugs, but also the initial distance between them. Furthermore, long range interactions between daughters of a dividing plug are observed and discussed, particularly when the plugs are flowing through the bifurcations. These interactions lead to different flow patterns for different forcing conditions: the flow develops symmetrically when subjected to constant pressure or high flow rate forcing, while a low flow rate driving yields an asymmetric flow.

  15. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    SciTech Connect

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-12-14

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

  16. Liquid rocket engine axial-flow turbopumps

    NASA Technical Reports Server (NTRS)

    Scheer, D. D.; Huppert, M. C.; Viteri, F.; Farquhar, J.; Keller, R. B., Jr. (Editor)

    1978-01-01

    The axial pump is considered in terms of the total turbopump assembly. Stage hydrodynamic design, pump rotor assembly, pump materials for liquid hydrogen applications, and safety factors as utilized in state of the art pumps are among the topics discussed. Axial pump applications are included.

  17. Instability due to interfacial tension in parallel liquid-liquid flow

    NASA Astrophysics Data System (ADS)

    Rodriguez, Oscar M. H.

    2016-06-01

    The frequent occurrence of multiphase flows in pipes has motivated a great research interest over the last decades. The particular case of liquid-liquid flow is commonly encountered in the petroleum industry, where a number of applications involve oil-water flow such as crude oil production in directional wells. However, it has not received the same attention when compared to gas-liquid flow. In addition, most of the available information has to do with flow in pipes. When it comes to flows in annular ducts the data are scanty. A general transition criterion has been recently proposed in order to obtain the stratified and core-annular flow-pattern transition boundaries in viscous oil-water flow. The proposed criterion was based on an one-dimensional two-fluid model of liquid-liquid two-phase flow. A stability analysis was carried out and interfacial tension is considered. A new destabilizing term arises, which is a function of the cross-section curvature of the interface. It is well accepted that interfacial tension favors the stable condition. However, the analysis of the new interfacial-tension term shows that it can actually destabilize the basic flow pattern, playing an important role in regions of extreme volumetric fractions. Such an interesting effect seems to be more pronounced in flows of viscous fluids and in annular-duct flow. The effect of interfacial tension is explored and the advantages of using a more complete model are discussed and illustrated through comparisons with experimental data from the literature. The evaluation of the effects of fluid viscosity and interfacial tension allows the correction and enhancement of transition models based essentially on data of pipe flow of low viscosity fluids.

  18. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    SciTech Connect

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in

  19. Waves and instabilities in inclined gas-liquid pipe flow

    SciTech Connect

    Grolman, E.; Fortuin, J.M.H.

    1996-12-31

    The Modified Apparent Rough Surface (MARS) model successfully predicts liquid holdup and pressure gradient for wavy gas-liquid pipe flow in slightly inclined pipes, up to the transition to slug (intermittent) flow. Additional equations are used to predict the transition from wavy-to-intermittent flow and for the velocity of waves on the gas-liquid interface. In this paper, Linear (stability) Theory is compared with the MARS model, on the basis of measurements in horizontal and slightly inclined (0{degree} {le} {beta} 6{degree}) pipes. Viscous terms in the linear analysis require estimates of shear stresses. Using the MARS model for the interfacial and liquid-to-wall friction factors, stability can be predicted to within reasonable degree of accuracy. Credible wave velocities are also obtained, provided the interfacial waves are not assumed to be marginally stable. Earlier semi-theoretical equations (MARS model) still provide better estimates of both stability and wave velocity and are much easier to handle than Linear Theory. However, the use of good friction factor equations, i.e. those capable of predicting liquid holdup and pressure gradient, has significantly improved the results obtained with Linear Theory. This opens the way to further studies into the mechanisms determining the velocity, growth and instability of waves in gas-liquid pipe flow.

  20. Ultrasonic flow meters for liquid measurement

    SciTech Connect

    Matson, J.

    1995-12-01

    The ultrasonic flowmeter for liquids has been in use in industry for over 30 years. In general these meters are available in two basic types - the Doppler type, and the Transit-Time (or Time-of-flight) type. There has been considerable development and advancement of this technology through the 1980`s and 1990`s due to the use of microelectronics, microprocessors and advanced software techniques. This advancement has allowed the ultrasonic flowmeter to be far more available for general use - in fact to be used as a {open_quotes}flowmeter{close_quotes}, not just as an ultrasonic flowmeter. All this because these advancements have produced lower costs, greater versatility, higher accuracy, and easier installation and maintenance. Both the Doppler type and the Transit Time type have benefited by these advances in technology. However the basic difference between the two types remains. That is that the Doppler type is primarily for {open_quotes}dirty{close_quotes} liquids: the fluid must contain reflectors or {open_quotes}scatterers{close_quotes} in the form of bubbles or solid particles. The Transit Time is for {open_quotes}clean{close_quotes} liquids: fluids that contain no second phase, although modem instruments can tolerate a much higher percentage of second phase than just 5 years ago. The Transit Time continues to provide the highest accuracy, greatest versatility and widest range of application.

  1. Physical Absorption Of CO2 in Protic and Aprotic Ionic Liquids: An Interaction Perspective.

    PubMed

    Izgorodina, Ekaterina I; Hodgson, Jennifer L; Weis, Derick C; Pas, Steven J; MacFarlane, Douglas R

    2015-09-01

    The physical absorption of CO2 by protic and aprotic ionic liquids such as 1-ethyl-3-methyl-imidazolium tetrafluoroborate was examined at the molecular level using symmetry adapted perturbation theory (SAPT) and density functional techniques through comparison of interaction energies of noncovalently bound complexes between the CO2 molecule and a series of ionic liquid ions and ion pairs. These energies were contrasted with those for complexes with model amines such as methylamine, dimethylamine, and trimethylamine. Detailed analysis of the five fundamental forces that are responsible for stabilization of the complexes is discussed. It was confirmed that the nature of the anion had a greater effect upon the physical interaction energy in non functionalized ionic liquids, with dispersion forces playing an important role in CO2 solubility. Hydrogen bonding with protic cations was shown to impart additional stability to the noncovalently bound CO2···IL complex through inductive forces. Two solvation models, the conductor-like polarizable continuum model (CPCM) and the universal solvation model (SMD), were used to estimate the impact of solvent effects on the CO2 binding. Both solvent models reduced interaction energies for all types of ions. These interaction energies appeared to favor imidazolium cations and carboxylic and sulfonic groups as well as bulky groups (e.g., NTf2) in anions for the physical absorption of CO2. The structure-reactivity relationships determined in this study may help in the optimization of the physical absorption process by means of ionic liquids.

  2. Physical Absorption Of CO2 in Protic and Aprotic Ionic Liquids: An Interaction Perspective.

    PubMed

    Izgorodina, Ekaterina I; Hodgson, Jennifer L; Weis, Derick C; Pas, Steven J; MacFarlane, Douglas R

    2015-09-01

    The physical absorption of CO2 by protic and aprotic ionic liquids such as 1-ethyl-3-methyl-imidazolium tetrafluoroborate was examined at the molecular level using symmetry adapted perturbation theory (SAPT) and density functional techniques through comparison of interaction energies of noncovalently bound complexes between the CO2 molecule and a series of ionic liquid ions and ion pairs. These energies were contrasted with those for complexes with model amines such as methylamine, dimethylamine, and trimethylamine. Detailed analysis of the five fundamental forces that are responsible for stabilization of the complexes is discussed. It was confirmed that the nature of the anion had a greater effect upon the physical interaction energy in non functionalized ionic liquids, with dispersion forces playing an important role in CO2 solubility. Hydrogen bonding with protic cations was shown to impart additional stability to the noncovalently bound CO2···IL complex through inductive forces. Two solvation models, the conductor-like polarizable continuum model (CPCM) and the universal solvation model (SMD), were used to estimate the impact of solvent effects on the CO2 binding. Both solvent models reduced interaction energies for all types of ions. These interaction energies appeared to favor imidazolium cations and carboxylic and sulfonic groups as well as bulky groups (e.g., NTf2) in anions for the physical absorption of CO2. The structure-reactivity relationships determined in this study may help in the optimization of the physical absorption process by means of ionic liquids. PMID:26267781

  3. UV-Vis Reflection-Absorption Spectroscopy at air-liquid interfaces.

    PubMed

    Rubia-Payá, Carlos; de Miguel, Gustavo; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2015-11-01

    UV-Visible Reflection-Absorption Spectroscopy (UVRAS) technique is reviewed with a general perspective on fundamental and applications. UVRAS is formally identical to IR Reflection-Absorption Spectroscopy (IRRAS), and therefore, the methodology developed for this IR technique can be applied in the UV-visible region. UVRAS can be applied to air-solid, air-liquid or liquid-liquid interfaces. This review focuses on the use of UVRAS for studying Langmuir monolayers. We introduce the theoretical framework for a successful understanding of the UVRAS data, and we illustrate the usage of this data treatment to a previous study from our group comprising an amphiphilic porphyrin. For ultrathin films with a thickness of few nm, UVRAS produces positive or negative bands when p-polarized radiation is used, depending on the incidence angle and the orientation of dipole absorption. UVRAS technique provides highly valuable information on tilt of chromophores at the air-liquid interface, and moreover allows the determination of optical parameters. We propose UVRAS as a powerful technique to investigate the in situ optical properties of Langmuir monolayers. PMID:26385430

  4. Gas-Liquid Flows and Phase Separation

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    2004-01-01

    Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .

  5. Effects of pentagastrin on intestinal absorption and blood flow in the anaesthetized dog.

    PubMed

    Mailman, D

    1980-10-01

    1. Pentagastrin (1, 10 micrograms/min) was infused I.V. into fed and fasted anaesthetized dogs and the intestinal absorption of NaCl and H2O and blood flow were determined. The influence of pentagastrin-induced cardiovascular changes on absorption was investigated. 2. 22Na and 3H2O were used to determine the unidirectional Na and H2O fluxes from saline perfused through the ileal lumen and the clearances of 3H2O were used to calculate total and absorptive site blood flow. 3. Ileal absorption of Na and H2O was reduced by 10 micrograms/min pentagastrin due primarily to significant increases in the secretory flux of Na and decreases in the absorptive flux of H2O in both fed and fasted animals. 4. Neither total intestinal blood flow, arterial nor mesenteric vein pressure were changed by pentagastrin but absorptive site blood flow was decreased in fasted but not in fed dogs. 5. Pretreatment with atropine reduced the effects of pentagastrin but pretreatment with guanethidine potentiated the effects of pentagastrin. 6. Absorptive site blood flow was positively linearly correlated with the absorptive fluxes of both Na and H2O. The relationships between the secretory fluxes of Na and H2O and estimated capillary pressure were changed from a positive relationship in control periods to a less positive or negative relationship following pentagastrin. 7. It was concluded that pentagastrin reduces intestinal absorption through both a cardiovascular effect and an effect on the intestinal epithelium. Also, there is a strong autonomic component in the effects of pentagastrin on intestinal absorption.

  6. Mass flow measurement of liquid cryogens using the triboelectric effect

    NASA Technical Reports Server (NTRS)

    Dechene, Ronald L.

    1986-01-01

    A cross correlator technique using triboelectric technology has been shown to be a feasible method to measure liquid flow rate for liquid nitrogen and JP4 jet fuel. This technology, invented and pioneered by Auburn International, Inc., is also expected to be suitable for use with all other insulating liquids and cryogens. The technology described is particularly well suited for cryogenic use, since the sensor is non-contacting and non-intrusive, and therefore, causes no additional pressure drop within the flow stream. Further development of the in-line sensor is required to produce a prototypical version for the test purposes under SSME fuel flow conditions. However, with the knowledge gained from this feasibility study, it is very likely that an acceptable sensor design for a full test bed evaluation could be produced.

  7. About the statistical description of gas-liquid flows

    SciTech Connect

    Sanz, D.; Guido-Lavalle, G.; Carrica, P.

    1995-09-01

    Elements of the probabilistic geometry are used to derive the bubble coalescence term of the statistical description of gas liquid flows. It is shown that the Boltzmann`s hypothesis, that leads to the kinetic theory of dilute gases, is not appropriate for this kind of flows. The resulting integro-differential transport equation is numerically integrated to study the flow development in slender bubble columns. The solution remarkably predicts the transition from bubbly to slug flow pattern. Moreover, a bubbly bimodal size distribution is predicted, which has already been observed experimentally.

  8. Comparison of Glucosamine Absorption After Administration of Oral Liquid, Chewable, and Tablet Formulations to Dogs.

    PubMed

    Maxwell, Lara K; Regier, Penny; Achanta, Satyanarayana

    2016-01-01

    Glucosamine (GS) is commonly administered as a nutritional supplement to support joint function. Although many supplements are available, the effect of formulation on oral absorption in dogs is unknown. The purpose of this study was to determine the relative bioavailability of GS for liquid, chewable, and tablet formulations containing GS sulfate or hydrochloride and chondroitin sulfate. In a randomized cross-over design, supplements were administered daily for 8 days with a 1 wk washout period between treatments. Liquid or Tablet A was administered to four dogs, whereas Liquid or Tablet B was administered to four additional dogs. When nutraceutical exposure was normalized to the administered dose of GS free base, similar relative bioavailabilities were determined for all three formulations. However, the dose-normalized maximum plasma GS concentration was higher for the liquid supplement (5.5 ± 0.5 μg/mL) than for the two tablets (3.1 ± 0.6 and 2.1 ± 0.6 μg/mL, P < 0.001). Similarly, the time at which maximal plasma GS concentrations occurred was shorter for the liquid formulation (0.7 ± 0.5 hr) than for the two tablets (4.2 ± 0.6 and 5.0 ± 0.6 hr, P < 0.001). These data show that the formulation of joint supplements affects the oral absorption of GS in dogs.

  9. Steering liquid metal flow in microchannels using low voltages.

    PubMed

    Tang, Shi-Yang; Lin, Yiliang; Joshipura, Ishan D; Khoshmanesh, Khashayar; Dickey, Michael D

    2015-10-01

    Liquid metals based on gallium, such as eutectic gallium indium (EGaIn) and Galinstan, have been integrated as static components in microfluidic systems for a wide range of applications including soft electrodes, pumps, and stretchable electronics. However, there is also a possibility to continuously pump liquid metal into microchannels to create shape reconfigurable metallic structures. Enabling this concept necessitates a simple method to control dynamically the path the metal takes through branched microchannels with multiple outlets. This paper demonstrates a novel method for controlling the directional flow of EGaIn liquid metal in complex microfluidic networks by simply applying a low voltage to the metal. According to the polarity of the voltage applied between the inlet and an outlet, two distinct mechanisms can occur. The voltage can lower the interfacial tension of the metal via electrocapillarity to facilitate the flow of the metal towards outlets containing counter electrodes. Alternatively, the voltage can drive surface oxidation of the metal to form a mechanical impediment that redirects the movement of the metal towards alternative pathways. Thus, the method can be employed like a 'valve' to direct the pathway chosen by the metal without mechanical moving parts. The paper elucidates the operating mechanisms of this valving system and demonstrates proof-of-concept control over the flow of liquid metal towards single or multiple directions simultaneously. This method provides a simple route to direct the flow of liquid metal for applications in microfluidics, optics, electronics, and microelectromechanical systems.

  10. Steering liquid metal flow in microchannels using low voltages.

    PubMed

    Tang, Shi-Yang; Lin, Yiliang; Joshipura, Ishan D; Khoshmanesh, Khashayar; Dickey, Michael D

    2015-10-01

    Liquid metals based on gallium, such as eutectic gallium indium (EGaIn) and Galinstan, have been integrated as static components in microfluidic systems for a wide range of applications including soft electrodes, pumps, and stretchable electronics. However, there is also a possibility to continuously pump liquid metal into microchannels to create shape reconfigurable metallic structures. Enabling this concept necessitates a simple method to control dynamically the path the metal takes through branched microchannels with multiple outlets. This paper demonstrates a novel method for controlling the directional flow of EGaIn liquid metal in complex microfluidic networks by simply applying a low voltage to the metal. According to the polarity of the voltage applied between the inlet and an outlet, two distinct mechanisms can occur. The voltage can lower the interfacial tension of the metal via electrocapillarity to facilitate the flow of the metal towards outlets containing counter electrodes. Alternatively, the voltage can drive surface oxidation of the metal to form a mechanical impediment that redirects the movement of the metal towards alternative pathways. Thus, the method can be employed like a 'valve' to direct the pathway chosen by the metal without mechanical moving parts. The paper elucidates the operating mechanisms of this valving system and demonstrates proof-of-concept control over the flow of liquid metal towards single or multiple directions simultaneously. This method provides a simple route to direct the flow of liquid metal for applications in microfluidics, optics, electronics, and microelectromechanical systems. PMID:26279150

  11. Impact of a single drop on a flowing liquid film.

    PubMed

    Gao, Xuan; Li, Ri

    2015-11-01

    The impact of a single liquid drop on a flowing liquid film is experimentally and theoretically studied. The drop impact produces a crownlike rising liquid sheet, which radially expands. Small droplets can be formed from the crown sheet, resulting in splash. The present study results in three major contributions. (1) A theoretical model is developed to predict the expansion of the crown base. The model with an introduced energy loss factor is shown to be in satisfactory agreement with our experimental observations of drop impact on both stationary and flowing films. The energy loss factor is correlated to the properties of the film and drop. (2) Analysis is conducted to derive an equation for evaluating the stretching rate of the rising crown sheet, which is the local gradient of the rising velocity at the top edge of the crown sheet. It shows that the highest stretching rate appears where the drop spreading flow is right opposite to the film flow, which helps explain why the same location is most probable for splash to take place. (3) A parameter as a function of modified Weber and Reynolds numbers is defined to predict splash and nonsplash of drop impact on flowing films. The two nondimensional numbers evaluate the competition of the two flows (drop and film) against viscosity and surface tension effects. A threshold value of the parameter is found for the occurrence of splash impact on flowing films. PMID:26651777

  12. Comparison of ethanol absorption during continuous and intermittent flow irrigation in transurethral resection.

    PubMed

    Hahn, R G; Algotsson, L A; Törnebrandt, K

    1990-01-01

    Transurethral resection of the prostate was performed using intermittent-flow bladder irrigation (n = 50), or by continuous-flow irrigation, using a suprapubic trocar (n = 50). The irrigant solution contained 1.5% glycine +1% ethanol and fluid absorption was measured from the ethanol content of the expired breath. Fluid absorption was significantly lower in patients receiving continuous-flow irrigation (p less than 0.007) although major absorption occurred in one of these patients. The immediate detection of absorption with the ethanol method allowed us to stop one of the operations performed with intermittent bladder irrigation, at which 2 l of fluid had been absorbed in 20 min. With correction for the amount of removed prostatic tissue, there were no differences in operation time or blood loss between the two types of irrigation. PMID:1690917

  13. Electromagnetically Sustained Liquid Metal Flow for Feedback Stabilization Studies

    NASA Astrophysics Data System (ADS)

    Mirhoseini, Seyyed Mohammad; Volpe, Francesco

    2015-11-01

    Liquid metal walls in fusion reactors, whether nearly static or rapidly flowing, will be subject to instabilities that will make them locally bulge, thus entering in contact with the plasma, or deplete, hence exposing the underlying solid substrate. To prevent this, research has begun at Columbia University to create liquid metal flows and demonstrate their stabilization by electromagnetic forces, adjusted in feedback with thickness measurements. Here we present initial results regarding the sustainment of a flow of Galinstan (a gallium, indium, tin alloy) by a special pump consisting of a ferromagnetic rotor, with permanent magnets mounted on it. The magnetic field is partly ``frozen'' in the liquid metal surrounding the rotor. Therefore, as the field rotates, the liquid metal rotates as well, although with a slip factor. This solution was preferred to conventional pumps, which would enter in electrical contact with the metal flow. The pump, 3D-printed at Columbia, allows to adjust the flow-velocity from few mm/s to several cm/s.

  14. Confinement effects on liquid-flow characteristics in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yasuoka, Haruka; Takahama, Ryo; Kaneda, Masayuki; Suga, Kazuhiko

    2015-12-01

    Liquid flow dynamics through the armchair (6 ,6 )-(160 ,160 ) carbon nanotubes (CNTs) is elucidated by molecular dynamics simulations. The liquid is modeled by nonpolar argon atoms to understand the fundamental flow physics. The velocity profiles and slip lengths are discussed considering the radial distributions of the fluid density by the presently proposed finite difference-based velocity fitting method. It is found that as the CNT diameter D increases, the slip length and the flow rate enhancement show three-step transitional profiles in the region of D ≤2.3 nm. The slip length and the flow rate stepwise increase at the first transition while they drop at the second and third transitions. The first transition corresponds to the structural change from the single-file chain to single-ring structures of the molecule cluster. The second and third transitions take place when the ring structure starts to develop another inner layer.

  15. Vortex shedding flowmeters for liquids at high flow velocities

    NASA Technical Reports Server (NTRS)

    Siegwarth, J. D.

    1985-01-01

    A number of vortex shedding flowmeter designs for flow measurements in liquid oxygen ducts on the space shuttle main engines have been tested in a high head water flow test facility. The results have shown that a vortex shedding element or vane spanning the duct can give a linear response to an average flow velocity of 46 m/s (150 ft/s) in a 1 1/2 inch nominal (41 mm actual) diameter duct while a vane partially spanning the duct can give a linear response to velocities exceeding 55 m/s (180 ft/s). The maximum pressure drops across the flow sensing elements extrapolate to less than 0.7 MPa (100 psi) at 56 m/s (184 ft/s) for liquid oxygen. The test results indicate that the vanes probably cannot be scaled up with pipe size, at least not linearly.

  16. Thermal dispersion in vertical gas-liquid flows with foaming and non-foaming liquids

    SciTech Connect

    Pino, L.R.Z.; Saez, A.E.

    1995-05-01

    Heat transfer experiments have been performed in gas-liquid upwards flow in a vertical column with non-foaming (water) and foaming (kerosene) liquids. The main purpose of the experiments has been to characterized the degree of thermal mixing in the system. For the range of conditions employed, the nonfoaming liquid exhibits complete mixing a low liquid superficial velocities. An increased in liquid velocity leads to incomplete mixing. In the latter case, the thermal dispersion coefficient at low gas superficial velocities is larger than what correlations in the literature predict. For the foaming liquid, when foaming and bubbling regions coexist in the bubble column, each region behaves as a completely-mixed subsystem.

  17. The use of liquid crystals for surface flow visualization

    NASA Technical Reports Server (NTRS)

    Smith, Stephen C.

    1990-01-01

    The use of shear-sensitive liquid crystals has become an established technique for diagnostic flow visualization. This technique has been demonstrated to illustrate laminar boundary-layer transition, laminar bubbles, shocks, and separation in flight and wind-tunnel environments. Typical results demonstrate the range of flow features which can be illustrated and some of the challenges and pitfalls which must be addressed. A few remaining issues are discussed which should be resolved to develop this technique to full maturity.

  18. Curcumin-Loaded Lipid Cubic Liquid Crystalline Nanoparticles: Preparation, Optimization, Physicochemical Properties and Oral Absorption.

    PubMed

    He, Xiuli; Li, Qinghua; Liu, Xiuju; Wu, Guangsheng; Zhai, Guangxi

    2015-08-01

    In order to improve the oral absorption of curcumin, curcumin-loaded lipid cubic liquid crystalline nanoparticles were prepared and evaluated in vitro and in vivo. The hot and high-pressure homogenization method was used to prepare the nanoparticles. The formulation and process were optimized by uniform design with drug loading and entrapment efficiency as index, and physicochemical properties were also investigated. Spherical nanoparticles were observed under transmission electron microscope (TEM), with average particle size of 176.1 nm, zeta potential of -25.19 mV, average drug loading of (1.5 ± 0.2)% and entrapment efficiency of (95 ± 1.8)%. The in vitro release of curcumin from the nanoparticle formulation showed a sustained property, while the pharmacokinetics results after oral administration of curcumin loaded lipid cubic liquid crystalline nanoparticles in rat showed that the oral absorption of curcumin fitted one-compartment model and relative bioavailability was 395.56% when compared to crude curcumin. It can be concluded from these results that the lipid cubic liquid crystalline nanoparticles, as carriers, can markedly improve the oral absorption of curcumin.

  19. Gas liquid flow at microgravity conditions - Flow patterns and their transitions

    NASA Technical Reports Server (NTRS)

    Dukler, A. E.; Fabre, J. A.; Mcquillen, J. B.; Vernon, R.

    1987-01-01

    The prediction of flow patterns during gas-liquid flow in conduits is central to the modern approach for modeling two phase flow and heat transfer. The mechanisms of transition are reasonably well understood for flow in pipes on earth where it has been shown that body forces largely control the behavior observed. This work explores the patterns which exist under conditions of microgravity when these body forces are suppressed. Data are presented which were obtained for air-water flow in tubes during drop tower experiments and Learjet trajectories. Preliminary models to explain the observed flow pattern map are evolved.

  20. Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1996-01-01

    Computational programs developed for the thermal analysis of tilting and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings are described. The motion of a cryogenic liquid on the thin film annular region of a fluid film bearing is described by a set of mass and momentum conservation, and energy transport equations for the turbulent bulk-flow velocities and pressure, and accompanied by thermophysical state equations for evaluation of the fluid material properties. Zeroth-order equations describe the fluid flow field for a journal static equilibrium position, while first-order (linear) equations govern the fluid flow for small amplitude-journal center translational motions. Solution to the zeroth-order flow field equations provides the bearing flow rate, load capacity, drag torque and temperature rise. Solution to the first-order equations determines the rotordynamic force coefficients due to journal radial motions.

  1. Asymmetric energy flow in liquid alkylbenzenes: A computational study

    SciTech Connect

    Leitner, David M.; Pandey, Hari Datt

    2015-10-14

    Ultrafast IR-Raman experiments on substituted benzenes [B. C. Pein et al., J. Phys. Chem. B 117, 10898–10904 (2013)] reveal that energy can flow more efficiently in one direction along a molecule than in others. We carry out a computational study of energy flow in the three alkyl benzenes, toluene, isopropylbenzene, and t-butylbenzene, studied in these experiments, and find an asymmetry in the flow of vibrational energy between the two chemical groups of the molecule due to quantum mechanical vibrational relaxation bottlenecks, which give rise to a preferred direction of energy flow. We compare energy flow computed for all modes of the three alkylbenzenes over the relaxation time into the liquid with energy flow through the subset of modes monitored in the time-resolved Raman experiments and find qualitatively similar results when using the subset compared to all the modes.

  2. Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Pan, R.; Jeffries, J. B.; Dreier, T.; Schulz, C.

    2016-01-01

    A multi-wavelength near-infrared (NIR) diode laser absorption sensor has been developed and demonstrated for real-time monitoring of the thickness, solute concentration, and temperature of thin films of urea-water solutions. The sensor monitors the transmittance of three near-infrared diode lasers through the thin liquid film. Film thickness, urea mass fraction, and liquid temperature were determined from measured transmittance ratios of suitable combinations of lasers. Available laser wavelengths were selected depending on the variation of the NIR absorption spectrum of the solution with temperature and solute concentration. The spectral database was measured by a Fourier transform infrared spectrometer in the range 5500-8000 cm-1 for urea solutions between 5 and 40 wt% and temperatures between 298 and 338 K. A prototype sensor was constructed, and the sensor concept was first validated with measurements using a calibration cell providing liquid layers of variable thickness (200-1500 µm), urea mass fraction (5-40 wt%) and temperature (298-318 K). Temporal variations of film thickness and urea concentration were captured during the constant-temperature evaporation of a liquid film deposited on an optically polished heated quartz flat.

  3. Free surface and flow problem for a viscous liquid

    SciTech Connect

    Zaytsev, M. L. Akkerman, V. B.

    2011-10-15

    An exact closed system of equations is proposed for describing the shape of the free surface of a viscous steady-state liquid in the 2D case in terms of the surface itself. A method that lowers the dimensionality in the Navier-Stokes equation is demonstrated, and its application in problems of steady-state flow past solids is considered.

  4. IHT: Tools for Computing Insolation Absorption by Particle Laden Flows

    SciTech Connect

    Grout, Ray

    2013-09-17

    INT is a toolkit for computing radiative heat exchange between particles. The algorithm is based on the the 'Photon Monte Carlo" approach described by Wang and Modest and implemented as a library that can be interfaced with a variety of CFD codes to analyze radiative heat transfer in particle laden flows.

  5. Basic study on hot-wire flow meter in forced flow of liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Oura, Y.; Shirai, Y.; Shiotsu, M.; Murakami, K.; Tatsumoto, H.; Naruo, Y.; Nonaka, S.; Kobayashi, H.; Inatani, Y.; Narita, N.

    2014-01-01

    Liquid hydrogen (LH2) is a key issue in a carbon-free energy infrastructure at the energy storage and transportation stage. The typical features of LH2 are low viscosity, large latent heat and small density, compared with other general liquids. It is necessary to measure a mass flow of liquid hydrogen with a simple and compact method, especially in a two phase separate flow condition. We have proposed applying a hot-wire type flow meter, which is usually used a for gas flow meter, to LH2 flow due to the quite low viscosity and density. A test model of a compact LH2 hot-wire flow meter to measure local flow velocities near and around an inside perimeter of a horizontal tube by resistance thermometry was designed and made. The model flow meter consists of two thin heater wires made of manganin fixed in a 10 mm-diameter and 40 mm-length tube flow path made of GFRP. Each rigid heater wire was set twisted by 90 degrees from the inlet to the outlet along the inner wall. In other words, the wires were aslant with regard to the LH2 stream line. The heated wire was cooled by flowing LH2, and the flow velocity was obtained by means of the difference of the cooling characteristic in response to the flow velocity. In this report, we show results on the basic experiments with the model LH2 hot-wire flow meter. First, the heat transfer characteristics of the two heater wires for several LH2 flow velocities were measured. Second, the heating current was controlled to keep the wire temperature constant for various flow velocities. The relations between the flow velocity and the heating current were measured. The feasibility of the proposed model was confirmed.

  6. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  7. Liquid-Crystal Coats Help Make Flows Visible

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Obara, Clifford J.

    1991-01-01

    Visible indication of transition of boundary layer from laminar to turbulent flow plays important role in aerodynamic tests in wind tunnels and in flight. In newly developed method, liquid-crystal coats used to make visible such features of boundary-layer flows as transitions, separations, and locations of shocks. Changes of color rapid and reversible. For flight applications, provides capability for making transitions visible throughout almost entire altitude and speed ranges of subsonic aircraft. Also applicable to visible indication of supersonic flows and suitable for general use in high- and low-speed wind-tunnel and water-tunnel testing.

  8. CFD simulation on the turbulent mixing flow performance of the liquid-liquid ejector

    NASA Astrophysics Data System (ADS)

    An, W. Z.; Bie, H. Y.; Liu, C. C.; Hao, Z. R.

    2016-05-01

    In order to study the flow performance of the liquid-liquid ejector, 3D ejector simulation models were established to investigate the influences of suction angle, suction number and working condition on the ejector performance. The simulation results showed that when the suction angle was 60°, the total pressure was in equilibrium state. The double suction ejector would induced more vortexes in the suction chamber than that of the single suction ejector, and the turbulent intensity of the fluid inside the ejector was bigger, however, it also caused much more loss in energy. When the working pressure was lower than 0.6 MPa, the liquid entrainment ratio increased rapidly. Once the working pressure reached 0.6 MPa, the liquid entrainment ratio basically remained unchanged. The mass flow rate of the suction medium increased with the increasing of suction pressure, and the differential pressure between the suction pressure and the working pressure at the nozzle also increased simultaneously.

  9. Numerical and experimental analysis of a thin liquid film on a rotating disk related to development of a spacecraft absorption cooling system

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1989-01-01

    The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.

  10. Signals features extraction in liquid-gas flow measurements using gamma densitometry. Part 1: time domain

    NASA Astrophysics Data System (ADS)

    Hanus, Robert; Zych, Marcin; Petryka, Leszek; Jaszczur, Marek; Hanus, Paweł

    2016-03-01

    The paper presents an application of the gamma-absorption method to study a gas-liquid two-phase flow in a horizontal pipeline. In the tests on laboratory installation two 241Am radioactive sources and scintillation probes with NaI(Tl) crystals have been used. The experimental set-up allows recording of stochastic signals, which describe instantaneous content of the stream in the particular cross-section of the flow mixture. The analyses of these signals by statistical methods allow to determine the mean velocity of the gas phase. Meanwhile, the selected features of signals provided by the absorption set, can be applied to recognition of the structure of the flow. In this work such three structures of air-water flow as: plug, bubble, and transitional plug - bubble one were considered. The recorded raw signals were analyzed in time domain and several features were extracted. It was found that following features of signals as the mean, standard deviation, root mean square (RMS), variance and 4th moment are most useful to recognize the structure of the flow.

  11. Flow Visualization of Liquid Hydrogen Line Chilldown Tests

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Hartwig, Jason W.; McQuillen John B.

    2014-01-01

    We present experimental measurements of wall and fluid temperature during chill-down tests of a warm cryogenic line with liquid hydrogen. Synchronized video and fluid temperature measurements are used to interpret stream temperature profiles versus time. When cold liquid hydrogen starts to flow into the warm line, a sequence of flow regimes, spanning from all-vapor at the outset to bubbly with continuum liquid at the end can be observed at a location far downstream of the cold inlet. In this paper we propose interpretations to the observed flow regimes and fluid temperature histories for two chilldown methods, viz. trickle (i.e. continuous) flow and pulse flow. Calculations of heat flux from the wall to the fluid versus wall temperature indicate the presence of the transition/nucleate boiling regimes only. The present tests, run at typical Reynolds numbers of approx O(10 (exp 5)), are in sharp contrast to similar tests conducted at lower Reynolds numbers where a well-defined film boiling region is observed.

  12. Gas and liquid fuel injection into an enclosed swirling flow

    NASA Astrophysics Data System (ADS)

    Ahmad, N. T.; Andrews, G. E.

    1984-06-01

    The use of swirler air for atomization has been tested with direct central propane injection and with direct central kerosene and gas oil injection, and its results have been compared with those for nonswirling flow systems under the same conditions. Direct propane injection results in a major extension of stability limits, by comparison to results for premixing, while with liquid fuel injection the stability limits are generally worse than for premixed fuel and air. This may be due to the action of the centrifugal forces on the liquid droplets in the swirl flow, which results in outer swirl flow vaporization and weaker mixtures in the core recirculation region than would be the case for propane injection. A comparison with nonswirling system performance indicated that all emission levels were higher with swirl for propane.

  13. Topological transitions in unidirectional flow of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Cummings, Linda; Anderson, Thomas; Mema, Ensela; Kondic, Lou

    2015-11-01

    Recent experiments by Sengupta et al. (Phys. Rev. Lett. 2013) revealed interesting transitions that can occur in flow of nematic liquid crystal under carefully controlled conditions within a long microfluidic channel of rectangular cross-section, with homeotropic anchoring at the walls. At low flow rates the director field of the nematic adopts a configuration that is dominated by the surface anchoring, being nearly parallel to the channel height direction over most of the cross-section; but at high flow rates there is a transition to a flow-dominated state, where the director configuration at the channel centerline is aligned with the flow (perpendicular to the channel height direction). We analyze simple channel-flow solutions to the Leslie-Ericksen model for nematics. We demonstrate that two solutions exist, at all flow rates, but that there is a transition between the elastic free energies of these solutions: the anchoring-dominated solution has the lowest energy at low flow rates, and the flow-dominated solution has lowest energy at high flow rates. NSF DMS 1211713.

  14. Absorption spectra and photolysis of methyl peroxide in liquid and frozen water.

    PubMed

    Epstein, Scott A; Shemesh, Dorit; Tran, Van T; Nizkorodov, Sergey A; Gerber, R Benny

    2012-06-21

    Methyl peroxide (CH(3)OOH) is commonly found in atmospheric waters and ices in significant concentrations. It is the simplest organic peroxide and an important precursor to hydroxyl radical. Many studies have examined the photochemical behavior of gaseous CH(3)OOH; however, the photochemistry of liquid and frozen water solutions is poorly understood. We present a series of experiments and theoretical calculations designed to elucidate the photochemical behavior of CH(3)OOH dissolved in liquid water and ice over a range of temperatures. The molar extinction coefficients of aqueous CH(3)OOH are different from the gas phase, and they do not change upon freezing. Between -12 and 43 °C, the quantum yield of CH(3)OOH photolysis is described by the following equation: Φ(T) = exp((-2175 ± 448)1/T) + 7.66 ± 1.56). We use on-the-fly ab initio molecular dynamics simulations to model structures and absorption spectra of a bare CH(3)OOH molecule and a CH(3)OOH molecule immersed inside 20 water molecules at 50, 200, and 220 K. The simulations predict large sensitivity in the absorption spectrum of CH(3)OOH to temperature, with the spectrum narrowing and shifting to the blue under cryogenic conditions because of constrained dihedral motion around the O-O bond. The shift in the absorption spectrum is not observed in the experiment when the CH(3)OOH solution is frozen suggesting that CH(3)OOH remains in a liquid layer between the ice grains. Using the extinction coefficients and photolysis quantum yields obtained in this work, we show that under conditions with low temperatures, in the presence of clouds with a high liquid-water content and large solar zenith angles, the loss of CH(3)OOH by aqueous photolysis is responsible for up to 20% of the total loss of CH(3)OOH due to photolysis. Gas phase photolysis of CH(3)OOH dominates under all other conditions.

  15. Isothermal gas-liquid flow at reduced gravity

    NASA Technical Reports Server (NTRS)

    Dukler, A. E.

    1990-01-01

    Research on adiabatic gas-liquid flows under reduced gravity condition is presented together with experimental data obtained using a NASA-Lewis RC 100-ft drop tower and in a LeRC Learjet. It is found that flow patterns and characteristics remain unchanged after the first 1.5 s into microgravity conditions and that the calculated time for a continuity wave to traverse the test section is less than 1.2 s. It is also found that the dispersed bubbles move at the same velocity as that of the front of the slug and that the transition between bubbly and slug flow is insensitive to diameter. Both the bubbly and the slug flows are suggested to represent a continuum of the same physical process. The characteristics of annular, slug, and bubbly flows are compared.

  16. Analysis of spatial and temporal spectra of liquid film surface in annular gas-liquid flow

    NASA Astrophysics Data System (ADS)

    Alekseenko, Sergey; Cherdantsev, Andrey; Heinz, Oksana; Kharlamov, Sergey; Markovich, Dmitriy

    2013-09-01

    Wavy structure of liquid film in annular gas-liquid flow without liquid entrainment consists of fast long-living primary waves and slow short-living secondary waves. In present paper, results of spectral analysis of this wavy structure are presented. Application of high-speed LIF technique allowed us to perform such analysis in both spatial and temporal domains. Power spectra in both domains are characterized by one-humped shape with long exponential tail. Influence of gas velocity, liquid Reynolds number, liquid viscosity and pipe diameter on frequency of the waves is investigated. When gravity effect is much lesser than the shear stress, similarity of power spectra at different gas velocities is observed. Using combination of spectral analysis and identification of characteristic lines of primary waves, frequency of generation of secondary waves by primary waves is measured.

  17. Analysis of Developing Gas/liquid Two-Phase Flows

    SciTech Connect

    Elena A. Tselishcheva; Michael Z. Podowski; Steven P. Antal; Donna Post Guillen; Matthias Beyer; Dirk Lucas

    2010-06-01

    The goal of this work is to develop a mechanistically based CFD model that can be used to simulate process equipment operating in the churn-turbulent regime. The simulations were performed using a state-of-the-art computational multiphase fluid dynamics code, NPHASE–CMFD [Antal et al,2000]. A complete four-field model, including the continuous liquid field and three dispersed gas fields representing bubbles of different sizes, was first carefully tested for numerical convergence and accuracy, and then used to reproduce the experimental results from the TOPFLOW test facility at Forschungszentrum Dresden-Rossendorf e.V. Institute of Safety Research [Prasser et al,2007]. Good progress has been made in simulating the churn-turbulent flows and comparison the NPHASE-CMFD simulations with TOPFLOW experimental data. The main objective of the paper is to demonstrate capability to predict the evolution of adiabatic churn-turbulent gas/liquid flows. The proposed modelling concept uses transport equations for the continuous liquid field and for dispersed bubble fields [Tselishcheva et al, 2009]. Along with closure laws based on interaction between bubbles and continuous liquid, the effect of height on air density has been included in the model. The figure below presents the developing flow results of the study, namely total void fraction at different axial locations along the TOPFLOW facility test section. The complete model description, as well as results of simulations and validation will be presented in the full paper.

  18. Tunable diode laser absorption sensor for temperature and velocity measurements of O2 in air flows

    NASA Technical Reports Server (NTRS)

    Philippe, L. C.; Hanson, R. K.

    1991-01-01

    A fast and nonintrusive velocity and temperature diagnostic based on oxygen absorption is presented. The system uses a GaAlAs tunable diode laser, ramped and modulated in wavelength at high frequency. Detection is performed at twice the modulating frequency, leading to second harmonic absorption lineshapes. Velocity is inferred from the wavelength shift of the absorption line center due to the Doppler effect. Temperature is determined by comparing experimental and calculated lineshapes. Capabilities of the technique for studies of transient high-speed flows are demonstrated in shock tube experiments. Good agreement is obtained with predicted temperatures and velocities when pressure-induced shifts are accounted for.

  19. Asymptotic and numerical analysis of electrohydrodynamic flows of dielectric liquid

    NASA Astrophysics Data System (ADS)

    Suh, Y. K.; Baek, K. H.; Cho, D. S.

    2013-08-01

    We perform an asymptotic analysis of electrohydrodynamic (EHD) flow of nonpolar liquid subjected to an external, nonuniform electric field. The domain of interest covers the bulk as well as the thin dissociation layers (DSLs) near the electrodes. Outer (i.e., bulk) equations for the ion transport in hierarchical order of perturbation parameters can be expressed in linear form, whereas the inner (i.e., DSL) equations take a nonlinear form. We derive a simple formula in terms of various parameters which can be used to estimate the relative importance of the DSL-driven flow compared with the bulk-driven flow. EHD flow over a pair of cylindrical electrodes is then solved asymptotically and numerically. It is found that in large geometric scale and high ion concentration the EHD flow is dominated by the bulk-charge-induced flow. As the scale and concentration are decreased, the DSL-driven slip velocity increases and the resultant flow tends to dominate the domain and finally leads to flow reversal. We also conduct a flow-visualization experiment to verify the analysis and attain good agreement between the two results with parameter tuning. We finally show, based on the comparison of experimental and numerical solutions, that the rate of free-ion generation (dissociation) should be less than the one predicted from the existing formula.

  20. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOEpatents

    Johnson, Charles C.; Taylor, Larry T.

    1986-01-01

    A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  1. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOEpatents

    Johnson, C.C.; Taylor, L.T.

    1985-01-04

    A zero dead volume (ZDV) microbore high performance liquid chromatography (..mu.. HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a ..mu.. HPLC column end fitting to minimize the transfer volume of the effluents exiting the ..mu.. HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF/sub 2/), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  2. Determination of maduramicin by liquid chromatography with atomic absorption spectrometric detection.

    PubMed

    Johnson, N A

    1989-01-01

    A liquid chromatograph was interfaced to an atomic absorption spectrometer for the detection and quantitation of maduramicin in feed matrixes at the 1-8 ppm level. Ionophores in general form strong 1:1 products with various metal cations, yielding complexes that are insoluble in water but very soluble in organic solvents. Maduramicin, a carboxylic, polyalcohol, polyether antibiotic, is labeled with the sodium cation and analyzed by atomic absorption spectroscopy (AAS). The lower limit of detection is approximately 100-200 ng maduramicin sodium salt. Feeds containing 1-8 ppm maduramicin are extracted with acetone, the extract is passed through an alumina column, the column is eluted with acetonitrile-water (90 + 10), and the eluate is analyzed for maduramicin by liquid chromatography-AAS after concentration and conversion of maduramicin to the sodium salt. Recoveries of maduramicin averaged 89.5%. Liquid chromatography with AAS detection has been shown to be a sensitive and highly specific technique for the determination of ionophores in general and maduramicin in particular. PMID:2708270

  3. Absorption of NO and NO2 in caprolactam tetrabutyl ammonium halide ionic liquids.

    PubMed

    Duan, Erhong; Guo, Bin; Zhang, Dandan; Shi, Long; Sun, Hua; Wang, Yanan

    2011-12-01

    To explore environmentally benign solvents for the absorption of NO and NO2, a series of caprolactam tetrabutyl ammonium halide ionic liquids were synthesized. The solubility of NO and NO2 was measured at temperatures ranging from 298.2 to 363.2 K and atmospheric pressure, and the following trend in the solubility of NO and NO2 in ionic liquids with various halide anions was observed, respectively: F > Br > Cl and Br > Cl > F. Moreover, as the temperature increased from 308.15 to 363.15 K and the mole ratio of caprolactam increased from 2:1 to 6:1, the solubility of NO increased. Alternatively, the solubility of NO2 decreased as the temperature increased from 298.15 to 363.15 K, and the mole ratio of caprolactam increased from 2:1 to 6:1. The absorption and desorption of NO and NO2 was practically reversible in the ionic liquids, which was characterized by nuclear magnetic resonance. The method, which is at least partially reversible, offers interesting possibilities for the removal of NO and NO2.

  4. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel.

    PubMed

    Ramírez-Miquet, Evelio E; Perchoux, Julien; Loubière, Karine; Tronche, Clément; Prat, Laurent; Sotolongo-Costa, Oscar

    2016-01-01

    Optical feedback interferometry (OFI) is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel). PMID:27527178

  5. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel.

    PubMed

    Ramírez-Miquet, Evelio E; Perchoux, Julien; Loubière, Karine; Tronche, Clément; Prat, Laurent; Sotolongo-Costa, Oscar

    2016-08-04

    Optical feedback interferometry (OFI) is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel).

