Science.gov

Sample records for absorption maximum wavelength

  1. Absorption spectrum of DNA for wavelengths greater than 300 nm

    SciTech Connect

    Sutherland, J.C.; Griffin, K.P.

    1981-06-01

    Although DNA absorption at wavelengths greater than 300 nm is much weaker than that at shorter wavelengths, this absorption seems to be responsible for much of the biological damage caused by solar radiation of wavelengths less than 320 nm. Accurate measurement of the absorption spectrum of DNA above 300 nm is complicated by turbidity characteristic of concentrated solutions of DNA. We have measured the absorption spectra of DNA from calf thymus, Clostridium perfringens, Escherichia coli, Micrococcus luteus, salmon testis, and human placenta using procedures which separate optical density due to true absorption from that due to turbidity. Above 300 nm, the relative absorption of DNA increases as a function of guanine-cytosine content, presumably because the absorption of guanine is much greater than the absorption of adenine at these wavelengths. This result suggests that the photophysical processes which follow absorption of a long-wavelength photon may, on the average, differ from those induced by shorter-wavelength photons. It may also explain the lower quantum yield for the killing of cells by wavelengths above 300 nm compared to that by shorter wavelengths.

  2. Aerosol Absorption Retrieval at Ultraviolet Wavelengths in a Complex Environment

    NASA Technical Reports Server (NTRS)

    Kazadzis, Stelios; Raptis, Panagiotis; Kouremeti, Natalia; Amirdis, Vassilis; Arola, Antti; Gerasopoulos, Evangelos; Schuster, Gregory L.

    2016-01-01

    We have used total and diffuse UV irradiance measurements from a multi-filter rotating shadow-band radiometer (UVMFR) in order to investigate aerosol absorption in the UV range for a 5-year period in Athens, Greece. This dataset was used as input to a radiative transfer model and the single scattering albedo (SSA) at 368 and 332 nm was calculated. Retrievals from a collocated CIMEL sun photometer were used to evaluate the products and study the absorption spectral behavior of retrieved SSA values. The UVMFR SSA, together with synchronous, CIMEL-derived retrievals of SSA at 440 nm, had a mean of 0.90, 0.87 and 0.83, with lowest values (higher absorption) encountered at the shorter wavelengths. In addition, noticeable diurnal variation of the SSA in all wavelengths is shown, with amplitudes up to 0.05. Strong SSA wavelength dependence is revealed for cases of low Angstrom exponents, accompanied by a SSA decrease with decreasing extinction optical depth, suggesting varying influence under different aerosol composition. However, part of this dependence for low aerosol optical depths is masked by the enhanced SSA retrieval uncertainty. Dust and brown carbon UV absorbing properties were also investigated to explain seasonal patterns.

  3. Aerosol absorption retrieval at ultraviolet wavelengths in a complex environment

    NASA Astrophysics Data System (ADS)

    Kazadzis, Stelios; Raptis, Panagiotis; Kouremeti, Natalia; Amiridis, Vassilis; Arola, Antti; Gerasopoulos, Evangelos; Schuster, Gregory L.

    2016-12-01

    We have used total and diffuse UV irradiance measurements from a multi-filter rotating shadow-band radiometer (UVMFR) in order to investigate aerosol absorption in the UV range for a 5-year period in Athens, Greece. This dataset was used as input to a radiative transfer model and the single scattering albedo (SSA) at 368 and 332 nm was calculated. Retrievals from a collocated CIMEL sun photometer were used to evaluate the products and study the absorption spectral behavior of retrieved SSA values. The UVMFR SSA, together with synchronous, CIMEL-derived retrievals of SSA at 440 nm, had a mean of 0.90, 0.87 and 0.83, with lowest values (higher absorption) encountered at the shorter wavelengths. In addition, noticeable diurnal variation of the SSA in all wavelengths is shown, with amplitudes up to 0.05. Strong SSA wavelength dependence is revealed for cases of low Ångström exponents, accompanied by a SSA decrease with decreasing extinction optical depth, suggesting varying influence under different aerosol composition. However, part of this dependence for low aerosol optical depths is masked by the enhanced SSA retrieval uncertainty. Dust and brown carbon UV absorbing properties were also investigated to explain seasonal patterns.

  4. Wavelength and energy dependent absorption of unconventional fuel mixtures

    NASA Astrophysics Data System (ADS)

    Khan, N.; Saleem, Z.; Mirza, A. A.

    2005-11-01

    Economic considerations of laser induced ignition over the normal electrical ignition of direct injected Compressed Natural Gas (CNG) engines has motivated automobile industry to go for extensive research on basic characteristics of leaner unconventional fuel mixtures to evaluate practical possibility of switching over to the emerging technologies. This paper briefly reviews the ongoing research activities on minimum ignition energy and power requirements of natural gas fuels and reports results of present laser air/CNG mixture absorption coefficient study. This study was arranged to determine the thermo-optical characteristics of high air/fuel ratio mixtures using laser techniques. We measured the absorption coefficient using four lasers of multiple wavelengths over a wide range of temperatures and pressures. The absorption coefficient of mixture was found to vary significantly over change of mixture temperature and probe laser wavelengths. The absorption coefficients of air/CNG mixtures were measured using 20 watts CW/pulsed CO2 laser at 10.6μm, Pulsed Nd:Yag laser at 1.06μm, 532 nm (2nd harmonic) and 4 mW CW HeNe laser at 645 nm and 580 nm for temperatures varying from 290 to 1000K using optical transmission loss technique.

  5. Strong Wavelength Dependence of Aerosol Light Absorption from Peat Combustion

    NASA Astrophysics Data System (ADS)

    Gyawali, M. S.; Chakrabarty, R. K.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Knue, J.; Samburova, V.; Watts, A.; Moosmüller, H.; Arnott, W. P.; Wang, X.; Zielinska, B.; Chow, J. C.; Watson, J. G.; Tsibart, A.

    2014-12-01

    Globally, organic soils and peats may store as much as 600 Gt of terrestrial carbon, representing 20 - 30% of the planet's terrestrial organic carbon mass. This is approximately the same carbon mass as that contained in Earth's atmosphere, despite peatlands occupying only 3% of its surface. Effects of fires in these ecosystems are of global concern due to their potential for enormous carbon release into the atmosphere. The implications for contributions of peat fires to the global carbon cycle and radiative forcing scenarios are significant. Combustion of peat mostly takes place in the low temperature, smoldering phase of a fire. It consumes carbon that may have accumulated over a period of hundreds to thousands of years. In comparison, combustion of aboveground biomass fuels releases carbon that has accumulated much more recently, generally over a period of years or decades. Here, we report our findings on characterization of emissions from laboratory combustion of peat soils from three locations representing the biomes in which these soils occur. Peat samples from Alaska and Florida (USA) and Siberia (Russia) were burned at two different fuel moisture levels. Burns were conducted in an 8-m3 volume combustion chamber located at the Desert Research Institute, Reno, NV, USA. We report significant brown carbon production from combustion of all three peat soils. We used a multispectral (405, 532, 781 nm) photoacoustic instrument equipped with integrating nephelometer to measure the wavelength-dependent aerosol light absorption and scattering. Absorption Ångström exponents (between 405 and 532 nm) as high as ten were observed, revealing strongly enhanced aerosol light absorption in the violet and blue wavelengths. Single scattering albedos (SSA) of 0.94 and 0.99 were observed at 405 and 532 nm, respectively, for the same sample. Variability of these optical parameters will be discussed as a function of fuel and combustion conditions. Other real-time measurements

  6. Excited-state absorption in the lasing wavelength region of Alexandrite

    SciTech Connect

    Shand, M.L.; Walling, J.C.

    1982-07-01

    The excited-state absorption cross section sigma/sub 2/ /sub a/ (E) in the gain wavelength region of alexandrite has been determined and is shown to limit the vibronic laser range at both high and low energy. The maximum in vibronic laser emission is due to a minimum in sigma/sub 2/ /sub a/ (E) near 13 000 cm/sup -1/. sigma/sub 2/ /sub a/ (E) is less than 10/sup -20/ cm/sup 2/ between 12 000 and 14 000 cm/sup -1/.

  7. On-Line Wavelength Calibration of Pulsed Laser for CO2 Differential Absorption LIDAR

    NASA Astrophysics Data System (ADS)

    Xiang, Chengzhi; Ma, Xin; Han, Ge; Liang, Ailin; Gong, Wei

    2016-06-01

    Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO2 detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO2 concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO2 detection. The MWS conducted segmented sampling across the CO2 absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO2 can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.

  8. Wavelength selection in injection-driven Hele-Shaw flows: A maximum amplitude criterion

    NASA Astrophysics Data System (ADS)

    Dias, Eduardo; Miranda, Jose

    2013-11-01

    As in most interfacial flow problems, the standard theoretical procedure to establish wavelength selection in the viscous fingering instability is to maximize the linear growth rate. However, there are important discrepancies between previous theoretical predictions and existing experimental data. In this work we perform a linear stability analysis of the radial Hele-Shaw flow system that takes into account the combined action of viscous normal stresses and wetting effects. Most importantly, we introduce an alternative selection criterion for which the selected wavelength is determined by the maximum of the interfacial perturbation amplitude. The effectiveness of such a criterion is substantiated by the significantly improved agreement between theory and experiments. We thank CNPq (Brazilian Sponsor) for financial support.

  9. Excited-state absorption of Tm3 + -doped single crystals at photon-avalanche wavelengths

    NASA Astrophysics Data System (ADS)

    Garnier, N.; Moncorgé, R.; Manaa, H.; Descroix, E.; Laporte, P.; Guyot, Y.

    1996-04-01

    Excited-state absorption (ESA) spectra calibrated in units of cross sections are reported in the case of Tm3+-doped YAG, YAP, and Y2O3 single crystals around wavelengths at which photon-avalanche absorptions were observed recently. The peak ESA cross sections are compared with those obtained theoretically by using the Judd-Ofelt approach.

  10. Non-coincident multi-wavelength emission absorption spectroscopy

    SciTech Connect

    Baumann, L.E.

    1995-02-01

    An analysis is presented of the effect of noncoincident sampling on the measurement of atomic number density and temperature by multiwavelength emission absorption. The assumption is made that the two signals, emission and transmitted lamp, are time resolved but not coincident. The analysis demonstrates the validity of averages of such measurements despite fluctuations in temperature and optical depth. At potassium-seeded MHD conditions, the fluctuations introduce additional uncertainty into measurements of potassium atom number density and temperature but do not significantly bias the average results. Experimental measurements in the CFFF aerodynamic duct with coincident and noncoincident sampling support the analysis.

  11. Wavelength-locking-free 1.57µm differential absorption lidar for CO₂ sensing.

    PubMed

    Liu, Hao; Chen, Tao; Shu, Rong; Hong, Guanglie; Zheng, Long; Ge, Ye; Hu, Yihua

    2014-11-03

    We propose a novel wavelength-locking-free differential absorption lidar system for CO₂ sensing. The ON-line wavelength laser was wavelength modulated around a specific CO₂ absorption line to ensure that the emission from the ON-line laser hit the atmospheric CO₂ absorption line peak twice a cycle. In the meantime, the intensity of the ON-line and OFF-line wavelength lasers were sinusoidally intensity modulated to enhance the SNR of the back-scattered signal. As a consequence, the system configuration was simplified and the measurement error caused by the deviation of CO₂ absorption coefficient from the long-time ON-line wavelength drifting was completely eliminated. Furthermore, a more precise calibration method was developed which could simultaneously calibrate the offset and precision of the lidar detector. This method could be applied to other differential-absorption-based lidar systems. The result showed that a measurement precision of 0.525% for the column concentration was achieved in 1 s time interval through a path of 780m. We recorded the CO₂ concentration variation for 12 hours starting from mid-night, the result showed that the course of the concentration derived from the DIAL was in good agreement with that of the in situ CO₂ sensor only when the status of atmosphere was stable.

  12. An international evaluation of holmium oxide solution reference materials for wavelength calibration in molecular absorption spectrophotometry.

    PubMed

    Travis, John C; Zwinkels, Joanne C; Mercader, Flora; Ruíz, Arquímedes; Early, Edward A; Smith, Melody V; Noël, Mario; Maley, Marissa; Kramer, Gary W; Eckerle, Kenneth L; Duewer, David L

    2002-07-15

    Commercial spectrophotometers typically use absorption-based wavelength calibration reference materials to provide wavelength accuracy for their applications. Low-mass fractions of holmium oxide (Ho2O3) in dilute acidic aqueous solution and in glass matrixes have been favored for use as wavelength calibration materials on the basis of spectral coverage and absorption band shape. Both aqueous and glass Ho2O3 reference materials are available commercially and through various National Metrology Institutes (NMIs). Three NMIs of the North American Cooperation in Metrology (NORAMET) have evaluated the performance of Ho3-(aq)-based Certified Reference Materials (CRMs) under "routine" operating conditions using commercial instrumentation. The study was not intended to intercompare national wavelength scales but to demonstrate comparability of wavelength measurements among the participants and between two versions of the CRMs. It was also designed to acquire data from a variety of spectrophotometers for use in a NIST study of wavelength assignment algorithms and to provide a basis for a possible reassessment of NIST-certified Ho3+(aq) band locations. The resulting data show a substantial level of agreement among laboratories, instruments, CRM preparations, and peak-location algorithms. At the same time, it is demonstrated that the wavelength comparability of the five participating instruments can actually be improved by calibrating all of the instruments to the consensus Ho3+(aq) band locations. This finding supports the value of absorption-based wavelength standards for calibrating absorption spectrophotometers. Coupled with the demonstrated robustness of the band position values with respect to preparation and measurement conditions, it also supports the concept of extending the present approach to additional NMIs in order to certify properly prepared dilute acidic Ho2O3 solution as an intrinsic wavelength standard.

  13. Narrow Absorption NIR Wavelength Organic Nanoparticles Enable Multiplexed Photoacoustic Imaging.

    PubMed

    Lu, Hoang D; Wilson, Brian K; Heinmiller, Andrew; Faenza, Bill; Hejazi, Shahram; Prud'homme, Robert K

    2016-06-15

    Photoacoustic (PA) imaging is an emerging hybrid optical-ultrasound based imaging technique that can be used to visualize optical absorbers in deep tissue. Free organic dyes can be used as PA contrast agents to concurrently provide additional physiological and molecular information during imaging, but their use in vivo is generally limited by rapid renal clearance for soluble dyes and by the difficulty of delivery for hydrophobic dyes. We here report the use of the block copolymer directed self-assembly process, Flash NanoPrecipitation (FNP), to form series of highly hydrophobic optical dyes into stable, biocompatible, and water-dispersible nanoparticles (NPs) with sizes from 38 to 88 nm and with polyethylene glycol (PEG) surface coatings suitable for in vivo use. The incorporation of dyes with absorption profiles within the infrared range, that is optimal for PA imaging, produces the PA activity of the particles. The hydrophobicity of the dyes allows their sequestration in the NP cores, so that they do not interfere with targeting, and high loadings of >75 wt % dye are achieved. The optical extinction coefficients (ε (mL mg(-1) cm(-1))) were essentially invariant to the loading of the dye in NP core. Co-encapsulation of dye with vitamin E or polystyrene demonstrates the ability to simultaneously image and deliver a second agent. The PEG chains on the NP surface were functionalized with folate to demonstrate folate-dependent targeting. The spectral separation of different dyes among different sets of particles enables multiplexed imaging, such as the simultaneous imaging of two sets of particles within the same animal. We provide the first demonstration of this capability with PA imaging, by simultaneously imaging nontargeted and folate-targeted nanoparticles within the same animal. These results highlight Flash NanoPrecipitation as a platform to develop photoacoustic tools with new diagnostic capabilities.

  14. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2014-09-01

    Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  15. Mapping chemical concentration in binary thin organic films via multi-wavelength scanning absorption microscopy (MWSAM)

    NASA Astrophysics Data System (ADS)

    Berriman, Garth; Routley, Ben; Holdsworth, John; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul

    2014-09-01

    The composition and thickness of binary thin organic films is determined by measuring the optical absorption at multiple wavelengths across the film surface and performing a component analysis fit to absorption standards for the materials. The multiple laser wavelengths are focused onto the surface using microscope objectives and raster scanned across the film surface using a piezo-electric actuator X-Y stage. All of the wavelengths are scanned simultaneously with a frequency division multiplexing system used to separate the individual wavelength response. The composition values are in good quantitative agreement with measurements obtained by scanning transmission x-ray microscopy (STXM). This new characterization technique extends quantitative compositional mapping of thin films to thickness regimes beyond that accessible by STXM.

  16. Measurement of optical absorption coefficient of bio-tissue at 532nm wavelength

    NASA Astrophysics Data System (ADS)

    Huang, Chuyun; Li, Zhengjia; Yao, Yucheng; He, Yanyan

    2007-05-01

    Laser technology has succeeded in medical application. High power 532nm laser has applied in prostate ablation and other clinic application. To understand optical property of bio-tissue at 532nm wavelength, a method of monitoring surface temperature was used to measure absorption coefficient of gall-stone, porcine liver and canine prostate. The absorption coefficient of gall-stone is about 62cm -1 at 532nm wavelength, and those of porcine liver and canine prostate are about 13cm -1 and 5.4cm -1, respectively. These results help to understand the optical property of bio-tissue and offer theoretic reference for optical dosimetry in clinic application.

  17. Bilirubin calculi crushing by laser irradiation at a molecular oscillating region wavelength based on infrared absorption spectrum analysis using a free-electron laser: an experimental study.

    PubMed

    Watanabe, M; Kajiwara, H; Awazu, K; Aizawa, K

    2001-01-01

    We investigated a new laser technique of crushing bilirubin calculi, our aim being to crush calculi in isolation using a minimally invasive procedure. Infrared absorption spectrum analysis of the bilirubin calculi was conducted, revealing maximum absorption spectrum at a wavelength of the C=O stretching vibration of ester binding that exists within the molecular structure of bilirubin calcium. As an experiment to crush calculi using the free-electron laser, we set the laser at the effective irradiation wavelength of ester binding, and conducted noncontact irradiation of the bilirubin calculi. The calculi began to slowly ablate until the irradiated site had been completely obliterated after 20s of irradiation. Moreover, absorption spectrum analysis of the irradiated site, from a comparison of absorption peak ratios, revealed that absorption peak intensities decreased over time at the absorption wavelength of ester binding. These findings suggest that irradiation of molecular oscillating region wavelengths peculiar to calculi based on infrared absorption spectrum analysis results in the gradual crushing of calculi in isolation by breaking down their molecular structure.

  18. The concentration-estimation problem for multiple-wavelength differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Payne, A. N.

    1994-07-01

    We are seeking to develop a reliable methodology for multi-chemical detection and discrimination based upon multi-wavelength differential absorption lidar measurements. In this paper, we summarize some preliminary results of our efforts to devise suitable concentration-estimation algorithms for use in detection and discrimination schemes.

  19. Analysis of wavelength-dependent photoisomerization quantum yields in bilirubins by fitting two exciton absorption bands

    NASA Astrophysics Data System (ADS)

    Mazzoni, M.; Agati, G.; Troup, G. J.; Pratesi, R.