  6. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel

    PubMed Central

    Ramírez-Miquet, Evelio E.; Perchoux, Julien; Loubière, Karine; Tronche, Clément; Prat, Laurent; Sotolongo-Costa, Oscar

    2016-01-01

    Optical feedback interferometry (OFI) is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel). PMID:27527178

  7. Determining CDOM Absorption Spectra in Diverse Aquatic Environments Using a Multiple Pathlength, Liquid Core Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2001-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, aCDOM, and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values and showed a linear response across all four pathlengths. Values of aCDOM measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of aCDOM for MPLCW measurements was 0.002 - 231.5 m-1. At low CDOM concentrations spectrophotometric aCDOM were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples.

  8. Intestinal absorption of dietary fat from a liquid diet perfused in rats at a submaximum level

    SciTech Connect

    Simko, V.; Kelley, R.E.

    1988-02-01

    The small intestine of rats was perfused in vivo for 2 h with a nutritionally complete liquid diet (68% calories from fat as corn oil). As the perfusion increased from 106 mg/2 h, the intestinal disappearance of the /sup 14/C-triolein marker remained proportional to the load up to 2359 mg fat/2 h. Despite a decrease in absorption from 70 to 17%, this represents a very large fat intake. Fat absorption improved when medium-chain triglycerides or octanoic acid replaced corn oil (both p less than 0.01). Linoleic acid was absorbed from the diet less than corn oil (p less than 0.01). Dry ox bile reduced fat absorption (p less than 0.05); lipase and an antacid had no effect. Corn oil perfused alone was absorbed better than from the diet (p less than 0.01). Data with /sup 14/C-triolein was confirmed by dry-weight disappearance of the diet and by net intestinal water balance. Usual feeding underutilizes a large reserve for fat absorption. This reserve should be considered in therapeutic nutrition.

  9. Sound Absorption of a 2DOF Resonant Liner with Negative Bias Flow

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Cataldi, P.; Gaeta, R. J., Jr.

    2000-01-01

    This report describes an experimental study conducted to determine the effect of negative bias flow on the sound absorption of a two degree-of-freedom liner. The backwall for the liner was designed to act as a double-Helmholtz resonator so as to act as a hard wall at all frequencies except at its resonant frequencies. The effect of bias flow is investigated for a buried septum porosity of 2% and 19.5% for bias flow orifice Mach numbers up to 0.311. The bias flow appears to modify the resistance and reactance of the backwall alone at lower frequencies up to about 2 kHz, with marginal effects at higher frequencies. Absorption coefficients close to unity are achieved for a frequency range of 500 - 4000 Hz for the overall liner for a septum porosity of 2% and orifice Mach number of 0.128. Insertion loss tests performed in a flow duct facility for grazing flow Mach numbers up to 0.2 and septum Mach numbers up to 0.15 showed that negative bias flow can increase insertion loss by as much as 10 dB at frequencies in the range of 500 D 1400 Hz compared to no grazing flow. The effectiveness of the negative bias flow is diminished as the grazing flow velocity is increased.

  10. Vortex generator for controlling the dispersion of effluents in a flowing liquid

    NASA Technical Reports Server (NTRS)

    Costen, R. C. (Inventor)

    1977-01-01

    A method is disclosed for controlling the dispersion of effluents in a flowing liquid. A vortex generator for creating a distinct recirculating vortical flow is disposed in a flowing liquid and effluents are discharged into the vortical flow. The effluents are entrained in the vortical flow and by selectively positioning the vortex generator the dispersion of the entrained effluents can be controlled.

  11. Wavy-to-slug flow transition in slightly inclined gas-liquid pipe flow

    SciTech Connect

    Grolman, E.; Commandeur, N.C.J.; Baat, E.C. de; Fortuin, J.M.H.

    1996-04-01

    A process-engineering model is presented for the stratified-wavy-to-intermittent (SW-I) flow-pattern transition in slightly inclined gas-liquid pipe flow. The main parameter for predicting (in)stability of wavy flow in inclined pipes is the average liquid holdup, which was found to reach a maximum, critical value at flow-pattern transition. Observed values of the critical liquid holdup vary between 0.07 and 0.42, depending on pipe diameter, angle of inclination and transport properties of the gas-liquid system. Measurements were performed in transparent glass pipes of 26- and 51-mm dia., at ten angles of inclination (0.1{degree} {le} {beta} {le} 6.0{degree}), using air/water and air/tetradecane (n-C{sub 14}H{sub 30}) systems at atmospheric pressure. Flow-pattern maps are presented for selected angles of inclination, showing excellent agreement between predicted and observed flow-pattern boundaries.

  12. Transition from laminar to turbulent flow in liquid filled microtubes

    NASA Astrophysics Data System (ADS)

    Sharp, K. V.; Adrian, R. J.

    2004-05-01

    The transition to turbulent flow is studied for liquids of different polarities in glass microtubes having diameters between 50 and 247 µm. The onset of transition occurs at Reynolds numbers of ~1,800 2,000, as indicated by greater-than-laminar pressure drop and micro-PIV measurements of mean velocity and rms velocity fluctuations at the centerline. Transition at anomalously low values of Reynolds number was never observed. Additionally, the results of more than 1,500 measurements of pressure drop versus flow rate confirm the macroscopic Poiseuille flow result for laminar flow resistance to within -1% systematic and ±2.5% rms random error for Reynolds numbers less than 1,800.

  13. Low-gravity sensing of liquid/vapor interface and transient liquid flow

    NASA Astrophysics Data System (ADS)

    Jacobson, Saul A.; Korba, James M.; Lynnworth, Lawrence C.; Nguyen, Toan H.; Orton, George F.

    1987-03-01

    The work reported here deals mainly with tests on internally vaned cylindrical shell acrylic containers capped by hemispherical acrylic or aluminum end domes. Three different ultrasonic sensor techniques and one nucleonic technique presently are evaluated as possible solutions to the low-gravity liquid gauging problem. The ultrasonic techniques are as follows: use of a torsional wave sensor in which transit time is proportional to the integral of wetted distance x liquid density; integration of the flow rate output signal of a fast-response ultrasonic flowmeter; and use of multiplexed externally mounted 'point-sensor' transducers that sense transit times to liquid-gas interfaces. Using two commercial flowmeters and a thickness gauge modified for this particular project, bench tests were conducted at 1 g on liquids such as water, freon, and solvent 140, including both steady flow and pulsating flow with 40, 80, and 120 ms flow pulses. Subsequently, flight tests were conducted in the NASA KC-135 aircraft in which nearly 0-g conditions are obtainable for up to about 5 s in each of a number of repetitive parabolic flight trajectories. In some of these brief low-gravity flight tests freon was replaced with a higher-viscosity fuel to reduce sloshing and thereby obtain settled surfaces more quickly.

  14. Standard Flow Liquid Chromatography for Shotgun Proteomics in Bioenergy Research

    PubMed Central

    González Fernández-Niño, Susana M.; Smith-Moritz, A. Michelle; Chan, Leanne Jade G.; Adams, Paul D.; Heazlewood, Joshua L.; Petzold, Christopher J.

    2015-01-01

    Over the past 10 years, the bioenergy field has realized significant achievements that have encouraged many follow on efforts centered on biosynthetic production of fuel-like compounds. Key to the success of these efforts has been transformational developments in feedstock characterization and metabolic engineering of biofuel-producing microbes. Lagging far behind these advancements are analytical methods to characterize and quantify systems of interest to the bioenergy field. In particular, the utilization of proteomics, while valuable for identifying novel enzymes and diagnosing problems associated with biofuel-producing microbes, is limited by a lack of robustness and limited throughput. Nano-flow liquid chromatography coupled to high-mass accuracy, high-resolution mass spectrometers has become the dominant approach for the analysis of complex proteomic samples, yet such assays still require dedicated experts for data acquisition, analysis, and instrument upkeep. The recent adoption of standard flow chromatography (ca. 0.5 mL/min) for targeted proteomics has highlighted the robust nature and increased throughput of this approach for sample analysis. Consequently, we assessed the applicability of standard flow liquid chromatography for shotgun proteomics using samples from Escherichia coli and Arabidopsis thaliana, organisms commonly used as model systems for lignocellulosic biofuels research. Employing 120 min gradients with standard flow chromatography, we were able to routinely identify nearly 800 proteins from E. coli samples; while for samples from Arabidopsis, over 1,000 proteins could be reliably identified. An examination of identified peptides indicated that the method was suitable for reproducible applications in shotgun proteomics. Standard flow liquid chromatography for shotgun proteomics provides a robust approach for the analysis of complex samples. To the best of our knowledge, this study represents the first attempt to validate the standard

  15. Standard flow liquid chromatography for shotgun proteomics in bioenergy research.

    PubMed

    González Fernández-Niño, Susana M; Smith-Moritz, A Michelle; Chan, Leanne Jade G; Adams, Paul D; Heazlewood, Joshua L; Petzold, Christopher J

    2015-01-01

    Over the past 10 years, the bioenergy field has realized significant achievements that have encouraged many follow on efforts centered on biosynthetic production of fuel-like compounds. Key to the success of these efforts has been transformational developments in feedstock characterization and metabolic engineering of biofuel-producing microbes. Lagging far behind these advancements are analytical methods to characterize and quantify systems of interest to the bioenergy field. In particular, the utilization of proteomics, while valuable for identifying novel enzymes and diagnosing problems associated with biofuel-producing microbes, is limited by a lack of robustness and limited throughput. Nano-flow liquid chromatography coupled to high-mass accuracy, high-resolution mass spectrometers has become the dominant approach for the analysis of complex proteomic samples, yet such assays still require dedicated experts for data acquisition, analysis, and instrument upkeep. The recent adoption of standard flow chromatography (ca. 0.5 mL/min) for targeted proteomics has highlighted the robust nature and increased throughput of this approach for sample analysis. Consequently, we assessed the applicability of standard flow liquid chromatography for shotgun proteomics using samples from Escherichia coli and Arabidopsis thaliana, organisms commonly used as model systems for lignocellulosic biofuels research. Employing 120 min gradients with standard flow chromatography, we were able to routinely identify nearly 800 proteins from E. coli samples; while for samples from Arabidopsis, over 1,000 proteins could be reliably identified. An examination of identified peptides indicated that the method was suitable for reproducible applications in shotgun proteomics. Standard flow liquid chromatography for shotgun proteomics provides a robust approach for the analysis of complex samples. To the best of our knowledge, this study represents the first attempt to validate the standard

  16. Flow Straightener for a Rotating-Drum Liquid Separator

    NASA Technical Reports Server (NTRS)

    O'Coin, James R.; Converse, David G.; Rethke, Donald W.

    2004-01-01

    A flow straightener has been incorporated into a rotary liquid separator that originally comprised an inlet tube, a shroud plate, an impeller, an inner drum, an outer drum, a housing, a pitot tube, and a hollow shaft motor. As a consequence of the original geometry of the impeller, shroud, inner drum, and hollow shaft, swirl was created in the airflow inside the hollow shaft during operation. The swirl speed was large enough to cause a significant pressure drop. The flow straightener consists of vanes on the back side of the shroud plate. These vanes compartmentalize the inside of the inner drum in such a way as to break up the flow path and thereby stop the air from swirling; as a result, the air enters the hollow shaft with a predominantly axial velocity instead of a swirl. Tests of the rotary liquid separator at an airflow rate of 10 cu ft/min (0.0047 cu m/s) revealed that the dynamic pressure drop was 8 in. of water (approx.=2 kPa) in the absence of the flow straightener and was reduced to 1 in. of water (approx.=0.25 kPa) in the presence of the flow straightener.

  17. Advances in flow visualization using liquid-crystal coatings

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Obara, Clifford J.

    1987-01-01

    This paper discusses a new four-part mixing method for visualizing boundary layer flows, including transitions, separation, and shock locations, by the use of liquid-crystal coatings. The method controls the event temperature and color-play bandwidth best suited to specific experimental conditions, and is easily learned. The method is applicable almost throughout the altitude and speed ranges for subsonic aircraft flight envelopes, and is also applicable to supersonic flow visualization and for general use in high- and low-speed wind tunnel and water tunnel testing.

  18. Real-time precision concentration measurement for flowing liquid solutions

    NASA Astrophysics Data System (ADS)

    Krishna, V.; Fan, C. H.; Longtin, J. P.

    2000-10-01

    The precise, real-time measurement of liquid concentration is important in fundamental research, chemical analysis, mixing processes, and manufacturing, e.g., in the food and semiconductor industries. This work presents a laser-based, noninvasive technique to measure concentration changes of flowing liquids in real time. The essential components in the system include a 5 mW laser diode coupled to a single-mode optical fiber, a triangular optical cell, and a high-resolution beam position sensor. The instrument provides a large range of concentration measurement, typically 0%-100% for binary liquid mixtures, while providing a resolution on the order of 0.05% concentration or better. The experimental configuration is small, reliable, and inexpensive. Results are presented for NaCl and MgCl2 aqueous solutions with concentrations ranging from 0% to 25%, with very good agreement found between measured and true concentrations.

  19. Laboratory experiments on liquid metal spherical-Couette flows

    NASA Astrophysics Data System (ADS)

    Andres Triana, Santiago; Lathrop, Daniel

    2005-11-01

    We present experimental observations on liquid sodium flow in a spherical-Couette geometry. By applying an external magnetic field we are able to clearly identify at least two induced magnetic field modes with different poloidal patterns as well as different azimuthal wave numbers. The origin of many of these induced field oscillations appears to be related to inertial wave oscillations propagating in the spherical annulus. Possible implications for dynamo action and to the magneto-rotational instability will also be discussed.

  20. Particles for flow visualization and velocimetry in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Fonda, Enrico; Paoletti, Matthew S.; Sreenivasan, Katepalli R.; Lathrop, Daniel P.

    2010-11-01

    Liquid nitrogen may be used to generate, in a facility of a given size, Reynolds numbers which are substantially larger than that in water because its kinematic viscosity is one fifth that of water at 25^o C. We present a simple technique, previously used in liquid helium [1,2], to create solid tracers for visualization and velocimetry in turbulent liquid nitrogen. These tracers are created by injecting a gaseous mixture of room-temperature nitrogen and an additional gas (element or compound) into the flow. The latter is selected such that, when cooled below 77 K (nitrogen boiling point), it freezes into solid particles with the highest mismatch in the index of refraction and the lowest mismatch in density compared to the surrounding liquid nitrogen. We discuss the formation process of the particles, and characterize the effects of the dilution ratio and gas selection on their size, brightness and fidelity. Possibilities of using this technique for fluid dynamics experiments that require visualization of high Reynolds number flows are reviewed. [1] G. P. Bewley, D. P. Lathrop, and K. R. Sreenivasan, Nature 441, 588 (2006). [2] M. S. Paoletti, R. B. Fiorito, K. R. Sreenivasan, and D. P. Lathrop, J. Phys. Soc. Jpn. 77, 111007 (2008).

  1. Development of Cellular Absorptive Tracers (CATs) for a Quantitative Characterization of Microbial Mass in Flow Systems

    SciTech Connect

    Saripalli, Prasad; Brown, Christopher F.; Lindberg, Michael J.

    2005-03-16

    We report on a new Cellular Absorptive Tracers (CATs) method, for a simple, non-destructive characterization of bacterial mass in flow systems. Results show that adsorption of a CAT molecule into the cellular mass results in its retardation during flow, which is a good, quantitative measure of the biomass quantity and distribution. No such methods are currently available for a quantitative characterization of cell mass.

  2. Phase distribution measurements in liquid-liquid pipeline flows using an impedance probe

    SciTech Connect

    Angeli, P.; Hewitt, G.F.

    1996-12-31

    A high frequency impedance probe was used for volume fraction distribution measurements and flow pattern identification in oil-water flow. The signal processing technique was based on a method by van der Welle (1985) that attributes to the beginning of the signal rise or fall the contact of the interface with the probe tip. The experiments were performed in two 1 inch nominal bore horizontal test sections made from stainless steel and acrylic resin. Measurements were made for mixture velocities from 1.3 m/s to 1.7 m/s and input oil volume fractions from 25% to 85%. Under these conditions different complex flow patterns exist, whose discrimination with visual observation is difficult. The results revealed that the mixing of the liquid phases is much greater in the rougher steel pipe than in the acrylic pipe under the same conditions and also helped to clearly identify the three layer, the stratified mixed and the fully mixed flow patterns. Liquid-liquid flows appear in many industrial processes and in the petroleum industry in particular, where oil and water are often produced and transported together.

  3. Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions

    DOEpatents

    McGrail, Bernard P.; Martin, Paul F.; Lindenmeier, Clark W.

    1999-01-01

    The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

  4. Progress in Creating Stabilized Gas Layers in Flowing Liquid Mercury

    SciTech Connect

    Wendel, Mark W; Felde, David K; Riemer, Bernie; Abdou, Ashraf A; D'Urso, Brian R; West, David L

    2009-01-01

    The Spallation Neutron Source (SNS) facility in Oak Ridge, Tennessee uses a liquid mercury target that is bombarded with protons to produce a pulsed neutron beam for materials research and development. In order to mitigate expected cavitation damage erosion (CDE) of the containment vessel, a two-phase flow arrangement of the target has been proposed and was earlier proven to be effective in significantly reducing CDE in non-prototypical target bodies. This arrangement involves covering the beam "window", through which the high-energy proton beam passes, with a protective layer of gas. The difficulty lies in establishing a stable gas/liquid interface that is oriented vertically with the window and holds up to the strong buoyancy force and the turbulent mercury flow field. Three approaches to establishing the gas wall have been investigated in isothermal mercury/gas testing on a prototypical geometry and flow: (1) free gas layer approach, (2) porous wall approach, and (3) surface-modified approach. The latter two of these approaches show success in that a stabilized gas layer is produced. Both of these successful approaches capitalize on the high surface energy of liquid mercury by increasing the surface area of the solid wall, thus increasing gas hold up at the wall. In this paper, a summary of these experiments and findings is presented as well as a description of the path forward toward incorporating the stabilized gas layer approach into a feasible gas/mercury SNS target design.

  5. Ergot alkaloids reduce rumen epithelial blood flow and volatile fatty acid absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ergot alkaloids have been shown to induce vasoconstriction of both peripheral and ruminal vessels. Constriction of ruminal vessels could lead to a reduction in epithelial blood flow thereby reducing nutrient absorption. The objectives of this experiment were to determine if steers receiving endophyt...

  6. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Kamotani, Yasuhiro

    1996-01-01

    An experimental and theoretical research program is described herein to study bubble generation in a liquid flow in a pipe under reduced gravity conditions. The objective of the work is to study the bubble size and frequency of the generation and the resulting two-phase flow but it also concerns the fluid mechanical aspects of boiling in forced flow in microgravity. By injecting a gas into a liquid flow in a pipe through a small hole in the pipe wall we will investigate how the bubble expands and detaches from the wall, without involving the complexities of boiling. The experiments will be conducted both under isothermal conditions and with heat transfer from the wall. In the experiments with heat transfer the effect of thermocapillarity on the bubble formation and detachment will be the main subject.

  7. Temporal interfacial instability in vertical gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2015-11-01

    We consider onset and dynamics of interfacial instability in gas-liquid flows, using two-dimensional channel flow of a thin falling film sheared by counter-current gas as a model. Our methodology consists of linear stability theory together with DNS of the two-phase flow in the case of nonlinear disturbances. We study the influence of three main flow parameters (density contrast between liquid and gas, film thickness, pressure drop applied to drive the gas stream) on the interfacial dynamics. Energy budget analyses based on Orr-Sommerfeld theory reveal coexisting unstable modes (interfacial, shear, internal) in the case of high density contrast, resulting in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. DNS of this scenario shows that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. In comparison, although linear stability theory successfully determines the most-dominant features in the interfacial wave dynamics at early-to-intermediate times in a high-density-contrast case, short waves selected by linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic.

  8. Impact of droplets on inclined flowing liquid films

    NASA Astrophysics Data System (ADS)

    Che, Zhizhao; Deygas, Amandine; Matar, Omar K.

    2015-08-01

    The impact of droplets on an inclined falling liquid film is studied experimentally using high-speed imaging. The falling film is created on a flat substrate with controllable thicknesses and flow rates. Droplets with different sizes and speeds are used to study the impact process under various Ohnesorge and Weber numbers, and film Reynolds numbers. A number of phenomena associated with droplet impact are identified and analyzed, such as bouncing, partial coalescence, total coalescence, and splashing. The effects of droplet size, speed, as well the film flow rate are studied culminating in the generation of an impact regime map. The analysis of the lubrication force acted on the droplet via the gas layer shows that a higher flow rate in the liquid film produces a larger lubrication force, slows down the drainage process, and increases the probability of droplet bouncing. Our results demonstrate that the flowing film has a profound effect on the droplet impact process and associated phenomena, which are markedly more complex than those accompanying impact on initially quiescent films.

  9. Liquid Droplet Detachment and Entrainment in Microscale Flows

    NASA Astrophysics Data System (ADS)

    Hidrovo, Carlos

    2005-11-01

    In this talk we will present a first order study of liquid water detachment and entrainment into air flows in hydrophobic microchannels. Silicon based microstructures consisting of 23 mm long U-shaped channels of different geometry were used for this purpose. The structures are treated with a Molecular Vapor Deposition (MVD) process that renders them hydrophobic. Liquid water is injected through a side slot located 2/3 of the way downstream from the air channel inlet. The water entering the air channel beads up into slugs or droplets that grow in size at this injection location until they fill and flood the channel or are carried away by the air flow. The slugs/droplets dimensions at detachment are correlated against superficial gas velocity and proper dimensionless parameters are postulated and examined to compare hydrodynamic forces against surface tension. It is found that slug/droplet detachment is dominated by two main forces: pressure gradient drag, arising from confinement of a viscous flow in the channel, and inertial drag, arising from the stagnation of the air due to obstruction by the slugs/droplets. A detachment regime map is postulated based on the relative importance of these forces under different flow conditions.

  10. Buoyant thermocapillary flow with nonuniform supra-heating. I - Liquid-phase behavior. II - Two-phase behavior

    NASA Technical Reports Server (NTRS)

    Schiller, David N.; Sirignano, William A.

    1992-01-01

    The present computational study of transient heat transfer and fluid flow in a circular pool of n-decane which is undergoing central radiative heating from above gives attention to the volumetric absorption of the radiation incident on the pool surface. The first part of this study notes that buoyancy influences the number and recirculation rates of the subsurface vortices by stabilizing hot subsurface fluid above the colder core fluid; this affects the liquid surface temperature profile and in turn governs the velocity profile that is due to thermocapillarity. In the second part, the effects of gas-liquid phase coupling, variable density and thermophysical properties, and vaporization are considered.

  11. Dispersive Liquid-Liquid Microextraction of Bismuth in Various Samples and Determination by Flame Atomic Absorption Spectrometry

    PubMed Central

    Daşbaşı, Teslima; Kartal, Şenol; Saçmacı, Şerife; Ülgen, Ahmet

    2016-01-01

    A dispersive liquid-liquid microextraction method for the determination of bismuth in various samples by flame atomic absorption spectrometry is described. In this method, crystal violet was used as counter positive ion for BiCl4− complex ion, chloroform as extraction solvent, and ethanol as disperser solvent. The analytical parameters that may affect the extraction efficiency like acidity of sample, type and amount of extraction and disperser solvents, amount of ligand, and extraction time were studied in detail. The effect of interfering ions on the analyte recovery was also investigated. The calibration graph was linear in the range of 0.040–1.00 mg L−1 with detection limit of 4.0 μg L−1 (n = 13). The precision as relative standard deviation was 3% (n = 11, 0.20 mg L−1) and the enrichment factor was 74. The developed method was applied successfully for the determination of bismuth in various water, pharmaceutical, and cosmetic samples and the certified reference material (TMDA-64 lake water). PMID:26881186

  12. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  13. A handy liquid metal based electroosmotic flow pump.

    PubMed

    Gao, Meng; Gui, Lin

    2014-06-01

    A room temperature liquid metal based electroosmotic flow (EOF) pump has been proposed in this work. This low-cost EOF pump is convenient for both fabrication and integration. It utilizes polydimethylsiloxane (PDMS) microchannels filled with the liquid-metal as non-contact pump electrodes. The electrode channels are fabricated symmetrically to both sides of the pumping channel, having no contact with the pumping channel. To test the pumping performance of the EOF pump, the mean flow velocities of the fluid (DI water) in the EOF pumps were experimentally measured by tracing the fluorescent microparticles in the flow. To provide guidance for designing a low voltage EOF pump, parametric studies on dimensions of the electrode and pumping channels were performed in this work. According to the experimental results, the pumping speed can reach 5.93 μm s(-1) at a driving voltage of only 1.6 V, when the gap between the electrode and the pumping channel is 20 μm. Injecting a room temperature liquid metal into microchannels can provide a simple, rapid, low-cost but accurately self-aligned way to fabricate microelectrodes for EOF pumps, which is a promising method to achieve the miniaturization and integration of the EOF pump in microfluidic systems. The non-contact liquid electrodes have no influence on the fluid in the pumping channel when pumping, reducing Joule heat generation and preventing gas bubble formation at the surface of electrodes. The pump has great potential to drive a wide range of fluids, such as drug reagents, cell suspensions and biological macromolecule solutions.

  14. A handy liquid metal based electroosmotic flow pump.

    PubMed

    Gao, Meng; Gui, Lin

    2014-06-01

    A room temperature liquid metal based electroosmotic flow (EOF) pump has been proposed in this work. This low-cost EOF pump is convenient for both fabrication and integration. It utilizes polydimethylsiloxane (PDMS) microchannels filled with the liquid-metal as non-contact pump electrodes. The electrode channels are fabricated symmetrically to both sides of the pumping channel, having no contact with the pumping channel. To test the pumping performance of the EOF pump, the mean flow velocities of the fluid (DI water) in the EOF pumps were experimentally measured by tracing the fluorescent microparticles in the flow. To provide guidance for designing a low voltage EOF pump, parametric studies on dimensions of the electrode and pumping channels were performed in this work. According to the experimental results, the pumping speed can reach 5.93 μm s(-1) at a driving voltage of only 1.6 V, when the gap between the electrode and the pumping channel is 20 μm. Injecting a room temperature liquid metal into microchannels can provide a simple, rapid, low-cost but accurately self-aligned way to fabricate microelectrodes for EOF pumps, which is a promising method to achieve the miniaturization and integration of the EOF pump in microfluidic systems. The non-contact liquid electrodes have no influence on the fluid in the pumping channel when pumping, reducing Joule heat generation and preventing gas bubble formation at the surface of electrodes. The pump has great potential to drive a wide range of fluids, such as drug reagents, cell suspensions and biological macromolecule solutions. PMID:24706096

  15. Inverse Monte Carlo for estimation of scattering and absorption in liquid optical phantoms.

    PubMed

    Karlsson, Hanna; Fredriksson, Ingemar; Larsson, Marcus; Strömberg, Tomas

    2012-05-21

    A spectroscopic probe with multiple detecting fibers was used for quantifying absorption and scattering in liquid optical phantoms. The phantoms were mixtures of Intralipid and red and blue food dyes. Intensity calibration for the detecting fibers was undertaken using either a microsphere suspension (absolute calibration) or a uniform detector illumination (relative calibration between detectors). Two different scattering phase functions were used in an inverse Monte Carlo algorithm. Data were evaluated for residual spectra (systematic deviations and magnitude) and accuracy in estimation of scattering and absorption. Spectral fitting was improved by allowing for a 10% intensity relaxation in the optimization algorithm. For a multi-detector setup, non-systematic residual spectrum was only found using the more complex Gegenbauer-kernel phase function. However, the choice of phase function did not influence the accuracy in the estimation of absorption and scattering. Similar estimation accuracy as in the multi-detector setup was also obtained using either two relative calibrated detectors or one absolute calibrated detector at a fiber separation of 0.46 mm. PMID:22714213

  16. Vagotomy and antrectomy impairs canine fat absorption from solid but not liquid dietary sources.

    PubMed

    Doty, J E; Meyer, J H

    1988-01-01

    Mild steatorrhea is common after all ulcer operations except parietal cell vagotomy. As these operations impair the grinding and sieving of solid food, we sought to determine the effect of vagotomy and antrectomy on fat absorption from solid (e.g., liver) as compared with liquid (e.g., margarine) dietary sources in the proximal small intestine. Midgut fistulas were placed in 13 dogs; 7 were controls and 6 underwent concurrent vagotomy and antrectomy. To label solid fat, the livers of live chickens were labeled with intravenous [14C]triolein and [3H]glycerol triether, an absorbable and nonabsorbable fat label, respectively. For the liquid fat label, these markers were mixed with margarine. A standard meal of steak, liver, bread, margarine, and water, with either the liver or margarine fat labeled, was fed and the midgut effluent was sieved and centrifuged to obtain four phases: large particles (greater than 0.5 mm), small particles (less than 0.5 mm), aqueous, and oil, which were extracted and counted for 14C and 3H. The ratio of 14C to 3H in each fraction was used to determine how much fat was absorbed from each phase of chyme. With liver fat labeled, 48.3% +/- 8.1% of the [3H]glycerol triether remained in large particles after vagotomy and antrectomy compared with 3.1% +/- 1.0% in controls at midintestine (p less than 0.001). After vagotomy and antrectomy, more than half of the liver fat (solid fat) was malabsorbed (57.1% +/- 6.5% vs. 23.1% +/- 6.6% malabsorbed, p less than 0.01, vagotomy and antrectomy vs. controls), whereas fat absorption from margarine (liquid fat) was not reduced compared with controls (8.8% +/- 2.5% vs. 13.6% +/- 5.5% malabsorbed, p greater than 0.05, vagotomy and antrectomy vs. controls). These observations indicate that by reducing gastric trituration and releasing large particles of poorly digested food into the intestine, vagotomy and antrectomy impairs the absorption of fat selectively from solid, but not from liquid, dietary sources

  17. Measuring absorption coefficient of scattering liquids using a tube inside an integrating sphere.

    PubMed

    Villanueva, Yolanda; Veenstra, Colin; Steenbergen, Wiendelt

    2016-04-10

    A method for measuring the absorption coefficient μa of absorbing and scattering liquid samples is presented. The sample is injected into a small transparent tube mounted through an integrating sphere. Two models for determining the absorption coefficient using the relative optical output signal are described and validated using aqueous ink absorbers of 0.5 vol.% (0.3  mm-1a<1.55  mm-1) and 1.0 vol.% (1.0  mm-1a<4.0  mm-1) concentrations with 1 vol.% (μs'≈1.4  mm-1) and 10 vol.% (μs'≈14  mm-1) Intralipid dilutions. The low concentrations give μa and μs values, which are comparable with those of biological tissues. One model assumes a uniform light distribution within the sample, which is valid for low absorption. Another model considers light attenuation that obeys Lambert-Beer's law, which may be used for relatively high absorption. Measurements with low and high scattering samples are done for the wavelength range of 400-900 nm. Measured spectra of purely absorbing samples are within 15% agreement with measurements using standard transmission spectrophotometry. For 0.5 vol.% ink absorbers and at wavelengths below 700 nm, measured μa values are higher for samples with low scattering and lower for those with high scattering. At wavelengths above 700 nm, measured μa values do not vary significantly with amount of scattering. For 1.0 vol.% ink absorbers, measured spectra do not change with low scattering. These results indicate that the method can be used for measuring absorption spectra of scattering liquid samples with optical properties similar to biological absorbers, particularly at wavelengths above 700 nm, which is difficult to accomplish with standard transmission spectrophotometry.

  18. Sound Absorption of a 2DOF Resonant Liner with Negative Bias Flow

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Cataldi, P.; Gaeta, R. J., Jr.; Jones, Mike (Technical Monitor)

    2000-01-01

    This report describes an experimental study conducted to determine the effect of negative bias flow on the sound absorption of a two degree-of-freedom liner. The backwall for the liner was designed to act as a double-Helmholtz resonator so as to act as a hard wall at all frequencies except at its resonant frequencies. All normal incident impedance data presented herein was acquired in an impedance tube. The effect of bias flow is investigated for a buried septum porosity of 2% and 19.5% for bias flow orifice mach numbers up to 03 11. As a porous backwall is needed for the flow to pass through, the effect of bias flow on this backwall all had to be evaluated first. The bias flow appears to modify the resistance and reactance of the backwall alone at lower frequencies up to about 2 kHz, with marginal effects at higher frequencies. Absorption coefficients close to unity are achieved for a frequency range of 500-4000 Hz for the overall liner for a septum porosity of 2% and orifice mach number of 0.128. Insertion loss tests performed in a flow duct facility for grazing flow Mach numbers up to 0.2 and septum mach numbers up to 0.15 showed that negative bias flow can increase insertion loss by as much as 10 dB at frequencies in the range of 500 - 1400 Hz compared to no grazing flow. The effectiveness of the negative bias flow is diminished as the grazing flow velocity is increased.

  19. Anion effects on kinetics and thermodynamics of CO2 absorption in ionic liquids.

    PubMed

    Gonzalez-Miquel, Maria; Bedia, Jorge; Abrusci, Concepcion; Palomar, Jose; Rodriguez, Francisco

    2013-03-28

    A thermogravimetric technique based on a magnetic suspension balance operating in dynamic mode was used to study the thermodynamics (in terms of solubility and Henry's law constants) and kinetics (i.e., diffusion coefficients) of CO2 in the ionic liquids [bmim][PF6], [bmim][NTf2], and [bmim][FAP] at temperatures of 298.15, 308.15, and 323.15 K and pressures up to 20 bar. The experimental technique employed was shown to be a fast, accurate, and low-solvent-consuming method to evaluate the suitability of the ionic liquids (ILs) to be used as CO2 absorbents. Thermodynamic results confirmed that the solubility of CO2 in the ILs followed the order [bmim][FAP] > [bmim][NTf2] > [bmim][PF6], increasing with decreasing temperatures and increasing pressures. Kinetic data showed that the diffusion coefficients of CO2 in the ILs followed a different order, [bmim][NTf2] > [bmim][FAP] > [bmim][PF6], increasing with increasing temperatures and pressures. These results evidenced the different influence of the IL structure and operating conditions on the solubility and absorption rate of CO2, illustrating the importance of considering both thermodynamic and kinetic aspects to select adequate ILs for CO2 absorption. On the other hand, the empirical Wilke-Chang correlation was successfully applied to estimate the diffusion coefficients of the systems, with results indicating the suitability of this approach to foresee the kinetic performance of ILs to absorb CO2. The research methodology proposed herein might be helpful in the selection of efficient absorption solvents based on ILs for postcombustion CO2 capture.

  20. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    PubMed

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations.

  1. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.

    1999-01-01

    The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a

  2. Intermittency of rheological regimes in uniform liquid-granular flows.

    PubMed

    Armanini, Aronne; Larcher, Michele; Fraccarollo, Luigi

    2009-05-01

    We present a detailed analysis of a free surface-saturated liquid-granular mixture flowing over a static loose bed of grains, where the coexistence of layers dominated by collisional and frictional interactions among particles was observed. Kinetic theory was applied to the flow described above and it proved suitable for describing a realistic behavior of the collisional layers, although it failed to interpret the regions of the flow domain dominated by the frictional contacts. The paper provides a conceptual scheme with which to overcome this problem by focusing on the mechanisms governing the transition from the frictional to the collisional regime. In particular we observed that in highly concentrated flows the transition layer exhibits a typical intermittency of the dominating rheological regime, switching alternately from the frictional to the collisional one. By filtering the velocity signal, we introduced an intermittency function that made it possible to extend the validity of the equations derived from dense gas analogy, typical of the collisional regimes, also in the intermittent phase of the flow. Owing to the small values of the Stokes number, in the application of the kinetic theory we accounted for the possible variation of the elastic restitution coefficient along the flow depth. PMID:19518448

  3. Versatile plug flow catalytic cell for in situ transmission/fluorescence x-ray absorption fine structure measurements

    NASA Astrophysics Data System (ADS)

    Centomo, P.; Meneghini, C.; Zecca, M.

    2013-05-01

    A novel flow-through catalytic cell has been developed for in situ x-ray absorption spectroscopy (XAS) experiments on heterogeneous catalysts under working conditions and in the presence of a liquid and a gas phase. The apparatus allows to carry out XAS measurements in both the transmission and fluorescence modes, at moderate temperature (from RT to 50-80 °C) and low-medium gas pressure (up to 7-8 bars). The materials employed are compatible with several chemicals such as those involved in the direct synthesis of hydrogen peroxide (O2, H2, H2O2, methanol). The versatile design of the cell allows to fit it to different experimental setups in synchrotron radiation beamlines. It was used successfully for the first time to test nanostructured Pd catalysts during the direct synthesis of hydrogen peroxide (H2O2) in methanol solution from dihydrogen and dioxygen.

  4. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages.

    PubMed

    Tuzen, Mustafa; Pekiner, Ozlem Zeynep

    2015-12-01

    A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium.

  5. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages.

    PubMed

    Tuzen, Mustafa; Pekiner, Ozlem Zeynep

    2015-12-01

    A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium. PMID:26041239

  6. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  7. Effect of perfluorocarbons on the ultraviolet absorption and fluorescence characteristics of some saturated hydrocarbon liquids

    SciTech Connect

    Choi, H.T.; Lipsky, S.

    1981-12-24

    Perfluoro-n-alkanes and perfluorocycloalkanes are found to affect the photophysical properties of saturated hydrocarbons in markedly different ways.The addition of a low concentration (<0.2 M) of a perfluoro-n-alkane to a hydrocarbon liquid has no observable effect on the electronic absorption spectrum and only very slightly quenches the hydrocarbon fluorescence. In contrast, at the same concentration levels, the perfluorocycloalkane strongly perturbs the absorption spectrum and very effectively reduces the fluorescence quantum yield. The change in the absorption spectrum is attributed to a contact charge-transfer absorption with the hydrocarbon acting as electron donor. The efficiency with which the perfluorocycloalkane reduces the hydrocarbon fluorescence quantum yield increases with increasing perfluorocycloalkane concentration. The results are analyzed with a conventional diffusional model that includes transient terms. The model contains two parameters, an encounter distance, R, and the product of the relative diffusion coefficient, D, and the lifetime, tau/sub 0/, of the hydrocarbon excited state. The model is applied to perfluorodecalin quenching of cyclohexane, decalin, and 2,3-dimethylbutane at excitation wavelengths, lambda/sub ex/, ranging from 185 to 147 nm. An unrestricted, two-parameter, least-squares fit of the model to the data provides values of R and D(tau/sub 0/) for each solvent system at each lambda/sub ex/. Where values of D and tau/sub 0/ are known independently, their product agrees well with the D(tau/sub 0/) obtained from the fit. The value of R is found to be approx. = 14 angstrom for all solvents at all lambda/sub ex/. This value is estimated to be about 2 times larger than the ground-state hydrocarbon-perfluorodecalin contact distance.

  8. Anisotropic light absorption, refractive indices, and orientational order parameter of unidirectionally aligned columnar liquid crystal films.

    PubMed

    Charlet, Emilie; Grelet, Eric

    2008-10-01

    The anisotropic optical properties of thermotropic columnar liquid crystals absorbing in the visible range are investigated for different discotic compounds unidirectionally oriented in open supported thin films. Two methods to monitor the alignment of columnar mesophases in thin films are reported, making possible to achieve either homeotropic anchoring (columns normal to the substrate) by a specific thermal annealing, or unidirectional planar orientation (columns parallel to the substrate) by using a rubbed Teflon coating. The columnar liquid crystal anchoring is found to depend on the nature of the compound, either parallel or perpendicular to the Teflon orientation. Based on this control of the mesophase alignment, the dichroic ratio and the orientational order parameter of oriented samples are measured, and a high order parameter of 0.9 is found in the case of parallel alignment. From the polarized absorption data of the columnar liquid crystal films, the light wavelength dependence of the birefringence and of the real and imaginary parts (refractive index and extinction coefficient, respectively) of the anisotropic optical indices are determined over the whole visible range. PMID:18999445

  9. Flow pattern and pressure drop of vertical upward gas-liquid flow in sinusoidal wavy channels

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2006-06-15

    Flow patterns and pressure drop of upward liquid single-phase flow and air-water two-phase flow in sinusoidal wavy channels are experimentally studied. The test section is formed by a sinusoidal wavy wall of 1.00 m length with a wave length of 67.20mm, an amplitude of 5.76mm. Different phase shifts between the side walls of the wavy channel of 0{sup o}, 90{sup o} and 180{sup o} are investigated. The flow phenomena, which are bubbly flow, slug flow, churn flow, and dispersed bubbly flow are observed and recorded by high-speed camera. When the phase shifts are increased, the onset of the transition from the bubbly flow to the churn flow shifts to a higher value of superficial air velocity, and the regions of the slug flow and the churn flow are smaller. In other words, the regions of the bubbly flow and the dispersed bubbly flow are larger as the phase shift increases. The slug flow pattern is only found in the test sections with phase shifts of 0{sup o} and 90{sup o}. Recirculating gas bubbles are always found in the troughs of the corrugations. The recirculating is higher when the phase shifts are larger. The relationship between the two-phase multipliers calculated from the measured pressure drops, and the Martinelli parameter is compared with the Lockhart-Martinelli correlation. The correlation in the case of turbulent-turbulent condition is shown to fit the data very well for the phase shift of 0{sup o} but shows greater deviation when the phase shifts are higher. (author)

  10. [Effects of carrier liquid and flow rate on the separation in gravitational field-flow fractionation].

    PubMed

    Guo, Shuang; Zhu, Chenqi; Gao-Yang, Yaya; Qiu, Bailing; Wu, Di; Liang, Qihui; He, Jiayuan; Han, Nanyin

    2016-02-01

    Gravitational field-flow fractionation is the simplest field-flow fractionation technique in terms of principle and operation. The earth' s gravity is its external field. Different sized particles are injected into a thin channel and carried by carrier fluid. The different velocities of the carrier liquid in different places results in a size-based separation. A gravitational field-flow fractionation (GrFFF) instrument was designed and constructed. Two kinds of polystyrene (PS) particles with different sizes (20 µm and 6 µm) were chosen as model particles. In this work, the separation of the sample was achieved by changing the concentration of NaN3, the percentage of mixed surfactant in the carrier liquid and the flow rate of carrier liquid. Six levels were set for each factor. The effects of these three factors on the retention ratio (R) and plate height (H) of the PS particles were investigated. It was found that R increased and H decreased with increasing particle size. On the other hand, the R and H increased with increasing flow rate. The R and H also increased with increasing NaN3 concentration. The reason was that the electrostatic repulsive force between the particles and the glass channel wall increased. The force allowed the samples approach closer to the channel wall. The results showed that the resolution and retention time can be improved by adjusting the experimental conditions. These results can provide important values to the further applications of GrFFF technique. PMID:27382718

  11. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    NASA Astrophysics Data System (ADS)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  12. Velocity Measurements of Thermoelectric Driven Flowing Liquid Lithium

    NASA Astrophysics Data System (ADS)

    Szott, Matthew; Xu, Wenyu; Fiflis, Peter; Haehnlein, Ian; Kapat, Aveek; Kalathiparambil, Kishor; Ruzic, David N.

    2014-10-01

    Liquid lithium has garnered additional attention as a PFC due to its several advantages over solid PFCs, including reduced erosion and thermal fatigue, increased heat transfer, higher device lifetime, and enhanced plasma performance due to the establishment of low recycling regimes at the wall. The Lithium Metal Infused Trenches concept (LiMIT) has demonstrated thermoelectric magnetohydrodynamic flow of liquid lithium through horizontal open-faced metal trenches with measured velocities varying from 3.7+/-0.5 cm/s in the 1.76 T field of HT-7 to 22+/-3 cm/s in the SLiDE facility at UIUC at 0.059 T. To demonstrate the versatility of the concept, a new LiMIT design using narrower trenches shows steady state, thermoelectric-driven flow at an arbitrary angle from horizontal. Velocity characteristics are measured and discussed. Based on this LiMIT concept, a new limiter design has been developed to be tested on the mid-plane of the EAST plasma. Preliminary modelling suggests lithium flow of 6 cm/s in this device. Additionally, recent testing at the Magnum-PSI facility has given encouraging results, and velocity measurements in relation to magnetic field strength and plasma flux are also presented.

  13. Mechanical annealing in the flow of supercooled metallic liquid

    SciTech Connect

    Zhang, Meng; Dai, Lan Hong; Liu, Lin

    2014-08-07

    Flow induced structural evolution in a supercooled metallic liquid Vit106a (Zr{sub 58.5}Cu{sub 15.6}Al{sub 10.3}Ni{sub 12.8}Nb{sub 2.8}, at. %) was investigated via uni-axial compression combined with differential scanning calorimeter (DSC). Compression tests at strain rates covering the transition from Newtonian flow to non-Newtonian flow and at the same strain rate 2 × 10{sup −1} s{sup −1} to different strains were performed at the end of glass transition (T{sub g-end} = 703 K). The relaxation enthalpies measured by DSC indicate that the samples underwent non-Newtonian flow contain more free volume than the thermally annealed sample (703 K, 4 min), while the samples underwent Newtonian flow contain less, namely, the free volume of supercooled metallic liquids increases in non-Newtonian flow, while decreases in Newtonian flow. The oscillated variation of the relaxation enthalpies of the samples deformed at the same strain rate 2 × 10{sup −1} s{sup −1} to different strains confirms that the decrease of free volume was caused by flow stress, i.e., “mechanical annealing.” Micro-hardness tests were also performed to show a similar structural evolution tendency. Based on the obtained results, the stress-temperature scaling in the glass transition of metallic glasses are supported experimentally, as stress plays a role similar to temperature in the creation and annihilation of free volume. In addition, a widening perspective angle on the glass transition of metallic glasses by exploring the 3-dimensional stress-temperature-enthalpy phase diagram is presented. The implications of the observed mechanical annealing effect on the amorphous structure and the work-hardening mechanism of metallic glasses are elucidated based on atomic level stress model.

  14. Mechanisms of recirculating liquid flow on distillation sieve plates

    SciTech Connect

    Biddulph, M.W. . Dept. of Chemical Engineering); Burton, A.C. )

    1994-11-01

    This paper describes an experimental investigation into the phenomenon of flow recirculation on distillation sieve trays. A novel dye injection technique has been applied to a 1.81 m air-water simulation column and has yielded new information concerning the nature of the boundary layer of gas-liquid biphase as it detaches from the column wall. The study has shown that recirculation is strongly influenced by inlet conditions. A critical factor is the underflow clearance between the inlet downcomer apron and the tray floor. As this clearance is increased, the size of the recirculating zones passes through a minimum, indicating the existence of two different mechanisms responsible for the nonuniform flow patterns. A significant implication of this work is that tray designers may minimize the impact of recirculating on mass transfer efficiency by appropriate choice of underflow clearance.

  15. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    PubMed

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included.

  16. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    PubMed

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. PMID:27566338

  17. Characterization of annular two-phase gas-liquid flows in microgravity

    NASA Technical Reports Server (NTRS)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  18. Pinch off and reconnection in liquid/liquid flows: joint experimental and numerical studies

    SciTech Connect

    Ellen K. Longmire; John S. Lowengrub

    2005-09-26

    Liquid/liquid systems appear in applications involving transport, mixing, and separation of petroleum, chemical, and waste products. Breakup and coalescence transitions often determine flow regimes as well as reaction and separation rates. Because they occur over very small time and length scales compared with the larger scales that dominate the flow, they are difficult to quantify experimentally and simulate numerically. Thus far, no accurate models exist for engineers to predict these flows. Experiments and computations were performed so that accurate engineering models can be developed. Jet pinch off and drop coalescence were examined in mixtures of water/glycerin and silicone oil. Index matching, laser sheet illumination, and the PIV method were applied to obtain visualization and velocity field sequences through transitions. The computations used a novel, physically-based method that captures interface breakup and coalescence automatically without resorting to ad-hoc cut-and-connect methods. To achieve enhanced accuracy near transitions, new adaptive time and space meshes were developed. The computations were validated through direct comparison with the experiments. The detailed results should lead to improved understanding of transition behavior. This understanding is needed to develop engineering models of multiphase flows. Such predictive models will lead to extensive cost savings in device and process design.

  19. Determination of lead and cadmium using an ionic liquid and dispersive liquid-liquid microextraction followed by electrothermal atomic absorption spectrometry.

    PubMed

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2013-06-15

    A procedure for the determination of ultratrace levels of lead and cadmium using dispersive liquid-liquid microextraction followed by electrothermal atomic absorption spectrometry (ETAAS) has been developed. The ionic liquid, 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C8MIm][NTf2]), is formed in situ and used to extract the lead and cadmium complexes with ammonium pyrrolidinedithiocarbamate. The very fine droplets of ([C8MIm][NTf2]) allow effective dispersion without the need for organic solvents. After centrifugation, the concentrations of lead and cadmium in the sedimented phase can be determined by ETAAS. Using a 10 mL aqueous sample, the enrichment factor of the procedure was 280 and detection limits of 0.2 and 3 ng L(-1) were obtained for cadmium and lead, respectively. The relative standard deviations for 10 replicates at the 10 ng L(-1) cadmium and 0.2 μg L(-1) lead levels were 6.5 and 7.3%, respectively. The method was successfully applied to the analysis of waters as well as to lixiviates obtained from toys made of plastic materials. PMID:23618174

  20. In situ metathesis ionic liquid formation dispersive liquid-liquid microextraction for copper determination in water samples by electrothermal atomic absorption spectrometry.

    PubMed

    Stanisz, Ewa; Zgoła-Grześkowiak, Agnieszka

    2013-10-15

    In situ synthesis of ionic liquid extractant for dispersive liquid-liquid microextraction (in situ IL DLLME) combined with electrothermal atomic absorption spectrometry (ET AAS) for determination of copper in water samples was developed. Analytical signals were obtained without the back-extraction of copper from the IL phase prior to its determination by AAS. Some essential parameters of the microextraction and detection techniques such as the pH of sample solution, volume of components for in situ synthesis, matrix interferences and main parameters of graphite furnace atomizer have been studied. Under optimal conditions, high extraction efficiency for copper was achieved for the extraction of 0.7 µg L(-1) in 10.0 mL of sample solution employing 8 μL of 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (HmimNTf2) as the extraction solvent. The detection limit was found as 0.004 µg L(-1) with an enrichment factor of 200. The relative standard deviation (RSD) for seven replicate measurements of 0.7 µg L(-1) in sample solution was 4%. The accuracy of the proposed method was evaluated by analysis of the Certified Reference Materials: NIST SRM 2709 (San Joaquin Soil), NBS SRM 2704 (Buffalo River Sediment), NRCC DOLT-2 (Dogfish Liver) and NIST SRM 1643e (Trace Element in Water). The measured copper contents in the reference materials were in satisfactory agreement with the certified values. The method was successfully applied to analysis of the tap, lake and mineral water samples.

  1. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH3CFCl2

    NASA Technical Reports Server (NTRS)

    Fahr, A.; Braun, W.; Kurylo, M. J.

    1993-01-01

    Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.

  2. Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets.

    PubMed

    Mao, Dong; Du, Bobo; Yang, Dexing; Zhang, Shengli; Wang, Yadong; Zhang, Wending; She, Xiaoyang; Cheng, Huachao; Zeng, Haibo; Zhao, Jianlin

    2016-03-01

    Molybdenum disulfide (MoS2 ) and tungsten disulfide (WS2 ), two representative transition metal dichalcogenide materials, have captured tremendous interest for their unique electronic, optical, and chemical properties. Compared with MoS2 and WS2 , molybdenum ditelluride (MoTe2 ) and tungsten ditelluride (WTe2 ) possess similar lattice structures while having smaller bandgaps (less than 1 eV), which is particularly interesting for applications in the near-infrared wavelength regime. Here, few-layer MoTe2 /WTe2 nanosheets are fabricated by a liquid exfoliation method using sodium deoxycholate bile salt as surfactant, and the nonlinear optical properties of the nanosheets are investigated. The results demonstrate that MoTe2 /WTe2 nanosheets exhibit nonlinear saturable absorption property at 1.55 μm. Soliton mode-locking operations are realized separately in erbium-doped fiber lasers utilizing two types of MoTe2 /WTe2 -based saturable absorbers, one of which is prepared by depositing the nanosheets on side polished fibers, while the other is fabricated by mixing the nanosheets with polyvinyl alcohol and then evaporating them on substrates. Numerous applications may benefit from the nonlinear saturable absorption features of MoTe2 /WTe2 nanosheets, such as visible/near-infrared pulsed laser, materials processing, optical sensors, and modulators. PMID:26800122

  3. Antibiotic Toxicity and Absorption in Zebrafish Using Liquid Chromatography-Tandem Mass Spectrometry

    PubMed Central

    Zhang, Fan; Qin, Wei; Zhang, Jing-Pu; Hu, Chang-Qin

    2015-01-01

    Evaluation of drug toxicity is necessary for drug safety, but in vivo drug absorption is varied; therefore, a rapid, sensitive and reliable method for measuring drugs is needed. Zebrafish are acceptable drug toxicity screening models; we used these animals with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in a multiple reaction monitoring mode to quantify drug uptake in zebrafish to better estimate drug toxicity. Analytes were recovered from zebrafish homogenate by collecting supernatant. Measurements were confirmed for drugs in the range of 10–1,000 ng/mL. Four antibiotics with different polarities were tested to explore any correlation of drug polarity, absorption, and toxicity. Zebrafish at 3 days post-fertilization (dpf) absorbed more drug than those at 6 h post-fertilization (hpf), and different developmental periods appeared to be differentially sensitive to the same compound. By observing abnormal embryos and LD50 values, zebrafish embryos at 6 hpf were considered to be suitable for evaluating embryotoxicity. Also, larvae at 3 dpf were adapted to measure acute drug toxicity in adult mammals. Thus, we can exploit zebrafish to study drug toxicity and can reliably quantify drug uptake with LC-MS/MS. This approach will be helpful for future studies of toxicology in zebrafish. PMID:25938774

  4. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    NASA Technical Reports Server (NTRS)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  5. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  6. Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury

    SciTech Connect

    Wendel, Mark W; Riemer, Bernie; Abdou, Ashraf A

    2012-01-01

    ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into

  7. On-line sequential injection dispersive liquid-liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples.

    PubMed

    Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G

    2009-06-30

    A simple, sensitive and powerful on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system was developed as an alternative approach for on-line metal preconcentration and separation, using extraction solvent at microlitre volume. The potentials of this novel schema, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace copper and lead determination in water samples. The stream of methanol (disperser solvent) containing 2.0% (v/v) xylene (extraction solvent) and 0.3% (m/v) ammonium diethyldithiophosphate (chelating agent) was merged on-line with the stream of sample (aqueous phase), resulting a cloudy mixture, which was consisted of fine droplets of the extraction solvent dispersed entirely into the aqueous phase. By this continuous process, metal chelating complexes were formed and extracted into the fine droplets of the extraction solvent. The hydrophobic droplets of organic phase were retained into a microcolumn packed with PTFE-turnings. A portion of 300 microL isobutylmethylketone was used for quantitative elution of the analytes, which transported directly to the nebulizer of FAAS. All the critical parameters of the system such as type of extraction solvent, flow-rate of disperser and sample, extraction time as well as the chemical parameters were studied. Under the optimum conditions the enhancement factor for copper and lead was 560 and 265, respectively. For copper, the detection limit and the precision (R.S.D.) were 0.04 microg L(-1) and 2.1% at 2.0 microg L(-1) Cu(II), respectively, while for lead were 0.54 microg L(-1) and 1.9% at 30.0 microg L(-1) Pb(II), respectively. The developed method was evaluated by analyzing certified reference material and applied successfully to the analysis of environmental water samples. PMID:19376348

  8. Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption

    NASA Astrophysics Data System (ADS)

    Su, Zhaoxian; Yin, Jianbo; Zhao, Xiaopeng

    2015-11-01

    We design a soft infrared metamaterial absorber based on gold nanorods dispersed in liquid crystal (LC) placed on a gold film and theoretically investigate its total absorption character. Because the nanorods align with the LC molecule, the gold nanorods/LC hybrid exhibits different permittivity as a function of tilt angle of LC. At a certain tilt angle, the absorber shows an omnidirectional total absorption effect. By changing the tilt angle of LC by an external electric field, the total absorption character can be adjusted. The total absorption character also depends on the concentration, geometric dimension of nanorods, and defect of nanorod arrangement in LC. When the LC contains different size of gold nanorods, a broadband absorption can be easily realized. The characteristics including flexibility, omnidirectional, broadband and tunablility make the infrared metamaterial absorber possess potential use in smart metamaterial devices.

  9. Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption

    PubMed Central

    Su, Zhaoxian; Yin, Jianbo; Zhao, Xiaopeng

    2015-01-01

    We design a soft infrared metamaterial absorber based on gold nanorods dispersed in liquid crystal (LC) placed on a gold film and theoretically investigate its total absorption character. Because the nanorods align with the LC molecule, the gold nanorods/LC hybrid exhibits different permittivity as a function of tilt angle of LC. At a certain tilt angle, the absorber shows an omnidirectional total absorption effect. By changing the tilt angle of LC by an external electric field, the total absorption character can be adjusted. The total absorption character also depends on the concentration, geometric dimension of nanorods, and defect of nanorod arrangement in LC. When the LC contains different size of gold nanorods, a broadband absorption can be easily realized. The characteristics including flexibility, omnidirectional, broadband and tunablility make the infrared metamaterial absorber possess potential use in smart metamaterial devices. PMID:26576660

  10. High-throughput liquid-absorption air-sampling apparatus and methods

    DOEpatents

    Zaromb, Solomon

    2000-01-01

    A portable high-throughput liquid-absorption air sampler [PHTLAAS] has an asymmetric air inlet through which air is drawn upward by a small and light-weight centrifugal fan driven by a direct current motor that can be powered by a battery. The air inlet is so configured as to impart both rotational and downward components of motion to the sampled air near said inlet. The PHTLAAS comprises a glass tube of relatively small size through which air passes at a high rate in a swirling, highly turbulent motion, which facilitates rapid transfer of vapors and particulates to a liquid film covering the inner walls of the tube. The pressure drop through the glass tube is <10 cm of water, usually <5 cm of water. The sampler's collection efficiency is usually >20% for vapors or airborne particulates in the 2-3.mu. range and >50% for particles larger than 4.mu.. In conjunction with various analyzers, the PHTLAAS can serve to monitor a variety of hazardous or illicit airborne substances, such as lead-containing particulates, tritiated water vapor, biological aerosols, or traces of concealed drugs or explosives.

  11. Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples

    NASA Astrophysics Data System (ADS)

    Li, Shengqing; Cai, Shun; Hu, Wei; Chen, Hao; Liu, Hanlan

    2009-07-01

    A new method was developed for the determination of cadmium in water samples using ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (IL-based USA-DLLME) followed by electrothermal atomic absorption spectrometry (ETAAS). The IL-based USA-DLLME procedure is free of volatile organic solvents, and there is no need for a dispersive solvent, in contrast to conventional DLLME. The ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF 6), was quickly disrupted by an ultrasonic probe for 1 min and dispersed in water samples like a cloud. At this stage, a hydrophobic cadmium-DDTC complex was formed and extracted into the fine droplets of HMIMPF 6. After centrifugation, the concentration of the enriched cadmium in the sedimented phase was determined by ETAAS. Some effective parameters of the complex formation and microextraction, such as the concentration of the chelating agent, the pH, the volume of the extraction solvent, the extraction time, and the salt effect, have been optimized. Under optimal conditions, a high extraction efficiency and selectivity were reached for the extraction of 1.0 ng of cadmium in 10.0 mL of water solution employing 73 µL of HMIMPF 6 as the extraction solvent. The enrichment factor of the method is 67. The detection limit was 7.4 ng L - 1 , and the characteristic mass ( m0, 0.0044 absorbance) of the proposed method was 0.02 pg for cadmium (Cd). The relative standard deviation (RSD) for 11 replicates of 50 ng L - 1 Cd was 3.3%. The method was applied to the analysis of tap, well, river, and lake water samples and the Environmental Water Reference Material GSBZ 50009-88 (200921). The recoveries of spiked samples were in the range of 87.2-106%.

  12. Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Capture

    SciTech Connect

    Maginn, Edward

    2012-09-30

    This is the final report for DE-FC26-07NT43091 Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Capture. A detailed summary is provided of the ionic liquid (IL) discovery process, synthesis and testing results, process / systems modeling, lab-scale operational testing, corrosion testing and commercialization possibilities. The work resulted in the discovery of a new class of ionic liquids (ILs) that efficiently react with CO{sub 2} in a 1:1 stoichiometry with no water present and no increase in viscosity. The enthalpy of reaction was tuned to optimize process economics. The IL was found to have excellent corrosion behavior with and without CO{sub 2} present. In lab-scale tests, the IL was able to effectively remove CO{sub 2} from a simulated flue gas stream, although mass transfer was slower than with aqueous monoethanolamine (MEA) due to higher viscosities. The non-volatile nature of the solvent and its high thermal stability, however, make it an intriguing option. An independent systems analysis indicates that the economics of using the best IL discovered to date (NDIL0157), are at least comparable to and potentially slightly better than - the Fluor Econamine FG PlusTM process (DOE Case 12). Further work should be directed at improving mass transfer / lowering viscosity and developing commercial synthesis routes to make these ILs at scale in an inexpensive manner. Demonstration of the process at larger scales is also warranted, as is the exploration of other process configurations that leverage the anhydrous nature of the solvent and its extremely low volatility.

  13. Diode laser absorption sensors for gas-dynamic and combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.

    1998-01-01

    Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room

  14. Anomalous effect of flow rate on the electrochemical behavior at a liquid|liquid interface under microfluidic conditions.

    PubMed

    Kaluza, Dawid; Adamiak, Wojciech; Kalwarczyk, Tomasz; Sozanski, Krzysztof; Opallo, Marcin; Jönsson-Niedziolka, Martin

    2013-12-23

    We have investigated the oxidation of ferrocene at a flowing organic solvent|aqueous electrolyte|solid electrode junction in a microfluidic setup using cyclic voltammetry and fluorescent laser scanning confocal microscopy. At low flow rates the oxidation current decreases with increasing flow, contrary to the Levich equation, but at higher flow rates the current increases linearly with the cube root of the flow rate. This behavior is explained using a simple model postulating a smallest effective width of the three-phase junction, which after fitting to the data comes to be ca. 20 μm. The fluorescence microscopy reveals mixing of the two phases close to the PDMS cover, but the liquid|liquid junction is stable close to the glass support. This study shows the importance of the solid|liquid|liquid junctions for the behavior of multiphase systems under microfluidic conditions.

  15. Improved simulations of heat transfer in liquid metal flows.

    SciTech Connect

    Tzanos, C.

    2011-04-01

    In liquid-metal flows, the predictions of the Nusselt number (heat transfer) by Reynolds-averaged Navier-Stokes models of turbulence that use the assumption of a constant turbulent Prandtl number can be significantly off. Heat transfer analyses were performed with a number of turbulence models for flows in a triangular rod bundle and in a pipe, and model predictions were compared with experimental data. Emphasis was placed on the low Reynolds (low-Re) number k-{var_epsilon} model that resolves the boundary layer and does not use 'logarithmic wall functions.' The high Reynolds (high-Re) number k-{var_epsilon} model underpredicts the Nusselt number up to 30%, while the low-Re number model overpredicts it up to 34%. For high Peclet number values, the low-Re number model provides better predictions than the high-Re number model. For Peclet numbers higher than 1500, the predictions of the Reynolds stress model (RSM) are in very good agreement with experimental measurements, but for lower Peclet number values its predictions are significantly off. A relationship was developed that expresses the turbulent Prandtl number as a function of the ratio of the turbulent viscosity to the molecular viscosity. With this modified turbulent Prandtl number, for the flow in the rod bundle the predictions of the low-Re number model are well within the spread of the experimental measurements. For pipe flow, the model predictions are not as sensitive to the correction of the turbulent Prandtl number as they are in the case of the flow in a bundle. The modified low-Re number model underpredicts the limited experimental data by 4%.

  16. Light-Driven Transport of a Liquid Marble with and against Surface Flows.

    PubMed

    Kavokine, Nikita; Anyfantakis, Manos; Morel, Mathieu; Rudiuk, Sergii; Bickel, Thomas; Baigl, Damien

    2016-09-01

    Liquid marbles, that is, liquid drops coated by a hydrophobic powder, do not wet any solid or liquid substrate, making their transport and manipulation both highly desirable and challenging. Herein, we describe the light-driven transport of floating liquid marbles and emphasize a surprising motion behavior. Liquid marbles are deposited on a water solution containing photosensitive surfactants. Irradiation of the solution generates photoreversible Marangoni flows that transport the liquid marbles toward UV light and away from blue light when the thickness of the liquid substrate is large enough (Marangoni regime). Below a critical thickness, the liquid marbles move in the opposite direction to that of the surface flow at a speed increasing with decreasing liquid thickness (anti-Marangoni). We demonstrate that the anti-Marangoni motion is driven by the free surface deformation, which propels the non-wetting marble against the surface flow. We call this behavior "slide effect". PMID:27381297

  17. Light-Driven Transport of a Liquid Marble with and against Surface Flows.

    PubMed

    Kavokine, Nikita; Anyfantakis, Manos; Morel, Mathieu; Rudiuk, Sergii; Bickel, Thomas; Baigl, Damien

    2016-09-01

    Liquid marbles, that is, liquid drops coated by a hydrophobic powder, do not wet any solid or liquid substrate, making their transport and manipulation both highly desirable and challenging. Herein, we describe the light-driven transport of floating liquid marbles and emphasize a surprising motion behavior. Liquid marbles are deposited on a water solution containing photosensitive surfactants. Irradiation of the solution generates photoreversible Marangoni flows that transport the liquid marbles toward UV light and away from blue light when the thickness of the liquid substrate is large enough (Marangoni regime). Below a critical thickness, the liquid marbles move in the opposite direction to that of the surface flow at a speed increasing with decreasing liquid thickness (anti-Marangoni). We demonstrate that the anti-Marangoni motion is driven by the free surface deformation, which propels the non-wetting marble against the surface flow. We call this behavior "slide effect".

  18. Spatial Damping of Propagating Kink Waves Due to Resonant Absorption: Effect of Background Flow

    NASA Astrophysics Data System (ADS)

    Soler, R.; Terradas, J.; Goossens, M.

    2011-06-01

    Observations show the ubiquitous presence of propagating magnetohydrodynamic (MHD) kink waves in the solar atmosphere. Waves and flows are often observed simultaneously. Due to plasma inhomogeneity in the direction perpendicular to the magnetic field, kink waves are spatially damped by resonant absorption. The presence of flow may affect the wave spatial damping. Here, we investigate the effect of longitudinal background flow on the propagation and spatial damping of resonant kink waves in transversely nonuniform magnetic flux tubes. We combine approximate analytical theory with numerical investigation. The analytical theory uses the thin tube (TT) and thin boundary (TB) approximations to obtain expressions for the wavelength and the damping length. Numerically, we verify the previously obtained analytical expressions by means of the full solution of the resistive MHD eigenvalue problem beyond the TT and TB approximations. We find that the backward and forward propagating waves have different wavelengths and are damped on length scales that are inversely proportional to the frequency as in the static case. However, the factor of proportionality depends on the characteristics of the flow, so that the damping length differs from its static analog. For slow, sub-Alfvénic flows the backward propagating wave gets damped on a shorter length scale than in the absence of flow, while for the forward propagating wave the damping length is longer. The different properties of the waves depending on their direction of propagation with respect to the background flow may be detected by the observations and may be relevant for seismological applications.

  19. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    PubMed

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  20. Velocity measurement of two-phase liquid-gas flow in a horizontal pipeline using gamma densitometry

    NASA Astrophysics Data System (ADS)

    Hanus, R.; Zych, M.; Petryka, L.

    2014-08-01

    This paper presents application of gamma-ray absorption method to liquid-gas flow investigation in a pipeline. In the described measurement two sealed 241Am radioactive sources and probes with NaI(Tl) scintillation crystals have been used. For the analysis of digital signals provided by detectors, a traditional cross-correlation function (CCF), and modified correlation methods based on the quotient of CCF and average magnitude difference function (AMDF), as well as the quotient of CCF, and average square difference function (ASDF) have been proposed. Exemplary results of the mean velocity determination of the gaseous phase transported by a liquid in the water-air mixture flow were demonstrated and the evaluation of its uncertainty have been presented.

  1. Effect of boundary absorption in dispersion in Casson fluid flow in a tube.

    PubMed

    Nagarani, P; Sarojamma, G; Jayaraman, G

    2004-05-01

    The combined effect of yield stress and irreversible boundary reaction on dispersion process in a Casson fluid flowing in a conduit (pipe/channel) is studied using the generalized dispersion model proposed by Sankarasubramanian and Gill (Sankarasubramanian, R., and W. N. Gill. Proc. R. Soc. London, Ser. A 333:115-132, 1973). The study describes the development of dispersive transport following the injection of a tracer in terms of the three effective transport coefficients, viz., exchange, convection, and dispersion coefficients. The exchange coefficient does not depend on yield stress but the convection and dispersion coefficients depend on yield stress or equivalently plug flow region. For large times, when the plug flow radius is one-tenth of pipe radius, the convective coefficient is reduced by 0.41 times of the corresponding value for a Newtonian fluid at equivalent wall absorption parameter; in channel case the reduction is by 39%. It is seen that the asymptotic dispersion coefficient decreases with increase in wall absorption parameter and yield stress of the fluid. When the plug radius in pipe (channel) is 0.1, depending upon the values of wall absorption parameter, say (0.01-100) the reduction factor in dispersion coefficient is in the range (0.1-0.3) in comparison to the values of the Newtonian case. The results reduce to those of Sankarasubramanian and Gill (Sankarasubramanian, R., and W. N. Gill. Proc. R. Soc. London, Ser. A 333:115-132, 1973) when there is no yield stress for the pipe flow analysis and to those of Dash et al. (Dash, R. K., G. Jayaraman, and K. N. Mehta. Ann. Biomed. Eng. 28:373-385, 2000) when there is no interphase mass transfer. The study can be used as a starting first approximation solution for studying the dispersion in the cardiovascular system.

  2. The flow of baryons: the origin of metal absorption systems at z > 3

    NASA Astrophysics Data System (ADS)

    Díaz, C. G.; Ryan-Weber, E. V.; Cooke, J. D.; Crighton, N. H.; Díaz, R. J.

    2016-08-01

    The chemical enrichment of the Universe refers to the cosmic build-up of chemical elements produced by stars (metals) that disperse them to the interstellar medium during their life and dead. The enriched material can reach intergalactic distances helped by galactic-scale winds and, eventually, can flow back to a galaxy. These metals are crucial ingredients for star formation because they provide a cooling mechanism for the gas. Therefore, understanding the flow of baryons to and from galaxies is fundamental for galaxy formation and evolution. Our work aims at testing the origin of metal absorption systems in the spectra of background quasars, by studying the environment of these absorption systems and the galaxies that produce them. In particular, we search for galaxies near triply-ionized carbon (Civ) systems at redshift . In this contribution, we present recent results that suggest that the mechanisms of dispersal of metals could have been more efficient at than at . We discuss the limitations of the result and present the current status of our search for the origin of Civ absorption systems.

  3. Direct fired absorption machine flue gas recuperator

    DOEpatents

    Reimann, Robert C.; Root, Richard A.

    1985-01-01

    A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.

  4. Optical characterization of the nematic lyotropic chromonic liquid crystals: light absorption, birefringence, and scalar order parameter.

    PubMed

    Nastishin, Yu A; Liu, H; Schneider, T; Nazarenko, V; Vasyuta, R; Shiyanovskii, S V; Lavrentovich, O D

    2005-10-01

    We report on the optical properties of the nematic (N) phase formed by lyotropic chromonic liquid crystals (LCLCs) in well aligned planar samples. LCLCs belong to a broad class of materials formed by one-dimensional molecular self-assembly and are similar to other systems such as "living polymers" and "wormlike micelles." We study three water soluble LCLC forming materials: disodium chromoglycate, a derivative of indanthrone called Blue 27, and a derivative of perylene called Violet 20. The individual molecules have a planklike shape and assemble into rodlike aggregates that form the phase once the concentration exceeds about 0.1 M. The uniform surface alignment of the N phase is achieved by buffed polyimide layers. According to the light absorption anisotropy data, the molecular planes are on average perpendicular to the aggregate axes and thus to the nematic director. We determined the birefringence of these materials in the N and biphasic N-isotropic (I) regions and found it to be negative and significantly lower in the absolute value as compared to the birefringence of typical thermotropic low-molecular-weight nematic materials. In the absorbing materials Blue 27 and Violet 20, the wavelength dependence of birefringence is nonmonotonic because of the effect of anomalous dispersion near the absorption bands. We describe positive and negative tactoids formed as the nuclei of the new phase in the biphasic N-I region (which is wide in all three materials studied). Finally, we determined the scalar order parameter of the phase of Blue 27 and found it to be relatively high, in the range 0.72-0.79, which puts the finding into the domain of general validity of the Onsager model. However, the observed temperature dependence of the scalar order parameter points to the importance of factors not accounted for in the athermal Onsager model, such as interaggregate interactions and the temperature dependence of the aggregate length.

  5. Liquid flow cells having graphene on nitride for microscopy

    DOEpatents

    Adiga, Vivekananda P.; Dunn, Gabriel; Zettl, Alexander K.; Alivisatos, A. Paul

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to liquid flow cells for microscopy. In one aspect, a device includes a substrate having a first and a second oxide layer disposed on surfaces of the substrate. A first and a second nitride layer are disposed on the first and second oxide layers, respectively. A cavity is defined in the first oxide layer, the first nitride layer, and the substrate, with the cavity including a third nitride layer disposed on walls of the substrate and the second oxide layer that define the cavity. A channel is defined in the second oxide layer. An inlet port and an outlet port are defined in the second nitride layer and in fluid communication with the channel. A plurality of viewports is defined in the second nitride layer. A first graphene sheet is disposed on the second nitride layer covering the plurality of viewports.

  6. Rocket engine coaxial injector liquid/gas interface flow phenomena

    SciTech Connect

    Mayer, W.; Kruelle, G.

    1995-05-01

    Coaxial injectors are used for the injection and mixing of propellants H2/O2 in cryogenic rocket engines. The aim of the theoretical and experimental investigations presented here is to elucidate some of the physical processes in coaxial injector flow with respect to their significance for atomization and mixing. Experiments with the simulation fluids H2O and air were performed under ambient conditions and at elevated counter pressures up to 20 bar. This article reports on phenomenological studies of spray generation under a broad variation of parameters using nanolight photography and high-speed cinematography (up to 3 x 10(exp 4) frames/s). Detailed theoretical and experimental studies of the surface evolution of turbulent jets were performed. Proof was obtained of the impact of internal fluid jet motions on surface deformation. The m = 1 nonaxisymmetric instability of the liquid jet seems to be superimposed onto the small-scale atomization process. A model is presented that calculates droplet atomization quantities as frequency, droplet diameter, and liquid core shape. The overall procedure for implementing this model as a global spray model is also described and an example calculation is presented. 15 refs.

  7. Three-phase slug flow in microchips can provide beneficial reaction conditions for enzyme liquid-liquid reactions.

    PubMed

    Cech, Jiří; Přibyl, Michal; Snita, Dalimil

    2013-01-01

    Here, we introduce a solution to low stability of a two-phase slug flow with a chemical reaction occurring at the phase interface in a microfluidic reactor where substantial merging of individual reacting slugs results in the loss of uniformity of the flow. We create a three-phase slug flow by introducing a third fluid phase into the originally two-phase liquid-liquid slug flow, which generates small two-phase liquid slugs separated by gas phase. Introduction of the third phase into our system efficiently prevents merging of slugs and provides beneficial reaction conditions, such as uniform flow pattern along the whole reaction capillary, interfacial area with good reproducibility, and intensive water-oil interface renewal. We tested the three-phase flow on an enzyme hydrolysis of soybean oil and compared the reaction conversion with those from unstable two-phase slug flows. We experimentally confirmed that the three-phase slug flow arrangement provides conversions and pressure drops comparable or even better with two-phase liquid-liquid arrangements.

  8. Multiphase flow measurement using multiple energy gamma ray absorption (MEGRA) composition measurement

    SciTech Connect

    Scheers, A.M.; Slijkerman, W.F.J.

    1996-12-31

    Some multiphase flowmeters use the principle of Dual Energy Gamma Ray Absorption (DEGRA) composition measurement to determine the individual water, oil and gas fractions. Under homogeneous flow conditions the ultimate uncertainty in phase fractions achievable with this technique depends strongly on the choice of hardware. The meter presented in this paper uses unique components that have been optimized for the water, oil and gas fraction measurement with theoretical uncertainties of 2% in the fractions over a 1 second measurement period. Generally, composition meters are sensitive to a change in production water salinity and this will cause significant systematic effort in the fraction and watercut measurements. A new measurement concept is presented that is not sensitive to salinity variations and based on Multiple Energy Gamma Ray Absorption (MEGRA) composition measurement. A multiphase flowmeter equipped with the MEGRA concept does not require field-calibration, a decisive advantage in subsea or marginal field developments.

  9. Anion Effects on Interfacial Absorption of Gases in Ionic Liquids. A Molecular Dynamics Study

    SciTech Connect

    Wick, Collin D.; Dang, Liem X.

    2011-06-02

    Molecular dynamics simulations with many-body interactions were carried out to systematic study the effect of anion type, tetrafluoroborate [BF4] or hexafluorophosphate [PF6], paired with the cation 1-butyl-3-methylimidazolium [bmim], on the interfacial absorption of gases in room temperature ionic liquids (RTILs). The potentials of mean force (PMF) of CO2 and H2O at 350 K were calculated across the air-liquid interfaces of [bmim][BF4] and [bmim][PF6]. We found that the PMFs for H2O exhibited no interfacial minima at both interfaces, while the corresponding PMFs for CO2 had significant free energy minima there. However, the PMFs for H2O showed a much higher interfacial free energy than in the bulk for [bmim][BF4], but only a slightly higher interfacial free energy for [bmim][PF6] than in bulk. The reason for this was due to the more hydrophilic nature of the [BF4] anion, and the fact that [BF4] was found to have little propensity for the interface. Our results show that H2O is much more likely to be found at the air-[bmim][PF6] interface than at the air-[bmim][BF4] interface. The free energies of solvation were found to be more negative for [bmim][BF4] than [bmim][PF6] for water and similar for CO2. This observation is consistent with experimental Henry’s law coefficients. Our results show that anion type, in addition to affecting the free energy of solvation into RTILs, should also significantly influence the uptake mechanism. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  10. Simulations of a Liquid Hydrogen Inducer at Low-Flow Off-Design Flow Conditions

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.; Ungewitter, R. J.

    2005-01-01

    The ability to accurately model details of inlet back flow for inducers operating a t low-flow, off-design conditions is evaluated. A sub-scale version of a three-bladed liquid hydrogen inducer tested in water with detailed velocity and pressure measurements is used as a numerical test bed. Under low-flow, off-design conditions the length of the separation zone as well as the swirl velocity magnitude was under predicted with a standard k-E model. When the turbulent viscosity coefficient was reduced good comparison was obtained a t all the flow conditions examined with both the magnitude and shape of the profile matching well with the experimental data taken half a diameter upstream of the leading edge. The velocity profiles and incidence angles a t the leading edge itself were less sensitive to the back flow length predictions indicating that single-phase performance predictions may be well predicted even if the details of flow separation modeled are incorrect. However, for cavitating flow situations the prediction of the correct swirl in the back flow and the pressure depression in the core becomes critical since it leads to vapor formation. The simulations have been performed using the CRUNCH CFD(Registered Trademark) code that has a generalized multi-element unstructured framework and a n advanced multi-phase formulation for cryogenic fluids. The framework has been validated rigorously for predictions of temperature and pressure depression in cryogenic fluid cavities and has also been shown to predict the cavitation breakdown point for inducers a t design conditions.

  11. Material Flows in an Active Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Decamp, Stephen; Redner, Gabriel; Baskaran, Aparna; Hagan, Michael; Dogic, Zvonimir

    Active matter systems are composed of energy consuming constituent components which drive far-from-equilibrium dynamics. As such, active materials exhibit energetic states which would be unfavorable in passive, equilibrium materials. We study one such material; an active nematic liquid crystal which exists in a dynamical steady state where +/-1/2 defects are continuously generated and annihilated at a constant rate. The active nematic is composed of micron-sized microtubule filaments which are highly concentrated into a quasi-2D film that resides on an oil-water interface. Kinesin motor proteins drive inter-filament sliding which results in net extensile motion of the microtubule film. Notably, we find a mesophase in which motile +1/2 defects, acquire system-spanning orientational order. Currently, we are tracking material flows generated by the active stresses in the system to measure length scales at which energy is dissipated, and to measure the relation between internally generated flows and bend in the nematic field.

  12. Shear flow simulations of biaxial nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1997-08-01

    We have calculated the viscosities of a biaxial nematic liquid crystal phase of a variant of the Gay-Berne fluid [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)] by performing molecular dynamics simulations. The equations of motion have been augmented by a director constraint torque that fixes the orientation of the directors. This makes it possible to fix them at different angles relative to the stream lines in shear flow simulations. In equilibrium simulations the constraints generate a new ensemble. One finds that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals in this ensemble whereas they are complicated rational functions in the conventional canonical ensemble. We have evaluated these Green-Kubo relations for all the shear viscosities and all the twist viscosities. We have also calculated the alignment angles, which are functions of the viscosity coefficients. We find that there are three real alignment angles but a linear stability analysis shows that only one of them corresponds to a stable director orientation. The Green-Kubo results have been cross checked by nonequilibrium shear flow simulations. The results from the different methods agree very well. Finally, we have evaluated the Miesowicz viscosities [D. Baalss, Z. Naturforsch. Teil A 45, 7 (1990)]. They vary by more than 2 orders of magnitude. The viscosity is consequently highly orientation dependent.

  13. Measurement of the Spectral Absorption of Liquid Water in Melting Snow With an Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the Earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. In this paper we present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation. the air temperature did not drop below freezing the night of the May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  14. Measurement of the spectral absorption of liquid water in melting snow with an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. We present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation, the air temperature did not drop below freezing the night of May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  15. Monitoring Temperature in High Enthalpy Arc-heated Plasma Flows using Tunable Diode Laser Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George

    2013-01-01

    A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.

  16. Absorption spectrum of neat liquid benzene and its concentrated solutions in n-hexane from 220 to 170 nm

    SciTech Connect

    Saik, V.O.; Lipsky, S.

    1995-03-30

    The electronic absorption spectrum of benzene has been obtained by phototransmission measurements over a concentration range from 0.005 M in n-hexane to the neat liquid at 11.2 M and over a spectral range that extends down to 170 nm. Good agreement is obtained with previously reported measurements on the neat liquid. The oscillator strength of the strongly allowed A{sub 1g} {yields} E{sub 1u} transition is maintained at ca. 1.0 as the benzene concentration increases but is accompanied by extensive redistribution of the intensity such that the optical cross section at the position of the absorption maximum (which shifts from 184{sub .2} nm in dilute solution to 189{sub .5} nm in the neat liquid) reduces by a factor of 2.7. An explanation for these changes in terms of Lorentz field corrections to the complex dielectric constant is developed, and its implication to the assignment of the neat liquid absorption as a collective excitation is considered. 43 refs., 5 figs., 1 tab.

  17. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    PubMed Central

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  18. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    NASA Astrophysics Data System (ADS)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  19. Electric current induced flow of liquid metals: Mechanism and substrate-surface effects

    SciTech Connect

    Kumar, P.; Howarth, J.; Dutta, I.

    2014-01-28

    Long range, continuous flow of liquid metals occurs upon application of an electric current. Here, we report experimental results elucidating the mechanism of current-induced liquid metal flow, and its dependence on substrate surface condition. It is shown that the observed flow is diffusion-controlled, with the flow-rate depending linearly on applied current density, indicating that it is driven by electromigration. The effective charge number for liquid electromigration, Z*, of several pure metals, such as Al, Bi, Ga, Sn, and Pb, were deduced from the experimental results and were found to be close to the elemental valency. With the exception of liquid Pb, Z* for all liquid metals tested in this study were positive, indicating that: (i) electron wind contributes much less to Z* in liquid metals than in solids, and (ii) with a few exceptions, liquid metals generally flow in the direction of the electric current. On smooth substrates which are wetted well by the liquid metal, flow occurs in a thin, continuous stream. On rough surfaces which are poorly wetted, on the other hand, discrete beads of liquid form, with mass transport between adjacent beads occurring by surface diffusion on the substrate. A rationale for the role of substrate roughness in fostering this observed transition in flow mechanism is presented.

  20. The absorption coefficient of the liquid N2 2.15-micron band and application to Triton

    NASA Technical Reports Server (NTRS)

    Grundy, William M.; Fink, Uwe

    1991-01-01

    The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.

  1. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge.

    PubMed

    Schreck, Simon; Wernet, Philippe

    2016-09-14

    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water. PMID:27634266

  2. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Wernet, Philippe

    2016-09-01

    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water.

  3. Experimental Investigation on Liquid Metal Flow Distribution in Insulating Manifold under Uniform Magnetic Field

    NASA Astrophysics Data System (ADS)

    Miura, Masato; Ueki, Yoshitaka; Yokomine, Takehiko; Kunugi, Tomoaki

    2012-11-01

    Magnetohydrodynamics (MHD) problem which is caused by interaction between electrical conducting fluid flow and the magnetic field is one of the biggest problem in the liquid metal blanket of the fusion reactor. In the liquid metal blanket concept, it is necessary to distribute liquid metal flows uniformly in the manifold because imbalance of flow rates should affect the heat transfer performance directly, which leads to safety problem. While the manifold is insulated electrically as well as the flow duct, the 3D-MHD effect on the flowing liquid metal in the manifold is more apparent than that in straight duct. With reference to the flow distribution in this concept, the liquid metal flow in the electrical insulating manifold under the uniform transverse magnetic field is investigated experimentally. In this study, GaInSn is selected as working fluid. The experimental system includes the electrical magnet and the manifold test section which is made of acrylic resin for perfectly electrical insulation. The liquid metal flows in a non-symmetric 180°-turn with manifold, which consists of one upward channel and two downward channels. The flow rates in each channel are measured by electromagnetic flow meters for several combinations Reynolds number and Hartman number. The effects of magnetic field on the uniformity of flow distribution are cleared.

  4. Effects of Reduced Surface Tension on Liquid Film Structure in Vertical Upward Gas-Liquid Annular Flows

    NASA Astrophysics Data System (ADS)

    Furukawa, Tohru; Matsuyama, Fuminori; Sadatomi, Michio

    The purpose of this study is to investigate experimentally the effects of reduced surface tension on the liquid film structure in vertical-upward air-liquid annular flows in a 19.2 mm i.d. and 5.4 m long circular tube. The test liquid was water and/or a dilute water solution of Polyoxyethylene-Lauryl-Ether, and the surface tension of these liquids ranged from 72 to 45 dyne/cm. The liquid film structure was observed by use of both the still photographs and the maps of time and spatial characteristics of peripheral-mean liquid film thickness detected with a series of 63 liquid holdup sensors each axially 15 mm apart in a constant current method. The parameters studied were the wave heights of the liquid film, the passing frequencies of the waves, the mean value and the standard deviation of the wave velocities, each determined from the liquid film thickness signals through a computer program of signal processing. From the observations of still photographs and the maps of time and spatial characteristics of peripheral-mean liquid film thickness, it was cleared that the liquid film structure depends strongly on the surface tension, i.e., the reduction of surface tension makes the passing of the large waves decrease remarkably, the wave height of the large waves lower like small waves, the passing of the small waves more frequent, and the small wave velocity faster.

  5. Ground Based Studies of Gas-Liquid Flows in Microgravity Using Learjet Trajectories

    NASA Technical Reports Server (NTRS)

    Bousman, W. S.; Dukler, A. E.

    1994-01-01

    A 1.27 cm diameter two phase gas-liquid flow experiment has been developed with the NASA Lewis Research Center to study two-phase flows in microgravity. The experiment allows for the measurement of void fraction, pressure drop, film thickness and bubble and wave velocities as well as for high speed photography. Three liquids were used to study the effects of liquid viscosity and surface tension, and flow pattern maps are presented for each. The experimental results are used to develop mechanistically based models to predict void fraction, bubble velocity, pressure drop and flow pattern transitions in microgravity.

  6. Electronic absorption spectroscopy of PAHs in supersonic jets and ultracold liquid helium droplets

    NASA Astrophysics Data System (ADS)

    Huisken, Friedrich; Staicu, Angela; Krasnokutski, Serge; Henning, Thomas

    Neutral and cationic polycyclic aromatic hydrocarbons (PAHs) are discussed as possible carriers of the diffuse interstellar bands (DIBs), still unassigned astrophysical absorption features observed in the spectra of reddened stars (Salama et al. 1999). Despite the importance of this class of molecules for astrophysics and nanophysics (PAHs can be regarded as nanoscale fragments of a sheet of graphite), the spectroscopic characterization of PAHs under well-defined conditions (low temperature and collision-free environment) has remained a challenge. Recently we have set up a cavity ring-down spectrometer combined with a pulsed supersonic jet expansion to study neutral and cationic PAHs under astrophysical conditions. PAHs studied so far include the neutral molecules anthracene (Staicu et al. 2004) and pyrene (Rouillé et al. 2004) as well as the cationic species naphthalene+ and anthracene+ (Sukhorukov et al. 2004). Employing another molecular beam apparatus, the same molecules (except of the cationic species) were also studied in liquid helium droplets (Krasnokutski et al. 2005, Rouillé et al. 2004). This novel technique combines several advantages of conventional matrix spectroscopy with those of gas phase spectroscopy. Notable advantages are the possibility to study molecules with low vapor pressure and to use a mass spectrometer facilitating spectral assignments. The most recent studies were devoted to phenanthrene and the more complicated (2,3)-benzofluorene. These molecules were investigated in the gas phase by cavity ring-down spectroscopy and in liquid helium droplets using depletion spectroscopy. For benzofluorene the present studies constitute the first reported measurements both in the gas phase and in helium droplets. The origin of the S1 ← S0 gas phase transition could be located at 29 894.3 cm-1, and a series of vibronic bands was recorded below 31 500 cm-1. In contrast to previously studied PAHs, the shift induced by the helium droplets was very

  7. An automated microtechnique for selenium determination in human body fluids by flow injection hydride atomic absorption spectrometry (FI-HAAS).

    PubMed

    Negretti de Brätter, V E; Brätter, P; Tomiak, A

    1990-03-01

    The automation of a flow injection system for the hydride generation of selenium and its subsequent determination by atomic absorption spectrometry (FI-HAAS) is described. Pre-treatment of the sample and the details of the automated equipment are reviewed. For the FI-HAAS selenium analysis a volume of 350 microL of acid-digested sample solution is injected. The on-line generated hydride is delivery by the gas-liquid separator and is transported together with an Ar stream to the heated quartz cell for the atomic absorption determination. The absolute detection limit is 35 pg Se; the relative detection limit 0.10 micrograms/L Se. The absolute determination limit in real biological samples is 110 pg Se; the relative detection limit 0.31 micrograms/L Se. The accuracy of the method was evaluated via analysis of certified standard reference materials. Quality control was made by comparing FI-HAAS and instrumental neutron activation analysis (INAA), as an independent analytical method. Two acid-digestion procedures (in open vessels at atmospheric pressure and bomb-digestion in pressure vessels) were experimentally tested. To determine the effectiveness of the selenium reduction and the completeness of the selenium hydride formation a parallel selenium determination was carried out by means of ICP-AES and FI-HAAS analysis. FI-HAAS was applied for blood serum analysis of children undergoing long-term total parenteral nutrition, as well as of persons with high dietary selenium intake, and for human milk analysis. PMID:2135957

  8. Effects of ruminal ammonia and butyrate concentrations on reticuloruminal epithelial blood flow and volatile fatty acid absorption kinetics under washed reticulorumen conditions in lactating dairy cows.