    2003-09-01

    The absorption spectra of bilirubins were deconvoluted by two Gaussian curves of equal width representing the exciton bands of the non-degenerate molecular system. The two bands were used to study the wavelength dependence of the (4Z, 15Z) rightarrow (4Z, 15E) configurational photoisomerization quantum yield of the bichromophoric bilirubin-IXalpha (BR-IX), the intrinsically asymmetric bile pigment associated with jaundice and the symmetrically substituted bilirubins (bilirubin-IIIalpha and mesobilirubin-XIIIalpha), when they are irradiated in aqueous solution bound to human serum albumin (HSA). The same study was performed for BR-IX in ammoniacal methanol solution (NH4OH/MeOH). The quantum yields of the configurational photoprocesses were fitted with a combination function of the two Gaussian bands normalized to the total absorption, using the proportionality coefficients and a scaling factor as parameters. The decrease of the (4Z, 15Z) rightarrow (4Z, 15E) quantum yield with increasing wavelength, which occurs for wavelengths longer than the most probable Franck-Condon transition of the molecule, did not result in a unique function of the exciton absorptions. In particular we found two ranges corresponding to different exciton interactions with different proportionality coefficients and scaling factors. The wavelength-dependent photoisomerization of bilirubins was described as an abrupt change in quantum yield as soon as the resulting excitation was strongly localized in each chromophore. The change was correlated to a variation of the interaction between the two chromophores when the short-wavelength exciton absorption became vanishingly small. With the help of the circular dichroism (CD) spectrum of BR-IX in HSA, a small band was resolved in the bilirubin absorption spectrum, delivering part of the energy required for the (4Z, 15Z) rightarrow (4Z, 15E) photoisomerization of the molecule.

  20. Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence

    SciTech Connect

    Kaplan, A. F. H.

    2012-10-08

    The modulation of the angle-dependent Fresnel absorptivity across wavy molten steel surfaces during laser materials processing, like drilling, cutting, or welding, has been calculated. The absorptivity is strongly altered by the grazing angle of incidence of the laser beam on the processing front. Owing to its specific Brewster-peak characteristics, the 10.64 {mu}m wavelength CO{sub 2}-laser shows an opposite trend with respect to roughness and angle-of-incidence compared to lasers in the wavelength range of 532-1070 nm. Plateaus or rings of Brewster-peak absorptivity can lead to hot spots on a wavy surface, often in close proximity to cold spots caused by shadow domains.

  1. Changes in the optical absorption induced by sequential exposition to short- and long-wavelength radiation in the BTO:Al crystal

    NASA Astrophysics Data System (ADS)

    Shandarov, S. M.; Dyu, V. G.; Kisteneva, M. G.; Khudyakova, E. S.; Smirnov, S. V.; Akrestina, A. S.; Kargin, Yu F.

    2017-02-01

    Modifications of the spectral dependences of the optical absorption induced in the Bi12TiO20:Al crystal as a result of sequential exposition to cw laser radiation first with the wavelength λ g = 532 nm and then with the longer wavelength λ l,n = 588, 633, 655, 658, 663, 700, 780, 871, or 1064 nm are investigated. We revealed that after the short-wavelength exposition to radiation with λg = 532 nm, the optical absorption in the crystal increases, and in the range 470–1000 nm, yields the spectrum whose form is independent of a prehistory. The subsequent exposition to longer-wavelength radiation leads to bleaching of the crystal in the examined spectral range. A maximum diminishing of the optical absorption in the crystal is observed upon exposure to radiation with the wavelength λ l,5 = 663 nm. To describe the experimentally observed reversible changes in the optical absorption spectrum in the Bi12TiO20:Al we use the impurity absorption model that takes into account the photoinduced transitions between two metastable states of a deep defect center leading to the change of its position in the crystal lattice under conditions of strong lattice relaxation.

  2. Intersubband absorption in Si(1-x)Ge(x/Si superlattices for long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Rajakarunanayake, Yasantha; Mcgill, Tom C.

    1990-01-01

    Researchers calculated the absorption strengths for intersubband transitions in n-type Si(1-x)Ge(x)/Si superlattices. These transitions can be used for the detection of long-wavelength infrared radiation. A significant advantage in Si(1-x)Ge(x)/Si supperlattice detectors is the ability to detect normally incident light; in Ga(1-x)Al(x)As/GaAs superlattices, intersubband absorption is possible only if the incident light contains a polarization component in the growth direction of the superlattice. Researchers present detailed calculation of absorption coefficients, and peak absorption wavelengths for (100), (111) and (110) Si(1-x)Ge(x)/Si superlattices. Peak absorption strengths of about 2000 to 6000 cm(exp -1) were obtained for typical sheet doping concentrations (approx. equals 10(exp 12)cm(exp -2)). Absorption comparable to that in Ga(1-x)Al(x)As/GaAs superlattice detectors, compatibility with existing Si technology, and the ability to detect normally incident light make these devices promising for future applications.

  3. Improved speckle statistics in coherent differential absorption lidar with in-fiber wavelength multiplexing.

    PubMed

    Ridley, K D; Pearson, G N; Harris, M

    2001-04-20

    Remote detection of gaseous pollutants and other atmospheric constituents can be achieved with differential absorption lidar (DIAL) methods. The technique relies on the transmission of two or more laser wavelengths and exploits absorption features in the target gas by measuring the ratio of their detected powers to determine gas concentration. A common mode of operation is when the transmitter and receiver are collocated, and the absorption is measured over a return trip by a randomly scattering topographic target. Hence, in coherent DIAL, speckle fluctuation leads to a large uncertainty in the detected powers unless the signal is averaged over multiple correlation times, i.e., over many independent speckles. We examine a continuous-wave coherent DIAL system in which the laser wavelengths are transmitted and received by the same single-mode optical fibers. This ensures that the two wavelengths share a common spatial mode, which, for certain transmitter and target parameters, enables highly correlated speckle fluctuations to be readily achieved in practice. For a DIAL system, this gives the potential for improved accuracy in a given observation time. A theoretical analysis quantifies this benefit as a function of the degree of correlation between the two time series (which depends on wavelength separation and target depth). The results are compared with both a numerical simulation and a laboratory-based experiment.

  4. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  5. All-Optical Wavelength Conversion by Picosecond Burst Absorption in Colloidal PbS Quantum Dots.

    PubMed

    Geiregat, Pieter; Houtepen, Arjan J; Van Thourhout, Dries; Hens, Zeger

    2016-01-26

    All-optical approaches to change the wavelength of a data signal are considered more energy- and cost-effective than current wavelength conversion schemes that rely on back and forth switching between the electrical and optical domains. However, the lack of cost-effective materials with sufficiently adequate optoelectronic properties hampers the development of this so-called all-optical wavelength conversion. Here, we show that the interplay between intraband and band gap absorption in colloidal quantum dots leads to a very strong and ultrafast modulation of the light absorption after photoexcitation in which slow components linked to exciton recombination are eliminated. This approach enables all-optical wavelength conversion at rates matching state-of-the-art convertors in speed, yet with cost-effective solution-processable materials. Moreover, the stronger light-matter interaction allows for implementation in small-footprint devices with low switching energies. Being a generic property, the demonstrated effect opens a pathway toward low-power integrated photonics based on colloidal quantum dots as the enabling material.

  6. Wavelength Locking to CO2 Absorption Line-Center for 2-Micron Pulsed IPDA Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong

    2016-01-01

    An airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-micron CW (Continuous Wave) laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nanometers, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.

  7. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    PubMed Central

    Klein, Alexander; Witzel, Oliver; Ebert, Volker

    2014-01-01

    We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508

  8. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    NASA Astrophysics Data System (ADS)

    Olson, Michael R.; Victoria Garcia, Mercedes; Robinson, Michael A.; Van Rooy, Paul; Dietenberger, Mark A.; Bergin, Michael; Schauer, James Jay

    2015-07-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings. Filter-based absorption measurements were corrected and compared to photoacoustic absorption results. BC absorption was segregated from the total light extinction to estimate the BrC absorption from individual sources. Results were compared to elemental carbon (EC)/organic carbon (OC) concentrations to determine composition's impact on light absorption. Multiple-wavelength absorption coefficients, Angstrom exponent (6.9 to <1.0), mass absorption cross section (MAC), and Delta C (97 µg m-3 to ~0 µg m-3) were highly variable. Sources such as incense and peat emissions showed ultraviolet wavelength (370 nm) BrC absorption over 175 and 80 times (respectively) the BC absorption but only 21 and 11 times (respectively) at 520 nm wavelength. The bulk EC MACEC, λ (average at 520 nm = 9.0 ± 3.7 m2 g-1; with OC fraction <0.85 = ~7.5 m2 g-1) and the BrC OC mass absorption cross sections (MACBrC,OC,λ) were calculated; at 370 nm ultraviolet wavelengths; the MACBrC,OC,λ ranged from 0.8 m2 g-1 to 2.29 m2 g-1 (lowest peat, highest kerosene), while at 520 nm wavelength MACBrC,OC,λ ranged from 0.07 m2 g-1 to 0.37 m2 g-1 (lowest peat, highest kerosene/incense mixture). These MAC results show that OC content can be an important contributor to light absorption when present in significant quantities (>0.9 OC/TC), source emissions have variable absorption spectra, and nonbiomass combustion sources can be significant contributors to BrC.

  9. Thermal behavior of long wavelength absorption transitions in Spirulina platensis photosystem I trimers.

    PubMed Central

    Cometta, A; Zucchelli, G; Karapetyan, N V; Engelmann, E; Garlaschi, F M; Jennings, R C

    2000-01-01

    In photosystem I trimers of Spirulina platensis a major long wavelength transition is irreversibly bleached by illumination with high-intensity white light. The photobleaching hole, identified by both absorption and circular dichroism spectroscopies, is interpreted as the inhomogeneously broadened Q(y) transition of a chlorophyll form that absorbs maximally near 709 nm at room temperature. Analysis of the mean square deviation of the photobleaching hole between 80 and 300 K, in the linear electron-phonon frame, indicates that the optical reorganization energy is 52 cm(-1), four times greater than that for the bulk, short-wavelength-absorbing chlorophylls, and the inhomogenous site distribution bandwidth is close to 150 cm(-1). The room temperature bandwidth, close to 18.5 nm, is dominated by thermal (homogeneous) broadening. Photobleaching induces correlated circular dichroism changes, of opposite sign, at 709 and 670 nm, which suggests that the long wavelength transition may be a low energy excitonic band, in agreement with its high reorganization energy. Clear identification of the 709-nm spectral form was used in developing a Gaussian description of the long wavelength absorption tail by analyzing the changing band shape during photobleaching using a global decomposition procedure. Additional absorption states near 720, 733, and 743 nm were thus identified. The lowest energy state at 743 nm is present in substoichiometric levels at room temperature and its presence was confirmed by fluorescence spectroscopy. This state displays an unusual increase in intensity upon lowering the temperature, which is successfully described by assuming the presence of low-lying, thermally populated states. PMID:11106627

  10. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction.

  11. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators

    PubMed Central

    Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction. PMID:26781863

  12. Characterization of NLO crystal absorption for wavelengths 1ω to 4ω

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.; Bublitz, S.

    2016-12-01

    An overview is presented of the characteristic features for the sandwich concept used for NLO crystal bulk absorption measurements. The sandwich concept is a photo-thermal absorption measurement concept based on the laser induced deflection (LID) technique. Besides a strong sensitivity enhancement for photo-thermally insensitive materials, the focus of the paper is on the absolute calibration, one of the key criteria for photo-thermal techniques. Based on experimental results it is proven that absolute bulk absorption calibration is simplified by using the sandwich concept since it is insensitive to sample orientation or dopants. Furthermore, experimental results on a variety of materials reveal that in general the bulk absorption calibration sample can be made of just one material, e.g. Aluminum which is favorable because of its easy mechanical handling. However, for surface/coating calibration a different result is found. Finally, the sandwich concept is applied to characterize the bulk absorption of different nonlinear crystals at the wavelengths 1064, 532, 355 and 266nm.

  13. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators.

    PubMed

    Romero-García, V; Theocharis, G; Richoux, O; Merkel, A; Tournat, V; Pagneux, V

    2016-01-19

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction.

  14. Self-calibration wavelength modulation spectroscopy for acetylene detection based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Qin-Bin; Xu, Xue-Mei; Li, Chen-Jing; Ding, Yi-Peng; Cao, Can; Yin, Lin-Zi; Ding, Jia-Feng

    2016-11-01

    The expressions of the second harmonic (2f) signal are derived on the basis of absorption spectral and lock-in theories. A parametric study indicates that the phase shift between the intensity and wavelength modulation makes a great contribution to the 2f signal. A self-calibration wavelength modulation spectroscopy (WMS) method based on tunable diode laser absorption spectroscopy (TDLAS) is applied, combining the advantages of ambient pressure, temperature suppression, and phase-shift influences elimination. Species concentration is retrieved simultaneously from selected 2f signal pairs of measured and reference WMS-2f spectra. The absorption line of acetylene (C2H2) at 1530.36 nm near-infrared is selected to detect C2H2 concentrations in the range of 0-400 ppmv. System sensitivity, detection precision and limit are markedly improved, demonstrating that the self-calibration method has better detecting performance than the conventional WMS. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172047, 61502538, and 61501525).

  15. Scattering and Absorption Properties of Polydisperse Wavelength-sized Particles Covered with Much Smaller Grains

    NASA Technical Reports Server (NTRS)

    Dlugach, Jana M.; Mishchenko, Michael I.; Mackowski, Daniel W.

    2012-01-01

    Using the results of direct, numerically exact computer solutions of the Maxwell equations, we analyze scattering and absorption characteristics of polydisperse compound particles in the form of wavelength-sized spheres covered with a large number of much smaller spherical grains.The results pertain to the complex refractive indices1.55 + i0.0003,1.55 + i0.3, and 3 + i0.1. We show that the optical effects of dusting wavelength-sized hosts by microscopic grains can vary depending on the number and size of the grains as well as on the complex refractive index. Our computations also demonstrate the high efficiency of the new superposition T-matrix code developed for use on distributed memory computer clusters.

  16. Scattering and absorption properties of polydisperse wavelength-sized particles covered with much smaller grains

    NASA Astrophysics Data System (ADS)

    Dlugach, Janna M.; Mishchenko, Michael I.; Mackowski, Daniel W.

    2012-12-01

    Using the results of direct, numerically exact computer solutions of the Maxwell equations, we analyze scattering and absorption characteristics of polydisperse compound particles in the form of wavelength-sized spheres covered with a large number of much smaller spherical grains. The results pertain to the complex refractive indices 1.55+i0.0003, 1.55+i0.3, and 3+i0.1. We show that the optical effects of “dusting” wavelength-sized hosts by microscopic grains can vary depending on the number and size of the grains as well as on the complex refractive index. Our computations also demonstrate the high efficiency of the new superposition T-matrix code developed for use on distributed memory computer clusters.

  17. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    PubMed

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  18. The optical absorption of triatomic carbon C3 for the wavelength range 260 to 560 nm

    NASA Technical Reports Server (NTRS)

    Jones, J. J.

    1978-01-01

    The spectral absorption properties of C3 have been measured in a shock tube containing a test gas mixture of acetylene diluted with argon. The absorption of a pulsed xenon light source was measured by means of eight photomultiplier channels to a spectrograph and an accompanying drum camera. The postshock test gas temperature and pressure were varied over the range 3240 to 4300 K and 37 to 229 kPa, respectively. The results showed appreciable absorption by C3 for the wavelength range 300 to 540 nm. The various reported measurements of the heat of formation of C3 which are available in the open literature were reviewed, and a value of 198 kcal/mol is recommended. This value, along with best available values for other species, was used to calculate the number density of C3 for the conditions of the present experiments in order to compute absorption cross section or electronic oscillator strength. The computed electronic oscillator strength varied from a high of 0.062 at 3300 K to a low of 0.036 at 3900 K.

  19. Investigation of the stability of the emission wavelength of a laser with an external neon absorption cell

    SciTech Connect

    Kapralov, V.P.; Privalov, V.E.; Chulyaeva, E.G.

    1980-08-01

    The optical heterodyne method was used to determine the absolute wavelength of a commercial LG-149-1 helium--neon laser. Measurements were carried out using apparatus containing a laser stabilized by the saturated absorption in /sup 127/I, which acted as the reference source. The iodine laser wavelength was determined interferrometrically by comparison with the wavelength of the orange line of /sup 86/Kr.

  20. Ritz wavelengths of Fe I, Si II and Ni II for quasar absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Nave, Gillian

    2016-01-01

    The study of absorption lines in the spectra of galaxies along the line of sight to distant quasars can give important information about the abundances, ionization and kinematics of atoms within these galaxies. They have also been used to study the variability of the fine structure constant at high redshifts. However, the laboratory wavelengths need to be known to better than 6 parts in 108 (20 ms-1). A paper by M. Murphy and J. C. Berengut (2014, MNRAS 438,388) includes a table of spectral lines for which the laboratory wavelength uncertainties are greater than this, including 13 resonance lines of Fe I, 11 lines of Ni II, and 4 lines of Si II.Improved wavelengths for these lines were derived by re-analyzing archival spectra of iron hollow cathode lamps and a silicon carbide Penning discharge lamp. These spectra have previously been used in a comprehensive analysis of the spectrum of Fe I (Nave et al. 1994, ApJS 94, 221) and in a study of Si II, Si IV, and C IV for quasar spectroscopy (Griesmann & Kling, 2000, ApJ 536, L113). By re-optimizing the energy levels of Fe I, the absolute uncertainty of the resonance lines has been reduced by over a factor of 2 and the relative uncertainty by an order of magnitude. A similar analysis for Si II gives a improved values for the resonance lines with wavelength uncertainties of around 4 parts in 108. Analysis of new spectra of Ni II is in progress.

  1. Wavelength-modulated tunable diode-laser absorption spectrometry for real-time monitoring of microbial growth.

    PubMed

    Shao, Jie; Xiang, Jindong; Axner, Ove; Ying, Chaofu

    2016-03-20

    It is important to monitor and assess the growth of micro-organisms under various conditions. Yet, thus far there has been no technique to do this with the required speed and accuracy. This work demonstrates swift and accurate assessment of the concentration of carbon dioxide that is produced by use of a wavelength-modulated tunable diode-laser based absorption spectroscopy (WM-TDLAS). It is shown by experiments on two types of bacteria, Staphylococcus aureus and Candida albicans, that the technique can produce high signal-to-noise-ratio data from bacteria grown in confined spaces and exposed to limited amounts of nutrients that can be used for extraction of growth parameters by fitting of the Gompertz model. By applying the technique to S. aureus bacteria at various temperatures (in the 25°C to 42°C range), it is specifically shown that both the maximum growth rate and the so-called lag time have a strong temperature dependence (under the specific conditions with a maximum of the former at 37°C) that matches conventional models well for bacterial growth. Hence, it is demonstrated that WM-TDLAS monitoring CO2 is a user-friendly, non-intrusive, and label-free technique that swiftly, and with high signal-to-noise-ratio, can be used for rapid (on the Hz scale) and accurate assessment of bacterial growth.

  2. Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms

    SciTech Connect

    Mourant, J.R.; Fuselier, T.; Boyer, J.; Johnson, T.M.; Bigio, I.J.