    PubMed

    Storm, A C; Hanigan, M D; Kristensen, N B

    2011-08-01

    The effect of reticuloruminal epithelial blood flow on the absorption of propionate as a volatile fatty acid (VFA) marker in 8 lactating Holstein cows was studied under washed rumen conditions. The cows were surgically prepared with ruminal cannulas and permanent catheters in an artery and mesenteric, right ruminal, and hepatic portal veins. The experiment was designed with 2 groups of cows: 4 cows adapted to high crude protein (CP) and 4 to low CP. All cows were subjected to 3 buffers: butyric, ammonia, and control in a randomized replicated 3 × 3 incomplete Latin square design. The buffers (30 kg) were maintained in a temporarily emptied and washed rumen for 40 min. The initial concentration of VFA was 84.2 mmol/L. Butyrate was increased from 4 to 36 mmol/L in butyric buffer by replacement of acetate, and ammonia (NH(3)) was increased from 2.5 to 22.5 mmol/L in ammonia buffer by replacement of NaCl. Increasing amounts of deuterium oxide (D(2)O) were added to the buffers as the order of buffer sequence increased (6, 12, and 18 g of D(2)O). Ruminal clearance of D(2)O was used to estimate epithelial blood flow. To increase accuracy of the epithelial blood flow estimates, data of ruminal liquid marker (Cr-EDTA), and initial and final buffer volumes were fitted to a dynamic simulation model. The model was used to estimate ruminal liquid passages, residual liquid, and water influx (saliva and epithelia water) for each combination of cow and buffer (n=24). Epithelial blood flow increased 49±11% for butyric buffer compared with control. The ruminal disappearance of propionate (marker VFA) was affected by buffer and followed the same pattern as for epithelial blood flow. The correlation between ruminal disappearance of propionate and epithelial blood flow (r=0.56) indicates that the removal of propionate can be limited by epithelial blood flow. The ruminal disappearance of propionate increased 30±12% for the butyric compared with ammonia buffer and 12.5±8% when

  9. Effects of ruminal ammonia and butyrate concentrations on reticuloruminal epithelial blood flow and volatile fatty acid absorption kinetics under washed reticulorumen conditions in lactating dairy cows.

    PubMed

    Storm, A C; Hanigan, M D; Kristensen, N B

    2011-08-01

    The effect of reticuloruminal epithelial blood flow on the absorption of propionate as a volatile fatty acid (VFA) marker in 8 lactating Holstein cows was studied under washed rumen conditions. The cows were surgically prepared with ruminal cannulas and permanent catheters in an artery and mesenteric, right ruminal, and hepatic portal veins. The experiment was designed with 2 groups of cows: 4 cows adapted to high crude protein (CP) and 4 to low CP. All cows were subjected to 3 buffers: butyric, ammonia, and control in a randomized replicated 3 × 3 incomplete Latin square design. The buffers (30 kg) were maintained in a temporarily emptied and washed rumen for 40 min. The initial concentration of VFA was 84.2 mmol/L. Butyrate was increased from 4 to 36 mmol/L in butyric buffer by replacement of acetate, and ammonia (NH(3)) was increased from 2.5 to 22.5 mmol/L in ammonia buffer by replacement of NaCl. Increasing amounts of deuterium oxide (D(2)O) were added to the buffers as the order of buffer sequence increased (6, 12, and 18 g of D(2)O). Ruminal clearance of D(2)O was used to estimate epithelial blood flow. To increase accuracy of the epithelial blood flow estimates, data of ruminal liquid marker (Cr-EDTA), and initial and final buffer volumes were fitted to a dynamic simulation model. The model was used to estimate ruminal liquid passages, residual liquid, and water influx (saliva and epithelia water) for each combination of cow and buffer (n=24). Epithelial blood flow increased 49±11% for butyric buffer compared with control. The ruminal disappearance of propionate (marker VFA) was affected by buffer and followed the same pattern as for epithelial blood flow. The correlation between ruminal disappearance of propionate and epithelial blood flow (r=0.56) indicates that the removal of propionate can be limited by epithelial blood flow. The ruminal disappearance of propionate increased 30±12% for the butyric compared with ammonia buffer and 12.5±8% when

  10. Low-Dimensional Water on Ru(0001); Model System for X-ray Absorption Spectroscopy Studies of Liquid Water

    SciTech Connect

    Nordlund, D.; Ogasawara, H.; Andersson, K.J.; Tatarkhanov, M.; Salmeron, M.; Pettersson, L. G. M.; Nilsson, A.

    2009-05-11

    We present an x-ray absorption spectroscopy results for fully broken to a complete H-bond network of water molecules on Ru(0001) by varying the morphology from isolated water molecules via two-dimensional clusters to a fully covered monolayer as probed by scanning tunneling microscopy. The sensitivity of x-ray absorption to the symmetry of H-bonding is further elucidated for the amino (-NH{sub 2}) group in glycine adsorbed on Cu(110) where the E-vector is parallel either to the NH donating an H-bond or to the non-H-bonded NH. The results give further evidence for the interpretation of the various spectral features of liquid water and for the general applicability of x-ray absorption spectroscopy to analyze H-bonded systems.

  11. Low-Dimensional Water on Ru(0001)Model System for X-ray Absorption Spectroscopy Studies of Liquid Water

    SciTech Connect

    Nordlund, D

    2012-02-14

    We present an x-ray absorption spectroscopy results for fully broken to a complete H-bond network of water molecules on Ru(0001) by varying the morphology from isolated water molecules via two-dimensional clusters to a fully covered monolayer as probed by scanning tunneling microscopy. The sensitivity of x-ray absorption to the symmetry of H-bonding is further elucidated for the amino (-NH{sub 2}) group in glycine adsorbed on Cu(110) where the E-vector is parallel either to the NH donating an H-bond or to the non-H-bonded NH. The results give further evidence for the interpretation of the various spectral features of liquid water and for the general applicability of x-ray absorption spectroscopy to analyze H-bonded systems.

  12. Study of gas-liquid flow in model porous media for heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Francois, Marie; Bodiguel, Hugues; Guillot, Pierre; Laboratory of the Future Team

    2015-11-01

    Heterogeneous catalysis of chemical reactions involving a gas and a liquid phase is usually achieved in fixed bed reactors. Four hydrodynamic regimes have been observed. They depend on the total flow rate and the ratio between liquid and gas flow rate. Flow properties in these regimes influence transfer rates. Rather few attempts to access local characterization have been proposed yet, though these seem to be necessary to better describe the physical mechanisms involved. In this work, we propose to mimic slices of reactor by using two-dimensional porous media. We have developed a two-dimensional system that is transparent to allow the direct observation of the flow and the phase distribution. While varying the total flow rate and the gas/liquid flow rate ratio, we observe two hydrodynamic regimes: at low flow rate, the gaseous phase is continuous (trickle flow), while it is discontinuous at higher flow rate (pulsed flow). Thanks to some image analysis techniques, we are able to quantify the local apparent liquid saturation in the system. Its fluctuations in time are characteristic of the transition between the two regimes: at low liquid flow rates, they are negligible since the liquid/gas interface is fixed, whereas at higher flow rates we observe an alternation between liquid and gas. This transition between trickle to pulsed flow is in relative good agreement with the existing state of art. However, we report in the pulsed regime important flow heterogeneities at the scale of a few pores. These heterogeneities are likely to have a strong influence on mass transfers. We acknowledge the support of Solvay.

  13. Control of Flowing Liquid Films by Electrostatic Fields in Space

    NASA Technical Reports Server (NTRS)

    Griffing, E. M.; Bankoff, S. G.; Schluter, R. A.; Miksis, M. J.

    1999-01-01

    The interaction of a spacially varying electric field and a flowing thin liquid film is investigated experimentally for the design of a proposed light weight space radiator. Electrodes are utilized to create a negative pressure at the bottom of a fluid film and suppress leaks if a micrometeorite punctures the radiator surface. Experimental pressure profiles under a vertical falling film, which passes under a finite electrode, show that fields of sufficient strength can be used safely in such a device. Leak stopping experiments demonstrate that leaks can be stopped with an electric field in earth gravity. A new type of electrohydrodynamic instability causes waves in the fluid film to develop into 3D cones and touch the electrode at a critical voltage. Methods previously used to calculate critical voltages for non moving films are shown to be inappropriate for this situation. The instability determines a maximum field which may be utilized in design, so the possible dependence of critical voltage on electrode length, height above the film, and fluid Reynolds number is discussed.

  14. Experimental and theoretical studies of isothermal upward gas-liquid flows in vertical tubes

    SciTech Connect

    Fernandes, R.C.

    1981-01-01

    In two-phase flow technolgy, two important problems exist which must be solved as a function of the various physical and system parameters associated with the phenomenon, and which stand as prerequisites for proper modelling of two-phase processes: Prediction of the flow pattern under existing operating conditions and prediction of the holdup for each given flow pattern. Modelling studies of steady isothermal upward gas-liquid flows in vertical pipes, at low pressures, were undertaken. Experimental data on liquid holdup over a wide range of flow rates were taken for all observed flow patterns-bubbly, slug, churn, and annular - by means of a specially designed Quick-Closing Valves System. This technique also allowed the detection of a unique phenomenon occurring in the form of fast-flowing slugs of gas-liquid mixture, in both the churn and annular flow patterns, which was called the lump phenomenon. The lump holdup was measured and a qualitative theory regarding the nature, formation and propagation of these structures was proposed. A photographic method was applied to the slug flow pattern in order to determine both the rise velocity and length of Taylor bubbles and liquid slugs characteristic of this flow regime. Assisted by the measured data, flow pattern-based physical models were developed for predicting holdup of bubbly flows and the detailed structure of slug flows. The latter was accomplished by means of a fairly complete analysis which enabled the prediction of several variables of interest such as void fractions, velocities, film thicknesses and the length ratio between Taylor bubbles and liquid slugs. The average holdup for churn flow was predicted by directly applying the slug flow model to that flow pattern. A simplified framework for calculating the holdup in annular flows was also proposed. The comparison between theory and experiment showed that for bubbly, slug and churn flows the predicted results are in good agreement with the data.

  15. Scaling analysis of gas-liquid two-phase flow pattern in microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Jinho

    1993-01-01

    A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.

  16. Versatile plug flow catalytic cell for in situ transmission/fluorescence x-ray absorption fine structure measurements

    SciTech Connect

    Centomo, P.; Zecca, M.; Meneghini, C.

    2013-05-15

    A novel flow-through catalytic cell has been developed for in situ x-ray absorption spectroscopy (XAS) experiments on heterogeneous catalysts under working conditions and in the presence of a liquid and a gas phase. The apparatus allows to carry out XAS measurements in both the transmission and fluorescence modes, at moderate temperature (from RT to 50-80 Degree-Sign C) and low-medium gas pressure (up to 7-8 bars). The materials employed are compatible with several chemicals such as those involved in the direct synthesis of hydrogen peroxide (O{sub 2}, H{sub 2}, H{sub 2}O{sub 2}, methanol). The versatile design of the cell allows to fit it to different experimental setups in synchrotron radiation beamlines. It was used successfully for the first time to test nanostructured Pd catalysts during the direct synthesis of hydrogen peroxide (H{sub 2}O{sub 2}) in methanol solution from dihydrogen and dioxygen.

  17. An assessment of microwave absorption models and retrievals of cloud liquid water using clear-sky data

    NASA Astrophysics Data System (ADS)

    Marchand, Roger; Ackerman, Thomas; Westwater, Ed R.; Clough, Shepard A.; Cady-Pereira, Karen; Liljegren, James C.

    2003-12-01

    Passive microwave radiometers have a long history in the remote sensing of atmospheric liquid and water vapor. Retrievals of these quantities are sensitive to variations in pressure and temperature of the liquid and water vapor. Rather than use a statistical or climatological approach to account for the natural variability in atmospheric pressure and temperature, additional information on the atmospheric profile at the time of the radiometer measurements can be directly incorporated into the retrieval process. Such an approach has been referred to in the literature as a "physical-iterative" solution. This paper presents an assessment of the accuracy of the column liquid water path that can be expected using such an iterative technique as a result of uncertainties in the microwave emissions from oxygen and water vapor. It is shown that the retrieval accuracy is influenced by the accuracy of the instrument measurements and the quality of the atmospheric profiles of temperature and pressure, as one would expect. However, also critical is the uncertainty in the absorption coefficients used in the underlying microwave radiative transfer model. The uncertainty in the absorption coefficients is particularly problematic in that it may well bias the liquid water retrieval. The differences between three absorption models examined in this paper are equivalent to a bias of 15 to 30 g/m2, depending on the total column water vapor. An examination of typical liquid water paths from the Southern Great Plains region of the United States shows that errors of this magnitude have significant implications for shortwave radiation and retrievals of cloud effective particle size.

  18. Large-Flow-Area Flow-Selective Liquid/Gas Separator

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Bradley, Karla F.

    2010-01-01

    This liquid/gas separator provides the basis for a first stage of a fuel cell product water/oxygen gas phase separator. It can separate liquid and gas in bulk in multiple gravity environments. The system separates fuel cell product water entrained with circulating oxygen gas from the outlet of a fuel cell stack before allowing the gas to return to the fuel cell stack inlet. Additional makeup oxygen gas is added either before or after the separator to account for the gas consumed in the fuel cell power plant. A large volume is provided upstream of porous material in the separator to allow for the collection of water that does not exit the separator with the outgoing oxygen gas. The water then can be removed as it continues to collect, so that the accumulation of water does not impede the separating action of the device. The system is designed with a series of tubes of the porous material configured into a shell-and-tube heat exchanger configuration. The two-phase fluid stream to be separated enters the shell-side portion of the device. Gas flows to the center passages of the tubes through the porous material and is then routed to a common volume at the end of the tubes by simple pressure difference from a pumping device. Gas flows through the porous material of the tubes with greater ease as a function of the ratio of the dynamic viscosity of the water and gas. By careful selection of the dimensions of the tubes (wall thickness, porosity, diameter, length of the tubes, number of the tubes, and tube-to-tube spacing in the shell volume) a suitable design can be made to match the magnitude of water and gas flow, developed pressures from the oxygen reactant pumping device, and required residual water inventory for the shellside volume.

  19. Experimental investigation of non-Newtonian/Newtonian liquid-liquid flow in microchannel

    NASA Astrophysics Data System (ADS)

    Roumpea, Eynagelia-Panagiota; Weheliye, Weheliye; Chinaud, Maxime; Angeli, Panagiota; Lyes Kahouadji Collaboration; Omar. K. Matar Collaboration

    2015-11-01

    Plug flow of an organic phase and an aqueous non-Newtonian solution was investigated experimentally in a quartz microchannel with I.D. 200 μm. The aqueous phase was a glycerol solution where 1000 and 2000 ppm of xanthan gum was added while the organic phase was silicon oil with 155 and 5 cSt viscosity. The two phases were brought together in a T-junction and their flowrates varied from 0.3 to 6 ml/hr. High speed imaging was used to study the characteristics of the plugs and the effect of the liquid properties on the flow patterns while a two-colour micro-PIV technique was used to investigate velocity profiles and circulation patterns within the plugs. The experimental results revealed that plug length was affected by both flowrate and viscosity. In all cases investigated, a film of the continuous phase always surrounded the plugs and its thickness was compared with existing literature models. Circulation patterns inside plugs were obtained by subtracting the plug velocity and found to be depended on the plug length and the amount of xanthan gum in the aqueous phase. Finally, the dimensionless circulation time was calculated and plotted as a function of the plug length. Department of Chemical Engineering South Kensington Campus Imperial College London SW7 2AZ.

  20. Observations of Gas-Liquid Flows Through Contractions in Microgravity

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    1996-01-01

    Tests were conducted for an air-water flow through two sudden contractions aboard the NASA DC-9 low gravity aircraft. Flow rate, residual accelerations, void fraction, film thickness, and pressure drop data were recorded and flow visualization at 250 images per second were recorded. Some preliminary results based on the flow visualization data are presented for bubbly, slug and annular flow.

  1. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    NASA Astrophysics Data System (ADS)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  2. Centrifugal contactor with liquid mixing and flow control vanes and method of mixing liquids of different phases

    DOEpatents

    Jubin, Robert T.; Randolph, John D.

    1991-01-01

    The invention is directed to a centrifugal contactor for solvent extraction systems. The centrifugal contactor is provided with an annular vertically oriented mixing chamber between the rotor housing and the rotor for mixing process liquids such as the aqueous and organic phases of the solvent extraction process used for nuclear fuel reprocessing. A set of stationary helically disposed vanes carried by the housing is in the lower region of the mixing chamber at a location below the process-liquid inlets for the purpose of urging the liquids in an upward direction toward the inlets and enhancing the mixing of the liquids and mass transfer between the liquids. The upper region of the mixing vessel above the inlets for the process liquids is also provided with a set helically disposed vanes carried by the housing for urging the process liquids in a downward direction when the liquid flow rates through the inlets are relatively high and the liquids contact the vane set in the upper region. The use of these opposing vane sets in the mixing zone maintains the liquid in the mixing zone at suitable levels.

  3. A visual study of radial inward choked flow of liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    A visual study of the radial inward choked flow of liquid nitrogen was conducted. Data and high speed moving pictures were obtained. The study indicated the following: (1) steady radial inward choked flow seems equivalent to steady choked flow through axisymmetric nozzles, (2) transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets, and (3) the critical mass flow rate data for the transient case appear different from those of the steady case.

  4. Flow observation in two immiscible liquid layers subject to a horizontal temperature gradient

    NASA Astrophysics Data System (ADS)

    Someya, Satoshi; Munakata, Tetsuo; Nishio, Masahiro; Okamoto, Koji; Madarame, Haruki

    2002-02-01

    Marangoni convection, driven by an interfacial instability due to a surface tension gradient, has become a significant problem in the crystal growth on the ground or in a microgravity environment. To suppress and control the convection is important for material processing. Especially in the crystal growth by liquid encapsulated czochralski or liquid encapsulated floating zone technique, in which the melt is encapsulated with an immiscible medium, Marangoni convection can occur on the liquid-liquid interface and on the gas-liquid free surface. In the present paper, experiments were carried out with a double liquid layer of silicone oil and fluorinert both in an open-boat system and in an enclosed system. Flow in a cavity subject to a horizontal temperature gradient was observed. An interactive flow near the interface was measured by using particle image velocimetry technique. The measured flow field seemed to agree sufficiently with the numerical prediction.

  5. Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debadi; Sader, John E.

    2015-05-01

    Simple bulk liquids such as water are commonly assumed to be Newtonian. While this assumption holds widely, the fluid-structure interaction of mechanical devices at nanometer scales can probe the intrinsic molecular relaxation processes in a surrounding liquid. This was recently demonstrated through measurement of the high frequency (20 GHz) linear mechanical vibrations of bipyramidal nanoparticles in simple liquids [Pelton et al., "Viscoelastic flows in simple liquids generated by vibrating nanostructures," Phys. Rev. Lett. 111, 244502 (2013)]. In this article, we review and critically assess the available constitutive equations for compressible viscoelastic flows in their linear limits—such models are required for analysis of the above-mentioned measurements. We show that previous models, with the exception of a very recent proposal, do not reproduce the required response at high frequency. We explain the physical origin of this recent model and show that it recovers all required features of a linear viscoelastic flow. This constitutive equation thus provides a rigorous foundation for the analysis of vibrating nanostructures in simple liquids. The utility of this model is demonstrated by solving the fluid-structure interaction of two common problems: (1) a sphere executing radial oscillations in liquid, which depends strongly on the liquid compressibility and (2) the extensional mode vibration of bipyramidal nanoparticles in liquid, where the effects of liquid compressibility are negligible. This highlights the importance of shear and compressional relaxation processes, as a function of flow geometry, and the impact of the shear and bulk viscosities on nanometer scale flows.

  6. Transmission and fluorescence X-ray absorption spectroscopy cell/flow reactor for powder samples under vacuum or in reactive atmospheres

    NASA Astrophysics Data System (ADS)

    Hoffman, A. S.; Debefve, L. M.; Bendjeriou-Sedjerari, A.; Ouldchikh, S.; Bare, Simon R.; Basset, J.-M.; Gates, B. C.

    2016-07-01

    X-ray absorption spectroscopy is an element-specific technique for probing the local atomic-scale environment around an absorber atom. It is widely used to investigate the structures of liquids and solids, being especially valuable for characterization of solid-supported catalysts. Reported cell designs are limited in capabilities—to fluorescence or transmission and to static or flowing atmospheres, or to vacuum. Our goal was to design a robust and widely applicable cell for catalyst characterizations under all these conditions—to allow tracking of changes during genesis and during operation, both under vacuum and in reactive atmospheres. Herein, we report the design of such a cell and a demonstration of its operation both with a sample under dynamic vacuum and in the presence of gases flowing at temperatures up to 300 °C, showing data obtained with both fluorescence and transmission detection. The cell allows more flexibility in catalyst characterization than any reported.

  7. Liquid methane gelled with methanol and water reduces rate of nitrogen absorption

    NASA Technical Reports Server (NTRS)

    Vanderwall, E. M.

    1972-01-01

    Dilution of gelant vapor with inert carrier gas accomplishes gelation. Mixture is injected through heated tube and orifice into liquid methane for immediate condensation within bulk of liquid. Direct dispersion of particles in liquid avoids condensation on walls of vessel and eliminates additional mixing.

  8. Investigation of the Extinguishing Features for Liquid Fuels and Organic Flammable Liquids Atomized by a Water Flow

    NASA Astrophysics Data System (ADS)

    Voytkov, Ivan V.; Zabelin, Maksim V.; Vysokomornaya, Olga V.

    2016-02-01

    The processes of heat and mass transfer were investigated experimentally while moving and evaporating the atomized water flow in high-temperature combustion products of typical liquid fuels and organic flammable liquids: gasoline, kerosene, acetone, crude oil, industrial alcohol. We determined typical periods of liquid extinguishing by an atomized water flow of various dispersability. Data of the discharge of extinguishing medium corresponding to various parameters of atomization and duration of using the atomization devices was presented. It is shown that Um≈3.5 m/s is a minimal outflow velocity of droplets during moving while passing the distance of 1m in the high-temperature gas medium to stop the combustion of organic liquids.

  9. The Effects of Void Geometry and Contact Angle on the Absorption of Liquids into Porous Calcium Carbonate Structures.

    PubMed

    Ridgway, Cathy J.; Schoelkopf, Joachim; Matthews, G. Peter; Gane, Patrick A. C.; James, Philip W.

    2001-07-15

    The absorption (permeation) of alcohols into porous blocks of calcium carbonate has been studied experimentally and with a computer model. The experimental measurement was of change in apparent weight of a block with time after contact with liquid. The modeling used the previously developed 'Pore-Cor' model, based on unit cells of 1000 cubic pores connected by cylindrical throats. To gain some insight into absorption into voids of complex geometry, and to provide a representation of heterogeneities in surface interaction energy, the cylindrical throats were converted to double cones. Relative to cylinders, such geometries caused hold-ups of the percolation of nonwetting fluids with respect to increasing applied pressure, and a change in the rate of absorption of wetting fluids. Both the measured absorption of the alcohols and the simulated absorption of the alcohols and of water showed significant deviations from that predicted by an effective hydraulic radius approximation. The simulation demonstrated the development of a highly heterogeneous wetting front, and of preferred wetting pathways that were perturbed by inertial retardation. The findings are useful in the design of high-performance, low-waste pigments for paper coatings, and environmentally friendly printing inks, as well as in wider industrial, environmental, and geological contexts. Copyright 2001 Academic Press.

  10. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  11. Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli

    2012-01-01

    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.

  12. Determination of mercury in geological materials by continuous-flow, cold-vapor, atomic absorption spectrophotometry

    SciTech Connect

    Kennedy, K.R.; Crock, J.G.

    1987-06-01

    To determine mercury in geological materials, samples are digested with nitric acid and sodium dichromate in a closed teflon vessel. After bringing to a constant weight, the digest is mixed with air and a sodium chloride-hydroxylamine hydrochloride-sulfuric acid solution and then Hg(II) is reduced to Hg/sup 0/ with stannous chloride in a continuous flow manifold. The mercury vapor is then separated and measured using cold vapor atomic absorption spectrophotometry (CV-AAS). For a 100 mg sample the limit of detection is 20 parts-per-billion (ppb) Hg in sample. To obtain a 1% absorption signal, the described method requires 0.21 ppb Hg solution (equal to 16 ppb in sample). Precision is acceptable at less than 1.2% RSD for a 10 ppb Hg aqueous standard. Accuracy is demonstrated by the results of the analysis on standard reference materials. Several elements do interfere but the effect is minimal because either the digestion procedure does not dissolve them (e.g., Au or Pt) or they are normally of low abundance (e.g., Se or Te).

  13. In-situ liquid storage capacity measurement of subsurface wastewater absorption system products.

    PubMed

    Quisenberry, Virgil; Brown, Philip; Smith, Bill; Hallahan, Dennis F

    2006-11-01

    A method is presented for measuring the in-situ liquid storage capacity of subsurface wastewater infiltration system (SWIS) products. While these products vary in composition, geometry, and porosity, they all have the same function: to provide a conduit for the flow of effluent from a septic tank to and through a trench so that infiltration into the soil can occur. A functional SWIS must also provide temporary liquid storage. Storage is necessary for periods when discharge from the septic tank exceeds the infiltration rate of the soil. Storage is also important during times when the soil in and around the trench is saturated. Many states now have regulatory requirements pertaining to storage volume, and these requirements commonly establish the traditional gravel-pipe system as the standard for minimally acceptable volume. Raliable comparisons between various alternative products and gravel have been difficult or impossible, because there has been no standard method for measuring storage volume. Some products have been evaluated under realistic field conditions; others have been evaluated under theoretical or ideal conditions. The protocol developed by the study reported here can serve as a common, accurate basis for comparisons. A 3-foot-deep trench was excavated, and the bottom was leveled. Markers (nails or rods) were attached to the products to indicate the invert and full-volume heights. The products were then enclosed in plastic, placed in a trench, and covered with soil. A 4-inch-diameter pipe extended from the product to the surface to allow metered additions of water into the products and precise determinations when the systems had been filled to capacity. Four plastic chambers, three expanded polystyrene (ESP) products, two multipipe arrangements, and a standard gravel-pipe system were evaluated. The standard gravel-pipe system held 10.2 gal/ft Three of the four plastic chambers stored from 100 to 130 percent of what the standard system held. The

  14. Effect of ambient pressure on liquid swirl injector flow dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Yang, Vigor

    2014-10-01

    In this paper, a combined theoretical and numerical analysis is performed to study the internal and external flowfields of a liquid swirl injector. The effect of ambient pressure on the injector dynamics is explored systematically over a range of 1-50 atm. An increase in the ambient pressure increases the liquid film thickness, but decreases the spreading angle. This phenomenon can be attributed to the modification of the velocity profiles within the liquid film near the gas-liquid interface due to the alteration of the gas-phase shear stresses with pressure. The friction force at the interface plays a minor role. The generation and existence of stationary waves in the injector nozzle is also considered. At a higher ambient pressure, the pressure drop across the liquid sheet downstream of the injector exit increases, thereby suppressing the spreading of the liquid sheet. This in turn increases the thickness of the liquid sheet, and subsequently increases the breakup length at higher pressure. A semi-empirical model is developed to relate the velocity and pressure distributions near the surface of the liquid sheet. Good agreement is achieved between the measured and predicted shape and spreading angle of the liquid sheet.

  15. A Study of Bubble and Slug Gas-Liquid Flow in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McQuillen, J.

    2000-01-01

    The influence of gravity on the two-phase flow dynamics is obvious.As the gravity level is reduced,there is a new balance between inertial and interfacial forces, altering the behavior of the flow. In bubbly flow,the absence of drift velocity leads to spherical-shaped bubbles with a rectilinear trajectory.Slug flow is a succession of long bubbles and liquid slug carrying a few bubbles. There is no flow reversal in the thin liquid film as the long bubble and liquid slug pass over the film. Although the flow structure seems to be simpler than in normal gravity conditions,the models developed for the prediction of flow behavior in normal gravity and extended to reduced gravity flow are unable to predict the flow behavior correctly.An additional benefit of conducting studies in microgravity flows is that these studies aide the development of understanding for normal gravity flow behavior by removing the effects of buoyancy on the shape of the interface and density driven shear flows between the gas and the liquid phases. The proposal calls to study specifically the following: 1) The dynamics of isolated bubbles in microgravity liquid flows will be analyzed: Both the dynamics of spherical isolated bubbles and their dispersion by turbulence, their interaction with the pipe wall,the behavior of the bubbles in accelerated or decelerated flows,and the dynamics of isolated cylindrical bubbles, their deformation in accelerated/decelerated flows (in converging or diverging channels), and bubble/bubble interaction. Experiments will consist of the use of Particle Image Velocimetry (PIV) and Laser Doppler Velocimeters (LDV) to study single spherical bubble and single and two cylindrical bubble behavior with respect to their influence on the turbulence of the surrounding liquid and on the wall 2) The dynamics of bubbly and slug flow in microgravity will be analyzed especially for the role of the coalescence in the transition from bubbly to slug flow (effect of fluid properties and

  16. Theoretical study of the effect of liquid desiccant mass flow rate on the performance of a cross flow parallel-plate liquid desiccant-air dehumidifier

    NASA Astrophysics Data System (ADS)

    Mohammad, Abdulrahman Th.; Mat, Sohif Bin; Sulaiman, M. Y.; Sopian, K.; Al-abidi, Abduljalil A.

    2013-11-01

    A computer simulation using MATLAB is investigated to predict the distribution of air stream parameters (humidity ratio and temperature) as well as desiccant parameters (temperature and concentration) inside the parallel plate absorber. The present absorber consists of fourteen parallel plates with a surface area per unit volume ratio of 80 m2/m3. Calcium chloride as a liquid desiccant flows through the top of the plates to the bottom while the air flows through the gap between the plates making it a cross flow configuration. The model results show the effect of desiccant mass flow rate on the performance of the dehumidifier (moisture removal and dehumidifier effectiveness). Performance comparisons between present cross-flow dehumidifier and another experimental cross-flow dehumidifier in the literature are carried out. The simulation is expected to help in optimizing of a cross flow dehumidifier.

  17. Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds.

    PubMed

    Sankey, M H; Holland, D J; Sederman, A J; Gladden, L F

    2009-02-01

    Single-phase liquid flow in porous media such as bead packs and model fixed bed reactors has been well studied by MRI. To some extent this early work represents the necessary preliminary research to address the more challenging problem of two-phase flow of gas and liquid within these systems. In this paper, we present images of both the gas and liquid velocities during stable liquid-gas flow of water and SF(6) within a packing of 5mm spheres contained within columns of diameter 40 and 27 mm; images being acquired using (1)H and (19)F observation for the water and SF(6), respectively. Liquid and gas flow rates calculated from the velocity images are in agreement with macroscopic flow rate measurements to within 7% and 5%, respectively. In addition to the information obtained directly from these images, the ability to measure liquid and gas flow fields within the same sample environment will enable us to explore the validity of assumptions used in numerical modelling of two-phase flows. PMID:19059796

  18. High average power laser using a transverse flowing liquid host

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2003-07-29

    A laser includes an optical cavity. A diode laser pumping device is located within the optical cavity. An aprotic lasing liquid containing neodymium rare earth ions fills the optical cavity. A circulation system that provides a closed loop for circulating the aprotic lasing liquid into and out of the optical cavity includes a pump and a heat exchanger.

  19. High throughput analysis of samples in flowing liquid

    DOEpatents

    Ambrose, W. Patrick; Grace, W. Kevin; Goodwin, Peter M.; Jett, James H.; Orden, Alan Van; Keller, Richard A.

    2001-01-01

    Apparatus and method enable imaging multiple fluorescent sample particles in a single flow channel. A flow channel defines a flow direction for samples in a flow stream and has a viewing plane perpendicular to the flow direction. A laser beam is formed as a ribbon having a width effective to cover the viewing plane. Imaging optics are arranged to view the viewing plane to form an image of the fluorescent sample particles in the flow stream, and a camera records the image formed by the imaging optics.

  20. Absorption Kinetics of Phage Lambda on Its Host Under Shear Flow

    NASA Astrophysics Data System (ADS)

    Yip, C. W.; Wu, X. L.

    2000-03-01

    Classical blender experiment by Hershey and Chase played a seminal role in illustrating the infectious process of bacteriophage to its host, and showed unequivocally that DNA is responsible for the transmission of heredity. Subsequent works by others have established that interaction between phage particles and bacterial cells is a diffusion-limited process in that, statistically speaking, each collision results in an irreversible infection. However, such a result is hard to reconcile with the fact that the infection appears to be independent of the density of phage receptors on the bacterial cell membrane. Thus, quantitative experiments showing how a phage finds its receptor and how long does it take would be valuable to this paradoxical view. Simple calculations based on Brownian motion of the phage particles show that the interaction time between the receptor and the phage is given by tau=b^2/(5D), where b is the length of the phage and D is its diffusion coefficient. Using a shear flow apparatus we study absorption kinetics of lambda phage on E. Coli (strain YMEL) under different flow conditions, and the results are compared with a simple diffusion model taking into account the hydrodynamic convection and the interaction time tau.

  1. Application of flow injection on-line electrothermal atomic absorption spectrometry to the determination of rhodium.

    PubMed

    Sanchez Rojas, Fuensanta; Bosch Ojeda, Catalina; Cano Pavón, José Manuel

    2005-06-01

    A fully automated procedure for the determination of rhodium has been developed using flow injection (FI) on-line microcolumn preconcentration coupled with electrothermal atomic absorption spectrometry (ETAAS). The proposed FI manifold and its operation make possible the introduction of the total eluate volume into the graphite atomizer, avoiding the necessity for optimisation of subsampling the eluate. Rhodium is adsorbed on a microcolumn packed with 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). Under the optimum conditions, using a 60 s preconcentration time, a sample flow rate of 3.5 mL min(-1) and an injection volume of eluent of 50 microL, a linear calibration graph was obtained from 1 to at least 40 ng mL(-1) and the detection limit was 1 ng mL(-1). The proposed method has been successfully applied to the analysis of samples. Its performance was investigated against certified reference catalyst sample SRM-2557 and by recovery measurements on spiked samples (soil, foods and beverages).

  2. OBSERVING THE END OF COLD FLOW ACCRETION USING HALO ABSORPTION SYSTEMS

    SciTech Connect

    Stewart, Kyle R.; Kaufmann, Tobias; Bullock, James S.; Barton, Elizabeth J.; Maller, Ariyeh H.; Diemand, Juerg; Wadsley, James

    2011-07-01

    We use cosmological smoothed particle hydrodynamic simulations to study the cool, accreted gas in two Milky Way size galaxies through cosmic time to z = 0. We find that gas from mergers and cold flow accretion results in significant amounts of cool gas in galaxy halos. This cool circum-galactic component drops precipitously once the galaxies cross the critical mass to form stable shocks, M{sub vir} = M{sub sh} {approx} 10{sup 12} M{sub sun}. Before reaching M{sub sh}, the galaxies experience cold mode accretion (T < 10{sup 5} K) and show moderately high covering fractions in accreted gas: f{sub c} {approx} 30%-50% for R < 50 comoving kpc and N{sub Hi}>10{sup 16} cm{sup -2}. These values are considerably lower than observed covering fractions, suggesting that outflowing gas (not included here) is important in simulating galaxies with realistic gaseous halos. Within {approx}500 Myr of crossing the M{sub sh} threshold, each galaxy transitions to hot mode gas accretion, and f{sub c} drops to {approx}5%. The sharp transition in covering fraction is primarily a function of halo mass, not redshift. This signature should be detectable in absorption system studies that target galaxies of varying host mass, and may provide a direct observational tracer of the transition from cold flow accretion to hot mode accretion in galaxies.

  3. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry.

    PubMed

    Zhang, Yanlin; Adeloju, Samuel B

    2012-04-01

    A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH(4) were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe(3+), Cu(2+) and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu(2+) and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe(3+) gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg(2+). Due to similarity of resulting sensitivity, Hg(2+) was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury, respectively. The use of flow injection enabled rapid analysis with a sample throughput of 180 h(-1).

  4. Flowmeter for determining average rate of flow of liquid in a conduit

    DOEpatents

    Kennerly, J.M.; Lindner, G.M.; Rowe, J.C.

    1981-04-30

    This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.

  5. Flowmeter for determining average rate of flow of liquid in a conduit

    DOEpatents

    Kennerly, John M.; Lindner, Gordon M.; Rowe, John C.

    1982-01-01

    This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.

  6. Flow pattern changes influenced by variation of viscosities of a heterogeneous gas-liquid mixture flow in a vertical channel

    SciTech Connect

    Keska, Jerry K.; Hincapie, Juan; Jones, Richard

    2011-02-15

    In the steady-state flow of a heterogeneous mixture such as an air-liquid mixture, the velocity and void fraction are space- and time-dependent parameters. These parameters are the most fundamental in the analysis and description of a multiphase flow. The determination of flow patterns in an objective way is extremely critical, since this is directly related to sudden changes in spatial and temporal changes of the random like characteristic of concentration. Flow patterns can be described by concentration signals in time, amplitude, and frequency domains. Despite the vital importance and countless attempts to solve or incorporate the flow pattern phenomena into multiphase models, it has still been a very challenging topic in the scientific community since the 1940's and has not yet reached a satisfactory solution. This paper reports the experimental results of the impact of fluid viscosity on flow patterns for two-phase flow. Two-phase flow was created in laboratory equipment using air and liquid as phase medium. The liquid properties were changed by using variable concentrations of glycerol in water mixture which generated a wide-range of dynamic viscosities ranging from 1 to 1060 MPa s. The in situ spatial concentration vs. liquid viscosity and airflow velocity of two-phase flow in a vertical ID=50.8 mm pipe were measured using two concomitant computer-aided measurement systems. After acquiring data, the in situ special concentration signals were analyzed in time (spatial concentration and RMS of spatial concentration vs. time), amplitude (PDF and CPDF), and frequency (PSD and CPSD) domains that documented broad flow pattern changes caused by the fluid viscosity and air velocity changes. (author)

  7. Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets.

    PubMed Central

    Yeung, A; Evans, E

    1989-01-01

    Many nonadherent cells exist as spheres in suspension and when sucked into pipets, deform continuously like liquids within the fixed surface area limitation of a plasma membrane envelope. After release, these cells eventually recover their spherical form. Consequently, pipet aspiration test provides a useful method to assay the apparent viscosity of such cells. For this purpose, we have analyzed the inertialess flow of a liquid-like model cell into a tube at constant suction pressure. The cell is modeled as a uniform liquid core encapsulated by a distinct cortical shell. The method of analysis employs a variational approach that minimizes errors in boundary conditions defined by the equations of motion for the cortical shell where the trial functions are exact solutions for the flow field inside the liquid core. For the particular case of an anisotropic liquid cortex with persistent tension, we have determined universal predictions for flow rate scaled by the ratio of excess pressure (above the threshold established by the cortical tension) and core viscosity which is the reciprocal of the dynamic resistance to entry. The results depend on pipet to cell size ratio and a parameter that characterizes the ratio of viscous flow resistance in the cortex to that inside the cytoplasmic core. The rate of entry increases markedly as the pipet size approaches the outer segment diameter of the cell. Viscous dissipation in the cortex strongly influences the entry flow resistance for small tube sizes but has little effect for large tubes. This indicates that with sufficient experimental resolution, measurement of cell entry flow with different-size pipets could establish both the cortex to cell dissipation ratio as well as the apparent viscosity of the cytoplasmic core. Images FIGURE 1 PMID:2752083

  8. On the Motion of an Annular Film in Microgravity Gas-Liquid Flow

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.

    2002-01-01

    Three flow regimes have been identified for gas-liquid flow in a microgravity environment: Bubble, Slug, and Annular. For the slug and annular flow regimes, the behavior observed in vertical upflow in normal gravity is similar to microgravity flow with a thin, symmetrical annular film wetting the tube wall. However, the motion and behavior of this film is significantly different between the normal and low gravity cases. Specifically, the liquid film will slow and come to a stop during low frequency wave motion or slugging. In normal gravity vertical upflow, the film has been observed to slow, stop, and actually reverse direction until it meets the next slug or wave.

  9. Bubble Formation from Wall Orifice in Liquid Cross-Flow Under Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    2000-01-01

    Two-phase flows present a wide variety of applications for spacecraft thermal control systems design. Bubble formation and detachment is an integral part of the two phase flow science. The objective of the present work is to experimentally investigate the effects of liquid cross-flow velocity, gas flow rate, and orifice diameter on bubble formation in a wall-bubble injection configuration. Data were taken mainly under reduced gravity conditions but some data were taken in normal gravity for comparison. The reduced gravity experiment was conducted aboard the NASA DC-9 Reduced Gravity Aircraft. The results show that the process of bubble formation and detachment depends on gravity, the orifice diameter, the gas flow rate, and the liquid cross-flow velocity. The data are analyzed based on a force balance, and two different detachment mechanisms are identified. When the gas momentum is large, the bubble detaches from the injection orifice as the gas momentum overcomes the attaching effects of liquid drag and inertia. The surface tension force is much reduced because a large part of the bubble pinning edge at the orifice is lost as the bubble axis is tilted by the liquid flow. When the gas momentum is small, the force balance in the liquid flow direction is important, and the bubble detaches when the bubble axis inclination exceeds a certain angle.

  10. Preparation of Few-Layer Bismuth Selenide by Liquid-Phase-Exfoliation and Its Optical Absorption Properties

    PubMed Central

    Sun, Liping; Lin, Zhiqin; Peng, Jian; Weng, Jian; Huang, Yizhong; Luo, Zhengqian

    2014-01-01

    Bismuth selenide (Bi2Se3), a new topological insulator, has attracted much attention in recent years owing to its relatively simple band structure and large bulk band gap. Compared to bulk, few-layer Bi2Se3 is recently considered as a highly promising material. Here, we use a liquid-phase exfoliation method to prepare few-layer Bi2Se3 in N-methyl-2-pyrrolidone or chitosan acetic solution. The resulted few-layer Bi2Se3 dispersion demonstrates an interesting absorption in the visible light region, which is different from bulk Bi2Se3 without any absorption in this region. The absorption spectrum of few-layer Bi2Se3 depends on its size and layer number. At the same time, the nonlinear and saturable absorption of few-layer Bi2Se3 thin film in near infrared is also characterized well and further exploited to generate laser pulses by a passive Q-switching technique. Stable Q-switched operation is achieved with a lower pump threshold of 9.3 mW at 974 nm, pulse energy of 39.8 nJ and a wide range of pulse-repetition-rate from 6.2 to 40.1 kHz. Therefore, the few-layer Bi2Se3 may excite a potential applications in laser photonics and optoelectronic devices. PMID:24762534

  11. A particle-image velocimetry tracer generating technique for liquid flows

    NASA Astrophysics Data System (ADS)

    van Overbrüggen, Timo; Schröder, Franka; Klaas, Michael; Schröder, Wolfgang

    2014-08-01

    A device to generate micro-bubbles as seeding particles for particle-image velocimetry (PIV) measurements in liquid flows is introduced. The diameter distribution of the bubbles is measured using interferometric particle imaging (IPI). This note shows the feasibility of the device to create bubbles with a diameter distribution that matches the requirements of PIV measurements in liquid flows such that a viable alternative to solid seeding materials for PIV measurements is available.

  12. Determining CDOM Absorption Spectra in Diverse Coastal Environments Using a Multiple Pathlength, Liquid Core Waveguide System. Measuring the Absorption of CDOM in the Field Using a Multiple Pathlength Liquid Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2000-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, a(sub CDOM), and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values (r > 0.99) and showed a linear response across all four pathlengths. Values of a(sub CDOM) measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of a(sub CDOM) for MPLCW measurements was 0.002 - 231.5/m. At low CDOM concentrations (a(sub 370) < 0.1/m) spectrophotometric a(sub CDOM) were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples. The maximum deviation in replicate MPLCW spectra was less than 0.001 absorbance units. The portability, sampling, and optical characteristics of a MPLCW system provide significant enhancements for routine CDOM absorption measurements in a broad range of natural waters.

  13. Room temperature ionic liquids enhanced the speciation of Cr(VI) and Cr(III) by hollow fiber liquid phase microextraction combined with flame atomic absorption spectrometry.

    PubMed

    Zeng, Chujie; Lin, Yao; Zhou, Neng; Zheng, Jiaoting; Zhang, Wei

    2012-10-30

    A new method for the speciation of Cr(VI) and Cr(III) based on enhancement effect of room temperature ionic liquids (RTILs) for hollow fiber liquid phase microextraction (HF-LPME) combined with flame atomic absorption spectrometry (FAAS) was developed. Room temperature ionic liquids (RTILs) and diethyldithiocarbamate (DDTC) were used enhancement reagents and chelating reagent, respectively. The addition of room temperature ionic liquids led to 3.5 times improvement in the determination of Cr(VI). In this method, Cr(VI) reacts with DDTC yielding a hydrophobic complex, which is subsequently extracted into the lumen of hollow fiber, whereas Cr(III) is remained in aqueous solutions. The extraction organic phase was injected into FAAS for the determination of Cr(VI). Total Cr concentration was determined after oxidizing Cr(III) to Cr(VI) in the presence of KMnO(4) and using the extraction procedure mentioned above. Cr(III) was calculated by subtracting of Cr(VI) from the total Cr. Under optimized conditions, a detection limit of 0.7 ng mL(-1) and an enrichment factor of 175 were achieved. The relative standard deviation (RSD) was 4.9% for Cr(VI) (40 ng mL(-1), n=5). The proposed method was successfully applied to the speciation of chromium in natural water samples with satisfactory results. PMID:22981284

  14. One-step displacement dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of methylmercury in environmental samples.

    PubMed

    Liang, Pei; Kang, Caiyan; Mo, Yajun

    2016-01-01

    A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results.

  15. High sensitivity liquid phase measurements using broadband cavity enhanced absorption spectroscopy (BBCEAS) featuring a low cost webcam based prism spectrometer.

    PubMed

    Qu, Zhechao; Engstrom, Julia; Wong, Donald; Islam, Meez; Kaminski, Clemens F

    2013-11-01

    Cavity enhanced techniques enable high sensitivity absorption measurements in the liquid phase but are typically more complex, and much more expensive, to perform than conventional absorption methods. The latter attributes have so far prevented a wide spread use of these methods in the analytical sciences. In this study we demonstrate a novel BBCEAS instrument that is sensitive, yet simple and economical to set up and operate. We use a prism spectrometer with a low cost webcam as the detector in conjunction with an optical cavity consisting of two R = 0.99 dielectric mirrors and a white light LED source for illumination. High sensitivity liquid phase measurements were made on samples contained in 1 cm quartz cuvettes placed at normal incidence to the light beam in the optical cavity. The cavity enhancement factor (CEF) with water as the solvent was determined directly by phase shift cavity ring down spectroscopy (PS-CRDS) and also by calibration with Rhodamine 6G solutions. Both methods yielded closely matching CEF values of ~60. The minimum detectable change in absorption (αmin) was determined to be 6.5 × 10(-5) cm(-1) at 527 nm and was limited only by the 8 bit resolution of the particular webcam detector used, thus offering scope for further improvement. The instrument was used to make representative measurements on dye solutions and in the determination of nitrite concentrations in a variation of the widely used Griess Assay. Limits of detection (LOD) were ~850 pM for Rhodamine 6G and 3.7 nM for nitrite, respectively. The sensitivity of the instrument compares favourably with previous cavity based liquid phase studies whilst being achieved at a small fraction of the cost hitherto reported, thus opening the door to widespread use in the community. Further means of improving sensitivity are discussed in the paper. PMID:24049768

  16. High sensitivity liquid phase measurements using broadband cavity enhanced absorption spectroscopy (BBCEAS) featuring a low cost webcam based prism spectrometer.

    PubMed

    Qu, Zhechao; Engstrom, Julia; Wong, Donald; Islam, Meez; Kaminski, Clemens F

    2013-11-01

    Cavity enhanced techniques enable high sensitivity absorption measurements in the liquid phase but are typically more complex, and much more expensive, to perform than conventional absorption methods. The latter attributes have so far prevented a wide spread use of these methods in the analytical sciences. In this study we demonstrate a novel BBCEAS instrument that is sensitive, yet simple and economical to set up and operate. We use a prism spectrometer with a low cost webcam as the detector in conjunction with an optical cavity consisting of two R = 0.99 dielectric mirrors and a white light LED source for illumination. High sensitivity liquid phase measurements were made on samples contained in 1 cm quartz cuvettes placed at normal incidence to the light beam in the optical cavity. The cavity enhancement factor (CEF) with water as the solvent was determined directly by phase shift cavity ring down spectroscopy (PS-CRDS) and also by calibration with Rhodamine 6G solutions. Both methods yielded closely matching CEF values of ~60. The minimum detectable change in absorption (αmin) was determined to be 6.5 × 10(-5) cm(-1) at 527 nm and was limited only by the 8 bit resolution of the particular webcam detector used, thus offering scope for further improvement. The instrument was used to make representative measurements on dye solutions and in the determination of nitrite concentrations in a variation of the widely used Griess Assay. Limits of detection (LOD) were ~850 pM for Rhodamine 6G and 3.7 nM for nitrite, respectively. The sensitivity of the instrument compares favourably with previous cavity based liquid phase studies whilst being achieved at a small fraction of the cost hitherto reported, thus opening the door to widespread use in the community. Further means of improving sensitivity are discussed in the paper.

  17. Status of flow separation prediction in liquid propellant rocket nozzles

    NASA Technical Reports Server (NTRS)

    Schmucker, R. H.

    1974-01-01

    Flow separation which plays an important role in the design of a rocket engine nozzle is discussed. For a given ambient pressure, the condition of no flow separation limits the area ratio and, therefore, the vacuum performance. Avoidance of performance loss due to area ratio limitation requires a correct prediction of the flow separation conditions. To provide a better understanding of the flow separation process, the principal behavior of flow separation in a supersonic overexpanded rocket nozzle is described. The hot firing separation tests from various sources are summarized, and the applicability and accuracy of the measurements are described. A comparison of the different data points allows an evaluation of the parameters that affect flow separation. The pertinent flow separation predicting methods, which are divided into theoretical and empirical correlations, are summarized and the numerical results are compared with the experimental points.

  18. Theoretical study of the spectral shift of the absorption line of Rb and Cs in liquid helium

    NASA Astrophysics Data System (ADS)

    Modesto-Costa, Lucas; Mukherjee, Prasanta K.; Canuto, Sylvio

    2015-07-01

    A combined and sequential use of Monte Carlo simulation and time-dependent density functional theory is made to obtain the excitation line shifts and widths of Rb and Cs embedded in liquid 4He. In each case calculations are made on 100 statistically uncorrelated configurations with Rb (Cs) surrounded by nearly 60 He atoms treated explicitly. Different basis sets and functionals are used for obtaining the blue shifts of the absorption lines 5s → 5p of Rb and 6s → 6p of Cs. Estimate of the line broadening is also made and results for both the shift and broadening are obtained in good agreement with experiment.

  19. Flow of a Non-Newtonian Liquid with a Free Surface

    NASA Astrophysics Data System (ADS)

    Borzenko, E. I.; Shrager, G. R.

    2016-07-01

    A fountain flow of a non-Newtonian liquid filling a vertical plane channel was investigated. The problem of this flow was solved by the finite-difference method on the basis of a system of complete equations of motion with natural boundary conditions on the free surface of the liquid. The stability of calculations was provided by regularization of the rheological Ostwald-de Waele law. It is shown that the indicated flow is divided into a zone of two-dimensional flow in the neighborhood of the free surface and a zone of one-dimensional flow at a distance from this surface. A parametric investigation of the dependence of the kinetic characteristics of the fountain flow and the behavior of its free surface on the determining criteria of this flow and its rheological parameters has been performed.

  20. Direct numerical simulation of interfacial wave generation in turbulent gas-liquid flows in horizontal channels

    NASA Astrophysics Data System (ADS)

    Campbell, Bryce; Hendrickson, Kelli; Liu, Yuming; Subramani, Hariprasad

    2014-11-01

    For gas-liquid flows through pipes and channels, a flow regime (referred to as slug flow) may occur when waves form at the interface of a stratified flow and grow until they bridge the pipe diameter trapping large elongated gas bubbles within the liquid. Slug formation is often accompanied by strong nonlinear wave-wave interactions, wave breaking, and gas entrainment. This work numerically investigates the fully nonlinear interfacial evolution of a two-phase density/viscosity stratified flow through a horizontal channel. A Navier-Stokes flow solver coupled with a conservative volume-of-fluid algorithm is use to carry out high resolution three-dimensional simulations of a turbulent gas flowing over laminar (or turbulent) liquid layers. The analysis of such flows over a range of gas and liquid Reynolds numbers permits the characterization of the interfacial stresses and turbulent flow statistics allowing for the development of physics-based models that approximate the coupled interfacial-turbulent interactions and supplement the heuristic models built into existing industrial slug simulators.

  1. Numerical investigation for the effect of the liquid film volume on thermocapillary flow direction in a thin circular liquid film

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Takagi, Y.; Okano, Y.; Dost, S.

    2013-08-01

    NASA Astronaut Dr. Pettit carried out a thermocapillary flow experiment onboard the International Space Station in 2003. In this experiment a thin water film containing milk powder was formed in a stainless-steel wire ring. Heating a section of the ring by a soldering iron induced in the water film a thermocapillary flow towards the heated section of the ring (outward flow: cold to hot). This flow was in the opposite direction of the usually observed thermocapillary flows (inward flow: hot to cold). To shed light on this interesting phenomenon observed in the space experiment, we have conducted a three-dimensional numerical simulation study. Simulation results showed that the film geometry of the water film is a key factor determining flow direction and flow strength. When the liquid film free surfaces are convex, i.e., the water film volume is larger than that when the free surfaces are flat, an outward flow develops in the film as observed in the space experiment. However, when the free surfaces are concave, the simulation predicts an inward flow.

  2. Deep ultraviolet Raman spectroscopy: A resonance-absorption trade-off illustrated by diluted liquid benzene

    NASA Astrophysics Data System (ADS)

    Chadwick, C. T.; Willitsford, A. H.; Philbrick, C. R.; Hallen, H. D.

    2015-12-01

    The magnitude of resonance Raman intensity, in terms of the real signal level measured on-resonance compared to the signal level measured off-resonance for the same sample, is investigated using a tunable laser source. Resonance Raman enhancements, occurring as the excitation energy is tuned through ultraviolet absorption lines, are used to examine the 1332 cm-1 vibrational mode of diamond and the 992 cm-1 ring-breathing mode of benzene. Competition between the wavelength dependent optical absorption and the magnitude of the resonance enhancement is studied using measured signal levels as a function of wavelength. Two system applications are identified where the resonance Raman significantly increases the real signal levels despite the presence of strong absorption: characterization of trace species in laser remote sensing and spectroscopy of the few molecules in the tiny working volumes of near-field optical microscopy.

  3. Operating experience using venturi flow meters at liquid helium temperature

    SciTech Connect

    Wu, K.C.

    1992-01-01

    Experiences using commercial venturi to measure single phase helium flow near 4 K (degree Kelvin) for cooling superconducting magnets have been presented. The mass flow rate was calculated from the differential pressure and the helium density evaluated from measured pressure and temperature. The venturi flow meter, with a full range of 290 g/s (0.29 Kg/s) at design conditions, has been found to be reliable and accurate. The flow measurements have been used, with great success, for evaluating the performance of a cold centrifugal compressor, the thermal acoustic heat load of a cryogenic system and the cooling of a superconducting magnet after quench.

  4. Operating experience using venturi flow meters at liquid helium temperature

    SciTech Connect

    Wu, K.C.

    1992-06-01

    Experiences using commercial venturi to measure single phase helium flow near 4 K (degree Kelvin) for cooling superconducting magnets have been presented. The mass flow rate was calculated from the differential pressure and the helium density evaluated from measured pressure and temperature. The venturi flow meter, with a full range of 290 g/s (0.29 Kg/s) at design conditions, has been found to be reliable and accurate. The flow measurements have been used, with great success, for evaluating the performance of a cold centrifugal compressor, the thermal acoustic heat load of a cryogenic system and the cooling of a superconducting magnet after quench.

  5. ER Effect of Liquid Crystal Flowing Between Two Parallel-Plate Electrodes

    NASA Astrophysics Data System (ADS)

    Tsukiji, Tetsuhiro; Tanabe, Shinsuke

    Liquid crystal is one of homogeneous ER(Electro-rheological) fluids in some range of temperature. Transient responses of pressure drop are examined when liquid crystal flows between two parallel-plate electrodes for constant flow rates. When voltages are applied on the liquid crystal and removed, the pressure responses of the inlet of electrodes are measured with the pressure transducer. At the same time, liquid crystal between the transparent electrodes made of glass is visualized with the high-speed video camera to investigate the time history of the director of the liquid crystal. Outlet of the flow channel with two parallel-plate electrodes is atmosphere. Relation between the flow visualization results and the changes of pressure drop is investigated especially for transient period. In the present experiment the flow rates change from 0.001 cc/sec(velocity is 1 mm/sec) to 0.003 cc/sec and the electric field intensity is from 0.2 kV/mm to 1 kV/mm. The gap of the electrodes is 0.2 mm. The isotropic-nematic transition is 35.5°C and smectic-nematic transition is 23.1°C. The open-loop test facility with the liquid crystal is set in a pyrostat to keep the temperature constant.

  6. DEVELOPMENT AND VALIDATION OF A MULTIFIELD MODEL OF CHURN-TURBULENT GAS/LIQUID FLOWS

    SciTech Connect

    Elena A. Tselishcheva; Steven P. Antal; Michael Z. Podowski; Donna Post Guillen

    2009-07-01

    The accuracy of numerical predictions for gas/liquid two-phase flows using Computational Multiphase Fluid Dynamics (CMFD) methods strongly depends on the formulation of models governing the interaction between the continuous liquid field and bubbles of different sizes. The purpose of this paper is to develop, test and validate a multifield model of adiabatic gas/liquid flows at intermediate gas concentrations (e.g., churn-turbulent flow regime), in which multiple-size bubbles are divided into a specified number of groups, each representing a prescribed range of sizes. The proposed modeling concept uses transport equations for the continuous liquid field and for each bubble field. The overall model has been implemented in the NPHASE-CMFD computer code. The results of NPHASE-CMFD simulations have been validated against the experimental data from the TOPFLOW test facility. Also, a parametric analysis on the effect of various modeling assumptions has been performed.

  7. Method of driving liquid flow at or near the free surface using magnetic microparticles

    DOEpatents

    Snezhko, Oleksiy; Aronson, Igor; Kwok, Wai-Kwong; Belkin, Maxim V.

    2011-10-11

    The present invention provides a method of driving liquid flow at or near a free surface using self-assembled structures composed of magnetic particles subjected to an external AC magnetic field. A plurality of magnetic particles are supported at or near a free surface of liquid by surface tension or buoyancy force. An AC magnetic field traverses the free surface and dipole-dipole interaction between particles produces in self-assembled snake structures which oscillate at the frequency of the traverse AC magnetic field. The snake structures independently move across the free surface and may merge with other snake structures or break up and coalesce into additional snake structures experiencing independent movement across the liquid surface. During this process, the snake structures produce asymmetric flow vortices across substantially the entirety of the free surface, effectuating liquid flow across the free surface.

  8. Liquid-solid contact during flow film boiling of subcooled freon-11

    SciTech Connect

    Chang, K.H.; Witte, L.C. )

    1990-05-01

    Liquid-solid contacts were measured for flow film boiling of subcooled Freon-11 over an electrically heated cylinder equipped with a surface microthermocouple probe. No systematic variation of the extent of liquid-solid contact with wall superheat, liquid subcooling, or velocity was detected. Only random small-scale contacts that contribute negligibly to overall heat transfer were detected when the surface was above the homogenous nucleation temperature of the Freon-11. When large-scale contacts were detected, they led to an unexpected intermediate transition from local film boiling to local transition boiling. An explanation is proposed for these unexpected transitions. A comparison of analytical results that used experimentally determined liquid-solid contact parameters to experimental heat fluxes did not show good agreement. It was concluded that the available model for heat transfer accounting for liquid-solid contact is not adequate for flow film boiling.

  9. Gas-Liquid flow characterization in bubble columns with various gas-liquid using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Jin, Haibo; Yuhuan, Han; Suohe, Yang

    2009-02-01

    Electrical resistance tomography (ERT) is an advanced and new detecting technique that can measure and monitor the parameters of two-phase flow on line, such as gas-liquid bubble column. It is fit for the industrial process where the conductible medium serves as the disperse phase to present the key bubble flow characteristics in multi-phase medium. Radial variation of the gas holdup and mean holdups are investigated in a 0.160 m i. d. bubble column using ERT with two axial locations (Plane 1 and Plane 2). In all the experiments, air was used as the gas phase, tap water as liquid phase, and a series of experiments were done by adding KCl, ethanol, oil sodium, and glycerol to change liquid conductivity, liquid surface tension and viscosity. The superficial gas velocity was varied from 0.02 to 0.2 m/s. The effect of conductivity, surface tension, viscosity on the mean holdups and radial gas holdup distribution is discussed. The results showed that the gas holdup decrease with the increase of surface tension and increase with the increase of viscosity. Meanwhile, the settings of initial liquid conductivity slightly influence the gas holdup values, and the experimental data increases with the increase of the initial setting values in the same conditions.

  10. Three-Dimensional Flow of an Oldroyd-B Fluid with Variable Thermal Conductivity and Heat Generation/Absorption

    PubMed Central

    Shehzad, Sabir Ali; Alsaedi, Ahmed; Hayat, Tasawar; Alhuthali, M. Shahab

    2013-01-01

    This paper looks at the series solutions of three dimensional boundary layer flow. An Oldroyd-B fluid with variable thermal conductivity is considered. The flow is induced due to stretching of a surface. Analysis has been carried out in the presence of heat generation/absorption. Homotopy analysis is implemented in developing the series solutions to the governing flow and energy equations. Graphs are presented and discussed for various parameters of interest. Comparison of present study with the existing limiting solution is shown and examined. PMID:24223780

  11. Determination of arsenic in a nickel alloy by flow injection hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Hanna, C. P.; Tyson, J. F.; Offley, S. G.

    1992-08-01

    The development of a method for the direct determination of trace arsenic quantities in nickel alloy digests, by flow injection hydride generation atomic absorption spectrometry, is described. An optimization study of the manifold and chemical parameters produced system performance, in terms of tolerance of the nickel matrix and sensitivity, such that matrix removal and pre-reduction of As(V) to As (III) prior to arsine generation were eliminated. Full recovery of the As(V) signal from a solution containing 5 ng ml -1 in the presence of 60 μg ml -1 nickel was obtained. Validation of the method was achieved by analyzing a British Chemical Standard (BCS) Certified Reference Material (CRM) #346 IN nickel alloy containing arsenic at a concentration of 50 μg g -1. Following dissolution in nitric and hydrofluoric acids by a microwave assisted procedure, the only subsequent preparation required was dilution by the appropriate factor. Up to 60 injections h -1 may be made, with a detection limit of 0.5 ng ml -1 arsenic (250 pg absolute) as As(V) in a 500 μl sample. The peak height characteristic concentration is 0.46 ng ml -1, with a relative standard deviation of 3.5% for a 10 ng ml -1 As(V) standard ( n = 6).

  12. Rapid flow fractionation of particles combining liquid and particulate dielectrophoresis

    NASA Technical Reports Server (NTRS)

    King, Michael R. (Inventor); Lomakin, Oleg (Inventor); Jones, Thomas B. (Inventor); Ahmed, Rajib (Inventor)

    2007-01-01

    Rapid, size-based, deposition of particles from liquid suspension is accomplished using a nonuniform electric field created by coplanar microelectrode strips patterned on an insulating substrate. The scheme uses the dielectrophoretic force both to distribute aqueous liquid containing particles and, simultaneously, to separate the particles. Size-based separation is found within nanoliter droplets formed along the structure after voltage removal. Bioparticles or macromolecules of similar size can also be separated based on subtle differences in dielectric property, by controlling the frequency of the AC current supplied to the electrodes.

  13. Performance analysis on solid-liquid mixed flow in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Ning, C.; Wang, Y.

    2016-05-01

    In order to study the solid-liquid mixed flow hydraulic characteristics of centrifugal pump, the Pro/E software was used for three-dimensional modeling of centrifugal pump chamber. By using the computational fluid dynamics software CFX, the numerical simulation calculation of solid-liquid two-phase flow within whole flow passage of centrifugal pump was conducted. Aim at different particle diameters, the Reynolds-averaged N-S equations with the RNG k-Ɛ turbulence model and SIMPLEC algorithm were used to simulate the two-phase flow respectively on the condition of different volume fraction. The influence of internal flow characteristic on pump performance was analyzed. On the conditions of different particle diameter and different volume fraction, the turbulence kinetic energy and particle concentration are analyzed. It can be found that the erosion velocity ratio on the flow channel wall increases along with the increasing of the volume fraction

  14. Flow-driven transition and associated velocity profiles in a nematic liquid-crystal cell.

    PubMed

    Jewell, S A; Cornford, S L; Yang, F; Cann, P S; Sambles, J R

    2009-10-01

    The alignment properties and distribution of flow speed during Poiseuille flow through a microchannel of a nematic liquid crystal in a cell with homeotropic surface alignment has been measured using a combination of conoscopy, fluorescence confocal polarizing microscopy, and time-lapse imaging. Two topologically distinct director profiles, with associated fluid velocity fields, are found to exist with the preferred state dictated by the volumetric flow rate of the liquid crystal. The results show excellent agreement with model data produced using the Ericksen-Leslie nematodynamics theory. PMID:19905324

  15. Liquid-liquid phase separation: characterisation of a novel device capable of separating particle carrying multiphase flows.

    PubMed

    Castell, Oliver K; Allender, Christopher J; Barrow, David A

    2009-02-01

    Capillary forces on the microscale are exploited to create a continuous flow liquid-liquid phase separator. Segmented flow regimes of immiscible fluids are generated and subsequently separated into their component phases through an array of high aspect ratio, laser machined, separation ducts (36 microm wide, 130 microm deep) in a planar, integrated, polytetrafluoroethylene (PTFE) microdevice. A controlled pressure differential across the phase separator architecture facilitates the selective passage of the wetting, organic, phase through the separator ducts, enabling separation of microfluidic multiphase flow streams. The reported device is demonstrated to separate water and chloroform segmented flow regimes at flow rates up to 0.4 ml min(-1). Separation efficiency is quantified over a range of flow rates and applied pressure differentials, characterising device behaviour and limits of operation. Experimental measurements and observations are supported by theoretical hydrodynamic and capillary pressure modelling. The influence of material properties and geometric design parameters on phase separation is quantified and optimisation strategies proposed. The novel ability of the membrane free device to separate an organic phase containing suspended microparticulates, from an aqueous phase, is also demonstrated.

  16. Shear Flow Induced Transition from Liquid-Crystalline to Polymer Behavior in Side-Chain Liquid Crystal Polymers

    SciTech Connect

    Noirez, L.; Lapp, A.

    1997-01-01

    We determine the structure and conformation of side-chain liquid-crystalline polymers subjected to shear flow in the vicinity of the smectic phase by neutron scattering on the velocity gradient plane. Below the nematic-smectic transition we observe a typical liquid-crystal behavior; the smectic layers slide, leading to a main-chain elongation parallel to the velocity direction. In contrast,a shear applied above the transition induces a tilted main-chain conformation which is typical for polymer behavior. {copyright} {ital 1996} {ital The American Physical Society}

  17. A nanostructured liquid crystalline formulation of 20(S)-protopanaxadiol with improved oral absorption.

    PubMed

    Jin, Xin; Zhang, Zhen-Hai; Li, Song-Lin; Sun, E; Tan, Xiao-Bin; Song, Jie; Jia, Xiao-Bin

    2013-01-01

    As with many other anti-cancer agents, 20(S)-protopanaxadiol (PPD) has a low oral absorption. In this study, in order to improve the oral bioavailability of PPD, the cubic nanoparticles that it contains were used to enhance absorption. Therefore, the cubic nanoparticle loaded PPD were prepared through the fragmentation of the glyceryl monoolein (GMO)/poloxamer 407 bulk cubic gel and were verified by transmission electron microscope, small angle X-ray scattering and differential scanning calorimetry. The in vitro release of 20(S)-protopanaxadiol from these nanoparticles was less than 5% at 12h. And then Caco-2 cell monolayer model was used to evaluate the absorption of PPD in vitro. Meanwhile the rat intestinal perfusion model and bioavailability were also estimated in vivo. The results showed that, in the Caco-2 cell model, the PPD-cubosome could increase the permeability values from the apical (AP) to the basolateral (BL) of PPD at 53%. The result showed that the four-site rat intestinal perfusion model was consistent with the Caco-2 cell model. And the result of a pharmacokinetic study in rats showed that the relative bioavailability of the PPD-cubosome (AUC(0-∞)) compared with the raw PPD (AUC(0-∞)) was 169%. All the results showed that the PPD-cubosome enhanced bioavailability was likely due to the increased absorption by the cubic nanoparticles rather than by the improved release. Hence, the cubic nanoparticles may be a promising oral carrier for the drugs that have a poor oral absorption.

  18. Reduced Gravity Gas and Liquid Flows: Simple Data for Complex Problems

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Motil, Brian

    2001-01-01

    While there have been many studies for two-phase flow through straight cylindrical tubes, more recently, a new group of studies have emerged that examine two-phase flow through non-straight, non-cylindrical geometries, including expansions, contractions, tees, packed beds and cyclonic separation devices. Although these studies are still, relatively speaking, in their infancy, they have provided valuable information regarding the importance of the flow momentum, and the existence of liquid dryout due to sharp comers in microgravity.

  19. Time and flow-direction responses of shear-styress-sensitive liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Muraqtore, J. J.; Heinick, James T.

    1994-01-01

    Time and flow-direction responses of shear-stress liquid crystal coatings were exploresd experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing schlieren system and recorded with a 100 frame/s color video camera.

  20. High pressure in situ x-ray absorption spectroscopy cell for studying simultaneously the liquid phase and the solid-liquid interface

    SciTech Connect

    Grunwaldt, Jan-Dierk; Ramin, Michael; Rohr, Markus; Michailovski, Alexej; Patzke, Greta R.; Baiker, Alfons

    2005-05-15

    A high pressure in situ x-ray absorption spectroscopy cell with two different path lengths and path positions is presented for studying element-specifically both the liquid phase and the solid-liquid interface at pressures up to 250 bar and temperatures up to 220 deg. C. For this purpose, one x-ray path probes the bottom, while the other x-ray path penetrates through the middle of the in situ cell. The basic design of the cell resembles a 10 ml volume batch reactor, which is equipped with in- and outlet lines to dose compressed gases and liquids as well as a stirrer for good mixing. Due to the use of a polyetheretherketone inset it is also suitable for measurements under corrosive conditions. The characteristic features of the cell are illustrated using case studies from catalysis and solid state chemistry: (a) the ruthenium-catalyzed formylation of an amine in 'supercritical' carbon dioxide in the presence of hydrogen; (b) the cycloaddition of carbon dioxide to propylene oxide in the presence of a solid Zn-based catalyst, and (c) the solvothermal synthesis of MoO{sub 3} nanorods from MoO{sub 3}-2H{sub 2}O.

  1. Numerical modeling of gas-liquid flows in mini- and microchannels

    NASA Astrophysics Data System (ADS)

    Guzei, D. V.; Minakov, A. V.; Pryazhnikov, M. I.; Dekterev, A. A.

    2015-01-01

    The paper presents the results of testing a methodology for calculating two-phase flows in mini- and microchannels. The numerical methodology is based on the known fluid-in-cell method (VOF method) and the CSF procedure to account for surface tension forces. Solutions of several test problems of two-phase flow in microchannels, including the water-oil emulsion flow and gas-liquid flow in microchannels of the T-type and the stationary slug flow in a circular minichannel, were considered with the aid of this technique. Comparisons of numerical results with experimental data were carried out. A good agreement between the results was obtained.

  2. Note: Ultrasonic liquid flow meter for small pipes.

    PubMed

    Yu, Yang; Zong, Guanghua

    2012-02-01

    An ultrasonic flow meter for small pipes is presented. For metal pipe diameter smaller than 10 mm, clamp-on ultrasonic contrapropagation flow meters may encounter difficulties if cross talk or the short acoustic path contributes to large uncertainty in transit time measurement. Axial inline flow meters can avoid these problems, but they may introduce other problems if the transducer port is not properly positioned. Three types of pipe connecting tees are compared using the computational fluid dynamics (CFD) method. CFD shows the 45° tee has more uniform velocity distribution over the measuring section. A prototype flow meter using the 45° tee was designed and tested. The zero flow experiment shows the flow meter has a maximum of 0.002 m∕s shift over 24 h. The flow meter is calibrated by only 1 meter factor. After calibration, inaccuracy lower than 0.1% of reading was achieved in the laboratory, for a measuring range from 15 to 150 g∕s (0.29 to 2.99 m∕s; Re = 2688 to 26,876). PMID:22380141

  3. Note: Ultrasonic liquid flow meter for small pipes

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Zong, Guanghua

    2012-02-01

    An ultrasonic flow meter for small pipes is presented. For metal pipe diameter smaller than 10 mm, clamp-on ultrasonic contrapropagation flow meters may encounter difficulties if cross talk or the short acoustic path contributes to large uncertainty in transit time measurement. Axial inline flow meters can avoid these problems, but they may introduce other problems if the transducer port is not properly positioned. Three types of pipe connecting tees are compared using the computational fluid dynamics (CFD) method. CFD shows the 45° tee has more uniform velocity distribution over the measuring section. A prototype flow meter using the 45° tee was designed and tested. The zero flow experiment shows the flow meter has a maximum of 0.002 m/s shift over 24 h. The flow meter is calibrated by only 1 meter factor. After calibration, inaccuracy lower than 0.1% of reading was achieved in the laboratory, for a measuring range from 15 to 150 g/s (0.29 to 2.99 m/s; Re = 2688 to 26 876).

  4. A free-flowing soap film combined with cavity ring-down spectroscopy as a detection system for liquid chromatography.

    PubMed

    Vogelsang, Markus; Welsch, Thomas; Jones, Harold

    2010-05-01

    We have shown that a free-flowing soap film has sufficiently high-quality optical properties to allow it to be used in the cavity of a ring-down spectrometer (CRDS). The flow rates required to maintain a stable soap film were similar to those used in liquid chromatography and thus allowed interfacing with an HPLC system for use as an optical detector. We have investigated the properties of the system in a relevant analytical application. The soap film/CRDS combination was used at 355 nm as a detector for the separation of a mixture of nitroarenes. These compounds play a role in the residue analysis of areas contaminated with explosives and their decomposition products. In spite of the short absorption path length (9 microm) obtained by the soap film, the high-sensitivity of CRDS allowed a limit of detection of 4 x 10(-6) in absorption units (AU) or less than 17 fmol in the detection volume to be achieved.

  5. Liquid and liquid–gas flows at all speeds

    SciTech Connect

    LeMartelot, S.; Nkonga, B.; Saurel, R.

    2013-12-15

    All speed flows and in particular low Mach number flow algorithms are addressed for the numerical approximation of the Kapila et al. [1] multiphase flow model. This model is valid for fluid mixtures evolving in mechanical equilibrium but out of temperature equilibrium and is efficient for material interfaces computation separating miscible and non-miscible fluids. In this context, the interface is considered as a numerically diffused zone, captured as well as all present waves (shocks, expansion waves). The same flow model can be used to solve cavitating and boiling flows [2]. Many applications occurring with liquid–gas interfaces and cavitating flows involve a very wide range of Mach number, from 10{sup −3} to supersonic (and even hypersonic) conditions with respect to the mixture sound speed. It is thus important to address numerical methods free of restrictions regarding the Mach number. To do this, a preconditioned Riemann solver is built and embedded into the Godunov explicit scheme. It is shown that this method converges to exact solutions but needs too small time steps to be efficient. An implicit version is then derived, first in one dimension and second in the frame of 2D unstructured meshes. Two-phase flow preconditioning is then addressed in the frame of the Saurel et al. [3] algorithm. Modifications of the preconditioned Riemann solver are needed and detailed. Convergence of both single phase and two-phase numerical solutions are demonstrated with the help of single phase and two-phase steady nozzle flow solutions. Last, the method is illustrated by the computation of real cavitating flows in Venturi nozzles. Vapour pocket size and instability frequencies are reproduced by the model and method without using any adjustable parameter.

  6. Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs.

    PubMed

    Lee, Kathy W Y; Nguyen, Tri-Hung; Hanley, Tracey; Boyd, Ben J

    2009-01-01

    Nanostructured lipid-based liquid crystalline systems have been proposed as sustained oral drug delivery systems, but the interplay between their intrinsic release rates, susceptibility to digestive processes, and the manner in which these effects impact on their application in vivo, are not well understood. In this study, two different bicontinuous cubic phases, prepared from glyceryl monooleate and phytantriol, and a reversed hexagonal phase formed by addition of a small amount of vitamin E to phytantriol (Q(II GMO), Q(II PHYT) and H(II PHYT+VitEA), respectively) were prepared. The release kinetics for a number of model hydrophilic drugs with increasing molecular weights (glucose, Allura Red and FITC-dextrans) was determined in in vitro release experiments. Diffusion-controlled release was observed in all cases as anticipated from previous studies with liquid crystalline systems, and it was discovered that the release rates of each drug decreased as the matrix was changed from Q(II GMO) to Q(II PHYT) to H(II PHYT+VitEA). Formulations containing (14)C-glucose, utilized as a rapidly absorbed marker of drug release, were then orally administered to rats to determine the relative in vivo absorption rates from the different formulations. The results showed a trend by which the rate of absorption of (14)C-glucose followed that observed in the corresponding in vitro release studies, providing the first indication that the nanostructure of these materials may provide the ability to tailor the absorption kinetics of hydrophilic drugs in vivo, and hence form the basis of a new drug delivery system.

  7. Microprocessor Based Temperature Control of Liquid Delivery with Flow Disturbances.

    ERIC Educational Resources Information Center

    Kaya, Azmi

    1982-01-01

    Discusses analytical design and experimental verification of a PID control value for a temperature controlled liquid delivery system, demonstrating that the analytical design techniques can be experimentally verified by using digital controls as a tool. Digital control instrumentation and implementation are also demonstrated and documented for…

  8. Fiber optic liquid mass flow sensor and method

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Gregory, Don Allen (Inventor); Wiley, John T. (Inventor); Pedersen, Kevin W. (Inventor)

    2010-01-01

    A method and apparatus are provided for sensing the mass flow rate of a fluid flowing through a pipe. A light beam containing plural individual wavelengths is projected from one side of the pipe across the width of the pipe so as to pass through the fluid under test. Fiber optic couplers located at least two positions on the opposite side of the pipe are used to detect the light beam. A determination is then made of the relative strengths of the light beam for each wavelength at the at least two positions and based at least in part on these relative strengths, the mass flow rate of the fluid is determined.

  9. An ultrasonic flowmeter for measuring dynamic liquid flow

    NASA Technical Reports Server (NTRS)

    Carpini, T. D.; Monteith, J. H.

    1978-01-01

    A novel oscillating pipe system was developed to provide dynamic calibration wherein small sinusoidal signals with amplitudes of 0.5 to 10% of the steady-state flow were added to the steady-state flow by oscillating the flowmeter relative to the fixed pipes in the flow system. Excellent agreement was obtained between the dynamic velocities derived from an accelerometer mounted on the oscillating pipe system and those sensed by the flowmeter at frequencies of 7, 19, and 30 Hz. Also described were the signal processing techniques used to retrieve the small sinusoidal signals which were obscured by the fluid turbulence.

  10. Liquid flow and distribution in unsaturated porous media

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan

    2004-01-01

    Flow and transport in permeable or porous media and microchannels occurs in a variety of situations in micro- and reduced-gravity environments, many of them associated with environmental control and life support systems. While the role of gravity is limited, due to the typically small size scales associated permeable media, gravity, at the very least, affects the overall disposition of fluid in a macroscopic system. This presentation will discuss examples where the absence of gravity affects flow and phase distribution in selected examples of unsaturated flow and transport of heat and mass in porous media and microchannels that are pertinent to spacecraft systems.

  11. Pressure drop in fully developed, duct flow of dispersed liquid-vapor mixture at zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1990-01-01

    The dynamics of steady, fully developed dispersed liquid-vapor flow in a straight duct at 0-g is simulated by flowing water containing n-butyl benzoate droplets. Water and benzoate are immiscible and have identical density at room temperature. The theoretical basis of the simulation is given. Experiments showed that, for a fixed combined flow rate of water and benzoate, the frictional pressure drop is unaffected by large changes in the volume fraction of benzoate drops and their size distribution. Measured power spectra of the static wall pressure fluctuations induced by the turbulent water-benzoate flow also revealed that their dynamics is essentially unaltered by the presence of the droplets. These experimental findings, together with the theoretical analysis, led to the conclusion that the pressure drop in fully developed, dispersed liquid-vapor flow in straight ducts of constant cross section at 0-g is identical to that due to liquid flowing alone at the same total volumetric flow rate of the liquid-vapor mixture and, therefore, can be readily determined.

  12. Two phase flow of liquids in a narrow gap: Phase interference and hysteresis

    NASA Astrophysics Data System (ADS)

    Raza, Salim; Hejazi, S. Hossein; Gates, Ian D.

    2016-07-01

    Co-current flow of two immiscible liquids, such as oil and water in a planar fracture, exhibits nonlinear structures which become important in many natural and engineering systems such as subsurface flows, multiphase flows in lubrication joints, and coating flows. In this context, co-current flow of oil and water with variable rates is experimentally studied in a Hele-Shaw cell, various flow regimes are classified, and relative permeabilities for the phases are analysed thoroughly. Similar to multiphase pipe flows, multiphase flow in planar gaps shows various flow regimes, each having different flow rate/pressure gradient behaviour. As well as recovering the known results in the immiscible displacements in Hele-Shaw cell where the fluid-fluid interface remains stable/unstable for favorable/adverse viscosity ratios, it is found that the co-current flow of two fluids with different viscosities results in three distinct flow regimes. Before breakthrough of non-wetting phase, i.e, water, a "linear displacement" flow regime initially establishes at very low water injection rates. This stable movement turns into a "fingering advancement" flow regime at high water flow rates and Saffman-Taylor instability develops normal to the direction of the flow. After the breakthrough, a "droplet formation" flow regime is identified where the droplets of wetting phase, oil, are trapped in the water phase. For subsurface flow applications, we quantify these regimes through relative permeability curves. It is reported that as the water flow rate increases, the relative permeabilities and flow channels become smooth and regular. This behaviour of relative permeability and saturations shows dominance of capillary forces at low flow rates and viscous forces at higher flow rates. Variable injection rates provide the interface structures for both drainage and imbibition process, where the wetting phase saturation decreases and increases respectively. It is shown that relative permeability

  13. A Lagrangian study of liquid flow in a reverse-flow hydrocyclone using positron emission particle tracking

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Fen; Hoffmann, Alex C.

    2015-01-01

    In this study, the liquid flow in a reverse-flow hydrocyclone is studied experimentally using the Lagrangian approach. Resin beads with densities that are close to the density of the liquid in which they move, i.e., neutral-density particles, are used to model a fluid element in the highly turbulent flow in a hydrocyclone separator and tracked using PEPT with a temporal resolution of up to 0.5 ms. A method of producing neutral-density particles for PEPT was developed. The data processing algorithm was improved for the extra challenging tracking conditions that were encountered. The components of velocity, which reveal the detailed velocity field of the fluid, were calculated from the positions of the tracers. Various noise-removal methods, again to cope with the challenging tracking conditions, were applied and discussed.

  14. Liquid film flow along a substrate with an asymmetric topography sustained by the thermocapillary effect

    NASA Astrophysics Data System (ADS)

    Frumkin, Valeri; Oron, Alexander

    2016-08-01

    We investigate flow in a thin liquid film over a "thick" asymmetric corrugated surface in a gas-liquid bi-layer system. Using long-wave approximation, we derive a nonlinear evolution equation for the spatiotemporal dynamics of the liquid-gas interface over the corrugated topography. A closed-form expression indicating a non-zero value for a liquid flow rate is derived in a steady state of the system. Through numerical investigations we study the nonlinear dynamics of the liquid-gas interface with respect to topographical variations of the solid surface, different thermal properties of the liquid and the solid, and different values of the Marangoni number. We find the existence of a critical value for the Marangoni number Mc, so that for M > Mc, the liquid film ruptures, whereas for M < Mc, the interface will remain continuous. In a broad variety of parameters, the interface attains a deformed steady state with a nonzero average flow rate through the system, thus the described mechanism may be used as a means of transport in microfluidic devices. We carry out the Floquet stability analysis of periodic steady states with respect to spatial replication and show that in the framework of the time-independent evolution equation, the system is unstable to long wave perturbations. We demonstrate that in a finite periodic setting, the system may evolve within a certain parameter range into a metastable state which may be manipulated by varying the Marangoni number M in time in order to increase, control, and sustain the average flow rate through the system. We also show that in the case of a solid substrate with the thermal conductivity lower than that of the liquid, the flow rate through the system may be significantly increased with respect to the opposite case.

  15. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows.

    PubMed

    Storm, A C; Kristensen, N B; Hanigan, M D

    2012-06-01

    Ruminal absorption of volatile fatty acids (VFA) is quantitatively the most important nutrient flux in cattle. Historically, VFA absorption models have been derived primarily from ruminal variables such as chemical composition of the fluid, volume, and pH. Recently, a mechanistic model incorporated the control of VFA absorption from epithelial surface area of the reticulorumen. In the present study, we hypothesized that ruminal absorption of VFA was controlled through epithelial permeability to VFA and rumen epithelial capillary blood flow. The objective of the study was to construct a model of VFA exchange across the rumen wall that incorporates epithelial blood flow as a driving force for ruminal VFA removal. The bidirectional fluxes between the ruminal and epithelial pool of VFA were assumed mass action driven, given that passive diffusion of nonionized VFA is the dominant transmembrane VFA flux. Parameter estimates were derived by fitting the model to observed data. The model provided reliable unbiased estimates of ruminal VFA absorption and rumen epithelial blood flow. Blood flow was modeled using an equation that considered the effect of butyrate and dietary crude protein intake per kilogram of body weight. The rate constants related to the flux from ruminal fluid to epithelium were in the order isobutyrate < acetate < propionate < butyrate (0.32 ± 0.02, 0.72 ± 0.2, 0.91 ± 0.06, and 0.97 ± 0.02 /h, respectively). The rate constants for fluxes of isobutyrate, acetate, propionate, and butyrate from the rumen epithelium to the ruminal fluid, relative to the pool size of the epithelium, were 4.78, 10.6, 13.4, and 14.3 /h, respectively. Ruminal concentrations of acetate, propionate, butyrate, and isobutyrate were predicted with root mean square prediction errors as percentage of the observed means (RMSPE) of 5.86, 5.75, 11.3, and 4.12, respectively. The epithelial blood flow was predicted with 26.3% RMSPE. Sensitivity analyses indicated that when ruminal

  16. In situ monitoring of atmospheric nitrous acid based on multi-pumping flow system and liquid waveguide capillary cell.

    PubMed

    Liu, Yuhan; Lu, Keding; Dong, Huabin; Li, Xin; Cheng, Peng; Zou, Qi; Wu, Yusheng; Liu, Xingang; Zhang, Yuanhang

    2016-05-01

    In the last four decades, various techniques including spectroscopic, wet chemical and mass spectrometric methods, have been developed and applied for the detection of ambient nitrous acid (HONO). We developed a HONO detection system based on long path photometry which consists of three independent modules i.e., sampling module, fluid propulsion module and detection module. In the propulsion module, solenoid pumps are applied. With solenoid pumps the pulsed flow can be computer controlled both in terms of pump stroke volume and pulse frequency, which enables the attainment of a very stable flow rate. In the detection module, a customized Liquid Waveguide Capillary Cell (LWCC) is used. The customized LWCC pre-sets the optical fiber in-coupling with the liquid wave guide, providing the option of fast startup and easy maintenance of the absorption photometry. In summer 2014, our system was deployed in a comprehensive campaign at a rural site in the North China Plain. More than one month of high quality HONO data spanning from the limit of detection to 5ppb were collected. Intercomparison of our system with another established system from Forschungszentrum Juelich is presented and discussed. In conclusion, our instrument achieved a detection limit of 10pptV within 2min and a measurement uncertainty of 7%, which is well suited for investigation of the HONO budget from urban to rural conditions in China. PMID:27155434

  17. Thermoelectric magnetohydrodynamic and thermocapillary driven flows of liquid conductors in magnetic fields

    NASA Astrophysics Data System (ADS)

    Jaworski, Michael Andrew

    The Solid/Liquid Lithium Divertor experiment (SLiDE) has been designed, constructed and operated in order to determine the behavior of these liquid conductors in a magnetic field with imposed thermal gradients. Liquid lithium is chosen for its applicability to fusion systems as well as recent demonstrations of its ability to passively redistribute incident heat fluxes on the order of 50[MW/m2]. The lithium is contained within a stainless steel tray that is actively cooled and contains a set of temperature diagnostics for analysis of the heat, flux coming from the tray. The system is magnetized by a set of external magnets and a linear electron beam is used to create heat fluxes similar to those found in fusion divertors. Surface velocity of the liquid lithium is measured with a digital camera. A theory explaining the balance between thermoelectric magnetohydrodynamics and thero-capillary driven, free-surface flows in containers of arbitrary type in a magnetized environment has been developed. A new dimensionless group depending on the thermoelectric power of the liquid/container pair, the physical properties of the liquid and solid and the flow geometry has been found that determines which mechanism, TC or TEMHD, is the dominant effect in any given system. Experiments show that TEMHD dominates the flow in SLiDE, consistent with the theory governing these flows. This is verified by series of qualitative experiments, as well as quantitative comparison with theoretical flow predictions. This constitutes the first direct observation of TEMHD driven flow yet reported in the literature. Application of the developed theory indicates liquid lithium fusion systems will operate in a TEMHD dominated regime. Technologies suggested by the exploitation of TEMHD pumping are also presented.

  18. Profiles of flow discharged from vertical rotating pipes: A contrast between inviscid liquid and granular jets

    NASA Astrophysics Data System (ADS)

    Weidman, P. D.; Kubitschek, J. P.; Medina, A.