    1997-02-01

    Predictions from Mie theory regarding the wavelength dependence of scattering in tissue from the near UV to the near IR are discussed and compared with experiments on tissue phantoms. For large fiber separations it is shown that rapid, simultaneous measurements of the elastic scatter signal for several fiber separations can yield the absorption coefficient and reduced scattering coefficient. With this information, the size of the scattering particles can be estimated, and this is done for Intralipid. Measurements made at smaller source detector separations support Mie theory calculations, demonstrating that the sensitivity of elastic scatter measurements to morphological features, such as scatterer size, is enhanced when the distance between the source and detector fibers is small. {copyright} 1997 Optical Society of America

  3. WAVELENGTH MEASUREMENTS OF K TRANSITIONS OF OXYGEN, NEON, AND MAGNESIUM WITH X-RAY ABSORPTION LINES

    SciTech Connect

    Liao Jinyuan; Zhang Shuangnan; Yao Yangsen

    2013-09-10

    Accurate atomic transition data are important in many astronomical research areas, especially for studies of line spectroscopy. Whereas transition data of He-like and H-like ions (i.e., ions in high-charge states) have been accurately calculated, the corresponding data of K transitions of neutral or low-ionized metal elements are still very uncertain. Spectroscopy of absorption lines produced in the interstellar medium (ISM) has been proven to be an effective way to measure the central wavelengths of these atomic transitions. In this work, we analyze 36 Chandra High Energy Transmission Grating observations to search for and measure the ISM absorption lines along sight lines to 11 low-mass X-ray binaries. We correct the Galactic rotation velocity to the rest frame for every observation and then use two different methods to merge all the corrected spectra to a co-added spectrum. However, the co-added spectra obtained by this method exhibit biases, toward to either observations with high counts or lines with high signal-to-noise ratios. We do a Bayesian analysis of several significantly detected lines to obtain the systematic uncertainty and the bias correction for other lines. Compared to previous studies, our results improve the wavelength accuracy by a factor of two to five and significantly reduce the systematic uncertainties and biases. Several weak transitions (e.g., 1s-2p of Mg IV and Mg V; 1s-3p of Mg III and Mg V) are also detected for the first time, albeit with low significance; future observations with improved accuracy are required to confirm these detections.

  4. Influence of the absorption behavior of sunscreens in the short-wavelength UV range (UVB) and the long-wavelength UV range (UVA) on the relation of the UVB absorption to sun protection factor

    NASA Astrophysics Data System (ADS)

    Weigmann, Hans-Juergen; Schanzer, Sabine; Antoniou, Christina; Sterry, Wolfram; Lademann, Juergen

    2010-09-01

    The absorption of filter substances in sunscreens, reducing the incident ultraviolet (UV) radiation, is the basis for the protecting ability of such formulations. The erythema-correlated sun protection factor (SPF), depending mainly on the intensity of the UVB radiation, is the common value to quantify the efficacy of the formulations avoiding sunburn. An ex vivo method combining tape stripping and optical spectroscopy is applied to measure the absorption of sunscreens in the entire UV spectral range. The obtained relations between the short-wavelength UV (UVB) absorption and the SPF confirm a clear influence of the long-wavelength UV (UVA) absorption on the SPF values. The data reflect the historical development of the relation of the concentration of UVB and UVA filters in sunscreens and points to the influence of additional ingredients, e.g., antioxidants and cell-protecting agents on the efficacy of the products.

  5. Influence of the absorption behavior of sunscreens in the short-wavelength UV range (UVB) and the long-wavelength UV range (UVA) on the relation of the UVB absorption to sun protection factor.

    PubMed

    Weigmann, Hans-Juergen; Schanzer, Sabine; Antoniou, Christina; Sterry, Wolfram; Lademann, Juergen

    2010-01-01

    The absorption of filter substances in sunscreens, reducing the incident ultraviolet (UV) radiation, is the basis for the protecting ability of such formulations. The erythema-correlated sun protection factor (SPF), depending mainly on the intensity of the UVB radiation, is the common value to quantify the efficacy of the formulations avoiding sunburn. An ex vivo method combining tape stripping and optical spectroscopy is applied to measure the absorption of sunscreens in the entire UV spectral range. The obtained relations between the short-wavelength UV (UVB) absorption and the SPF confirm a clear influence of the long-wavelength UV (UVA) absorption on the SPF values. The data reflect the historical development of the relation of the concentration of UVB and UVA filters in sunscreens and points to the influence of additional ingredients, e.g., antioxidants and cell-protecting agents on the efficacy of the products.

  6. Measurements of absolute absorption cross sections of ozone in the 185- to 254-nm wavelength region and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.

    1993-01-01

    Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.

  7. Analytical application of 2f-wavelength modulation for isotope selective diode laser graphite furnace atomic absorption spectroscopy.

    PubMed

    Wizemann, H D

    2000-01-01

    Experiences in the analytical application of the 2f-wavelength modulation technique for isotope selective atomic absorption spectroscopy in a graphite furnace are reported. Experimental as well as calculated results are presented, mainly for the natural lithium isotopes. Sensitivity, linearity, and (isotope) selectivity are studied by intensity modulation and wavelength modulation. High selectivities can be attained, however, on the cost of detection power. It is shown that the method enables the measurement of lithium isotope ratios larger than 2000 by absorption in a low-pressure graphite tube atomizer.

  8. Determination of scattering coefficient considering wavelength and absorption dependence of anisotropy factor measured by polarized beam for biological tissues

    NASA Astrophysics Data System (ADS)

    Fukutomi, D.; Ishii, K.; Awazu, K.

    2015-12-01

    Anisotropy factor g, one of the optical properties of biological tissues, is the most important parameter to accurately determine scattering coefficient μs in the inverse Monte Carlo (iMC) simulation. It has been reported that g has wavelength and absorption dependence, however, there are few attempts in order to calculate μs of biological tissue considering the wavelength and absorption dependence of g. In this study, the scattering angular distributions of biological tissue phantoms were measured in order to determine g by using goniometric measurements with three polarization conditions at strongly and weakly absorbing wavelengths of hemoglobin. Then, optical properties, especially, μs were measured by integrating sphere measurements and iMC simulation in order to confirm the influence of measured g on optical properties in comparison of with general value of g (0.9) for soft biological tissue. Consequently, it was found that μs was overestimated at strongly absorbing wavelength, however, μs was underestimated at weakly absorbing wavelength if the g was not considered its wavelength and absorption dependence.

  9. Linear absorption coefficient of beryllium in the 50-300-A wavelength range. [bandpass filter materials for ultraviolet astronomy instrumentation

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Lewis, M.; Petre, R.

    1983-01-01

    Transmittances of thin-film filters fabricated for an extreme-UV astronomy sounding-rocket experiment yield values for the linear absorption coefficient of beryllium in the 50-300-A wavelength range, in which previous measurements are sparse. The inferred values are consistent with the lowest data previously published and may have important consequences for extreme-UV astronomers.

  10. Sensitivity of depth of maximum and absorption depth of EAS to hadron production mechanism

    NASA Technical Reports Server (NTRS)

    Antonov, R. A.; Galkin, V. I.; Hein, L. A.; Ivanenko, I. P.; Kanevsky, B. L.; Kuzmin, V. A.

    1985-01-01

    Comparison of experimental data on depth of extensive air showers (EAS) development maximum in the atmosphere, T sub M and path of absorption, lambda, in the lower atmosphere of EAS with fixed particle number in the energy region eV with the results of calculation show that these parameters are sensitive mainly to the inelastic interaction cross section and scaling violation in the fragmentation and pionization region. The data are explained in a unified manner within the framework of a model in which scaling is violated slightly in the fragmentation region and strongly in the pionization region at primary cosmic rays composition close to the normal one and a permanent increase of inelastic interaction cross section. It is shown that, while interpreting the experimental data, disregard of two methodical points causes a systematic shift in T sub M: (1) shower selection system; and (2) EAS electron lateral distribution when performing the calculations on basis of which the transfer is made from the Cerenkov pulse FWHM to the depth of shower maximum, T sub M.

  11. In situ UV-visible reflection absorption wavelength modulation spectroscopy of species irreversibly adsorbed on electrode surfaces

    SciTech Connect

    Kim, Sunghyun; Scherson, D.A. )

    1992-12-15

    A method is herein described for the in situ detection of species adsorbed on electrode surfaces which employs a vibrating grating to modulate the wavelength of the incident light. This technique denoted as reflection absorption wavelength modulation spectroscopy (RAWMS) has made it possible to obtain at a fixed electrode potential normalized, differential UV-visible spectra of a single, irreversibly adsorbed monolayer of cobalt tetrasulfonated phthalocyanine (Co[sup II]TsPc) on the basal plane of highly oriented pyrolytic graphite (HOPG(bp)) and of methylene blue (MB) on graphite. The (wavelength) integrated difference RAWMS spectra for these adsorbed species were remarkably similar to those observed for the same compounds in aqueous solutions when present in the monomeric form. Complementary wavelength modulation experiments involving a conventional transmission geometry have shown that the instrument involved in the in situ RAWMS measurements is capable of resolving absorbance changes on the order of 0.002 units. 20 refs.

  12. Fixed-wavelength H2O absorption spectroscopy system enhanced by an on-board external-cavity diode laser

    NASA Astrophysics Data System (ADS)

    Brittelle, Mack S.; Simms, Jean M.; Sanders, Scott T.; Gord, James R.; Roy, Sukesh

    2016-03-01

    We describe a system designed to perform fixed-wavelength absorption spectroscopy of H2O vapor in practical combustion devices. The system includes seven wavelength-stabilized distributed feedback (WSDFB) lasers, each with a spectral accuracy of  ±1 MHz. An on-board external cavity diode laser (ECDL) that tunes 1320-1365 nm extends the capabilities of the system. Five system operation modes are described. In one mode, a sweep of the ECDL is used to monitor each WSDFB laser wavelength with an accuracy of  ±30 MHz. Demonstrations of fixed-wavelength thermometry at 10 kHz bandwidth in near-room-temperature gases are presented; one test reveals a temperature measurement error of ~0.43%.

  13. Optical absorption of carbon and hydrocarbon species from shock heated acetylene and methane in the 135-220 nm wavelength range

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.

    1981-01-01

    Absorption spectroscopy of carbon and hydrocarbon species has been performed in a shock tube at an incident shock condition for a wavelength range of 135-220 nm, in order to obtain information needed for calculating radiation blockage ahead of a planetary probe. Instrumentation consisted of high frequency response pressure transducers, thin-film heat transfer gages, or photomultipliers coupled by light pipes. Two test-gas mixtures, one with acetylene and the other with methane, both diluted with argon, were used to provide a reliable variation of C3 and C2H concentration ratio. Comparison of tests results of the two mixtures, in the temperature range of 3750 + or - 100 K, showed the main absorbing species to be C3. The wavelength for maximum absorption agrees well with the theoretical values of 7.68 eV and 8.03 eV for the vertical excitation energy, and a value of 0.90 for the electronic oscillator strength, obtained from the measured absorption band, is also in good agreement with the predicted value of 0.92.

  14. Absorption spectrum and absolute absorption cross sections of CH3O2 radicals and CH3I molecules in the wavelength range 7473-7497 cm(-1).

    PubMed

    Faragó, Eszter P; Viskolcz, Bela; Schoemaecker, Coralie; Fittschen, Christa

    2013-12-05

    The absorption spectrum of CH3O2 radicals and CH3I molecules has been measured in the range 7473-7497 cm(-1). CH3O2 radicals have been generated by 248 nm laser photolysis of CH3I in the presence of O2, and the relative absorption has been measured by time-resolved continuous-wave cavity ring-down spectroscopy (cw-CRDS). Calibration of the relative absorption spectrum has been carried out on three distinct wavelengths by carefully measuring CH3O2 decays under different experimental conditions and extracting the initial radical concentration (and with this the absolute absorption cross sections) by using the well-known rate constant for the CH3O2 self-reaction. The following, pressure-independent absorption cross sections were determined: 3.41 × 10(-20), 3.40 × 10(-20), and 2.11 × 10(-20) cm(2) at 7748.18, 7489.16, and 7493.33 cm(-1). These values are 2-3 times higher than previous determinations ( Pushkarsky, M. B.; Zalyubovsky, S. J.; Miller, T. A. J. Chem. Phys. 2000, 112 (24), 10695 - 10698 and Atkinson, D. B.; Spillman, J. L. J. Phys. Chem. A 2002, 106 (38), 8891 - 8902). The absorption spectrum of the stable precursor CH3I has also been determined and three characteristic sharp absorption lines with absorption cross sections up to 2 × 10(-21) cm(2) have been observed in this wavelength range.

  15. Determination of the scattering coefficient of biological tissue considering the wavelength and absorption dependence of the anisotropy factor

    NASA Astrophysics Data System (ADS)

    Fukutomi, Daichi; Ishii, Katsunori; Awazu, Kunio

    2016-04-01

    The anisotropy factor g, one of the optical properties of biological tissues, has a strong influence on the calculation of the scattering coefficient μ s in inverse Monte Carlo (iMC) simulations. It has been reported that g has the wavelength and absorption dependence; however, few attempts have been made to calculate μ s using g values by taking the wavelength and absorption dependence into account. In this study, the angular distributions of scattered light for biological tissue phantoms containing hemoglobin as a light absorber were measured by a goniometric optical setup at strongly (405 nm) and weakly (664 nm) absorbing wavelengths to obtain g. Subsequently, the optical properties were calculated with the measured values of g by integrating sphere measurements and an iMC simulation, and compared with the results obtained with a conventional g value of 0.9. The μ s values with measured g were overestimated at the strongly absorbing wavelength, but underestimated at the weakly absorbing wavelength if 0.9 was used in the iMC simulation.

  16. Effect of laser radiation absorption in water and blood on the optimal wavelength for endovenous obliteration of varicose veins

    SciTech Connect

    Zhilin, K M; Minaev, V P; Sokolov, Aleksandr L

    2009-08-31

    This work examines laser radiation absorption in water and blood at the wavelengths that are used in endovenous laser treatment (EVLT): 0.81-1.06, 1.32, 1.47, 1.5 and 1.56 {mu}m. It is shown that the best EVLT conditions are ensured by 1.56-{mu}m radiation. Analysis of published data suggests that even higher EVLT efficacy may be achieved at wavelengths of 1.68 and 1.7 {mu}m. (laser medicine)

  17. [Study on determination of trace nitrite and reaction mechanism by two-wavelength negative absorption-catalytic spectrophotometry].

    PubMed

    Zi, Yan-qin; Lu, Hao-miao

    2006-01-01

    A new method was proposed for the determination of trace nitrite by two wavelength negative absorption catalytic spectrophotometry based on the catalysis of nitrite on the oxidation fading reaction of acridine orange by potassium bromate in phosphoricacid medium. The additive value of negative absorbances at two wavelengths was linear to the nitrite concentration in the range of 1.0 x 10(-5)-5.0 x 10(-7) mol x L(1). The method has been used to the determination of nitrite in environment water sample with satisfactory

  18. Resonance-based metamaterial in the shallow sub-wavelength regime: negative refractive index and nearly perfect absorption

    NASA Astrophysics Data System (ADS)

    Trang Pham, Thi; Nguyen, Hoang Tung; Tuyen Le, Dac; Tong, Ba Tuan; Giang Trinh, Thi; Tuong Pham, Van; Vu, Dinh Lam

    2016-12-01

    The research on magnetic resonances in typical meta-atoms has led to the discovery of electromagnetic metamaterials (MMs). These new materials played a crucial role in achieving extraordinary phenomena as well as promised potential applications. In this paper, we numerically and experimentally investigated two different MM effects: the absorption and the negative refraction, which induced by magnetic resonances in a symmetric structure. The meta-atom sandwich model that includes two parallel flat rings separated by an insulating slab was designed. Firstly, three resonances in sub-wavelength range were demonstrated, revealing the negative permittivity and permeability effects. Notably, negative refractive index (NRI) was gained at the third-gap resonance, resulting from superposition of the rest of the electric resonance and the magnetic one accompanied by multi-plasmon. Moreover, the manipulation of the structural parameters could control the NRI behavior and, interestingly, a nearly perfect absorption peak arises in shallow sub-wavelength regime.

  19. Wavelength calibration techniques and subtle surface and atmospheric absorption features in the Mariner 6, 7 IRS reflectance data

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Roush, T. L.; Martin, T. Z.; Pollack, James B.; Freedman, R.

    1994-01-01

    1994 marks the 25th anniversary of the Mariner 6 and 7 flyby missions to Mars. Despite its age, the Mariner 6,7 Infrared Spectrometer (IRS) data are a unique set of measurements that can provide important information about the Martian surface, atmospheric, and atmospheric aerosol composition. For certain mid-IR wavelengths, the IRS spectra are the only such spacecraft data obtained for Mars. At other wavelengths, IRS measured surface regions different from those measured by Mariner 9 or Phobos 2 and under different dust opacity conditions. We are interested in examining the IRS reflectance data in the 1.8 to 3.0 micron region because there are numerous diagnostic absorption features at these wavelengths that could be indicative of hydrated silicate minerals or of carbonate- or sulfate-bearing minerals. Groundbased telescopic data and recent Phobos ISM measurements have provided controversial and somewhat contradictory evidence for the existence of mineralogic absorption features at these wavelengths. Our goal is to determine whether any such features can be seen in the IRS data and to use their presence or absence to re-assess the quality and interpretations of previous telescopic and spacecraft measurements.

  20. Wavelength locking to CO2 absorption line-center for 2-μm pulsed IPDA lidar application

    NASA Astrophysics Data System (ADS)

    Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong

    2016-05-01

    An airborne 2-m triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-μm CW laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nm, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.

  1. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  2. Absolute absorption cross sections of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Parkinson, W. H.; Freeman, D. E.

    1992-01-01

    An account is given of progress of work on absorption cross section measurements of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm. In this wavelength region, the penetration of solar radiation into the Earth's atmosphere is controlled by O2 and O3. The transmitted radiation is available to dissociate trace species such as halocarbons and nitrous oxide. We have recently measured absolute absorption cross sections of O3 in the wavelength region 240-350 nm (Freeman et al., 1985; Yoshino et al., 1988). We apply these proven techniques to the determination of the absorption cross section of O3 at 300 K, 228 K and 195 K throughout the wavelength region 185-240 nm. A paper titled 'Absolute Absorption Cross Section Measurements of Ozone in the Wavelength Region 185-254 nm and the Temperature Dependence' has been submitted for publication in the Journal of Geophysical Research.

  3. Excited singlet-state absorption in laser dyes at the XeCl wavelength

    NASA Astrophysics Data System (ADS)

    Taylor, R. S.; Mihailov, S.

    1985-10-01

    The transmission properties of the laser dyes BBQ, PBD, BPBD, α-NPO, p-Quarterphenyl and PPO have been measured using a XeCl (308 nm) excimer laser. A model for the dye saturation which incorporates excited-state absorption was used to estimate the lifetime and the absorption cross section of the first excited singlet-state for each dye.

  4. Black carbon and wavelength-dependent aerosol absorption in the North China Plain based on two-year aethalometer measurements

    NASA Astrophysics Data System (ADS)

    Ran, L.; Deng, Z. Z.; Wang, P. C.; Xia, X. A.