    2008-11-01

    The stability of viscous rotating liquid columns and their application to rotating viscous liquid jets aligned under gravity is reviewed. Experiments on stable viscous fluid flow discharged from rotating vertical pipes exhibit very weak contraction. We present an elementary liquid jet analysis to understand this phenomenon. Indeed, our inviscid model of a slender rotating inviscid liquid jet shows that rotation suppresses contraction. Next we study the comparable problem for granular flow. Our model for noncohesive granular flow emanating from a vertical pipe rotating about its central axis, valid for sufficiently large rotation rate, shows that the granular profiles blossom rather than contract. The profiles of both the liquid and granular jets depend on the same dimensionless parameters—an exit Froude number Fr0 and an exit swirl parameter χ0. The limitations of both models are discussed. Experimental data for granular jet profiles compare well with the collision-free granular flow model in its range of applicability. A criterion for the rotation rate at which particles adjacent to the inner wall of the rotating pipe cease to flow is also given and compared to experiment.

  19. Physical understanding of gas-liquid annular flow and its transition to dispersed droplets

    NASA Astrophysics Data System (ADS)

    Kumar, Parmod; Das, Arup Kumar; Mitra, Sushanta K.

    2016-07-01

    Transformation from annular to droplet flow is investigated for co-current, upward gas-liquid flow through a cylindrical tube using grid based volume of fluid framework. Three transitional routes, namely, orificing, rolling, and undercutting are observed for flow transformation at different range of relative velocities between the fluids. Physics behind these three exclusive phenomena is described using circulation patterns of gaseous phase in the vicinity of a liquid film which subsequently sheds drop leading towards transition. Orifice amplitude is found to grow exponentially towards the core whereas it propagates in axial direction in a parabolic path. Efforts have been made to fit the sinusoidal profile of wave structure with the numerical interface contour at early stages of orificing. Domination of gas inertia over liquid flow has been studied in detail at the later stages to understand the asymmetric shape of orifice, leading towards lamella formation and droplet generation. Away from comparative velocities, circulations in the dominant phase dislodge the drop by forming either a ligament (rolling) or a bag (undercut) like protrusion in liquid. Study of velocity patterns in the plane of droplet dislodge reveals the underlying physics behind the disintegration and its dynamics at the later stages. Using numerical phase distributions, rejoining of dislodged droplet with liquid film as post-rolling consequences has been also proposed. A flow pattern map showing the transitional boundaries based on the physical mechanism is constructed for air-water combination.

  20. Design and Fabrication of a MEMS Flow Sensor and Its Application in Precise Liquid Dispensing

    PubMed Central

    Liu, Yaxin; Chen, Liguo; Sun, Lining

    2009-01-01

    A high speed MEMS flow sensor to enhance the reliability and accuracy of a liquid dispensing system is proposed. Benefitting from the sensor information feedback, the system can self-adjust the open time of the solenoid valve to accurately dispense desired volumes of reagent without any pre-calibration. First, an integrated high-speed liquid flow sensor based on the measurement of the pressure difference across a flow channel is presented. Dimensions of the micro-flow channel and two pressure sensors have been appropriately designed to meet the static and dynamic requirements of the liquid dispensing system. Experiments results show that the full scale (FS) flow measurement ranges up to 80 μL/s, with a nonlinearity better than 0.51% FS. Secondly, a novel closed-loop control strategy is proposed to calculate the valve open time in each dispensing cycle, which makes the system immune to liquid viscosity, pressure fluctuation, and other sources of error. Finally, dispensing results show that the system can achieve better dispensing performance, and the coefficient of variance (CV) for liquid dispensing is below 3% at 1 μL and below 4% at 100 nL. PMID:22408517

  1. Flow visualization and characterization of evaporating liquid drops

    NASA Technical Reports Server (NTRS)

    Chao, David F. (Inventor); Zhang, Nengli (Inventor)

    2004-01-01

    An optical system, consisting of drop-reflection image, reflection-refracted shadowgraphy and top-view photography, is used to measure the spreading and instant dynamic contact angle of a volatile-liquid drop on a non-transparent substrate. The drop-reflection image and the shadowgraphy is shown by projecting the images of a collimated laser beam partially reflected by the drop and partially passing through the drop onto a screen while the top view photograph is separately viewed by use of a camera video recorder and monitor. For a transparent liquid on a reflective solid surface, thermocapillary convection in the drop, induced by evaporation, can be viewed nonintrusively, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this technique clearly reveal that evaporation and thermocapillary convection greatly affect the spreading process and the characteristics of dynamic contact angle of the drop.

  2. Pool boiling enhancement through bubble induced convective liquid flow in feeder microchannels

    NASA Astrophysics Data System (ADS)

    Jaikumar, A.; Kandlikar, S. G.

    2016-01-01

    Bubbles departing from the nucleation sites induce a liquid flow from the bulk to the heated surface during pool boiling. Alternating the nucleating regions with non-nucleating regions facilitates separate liquid-vapor pathways for departing vapor bubbles and returning liquid. We explored an additional enhancement through liquid feeder channels on the heater surface directing the returning liquid towards the nucleating region. The nucleating bubbles were confined to the nucleating region as the returning liquid flow induced strong convective currents over the non-nucleating regions. In the best performing configuration, the nucleating regions were 0.5 mm wide, separated by non-nucleating regions of width 2.125 mm, which corresponded to the bubble departure diameter. The non-nucleating regions contained 0.5 mm wide feeder channels directing liquid towards the nucleating region. High speed images indicated distinct vapor columns over the nucleating regions with liquid channeled through the feeder channels. At higher heat fluxes, the strong liquid currents established over the feeder channels suppressed any undesirable nucleation in them keeping the separated vapor-liquid pathways functional. This enhancement technique resulted in a critical heat flux of 394 W/cm2 at a wall superheat of 5.5 °C which translated to a heat transfer coefficient of 713 kW/m2 °C. The additional surface area and high heat transfer coefficient due to microchannel flow in feeder channels, and the unobstructed surface available for the bubbles to expand over the prime heat transfer surface area before departing were seen to be responsible for their superior performance.

  3. An automatic, vigorous-injection assisted dispersive liquid-liquid microextraction technique for stopped-flow spectrophotometric detection of boron.

    PubMed

    Alexovič, Michal; Wieczorek, Marcin; Kozak, Joanna; Kościelniak, Paweł; Balogh, Ioseph S; Andruch, Vasil

    2015-02-01

    A novel automatic vigorous-injection assisted dispersive liquid-liquid microextraction procedure based on the use of a modified single-valve sequential injection manifold (SV-SIA) was developed and applied for determination of boron in water samples. The major novelties in the procedure are the achieving of efficient dispersive liquid-liquid microextraction by means of single vigorous-injection (250 µL, 900 µL s(-1)) of the extraction solvent (n-amylacetate) into aqueous phase resulting in the effective dispersive mixing without using dispersive solvent and after self-separation of the phases, as well as forwarding of the extraction phase directly to a Z-flow cell (10 mm) without the use of a holding coil for stopped-flow spectrophotometric detection. The calibration working range was linear up to 2.43 mg L(-1) of boron at 426nm wavelength. The limit of detection, calculated as 3s of a blank test (n=10), was found to be 0.003 mg L(-1), and the relative standard deviation, measured as ten replicable concentrations at 0.41 mg L(-1) of boron was determined to be 5.6%. The validation of the method was tested using certified reference material.

  4. Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Pais, Salvatore Cezar

    1999-01-01

    The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed

  5. Density pattern in supercritical flow of liquid {sup 4}He

    SciTech Connect

    Ancilotto, F.; Toigo, F.; Dalfovo, F.; Pitaevskii, L.P.

    2005-03-01

    A density-functional theory is used to investigate the instability arising in superfluid {sup 4}He as it flows at velocity u just above the Landau critical velocity of rotons v{sub c}. Confirming an early theoretical prediction by one of us [JETP Lett. 39, 511 (1984)], we find that a stationary periodic modulation of the density occurs, with amplitude proportional to (u-v{sub c}){sup 1/2} and wave vector equal to the roton wave vector. This density pattern is studied for supercritical flow both in bulk helium and in a channel of nanometer cross section.

  6. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.

    PubMed

    Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy

    2016-01-01

    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime. PMID:26633128

  7. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.

    PubMed

    Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy

    2016-01-01

    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime.

  8. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow

    NASA Astrophysics Data System (ADS)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2015-02-01

    We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces.

  9. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow.

    PubMed

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2015-02-01

    We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces. PMID:25768592

  10. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow.

    PubMed

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2015-02-01

    We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces.

  11. Velocity and flow rate measurement of liquid metal by contactless electromagnetic Lorentz force technique

    NASA Astrophysics Data System (ADS)

    Dubovikova, N.; Karcher, C.; Kolesnikov, Y.

    2016-07-01

    Providing flow analysis in case of aggressive and hot liquids is a complicated task, especially when liquid's composition and, hence, its physical properties, are unknown. Contactless techniques are the most promising methods for liquid metal flow rate control and some of these methods are based on electromagnetic induction of breaking force acting on an electrically conductive fluid which is moving through a magnetic field. One of the techniques is time-of-flight Lorentz force velocimetry (LFV). By using the method one can estimate volumetric flow rate without knowing of electrical conductivity, magnitude of magnetic field or characteristic dimension. The most important and crucial challenge within the technique is detection of small fluctuations of Lorentz force value. In this article we will focus on application and investigation of time-of-flight LFV.

  12. Coevolution of inverse cascade and nonlinear heat front in shear flows of strongly coupled Yukawa liquids

    SciTech Connect

    Ashwin, J.; Ganesh, R.

    2011-08-15

    Using classical molecular dynamics (MD) simulations, we report on the development and propagation of a nonlinear heat front in parallel shear flows of a strongly coupled Yukawa liquid. At a given coupling strength, a subsonic shear profile is superposed on an equilibrated Yukawa liquid and Kelvin Helmholtz (KH) instability is observed. Coherent vortices are seen to emerge towards the nonlinear regime of the instability. It is seen that while inverse cascade leads to a continuous transfer of flow energy towards the largest scales, there is also a simultaneous transfer of flow energy into the thermal velocities of grains at the smallest scale. The latter is an effect of velocity shear and thus leads to the generation of a nonlinear heat front. In the linear regime, the heat front is seen to propagate at speed much lesser than the adiabatic sound speed of the liquid. Spatio-temporal growth of this heat front occurs concurrently with the inverse cascade of KH modes.

  13. Self-Powered Triboelectric Micro Liquid/Gas Flow Sensor for Microfluidics.

    PubMed

    Chen, Jie; Guo, Hengyu; Zheng, Jiangeng; Huang, Yingzhou; Liu, Guanlin; Hu, Chenguo; Wang, Zhong Lin

    2016-08-23

    Liquid and gas flow sensors are important components of the micro total analysis systems (μTAS) for modern analytical sciences. In this paper, we proposed a self-powered triboelectric microfluidic sensor (TMS) by utilizing the signals produced from the droplet/bubble via the capillary and the triboelectrification effects on the liquid/solid interface for real-time liquid and gas flow detection. By alternating capillary with different diameters, the sensor's detecting range and sensitivity can be adjusted. Both the relationship between the droplet/bubble and capillary size, and the output signal of the sensor are systematically studied. By demonstrating the monitoring of the transfusion process for a patient and the gas flow produced from an injector, it shows that TMS has a great potential in building a self-powered micro total analysis system.

  14. Self-Powered Triboelectric Micro Liquid/Gas Flow Sensor for Microfluidics.

    PubMed

    Chen, Jie; Guo, Hengyu; Zheng, Jiangeng; Huang, Yingzhou; Liu, Guanlin; Hu, Chenguo; Wang, Zhong Lin

    2016-08-23

    Liquid and gas flow sensors are important components of the micro total analysis systems (μTAS) for modern analytical sciences. In this paper, we proposed a self-powered triboelectric microfluidic sensor (TMS) by utilizing the signals produced from the droplet/bubble via the capillary and the triboelectrification effects on the liquid/solid interface for real-time liquid and gas flow detection. By alternating capillary with different diameters, the sensor's detecting range and sensitivity can be adjusted. Both the relationship between the droplet/bubble and capillary size, and the output signal of the sensor are systematically studied. By demonstrating the monitoring of the transfusion process for a patient and the gas flow produced from an injector, it shows that TMS has a great potential in building a self-powered micro total analysis system. PMID:27490518

  15. Flow Induced Coalescence of Drops in a Viscous Liquid

    NASA Astrophysics Data System (ADS)

    Leal, L. Gary

    2002-11-01

    The problem of flow-induced coalescence has been the subject of many experimental and theoretical studies. In recent years, this work has been motivated by the role that this process plays in the formation of polymer blends, which is currently the major route to new polymeric materials with desired macroscopic properties. In order to control this process, we need to understand the conditions for coalescence and their dependence on fluid and flow properties, including the effects of surfactants (known as "compatibilizers" in the polymer blend literature). With a few exceptions, experimental studies have been based upon measurements of the mean drop size (or size distribution) in an emulsion or blend following flow in either blending devices or simple rheometry flows. The four-roll mill, on the other hand, provides an opportunity to study the coalescence process at the scale of individual drops. When such experiments are carried out, we find some surprises vis a vis expectations from simple models of the drop collision/film drainage and rupture process that leads to coalescence. In this talk, we review recent experimental work in this field, and discuss the relationship to present theory

  16. Magnetohydrodynamic generators using two-phase liquid-metal flows

    NASA Technical Reports Server (NTRS)

    Petrick, M.

    1969-01-01

    Two-phase flow generator cycle of a magnetohydrodynamic /MHD/ generator uses a working fluid which is compressible and treated as an expanding gas. The two-phase mixture passes from the heat source through the MHD generator, where the expansion process takes place and the electrical energy is extracted.

  17. Theoretical modeling and interpretation of X-ray absorption spectra of liquid water.

    PubMed

    Wang, R L C; Kreuzer, H J; Grunze, M

    2006-11-01

    We report extensive calculations to examine the capability of theory to explain the XAS spectra of liquid water. Several aspects that enter the theoretical model are addressed, such as the quantum mechanical methods, the statistics and the XAS model. As input into our quantum mechanical calculations we will use structural information on liquid water obtained from first principles and from classical molecular dynamics simulations. As XAS models, we will examine the full core hole and the half core hole approximations to transition state theory. The quantum mechanics is performed on the basis of density functional theory. We conclude from this study that recent experimental results are fully consistent with, and can be completely explained by, present day theory, in particular, the pre-edge peak is reproduced. We also find that the average bond coordination in liquid water is 3.1 and that the assertion in a recent paper that the hydrogen bond number is much less than that cannot be substantiated. Our calculations emphasize that further advances in our understanding of water can only be made by more sophisticated spectroscopy with significantly increased resolution.

  18. Surface study of metal-containing ionic liquids by means of photoemission and absorption spectroscopies

    NASA Astrophysics Data System (ADS)

    Caporali, Stefano; Pedio, Maddalena; Chiappe, Cinzia; Pomelli, Christian S.; Acres, Robert G.; Bardi, Ugo

    2016-06-01

    The vacuum/liquid interface of different ionic liquids obtained by dissolving bistriflimide salts of Ag, Al, Cu, Ni, and Zn in 1-butyl-3-methylimidazolium bistriflimide ([bmim][Tf2N]) was investigated under vacuum using AR-XPS and NEXAFS. The XPS spectra show chemical shifts of the nitrogen of the bistriflimide anion as a function of the metal type, indicating different strength of the coordination bonds. In silver bearing ILs, silver ions were found to be only weakly coordinated. On the contrary, Ni, Cu, Zn, and especially Al exhibit large chemical shifts attributable to strong interaction with the bistriflimide ions. The outermost surface was enriched with or depleted of metal ions as a function of the nature of the metals. Nickel and zinc tend to slightly concentrate at the surface while copper, silver, and especially aluminum are depleted at the surface. We also observed that the aliphatic alkyl chains of the cations tend to protrude outside the surface in all systems studied. However, the presence of metals generally increases the amount of bistriflimide at the vacuum/liquid interface.

  19. Handling of liquid holdup in Duyong two-phase flow pipeline system

    SciTech Connect

    Saad, M.R.; Singh, B. )

    1988-01-01

    This paper deals with the handling of liquids in the multi-phase flow pipeline system within Carigali's Duyong Offshore Gas Complex and the Onshore Gas Terminal, in Kerteh, Terongganu. The data and operations experience gathered necessitate changes to the operating procedures originally identified during the design phase. This is to ensure more efficient handling of liquid hold-up in the pipeline during low gas flowrates.

  20. Modelling of evaporation of a dispersed liquid component in a chemically active gas flow

    NASA Astrophysics Data System (ADS)

    Kryukov, V. G.; Naumov, V. I.; Kotov, V. Yu.

    1994-01-01

    A model has been developed to investigate evaporation of dispersed liquids in chemically active gas flow. Major efforts have been directed at the development of algorithms for implementing this model. The numerical experiments demonstrate that, in the boundary layer, significant changes in the composition and temperature of combustion products take place. This gives the opportunity to more correctly model energy release processes in combustion chambers of liquid-propellant rocket engines, gas-turbine engines, and other power devices.

  1. Liquid injection in confined co-flow: Application to portal vein embolization by glue injection

    NASA Astrophysics Data System (ADS)

    Sandulache, M.-C.; Paullier, P.; Bouzerar, R.; Yzet, T.; Balédent, O.; Salsac, A.-V.

    2012-08-01

    Drop formation in liquid-liquid systems has received considerable attention over the last century owing to its many industrial applications. More recent applications may be found in the field of endovascular/percutaneous treatments. The present study focuses on portal vein embolization (PVE), which consists in the blockage of part of the portal trunk though the injection of surgical glue. The short-time injection is dominated by fluid dynamic effects: the influence of polymerization is secondary owing to the presence of ethiodized oil in the injected mixture. If the mechanism of liquid injection is well understood for injections in unconfined fluids at rest, fewer studies have so far considered the case of outer liquids flowing in confined environments. The objective is therefore to conduct a large range parametric study of liquid injections in confined co-flows. An experimental setup has been designed to simulate in vitro the injection in an immiscible liquid flowing in a cylindrical tube. The transition from the dripping to the jetting regimes is found to be independent of confinement, but to depend on the ratio of the inertial forces of the injected liquid to the surface tension, i.e., the Weber number of the inner flow Wei. The confinement, however, has an influence on the drop size in the dripping regime. Its influence diminishes in the first phase of the jetting regime, as the drop size largely decreases. In the fully established jetting regime, the drop size is finally only a function of the ejection tube diameter. To predict the size of the drops in the dripping regime, we have developed a semiempirical model that takes into account the effects of both the tube confinement and outer flow. It will help the interventional radiologists predict the drop size depending on the geometrical and velocimetric conditions at the site of embolization. All these results can then serve as a base to optimize the PVE technique during clinical practice.

  2. The Discrete Multi-Hybrid System for the Simulation of Solid-Liquid Flows

    PubMed Central

    Alexiadis, Alessio

    2015-01-01

    This study proposes a model based on the combination of Smoothed Particle Hydrodynamics, Coarse Grained Molecular Dynamics and the Discrete Element Method for the simulation of dispersed solid-liquid flows. The model can deal with a large variety of particle types (non-spherical, elastic, breakable, melting, solidifying, swelling), flow conditions (confined, free-surface, microscopic), and scales (from microns to meters). Various examples, ranging from biological fluids to lava flows, are simulated and discussed. In all cases, the model captures the most important features of the flow. PMID:25961561

  3. Suppressing turbulence and enhancing liquid suspension flow in pipelines with electrorheology

    NASA Astrophysics Data System (ADS)

    Tao, R.; Gu, G. Q.

    2015-01-01

    Flows through pipes, such as crude oil through pipelines, are the most common and important method of transportation of fluids. To enhance the flow output along the pipeline requires reducing viscosity and suppressing turbulence simultaneously and effectively. Unfortunately, no method is currently available to accomplish both goals simultaneously. Here we show that electrorheology provides an efficient solution. When a strong electric field is applied along the flow direction in a small section of pipeline, the field polarizes and aggregates the particles suspended inside the base liquid into short chains along the flow direction. Such aggregation breaks the rotational symmetry and makes the fluid viscosity anisotropic. In the directions perpendicular to the flow, the viscosity is substantially increased, effectively suppressing the turbulence. Along the flow direction, the viscosity is significantly reduced; thus the flow along the pipeline is enhanced. Recent field tests with a crude oil pipeline fully confirm the theoretical results.

  4. Suppressing turbulence and enhancing liquid suspension flow in pipelines with electrorheology.

    PubMed

    Tao, R; Gu, G Q

    2015-01-01

    Flows through pipes, such as crude oil through pipelines, are the most common and important method of transportation of fluids. To enhance the flow output along the pipeline requires reducing viscosity and suppressing turbulence simultaneously and effectively. Unfortunately, no method is currently available to accomplish both goals simultaneously. Here we show that electrorheology provides an efficient solution. When a strong electric field is applied along the flow direction in a small section of pipeline, the field polarizes and aggregates the particles suspended inside the base liquid into short chains along the flow direction. Such aggregation breaks the rotational symmetry and makes the fluid viscosity anisotropic. In the directions perpendicular to the flow, the viscosity is substantially increased, effectively suppressing the turbulence. Along the flow direction, the viscosity is significantly reduced; thus the flow along the pipeline is enhanced. Recent field tests with a crude oil pipeline fully confirm the theoretical results.

  5. Computation of turbulent flow in a thin liquid layer of fluid involving a hydraulic jump

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.; Hankey, W. L.

    1991-01-01

    Numerically computed flow fields and free surface height distributions are presented for the flow of a thin layer of liquid adjacent to a solid horizontal surface that encounters a hydraulic jump. Two kinds of flow configurations are considered: two-dimensional plane flow and axisymmetric radial flow. The computations used a boundary-fitted moving grid method with a k-epsilon model for the closure of turbulence. The free surface height was determined by an optimization procedure which minimized the error in the pressure distribution on the free surface. It was also checked against an approximate procedure involving integration of the governing equations and use of the MacCormack predictor-corrector method. The computed film height also compared reasonably well with previous experiments. A region of recirculating flow was found to be present adjacent to the solid boundary near the location of the jump, which was caused by a rapid deceleration of the flow.

  6. A visual study of radial inward choked flow of liquid nitrogen.

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    Data and high speed movies were acquired on pressurized subcooled liquid nitrogen flowing radially inward through a 0.0076 cm gap. The stagnation pressure ranged from 0.7 to 4 MN/sq m. Steady radial inward choked flow appears equivalent to steady choked flow through axisymmetric nozzles. Transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets. The critical mass flow rate data for the transient case appear different from those for the steady case. On the mass flow rate vs pressure map, the slope and separation of the isotherms appear to be less for transient than for steady radial choked flow.

  7. The Numerical Simulation of Liquid-Vapor Stratified Flow in Horizontal Metal-Foam Tubes.

    PubMed

    Wang, Jingxuan; Wang, Yueshe; Chen, Zhengwei; Chen, Kaituo; Li, Bing

    2015-04-01

    In this paper, a boiling stratified flow model in a metal-foam tube is proposed. First, based on Branuer non-equilibrium gas-liquid interface model, a force balance on the gas-liquid interface in metal-foam is calculated. The shape of the interface of upper gas phase and lower liquid phase in metal foam tube is obtained. As for the lower liquid phase, the energy conservation equations of liquid and metal foam are formulated, which account for porosity and fiber diameter of foam on the basis of non-local thermal equilibrium model (NTEM), respectively. Therefore, a profile of temperature difference between liquid and metal foam can be obtained. For the upper gas phase, an empirical correlation developed by other researchers is utilized to obtain temperature difference between gas phase and solid wall. In addition, the variation of the Reynolds number with increasing mass quality along the flow direction is acquired. Ultimately, an average circumference heat transfer coefficient is calculated. The results of circumference heat transfer coefficient agree well with available experimental data, showing the prediction of the proposed stratified flow model is feasible. The reason resulting in discrepancies between the prediction and experiment data is also illustrated. PMID:26353555

  8. Evaluation of a ferroelectric tunnel junction by ultraviolet-visible absorption using a removable liquid electrode.

    PubMed

    Lee, Hong-Sub; Kang, Kyung-Mun; Yeom, Geun Young; Park, Hyung-Ho

    2016-05-27

    Ferroelectric memristors offer a significant alternative to their redox-based analogs in resistive random access memory because a ferroelectric tunnel junction (FTJ) exhibits a memristive effect that induces resistive switching (RS) regardless of the operating current level. This RS results from a change in the ferroelectric polarization direction, allowing the FTJ to overcome the restriction encountered in redox-based memristors. Herein, the memristive effect of an FTJ was investigated by ultraviolet-visible (UV-Vis) absorption spectroscopy using a removable mercury (Hg) top electrode (TE), BaTiO3 (BTO) ferroelectric tunnel layer, La0.7Sr0.3MnO3 (LSMO) semiconductor bottom electrode, and wide-bandgap quartz (100) single-crystal substrate to determine the low-resistance state (LRS) and high-resistance state (HRS) of the FTJ. A BTO (110)/LSMO (110) polycrystal memristor involving a Hg TE showed a small memristive effect (switching ratio). This effect decreased with increasing read voltage because of a small potential barrier height. The LRS and HRS of the FTJ showed quasi-similar UV-Vis absorption spectra, consistent with the small energy difference between the valence-band maximum of BTO and Fermi level of LSMO near the interface between the LRS and HRS. This energy difference stemmed from the ferroelectric polarization and charge-screening effect of LSMO based on an electrostatic model of the FTJ.

  9. Evaluation of a ferroelectric tunnel junction by ultraviolet–visible absorption using a removable liquid electrode

    NASA Astrophysics Data System (ADS)

    Lee, Hong-Sub; Kang, Kyung-Mun; Yeom, Geun Young; Park, Hyung-Ho

    2016-05-01

    Ferroelectric memristors offer a significant alternative to their redox-based analogs in resistive random access memory because a ferroelectric tunnel junction (FTJ) exhibits a memristive effect that induces resistive switching (RS) regardless of the operating current level. This RS results from a change in the ferroelectric polarization direction, allowing the FTJ to overcome the restriction encountered in redox-based memristors. Herein, the memristive effect of an FTJ was investigated by ultraviolet–visible (UV–Vis) absorption spectroscopy using a removable mercury (Hg) top electrode (TE), BaTiO3 (BTO) ferroelectric tunnel layer, La0.7Sr0.3MnO3 (LSMO) semiconductor bottom electrode, and wide-bandgap quartz (100) single-crystal substrate to determine the low-resistance state (LRS) and high-resistance state (HRS) of the FTJ. A BTO (110)/LSMO (110) polycrystal memristor involving a Hg TE showed a small memristive effect (switching ratio). This effect decreased with increasing read voltage because of a small potential barrier height. The LRS and HRS of the FTJ showed quasi-similar UV–Vis absorption spectra, consistent with the small energy difference between the valence-band maximum of BTO and Fermi level of LSMO near the interface between the LRS and HRS. This energy difference stemmed from the ferroelectric polarization and charge-screening effect of LSMO based on an electrostatic model of the FTJ.

  10. Experiments on Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Sankaran, Subramanian (Technical Monitor); Ozar, B.; Cetegen, B. M.; Faghri, A.

    2004-01-01

    An experimental study of heat transfer into a thin liquid film on a rotating heated disk is described. Deionized water was introduced at the center of a heated. horizontal disk with a constant film thickness and uniform radial velocity. Radial distribution of the disk surface temperatures was measured using a thermocouple/slip ring arrangement. Experiments were performed for a range of liquid flow rates between 3.01pm and 15.01pm. The angular speed of the disk was varied from 0 rpm to 500 rpm. The local heat transfer coefficient was determined based on the heat flux supplied to the disk and the temperature difference between the measured disk surface temperature and the liquid entrance temperature onto the disk. The local heat transfer coefficient was seen to increase with increasing flow rate as well as increasing angular velocity of the disk. Effect of rotation on heat transfer was largest for the lower liquid flow rates with the effect gradually decreasing with increasing liquid flow rates. Semi-empirical correlations are presented in this study for the local and average Nusselt numbers.

  11. Liquid fuel spray processes in high-pressure gas flow

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1986-01-01

    Atomization of single liquid jets injected downstream in high pressure and high velocity airflow was investigated to determine the effect of airstream pressure on mean drop size as measured with a scanning radiometer. For aerodynamic - wave breakup of liquid jets, the ratio of orifice diameter D sub o to measured mean drop diameter D sub m which is assumed equal to D sub 32 or Sauter mean diameter, was correlated with the product of the Weber and Reynolds numbers WeRe and the dimensionless group G1/square root of c, where G is the gravitational acceleration, 1 the mean free molecular path, and square root of C the root mean square velocity, as follows; D sub o/D sub 32 = 1.2 (WeRe) to the 0.4 (G1/square root of c) to the 0.15 for values of WeRe 1 million and an airstream pressure range of 0.10 to 2.10 MPa.

  12. Liquid fuel spray processes in high-pressure gas flow

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1985-01-01

    Atomization of single liquid jets injected downstream in high pressure and high velocity airflow was investigated to determine the effect of airstream pressure on mean drop size as measured with a scanning radiometer. For aerodynamic - wave breakup of liquid jets, the ratio of orifice diameter D sub o to measured mean drop diameter D sub m which is assumed equal to D sub 32 or Sauter mean diameter, was correlated with the product of the Weber and Reynolds numbers WeRe and the dimensionless group G1/square root of c, where G is the gravitational acceleration, 1 the mean free molecular path, and square root of C the root mean square velocity, as follows; D sub o/D sub 32 = 1.2 (WeRe) to the 0.4 (G1/square root of c) to the 0.15 for values of WeRe 1 million and an airstream pressure range of 0.10 to 2.10 MPa.

  13. Nematic director reorientation at solid and liquid interfaces under flow: SAXS studies in a microfluidic device.

    PubMed

    Silva, Bruno F B; Zepeda-Rosales, Miguel; Venkateswaran, Neeraja; Fletcher, Bretton J; Carter, Lester G; Matsui, Tsutomu; Weiss, Thomas M; Han, Jun; Li, Youli; Olsson, Ulf; Safinya, Cyrus R

    2015-04-14

    In this work we investigate the interplay between flow and boundary condition effects on the orientation field of a thermotropic nematic liquid crystal under flow and confinement in a microfluidic device. Two types of experiments were performed using synchrotron small-angle X-ray-scattering (SAXS). In the first, a nematic liquid crystal flows through a square-channel cross section at varying flow rates, while the nematic director orientation projected onto the velocity/velocity gradient plane is measured using a 2D detector. At moderate-to-high flow rates, the nematic director is predominantly aligned in the flow direction, but with a small tilt angle of ∼±11° in the velocity gradient direction. The director tilt angle is constant throughout most of the channel width but switches sign when crossing the center of the channel, in agreement with the Ericksen-Leslie-Parodi (ELP) theory. At low flow rates, boundary conditions begin to dominate, and a flow profile resembling the escaped radial director configuration is observed, where the director is seen to vary more smoothly from the edges (with homeotropic alignment) to the center of the channel. In the second experiment, hydrodynamic focusing is employed to confine the nematic phase into a sheet of liquid sandwiched between two layers of Triton X-100 aqueous solutions. The average nematic director orientation shifts to some extent from the flow direction toward the liquid boundaries, although it remains unclear if one tilt angle is dominant through most of the nematic sheet (with abrupt jumps near the boundaries) or if the tilt angle varies smoothly between two extreme values (∼90 and 0°). The technique presented here could be applied to perform high-throughput measurements for assessing the influence of different surfactants on the orientation of nematic phases and may lead to further improvements in areas such as boundary lubrication and clarifying the nature of defect structures in LC displays. PMID

  14. Nematic Director Reorientation at Solid and Liquid Interfaces under Flow: SAXS Studies in a Microfluidic Device

    PubMed Central

    2015-01-01

    In this work we investigate the interplay between flow and boundary condition effects on the orientation field of a thermotropic nematic liquid crystal under flow and confinement in a microfluidic device. Two types of experiments were performed using synchrotron small-angle X-ray-scattering (SAXS). In the first, a nematic liquid crystal flows through a square-channel cross section at varying flow rates, while the nematic director orientation projected onto the velocity/velocity gradient plane is measured using a 2D detector. At moderate-to-high flow rates, the nematic director is predominantly aligned in the flow direction, but with a small tilt angle of ∼±11° in the velocity gradient direction. The director tilt angle is constant throughout most of the channel width but switches sign when crossing the center of the channel, in agreement with the Ericksen–Leslie–Parodi (ELP) theory. At low flow rates, boundary conditions begin to dominate, and a flow profile resembling the escaped radial director configuration is observed, where the director is seen to vary more smoothly from the edges (with homeotropic alignment) to the center of the channel. In the second experiment, hydrodynamic focusing is employed to confine the nematic phase into a sheet of liquid sandwiched between two layers of Triton X-100 aqueous solutions. The average nematic director orientation shifts to some extent from the flow direction toward the liquid boundaries, although it remains unclear if one tilt angle is dominant through most of the nematic sheet (with abrupt jumps near the boundaries) or if the tilt angle varies smoothly between two extreme values (∼90 and 0°). The technique presented here could be applied to perform high-throughput measurements for assessing the influence of different surfactants on the orientation of nematic phases and may lead to further improvements in areas such as boundary lubrication and clarifying the nature of defect structures in LC displays. PMID

  15. Nematic director reorientation at solid and liquid interfaces under flow: SAXS studies in a microfluidic device.

    PubMed

    Silva, Bruno F B; Zepeda-Rosales, Miguel; Venkateswaran, Neeraja; Fletcher, Bretton J; Carter, Lester G; Matsui, Tsutomu; Weiss, Thomas M; Han, Jun; Li, Youli; Olsson, Ulf; Safinya, Cyrus R

    2015-04-14

    In this work we investigate the interplay between flow and boundary condition effects on the orientation field of a thermotropic nematic liquid crystal under flow and confinement in a microfluidic device. Two types of experiments were performed using synchrotron small-angle X-ray-scattering (SAXS). In the first, a nematic liquid crystal flows through a square-channel cross section at varying flow rates, while the nematic director orientation projected onto the velocity/velocity gradient plane is measured using a 2D detector. At moderate-to-high flow rates, the nematic director is predominantly aligned in the flow direction, but with a small tilt angle of ∼±11° in the velocity gradient direction. The director tilt angle is constant throughout most of the channel width but switches sign when crossing the center of the channel, in agreement with the Ericksen-Leslie-Parodi (ELP) theory. At low flow rates, boundary conditions begin to dominate, and a flow profile resembling the escaped radial director configuration is observed, where the director is seen to vary more smoothly from the edges (with homeotropic alignment) to the center of the channel. In the second experiment, hydrodynamic focusing is employed to confine the nematic phase into a sheet of liquid sandwiched between two layers of Triton X-100 aqueous solutions. The average nematic director orientation shifts to some extent from the flow direction toward the liquid boundaries, although it remains unclear if one tilt angle is dominant through most of the nematic sheet (with abrupt jumps near the boundaries) or if the tilt angle varies smoothly between two extreme values (∼90 and 0°). The technique presented here could be applied to perform high-throughput measurements for assessing the influence of different surfactants on the orientation of nematic phases and may lead to further improvements in areas such as boundary lubrication and clarifying the nature of defect structures in LC displays.

  16. Dispersive liquid-liquid microextraction for the determination of copper in cereals and vegetable food samples using flame atomic absorption spectrometry.

    PubMed

    Shrivas, Kamlesh; Jaiswal, Nitin Kumar

    2013-12-01

    Dispersive liquid-liquid microextraction (DLLME) is applied for the determination of copper in cereals and vegetable food samples using flame atomic absorption spectrometry (FAAS). The maximum extraction efficiency of copper was obtained after the optimisation of parameters such as extraction and dispersing solvents, pH, concentration of 2,9-dimethyl-1,10-phenanothroline (DPT), N-phenylbenzimidoyl thiourea (PBITU) and salt. The optimised methodology exhibited a good linearity in the range of 0.2-20 ng/mL copper with relative standard deviations percentage (RSD,%) from ±1.5% to 3.5%. The method is found to be simple and rapid for the analysis of copper in food samples with the limit of detection (LOD) and quantitation (LOQ) were 0.05 and 0.16 ng/mL, respectively. Good recoveries of copper were obtained in the range of 93.5-98.0% in food samples as well as in Certified Reference Material (99.1%). The application of the proposed method has been successfully tested for the determination of copper in cereals (maize, millet, rice, wheat, gram, lentils, kidney beans and green beans) and vegetable (potato, cauliflower, tomato, spinach, green beans, lettuce, egg plants and bitter gourd) food samples.

  17. Speciation of inorganic arsenic species and total inorganic arsenic in rice using microwave-assisted dispersive liquid-liquid micro-extraction and electrothermal atomic absorption spectrometry.

    PubMed

    Ahmadi-Jouibari, Toraj; Fattahi, Nazir

    2015-01-01

    Human exposure to inorganic arsenic (iAs) via rice consumption is of increasing concern. In the present study, microwave-assisted dispersive liquid-liquid micro-extraction (MADLLME) and electrothermal atomic absorption spectrometry (ETAAS) were developed for the speciation of iAs in rice samples. After microwave-assisted digestion, the As(III) ion reacted with diethyldithiophosphoric acid (DDTP) to form an As-DDTP complex and was extracted at the same time. Some parameters affecting digestion, complex formation, and extraction were studied and optimised. Under the optimised conditions, a detection limit of 0.2 µg kg(-1) with a correlation coefficient of 0.9901 were obtained with a calibration curve in the range of 0.5-200 µg kg(-1). Total iAs was determined after reduction of As(V) to As(III) with sodium thiosulfate and potassium iodide, and As(V) was calculated by difference. The proposed extraction procedure was successfully applied for the determination of iAs ions in certified reference materials (NIST CRM 1568a and NMIJ CRM 7503a) and 10 rice samples produced in Iran and other Asian countries.

  18. Determination of Lead in Water Samples Using a New Vortex-Assisted, Surfactant-Enhanced Emulsification Liquid-Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Peng, Guilong; He, Qiang; Lu, Ying; Mmereki, Daniel; Pan, Weiliang; Tang, Xiaohui; Zhou, Guangming; Mao, Yufeng; Su, Xaioxuan

    2016-04-01

    A low toxic solvent-based vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction (LT-VSLLME) combined with graphite furnace atomic absorption spectrometry was developed for the extraction and determination of lead (Pb) in water samples. In the LT-VSLLME method, the extraction solvent was dispersed into the aqueous samples by the assistance of vortex agitator. Meanwhile, the addition of a surfactant, which acted as an emulsifier, could enhance the speed of the mass-transfer from aqueous samples to the extraction solvent. The influences of analytical parameters, including extraction solvent type and its volume, surfactant type and its volume, pH, concentration of chelating agent, salt effect and extraction time were investigated. Under the optimized conditions, a good relative standard deviation of 3.69% at 10 ng L(-1) was obtained. The calibration graph showed a linear pattern in the ranges of 5-30 ngL(-1), with a limit of detection of 0.76 ng L(-1). The linearity was obtained by five points in the concentration range of 5-30 ngL(-1). The enrichment factor was 320. The procedure was applied to wastewater and river water, and the accuracy was assessed through the analysis of the recovery experiments. PMID:26614355

  19. A dispersive liquid--liquid microextraction methodology for copper (II) in environmental samples prior to determination using microsample injection flame atomic absorption spectrometry.

    PubMed

    Alothman, Zeid A; Habila, Mohamed; Yilmaz, Erkan; Soylak, Mustafa

    2013-01-01

    A simple, environmentally friendly, and efficient dispersive liquid-liquid microextraction method combined with microsample injection flame atomic absorption spectrometry was developed for the separation and preconcentration of Cu(II). 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol (5-Br-PADAP) was used to form a hydrophobic complex of Cu(II) ions in the aqueous phase before extraction. To extract the Cu(II)-5-Br-PADAP complex from the aqueous phase to the organic phase, 2.0 mL of acetone as a disperser solvent and 200 microL of chloroform as an extraction solvent were used. The influences of important analytical parameters, such as the pH, types and volumes of the extraction and disperser solvents, amount of chelating agent, sample volume, and matrix effects, on the microextraction procedure were evaluated and optimized. Using the optimal conditions, the LOD, LOQ, preconcentration factor, and RSD were determined to be 1.4 microg/L, 4.7 microg/L, 120, and 6.5%, respectively. The accuracy of the proposed method was investigated using standard addition/recovery tests. The analysis of certified reference materials produced satisfactory analytical results. The developed method was applied for the determination of Cu in real samples. PMID:24645524

  20. Ligandless dispersive liquid--liquid microextraction of iron in biological and foodstuff samples and its determination by Electrothermal atomic absorption spectrometry.

    PubMed

    Madadizadeh, Mohadeseh; Taher, Mohammad Ali; Ashkenani, Hamid

    2013-01-01

    A new, simple, and efficient method comprising ligandless dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry is reported for the preconcentration and determination of ultratrace amounts of Fe(III). Carbon tetrachloride and acetone were used as the extraction and disperser solvents, respectively. Some effective parameters of the microextraction such as choice of extraction and disperser solvents, their volume, extraction time and temperature, salt and surfactant effect, and pH were optimized. Under the optimum conditions, the calibration curve was linear in the range of 0.02 to 0.46 microg/L of Fe(III), with LOD and LOQ of 5.2 and 17.4 ng/L, respectively. The RSD for seven replicated determinations of Fe(IIl) ion at 0.1 microg/L concentration level was 5.2%. Operational simplicity, rapidity, low cost, good repeatability, and low consumption of extraction solvent are the main advantages of the proposed method. The method was successfully applied to the determination of iron in biological, food, and certified reference samples.

  1. Separation and determination of copper in bottled water samples by combination of dispersive liquid--liquid microextraction and microsample introduction flame atomic absorption spectrometry.

    PubMed

    Citak, Demirhan; Tuzen, Mustafa

    2013-01-01

    A new and simple method for the determination of trace amounts of Cu(II) was developed by combination of dispersive liquid-liquid microextraction (DLLME) preconcentration and microsample introduction flame atomic absorption spectrometry. In this method, ethanol and chloroform were chosen as disperser and extraction solvents, respectively, and 1-nitroso-2-naphthol was used as the complexing agent. The factors affecting the extraction efficiency and determination of Cu(II), including extraction and disperser solvent nature and volume, concentration of the complexing agent, pH of the solution, extraction time, and matrix ions, were investigated. Under optimal conditions, the LOD for Cu(II) was 0.95 microg/L with a preconcentration factor of 70. The RSD was 1.9%. The accuracy of the developed DLLME method was verified by determination of Cu(II) in a certified reference material (NRCC-SLRS-4 river water). The relative error was -3.31%. The developed preconcentration procedure was successfully applied to the analysis of bottled drinking water samples.

  2. Determination of Lead in Water Samples Using a New Vortex-Assisted, Surfactant-Enhanced Emulsification Liquid-Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry.

    PubMed

    Peng, Guilong; He, Qiang; Lu, Ying; Mmereki, Daniel; Pan, Weiliang; Tang, Xiaohui; Zhou, Guangming; Mao, Yufeng; Su, Xaioxuan

    2016-04-01

    A low toxic solvent-based vortex-assisted surfactant-enhanced emulsification liquid-liquid microextraction (LT-VSLLME) combined with graphite furnace atomic absorption spectrometry was developed for the extraction and determination of lead (Pb) in water samples. In the LT-VSLLME method, the extraction solvent was dispersed into the aqueous samples by the assistance of vortex agitator. Meanwhile, the addition of a surfactant, which acted as an emulsifier, could enhance the speed of the mass-transfer from aqueous samples to the extraction solvent. The influences of analytical parameters, including extraction solvent type and its volume, surfactant type and its volume, pH, concentration of chelating agent, salt effect and extraction time were investigated. Under the optimized conditions, a good relative standard deviation of 3.69% at 10 ng L(-1) was obtained. The calibration graph showed a linear pattern in the ranges of 5-30 ngL(-1), with a limit of detection of 0.76 ng L(-1). The linearity was obtained by five points in the concentration range of 5-30 ngL(-1). The enrichment factor was 320. The procedure was applied to wastewater and river water, and the accuracy was assessed through the analysis of the recovery experiments.

  3. Separation/preconcentration and determination of vanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry.

    PubMed

    Asadollahi, Tahereh; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji

    2010-06-30

    A novel dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for separation/preconcentration of ultra trace amount of vanadium and its determination with the electrothermal atomic absorption spectrometry (ETAAS) was developed. The DLLME-SFO behavior of vanadium (V) using N-benzoyl-N-phenylhydroxylamine (BPHA) as complexing agent was systematically investigated. The factors influencing the complex formation and extraction by DLLME-SFO method were optimized. Under the optimized conditions: 100 microL, 200 microL and 25 mL of extraction solvent (1-undecanol), disperser solvent (acetone) and sample volume, respectively, an enrichment factor of 184, a detection limit (based on 3S(b)/m) of 7 ng L(-1) and a relative standard deviation of 4.6% (at 500 ng L(-1)) were obtained. The calibration graph using the preconcentration system for vanadium was linear from 20 to 1000 ng L(-1) with a correlation coefficient of 0.9996. The method was successfully applied for the determination of vanadium in water and parsley. PMID:20685458

  4. Feasibility of dispersive liquid-liquid microextraction for extraction and preconcentration of Cu and Fe in red and white wine and determination by flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Seeger, Tassia S.; Rosa, Francisco C.; Bizzi, Cezar A.; Dressler, Valderi L.; Flores, Erico M. M.; Duarte, Fabio A.