    2016-10-01

    Light-absorbing components of atmospheric aerosols have gained particular attention in recent years due to their climatic and environmental effects. Based on two-year measurements of aerosol absorption at seven wavelengths, aerosol absorption properties and black carbon (BC) were investigated in the North China Plain (NCP), one of the most densely populated and polluted regions in the world. Aerosol absorption was stronger in fall and the heating season (from November to March) than in spring and summer at all seven wavelengths. Similar spectral dependence of aerosol absorption was observed in non-heating seasons despite substantially strong absorption in fall. With an average absorption Angström exponent (α) of 1.36 in non-heating seasons, freshly emitted BC from local fossil fuel burning was thought to be the major component of light-absorbing aerosols. In the heating season, strong ultraviolet absorption led to an average α of 1.81, clearly indicating the importance of non-BC light-absorbing components, which were possibly from coal burning for domestic heating and aging processes on a regional scale. Diurnally, the variation of BC mass concentrations experienced a double-peak pattern with a higher level at night throughout the year. However, the diurnal cycle of α in the heating season was distinctly different from that in non-heating seasons. α peaked in the late afternoon in non-heating seasons with concomitantly observed low valley in BC mass concentrations. In contrast, α peaked around the midnight in the heating season and lowered down during the daytime. The relationship of aerosol absorption and winds in non-heating seasons also differed from that in the heating season. BC mass concentrations declined while α increased with increasing wind speed in non-heating seasons, which suggested elevated non-BC light absorbers in transported aged aerosols. No apparent dependence of α on wind speed was found in the heating season, probably due to well mixed

  5. Absorption and scattering properties of the Martian dust in the solar wavelengths.

    PubMed

    Ockert-Bell, M E; Bell JF 3rd; Pollack, J B; McKay, C P; Forget, F

    1997-04-25

    A new wavelength-dependent model of the single-scattering properties of the Martian dust is presented. The model encompasses the solar wavelengths (0.3 to 4.3 micrometers at 0.02 micrometer resolution) and does not assume a particular mineralogical composition of the particles. We use the particle size distribution, shape, and single-scattering properties at Viking Lander wavelengths presented by Pollack et al. [1995]. We expand the wavelength range of the aerosol model by assuming that the atmospheric dust complex index of refraction is the same as that of dust particles in the bright surface geologic units. The new wavelength-dependent model is compared to observations taken by the Viking Orbiter Infrared Thermal Mapper solar channel instrument during two dust storms. The model accurately matches afternoon observations and some morning observations. Some of the early morning observations are much brighter than the model results. The increased reflectance can be ascribed to the formation of a water ice shell around the dust particles, thus creating the water ice clouds which Colburn et al. [1989], among others, have predicted.

  6. Near IR two photon absorption of cyanines dyes: application to optical power limiting at telecommunication wavelengths

    NASA Astrophysics Data System (ADS)

    Bouit, Pierre-Antoine; Wetzel, Guillaume; Feneyrou, Patrick; Bretonnière, Yann; Kamada, Kenji; Maury, Olivier; Andraud, Chantal

    2008-02-01

    The design and synthesis of symmetrical and unsymmetrical heptamethine cyanines is reported. These chromophores present significant two-photon cross section in the 1400-1600 nm spectral range. In addition, they display optical power limiting (OPL) properties. OPL curves were interpreted on the basis of two-photon absorption (2PA) followed by excited state absorption (ESA). Finally, these molecules present several relevant properties (nonlinear absorption properties, two-step gram scale synthesis, high solubility, good thermal stability), which could lead to numerous practical applications in material science (solid state optical limiting, signal processing) or in biology (imaging).

  7. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases

    NASA Astrophysics Data System (ADS)

    Li, Hejie; Rieker, Gregory B.; Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.

    2006-02-01

    Tunable diode laser absorption measurements at high pressures by use of wavelength-modulation spectroscopy (WMS) require large modulation depths for optimum detection of molecular absorption spectra blended by collisional broadening or dense spacing of the rovibrational transitions. Diode lasers have a large and nonlinear intensity modulation when the wavelength is modulated over a large range by injection-current tuning. In addition to this intensity modulation, other laser performance parameters are measured, including the phase shift between the frequency modulation and the intensity modulation. Following published theory, these parameters are incorporated into an improved model of the WMS signal. The influence of these nonideal laser effects is investigated by means of wavelength-scanned WMS measurements as a function of bath gas pressure on rovibrational transitions of water vapor near 1388 nm. Lock-in detection of the magnitude of the 2f signal is performed to remove the dependence on detection phase. We find good agreement between measurements and the improved model developed for the 2f component of the WMS signal. The effects of the nonideal performance parameters of commercial diode lasers are especially important away from the line center of discrete spectra, and these contributions become more pronounced for 2f signals with the large modulation depths needed for WMS at elevated pressures.

  8. Wavelength Dependence of the Absorption of Black Carbon Particles: Predictions and Results from the TARFOX Experiment and Implications for the Aerosol Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Hignett, Phillip

    2002-01-01

    Measurements are presented of the wavelength dependence of the aerosol absorption coefficient taken during the Tropical Aerosol Radiative Forcing Observational Experiment (TARFOX) over the northern Atlantic. The data show an approximate lamda(exp -1) variation between 0.40 and 1.0 micrometers. The theoretical basis of the wavelength variation of the absorption of solar radiation by elemental carbon [or black carbon (BC)] is explored. For a wavelength independent refractive index the small particle absorption limit simplifies to a lambda(exp -1) variation in relatively good agreement with the data. This result implies that the refractive indices of BC were relatively constant in this wavelength region, in agreement with much of the data on refractive indices of BC. However, the result does not indicate the magnitude of the refractive indices. The implications of the wavelength dependence of BC absorption for the spectral behavior of the aerosol single scattering albedo are discussed. It is shown that the single scattering albedo for a mixture of BC and nonabsorbing material decreases with wavelength in the solar spectrum (i.e., the percentage amount of absorption increases). This decease in the single scattering albedo with wavelength for black carbon mixtures is different from the increase in single scattering allied for most mineral aerosols (dusts). This indicates that, if generally true, the spectral variation of the single- scattering albedo can be used to distinguish aerosol types. It also highlights the importance of measurements of the spectral variation of the aerosol absorption coefficient and single scattering albedo.

  9. Wavelength-insensitive radiation coupling for multi-quantum well sensor based on intersubband absorption

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Bandara, Sumith V. (Inventor); Liu, John K. (Inventor)

    2006-01-01

    Devices and techniques for coupling radiation to intraband quantum-well semiconductor sensors that are insensitive to the wavelength of the coupled radiation. At least one reflective surface is implemented in the quantum-well region to direct incident radiation towards the quantum-well layers.

  10. Wavelength-agile source based on a potassium atomic vapor cell and application for absorption spectroscopy of iodine

    NASA Astrophysics Data System (ADS)

    Pertzborn, A. J.; Walewski, J. W.; Sanders, S. T.

    2005-10-01

    Output from a mode-locked Ti:Sapphire laser was transmitted through a cell containing atomic potassium vapor. Because the group velocity dispersion near the D1 resonance varies strongly with wavelength, a chirped pulse was emitted from the cell. This chirp was treated as a wavelength-agile source and was applied for a high-resolution measurement of the R(101)A3Π1u-X1Σg+(0,13) iodine absorption feature. The agile measurement was compared to one obtained using an external cavity diode laser. The characteristics of the potassium vapor cell and the associated effects on the transmitted chirp were examined in detail. Extensions of this general approach to practical applications are discussed.

  11. Fundamental absorption in solids and the wavelength dependence of interstellar extinction

    NASA Astrophysics Data System (ADS)

    Duley, W. W.; Whittet, D. C. B.

    1992-03-01

    It is found that the wavelength dependence of interstellar extinction between the 0.44-micron band an 8 microns follows a Tauc-Urbach law characteristic of amorphous semiconductors. This result implies that the majority of extinction in this wavelength range arises predominantly from an amorphous dust component. A comparison between laboratory and interstellar data suggests that this dust is likely to be amorphous carbon. The Tauc-Urbach dependence permits the ratio of total to selective extinction R(V) to be related to the optical properties of this dust component and provides a semiquantitative relation between R(V) and environmental conditions in the interstellar medium. It also supports an important connection between the physics of condensed matter and the optics of interstellar dust.

  12. Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Phipps, C. R., Jr.; Harrison, R. F.; Shimada, T.; York, G. W.; Turner, R. F.

    1990-03-01

    This paper reports measurements of vacuum laser impulse coupling coefficients as large as 90 dyne/W, obtained with single microsec-duration CO2 laser pulses incident on a volume-absorbing, cellulose-nitrate-based plastic. This result is the largest coupling coefficient yet reported at any wavelength for a simple, planar target in vacuum, and partly results from expenditure of internal chemical energy in this material. Enhanced coupling was also observed in several other target materials that are chemically passive, but absorb light in depth at 10- and 3-micron wavelengths. The physical distinctions are discussed between this important case and that of simple, planar surface absorbers (such as metals) which were studied in the same experimental series, in light of the predictions of a simple theoretical model.

  13. Chemical detection and laser wavelength stabilization employing spectroscopic absorption via laser compliance voltage sensing

    DOEpatents

    Taubman, Matthew S; Phillips, Mark C

    2014-03-18

    Systems and methods are disclosed that provide a direct indication of the presence and concentration of an analyte within the external cavity of a laser device that employ the compliance voltage across the laser device. The systems can provide stabilization of the laser wavelength. The systems and methods can obviate the need for an external optical detector, an external gas cell, or other sensing region and reduce the complexity and size of the sensing configuration.

  14. Initial Field Measurements of Atmospheric Absorption at 9 Micrometers to 11 Micrometers Wavelengths.

    DTIC Science & Technology

    1980-10-01

    likely to be responsible for this discrepancy. Accession For NTIS GRA&I DTIC TAB Unannounced El Justification By. Distr"ibtion/ AvailcbiJity Codes Diet...1978, " Photoacoustic Spectroscopy of NH, at the %m and 1Om 12C 01 Laser Wavelengths," J Appi Opt, 17:3746-3749 9K. 0. White et al, 1978, "Water...contrasts for the absorbing constituents. This may permit identification of absorbing gaseous concentrations by deconvolution of the spectra using

  15. Chemical detection and laser wavelength stabilization employing spectroscopic absorption via laser compliance voltage sensing

    SciTech Connect

    Taubman, Matthew S.; Phillips, Mark C.

    2016-01-12

    Systems and methods are disclosed that provide a direct indication of the presence and concentration of an analyte within the external cavity of a laser device that employ the compliance voltage across the laser device. The systems can provide stabilization of the laser wavelength. The systems and methods can obviate the need for an external optical detector, an external gas cell, or other sensing region and reduce the complexity and size of the sensing configuration.

  16. Quantum-Confined and Enhanced Optical Absorption of Colloidal PbS Quantum Dots at Wavelengths with Expected Bulk Behavior.

    PubMed

    Debellis, Doriana; Gigli, Giuseppe; Ten Brinck, Stephanie; Infante, Ivan; Giansante, Carlo

    2017-02-08

    Nowadays it is well-accepted to attribute bulk-like optical absorption properties to colloidal PbS quantum dots (QDs) at wavelengths above 400 nm. This assumption permits to describe PbS QD light absorption by using bulk optical constants and to determine QD concentration in colloidal solutions from simple spectrophotometric measurements. Here we demonstrate that PbS QDs experience the quantum confinement regime across the entire near UV-vis-NIR spectral range, therefore also between 350 and 400 nm already proposed to be sufficiently far above the band gap to suppress quantum confinement. This effect is particularly relevant for small PbS QDs (with diameter of ≤4 nm) leading to absorption coefficients that largely differ from bulk values (up to ∼40% less). As a result of the broadband quantum confinement and of the high surface-to-volume ratio peculiar of nanocrystals, suitable surface chemical modification of PbS QDs is exploited to achieve a marked, size-dependent enhancement of the absorption coefficients compared to bulk values (up to ∼250%). We provide empirical relations to determine the absorption coefficients at 400 nm of as-synthesized and ligand-exchanged PbS QDs, accounting for the broadband quantum confinement and suggesting a heuristic approach to qualitatively predict the ligand effects on the optical absorption properties of PbS QDs. Our findings go beyond formalisms derived from Maxwell Garnett effective medium theory to describe QD optical properties and permit to spectrophotometrically calculate the concentration of PbS QD solutions avoiding underestimation due to deviations from the bulk. In perspective, we envisage the use of extended π-conjugated ligands bearing electronically active substituents to enhance light-harvesting in QD solids and suggest the inadequacy of the representation of ligands at the QD surface as mere electric dipoles.

  17. Absorption cross section of building materials at mm wavelength in a reverberation chamber

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Delfini, A.; Pastore, R.; Marchetti, M.; Diana, R.; Gradoni, G.

    2017-02-01

    The reverberation chamber (RC) method is used to estimate the average absorption cross section of building materials at mm wave frequencies. Analysed samples include concrete, travertine and bricks of different types. The investigation is carried out in the frequency range between 50 GHz and 68 GHz, which is of interest in the next generation of mobile telecommunication system. A cylindrical cavity is transformed into a RC through the use of a mechanical model stirrer. The chamber field is statistically homogeneous and depolarized; therefore it can be used to probe the average response of the sample under test. In particular, through a differential measure of the average quality factor (average insertion loss) it is possible estimate the fraction of power absorbed by the sample under test. Several cube-shape samples have been characterized and compared. Obtained results show that analysed samples have remarkably different levels of the electromagnetic wave absorption, depending on both material density and chemical composition. The absorption of pure water is used as a baseline to determine the dynamic range of the measurement.

  18. Sub-wavelength plasmon laser

    DOEpatents

    Bora, Mihail; Bond, Tiziana C.

    2016-04-19

    A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.

  19. Ultraviolet-B wavelengths regulate changes in UV absorption of cleaner fish Labroides dimidiatus mucus.

    PubMed

    Zamzow, Jill P; Siebeck, Ulrike E; Eckes, Maxi J; Grutter, Alexandra S

    2013-01-01

    High-energy wavelengths in the ultraviolet-B (UVB, 280-315 nm) and the UVA (315-400-nm) portion of the spectrum are harmful to terrestrial and aquatic organisms. Interestingly, UVA is also involved in the repair of UV induced damage. Organisms living in shallow coral reef environments possess UV absorbing compounds, such as mycosporine-like amino acids, to protect them from UV radiation. While it has been demonstrated that exposure to UV (280-400 nm) affects the UV absorbance of fish mucus, whether the effects of UV exposure vary between UVB and UVA wavelengths is not known. Therefore, we investigated whether the UVB, UVA, or photosynthetically active radiation (PAR, 400-700 nm) portions of the spectrum affected the UV absorbance of epithelial mucus and Fulton's body condition index of the cleaner fish Labroides dimidiatus. We also compared field-measured UV absorbance with laboratory based high-performance liquid chromatography measurements of mycosporine-like amino acid concentrations. After 1 week, we found that the UV absorbance of epithelial mucus was higher in the UVB+UVA+PAR treatment compared with the UVA+PAR and PAR only treatments; after 2 and 3 weeks, however, differences between treatments were not detected. After 3 weeks, Fulton's body condition index was lower for fish in the UVB+UVA+PAR compared with PAR and UVA+PAR treatments; furthermore, all experimentally treated fish had a lower Fulton's body condition index than did freshly caught fish. Finally, we found a decrease with depth in the UV absorbance of mucus of wild-caught fish. This study suggests that the increase in UV absorbance of fish mucus in response to increased overall UV levels is a function of the UVB portion of the spectrum. This has important implications for the ability of cleaner fish and other fishes to adjust their mucus UV protection in response to variations in environmental UV exposure.

  20. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    SciTech Connect

    Nakano, H. Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-04-08

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure.

  1. Influence of soot aggregate size and internal multiple scattering on LII signal and the absorption function variation with wavelength determined by the TEW-LII method

    NASA Astrophysics Data System (ADS)

    Yon, J.; Therssen, E.; Liu, F.; Bejaoui, S.; Hebert, D.

    2015-05-01

    Laser-induced incandescence (LII) is a powerful and robust optical method for in situ determination of soot volume fraction and/or soot absorption/emission properties in flames and engine exhaust. The laser-induced signal is interpreted as thermal emission based on the Planck law. Up to now, the evaluation and interpretation of LII signal have been largely based on contributions from isolated primary particles that are assumed much smaller than wavelengths. In the present paper, the morphology, wavelength, and aggregate size-dependent effects of multiple scattering within fractal soot aggregates on their absorption and emission cross sections are taken into account in the evaluation of LII signal by proposing correction terms to the traditional model. The impact of accounting for the correction to soot aggregate emission due to multiple scattering on LII signal and on the two excitation wavelength-induced incandescence method for inferring the soot absorption function, E(m), is discussed. For wavelengths shorter than 532 nm, E(m, λ)/E(m, 1064 nm) increases more significantly with decreasing wavelength. For wavelengths longer than 532 nm, the wavelength dependence of E(m, λ)/E(m, 1064 nm) becomes very small and can be neglected. The proposed corrections, along with the soot morphology, are applied to re-analyze the experimental data of Bejaoui et al. (Appl Phys B Lasers Opt, 116:313, 2014) for deriving the relative soot absorption function variation with wavelength at different locations in a rich premixed methane flat flame at atmospheric pressure. The present analysis showed that the soot absorption function varies with the height above the burner exit and can be correlated with the degree of soot maturation.

  2. Aqueous glucose measurement using differential absorption-based frequency domain optical coherence tomography at wavelengths of 1310 nm and 1625 nm

    NASA Astrophysics Data System (ADS)

    John, Pauline; Manoj, Murali; Sujatha, N.; Vasa, Nilesh J.; Rao, Suresh R.

    2015-07-01

    This work presents a combination of differential absorption technique and frequency domain optical coherence tomography for detection of glucose, which is an important analyte in medical diagnosis of diabetes. Differential absorption technique is used to detect glucose selectively in the presence of interfering species especially water and frequency domain optical coherence tomography (FDOCT) helps to obtain faster acquisition of depth information. Two broadband super-luminescent diode (SLED) sources with centre wavelengths 1586 nm (wavelength range of 1540 to 1640 nm) and 1312 nm (wavelength range of 1240 to 1380 nm) and a spectral width of ≍ 60 nm (FWHM) are used. Preliminary studies on absorption spectroscopy using various concentrations of aqueous glucose solution gave promising results to distinguish the absorption characteristics of glucose at two wavelengths 1310 nm (outside the absorption band of glucose) and 1625 nm (within the absorption band of glucose). In order to mimic the optical properties of biological skin tissue, 2% and 10% of 20% intralipid with various concentrations of glucose (0 to 4000 mg/dL) was prepared and used as sample. Using OCT technique, interference spectra were obtained using an optical spectrum analyzer with a resolution of 0.5 nm. Further processing of the interference spectra provided information on reflections from the surfaces of the cuvette containing the aqueous glucose sample. Due to the absorption of glucose in the wavelength range of 1540 nm to 1640 nm, a trend of reduction in the intensity of the back reflected light was observed with increase in the concentration of glucose.

  3. Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass Aerosol Extinction Differential Optical Absorption Spectrometer (AE-DOAS)

    NASA Astrophysics Data System (ADS)

    Chartier, R. T.; Greenslade, M. E.

    2012-04-01

    Atmospheric aerosols directly affect climate by scattering and absorbing radiation. The magnitude of the impact is dependent upon the wavelength of light, but is often estimated near 550 nm. When light scattering and absorption by aerosols is approximated, the wavelength dependence of the refractive index for specific components is lost. As a result, climate models would have inherent uncertainties for aerosol contributions to radiative forcing when considering the entire solar spectrum. An aerosol extinction differential optical absorption spectrometer has been developed to directly measure aerosol extinction at mid-ultraviolet to near infrared wavelengths. The instrument consists of a spectrometer coupled to a closed White-type multi-pass gas cell with an adjustable path length of up to approximately 20 m. Laboratory measurements of various gases are compared with known absorption cross sections. Additionally, the extinction of monodisperse samples of polystyrene latex spheres are measured and compared to Mie theory generated with refractive index values from the literature to validate the new instrument. The polystyrene experiments also emphasize the ability of the new instrument to retrieve the wavelength dependent refractive index, especially in the ultraviolet wavelength regions where variability is expected. The spectrometer will be a significant advancement for determining wavelength dependent complex refractive indices in future laboratory studies as well as provide the ability to monitor ambient aerosol light extinction.

  4. Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass aerosol extinction differential optical absorption spectrometer (AE-DOAS)

    NASA Astrophysics Data System (ADS)

    Chartier, R. T.; Greenslade, M. E.

    2011-10-01

    Atmospheric aerosols directly affect climate by scattering and absorbing radiation. The magnitude of the impact is dependent upon the wavelength of light, but is often estimated near 550 nm. When light scattering and absorption by aerosols is approximated, the wavelength dependence of the refractive index for specific components is lost. As a result, climate models would have inherent uncertainties for aerosol contributions to radiative forcing when considering the entire solar spectrum. An aerosol extinction differential optical absorption spectrometer has been developed to directly measure aerosol extinction at mid-ultraviolet to near infrared wavelengths. The instrument consists of a spectrometer coupled to a closed White-type multi-pass gas cell with an adjustable path length of up to approximately 20 m. Laboratory measurements of various gases are compared with known absorption cross sections. Additionally, the extinction of monodisperse samples of polystyrene latex spheres are measured and compared to Mie theory generated with refractive index values from the literature to validate the new instrument. The polystyrene experiments also emphasize the ability of the new instrument to retrieve the wavelength dependent refractive index, especially in the ultraviolet wavelength regions where variability is expected. The spectrometer will be a significant advancement for determining wavelength dependent complex refractive indices in future laboratory studies as well as provide the ability to monitor ambient aerosol light extinction.

  5. [Simultaneous determination of cobalt and nickel in catalyst by microwave digestion-dual wavelength equal absorption spectrophotometry].

    PubMed

    Li, L; Zhang, J; Gao, C

    2001-08-01

    Catalyst samples are digested in a microwave digestion system. The optimum parameters for microwave digestion are selected. Cobalt and nickel in the mixture of Co2+ and Ni2+ with 4-(2-pyridylazo) resorcinol (PAR) can be determined simultaneously by dual-wavelength equal absorption spectrophotometry. By means of the combination of two methods, Co2+ and Ni2+ in catalyst can be determined rapidly, accurately, and contamination problems avoided. The linear ranges are 0-30 micrograms.25 mL-1 for Co2+ and 0-25 micrograms.25 mL-1 for Ni2+. The recoveries of Co2+ and Ni2+ in synthetic samples are between 98.2%-103.6% and between 97.9%-103.7%, respectively. The relative standard deviations of analytical results in catalyst samples are less than 2.2% for Co2+ and less than 1.8% for Ni2+, and relative errors are less than +/- 2.5% for Co2+ and Ni2+.

  6. Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 um

    NASA Technical Reports Server (NTRS)

    Yang, Ping; Bi, Lei; Baum, Bryan A.; Liou, Kuo-Nan; Kattawar, George W.; Mishchenko, Michael I.; Cole, Benjamin

    2013-01-01

    A data library is developed containing the scattering, absorption, and polarization properties of ice particles in the spectral range from 0.2 to 100 microns. The properties are computed based on a combination of the Amsterdam discrete dipole approximation (ADDA), the T-matrix method, and the improved geometric optics method (IGOM). The electromagnetic edge effect is incorporated into the extinction and absorption efficiencies computed from the IGOM. A full set of single-scattering properties is provided by considering three-dimensional random orientations for 11 ice crystal habits: droxtals, prolate spheroids, oblate spheroids, solid and hollow columns, compact aggregates composed of eight solid columns, hexagonal plates, small spatial aggregates composed of 5 plates, large spatial aggregates composed of 10 plates, and solid and hollow bullet rosettes. The maximum dimension of each habit ranges from 2 to 10,000 microns in 189 discrete sizes. For each ice crystal habit, three surface roughness conditions (i.e., smooth, moderately roughened, and severely roughened) are considered to account for the surface texture of large particles in the IGOM applicable domain. The data library contains the extinction efficiency, single-scattering albedo, asymmetry parameter, six independent nonzero elements of the phase matrix (P11, P12, P22, P33, P43, and P44), particle projected area, and particle volume to provide the basic single-scattering properties for remote sensing applications and radiative transfer simulations involving ice clouds. Furthermore, a comparison of satellite observations and theoretical simulations for the polarization characteristics of ice clouds demonstrates that ice cloud optical models assuming severely roughened ice crystals significantly outperform their counterparts assuming smooth ice crystals.

  7. LASER MEDICINE: Effect of laser radiation absorption in water and blood on the optimal wavelength for endovenous obliteration of varicose veins

    NASA Astrophysics Data System (ADS)

    Zhilin, K. M.; Minaev, V. P.; Sokolov, Aleksandr L.

    2009-08-01

    This work examines laser radiation absorption in water and blood at the wavelengths that are used in endovenous laser treatment (EVLT): 0.81-1.06, 1.32, 1.47, 1.5 and 1.56 μm. It is shown that the best EVLT conditions are ensured by 1.56-μm radiation. Analysis of published data suggests that even higher EVLT efficacy may be achieved at wavelengths of 1.68 and 1.7 μm.

  8. Mass-specific optical absorption coefficients and imaginary part of the complex refractive indices of mineral dust components measured by a multi-wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2015-01-01

    Mass-specific optical absorption coefficients (MACs) and the imaginary part (κ) of the refractive indices of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at the wavelengths of 1064, 532, 355 and 266 nm. The MAC values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. Values of κ were calculated from the measured and particle-loss-corrected data by using a Mie-theory-based retrieval algorithm. The determined values could be used for comparisons with calculated wavelength-dependent κ values typically deduced from bulk-phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk-phase measurements.

  9. Extension of the Inverse Adding-Doubling Method to the Measurement of Wavelength-Dependent Absorption and Scattering Coefficients of Biological Samples

    SciTech Connect

    Baba, Justin S; Allegood, Marcus S

    2008-01-01

    Light interaction with biological tissue can be described using three parameters: the scattering and absorption coefficients (us and ua), as well as the anisotropy (g) which describes the directional dependence of the scattered photons. Accurately determining these optical properties for different tissue types at specific wavelengths, and simultaneously, would be beneficial for a variety of different biomedical applications. The goal of this project was to take a user-defined g-value and determine the remaining two parameters for a specified wavelength range for an integrating sphere with a collimated white light input source system. A fully automated computer program and process was developed to collect data for all wavelengths in a timely and accurate manner. LabVIEW was used to write programs to automate: raw intensity data collection from a spectrometer equipped integrating sphere, conversion of the data into a format for analysis via Scott Prahl's Inverse Adding-Doubling (IAD) C code execution, and computation of the optical properties based on the output from the IAD code. To allow data to be passed efficiently between LabVIEW and C code program modules, the two were combined into a single program (OPT 3.1). OPT 3.1 was tested using tissue mimicking phantoms and determination of the absorption and scattering coefficients showed excellent agreement with theory for wavelengths were the user inputted single g-value was sufficiently precise. Future improvements entail providing for multi-wavelength g-value entry to extend the accuracy of results to encompass the complete system multispectral range. Ultimately, the data collection process and algorithms developed through this effort will be used to study actual biological tissues for the purpose of deriving and refining models for light-tissue interactions.

  10. EXTENSION OF THE INVERSE ADDING-DOUBLING METHOD TO THE MEASUREMENT OF WAVELENGTH-DEPENDENT ABSORPTION AND SCATTERING COEFFICIENTS OF BIOLOGICAL SAMPLES

    SciTech Connect

    Allegood, M.S.; Baba, J.S.

    2008-01-01

    Light interaction with biological tissue can be described using three parameters: the scattering and absorption coeffi cients (μs and μa), as well as the anisotropy (g) which describes the directional dependence of the scattered photons. Accurately determining these optical properties for different tissue types at specifi c wavelengths simultaneously would be benefi cial for a variety of different biomedical applications. The goal of this project was to take a user defi ned g-value and determine the remaining two parameters for a specifi ed wavelength range. A fully automated computer program and process was developed to collect data for all wavelengths in a timely and accurate manner. LabVIEW® was used to write programs to automate raw intensity data collection from a spectrometer equipped integrating sphere, conversion of the data into a format for analysis via Scott Prahl’s Inverse Adding-Doubling (IAD) C code execution, and fi nally computation of the optical properties based on the output from the IAD code. To allow data to be passed effi ciently between LabVIEW® and C code program modules, the two were combined into a single program (OPT 3.1). OPT 3.1 was tested using tissue mimicking phantoms. Determination of the absorption and scattering coeffi cients showed excellent agreement with theory for wavelengths where the user inputted single g-value was suffi ciently precise. Future improvements entail providing for multi-wavelength g-value entry to extend the accuracy of results to encompass the complete multispectral range. Ultimately, the data collection process and algorithms developed through this effort will be used to examine actual biological tissues for the purpose of building and refi ning models for light-tissue interactions.

  11. Reduction of patterning effects in SOA-based wavelength converters by combining cross-gain and cross-absorption modulation.

    PubMed

    Zhou, Enbo; Ohman, Filip; Cheng, Cheng; Zhang, Xinliang; Hong, Wei; Mørk, Jesper; Huang, Dexiu

    2008-12-22

    A scheme for mitigating patterning effects in wavelength conversion by using a concatenated semiconductor optical amplifier (SOA) and electroabsorption modulator (EAM) is proposed. The optimization of the parameters of the semiconductor devices and receiver electronics is theoretically investigated. The bit error ratio (BER) of the output signals in both the co-propagating and the counter-propagating configurations is quantitatively evaluated. The simulation results indicate that the patterning effect in wavelength conversion due to the slow recovery of the carrier density in the SOA can be well compensated by a concatenated EAM. The simulation results are confirmed by preliminary pump-probe experiment using a 10Gb/s clock pulse train.

  12. Robust and economical multi-sample, multi-wavelength UV/vis absorption and fluorescence detector for biological and chemical contamination

    NASA Astrophysics Data System (ADS)

    Lu, Peter J.; Hoehl, Melanie M.; Macarthur, James B.; Sims, Peter A.; Ma, Hongshen; Slocum, Alexander H.

    2012-09-01

    We present a portable multi-channel, multi-sample UV/vis absorption and fluorescence detection device, which has no moving parts, can operate wirelessly and on batteries, interfaces with smart mobile phones or tablets, and has the sensitivity of commercial instruments costing an order of magnitude more. We use UV absorption to measure the concentration of ethylene glycol in water solutions at all levels above those deemed unsafe by the United States Food and Drug Administration; in addition we use fluorescence to measure the concentration of d-glucose. Both wavelengths can be used concurrently to increase measurement robustness and increase detection sensitivity. Our small robust economical device can be deployed in the absence of laboratory infrastructure, and therefore may find applications immediately following natural disasters, and in more general deployment for much broader-based testing of food, agricultural and household products to prevent outbreaks of poisoning and disease.

  13. Measurements of the absorption cross section of (13)CHO(13)CHO at visible wavelengths and application to DOAS retrievals.

    PubMed

    Goss, Natasha R; Waxman, Eleanor M; Coburn, Sean C; Koenig, Theodore K; Thalman, Ryan; Dommen, Josef; Hannigan, James W; Tyndall, Geoffrey S; Volkamer, Rainer

    2015-05-14

    The trace gas glyoxal (CHOCHO) forms from the atmospheric oxidation of hydrocarbons and is a precursor to secondary organic aerosol. We have measured the absorption cross section of disubstituted (13)CHO(13)CHO ((13)C glyoxal) at moderately high (1 cm(-1)) optical resolution between 21 280 and 23 260 cm(-1) (430-470 nm). The isotopic shifts in the position of absorption features were found to be largest near 455 nm (Δν = 14 cm(-1); Δλ = 0.29 nm), whereas no significant shifts were observed near 440 nm (Δν < 0.5 cm(-1); Δλ < 0.01 nm). These shifts are used to investigate the selective detection of (12)C glyoxal (natural isotope abundance) and (13)C glyoxal by in situ cavity enhanced differential optical absorption spectroscopy (CE-DOAS) in a series of sensitivity tests using synthetic spectra, and laboratory measurements of mixtures containing (12)C and (13)C glyoxal, nitrogen dioxide, and other interfering absorbers. We find the changes in apparent spectral band shapes remain significant at the moderately high optical resolution typical of CE-DOAS (0.55 nm fwhm). CE-DOAS allows for the selective online detection of both isotopes with detection limits of ∼200 pptv (1 pptv = 10(-12) volume mixing ratio), and sensitivity toward total glyoxal of few pptv. The (13)C absorption cross section is available for download from the Supporting Information.

  14. Quantification of the dynamic changes in the absorption coefficient of liquid water at erbium:YAG and carbon dioxide laser wavelengths

    NASA Astrophysics Data System (ADS)

    Shori, Ramesh K.

    The interaction of high-intensity, short-pulsed radiation with liquid water results in dynamic changes in the optical absorption coefficient of water. These changes and their implications, as related to mid-infrared laser ablation of tissue, were not investigated until the late 1980's and early 1990's. Classical models of absorption and heating do not explain the dynamic, non-linear changes in water. The objective of the present work was to quantify the dynamic changes in the absorption coefficient of liquid water as a function of incident energy at three clinically relevant infrared wavelengths (λ = 2.94, 9.6, 10.6 μm). To investigate the changes in the absorption spectrum of water in the 3-μm band, a stable, high-energy Q- switched Er:YAG laser emitting 2.94-μm radiation in a near-perfect TEMoo spatial beam profile was developed. Key to the development of this laser was careful attention to the gain medium, optical pump system, system optics, and the thermal system. The final system design was capable of emitting 110 mJ/pulse at of 2-4 Hz with a lamp lifetime exceeding 12 million pulses The laser was used in two sets of experiments in order to quantify the above changes. First, the laser was used to measure the velocity of the shock front produced by vaporizing a gelatin-based tissue phantom. The measured shock velocity was related to the optical energy absorbed by the tissue phantom and the absorption coefficient, based on the pressure relationships derived using a 1-D piston model for an expanding plume. The shock front velocity measurements indicate that the absorption coefficient is constant for incident fluences less than 20 J/cm2, a result consistent with transmission data. For higher fluences, the data indicate a decrease in the absorption coefficient, which is again consistent with transmission data. Quantification of the absorption coefficient can, however, not be made without violating assumptions that form the basis for the 1-D piston model. Second

  15. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films

    PubMed Central

    Kim, Tae Young; Badsha, Md. Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2016-01-01

    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices. PMID:26965195

  16. General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films

    NASA Astrophysics Data System (ADS)

    Kim, Tae Young; Badsha, Md. Alamgir; Yoon, Junho; Lee, Seon Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2016-03-01

    We propose a general, easy-to-implement scheme for broadband coherent perfect absorption (CPA) using epsilon-near-zero (ENZ) multilayer films. Specifically, we employ indium tin oxide (ITO) as a tunable ENZ material, and theoretically investigate CPA in the near-infrared region. We first derive general CPA conditions using the scattering matrix and the admittance matching methods. Then, by combining these two methods, we extract analytic expressions for all relevant parameters for CPA. Based on this theoretical framework, we proceed to study ENZ CPA in a single layer ITO film and apply it to all-optical switching. Finally, using an ITO multilayer of different ENZ wavelengths, we implement broadband ENZ CPA structures and investigate multi-wavelength all-optical switching in the technologically important telecommunication window. In our design, the admittance matching diagram was employed to graphically extract not only the structural parameters (the film thicknesses and incident angles), but also the input beam parameters (the irradiance ratio and phase difference between two input beams). We find that the multi-wavelength all-optical switching in our broadband ENZ CPA system can be fully controlled by the phase difference between two input beams. The simple but general design principles and analyses in this work can be widely used in various thin-film devices.

  17. [Decomposition of hemoglobin UV absorption spectrum into absorption spectra of prosthetic group and apoprotein by means of an additive model].

    PubMed

    Lavrinenko, I A; Vashanov, G A; Artyukhov, V G

    2015-01-01

    The decomposition pathways of hemoglobin UV absorption spectrum into the absorption spectra of the protein and non-protein components are proposed and substantiated by means of an additive model. We have established that the heme component has an absorption band with a maximum at λ(max) = 269.2 nm (ε = 97163) and the apoprotein component has an absorption band with a maximum at λ(max) = 278.4 nm (ε = 48669) for the wavelength range from 240.0 to 320.0 nm. An integral relative proportion of absorption for the heme fraction (78.8%) and apoprotein (21.2%) in the investigating wavelength range is defined.

  18. Adsorption of dissolved organic matter onto activated carbon--the influence of temperature, absorption wavelength, and molecular size.

    PubMed

    Schreiber, Bernd; Brinkmann, Thomas; Schmalz, Viktor; Worch, Eckhard

    2005-09-01

    In this study, batch and column adsorption experiments with granular activated carbon (GAC) were carried out for removing dissolved organic matter (DOM) of a pond water at different water temperatures (5, 20, and 35 degrees C). The water was characterized before and after the adsorption step using UV/VIS spectroscopy and size-exclusion chromatography (SEC) combined with diode array detection (DAD). DOM breakthrough of GAC filters has been found to be slower at higher water temperatures, the DOM removal being most effective at 35 degrees C. UV/VIS spectra and SEC chromatograms of water samples treated at different water temperatures indicate that an increase in temperature especially supports the adsorption of small DOM molecules as well as molecules absorbing at higher wavelengths, specifying aromatic structures of DOM. SEC-DAD has been demonstrated to be an efficient method for characterizing DOM of natural waters and for detecting relative changes of DOM during the water treatment process.

  19. Cascaded wavelength conversion as favorable application of nonlinear optical polymers.

    PubMed

    Kim, Min-Su; Ju, Jung Jin; Park, Seung Koo; Do, Jung Yun; Lee, Myung-Hyun

    2008-06-23

    Nonlinear optical (NLO) polymers have been considered promising materials for wavelength conversion at a low pump power. However, they have not been readily adopted to practical applications due to their high absorption coefficients, especially at a shorter interacting wavelength. Our theoretical analysis proves that the influence of absorption coefficients can be mitigated significantly in cascaded wavelength conversion (CWC) processes. According to our example study, maximum conversion efficiencies for CWC can compare even with those for second-harmonic generation in many NLO polymers. Thus CWC can become a pertinent application of NLO polymers. However, to obtain such efficient CWC, several realistic problems should be resolved in practical devices.

  20. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory.

    PubMed

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-Ichi; Bowler, David R; Miki, Kazushi

    2017-04-20

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi-Si bond length from [Formula: see text] to [Formula: see text] Å. We infer that following epitaxial growth the Bi-Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi-Si bond lengths.

  1. Lidar reflectance from snow at 2.05  μm wavelength as measured by the JPL Airborne Laser Absorption Spectrometer.

    PubMed

    Spiers, Gary D; Menzies, Robert T; Jacob, Joseph C

    2016-03-10

    We report airborne measurements of lidar directional reflectance (backscatter) from land surfaces at a wavelength in the 2.05 μm CO₂ absorption band, with emphasis on snow-covered surfaces in various natural environments. Lidar backscatter measurements using this instrument provide insight into the capabilities of lidar for both airborne and future global-scale CO₂ measurements from low Earth orbit pertinent to the NASA Active Sensing of CO₂ Emissions over Nights, Days, and Seasons mission. Lidar measurement capability is particularly useful when the use of solar scattering spectroscopy is not feasible for high-accuracy atmospheric CO₂ measurements. Consequently, performance in high-latitude and winter season environments is an emphasis. Snow-covered surfaces are known to be dark in the CO₂ band spectral regions. The quantitative backscatter data from these field measurements help to elucidate the range of backscatter values that can be expected in natural environments.