    2015-03-01

    A method for extraction and preconcentration of Cu and Fe in red and white wines using dispersive liquid-liquid microextraction (DLLME) and determination by flame atomic absorption spectrometry (F AAS) was developed. Extraction was performed using sodium diethyldithiocarbamate as chelating agent and a mixture of 40 μL of 1,2-dichlorobenzene (extraction solvent) and 900 μL of methanol (dispersive solvent). Some parameters that influencing the extraction efficiency such as pH (2 to 5), concentration of chelating agent (0 to 2%), effect of salt addition (0 to 10%), number of washing steps (1 to 4) and centrifugation time (0 to 15 min) were studied. Accuracy was evaluated after microwave-assisted digestion in closed vessels and analytes were determined by inductively coupled plasma optical emission spectrometry. Agreement with the proposed method ranged from 91 to 110 and from 89 to 113% for Cu and Fe, respectively. Calibration of F AAS instrument was performed using analyte addition method and limits of detection were 6.3 and 2.4 μg L- 1 for Cu and Fe, respectively. The proposed method was applied for the determination of Cu and Fe in five samples of red wine and three samples of white wine, with concentration ranging from 21 to 178 μg L- 1 and from 1.38 to 3.74 mg L- 1, respectively.

  5. On-line micro-volume introduction system developed for lower density than water extraction solvent and dispersive liquid-liquid microextraction coupled with flame atomic absorption spectrometry.

    PubMed

    Anthemidis, Aristidis N; Mitani, Constantina; Balkatzopoulou, Paschalia; Tzanavaras, Paraskevas D

    2012-07-01

    A simple and fast preconcentration/separation dispersive liquid-liquid micro extraction (DLLME) method for metal determination based on the use of extraction solvent with lower density than water has been developed. For this purpose a novel micro-volume introduction system was developed enabling the on-line injection of the organic solvent into flame atomic absorption spectrometry (FAAS). The effectiveness and efficiency of the proposed system were demonstrated for lead and copper preconcentration in environmental water samples using di-isobutyl ketone (DBIK) as extraction solvent. Under the optimum conditions the enhancement factor for lead and copper was 187 and 310 respectively. For a sample volume of 10 mL, the detection limit (3 s) and the relative standard deviation were 1.2 μg L(-1) and 3.3% for lead and 0.12 μg L(-1) and 2.9% for copper respectively. The developed method was evaluated by analyzing certified reference material and it was applied successfully to the analysis of environmental water samples.

  6. Speciation of very low amounts of arsenic and antimony in waters using dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Rivas, Ricardo E.; López-García, Ignacio; Hernández-Córdoba, Manuel

    2009-04-01

    A new procedure for the determination of inorganic arsenic (III,V) and antimony (III,V) in water samples by dispersive liquid-liquid micro extraction separation and electrothermal atomic absorption spectrometry (ETAAS) is presented. At pH 1, As(III) and Sb(III) are complexed with ammonium pyrrolidine dithiocarbamate and extracted into the fine droplets formed when mixing carbon tetrachloride (extraction solvent), methanol (disperser solvent) and the sample solution. After extraction, the phases are separated by centrifugation, and As(III) and Sb(III) are determined in the organic phase. As(V) and Sb(V) remain in the aqueous layer. Total inorganic As and Sb are determined after the reduction of the pentavalent forms with sodium thiosulphate. As(V) and Sb(V) are calculated by difference. The detection limits are 0.01 and 0.05 µg L - 1 for As(III) and Sb(III), respectively, with an enrichment factor of 115. The relative standard deviation is in the 2.9-4.5% range. The procedure has been applied to the speciation of inorganic As and Sb in bottled, tap and sea water samples with satisfactory results.

  7. Dispersive liquid-liquid microextraction for the determination of copper in cereals and vegetable food samples using flame atomic absorption spectrometry.

    PubMed

    Shrivas, Kamlesh; Jaiswal, Nitin Kumar

    2013-12-01

    Dispersive liquid-liquid microextraction (DLLME) is applied for the determination of copper in cereals and vegetable food samples using flame atomic absorption spectrometry (FAAS). The maximum extraction efficiency of copper was obtained after the optimisation of parameters such as extraction and dispersing solvents, pH, concentration of 2,9-dimethyl-1,10-phenanothroline (DPT), N-phenylbenzimidoyl thiourea (PBITU) and salt. The optimised methodology exhibited a good linearity in the range of 0.2-20 ng/mL copper with relative standard deviations percentage (RSD,%) from ±1.5% to 3.5%. The method is found to be simple and rapid for the analysis of copper in food samples with the limit of detection (LOD) and quantitation (LOQ) were 0.05 and 0.16 ng/mL, respectively. Good recoveries of copper were obtained in the range of 93.5-98.0% in food samples as well as in Certified Reference Material (99.1%). The application of the proposed method has been successfully tested for the determination of copper in cereals (maize, millet, rice, wheat, gram, lentils, kidney beans and green beans) and vegetable (potato, cauliflower, tomato, spinach, green beans, lettuce, egg plants and bitter gourd) food samples. PMID:23870956

  8. Modeling the flow of liquid-metal coolant in the T-shaped mixer

    NASA Astrophysics Data System (ADS)

    Kashinsky, O. N.; Lobanov, P. D.; Kurdyumov, A. S.; Pribaturin, N. A.

    2016-05-01

    The results of experimental studies on the structure of the temperature field in the tube cross section at the flow of liquid-metal coolant in a T-shaped mixer are presented. Experiments were carried out using the Rose alloy as the working fluid. To determine temperature distribution on the test section wall, infrared thermography was used; to determine temperature distribution in the channel cross section, a mobile thermocouple was used. Considerable temperature maldistribution in the mixing zone of liquid flows with different temperatures on the tube wall and in the coolant melt is shown.

  9. Electrical impedance imaging in two-phase, gas-liquid flows: 1. Initial investigation

    NASA Technical Reports Server (NTRS)

    Lin, J. T.; Ovacik, L.; Jones, O. C.

    1991-01-01

    The determination of interfacial area density in two-phase, gas-liquid flows is one of the major elements impeding significant development of predictive tools based on the two-fluid model. Currently, these models require coupling of liquid and vapor at interfaces using constitutive equations which do not exist in any but the most rudimentary form. Work described herein represents the first step towards the development of Electrical Impedance Computed Tomography (EICT) for nonintrusive determination of interfacial structure and evolution in such flows.

  10. The effect of saline and hyperoncotic dextran infusion on canine ileal salt and water absorption and regional blood flow.

    PubMed

    Mailman, D; Jordan, K

    1975-10-01

    1. The unidirectional Na and H2O fluxes, vascular pressures and total and absorptive site blood flows in the canine ileum were determined before and during I.V. saline infusion and subsequent I.V. infusion of hyperoncotic dextran. The intestinal perfusion solutions were isotonic saline or isotonic saline and mannitol, but the effects of I.V. saline or I.V. hyperoncotic dextran infusion were generally the same for both luminal solutions. 2. Continuous I.V. infusion of saline caused a continuous increase in the unidirectional flux of Na and H2O into the ileal lumen, an increase in total blood flow, and an increase in venous pressure. 3. The net absorption of Na and H2O was decreased by I.V. saline infusion. 4. The unidirectional fluxes of Na and H2O out of the lumen, arterial pressure, and absorptive site blood flow were not affected by I.V. saline infusion. 5. I.V. hyperoncotic dextran infusion reversed most of the effects of saline infusion. 6. The unidirectional fluxes of Na and H2O into the lumen were significantly correlated with Starling forces during I.V. saline infusion. 7. It was concluded that intestinal transport of salt and water was subject to regulation by physical forces at the capillary level.

  11. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peng, Jin-feng; Liu, Rui; Liu, Jing-fu; He, Bin; Hu, Xia-lin; Jiang, Gui-bin

    2007-05-01

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO 3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L - 1 ) and a relative standard deviation (2.5% at 50 ng L - 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L - 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.

  12. Gas, liquids flow rates hefty at Galveston Bay discovery

    SciTech Connect

    Petzet, G.A.

    1998-01-19

    Extended flow tests indicate a large Vicksburg (Oligocene) gas, condensate, and oil field is about to be developed in western Galveston Bay. Internal estimates indicates that ultimate recovery from the fault block in which the discovery well was drilled could exceed 1 tcf of gas equivalent of proved, possible, and probable reserves. The paper discusses the test program for this field and other prospects in the Galveston Bay area.

  13. Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface

    NASA Astrophysics Data System (ADS)

    Masson, R.; Trenty, L.; Zhang, Y.

    2016-09-01

    This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and free gas flows at the interface between a porous medium and a free-flow domain. This model is compared to the reduced model introduced in [6] using a 1D approximation of the gas free flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow domain is approximated by a two point flux approximation based on a low-frequency diagonal approximation of a Steklov-Poincaré type operator. The splitting algorithm and the reduced model are applied in particular to the modelling of the mass exchanges at the interface between the storage and the ventilation galleries in radioactive waste deposits.

  14. Integrating sphere-based photoacoustic setup for simultaneous absorption coefficient and Grüneisen parameter measurements of biomedical liquids

    NASA Astrophysics Data System (ADS)

    Villanueva, Yolanda; Hondebrink, Erwin; Petersen, Wilma; Steenbergen, Wiendelt

    2015-03-01

    A method for simultaneously measuring the absorption coefficient μa and Grüneisen parameter Γ of biological absorbers in photoacoustics is designed and implemented using a coupled-integrating sphere system. A soft transparent tube with inner diameter of 0.58mm is used to mount the liquid absorbing sample horizontally through the cavity of two similar and adjacent integrating spheres. One sphere is used for measuring the sample's μa using a continuous halogen light source and a spectrometer fiber coupled to the input and output ports, respectively. The other sphere is used for simultaneous photoacoustic measurement of the sample's Γ using an incident pulsed light with wavelength of 750nm and a flat transducer with central frequency of 5MHz. Absolute optical energy and pressure measurements are not necessary. However, the derived equations for determining the sample's μa and Γ require calibration of the setup using aqueous ink dilutions. Initial measurements are done with biological samples relevant to biomedical imaging such as human whole blood, joint and cyst fluids. Absorption of joint and cyst fluids is enhanced using a contrast agent like aqueous indocyanine green dye solution. For blood sample, measured values of μa = 0.580 +/- 0.016 mm-1 and Γ = 0.166 +/- 0.006 are within the range of values reported in literature. Measurements with the absorbing joint and cyst fluid samples give Γ values close to 0.12, which is similar to that of water and plasma.

  15. Effect of water and temperature on absorption of CO2 by amine-functionalized anion-tethered ionic liquids.

    PubMed

    Goodrich, Brett F; de la Fuente, Juan C; Gurkan, Burcu E; Lopez, Zulema K; Price, Erica A; Huang, Yong; Brennecke, Joan F

    2011-07-28

    Amine-functionalized anion-tethered ionic liquids (ILs) trihexyl(tetradecyl)phosphonium asparaginate [P(66614)][Asn], glutaminate [P(66614)][Gln], lysinate [P(66614)][Lys], methioninate [P(66614)][Met], prolinate [P(66614)][Pro], taurinate [P(66614)][Tau], and threoninate [P(66614)][Thr] were synthesized and investigated as potential absorbents for CO(2) capture from postcombustion flue gas. Their physical properties, including density, viscosity, glass transition temperature, and thermal decomposition temperature were determined. Furthermore, the CO(2) absorption isotherms of [P(66614)][Lys], [P(66614)][Tau], [P(66614)][Pro], and [P(66614)][Met] were measured using a volumetric method, and the results were modeled with two different Langmuir-type absorption models. The most important result of this study is that the viscosity of [P(66614)][Pro] only increased by a factor of 2 when fully complexed with 1 bar of CO(2) at room temperature. This is in stark contrast to the other chemically reacted ILs investigated here and all other amino acid-based ILs reported in the literature, which dramatically increase in viscosity, typically by 2 orders of magnitude, when complexed with CO(2). The unique behavior of [P(66614)][Pro] is likely due to its ring structure, which limits the number and availability of hydrogen atoms that can participate in a hydrogen bonding network. We found that water can be used to further reduce the viscosity of the CO(2)-complexed IL, while only slightly decreasing the CO(2) capacity. Finally, from temperature-dependent isotherms, we estimate a heat of absorption of -63 kJ/mol of CO(2) for the 1:1 reaction of CO(2) with [P(66614)][Pro], when we use the two-reaction model.

  16. Flow regime transitions in a bubble column with a paraffin wax as the liquid medium

    SciTech Connect

    Bukur, D.B.; Petrovic, D.; Daly, J.G.

    1987-06-01

    Gas hold-up measurements were made in a 0.051-m-diameter by 3.05-m-long glass bubble column with a molten paraffin wax as the liquid medium. For temperatures between 230 and 280/sup 0/C, there is a range of gas velocities where two modes of operation are possible, and they are referred to as the foamy and the turbulent bubbling flow regimes. The start-up velocity determines which flow regime are obtained. Transitions between these two flow regimes occur and are influenced by the temperature (i.e., the liquid viscosity) and the gas distributor design. Lower temperatures and/or perforated plate distributors with larger holes favor the existence of the turbulent bubbling flow regime.

  17. Pressure drop in fully developed, turbulent, liquid-vapor annular flows in zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1992-01-01

    The prediction of frictional pressure drop in fully developed, turbulent, annular liquid-vapor flows in zero gravity using simulation experiments conducted on earth is described. The scheme extends the authors' earlier work on dispersed flows. The simulation experiments used two immiscible liquids of identical density, namely, water and n-butyl benzoate. Because of the lack of rigorous analytical models for turbulent, annular flows, the proposed scheme resorts to existing semiempirical correlations. Results based on two different correlations are presented and compared. Others may be used. It was shown that, for both dispersed and annular flow regimes, the predicted frictional pressure gradients in 0-g are lower than those in 1-g under otherwise identical conditions. The physical basis for this finding is given.

  18. High-accuracy measurement of low-water-content in liquid using NIR spectral absorption method

    NASA Astrophysics Data System (ADS)

    Peng, Bao-Jin; Wan, Xu; Jin, Hong-Zhen; Zhao, Yong; Mao, He-Fa

    2005-01-01

    Water content measurement technologies are very important for quality inspection of food, medicine products, chemical products and many other industry fields. In recent years, requests for accurate low-water-content measurement in liquid are more and more exigent, and great interests have been shown from the research and experimental work. With the development and advancement of modern production and control technologies, more accurate water content technology is needed. In this paper, a novel experimental setup based on near-infrared (NIR) spectral technology and fiber-optic sensor (OFS) is presented. It has a good measurement accuracy about -/+ 0.01%, which is better, to our knowledge, than most other methods published until now. It has a high measurement resolution of 0.001% in the measurement range from zero to 0.05% for water-in-alcohol measurement, and the water-in-oil measurement is carried out as well. In addition, the advantages of this method also include pollution-free to the measured liquid, fast measurement and so on.

  19. Suppression of instability in liquid flow down an inclined plane by a deformable solid layer.

    PubMed

    Shankar, V; Sahu, Akhilesh K

    2006-01-01

    The linear stability of a liquid layer flowing down an inclined plane lined with a deformable, viscoelastic solid layer is analyzed in order to determine the effect of the elastohydrodynamic coupling between the liquid flow and solid deformation on the free-surface instability in the liquid layer. The stability of this two-layer system is characterized by two qualitatively different interfacial instability modes: In the absence of the deformable solid layer, the free surface of the liquid film undergoes a long-wave instability due to fluid inertia. With the presence of the deformable solid layer, the interface between the fluid and the solid undergoes a finite-wavelength instability when the deformable solid becomes sufficiently soft. The effect of the solid layer deformability on the free-surface instability of the liquid film flow is analyzed using a long-wave asymptotic analysis. The asymptotic results show that for a fixed Reynolds number and inclination angle, the free-surface instability is completely suppressed in the long-wave limit when the nondimensional (inverse) solid elasticity parameter Gamma=Va eta/(GR)increases beyond a critical value. Here, Va is the average velocity of the liquid film flow, eta is the viscosity of the liquid, G is the shear modulus of the solid layer, and is R the thickness of the liquid layer. The predictions of the asymptotic analysis are verified and extended to finite wavelengths using a numerical solution, and this indicates that the suppression of the free-surface instability indeed continues to finite wavelength disturbances. Further increase of Gamma is found to have two consequences: first, the interface between the liquid and the deformable solid layer could become unstable at finite wavelengths; second, the free-surface interfacial mode could also become unstable at finite wavelengths due to an increase in solid layer deformability. However, our numerical results demonstrate that, for a given average velocity, there

  20. Two-phase gas-liquid flow characteristics inside a plate heat exchanger

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2010-11-15

    In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-water mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)

  1. Contactless flow measurement in liquid metal using electromagnetic time-of-flight method

    NASA Astrophysics Data System (ADS)

    Dubovikova, Nataliia; Resagk, Christian; Karcher, Christian; Kolesnikov, Yuri

    2016-05-01

    Measuring flow rates of liquid metal flows is of utmost importance in industrial applications such as metal casting, in order to ensure process efficiency and product quality. A non-contact method for flow rate control is described here. The method is known as time-of-flight Lorentz force velocimetry (LFV) and determines flow rate through measurement of Lorentz force that act on magnet systems that are placed close to the flow. In this method, a vortex generator is used to generate an eddy in the flow, with two magnet systems separated by a known distance placed downstream of the vortex generator. Each of the magnet systems has a force sensor attached to them which detects the passing of the eddy through its magnetic field as a significant perturbation in the force signal. The flow rate is estimated from the time span between the perturbations in the two force signals. In this paper, time-of-flight LFV technique is demonstrated experimentally for the case of liquid metal flow in a closed rectangular duct loop that is driven by an electromagnetic pump. A liquid metal alloy of gallium (Ga), indium (In) and tin (Sn)—GaInSn—is used as the working fluid. In contrast to prior works, for the first time, three-dimensional strain gauge force sensors were used for measuring Lorentz force to investigate the effect of flow disturbances in different directions for flow measurements by the time-of-flight LFV method. A prototype time-of-flight LFV flowmeter is developed, the operation of which in laboratory conditions is characterised by different experiments.

  2. Radiocarbon dating of archaeological samples (sambaqui) using CO(2) absorption and liquid scintillation spectrometry of low background radiation.

    PubMed

    Mendonça, Maria Lúcia T G; Godoy, José M; da Cruz, Rosana P; Perez, Rhoneds A R

    2006-01-01

    Sambaqui means, in the Tupi language, a hill of shells. The sambaquis are archaeological sites with remains of pre-historical Brazilian occupation. Since the sambaqui sites in the Rio de Janeiro state region are older than 10,000 years, the applicability of CO(2) absorption on Carbo-sorb and (14)C determination by counting on a low background liquid scintillation counter was tested. In the present work, sambaqui shells were treated with H(3)PO(4) in a closed vessel in order to generate CO(2). The produced CO(2) was absorbed on Carbo-sorb. On saturation about 0.6g of carbon, as CO(2), was mixed with commercial liquid scintillation cocktail (Permafluor), and the (14)C activity determined by counting on a low background counter, Packard Tricarb 3170 TR/SL, for a period of 1000 mins to enable detection of a radiocarbon age of 22,400 BP. But only samples with ages up to 3500 BP were submitted to the method because the samples had been collected in the municipality of Guapimirim, in archaeological sambaqui-type sites belonging to this age range. The same samples were sent to the (14)C Laboratory of the Centro de Energia Nuclear na Agricultura (CENA/USP) where similar results were obtained.

  3. Seismic scattering and absorption mapping of debris flows, feeding paths, and tectonic units at Mount St. Helens volcano

    NASA Astrophysics Data System (ADS)

    De Siena, L.; Calvet, M.; Watson, K. J.; Jonkers, A. R. T.; Thomas, C.

    2016-05-01

    Frequency-dependent peak-delay times and coda quality factors have been used jointly to separate seismic absorption from scattering quantitatively in Earth media at regional and continental scale; to this end, we measure and map these two quantities at Mount St. Helens volcano. The results show that we can locate and characterize volcanic and geological structures using their unique contribution to seismic attenuation. At 3 Hz a single high-scattering and high-absorption anomaly outlines the debris flows that followed the 1980 explosive eruption, as deduced by comparison with remote sensing imagery. The flows overlay a NNW-SSE interface, separating rocks of significant varying properties down to 2-4 km, and coinciding with the St. Helens Seismic Zone. High-scattering and high-absorption anomalies corresponding to known locations of magma emplacement follow this signature under the volcano, showing the important interconnections between its feeding systems and the regional tectonic boundaries. With frequency increasing from 6 to 18 Hz the NNW-SSE tectonic/feeding trends rotate around an axis centered on the volcano in the direction of the regional-scale magmatic arc (SW-NE). While the aseismic high-scattering region WSW of the volcano shows no evidence of high absorption, the regions of highest-scattering and absorption are consistently located at all frequencies under either the eastern or the south-eastern flank of the volcanic edifice. From the comparison with the available geological and geophysical information we infer that these anomalies mark both the location and the trend of the main feeding systems at depths greater than 4 km.

  4. Compatibility tests of steels in flowing liquid lead-bismuth

    NASA Astrophysics Data System (ADS)

    Barbier, F.; Benamati, G.; Fazio, C.; Rusanov, A.

    2001-06-01

    The behaviour of steels exposed to flowing Pb-55Bi was evaluated. The materials tested are the two austenitic steels AISI 316L and 1.4970, and the six martensitic steels Optifer IVc, T91, Batman 27, Batman 28, EP823 and EM10 which were exposed to flowing Pb-55Bi for 1000, 2000 and 3000 h and at two temperatures (573 and 743 K). The corrosion tests were conducted in the non-isothermal loop of IPPE-Obninsk under a controlled oxygen level (10 -6 wt%). The compatibility study showed that at a lower temperature, a very thin oxide layer (<1 μm) was formed on the steels. At higher temperature, austenitic steels also exhibited a thin oxide layer sufficient to prevent their dissolution in the melt. A thicker oxide, which grew according to a parabolic law, was observed on the surface of the martensitic steels. The oxidation resistance behaviour of the martensitic steels was correlated with their alloying elements.

  5. Viscous Fingering Induced Flow Instability in Multidimensional Liquid Chromatography

    SciTech Connect

    Mayfield, Kirsty; Shalliker, R. Andrew; Catchpoole, Heather J.; Sweeney, Alan P.; Wong, Victor; Guiochon, Georges A

    2005-07-01

    Viscous fingering is a flow instability phenomenon that results in the destabilisation of the interface between two fluids of differing viscosities. The destabilised interface results in a complex mixing of the two fluids in a pattern that resembles fingers. The conditions that enhance this type of flow instability can be found in coupled chromatographic separation systems, even when the solvents used in each of the separation stages have seemingly similar chemical and physical properties (other than viscosity). For example, the viscosities of acetonitrile and methanol are sufficiently different that instability at the interface between these two solvents can be established and viscous fingering results. In coupled chromatographic systems, the volume of solvent transported from one separation dimension to the second often exceeds the injection volume by two or more orders of magnitude. As a consequence, viscous fingering may occur, when otherwise following the injection of normal analytical size injection plugs viscous fingering would not occur. The findings in this study illustrate the onset of viscous fingering in emulated coupled chromatographic systems and show the importance of correct solvent selection for optimum separation performance.

  6. The flow of a thin liquid film on a stationary and rotating disk. II - Theoretical prediction

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.; Hankey, W. L.

    1990-01-01

    The existing theoretical models are improved and a systematic procedure to compute the free surface flow of a thin liquid film is suggested. The solutions for axisymmetric radial flow on a stationary horizontal disk and for the disk rotating around its axis are presented. The theoretical predictions are compared with the experimental data presented in Part I of this report. The analysis shows results for both supercritical and subcritical flows and the flow structure in the vicinity of a hydraulic jump which isolates these two flow types. The detailed flow structure in a hydraulic jump was computed and shown to contain regions of separation including a 'surface roller'. The effects of surface tension are found to be important near the outer edge of the disk where the fluid experiences a free fall. At other locations, the surface tension is negligible. For a rotating disk, the frictional resistance in the angular direction is found to be as important as that in the radial direction.

  7. Improvements to a Flow Sensor for Liquid Bismuth-Fed Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Bonds, Kevin; Polzin, Kurt A.

    2010-01-01

    Recently, there has been significant interest in using bismuth metal as a propellant in Hall Thrusters [1, 2]. Bismuth offers some considerable cost, weight, and space savings over the traditional propellant--xenon. Quantifying the performance of liquid metal-fed Hall thrusters requires a very precise measure of the low propellant flow rates [1, 2]. The low flow rates (10 mg/sec) and the temperature at which free flowing liquid bismuth exists (above 300 C) preclude the use of off-the-shelf flow sensing equipment [3]. Therefore a new type of sensor is required. The hotspot bismuth flow sensor, described in Refs. [1-5] is designed to perform a flow rate measurement by measuring the velocity at which a thermal feature moves through a flow chamber. The mass flow rate can be determined from the time of flight of the thermal peak, [4, 5]. Previous research and testing has been concerned mainly with the generation of the thermal peak and it's subsequent detection. In this paper, we present design improvements to the sensor concept; and the results of testing conducted to verify the functionality of these improvements. A ceramic material is required for the sensor body (see Fig. 1), which must allow for active heating of the bismuth flow channel to keep the propellant in a liquid state. The material must be compatible with bismuth and must be bonded to conductive elements to allow for conduction of current into the liquid metal and measurement of the temperature in the flow. The new sensor requires fabrication techniques that will allow for a very small diameter flow chamber, which is required to produce useful measurements. Testing of various materials has revealed several that are potentially compatible with liquid bismuth. Of primary concern in the fabrication and testing of a robust, working prototype, is the compatibility of the selected materials with one another. Specifically, the thermal expansion rates of the materials relative to the ceramic body cannot expand so

  8. Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring.

    PubMed

    Zhang, Rui; Roberts, Tyler; Aranson, Igor S; de Pablo, Juan J

    2016-02-28

    Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices.

  9. Method for improving dissolution efficiency in gas-absorption and liquid extraction processes. [Patent application

    DOEpatents

    Kanak, B.E.; Stephenson, M.J.

    1980-01-11

    A method is described for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.

  10. Method for improving dissolution efficiency in gas-absorption and liquid extraction processes

    DOEpatents

    Kanak, Brant E.; Stephenson, Michael J.

    1981-01-01

    This invention is a method for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.

  11. Acoustic wave absorption as a probe of dynamical geometrical response of fractional quantum Hall liquids

    NASA Astrophysics Data System (ADS)

    Yang, Kun

    2016-04-01

    We show that an acoustic crystalline wave gives rise to an effect similar to that of a gravitational wave to an electron gas. Applying this idea to a two-dimensional electron gas in the fractional quantum Hall regime, this allows for experimental study of its intra-Landau level dynamical response in the long-wavelength limit. To study such response we generalize Haldane's geometrical description of fractional quantum Hall states to situations where the external metric is time dependent. We show that such time-dependent metric (generated by acoustic wave) couples to collective modes of the system, including a quadrapolar mode at long wavelength, and magnetoroton at finite wavelength. Energies of these modes can be revealed in spectroscopic measurements, controlled by strain-induced Fermi velocity anisotropy. We argue that such geometrical probe provides a potentially highly useful alternative probe of quantum Hall liquids, in addition to the usual electromagnetic response.

  12. Dynamics of liquid bridges inside microchannels subject to pure oscillatory flows

    NASA Astrophysics Data System (ADS)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2014-11-01

    We report on 2D simulations of liquid bridges' dynamics in microchannels of uniform wettability and subject to external oscillatory flows. The flow equations were solved using the Cahn-Hilliard diffuse-interface formulation and the finite element method with unstructured grid. It was found that regardless of the wettability properties of the microchannel walls, there is a critical frequency above which the bridge shows perpetual periodic oscillatory motion. Below that critical frequency, the liquid bridge ruptures when the channel walls are philic and detaches from the surface when they are phobic. This critical frequency depends on the viscosity ratio, oscillation amplitude and geometric aspect ratio of the bridge. It was also found that the flow velocity is out of phase with the footprint/throat lengths and that the latter two show a phase difference. These differences were explained in terms of the motion of the two contact lines on the substrates and the deformation of the fluid-fluid interfaces. To characterize the behavior of the liquid bridge, two quantitative parameters; the liquid bridge-solid interfacial length and the length of the throat of the liquid bridge were used. Variations of the interfacial morphology development of the bridge were analyzed to understand the bridge response.

  13. An investigation of the influence of acoustic waves on the liquid flow through a porous material.

    PubMed

    Poesio, Pietro; Ooms, Gijs; Barake, Sander; van der Bas, Fred

    2002-05-01

    An experimental and theoretical investigation has been made of the influence of high-frequency acoustic waves on the flow of a liquid through a porous material. The experiments have been performed on Berea sandstone cores. Two acoustic horns were used with frequencies of 20 and 40 kHz, and with maximum power output of 2 and 0.7 kW, respectively. Also, a temperature measurement of the flowing liquid inside the core was made. A high external pressure was applied in order to avoid cavitation. The acoustic waves were found to produce a significant effect on the pressure gradient at constant liquid flow rate through the core samples. During the application of acoustic waves the pressure gradient inside the core decreases. This effect turned out to be due to the decrease of the liquid viscosity caused by an increase in liquid temperature as a result of the acoustic energy dissipation inside the porous material. Also, a theoretical model has been developed to calculate the dissipation effect on the viscosity and on the pressure gradient. The model predictions are in reasonable agreement with the experimental data.

  14. Hollow fiber-based liquid-liquid-liquid microextraction followed by flow injection analysis using column-less HPLC for the determination of phenazopyridine in plasma and urine.

    PubMed

    Saraji, Mohammad; Bidgoli, Ali Akbar Hajialiakbari; Farajmand, Bahman

    2011-07-01

    Hollow fiber-based liquid-liquid-liquid microextraction (HF-LLLME) followed by flow injection analysis and diode array detection (FIA-DAD) was applied as a simple and sensitive quantitative method for the determination of phenazopyridine in urine and plasma samples. Flow injection system included a conventional HPLC system (without a chromatographic column) and a diode array detector. The extraction of phenazopyridine was carried out using diphenyl ether as the organic phase for filling the pores of the hollow fiber wall, and 0.1 M H(2)SO(4) solution as acceptor phase in the lumen of the fiber. The factors affecting the HF-LLLME and flow injection analysis including type of organic solvent, pH of donor phase, extraction temperature, extraction time, stirring rate, and pH of mobile phase were investigated and the optimal extraction conditions were established. With the consumption of 5 mL of sample solution, the enrichment factor was about 230. The limit of detection was 0.5 μg/L with inter- and intra-day precision being (RSD%) 6.9 and 4.9, respectively. Excellent linearity was found between 5 and 200 μg/L.

  15. Control of Flowing Liquid Films By Electrostatic Fields in Space

    NASA Technical Reports Server (NTRS)

    Bankoff, S. George; Miksis, Michael J.; Kim, Hyo

    1996-01-01

    A novel type of lightweight space radiator has been proposed which employs internal electrostatic fields to stop coolant leaks from punctures caused by micrometeorites or space debris. Extensive calculations have indicated the feasibility of leak stoppage without film destabilization for both stationary and rotating designs. Solutions of the evolution equation for a liquid-metal film on an inclined plate, using lubrication theory for low Reynolds numbers, Karman-Pohlhausen quadratic velocity profiles for higher Reynolds numbers, and a direct numerical solution are shown. For verification an earth-based falling-film experiment on a precisely-vertical wall with controllable vacuum on either side of a small puncture is proposed. The pressure difference required to start and to stop the leak, in the presence and absence of a strong electric field, will be measured and compared with calculations. Various parameters, such as field strength, film Reynolds number, contact angle, and hole diameter will be examined. A theoretical analysis will be made of the case where the electrode is close enough to the film surface that the electric field equation and the surface dynamics equations are coupled. Preflight design calculations will be made in order to transfer the modified equipment to a flight experiment.

  16. Liquid-metal pin-fin pressure drop by correlation in cross flow

    SciTech Connect

    Wang, Zhibi; Kuzay, T.M.; Assoufid, L.

    1994-08-01

    The pin-fin configuration is widely used as a heat transfer enhancement method in high-heat-flux applications. Recently, the pin-fin design with liquid-metal coolant was also applied to synchrotron-radiation beamline devices. This paper investigates the pressure drop in a pin-post design beamline mirror with liquid gallium as the coolant. Because the pin-post configuration is a relatively new concept, information in literature about pin-post mirrors or crystals is rare, and information about the pressure drop in pin-post mirrors with liquid metal as the coolant is even more sparse. Due to this the authors considered the cross flow in cylinder-array geometry, which is very similar to that of the pin-post, to examine the pressure drop correlation with liquid metals over pin fins. The cross flow of fluid with various fluid characteristics or properties through a tube bank was studied so that the results can be scaled to the pin-fin geometry with liquid metal as the coolant. Study lead to two major variables to influence the pressure drop: fluid properties, viscosity and density, and the relative length of the posts. Correlation of the pressure drop between long and short posts and the prediction of the pressure drop of liquid metal in the pin-post mirror and comparison with an existing experiment are addressed.

  17. Burnout and distribution of liquid between the flow core and wall films in narrow slot channels

    NASA Astrophysics Data System (ADS)

    Boltenko, E. A.; Shpakovskii, A. A.

    2010-03-01

    Previous works on studying distribution of liquid between the flow core and wall films in narrow slot channels are briefly reviewed. Interrelation between mass transfer processes and burnout is shown. A procedure for calculating burnout on convex and concave heat-transfer surfaces in narrow slot channels is presented.

  18. Mathematical modelling of the liquid atomization process by cocurrent gas flow

    NASA Astrophysics Data System (ADS)

    Arkhipov, V. A.; Boiko, V. M.; Goldin, V. D.; Maslov, E. A.; Orlov, S. E.; Poplavskiy, S. V.; Usanina, A. S.; Zharova, I. K.

    2016-04-01

    This paper focuses on the physical-mathematical model of liquid atomization in the spray pattern of an ejection nozzle. A flow field of a gas phase behind the nozzle section is computed using the Ansys Fluent package. Dynamics of molten metal droplets in the gas phase within a trajectory approach is calculated. Using the presented model, numerical calculation results are given.

  19. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.

    PubMed

    Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST. PMID:25725839

  20. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Xie, H.; Chen, Z. X.; Zakharov, L. E.

    2015-02-15

    A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  1. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.

    PubMed

    Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  2. Obstructionless magnetic flowmeters offer many benefits in the measurement of liquid flows

    SciTech Connect

    Vass, G.

    1996-08-01

    This paper highlights broadly the fields of application of magnetic flowmeters and, for the uninitiated reviews the basic operating principle common to all meters of this type. It then summarizes the specific measurement features, and follows that with key application factors -- both of which influence selection of the meter for a given use. Microprocessor-based single converters are then discussed as to their role in enhancing performance of a magmeter system. Finally, the paper briefly describes three cases of how the meter can handle {open_quotes}difficult{close_quotes} process liquids or measuring conditions, namely: (1) liquids that tend to coat meter internals; (2) flows involving reciprocating pumps; and (3) measuring {open_quotes}low{close_quotes} flow rates (as low as 0.0014 gpm). Since their introduction in the 1950s, magnetic flowmeters (or {open_quotes}magmeters{close_quotes} as they are commonly called today) have continued to evolve as a practical means of measuring liquid flows in many industries. Starting with a section of pipe in the line and offering no obstruction to flow, they gained a reputation for reliable, low-maintenance operation early on by meeting the stringent metering needs of the pulp and paper industry, where process liquids can be highly corrosive or erosive, and often include a high percentage of solids (stock).

  3. Hartmann flow with temperature-dependent physical properties. [magnetohydrodynamics of liquid metal

    NASA Technical Reports Server (NTRS)

    Linn, G. T.; Walker, J. S.

    1978-01-01

    Attention is given to the steady, fully developed, one-dimensional flow of a liquid metal in which thermal conductivity, electrical conductivity, and viscosity are functions of temperature. It is found that the properties are decreasing functions of temperature and the first differences between temperature-dependent and constant properties are discussed.

  4. Enhancement of optical absorption by modulation of the oxygen flow of TiO2 films deposited by reactive sputtering

    NASA Astrophysics Data System (ADS)

    Pereira, André L. J.; Lisboa Filho, Paulo N.; Acuña, Javier; Brandt, Iuri S.; Pasa, André A.; Zanatta, Antonio R.; Vilcarromero, Johnny; Beltrán, Armando; Dias da Silva, José H.

    2012-06-01

    Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O2 gas supply is periodically interrupted rather than by a decrease of the partial O2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 × 102 cm-1 to more than 4 × 103 cm-1 as a result of the gas flow discontinuity. A red-shift of ˜0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40 nm. Moreover, the interruptions of the O2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films.

  5. Quantum-state resolved reactive scattering at the gas-liquid interface: F+squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J).

    PubMed

    Zolot, Alexander M; Dagdigian, Paul J; Nesbitt, David J

    2008-11-21

    Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic beam of F atoms [E(com)=0.7(3) kcalmol] with a continuously refreshed liquid hydrocarbon (squalane) surface under high vacuum conditions. Absolute HF(v,J) product densities are determined by infrared laser absorption spectroscopy, with velocity distributions along the probe axis derived from high resolution Dopplerimetry. Nascent HF(vliquid surface with excess translational energy, resulting in Doppler broadened linewidths that increase systematically with internal HF excitation. The data are consistent with microscopic branching in HF-surface dynamics following the reactive event, with (i) a direct reactive scattering fraction of newly formed product molecules leaving the surface promptly and (ii) a trapping desorption fraction that accommodates rotationally (though still not vibrationally) with the bulk liquid. Comparison with analogous gas phase F+hydrocarbon processes reveals that the liquid acts as a partial "heat sink" for vibrational energy flow on the time scale of the chemical reaction event.

  6. Quantum-state resolved reactive scattering at the gas-liquid interface: F +squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J)

    NASA Astrophysics Data System (ADS)

    Zolot, Alexander M.; Dagdigian, Paul J.; Nesbitt, David J.

    2008-11-01

    Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic beam of F atoms [Ecom=0.7(3)kcal/mol] with a continuously refreshed liquid hydrocarbon (squalane) surface under high vacuum conditions. Absolute HF(v,J) product densities are determined by infrared laser absorption spectroscopy, with velocity distributions along the probe axis derived from high resolution Dopplerimetry. Nascent HF(v ⩽3) products are formed in a highly nonequilibrium (inverted) vibrational distribution [⟨Evib⟩=13.2(2)kcal/mol], reflecting insufficient time for complete thermal accommodation with the surface prior to desorption. Colder, but still non-Boltzmann, rotational state populations [⟨Erot⟩=1.0(1)kcal/mol] indicate that some fraction of molecules directly scatter into the gas phase without rotationally equilibrating with the surface. Nascent HF also recoils from the liquid surface with excess translational energy, resulting in Doppler broadened linewidths that increase systematically with internal HF excitation. The data are consistent with microscopic branching in HF-surface dynamics following the reactive event, with (i) a direct reactive scattering fraction of newly formed product molecules leaving the surface promptly and (ii) a trapping desorption fraction that accommodates rotationally (though still not vibrationally) with the bulk liquid. Comparison with analogous gas phase F +hydrocarbon processes reveals that the liquid acts as a partial "heat sink" for vibrational energy flow on the time scale of the chemical reaction event.

  7. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  8. Exploitation of pulsed flows for on-line dispersive liquid-liquid microextraction: Spectrophotometric determination of formaldehyde in milk.

    PubMed

    Nascimento, Carina F; Brasil, Marcos A S; Costa, Susana P F; Pinto, Paula C A G; Saraiva, Maria Lúcia M F S; Rocha, Fábio R P

    2015-11-01

    Formaldehyde is often added to foods as a preservative, but it is highly toxic to humans, having been identified as a carcinogenic substance. It has also been used for the adulteration of milk in order to diminish the bacteria count and increase the shelf life of the product. Herein, we present a green dispersive liquid-liquid microextraction procedure in a flow-batch system for the determination of formaldehyde in milk. Pulsed flows were exploited for the first time to improve the dispersion of the extractant in the aqueous phase. The Hantzsch reaction was used for the derivatization of formaldehyde and the product was extracted with the ionic liquid (IL) trihexyltetradecylphosphonium chloride with methanol as the disperser. The flow-batch chamber was made of stainless steel with the facility for resistive heating to speed up the derivatization reaction. Spectrophotometric measurements were directly carried out in the organic phase using an optical fiber spectrophotometer. The limit of detection and coefficient of variation were 100 μg L(-1) and 3.1% (n=10), respectively, with a linear response from 0.5 to 5.0 mg L(-1), described by the equation A=0.088+0.116CF (mg L(-1)) in which A is absorbance and CF is formaldehyde concentration in mg L(-1). The estimated recoveries of formaldehyde from spiked milk samples ranged from 91% to 106% and the slopes of the analytical curves obtained with reference solutions in water or milk were in agreement, thus indicating the absence of matrix effects. Accuracy was demonstrated by the agreement of the results with those achieved by the reference fluorimetric procedure at the 95% confidence level. The proposed procedure allows for 10 extractions per hour, with minimized reagent consumption (120 μL of IL and 3.5 μL acetylacetone) and generation of only 6.7 mL waste per determination, which contribute to the eco-friendliness of the procedure. PMID:26452946

  9. Exploitation of pulsed flows for on-line dispersive liquid-liquid microextraction: Spectrophotometric determination of formaldehyde in milk.

    PubMed

    Nascimento, Carina F; Brasil, Marcos A S; Costa, Susana P F; Pinto, Paula C A G; Saraiva, Maria Lúcia M F S; Rocha, Fábio R P

    2015-11-01

    Formaldehyde is often added to foods as a preservative, but it is highly toxic to humans, having been identified as a carcinogenic substance. It has also been used for the adulteration of milk in order to diminish the bacteria count and increase the shelf life of the product. Herein, we present a green dispersive liquid-liquid microextraction procedure in a flow-batch system for the determination of formaldehyde in milk. Pulsed flows were exploited for the first time to improve the dispersion of the extractant in the aqueous phase. The Hantzsch reaction was used for the derivatization of formaldehyde and the product was extracted with the ionic liquid (IL) trihexyltetradecylphosphonium chloride with methanol as the disperser. The flow-batch chamber was made of stainless steel with the facility for resistive heating to speed up the derivatization reaction. Spectrophotometric measurements were directly carried out in the organic phase using an optical fiber spectrophotometer. The limit of detection and coefficient of variation were 100 μg L(-1) and 3.1% (n=10), respectively, with a linear response from 0.5 to 5.0 mg L(-1), described by the equation A=0.088+0.116CF (mg L(-1)) in which A is absorbance and CF is formaldehyde concentration in mg L(-1). The estimated recoveries of formaldehyde from spiked milk samples ranged from 91% to 106% and the slopes of the analytical curves obtained with reference solutions in water or milk were in agreement, thus indicating the absence of matrix effects. Accuracy was demonstrated by the agreement of the results with those achieved by the reference fluorimetric procedure at the 95% confidence level. The proposed procedure allows for 10 extractions per hour, with minimized reagent consumption (120 μL of IL and 3.5 μL acetylacetone) and generation of only 6.7 mL waste per determination, which contribute to the eco-friendliness of the procedure.

  10. Interfacial-tension-force model for the wavy stratified liquid-liquid flow pattern transition: The usage of two different approaches

    NASA Astrophysics Data System (ADS)

    de Castro, Marcelo Souza; Rodriguez, Oscar Mauricio Hernandez

    2016-06-01

    The study of the hydrodynamic stability of flow patterns is important in the design of equipment and pipelines for multiphase flows. The maintenance of a particular flow pattern becomes important in many applications, e.g., stratified flow pattern in heavy oil production avoiding the formation of emulsions because of the separation of phases and annular flow pattern in heat exchangers which increases the heat transfer coefficient. Flow maps are drawn to orientate engineers which flow pattern is present in a pipeline, for example. The ways how these flow maps are drawn have changed from totally experimental work, to phenomenological models, and then to stability analysis theories. In this work an experimental liquid-liquid flow map, with water and viscous oil as work fluids, drawn via subjective approach with high speed camera was used to compare to approaches of the same theory: the interfacial-tension-force model. This theory was used to drawn the wavy stratified flow pattern transition boundary. This paper presents a comparison between the two approaches of the interfacial-tension-force model for transition boundaries of liquid-liquid flow patterns: (i) solving the wave equation for the wave speed and using average values for wave number and wave speed; and (ii) solving the same equation for the wave number and then using a correlation for the wave speed. The results show that the second approach presents better results.

  11. Liquid water dynamics in unsaturated snow: the role of lateral flow

    NASA Astrophysics Data System (ADS)

    Marshall, H. P.; Heilig, A.; Evans, S.; Robertson, M. E.; Hetrick, H. F.; Eiriksson, D.; Dean, J.; Karlson, A.; Hedrick, A. R.; Bradford, J.; McNamara, J. P.; Flores, A. N.; Kohn, M. J.; Rodriguez, C.

    2014-12-01

    The movement of liquid water in unsaturated snow is a complex and highly heterogeneous process, due to positive feedback mechanisms that lead to distinct flow pathways. A combination of gravitational and capillary forces, combined with small scale spatial variability, causes liquid water to concentrate into sub-meter vertical channels and along stratigraphic boundaries that lead to complicated patterns of volumetric water content. Hydraulic conductivity increases significantly with liquid water content, leading to preferential flow along established pathways. We designed controlled experiments to explore the role of slope-parallel flow of liquid water in unsaturated snow, along layer boundaries, to improve understanding of potential lateral mass redistribution during rapid melt and rain-on-snow events on ice sheets, glaciers and in seasonal snow. We characterized snow structure and monitored the spatiotemporal distribution of liquid water during snowmelt and rain-on-snow events using high-resolution radars, micropenetrometry, near-infrared and time-lapse photography, in-situ dielectric probes, and stable isotopes. We used the seasonal snowpack as a natural laboratory, and collected water outflow with lysimeter arrays designed to quantify the amount of water moving laterally. A co-located full energy-balance weather station provides forcing inputs for modeling, and the degree of lateral flow is also evaluated by monitoring the evolution of soil moisture with a permenantly installed ERT array and multiple dielectric probes in the soil at the base of the snowpack. Improved understanding of liquid water dynamics in unsaturated snow and firn is required for accurate modeling of the percolation zone mass balance on ice sheets and polar glaciers, the timing of wet snow avalanches, and flooding caused by mid-winter rain on seasonal snow.