  2. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory

    NASA Astrophysics Data System (ADS)

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-ichi; Bowler, David R.; Miki, Kazushi

    2017-04-01

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi–Si bond length from 2.79+/- 0.01~{\\mathring{\\text{A}}} to 2.63+/- 0.02 Å. We infer that following epitaxial growth the Bi–Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi–Si bond lengths.

  3. Optical effects of abaxial anthocyanin on absorption of red wavelengths by understorey species: revisiting the back-scatter hypothesis.

    PubMed

    Hughes, Nicole M; Vogelmann, Thomas C; Smith, William K

    2008-01-01

    A red/purple coloration of lower (abaxial) leaf surfaces is commonly observed in deeply-shaded understorey plants, especially in the tropics. However, the functional significance of red abaxial coloration, including its role in photosynthetic adaptation, remains unclear. The objective of this study was to test the back-scatter hypothesis for abaxial leaf coloration, which posits that red pigments internally reflect/scatter red light transmitted by the upper leaf surface back into the mesophyll, thereby enhancing photon capture in light-limited environments. Abaxially red/non-red variegated leaves of Begonia heracleifolia (Cham. & Schltdl.) were used to compare reflectance spectra and chlorophyll fluorescence profiles of abaxially anthocyanic (red) and acyanic (non-red) tissues under red light. Photosynthetic gas exchange in response to red light was also compared for abaxially red/non-red leaf sections. The results did not support a back-scattering function, as anthocyanic leaf surfaces were not more reflective of red light than acyanic surfaces. Anthocyanic tissues also did not exhibit any increases in the mesophyll absorbance of red light, or increased photosynthetic gas exchange under red light at any intensity, relative to acyanic tissues. These results suggest that abaxial anthocyanins do not significantly enhance the absorption of red light in the species tested, and alternative functions are discussed.

  4. MULTI-WAVELENGTH STUDIES OF SPECTACULAR RAM PRESSURE STRIPPING OF A GALAXY: DISCOVERY OF AN X-RAY ABSORPTION FEATURE

    SciTech Connect

    Gu, Liyi; Makishima, Kazuo; Yagi, Masafumi; Nakazawa, Kazuhiro; Yoshida, Michitoshi; Fujita, Yutaka; Hattori, Takashi; Akahori, Takuya

    2013-11-10

    We report the detection of an X-ray absorption feature near the galaxy M86 in the Virgo cluster. The absorber has a column density of 2-3 × 10{sup 20} cm{sup –2}, and its position coincides with the peak of an intracluster H I cloud which was removed from the galaxy NGC 4388 presumably by ram pressure. These results indicate that the H I cloud is located in front of M86 along the line-of-sight, and suggest that the stripping was primarily created by an interaction between NGC 4388 and the hot plasmas of the Virgo cluster, not the M86 halo. By calculating an X-ray temperature map, we further detected an X-ray counterpart of the H I cloud up to ≈3' south of M86. It has a temperature of 0.89 keV and a mass of ∼4.5 × 10{sup 8} M {sub ☉}, exceeding the estimated H I gas mass. The high hot-to-cold gas ratio in the cloud indicates a significant evaporation of the H I gas, probably by thermal conduction from the hotter cluster plasma with a sub-Spitzer rate.

  5. Infrared Attenuation Spectrum of Bulk High-Resistivity CdZnTe Single Crystal in Transparent Wavelength Region Between Electronic and Lattice Absorptions

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Kaji, Sayumi; Ikeda, Yuji; Kobayashi, Naoto; Sukegawa, Takashi; Nakagawa, Takao; Kataza, Hirokazu; Kondo, Sohei; Yasui, Chikako; Nakanishi, Kenshi; Kawakita, Hideyo

    2017-01-01

    We report measurement of the internal attenuation coefficient, α _{att}, of a bulk high-resistivity cadmium zinc telluride (CdZnTe) single crystal at wavelength, λ = 0.84-26 μm, to the unprecedentedly low level of α _{att} ˜ 0.001 cm^{-1}. This measurement reveals the spectral behavior for small attenuation in the infrared transparent region between the electronic and lattice absorptions. This result is essential for application of CdZnTe as an infrared transmitting material. Comparing the attenuation spectrum with model spectra obtained on the basis of Mie theory, we find that sub-micrometer-sized Te particles (inclusions) with a number density of approximately 10^{7.5-9} cm^{-3} are the principal source of the small attenuation observed at λ = 0.9-13 μm. In addition, we determine α _{att} = (7.7 ± 1.9) × 10^{-4} cm^{-1} at λ = 10.6 μm, which is valuable for CO_2 laser applications. Higher transparency can be achieved by reducing the number of inclusions rather than the number of precipitates. This study also demonstrates that high-accuracy measurement of CdZnTe infrared transmittance is a useful approach to investigating the number density of sub-micrometer-sized Te particles that cannot be identified via infrared microscopy.

  6. Simultaneous Maximum-Likelihood Reconstruction of Absorption Coefficient, Refractive Index and Dark-Field Scattering Coefficient in X-Ray Talbot-Lau Tomography

    PubMed Central

    Ritter, André; Anton, Gisela; Weber, Thomas

    2016-01-01

    A maximum-likelihood reconstruction technique for X-ray Talbot-Lau tomography is presented. This technique allows the iterative simultaneous reconstruction of discrete distributions of absorption coefficient, refractive index and a dark-field scattering coefficient. This technique avoids prior phase retrieval in the tomographic projection images and thus in principle allows reconstruction from tomographic data with less than three phase steps per projection. A numerical phantom is defined which is used to evaluate convergence of the technique with regard to photon statistics and with regard to the number of projection angles and phase steps used. It is shown that the use of a random phase sampling pattern allows the reconstruction even for the extreme case of only one single phase step per projection. The technique is successfully applied to measured tomographic data of a mouse. In future, this reconstruction technique might also be used to implement enhanced imaging models for X-ray Talbot-Lau tomography. These enhancements might be suited to correct for example beam hardening and dispersion artifacts and improve overall image quality of X-ray Talbot-Lau tomography. PMID:27695126

  7. Two-photon absorption in SiO{sub 2}- and (SiO{sub 2} + GeO{sub 2})-based fibres at a wavelength of 349 nm

    SciTech Connect

    Chunaev, D S; Karasik, A Ya

    2014-06-30

    The nonlinear two-photon light absorption coefficients have been measured in an optical fibre with a quartz glass (SiO{sub 2}) core and in a fibre with a germanosilicate glass (SiO{sub 2} + GeO{sub 2}) core. The two-photon absorption coefficient β measured at a wavelength of 349 nm in the (SiO{sub 2} + GeO{sub 2})-based fibre (13.7 cm TW{sup -1}) multiply exceeds that for the pure quartz glass optical fibre (0.54 cm TW{sup -1}). (nonlinear optical phenomena)

  8. Full-Quantum chemical calculation of the absorption maximum of bacteriorhodopsin: a comprehensive analysis of the amino acid residues contributing to the opsin shift

    PubMed Central

    Hayashi, Tomohiko; Matsuura, Azuma; Sato, Hiroyuki; Sakurai, Minoru

    2012-01-01

    Herein, the absorption maximum of bacteriorhodopsin (bR) is calculated using our recently developed method in which the whole protein can be treated quantum mechanically at the level of INDO/S-CIS//ONIOM (B3LYP/6-31G(d,p): AMBER). The full quantum mechanical calculation is shown to reproduce the so-called opsin shift of bR with an error of less than 0.04 eV. We also apply the same calculation for 226 different bR mutants, each of which was constructed by replacing any one of the amino acid residues of the wild-type bR with Gly. This substitution makes it possible to elucidate the extent to which each amino acid contributes to the opsin shift and to estimate the inter-residue synergistic effect. It was found that one of the most important contributions to the opsin shift is the electron transfer from Tyr185 to the chromophore upon excitation. We also indicate that some aromatic (Trp86, Trp182) and polar (Ser141, Thr142) residues, located in the vicinity of the retinal polyene chain and the β-ionone ring, respectively, play an important role in compensating for the large blue-shift induced by both the counterion residues (Asp85, Asp212) and an internal water molecule (W402) located near the Schiff base linkage. In particular, the effect of Trp86 is comparable to that of Tyr185. In addition, Ser141 and Thr142 were found to contribute to an increase in the dipole moment of bR in the excited state. Finally, we provide a complete energy diagram for the opsin shift together with the contribution of the chromophore-protein steric interaction. PMID:27493528

  9. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  10. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: Experiment

    SciTech Connect

    Zhang, Xiaorong; Li, Bincheng

    2015-02-15

    Surface thermal lens is a highly sensitive photothermal technique to measure low absorption losses of various solid materials. In such applications, the sensitivity of surface thermal lens is a key parameter for measuring extremely low absorption. In this paper, we experimentally investigated the influence of probe beam wavelength on the sensitivity of surface thermal lens for measuring the low absorptance of optical laser components. Three probe lasers with wavelength 375 nm, 633 nm, and 1570 nm were used, respectively, to detect the surface thermal lens amplitude of a highly reflective coating sample excited by a cw modulated Gaussian beam at 1064 nm. The experimental results showed that the maximum amplitude of surface thermal lens signal obtained at corresponding optimized detection distance was inversely proportional to the wavelength of the probe beam, as predicted by previous theoretical model. The sensitivity of surface thermal lens could, therefore, be improved by detecting surface thermal lens signal with a short-wavelength probe beam.

  11. Non-linear absorption of 1.3-μm wavelength femtosecond laser pulses focused inside semiconductors: Finite difference time domain-two temperature model combined computational study

    NASA Astrophysics Data System (ADS)

    Bogatyrev, I. B.; Grojo, D.; Delaporte, P.; Leyder, S.; Sentis, M.; Marine, W.; Itina, T. E.

    2011-11-01

    We present a theoretical model, which describes local energy deposition inside IR-transparent silicon and gallium arsenide with focused 1.3-μm wavelength femtosecond laser pulses. Our work relies on the ionization rate equation and two temperature model (TTM), as we simulate the non-linear propagation of focused femtosecond light pulses by using a 3D finite difference time domain method. We find a strong absorption dependence on the initial free electron density (doping concentration) that evidences the role of avalanche ionization. Despite an influence of Kerr-type self-focusing at intensity required for non-linear absorption, we show the laser energy deposition remains confined when the focus position is moved down to 1-mm below the surface. Our simulation results are in agreement with the degree of control observed in a simple model experiment.

  12. Effect of buffer gases on broadening of the Iodine-127 resonance absorption line at a 633-nm He-Ne laser wavelength

    SciTech Connect

    Kireev, S.V.; Shnyrev, S.L.; Zaspa, Yu.P.

    1995-04-01

    Collisional broadening coefficients are measured for iodine-127 resonance absorption lines in several rare cases of atmospheric air and CO{sub 2}. The results obtained are used to determine the optimum pressure of a gaseous mixture in a measuring cell for detecting iodine-127 by a helium-neon (633 nm) laser-induced fluorescence technique of monitoring iodine in atmospheric air.

  13. Non-Destructive and Discriminating Identification of Illegal Drugs by Transient Absorption Spectroscopy in the Visible and Near-IR Wavelength Range

    NASA Astrophysics Data System (ADS)

    Sato, Chie; Furube, Akihiro; Katoh, Ryuzi; Nonaka, Hidehiko; Inoue, Hiroyuki

    2008-11-01

    We have tested the possibility of identifying illegal drugs by means of nanosecond transient absorption spectroscopy with a 10-ns UV-laser pulse for the excitation light and visible-to-near-IR light for the probe light. We measured the transient absorption spectra of acetonitrile solutions of d-methamphetamine, dl-3,4-methylenedioxymethamphetamine hydrochloride (MDMA), and dl-N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine hydrochloride (MBDB), which are illegal drugs widely consumed in Japan. Transient absorption signals of these drugs were observed between 400 and 950 nm, a range in which they are transparent in the ground state. By analyzing the spectra in terms of exponential and Gaussian functions, we could identify the drugs and discriminate them from chemical substances having similar structures. We propose that transient absorption spectroscopy will be a useful, non-destructive method of inspecting for illegal drugs, especially when they are dissolved in liquids. Such a method may even be used for drugs packed in opaque materials if it is further extended to utilize intense femtosecond laser pulses.

  14. Phase function, backscatter, extinction, and absorption for standard radiation atmosphere and El Chichon aerosol models at visible and near-infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Suttles, J. T.; Lecroy, S. R.

    1985-01-01

    Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data.

  15. The isolation of prophyra-334 from marine algae and its UV-absorption behavior

    NASA Astrophysics Data System (ADS)

    Zhaohui, Zhang; Xin, Gao; Tashiro, Yuri; Matsukawa, Shingo; Ogawa, Hiroo

    2005-12-01

    Prophyra-334 was prepared by methanol extraction and HPLC methods from marine algae (dried laver). It is a sunscreen compound that has good absorption of ultraviolet radiations in the wavelength ranges of 200-400 nm. The absorption maximum wavelength of prophyra-334 is at 334 nm, so defined the name. The molar extinction coefficient (ɛ) of prophyra-334 in aqueous solution at 334 nm wavelength is 4.23×104. The absorption of prophyra-334 in organic solvents differs in aqueous solutions. In polar organic solvents, the absorption maximum wavelength of prophyra-334 has a slight shift toward longer wavelength compared with that in pure water. On the contrary, in inert non-polar organic solvents, the absorption maximum wavelength and the shape of absorption spectra of prophyra-334 are changed. The effects of organic solvents on prophyra-334 stability suggested that: (1) the absorbance of prophyra-334 in water is generally constant at temperature of 60°C in 24 h, meaning that prophyra-334 is quite stable in water; (2) the absorbance of prophyra-334 in ethanol and hexane decreases at the same condition. The stability of prophyra-334 in organic solvents is less than that in aqueous solution. In benzene, the prophyra-334 is very instable.

  16. Simultaneous imaging of temperature and concentration of ethanol-water mixtures in microchannel using near-infrared dual-wavelength absorption technique

    NASA Astrophysics Data System (ADS)

    Kakuta, Naoto; Yamashita, Hiroki; Kawashima, Daisuke; Kondo, Katsuya; Arimoto, Hidenobu; Yamada, Yukio

    2016-11-01

    This paper presents a simultaneous imaging method of temperature and ethanol concentration of ethanol-water mixtures in microfluidic channels. The principle is based on the facts that the absorbance at a wavelength of 1905 nm is dependent on the temperature of water and that the absorbance at 1935 nm is independent of the temperature but strongly dependent on the molar concentration of water, which is reciprocal to the molar concentration of ethanol in the mixture. The absorbance images at the two wavelengths were acquired alternately, each at 50 frames per second, by an alternate irradiation system and near-infrared (NIR) camera, and then converted to the temperature and concentration images by a linear regression model. The imaging method was applied to a dilute ethanol-water mixture with an ethanol concentration of 0.43 M and water flowing side by side in a temperature-controlled Y-channel. The concentration images clearly showed differences between the mixture and water streams, and that the transverse concentration gradient between the two streams decreased downstream by mutual diffusion. It was also confirmed that the mutual diffusion coefficient increased as the temperature increased. The temperature images showed that uniform distributions were immediately formed due to heat transfer between the fluid and channel materials.

  17. Improving dye laser efficiency with uv absorbers and wavelength shifters. Final report

    SciTech Connect

    Matheson, K L; Thorne, J M

    1981-01-01

    The nonuniform heating in flashlamp pumped dye lasers forms refractive index gradients in the dye solution. These gradients distort the wavefront of the laser beam resulting in limited output power, limited pulse repetition rate, and limited attainable linewidth. The theorectical bases for using uv absorbers and wavelength shifters to eliminate light of detrimental wavelengths and thereby improve dye laser efficiency are described, and the results of experiments for evaluating 12 uv absorbers and 12 wavelength filters for use as possible pump light filters are presented. These experiments showed that the appropriate uv absorber or wavelength shifter to be used with a given laser dye is based on the absorption spectrum of the dye. If a uv absorber is needed, then the compound should be chosen so that its long wavelength absorption peak is just to the short wavelength side of the absorption peaks of the laser dye. If a wavelength shifter is needed, then the compound should be chosen so that there is maximum overlap between the fluorescence spectrum of the shifter and the absorption spectrum of the dye. Tabulated data are presented which can be used to selected protectors and shifters for specific dyes. (LCL)

  18. Nonlinear absorption and optical strength of BaF{sub 2} and Al{sub 2}O{sub 3} at the wavelength of 248 nm

    SciTech Connect

    Morozov, Nikolai V; Sergeev, P B; Reiterov, V M

    1999-11-30

    An experimental investigation was made of the dependence of the transmission of BaF{sub 2} and Al{sub 2}O{sub 3} samples on the intensity of KrF-laser radiation ({lambda} = 248 nm) pulses of 85 ns duration. The two-photon absorption coefficients were found at {lambda} = 248 nm and their values for these two crystals were 0.5 {+-} 0.2 and 2 {+-} 1 cm Gw{sup -1}. The surface and bulk laser breakdown thresholds were determined for these samples. (nonlinear optical phenomena)

  19. Predissociation linewidths of the (1,0)-(12,0) Schumann-Runge absorption bands of O2 in the wavelength region 179-202 nm

    NASA Technical Reports Server (NTRS)

    Cheung, A. S.-C.; Yoshino, K.; Esmond, J. R.; Chiu, S. S.-L.; Freeman, D. E.

    1990-01-01

    A nonlinear least-squares method of retrieving predissociation linewidths from the experimental absolute absorption cross sections of Yoshino et al. (1983) has been applied to the (1,0)-(12,0) Schumann-Runge bands of oxygen. The predissociation linewidths deduced are larger than the theoretical predictions of Julienne (1976) and the latest measurements of Lewis et al. (1986). The larger linewidths found will have an impact on calculations of solar flux penetration into the earth atmosphere and of the photodissociation rates of trace species in the upper atmosphere.

  20. Human wavelength discrimination of monochromatic light explained by optimal wavelength decoding of light of unknown intensity.

    PubMed

    Zhaoping, Li; Geisler, Wilson S; May, Keith A

    2011-01-01

    We show that human ability to discriminate the wavelength of monochromatic light can be understood as maximum likelihood decoding of the cone absorptions, with a signal processing efficiency that is independent of the wavelength. This work is built on the framework of ideal observer analysis of visual discrimination used in many previous works. A distinctive aspect of our work is that we highlight a perceptual confound that observers should confuse a change in input light wavelength with a change in input intensity. Hence a simple ideal observer model which assumes that an observer has a full knowledge of input intensity should over-estimate human ability in discriminating wavelengths of two inputs of unequal intensity. This confound also makes it difficult to consistently measure human ability in wavelength discrimination by asking observers to distinguish two input colors while matching their brightness. We argue that the best experimental method for reliable measurement of discrimination thresholds is the one of Pokorny and Smith, in which observers only need to distinguish two inputs, regardless of whether they differ in hue or brightness. We mathematically formulate wavelength discrimination under this wavelength-intensity confound and show a good agreement between our theoretical prediction and the behavioral data. Our analysis explains why the discrimination threshold varies with the input wavelength, and shows how sensitively the threshold depends on the relative densities of the three types of cones in the retina (and in particular predict discriminations in dichromats). Our mathematical formulation and solution can be applied to general problems of sensory discrimination when there is a perceptual confound from other sensory feature dimensions.

  1. A Compact Tunable Diode Laser Absorption Spectrometer to Monitor CO2 at 2.7 μm Wavelength in Hypersonic Flows

    PubMed Central

    Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal

    2010-01-01

    Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship’s Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow. PMID:22219703

  2. Opacity of iron, nickel, and copper plasmas in the x-ray wavelength range: Theoretical interpretation of 2p-3d absorption spectra

    SciTech Connect

    Blenski, T.; Loisel, G.; Poirier, M.; Thais, F.; Arnault, P.; Caillaud, T.; Fariaut, J.; Gilleron, F.; Pain, J.-C.; Porcherot, Q.; Reverdin, C.; Silvert, V.; Villette, B.; Bastiani-Ceccotti, S.; Turck-Chieze, S.; Foelsner, W.; Gaufridy de Dortan, F. de

    2011-09-15

    This paper deals with theoretical studies on the 2p-3d absorption in iron, nickel, and copper plasmas related to LULI2000 (Laboratoire pour l'Utilisation des Lasers Intenses, 2000J facility) measurements in which target temperatures were of the order of 20 eV and plasma densities were in the range 0.004-0.01 g/cm{sup 3}. The radiatively heated targets were close to local thermodynamic equilibrium (LTE). The structure of 2p-3d transitions has been studied with the help of the statistical superconfiguration opacity code sco and with the fine-structure atomic physics codes hullac and fac. A new mixed version of the sco code allowing one to treat part of the configurations by detailed calculation based on the Cowan's code rcg has been also used in these comparisons. Special attention was paid to comparisons between theory and experiment concerning the term features which cannot be reproduced by sco. The differences in the spin-orbit splitting and the statistical (thermal) broadening of the 2p-3d transitions have been investigated as a function of the atomic number Z. It appears that at the conditions of the experiment the role of the term and configuration broadening was different in the three analyzed elements, this broadening being sensitive to the atomic number. Some effects of the temperature gradients and possible non-LTE effects have been studied with the help of the radiative-collisional code scric. The sensitivity of the 2p-3d structures with respect to temperature and density in medium-Z plasmas may be helpful for diagnostics of LTE plasmas especially in future experiments on the {Delta}n=0 absorption in medium-Z plasmas for astrophysical applications.

  3. Optical absorption and intrinsic recombination in relaxed and strained InAs{sub 1–x}Sb{sub x} alloys for mid-wavelength infrared application

    SciTech Connect

    Wen, Hanqing; Bellotti, Enrico

    2015-11-30

    The intrinsic carrier recombination lifetime in relaxed and strained InAs{sub 1−x}Sb{sub x} alloys is investigated using the full-band Green's function theory. By computing the phonon-perturbed electron self-energy of the system, both direct and phonon-assisted indirect Auger and radiative processes are studied as functions of antimony molar fractions, lattice temperatures and applied in-plane biaxial strains. To improve the overall accuracy of the calculation, an empirical pseudopotential band structure for the alloy is also fitted to the measured band extrema and effective masses under different biaxial strains. A set of effective screened potentials valid for all the needed antimony fractions x and biaxial strains ϵ, therefore, is obtained and applied to the calculation. The results showed reduced total Auger recombination rates and enhanced radiative recombination rates in InAsSb alloys at room temperature when a compressive strain is applied. Furthermore, the study on the widely employed mid-wavelength infrared detector material, InAs{sub 0.91}Sb{sub 0.09}, strained by an InAs substrate, demonstrated that much longer minority carrier lifetime can be achieved compared to that in the lattice-matched situation when the lattice temperature is above 200 K.

  4. Absorption imaging of a single atom

    NASA Astrophysics Data System (ADS)

    Streed, Erik W.; Jechow, Andreas; Norton, Benjamin G.; Kielpinski, David

    2012-07-01

    Absorption imaging has played a key role in the advancement of science from van Leeuwenhoek's discovery of red blood cells to modern observations of dust clouds in stellar nebulas and Bose-Einstein condensates. Here we show the first absorption imaging of a single atom isolated in a vacuum. The optical properties of atoms are thoroughly understood, so a single atom is an ideal system for testing the limits of absorption imaging. A single atomic ion was confined in an RF Paul trap and the absorption imaged at near wavelength resolution with a phase Fresnel lens. The observed image contrast of 3.1 (3)% is the maximum theoretically allowed for the imaging resolution of our set-up. The absorption of photons by single atoms is of immediate interest for quantum information processing. Our results also point out new opportunities in imaging of light-sensitive samples both in the optical and X-ray regimes.

  5. Absorption imaging of a single atom.

    PubMed

    Streed, Erik W; Jechow, Andreas; Norton, Benjamin G; Kielpinski, David

    2012-07-03

    Absorption imaging has played a key role in the advancement of science from van Leeuwenhoek's discovery of red blood cells to modern observations of dust clouds in stellar nebulas and Bose-Einstein condensates. Here we show the first absorption imaging of a single atom isolated in a vacuum. The optical properties of atoms are thoroughly understood, so a single atom is an ideal system for testing the limits of absorption imaging. A single atomic ion was confined in an RF Paul trap and the absorption imaged at near wavelength resolution with a phase Fresnel lens. The observed image contrast of 3.1 (3)% is the maximum theoretically allowed for the imaging resolution of our set-up. The absorption of photons by single atoms is of immediate interest for quantum information processing. Our results also point out new opportunities in imaging of light-sensitive samples both in the optical and X-ray regimes.

  6. Stark shift of the absorption spectra in Ge/Ge1-xSnx/Ge type-I single QW cell for mid-wavelength infra-red modulators

    NASA Astrophysics Data System (ADS)

    Yahyaoui, N.; Sfina, N.; Lazzari, J.-L.; Bournel, A.; Said, M.

    2015-09-01

    For mid-wavelength infra-red (MWIR) modulation or detection applications, we propose α-Sn rich Ge/Ge1-xSnx/Ge a type-I single quantum wells (SQW) partially strain compensated on Ge1-ySny relaxed layers grown onto (0 0 1)-oriented Ge substrate. Such elementary cells with W-like potential profiles of conduction and valence bands have been modeled by solving the one-dimensional Schrödinger equation under an applied external electrical field. First, strain effects on electrons, heavy holes (hh) and light holes (lh) energy bands for strained/relaxed Ge1-xSnx/Ge1-ySny heterointerfaces are investigated using the model-solid theory in the whole ranges (0 ⩽ x, y ⩽ 1) of Sn compositions. From the obtained band-discontinuities, band gaps and effective masses, Ge1-ySny/Ge/Ge0.80Sn0.20/Ge/Ge1-ySny cells are computed as a function of the Ge0.80Sn0.20 well width for three compositions of the Ge1-ySny buffer layer (y = 0.05, 0.07 and 0.09) in order to get the optimum quantum confinement of electrons and holes levels while keeping a reasonable amount of averaged strain in the cell. The electric field effect on the absorption spectra is given. An absorption coefficient in the 6× to 3 × 103 cm-1 range is reasonably obtained for a SQW at room temperature with a rather large Stark shift of the direct transition between 0.46 and 0.38 eV (i.e., λ = 3.26-2.70 μm) at large external fields (50 kV/cm). These characteristics are attractive for the design of MWIR optical modulators.

  7. Re-Assessing the Maximum Allowed Infrared (IR) Power for Enchanced Layering in a Conduction Dominated Cryogenic NIF-Scale Hohlraum

    SciTech Connect

    Kozioziemski, B J

    2003-08-11

    Recent measurements of the infrared (IR) absorption coefficient of CH and CD capsules differ significantly from earlier estimated values from thin flat samples. The optimum wavelength for IR enhanced layering of DT and D{sub 2} ice layers inside of a NIF scale hohlraum depends on the relative ice and capsule absorption coefficients. This update of a previous memo shows the maximum ice heating with IR as a function of ice and capsule absorption instead of at discrete wavelengths. Also discussed is the leverage of other parameters, such as the IR absorption of the hohlraum wall and thermal conductivities of the support rods and exchange gas. The most likely capsule and ice absorption values limit the IR heating to between 2-7 Q{sub DT}. We find most leverage of the IR heating comes from increasing the ice to capsule absorption ratio. As before, this is the conduction only limit to IR, with convection potentially playing a large role.

  8. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  9. Tripling the maximum imaging depth with third-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Yildirim, Murat; Durr, Nicholas; Ben-Yakar, Adela

    2015-09-01

    The growing interest in performing high-resolution, deep-tissue imaging has galvanized the use of longer excitation wavelengths and three-photon-based techniques in nonlinear imaging modalities. This study presents a threefold improvement in maximum imaging depth of ex vivo porcine vocal folds using third-harmonic generation (THG) microscopy at 1552-nm excitation wavelength compared to two-photon microscopy (TPM) at 776-nm excitation wavelength. The experimental, analytical, and Monte Carlo simulation results reveal that THG improves the maximum imaging depth observed in TPM significantly from 140 to 420 μm in a highly scattered medium, reaching the expected theoretical imaging depth of seven extinction lengths. This value almost doubles the previously reported normalized imaging depths of 3.5 to 4.5 extinction lengths using three-photon-based imaging modalities. Since tissue absorption is substantial at the excitation wavelength of 1552 nm, this study assesses the tissue thermal damage during imaging by obtaining the depth-resolved temperature distribution through a numerical simulation incorporating an experimentally obtained thermal relaxation time (τ). By shuttering the laser for a period of 2τ, the numerical algorithm estimates a maximum temperature increase of ˜2°C at the maximum imaging depth of 420 μm. The paper demonstrates that THG imaging using 1552 nm as an illumination wavelength with effective thermal management proves to be a powerful deep imaging modality for highly scattering and absorbing tissues, such as scarred vocal folds.

  10. Cavity-enhanced resonant tunneling photodetector at telecommunication wavelengths

    SciTech Connect

    Pfenning, Andreas Hartmann, Fabian; Langer, Fabian; Höfling, Sven; Kamp, Martin; Worschech, Lukas

    2014-03-10

    An AlGaAs/GaAs double barrier resonant tunneling diode (RTD) with a nearby lattice-matched GaInNAs absorption layer was integrated into an optical cavity consisting of five and seven GaAs/AlAs layers to demonstrate cavity enhanced photodetection at the telecommunication wavelength 1.3 μm. The samples were grown by molecular beam epitaxy and RTD-mesas with ring-shaped contacts were fabricated. Electrical and optical properties were investigated at room temperature. The detector shows maximum photocurrent for the optical resonance at a wavelength of 1.29 μm. At resonance a high sensitivity of 3.1×10{sup 4} A/W and a response up to several pA per photon at room temperature were found.

  11. Photo-fragmentation cross-section of gaseous 2,4,6-trinitrotoluene at different ultraviolet wavelengths.

    PubMed

    Sharma, Ramesh C; Miller, Tracy S; Usachev, Alexander D; Singh, Jagdish P; Yueh, Fang-Yu; Monts, David L

    2009-04-01

    The photo-fragmentation cross-section of 2,4,6-trinitrotoluene (TNT) vapor at room temperature was determined at different ultraviolet wavelengths (254, 300, 340, and 400 nm) by measuring the concentration of NO molecule with cavity ring down spectroscopy and correcting for the photo-fragmentation cross-section of NO(2). Nitric oxide (NO) molecules are produced by the TNT photo-fragmentation processes via an intermediate production of NO(2). Our results reveal that the photo-fragmentation cross-section of TNT changes appreciably with change in wavelength with xenon arc lamp illumination, increasing with decreasing excitation wavelength. The maximum value of cross-section was observed at the shortest photo-fragmentation wavelength studied (254 nm), which is closest to the wavelength of an absorption peak of TNT near 220 nm.

  12. Maximum Jailbreak

    NASA Astrophysics Data System (ADS)

    Singleton, B.

    First formulated one hundred and fifty years ago by the heretical scholar Nikolai Federov, the doctrine of cosmism begins with an absolute refusal to treat the most basic factors conditioning life on Earth ­ gravity and death ­ as necessary constraints on action. As manifest through the intoxicated cheers of its early advocates that humans should storm the heavens and conquer death, cosmism's foundational gesture was to conceive of the earth as a trap. Its duty was therefore to understand the duty of philosophy, economics and design to be the creation of means to escape it. This could be regarded as a jailbreak at the maximum possible scale, a heist in which the human species could steal itself from the vault of the Earth. After several decades of relative disinterest new space ventures are inspiring scientific, technological and popular imaginations, this essay explores what kind of cosmism might be constructed today. In this paper cosmism's position as a means of escape is both reviewed and evaluated by reflecting on the potential of technology that actually can help us achieve its aims and also through the lens and state-ofthe-art philosophy of accelerationism, which seeks to outrun modern tropes by intensifying them.

  13. Short-wavelength MEMS-tunable VCSELs.

    PubMed

    Cole, Garrett D; Behymer, Elaine; Bond, Tiziana C; Goddard, Lynford L

    2008-09-29

    We present electrically-injected MEMS-tunable vertical-cavity surface-emitting lasers with emission wavelengths below 800 nm. Operation in this wavelength range, near the oxygen A-band from 760-780 nm, is attractive for absorption-based optical gas sensing. These fully-monolithic devices are based on an oxide-aperture AlGaAs epitaxial structure and incorporate a suspended dielectric Bragg mirror for wavelength tuning. By implementing electrostatic actuation, we demonstrate the potential for tuning rates up to 1 MHz, as well as a wide wavelength tuning range of 30 nm (767-737 nm).

  14. Absorption of infrared radiation by human dental hard substances

    NASA Astrophysics Data System (ADS)

    Roth, Klaus K.; Duczynski, Edwin W.; von der Heide, Hans-Joachim; Struve, Bert

    1993-12-01

    Absorption spectra of enamel, dentin, synthetic hydroxyapatite and deionized water were taken in the wavelength band 500 to 3000 nm. It could be shown that infrared radiation is mainly absorbed in the aqueous components of dental hard tissues. Because of their decreased water content extinctions measured are slightly lower than those of deionized water. Furthermore, mineral absorptions could be detected in the range of 2760 to 2840 nm with a maximum at 2800 nm in enamel and a smaller one at 2500 nm in dentin.

  15. Ultraviolet absorption spectrum of chlorine nitrite, ClONO

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Molina, M. J.

    1977-01-01

    The near-ultraviolet absorption spectrum of chlorine nitrite (ClONO) has been quantitatively investigated over the wavelength range 230-400 nm at 231 K. An absorption maximum was observed at 290 nm with a cross section of 1.5 by 10 to the -18th power sq cm. The calculated lifetime against photodissociation for ClONO in the atmosphere is 2 to 3 minutes. The large photolysis rate indicates that ClONO does not play a significant role in the stratosphere as a temporary holding tank for chlorine.

  16. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Sutton, C.

    1980-07-01

    The objectives, instruments, operation and spacecraft design for the Solar Maximum Mission are discussed. The satellite, first in a series of Multi-Mission Modular Spacecraft, was launched on February 14, 1980, to take advantage of the current maximum in the solar activity cycle to study solar flares at wavelengths from the visible to the gamma-ray. The satellite carries six instruments for the simultaneous study of solar flares, namely the coronagraph/polarimeter, X-ray polychromator, ultraviolet spectrometer and polarimeter, hard X-ray imaging spectrometer, hard X-ray burst spectrometer and gamma-ray spectrometer, and an active cavity radiometer for the accurate determination of the solar constant. In contrast to most satellite operations, Solar Maximum Mission investigators work together for the duration of the flight, comparing data obtained by the various instruments and planning observing programs daily on the basis of flare predictions and indicators. Thus far into the mission, over 50 data sets on reasonably large flares have been obtained, and important observations of coronal transients, magnetic fields in the transition region, flare time spectra, and material emitting X-rays between flares have been obtained.

  17. Ultra-low-power silicon photonics wavelength converter for phase-encoded telecommunication signals

    NASA Astrophysics Data System (ADS)

    Lacava, C.; Ettabib, M. A.; Cristiani, I.; Fedeli, J.-M.; Richardson, D. J.; Petropoulos, P.

    2016-03-01

    The development of compact, low power, silicon photonics CMOS compatible components for all-optical signal processing represents a key step towards the development of fully functional platforms for next generation all-optical communication networks. The wavelength conversion functionality at key nodes is highly desirable to achieve transparent interoperability and wavelength routing allowing efficient management of network resources operated with high speed, phase encoded signals. All optical wavelength conversion has already been demonstrated in Si-based devices, mainly utilizing the strong Kerr effect that silicon exhibits at telecommunication wavelengths. Unfortunately, Two Photon Absorption (TPA) and Free Carrier (FC) effects strongly limit their performance, even at moderate power levels, making them unsuitable for practical nonlinear applications. Amorphous silicon has recently emerged as a viable alternative to crystalline silicon (c-Si), showing both an enhanced Kerr as well as a reduced TPA coefficient at telecom wavelengths, with respect to its c-Si counterpart. Here we present an ultra-low power wavelength converter based on a passive, CMOS compatible, 1-mm long amorphous silicon waveguide operated at a maximum pump power level of only 70 mW. We demonstrate TPA-free Four Wave Mixing (FWM)-based wavelength conversion of Binary Phase Shift Keyed (BPSK) and Quadrature Phase Shift Keyed (QPSK) signals at 20 Gbit/s with <1 dB power penalty at BER = 10-5.

  18. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Simnett, G. M.

    The scientific goals, instrumentation and operation, and results from the Solar Maximum Mission are described. The spacecraft was launched to observe the peak of the solar cycle and the impulsive phase of large flares. Instrumentation included a gamma ray spectrometer, X ray burst spectrometer, imaging spectrometer, and polychromator, a UV spectrometer and polarimeter, a coronagraph/polarimeter, and an active cavity radiometer for measurements at wavelengths ranging from the Hα line at 6563 A up to the gamma ray region of the spectrum. Command programs were prepared one day in advance by each team for its instrument, and limited readjustment was available in real-time. The spacecraft was equipped to, and did, point the instruments at one region for an expected flare build-up, and maintain that heading for an extended period of time through the appearance, development, and demise of the flare.

  19. Wavelength Anomalies in UV-Vis Spectrophotometry

    NASA Astrophysics Data System (ADS)

    Tellinghuisen, J.

    2012-06-01

    Commercial spectrophotometers are great tools for recording absorption spectra of low-to-moderate resolution and high photometic quality. However, in the case of at least one such instrument, the Shimadzu UV-2101PC (and by assumption, similar Shimadzu models), the wavelength accuracy may not match the photometric accuracy. In fact the wavelength varies with slit width, spectral sampling interval, and even the specified range, with a smoothing algorithm invoked any time the spectrum includes more than 65 sampled wavelengths. This behavior appears not to be documented anywhere, but it has been present for at least 20 years and persists even in the latest software available to run the instrument. The wavelength shifts can be as large as 1 nm, so for applications where wavelength accuracy better than this is important, wavelength calibration must be done with care to ensure that the results are valid for the parameters used to record the target spectra.