  12. Flow transition behavior between the film flow and rivulet flow on an inclined wall

    NASA Astrophysics Data System (ADS)

    Iso, Yoshiyuki; Chen, Xi

    2010-11-01

    Gas-liquid two-phase flows on the wall like liquid film flows, which are the so-called wetted wall flows, are observed in many industrial processes such as absorption, desorption, distillation and others. For the optimum design of packed columns widely used in those kind of processes, the accurate predictions of the wetted wall flow behavior in packing elements are important, especially in order to enhance the mass transfer between the gas and liquid and to prevent flooding and channeling of the liquid flow. The present study focused on the effects of the change of liquid flow rate and the wall surface texture treatments on the characteristics of wetted wall flows which have the drastic flow transition between the film flow and rivulet flow. In this paper, gas-liquid two-phase flow simulation by using the volume of fluid (VOF) model is applied into wetted wall flows. Firstly, present results showed that the hysteresis of the flow transition between the film flow and rivulet flow arose against the increasing or decreasing stages of the liquid flow rate. It was supposed that this transition phenomenon depends on the history of flow pattern as the change of curvature of interphase surface which leads to the surface tension. Secondary, the present simulations showed that surface texture treatments added on the wall can improve the prevention of liquid channeling and can increase the wetted area.

  13. Modeling of Flow Field and Slag/liquid Interface in the Crystallizer System of a Thin Slab Steel Continuous Casting

    NASA Astrophysics Data System (ADS)

    Mahmodi, S.; Meisami, A. H.; Atabaki, M. Mazar; Aboutalebi, M. R.

    2012-03-01

    In the present investigation, a three dimensional steady flow field model inside crystallizer system of a thin slab steel continuous caster is presented using real geometrical dimension starting from the inlet port of the nozzle. The nozzle flow was modeled considering the minimum casting defects. In addition, a new numerical model is developed for a thin slab casting mold. The velocity of the liquid from the inlet and outlet of the nozzle was considered as the boundary condition. The liquid flow field was computed with main concern on the velocities exiting the nozzle ports for the flow in the liquid pool. It was shown that the fluid pattern in the liquid pool has four main fluid rings including two fluid rings provided by the outer fluid coming from the bottom outlets into the liquid pool and two small fluid rings prepared by the fluid coming from the upper inlets into the liquid pool. The flow pattern agrees well with real measurements obtained by water model. The pool simulation shows asymmetries between two sides of the flow, mainly in the lower recirculation zone. The predictions of slag/liquid interface at the top side of the nozzle and its fluctuations show good agreement with the experimental results. The maximum upward wave flow occurred because of the liquid contact to the upper ports. Hence, a maximum upward flow wave was defined to prevent any unsteady state at the highest casting speed and lowest submergence depth.

  14. Effects of gas flow on oxidation reaction in liquid induced by He/O2 plasma-jet irradiation

    NASA Astrophysics Data System (ADS)

    Nakajima, Atsushi; Uchida, Giichiro; Kawasaki, Toshiyuki; Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Takenaka, Kosuke; Shiratani, Masaharu; Setsuhara, Yuichi

    2015-07-01

    We present here analysis of oxidation reaction in liquid by a plasma-jet irradiation under various gas flow patterns such as laminar and turbulence flows. To estimate the total amount of oxidation reaction induced by reactive oxygen species (ROS) in liquid, we employ a KI-starch solution system, where the absorbance of the KI-starch solution near 600 nm behaves linear to the total amount of oxidation reaction in liquid. The laminar flow with higher gas velocity induces an increase in the ROS distribution area on the liquid surface, which results in a large amount of oxidation reaction in liquid. However, a much faster gas flow conversely results in a reduction in the total amount of oxidation reaction in liquid under the following two conditions: first condition is that the turbulence flow is triggered in a gas flow channel at a high Reynolds number of gas flow, which leads to a marked change of the spatial distribution of the ROS concentration in gas phase. Second condition is that the dimpled liquid surface is formed by strong gas flow, which prevents the ROS from being transported in radial direction along the liquid surface.

  15. Effects of gas flow on oxidation reaction in liquid induced by He/O{sub 2} plasma-jet irradiation

    SciTech Connect

    Nakajima, Atsushi; Uchida, Giichiro Takenaka, Kosuke; Setsuhara, Yuichi; Kawasaki, Toshiyuki; Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Shiratani, Masaharu

    2015-07-28

    We present here analysis of oxidation reaction in liquid by a plasma-jet irradiation under various gas flow patterns such as laminar and turbulence flows. To estimate the total amount of oxidation reaction induced by reactive oxygen species (ROS) in liquid, we employ a KI-starch solution system, where the absorbance of the KI-starch solution near 600 nm behaves linear to the total amount of oxidation reaction in liquid. The laminar flow with higher gas velocity induces an increase in the ROS distribution area on the liquid surface, which results in a large amount of oxidation reaction in liquid. However, a much faster gas flow conversely results in a reduction in the total amount of oxidation reaction in liquid under the following two conditions: first condition is that the turbulence flow is triggered in a gas flow channel at a high Reynolds number of gas flow, which leads to a marked change of the spatial distribution of the ROS concentration in gas phase. Second condition is that the dimpled liquid surface is formed by strong gas flow, which prevents the ROS from being transported in radial direction along the liquid surface.

  16. The flow of a thin liquid film on a stationary and rotating disk. I - Experimental analysis and flow visualization

    NASA Technical Reports Server (NTRS)

    Thomas, S.; Faghri, A.; Hankey, W.

    1990-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.

  17. Vortex-Shedding Meters For Liquid And Liquid/Gas Flows

    NASA Technical Reports Server (NTRS)

    Howard, Robert H.; Larson, William; Thinh, Ngo Dinh

    1993-01-01

    Flowmeters without moving parts developed as replacements for conventional turbine flowmeters. No maintenance required so meters installed permanently. In vortex-shedding flowmeter, piezoelectric or other suitable transducer probe senses changes of pressure caused by passage of vortices. Electronic circuitry processes pressure-change signals to extract vortex-passage frequency representing rate of flow.

  18. Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry

    SciTech Connect

    Wang, Siyuan; Jain, Chhavi; Wondraczek, Katrin; Kobelke, Jens; Wondraczek, Lothar; Troles, Johann; Caillaud, Celine; Schmidt, Markus A.

    2015-05-18

    The flow of high-viscosity liquids inside micrometer-size holes can be substantially different from the flow in the bulk, non-confined state of the same liquid. Such non-Newtonian behavior can be employed to generate structural anisotropy in the frozen-in liquid, i.e., in the glassy state. Here, we report on the observation of non-Newtonian flow of an ultralow melting chalcogenide glass inside a silica microcapillary, leading to a strong deviation of the shear viscosity from its value in the bulk material. In particular, we experimentally show that the viscosity is radius-dependent, which is a clear indication that the microscopic rearrangement of the glass network needs to be considered if the lateral confinement falls below a certain limit. The experiments have been conducted using pressure-assisted melt filling, which provides access to the rheological properties of high-viscosity melt flow under previously inaccessible experimental conditions. The resulting flow-induced structural anisotropy can pave the way towards integration of anisotropic glasses inside hybrid photonic waveguides.

  19. Influence of the Vapor Cavity Depth on Liquid Flow through a Microchannel Exhibiting Superhydrophobic Walls

    NASA Astrophysics Data System (ADS)

    Maynes, Daniel; Jeffs, Kevin; Woolford, Brady; Webb, Brent

    2007-11-01

    We report results of an analytical and experimental investigation of laminar flow in a parallel-plate microchannel with superhydrophobic walls. The walls are fabricated with hydrophobically coated micro-ribs and cavities that are oriented parallel to the flow direction and are modeled in an idealized fashion, with the shape of the liquid-vapor meniscus approximated as flat. An analytical model of the flow in the vapor cavity is employed and coupled with a numerical model of the liquid flow. The numerical predictions show that the effective slip length and the reduction in the classical friction factor-Reynolds number product increase with increasing relative cavity width and depth, and decreasing relative micro-rib/cavity module length. Comparisons are also made between the zero shear interface model and the liquid-vapor cavity coupled model. The results illustrate that the zero shear interface model under-predicts the overall flow resistance. Further, the deviation between the two models was found to be significantly larger for increasing values of both the relative rib/cavity module width and the cavity fraction. The trends in the frictional pressure drop predictions are in good agreement with experimental measurements made at similar conditions and a generalized expression for predicting the friction factor is proposed.

  20. Liquid flow on a rotating disk prior to centrifugal atomization and spray deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Y. Y.; Jacobs, M. H.; Dowson, A. L.

    1998-12-01

    Video observations of the flow patterns that develop on a rotating disk during centrifugal atomization and spray deposition, and subsequent metallographic studies conducted on solid skulls removed from the disk after processing, have indicated a circular discontinuity or hydraulic jump, which is manifested by a rapid increase in the thickness of the liquid metal and by a corresponding decrease in the radial velocity. A mathematical model has been developed that is capable of predicting both the occurrence and location of the jump, and the associated changes in the thickness profile and in the radial and tangential velocities of the liquid metal. Good correlations have been observed between model predictions and the flow patterns observed on the skull after atomization, and the effects of changes in material and operational parameters such as kinematic viscosity, volume flow rate, metallostatic head, and disk rotation speed have been quantified. Liquid metal flow is controlled primarily by the volume flow rate and by the metallostatic head prior to the hydraulic jump and by the centrifugal forces after the jump. The implications of these observations in terms of the atomization process are discussed.

  1. Bubble Formation and Detachment in Liquid Flow Under Normal and Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    1998-01-01

    Two-phase flows are present in a wide variety of applications for spacecraft thermal control systems design. Bubble formation and detachment is an integral part of the two-phase flow science. The authors objective is to experimentally investigate the effects of liquid cross velocity, gas velocity, and nozzle diameter on the bubble diameter at detachment under reduced and normal gravity and under relatively low gas flow rates. Results from ground (1 g) and reduced gravity experiments will be presented in this paper. For the 1 g experiment, a flow loop was designed and built to accommodate a range of liquid and gas flow rates. The reduced gravity experiment was conducted on the NASA DC-9 reduced gravity platform using the two-phase flow loop qualified for operation on the low-gravity platform. Flow visualization is accomplished using a high speed 500 frames/s camera. The results suggest that the existence of buoyancy force contributes to the faster detachment of bubbles. Buoyancy helps the detachment process which results in smaller bubbles being formed. In reduced gravity, although drag force is present, the virtual non-existence of buoyant force results in larger bubbles and longer times for detachment. Theoretical predictions are also presented in this paper and seem to agree with the experimental results.

  2. Thermal Lattice Boltzmann Simulations for Vapor-Liquid Two-Phase Flows in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Wei, Yikun; Qian, Yuehong

    2011-11-01

    A lattice Boltzmann model with double distribution functions is developed to simulate thermal vapor-liquid two-phase flows. In this model, the so-called mesoscopic inter-particle pseudo-potential for the single component multi-phase lattice Boltzmann model is used to simulate the fluid dynamics and the internal energy field is simulated by using a energy distribution function. Theoretical results for large-scale dynamics including the internal energy equation can be derived and numerical results for the coexistence curve of vapor-liquid systems are in good agreement with the theoretical predictions. It is shown from numerical simulations that the model has the ability to mimic phase transitions, bubbly flows and slugging flows. This research is support in part by the grant of Education Ministry of China IRT0844 and the grant of Shanghai CST 11XD1402300.

  3. Simulation of two phase flow of liquid - solid in the annular space in drilling operation

    NASA Astrophysics Data System (ADS)

    Kootiani, Reza Cheraghi; Samsuri, Ariffin Bin

    2014-10-01

    Drilling cutting transfer is an important factor in oil and gas wells drilling. So that success drilling operation is directly dependent on the quality of clean the wellbore drilling operation. In this paper, modeled upward flow of liquid - solid in the annular concentric and non-concentric in the well drilling by Euler two - fluid model and then analysis using numerical method. Numerical simulation of liquid - solid flow evaluated initially with a Newtonian fluid (water) and then a non-Newtonian fluid (CMC solution 0.4%). After that, investigated the effect of parameters such as flow rate, rotating drill pipe and out of centered on drilling operations. The results show that drilling cutting transfer is improve due to the rotation of drill pipe particularly in drilling operations.

  4. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.

    PubMed

    Brzozowski, Martin; O'Brien, Matthew; Ley, Steven V; Polyzos, Anastasios

    2015-02-17

    CONSPECTUS: The previous decade has witnessed the expeditious uptake of flow chemistry techniques in modern synthesis laboratories, and flow-based chemistry is poised to significantly impact our approach to chemical preparation. The advantages of moving from classical batch synthesis to flow mode, in order to address the limitations of traditional approaches, particularly within the context of organic synthesis are now well established. Flow chemistry methodology has led to measurable improvements in safety and reduced energy consumption and has enabled the expansion of available reaction conditions. Contributions from our own laboratories have focused on the establishment of flow chemistry methods to address challenges associated with the assembly of complex targets through the development of multistep methods employing supported reagents and in-line monitoring of reaction intermediates to ensure the delivery of high quality target compounds. Recently, flow chemistry approaches have addressed the challenges associated with reactions utilizing reactive gases in classical batch synthesis. The small volumes of microreactors ameliorate the hazards of high-pressure gas reactions and enable improved mixing with the liquid phase. Established strategies for gas-liquid reactions in flow have relied on plug-flow (or segmented flow) regimes in which the gas plugs are introduced to a liquid stream and dissolution of gas relies on interfacial contact of the gas bubble with the liquid phase. This approach confers limited control over gas concentration within the liquid phase and is unsuitable for multistep methods requiring heterogeneous catalysis or solid supported reagents. We have identified the use of a gas-permeable fluoropolymer, Teflon AF-2400, as a simple method of achieving efficient gas-liquid contact to afford homogeneous solutions of reactive gases in flow. The membrane permits the transport of a wide range of gases with significant control of the stoichiometry of

  5. Flow regimes of adiabatic gas-liquid two-phase under rolling conditions

    NASA Astrophysics Data System (ADS)

    Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui

    2013-07-01

    Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.

  6. Design of a continuous-flow reactor for in situ x-ray absorption spectroscopy of solids in supercritical fluids.

    PubMed

    Dreher, M; De Boni, E; Nachtegaal, M; Wambach, J; Vogel, F

    2012-05-01

    This paper presents the design and performance of a novel high-temperature and high-pressure continuous-flow reactor, which allows for x-ray absorption spectroscopy or diffraction in supercritical water and other fluids under high pressure and temperature. The in situ cell consists of a tube of sintered, polycrystalline aluminum nitride, which is tolerant to corrosive chemical media, and was designed to be stable at temperatures up to 500 °C and pressures up to 30 MPa. The performance of the reactor is demonstrated by the measurement of extended x-ray absorption fine structure spectra of a carbon-supported ruthenium catalyst during the continuous hydrothermal gasification of ethanol in supercritical water at 400 °C and 24 MPa.

  7. In situ characterization of liquid network structures at high pressure and temperature using X-ray absorption spectroscopy coupled with the Paris-Edinburgh press

    NASA Astrophysics Data System (ADS)

    Rosa, A. D.; Pohlenz, J.; de Grouchy, C.; Cochain, B.; Kono, Y.; Pasternak, S.; Mathon, O.; Irifune, T.; Wilke, M.

    2016-07-01

    We review recent progress in studying structural properties of liquids using X-ray absorption spectroscopy coupled with the Paris-Edinburgh press at third-generation synchrotron facilities. This experimental method allows for detecting subtle changes in atomic arrangements of melts over a wide pressure-temperature range. It has been also employed to monitor variations of the local coordination environment of diluted species contained in glasses, liquids and crystalline phases as a function of the pressure and temperature. Such information is of great importance for gaining deeper insights into the physico-chemical properties of liquids at extreme condition, including the understanding of such phenomena as liquid-liquid phase transitions, viscosity drops and various transport properties of geological melts. Here, we describe the experimental approach and discuss its potential in structural characterization on selected scientific highlights. Finally, the current ongoing instrumental developments and future scientific opportunities are discussed.

  8. Structures of Liquid GaSb and InSb Studied with the Extended X-Ray-Absorption Fine-Structure Method

    NASA Astrophysics Data System (ADS)

    Wang, Yuren; Lu, Kunquan; Li, Chenxi

    1997-11-01

    The extended x-ray-absorption fine-structure technique is applied to study the local atomic structures of liquid GaSb and InSb using an improved sample holding method. The partial pair distribution functions and coordination distributions of the two liquids are given by using reverse Monte Carlo simulation. The coordination numbers in liquid GaSb are mostly 5 and 6, in addition to which there are about 15% of 4 coordination and about 10% of 7 coordination. On average, the coordination number is 5.4. The results are similar in liquid InSb. This structural study provides some hints of the metallic behavior and density increase in the liquid.

  9. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    NASA Astrophysics Data System (ADS)

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  10. Thermoresponsive Poly(Ionic Liquid)s in Aqueous Salt Solutions: Salting-Out Effect on Their Phase Behavior and Water Absorption/Desorption Properties.

    PubMed

    Okafuji, Akiyoshi; Kohno, Yuki; Ohno, Hiroyuki

    2016-07-01

    Here, a thermoresponsive phase behavior of polymerized ionic liquids (PILs) composed of poly([tri-n-alkyl(vinylbenzyl)phosphonium]chloride) (poly([Pnnn VB ]Cl) is reported, where n (the number of carbon atoms of an alkyl chain) = 4, 5, or 6 after mixing with aqueous sodium chloride solutions. Both monomeric [P555VB ]Cl and the resulting poly([P555VB ]Cl) linear homopolymer show a lower critical solution temperature (LCST)-type phase behavior in aq. NaCl solutions. The phase transition temperature of the PIL shifts to lower value by increasing concentration of NaCl. Also the swelling degree of cross-linked poly([P555VB ]Cl) gel decreases by increasing NaCl concentration, clearly suggesting the "salting-out" effect of NaCl results in a significant dehydration of the poly([P555VB ]Cl) gel. The absorbed water in the PIL gel is desorbed by moderate heating via the LCST behavior, and the absolute absorption/desorption amount is improved by copolymerization of [P555VB ]Cl with more hydrophilic [P444VB ]Cl monomer.

  11. Thermoresponsive Poly(Ionic Liquid)s in Aqueous Salt Solutions: Salting-Out Effect on Their Phase Behavior and Water Absorption/Desorption Properties.

    PubMed

    Okafuji, Akiyoshi; Kohno, Yuki; Ohno, Hiroyuki

    2016-07-01

    Here, a thermoresponsive phase behavior of polymerized ionic liquids (PILs) composed of poly([tri-n-alkyl(vinylbenzyl)phosphonium]chloride) (poly([Pnnn VB ]Cl) is reported, where n (the number of carbon atoms of an alkyl chain) = 4, 5, or 6 after mixing with aqueous sodium chloride solutions. Both monomeric [P555VB ]Cl and the resulting poly([P555VB ]Cl) linear homopolymer show a lower critical solution temperature (LCST)-type phase behavior in aq. NaCl solutions. The phase transition temperature of the PIL shifts to lower value by increasing concentration of NaCl. Also the swelling degree of cross-linked poly([P555VB ]Cl) gel decreases by increasing NaCl concentration, clearly suggesting the "salting-out" effect of NaCl results in a significant dehydration of the poly([P555VB ]Cl) gel. The absorbed water in the PIL gel is desorbed by moderate heating via the LCST behavior, and the absolute absorption/desorption amount is improved by copolymerization of [P555VB ]Cl with more hydrophilic [P444VB ]Cl monomer. PMID:26987760

  12. Thermocapillary and shear driven flows in gas/liquid system in annular duct

    NASA Astrophysics Data System (ADS)

    Gaponenko, Yu; Nepomnyashchy, A.; Shevtsova, V.

    2011-12-01

    We report the results of numerical study of two-phase flows in annulus for different aspect ratios obtained in the frame of the JEREMI experiment preparation. The geometry of the physical problem is a cylindrical and non-deformable liquid bridge concentrically surrounded by an annular gas channel under conditions of zero gravity. Thermocapillary (Marangoni) convection in liquid bridge of Pr = 68 is analyzed in the case when the interface is subjected to an axial gas stream. The gas flow is counter-directed with respect to the Marangoni flow. The inlet gas velocity U0g, temperature difference ΔT between end rods of the liquid bridge and aspect ratio are the control parameters of the system. In the case when the gas stream comes from the cold side, it cools down the interface to a temperature lower than that of the liquid beneath, and in a certain region of the parameter space that cooling causes instability due to a temperature difference in the direction, perpendicular to the interface. The present study is focused on the influence of the aspect ratio on the existence and characteristic features of the oscillatory regime.

  13. Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow

    NASA Technical Reports Server (NTRS)

    Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie

    2012-01-01

    An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX

  14. Nonlinear saturation of the Rayleigh instability due to oscillatory flow in a liquid-lined tube

    NASA Astrophysics Data System (ADS)

    Halpern, David; Grotberg, James B.

    2003-10-01

    In this paper, the stability of core annular flows consisting of two immiscible fluids in a cylindrical tube with circular cross-section is examined. Such flows are important in a wide range of industrial and biomedical applications. For example, in secondary oil recovery, water is pumped into the well to displace the remaining oil. It is also of relevance in the lung, where a thin liquid film coats the inner surface of the small airways of the lungs. In both cases, the flow is influenced by a surface-tension instability, which may induce the breakup of the core fluid into short plugs, reducing the efficiency of the oil recovery, or blocking the passage of air in the lung thus inducing airway closure. We consider the stability of a thin film coating the inner surface of a rigid cylindrical tube with the less viscous fluid in the core. For thick enough films, the Rayleigh instability forms a liquid bulge that can grow to eventually create a plug blocking the tube. The analysis explores the effect of an oscillatory core flow on the interfacial dynamics and particularly the nonlinear stabilization of the bulge. The oscillatory core flow exerts tangential and normal stresses on the interface between the two fluids that are simplified by uncoupling the core and film analyses in the thin-film high-frequency limit of the governing equations. Lubrication theory is used to derive a nonlinear evolution equation for the position of the air liquid interface which includes the effects of the core flow. It is shown that the core flow can prevent plug formation of the more viscous film layer by nonlinear saturation of the capillary instability. The stabilization mechanism is similar to that of a reversing butter knife, where the core shear wipes the growing liquid bulge back on to the tube wall during the main tidal volume stroke, but allows it to grow back as the stoke and shear turn around. To be successful, the leading film thickness ahead of the bulge must be smaller than the

  15. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment

    SciTech Connect

    Zhang, Chao; Liao, Qiang; Chen, Rong; Zhu, Xun

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.

  16. Mixed convection flow of a Burgers nanofluid in the presence of stratifications and heat generation/absorption

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Waqas, M.; Shehzad, S. A.; Alsaedi, A.

    2016-08-01

    Here formulation and computations are made to explore the characteristics of the boundary layer flow of a Burgers fluid in the presence of nanoparticles. Effects of thermal and concentration stratifications and heat generation/absorption are considered in the energy and concentration expressions. Meaningful transformations are employed to reduce the nonlinear partial differential equations into ordinary differential equations. Convergent solutions for arising nonlinear problems are obtained. Impacts of emerging physical parameters on velocity, temperature and concentration profiles are elaborated. Numerical values of local Nusselt and Sherwood numbers are tabulated and interpreted for different values of physical parameters.

  17. High Efficiency Mixing Chip with Liquid Flow Actuators Operated by Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Saiki, Tsunemasa; Utsumi, Yuichi

    Surface acoustic wave (SAW) devices can be used as component parts for micro total analysis systems (μTASs), because the structures of these are very simple. We thus fabricated a mixing chip with liquid flow actuators operated only by the SAWs. The chip is mainly consisted of one Y-type flow channel, two pumps and one mixer. The pump is located at each upstream area of merging point of the flow channel, and the mixer is located at its downstream area. Incidentally, the flow actuators have interdigital transducers (IDTs) to generate the SAWs. The IDTs were fabricated by patterning Al/Cr on a LiNbO3 substrate, and the flow channel wall was made of epoxy-based negative resist SU-8. Using the mixing chip, we carried out a mixing experiment of two water solutions with different concentrations by using glycerin, and a chemical reaction experiment of luminol luminescence. Through the experimentations, it was found that the local and rapid mixing of continuous liquid flow was possible by using the SAW actuators, and the availability of our fabricated mixing chip as a reactor was demonstrated.

  18. Liquid-Gas Relative Permeabilities in Fractures: Effects of Flow Structures, Phase Transformation and Surface Roughness

    SciTech Connect

    Chih-Ying Chen

    2005-06-30

    Two-phase flow through fractured media is important in petroleum, geothermal, and environmental applications. However, the actual physics and phenomena that occur inside fractures are poorly understood, and oversimplified relative permeability curves are commonly used in fractured reservoir simulations. In this work, an experimental apparatus equipped with a high-speed data acquisition system, real-time visualization, and automated image processing technology was constructed to study three transparent analog fractures with distinct surface roughnesses: smooth, homogeneously rough, and randomly rough. Air-water relative permeability measurements obtained in this study were compared with models suggested by earlier studies and analyzed by examining the flow structures. A method to evaluate the tortuosities induced by the blocking phase, namely the channel tortuosity, was proposed from observations of the flow structure images. The relationship between the coefficients of channel tortuosity and the relative permeabilities was studied with the aid of laboratory experiments and visualizations. Experimental data from these fractures were used to develop a broad approach for modeling two-phase flow behavior based on the flow structures. Finally, a general model deduced from these data was proposed to describe two-phase relative permeabilities in both smooth and rough fractures. For the theoretical analysis of liquid-vapor relative permeabilities, accounting for phase transformations, the inviscid bubble train models coupled with relative permeability concepts were developed. The phase transformation effects were evaluated by accounting for the molecular transport through liquid-vapor interfaces. For the steam water relative permeabilities, we conducted steam-water flow experiments in the same fractures as used for air-water experiments. We compared the flow behavior and relative permeability differences between two-phase flow with and without phase transformation effects

  19. Acoustic Absorption Characteristics of an Orifice With a Mean Bias Flow

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.; Jones, Mike (Technical Monitor)

    2000-01-01

    The objective of the study reported here was to acquire acoustic and flow data for numerical validation of impedance models that simulate bias flow through perforates. The impedance model is being developed by researchers at High Technology Corporation. This report documents normal incidence impedance measurements a singular circular orifice with mean flow passing through it. All measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube. The mean flow is introduced upstream of the orifice (with the flow and incident sound wave travelling in the same direction) with an anechoic termination downstream of the orifice. Velocity profiles are obtained upstream of the orifice to characterize the inflow boundary conditions. Velocity in the center of the orifice is also obtained. All velocity measurements are made with a hot wire anemometer and subsequent checked with mass flow measurements made concurrently. All impedance measurements are made using the Two-Microphone Method. Although we have left the analysis of the data to the developers of the impedance models that simulate bias flow through perforate, our initial examination indicates that our results follow the trends consistent with published theory on impedance of perforates with a steady bias flow.

  20. Steady thermocapillary flows in a two-layer liquid system with flat interfaces

    NASA Astrophysics Data System (ADS)

    del Arco, E. Crespo; Extremet, G. P.; Sani, R. L.

    1993-01-01

    Steady thermocapillary convection is studied in a system of two flat, superposed layers of immiscible liquids with two fluid-fluid interfaces in a configuration similar to that of an encapsulated crystal growth. The layers are bounded on the sides by isothermal vertical walls maintained at different constant temperatures. A simplified analytical solution is used initially to explore different potential flow regimes in a parameter space of large dimensionality. Then the coupled Navier-Stokes and heat transfer equations are solved numerically with a finite element method via FIDAP, in a rectangular cavity filled with two immiscible liquids in the absence of a gravitational field.

  1. Large Eddy Simulation of a Cavitating Multiphase Flow for Liquid Injection

    NASA Astrophysics Data System (ADS)

    Cailloux, M.; Helie, J.; Reveillon, J.; Demoulin, F. X.

    2015-12-01

    This paper presents a numerical method for modelling a compressible multiphase flow that involves phase transition between liquid and vapour in the context of gasoline injection. A discontinuous compressible two fluid mixture based on the Volume of Fluid (VOF) implementation is employed to represent the phases of liquid, vapour and air. The mass transfer between phases is modelled by standard models such as Kunz or Schnerr-Sauer but including the presence of air in the gas phase. Turbulence is modelled using a Large Eddy Simulation (LES) approach to catch instationnarities and coherent structures. Eventually the modelling approach matches favourably experimental data concerning the effect of cavitation on atomisation process.

  2. DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW

    SciTech Connect

    Dr. Ram S. Mohan; Dr. Ovadia Shoham

    2003-06-25

    The U.S. Department of Energy (DOE) has awarded a five-year (1997-2002) grant (Mohan and Shoham, DE-FG26-97BC15024, 1997) to The University of Tulsa, to develop compact multiphase separation components for 3-phase flow. The research activities of this project have been conducted through cost sharing by the member companies of the Tulsa University Separation Technology Projects (TUSTP) research consortium and the Oklahoma Center for the Advancement of Science and Technology (OCAST). As part of this project, several individual compact separation components have been developed for onshore and offshore applications. These include gas-liquid cylindrical cyclones (GLCC{copyright}), liquid-liquid cylindrical cyclones (LLCC{copyright}), and the gas-liquid-liquid cylindrical cyclones (GLLCC{copyright}). A detailed study has also been completed for the liquid-liquid hydrocyclones (LLHC). Appropriate control strategies have been developed for proper operation of the GLCC{copyright} and LLCC{copyright}. Testing of GLCC{copyright} at high pressure and real crude conditions for field applications is also completed. Limited studies have been conducted on flow conditioning devices to be used upstream of the compact separators for performance improvement. This report presents a brief overview of the activities and tasks accomplished during the 5-year project period, October 1, 1997-March 31, 2003 (including the no-cost extended period of 6 months). An executive summary is presented initially followed by the tasks of the 5-year budget periods. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section, followed by relevant references. The publications resulting from this study in the form of MS Theses, Ph.D. Dissertation, Journal Papers and

  3. Combining liquid inertia with pressure recovery from bubble expansion for enhanced flow boiling

    NASA Astrophysics Data System (ADS)

    Kalani, A.; Kandlikar, S. G.

    2015-11-01

    In this paper, we demonstrate using liquid inertia force in a taper gap microchannel geometry to provide a high level of heat dissipation capacity accompanied by a high heat transfer coefficient and low pressure drop during flow boiling. The high mass flux increases liquid inertia force and promotes vapor removal from the manifold, thereby increasing critical heat flux (CHF) and heat transfer coefficient. The tapered gap above the microchannels provides an increasing cross-sectional area in the flow direction. This gap allows bubbles to emerge from microchannels and expand within the gap along the flow direction. The bubble evaporation and expansion in tapered gap causes pressure recovery and reduces the total pressure drop. The pressure recovery increases with the increased evaporation rate at higher heat fluxes. Using a 6% taper and a moderately high inlet liquid flow Reynolds number of 1095, we have reached a CHF of 1.07 kW/cm2 with a heat transfer coefficient of 295 kW/m2 °C and a pressure drop of 30 kPa.

  4. The effect of surfactant on counter-current gas-liquid flows in vertical tubes

    NASA Astrophysics Data System (ADS)

    Zadrazil, Ivan; Matar, Omar; Markides, Christos

    2015-11-01

    Counter-current gas-liquid flows in vertical tubes are often accompanied by flow reversal. This so-called ``flooding'' phenomenon could occur for at least a part of the liquid phase from a counter-current to a co-current state, against the action of gravity. This phenomenon is of central importance to the oil-and-gas and nuclear industries, and has received considerable attention experimentally. The large majority of the previous work in this area, however, has considered the case of pure fluids, in the absence of additives; the latter are used frequently in industry in an attempt to control the onset of various flow regimes with little understanding of the mechanisms underlying their influence on the interfacial dynamics. In this study, we address this issue by investigating the dynamics of flooding in the presence of surfactants in a 4 m long, 32.4 mm nominal bore polymethyl methacrylate test section using high-speed shadowgraphy, and axial-view imaging. The system parameters include the superficial gas and liquid velocities, and surfactant concentration. We show that the presence of surfactant can have a dramatic effect on the flow structures and the onset of flooding. The mechanisms responsible for these phenomena are analysed. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  5. Stokes flow inside an evaporating liquid line for any contact angle

    NASA Astrophysics Data System (ADS)

    Petsi, A. J.; Burganos, V. N.

    2008-09-01

    Evaporation of droplets or liquid films lying on a substrate induces internal viscous flow, which affects the transport of suspended particles and, thus, the final deposit profile in numerous applications. In this work, the problem of Stokes flow inside a two-dimensional droplet, representing the cross section of an evaporating liquid line lying on a flat surface, is considered. The stream function formulation is adopted, leading to the biharmonic equation in bipolar coordinates. A solution in closed form is obtained for any contact angle in (0,π) and is, thus, valid for both hydrophilic and hydrophobic substrates. The solution can be used with any type of evaporation mechanism, including diffusion, convection, or kinetically controlled modes. Both pinned and depinned contact lines are considered. For the boundary conditions to be compatible at the contact lines, the Navier slip boundary condition is applied on the substrate. Numerical results are presented for kinetically and diffusion controlled evaporation. For pinned contact lines, the flow inside the evaporating liquid line is directed towards the edges, thus, promoting the coffee stain phenomenon. In the case of depinned contact lines and contact angle less than π/2 , the flow is directed towards the center of the droplet, whereas, for strongly hydrophobic substrates it is directed outwards.

  6. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH{sub 3}CFCl{sub 2}

    SciTech Connect

    Fahr, A.; Braun, W.; Kurylo, M.J.

    1993-11-20

    Ultraviolet absorption cross sections of CH{sub 3}CFCl{sub 2} (HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in these experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b. 8 refs., 3 figs., 1 tab.

  7. Determination of droplet contours in liquid-liquid flows within microchannels

    NASA Astrophysics Data System (ADS)

    Pulvirenti, B.; Rostami, B.; Puccetti, G.; Morini, G. L.

    2015-11-01

    An experimental analysis of the droplet regime with a silicone oil-water two-phase flow within a micro cross-junction, varying the average velocity of the fluids, has been carried out. The micro cross-junction is made as intersection of two glass microchannels with a stadium-shaped cross-section with height H=190 μm and width Wj=195 μm within the junction and W=390 μm before and after the junction. The water flow rate is broken in droplets having spherical shape with dimensions and velocity that depend on the average velocity ratio imposed. Different kinds of intermittent droplets have been observed, in the ranges of average velocity (0.0105-0.042) m/s and (0.0004-0.0050) m/s for oil and water, respectively. The droplet velocity has been calculated starting from the detection of the shape of the droplets and then by the evaluation of the displacement of the droplets in the unit of time. The images of the droplets have been obtained from a high-speed camera, connected to an inverted microscope. The procedure of water phase contour detection is based on Matlab Image Toolbox scripts.

  8. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded. PMID:27377245

  9. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded.

  10. Effects of the electrical parameters and gas flow rate on the generation of reactive species in liquids exposed to atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Baek, Eun Jeong; Joh, Hea Min; Kim, Sun Ja; Chung, T. H.

    2016-07-01

    In this work, an atmospheric pressure plasma jet was fabricated and studied for plasma-liquid interactions. The plasma jet consists of a quartz-covered pin electrode and outer quartz tube with a tapered nozzle. Using the current-voltage (I-V) and optical emission characteristics of the plasma jet, the plasma density and the speed of the plume were investigated. The optical emission spectra clearly indicated the excited NO, O, OH, N2, and N2+ in the plasma plumes. Then the plasma jets were applied to the deionized water. We investigated the effects of the operating parameters such as applied voltage, pulse frequency, and gas flow rate on the generation of reactive species in the gas and liquid phases. The densities of reactive species including OH radicals were obtained at the plasma-liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. The nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of reactive oxygen and nitrogen species (RONS) in the plasmas and liquids.

  11. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Zoladz, Thomas

    2001-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds

  12. Selection of flowing liquid lead target structural materials for accelerator driven transmutation applications

    SciTech Connect

    Park, J.J.; Buksa, J.J.

    1994-08-01

    The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as in a corrosive environment. The structural material of the target should have a good compatibility with liquid lead, a sufficient mechanical strength at elevated temperatures, a good performance under an intense irradiation environment, and a low neutron absorption cross section; these factors have been used to rank the applicability of a wide range of materials for structural containment Nb-1Zr has been selected for use as the structural container for the LANL ABC/ATW molten lead target. Corrosion and mass transfer behavior for various candidate structural materials in liquid lead are reviewed, together with the beneficial effects of inhibitors and various coatings to protect substrate against liquid lead corrosion. Mechanical properties of some candidate materials at elevated temperatures and the property changes resulting from 800 MeV proton irradiation are also reviewed.

  13. Gas-liquid two-phase flow across a bank of micropillars

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Santosh; Peles, Yoav

    2007-04-01

    Adiabatic nitrogen-water two-phase flow across a bank of staggered circular micropillars, 100μm long with a diameter of 100μm and a pitch-to-diameter ratio of 1.5, was investigated experimentally for Reynolds number ranging from 5 to 50. Flow patterns, void fraction, and pressure drop were obtained, discussed, and compared to large scale as well as microchannel results. Two-phase flow patterns were determined by flow visualization, and a flow map was constructed as a function of gas and liquid superficial velocities. Significant deviations from conventional scale systems, with respect to flow patterns and trend lines, were observed. A unique flow pattern, driven by surface tension, was observed and termed bridge flow. The applicability of conventional scale models to predict the void fraction and two-phase frictional pressure drop was also assessed. Comparison with a conventional scale void fraction model revealed good agreement, but was found to be in a physically wrong form. Thus, a modified physically based model for void fraction was developed. A two-phase frictional multiplier was found to be a strong function of mass flux, unlike in previous microchannel studies. It was observed that models from conventional scale systems did not adequately predict the two-phase frictional multiplier at the microscale, thus, a modified model accounting for mass flux was developed.

  14. Effects of turbulent flow field on wavefront aberration in liquid-convection-cooled disk laser oscillator

    NASA Astrophysics Data System (ADS)

    Li, Peilin; Fu, Xing; Liu, Qiang; Gong, Mali

    2015-05-01

    A liquid-convection-cooled Nd:YAG disk laser oscillator with an output power of 30.7 W and a slope efficiency of 14.1 % is built. By using large-eddy simulation model, the wavefront aberration induced by the turbulent flow is numerically calculated. In the experiment, a Shack-Hartmann wavefront sensor is used to measure the wavefront aberration and the laser intensity distribution. The RMS values and PV values of the beam wavefront and the phase stability of three feature points have been investigated. The experimental results prove that the turbulent flow with high flow velocity and high turbulent intensity can reduce the aberration of the flow field.

  15. Optimization of magnetic amplification by flow constraints in turbulent liquid sodium

    SciTech Connect

    Nornberg, M. D. Taylor, N. Z.; Forest, C. B.; Rahbarnia, K.; Kaplan, E.

    2014-05-15

    Direct measurements of the vector turbulent emf in a driven two-vortex flow of liquid sodium were performed in the Madison Dynamo Experiment [K. Rahbarnia et al., Astrophys. J. 759, 80 (2012)]. The measured turbulent emf is anti-parallel with the mean current and is almost entirely described by an enhanced resistivity, which increases the threshold for a kinematic dynamo. We have demonstrated that this enhanced resistivity can be mitigated by eliminating the largest-scale eddies through the introduction of baffles. By tailoring the flow to reduce large-scale components and control the helical pitch, we have reduced the power required to drive the impellers, doubled the magnetic flux generated by differential rotation, and increased the decay time of externally applied magnetic fields. Despite these improvements, the flows remain sub-critical to the dynamo instability due to the reemergence of turbulent fluctuations at high flow speeds.

  16. Hydrodynamic directional control of liquid metal droplets within a microfluidic flow focusing system

    NASA Astrophysics Data System (ADS)

    Gol, Berrak; Kurdzinski, Michael E.; Tovar-Lopez, Francisco J.; Petersen, Phred; Mitchell, Arnan; Khoshmanesh, Khashayar

    2016-04-01

    Here, we investigate the directional control of Galinstan liquid metal droplets when transferring from the high-viscosity glycerol core into the parallel low-viscosity NaOH sheath streams within a flow focusing microfluidic system. In the presence of sufficient flow mismatch between the sheath streams, the droplets are driven toward the higher velocity interface and cross the interface under the influence of surface tension gradient. A minimum flow mismatch of 125 μl/min is required to enable the continuous transfer of droplets toward the desired sheath stream. The response time of droplets, the time required to change the direction of droplet transfer, is governed by the response time of the syringe pump driven microfluidic system and is found to be 3.3 and 8.8 s when increasing and decreasing the flow rate of sheath stream, respectively.

  17. Flow of an elastico-viscous liquid in a curved pipe of slowly varying curvature.

    PubMed

    Sarin, V B

    1993-03-01

    Curvature forms an important feature of thoracic aorta and this paper deals with the flow of an idealized elastico-viscous liquid in a curved pipe of circular cross-section and slowly varying curvature, under a pressure gradient. The flow is assumed to be steady and at low Reynolds numbers. By using the series expansion method of Dean (Phil Mag 4 (1927) 208-223; Phil Mag 5 (1928) 673-693) in powers of a parameter L, which can be considered as the square of ratio of the centrifugal force induced by the circular motion of the fluid to the viscous force, it is shown that in a tube of increasing curvature, there will be delay in setting up of the secondary motion. The wall shear stress, an important parameter in physiological flows, is calculated. The flow of Newtonian fluid in a tube of circular cross section is discussed, as a particular case. PMID:8449591

  18. Analytic Flow Equations for the Fermi Liquid Parameters of the Anderson Impurity Model.

    PubMed

    Pandis, Vassilis; Hewson, Alex C

    2015-08-14

    The low temperature behavior of a Fermi liquid can be described in terms of quasiparticle excitations that are in 1-1 correspondence with those of the noninteracting system. Because of adiabatic continuity, the Landau parameters, which describe the interactions between the quasiparticles, must evolve continuously as the interactions are turned on and be described by a set of flow equations. For strongly correlated electron systems it is not possible to follow this flow in perturbation theory when the interactions become strong. We explore the idea here of overcoming this problem by renormalizing the quasiparticles in this flow using a renormalized perturbation theory. This approach is tested in the case of a single impurity Anderson model. Analytic flow equations are derived which give excellent results for the Landau parameters in the strong correlation regime.

  19. Hydrodynamic Forces on Macromolecules Protruding from Lipid Bilayers Due to External Liquid Flows.

    PubMed

    Jönsson, Peter; Jönsson, Bengt

    2015-11-24

    It has previously been observed that an externally applied hydrodynamic shear flow above a fluid lipid bilayer can change the local concentration of macromolecules that are associated with the lipid bilayer. The external liquid flow results in a hydrodynamic force on molecules protruding from the lipid bilayer, causing them to move in the direction of the flow. However, there has been no quantitative study about the magnitude of these forces. We here use finite element simulations to investigate how the magnitude of the external hydrodynamic forces varies with the size and shape of the studied macromolecule. The simulations show that the hydrodynamic force is proportional to the effective hydrodynamic area of the studied molecule, Ahydro, multiplied by the mean hydrodynamic shear stress acting on the membrane surface, σhydro. The parameter Ahydro depends on the size and shape of the studied macromolecule above the lipid bilayer and scales with the cross-sectional area of the molecule. We also investigate how hydrodynamic shielding from other surrounding macromolecules decreases Ahydro when the surface coverage of the shielding macromolecules increases. Experiments where the protein streptavidin is anchored to a supported lipid bilayer on the floor of a microfluidic channel were finally performed at three different surface concentrations, Φ = 1%, 6%, and 10%, where the protein is being moved relative to the lipid bilayer by a liquid flow through the channel. From photobleaching measurements of fluorescently labeled streptavidin we found the experimental drift data to be within good accuracy of the simulated results, less than 12% difference, indicating the validity of the results obtained from the simulations. In addition to giving a deeper insight into how a liquid flow can affect membrane-associated molecules in a lipid bilayer, we also see an interesting potential of using hydrodynamic flow experiments together with the obtained results to study the size and

  20. A Generalized Eulerian-Lagrangian Analysis, with Application to Liquid Flows with Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Dejong, Frederik J.; Meyyappan, Meyya

    1993-01-01

    Under a NASA MSFC SBIR Phase 2 effort an analysis has been developed for liquid flows with vapor bubbles such as those in liquid rocket engine components. The analysis is based on a combined Eulerian-Lagrangian technique, in which Eulerian conservation equations are solved for the liquid phase, while Lagrangian equations of motion are integrated in computational coordinates for the vapor phase. The novel aspect of the Lagrangian analysis developed under this effort is that it combines features of the so-called particle distribution approach with those of the so-called particle trajectory approach and can, in fact, be considered as a generalization of both of those traditional methods. The result of this generalization is a reduction in CPU time and memory requirements. Particle time step (stability) limitations have been eliminated by semi-implicit integration of the particle equations of motion (and, for certain applications, the particle temperature equation), although practical limitations remain in effect for reasons of accuracy. The analysis has been applied to the simulation of cavitating flow through a single-bladed section of a labyrinth seal. Models for the simulation of bubble formation and growth have been included, as well as models for bubble drag and heat transfer. The results indicate that bubble formation is more or less 'explosive'. for a given flow field, the number density of bubble nucleation sites is very sensitive to the vapor properties and the surface tension. The bubble motion, on the other hand, is much less sensitive to the properties, but is affected strongly by the local pressure gradients in the flow field. In situations where either the material properties or the flow field are not known with sufficient accuracy, parametric studies can be carried out rapidly to assess the effect of the important variables. Future work will include application of the analysis to cavitation in inducer flow fields.