  20. Method of Controlling Lasing Wavelength(s)

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Murray, Keith E. (Inventor); Hutcheson, Ralph L. (Inventor)

    2000-01-01

    A method is provided to control the lasing wavelength of a laser material without changing or adjusting the mechanical components of a laser device, The rate at which the laser material is pumped with the pumping energy is controlled so that lasing occurs at one or more lasing wavelengths based on the rate. The lasing wavelengths are determined by transition lifetimes and/or energy transfer rates.

  1. Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength.

    PubMed

    Metzger, Bernd; Gui, Lili; Fuchs, Jaco; Floess, Dominik; Hentschel, Mario; Giessen, Harald

    2015-06-10

    We perform second harmonic spectroscopy of aluminum nanoantenna arrays that exhibit plasmonic resonances at the second harmonic wavelength between 450 and 570 nm by focusing sub-30 fs laser pulses tunable from 900 to 1140 nm onto the nanoantenna arrays. We find that a plasmonic resonance at the second harmonic wavelength boosts the overall nonlinear process by more than an order of magnitude. In particular, in the measurement the resonant second harmonic polarization component is a factor of about 70 stronger when compared to the perpendicular off-resonant second harmonic polarization. Furthermore, the maximum of the second harmonic conversion efficiency is found to be slightly blue-shifted with respect to the peak of the linear optical far-field spectrum. This fact can be understood from a simple model that accounts for the almost off-resonant absorption at the fundamental wavelength and the resonant emission process at the second harmonic.

  2. LITT on canine prostates: an in-vivo study to compare the effects of different wavelengths

    NASA Astrophysics Data System (ADS)

    Sroka, Ronald; Perlmutter, Aaron P.; Martin, Thomas; Muschter, Rolf

    1996-05-01

    Laser induced interstitial thermotherapy is a new minimally invasive procedure for the treatment of benign prostatic hyperplasia. Since high power laser diode lasers became available for clinical use a comparison of tissue effects of different wavelengths under controlled conditions is needed. In this study three different laser wavelengths were compared at output powers of 4 W and 8 W with 10 min and 90 s irradiation time, respectively, resulting in applied energies of 2700 J and 720 J. The results in both groups showed that the use of a wavelength close to the relative water absorption peak at 980 nm gave tendentiously but not significantly larger coagulated areas. Furthermore it became obvious that the use of 8 W for 90 sec results in higher maximum temperatures and larger lesions compared to the application of 4 W over a period of 10 min, although the energy used in the latter group was 4 fold higher.

  3. Accounting for self-absorption in calculation of light collection in plastic scintillators

    NASA Astrophysics Data System (ADS)

    Senchyshyn, V.; Lebedev, V.; Adadurov, A.; Budagov, J.; Chirikov-Zorin, I.

    2006-10-01

    This paper concerns Monte Carlo calculations of light collection in plastic scintillators with accounting for self-absorption. Two approaches are compared: a monochrome one, which takes into account light absorption at a wavelength of the emission spectra maximum, and a spectral one, which accounts for the absorption dependence on a wave length over the whole range of scintillating photon emission. Both approaches are used in light yield calculations for OPERA and Super-Nemo detectors. It is shown that the monochrome approach overestimates light collection values 1.5-2 times, while the spectral one leads to better agreement with experiment.

  4. Ultraviolet absorption and luminescence of matrix-isolated adenine

    SciTech Connect

    Polewski, K.; Sutherland, J.; Zinger, D.; Trunk, J.

    2011-10-01

    We have investigated the absorption, the fluorescence and phosphorescence emission and the fluorescence lifetimes of adenine in low-temperature argon and nitrogen matrices at 15 K. Compared to other environments the absorption spectrum shows higher intensity at the shortest wavelengths, and a weak apparent absorption peak is observed at 280 nm. The resolved fluorescence excitation spectrum has five peaks at positions corresponding to those observed in the absorption spectrum. The position of the fluorescence maximum depends on the excitation wavelength. Excitation below 220 nm displays a fluorescence maximum at 305 nm, while for excitations at higher wavelengths the maximum occurs at 335 nm. The results suggest that multiple-emission excited electronic states are populated in low-temperature gas matrices. Excitation at 265 nm produces a phosphorescence spectrum with a well-resolved vibrational structure and a maximum at 415 nm. The fluorescence decays corresponding to excitation at increasing energy of each resolved band could be fit with a double exponential, with the shorter and longer lifetimes ranging from 1.7 to 3.3 ns and from 12 to 23 ns, respectively. Only for the excitation at 180 nm one exponential is required, with the calculated lifetimes of 3.3 ns. The presented results provide an experimental evidence of the existence of multiple site-selected excited electronic states, and may help elucidate the possible deexcitation pathways of adenine. The additional application of synchrotron radiation proved to result in a significant enhancement of the resolution and spectral range of the phenomena under investigation.

  5. Optical absorption analysis and optimization of gold nanoshells.

    PubMed

    Tuersun, Paerhatijiang; Han, Xiang'e

    2013-02-20

    Gold nanoshells, consisting of a nanoscale dielectric core coated with an ultrathin gold shell, have wide biomedical applications due to their strong optical absorption properties. Gold nanoshells with high absorption efficiencies can help to improve these applications. We investigate the effects of the core material, surrounding medium, core radius, and shell thickness on the absorption spectra of gold nanoshells by using the light-scattering theory of a coated sphere. Our results show that the position and intensity of the absorption peak can be tuned over a wide range by manipulating the above-mentioned parameters. We also obtain the optimal absorption efficiencies and structures of hollow gold nanoshells and gold-coated SiO(2) nanoshells embedded in water at wavelengths of 800, 820, and 1064 nm. The results show that hollow gold nanoshells possess the maximum absorption efficiency (5.42) at a wavelength of 800 nm; the corresponding shell thickness and core radius are 4.8 and 38.9 nm, respectively. They can be used as the ideal photothermal conversation particles for biomedical applications.

  6. Long-wavelength fluorescent probes--chemistry and semiconductor lasers: a difficult marriage

    NASA Astrophysics Data System (ADS)

    Casay, G. A.; Czuppon, Tibor; Patonay, Gabor

    1994-07-01

    The utility of having commercially available semiconductor laser diodes (wavelengths above 680 nm) that match the absorption maximum of near-infrared dyes will be discussed. The large gaps that exist between available wavelengths has limited the use of many new NIR dyes in many fields especially in optical fiber applications. Several 2,3-naphthalocyanine dyes have been synthesized with different moieties which produce a bathochromic shift of the absorbance maximum as compared to the unsubstituted dye. The utility of NIR dyes with absorbance maximum close to the output wavelength of commercially available laser diodes is illustrated by using an optical fiber instrument developed for the detection of metal ions. Detection of contaminants in the picomolar range will be discussed. Excitation of the dye/analyte complex induced with a semiconductor laser diode and emission intensity signal collected at 820 nm will be discussed. The use of Acoustic Optical Tunable Filter (AOTF) filters to fill existing gaps in commercially available laser wavelength and the tuning of light sources using an AOTF will also be discussed. The development of these systems will allow the manufacturing of portable optical fiber detectors for applications in industry, medicine and the environment.

  7. Multi-wavelength fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Kwong, Tiffany C.; Lo, Pei-An; Cho, Jaedu; Nouizi, Farouk; Chiang, Huihua K.; Kim, Chang-Seok; Gulsen, Gultekin

    2016-03-01

    The strong scattering and absorption of light in biological tissue makes it challenging to model the propagation of light, especially in deep tissue. This is especially true in fluorescent tomography, which aims to recover the internal fluorescence source distribution from the measured light intensities on the surface of the tissue. The inherently ill-posed and underdetermined nature of the inverse problem along with strong tissue scattering makes Fluorescence Tomography (FT) extremely challenging. Previously, multispectral detection fluorescent tomography (FT) has been shown to improve the image quality of FT by incorporating the spectral filtering of biological tissue to provide depth information to overcome the inherent absorption and scattering limitations. We investigate whether multi-wavelength fluorescent tomography can be used to distinguish the signals from multiple fluorophores with overlapping fluorescence spectrums using a unique near-infrared (NIR) swept laser. In this work, a small feasibility study was performed to see whether multi-wavelength FT can be used to detect subtle shifts in the absorption spectrum due to differences in fluorophore microenvironment.

  8. Dual Wavelength Lasers

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.

    2010-01-01

    Dual wavelength lasers are discussed, covering fundamental aspects on the spectroscopy and laser dynamics of these systems. Results on Tm:Ho:Er:YAG dual wavelength laser action (Ho at 2.1 m and Er at 2.9 m) as well as Nd:YAG (1.06 and 1.3 m) are presented as examples of such dual wavelength systems. Dual wavelength lasers are not common, but there are criteria that govern their behavior. Based on experimental studies demonstrating simultaneous dual wavelength lasing, some general conclusions regarding the successful operation of multi-wavelength lasers can be made.

  9. Suggested isosbestic wavelength calibration in clinical analyses.

    PubMed

    Hoxter, G

    1979-01-01

    I recommend the use of isosbestic points for conveniently checking the wavelength scale of spectrophotometers in the ultraviolet and visible regions. Colorimetric pH indicators, hemoglobin derivatives, and other radiation-absorbing substances that are convertible into stable isomers of different absorption spectra provide a means for calibrating many different wavelengths by comparing the absorptivities of these isomers in equimolar solutions. The method requires no special precautions and results are independent of substance concentration and temperature between 4 and 45 degrees C. Isosbestic calibration may be important for (e.g.) coenzyme-dependent dehydrogenase activity determinations and in quality assurance programs.

  10. Analysis of Nearby Supernova Factory Type Ia Spectra with SYNAPPS: Maximum-Light Sample

    NASA Astrophysics Data System (ADS)

    Sofiatti, Caroline; Thomas, R.; Aldering, G. S.; Bailey, S.; Birchall, D.; Childress, M.; Fakhouri, H.; Hayden, B.; Kim, A. G.; Nordin, J.; Nugent, P. E.; Perlmutter, S.; Rubin, D.; Runge, K.; Saunders, C.; Suzuki, N.; Weaver, B.; Pecontal, E.; Buton, C.; Copin, Y.; Chotard, N.; Gangler, E.; Pereira, R.; Rigault, M.; Smadja, G.; Cellier-Holzem, F.; Canto, A.; Antilogus, P.; Bongard, S.; Fleury, M.; Guy, J.; Pain, R.; Chen, J.; Tao, C.; Feindt, U.; Greskovic, P.; Kowalski, M.; Lombardo, S.; Baltay, C.; Rabinowitz, D. L.

    2014-01-01

    We present a preliminary study of absorption features in the maximum-light spectra of 68 Type Ia supernovae. These spectra are a subset of spectrophotometric time series obtained by the Nearby Supernovae Factory using the SuperNova Integral Field Spectrograph (SNIFS). To extract ion signatures - strengths and velocities - from these absorption features we use the automated parameterized direct spectroscopic analysis code SYNAPPS. Trends in ion signatures as a function of spectroscopic sub-classification, photometric properties, and host galaxy stellar environment are considered. A new and experimental aspect of our approach is uncertainty quantification for SYNAPPS and calibration of its model inadequacy as a function of wavelength (for Type Ia supernovae near maximum light) using the Nearby Supernova Factory as a training sample. With further development and extension to other phases, this information could be used as a pre-processing step for SYNAPPS fitting, or it could be directly incorporated into SYNAPPS itself.

  11. Simple wavelength assignment protocol

    NASA Astrophysics Data System (ADS)

    Suryaputra, Stephen; Touch, Joseph D.; Bannister, Joseph A.

    2000-10-01

    IP routers can be coupled with wavelength-selective optical cross- connects to support existing Internet infrastructure in a wavelength division multiplexing (WDM) optical network. Because optical wavelength routing is transparent to IP, packets can bypass traditional forwarding and pass directly through the optical cross-connect, resulting in very high throughput and low delay routing. This approach shares features with label switching, but wavelengths are much more scarce resource than labels. Because optical switches have larger switching times than electronic switches, and wavelength conversions are expensive, wavelength label swapping is not easily done. Wavelength label assignments must consider these limitations to be practical in an optical environment. The performance of an instance of this approach, called Packet over Wavelengths (POW) has been simulated and studied. A new signaling protocol, Simple Wavelength Assignment Protocol (SWAP) is devised to be POW signaling protocol. SWAP takes into account the optical device limitations, and is designed to minimize wavelength conversion, utilize wavelengths with the merging of flows, and reduce the reconfiguration of optical switches. SWAP, to our knowledge, is the first approach to combine signaling and wavelength assignment in an on- line protocol. This paper describes high level SWAP design challenges, decision, and overhead.

  12. Radiation engineering of optical antennas for maximum field enhancement.

    PubMed

    Seok, Tae Joon; Jamshidi, Arash; Kim, Myungki; Dhuey, Scott; Lakhani, Amit; Choo, Hyuck; Schuck, Peter James; Cabrini, Stefano; Schwartzberg, Adam M; Bokor, Jeffrey; Yablonovitch, Eli; Wu, Ming C

    2011-07-13

    Optical antennas have generated much interest in recent years due to their ability to focus optical energy beyond the diffraction limit, benefiting a broad range of applications such as sensitive photodetection, magnetic storage, and surface-enhanced Raman spectroscopy. To achieve the maximum field enhancement for an optical antenna, parameters such as the antenna dimensions, loading conditions, and coupling efficiency have been previously studied. Here, we present a framework, based on coupled-mode theory, to achieve maximum field enhancement in optical antennas through optimization of optical antennas' radiation characteristics. We demonstrate that the optimum condition is achieved when the radiation quality factor (Q(rad)) of optical antennas is matched to their absorption quality factor (Q(abs)). We achieve this condition experimentally by fabricating the optical antennas on a dielectric (SiO(2)) coated ground plane (metal substrate) and controlling the antenna radiation through optimizing the dielectric thickness. The dielectric thickness at which the matching condition occurs is approximately half of the quarter-wavelength thickness, typically used to achieve constructive interference, and leads to ∼20% higher field enhancement relative to a quarter-wavelength thick dielectric layer.

  13. Two-wavelength carbon dioxide laser application for in-vitro blood glucose measurements.

    PubMed

    Meinke, Martina; Müller, Gehard; Albrecht, Hansjörg; Antoniou, Christina; Richter, Heike; Lademann, Juergen

    2008-01-01

    To develop a fast and easy clinical method for glucose measurements on whole blood samples, changes in glucose spectra are investigated varying temperature, glucose concentration, and solvent using attenuated total reflection Fourier transform infrared (ATR- FTIR) measurements. The results show a stability of the spectra at different temperatures and wavelength shifts of the absorption bands when water is replaced by blood. Because the ATR measurements are influenced by sedimentation of the red blood cells, a two-wavelength CO2 laser is used to determine the glucose concentration in whole blood samples. For this purpose, the first laser wavelength lambda(1) is tuned to the maximum of the glucose absorption band in blood at 1080 cm(-1), and the second laser wavelength lambda 2 is tuned to 950 cm(-1) for background measurements. The transmitted laser power through the optical cell containing the whole blood sample at lambda 1 and lambda 2 is used to determine the ratio. This signal correlates well with the glucose concentration in the whole blood samples. The CO2 laser measurement is too fast to be influenced by the red blood cell sedimentation, and will be a suitable method for glucose determination in whole blood.

  14. Predissociation linewidths of the (3,0)-(11,0) Schumann-Runge absorption bands of (O-18)2 and O-16O-18 in the wavelength region 180-196 nm

    NASA Technical Reports Server (NTRS)

    Chiu, S. S.-L.; Cheung, A. S.-C.; Yoshino, K.; Esmond, J. R.; Freeman, D. E.

    1990-01-01

    The Yoshino et al. (1988) measurements of absolute cross sections and those of Cheung et al. (1988) for spectroscopic constants are presently used to derive the predissociation linewidths of the (3,0)-(11,0) Schumman-Runge bands of (O-18)2 and O-16O-18, in the 180-196 nm wavelength region. Linewidths are determined as parameters in the nonlinear, least-squares fitting of calculated cross-sections to measured ones. The predissociation linewidths obtained are noted to often be greater than previously obtained experimental values for both isotopic molecules.

  15. [Study on temperature dependence of ultraviolet absorption cross sections of nitric oxide at high temperatures].

    PubMed

    Zhou, Jie; Zhang, Shi-Liang; Chen, Xiao-Hu

    2007-07-01

    To study the temperature dependence of ultraviolet absorption characteristics of NO species in flue gas, the absorption cross sections of NO in the spectral region 200-230 nm at temperatures ranging from 285 to 410 K were measured using a grating monochromator with 0.2 nm resolution, a deuterium lamp and a specially-fabricated closed sample cell. The absorption spectrum of NO consists of discrete bands superimposed on a continuous base. Results indicated that discrete absorption bands were present with a fixed wavelength interval of roughly 10.5 nm. The peaks of discrete bands decreased first and started to increase later as the temperature rose from 285 to 410 K, with a maximum relative variation of 19.3%. Peak position and half width of the absorption peaks did not exhibit apparent change with the variation of temperature. Continuous absorption cross section increased monotonously with the temperature, and the variation gradient gradually decrease with wavelength red shift. The absorption cross section of NO should not be considered as constant when applied in online monitoring of NO concentration in flue gas. A compensation calculation of absorption cross section with respect to temperature effect is indispensable for the purpose of improving online measurement precision of NO concentration.

  16. Wavelength Dependent Strong Field Interactions with Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Szafruga, Urszula Bozena

    In the regime of strong-field physics the electric field of a laser begins to strongly rival the binding potential of an atomic or molecular species. During these interactions an ionized electron can be driven away and then back towards its parent ion by the strong laser field and undergo rescattering before being detected. The amount of energy an electron can acquire during propagation is proportional to the laser intensity and the square of the wavelength. Recent improvements in laser technology have allowed us to push strong-field studies from visible/near-infrared wavelengths to the mid-infrared regime and thereby greatly increase the electron's maximum recollision energy. These high energy scattering events imprint target dependent structural information on the electron angular distribution from which we can extract atomic and molecular specific properties. Further, Keldysh invariance suggests that we can control the dominant ionization mechanism (multiphoton absorption versus tunneling through the field modified potential) by choosing an appropriate laser wavelength, laser intensity and target atom. Exploratory investigations in strong-field physics have produced many fascinating results which have led to production of attosecond duration laser pulses and atomic/molecular imaging techniques. As technological improvements continue we are able to gain further insights into these interesting physical phenomena. In this work we examine photoelectron spectra and ion yields in order to gain a deeper understanding of the fundamental processes that underlie atomic and molecular strong field interactions. Alkali metal atoms at mid-infrared wavelengths possess similar Keldysh parameter values as noble gas atoms at near-infrared wavelengths, which have received much more investigative attention. Therefore, by examining alkali metal atoms at longer wavelengths we hope to expand on our understanding of the global, Keldysh invariant, and atom specific ionization features

  17. A non-critically phase matched KTA optical parametric oscillator intracavity pumped by an actively Q-switched Nd:GYSGG laser with dual signal wavelengths

    NASA Astrophysics Data System (ADS)

    Zhong, Kai; Guo, Shibei; Wang, Maorong; Mei, Jialin; Xu, Degang; Yao, Jianquan

    2015-06-01

    A non-critically phase matched eye-safe KTA optical parametric oscillator intracavity pumped by a dual-wavelength acousto-optically Q-switched Nd:GYSGG laser is demonstrated. Simultaneous dual signal wavelength at 1525.1 nm/1531.2 nm can be realized using only one laser crystal and one nonlinear crystal. When the absorbed diode pump power at 808 nm is 7.48 W, the maximum output power, single pulse energy and peak power are 296 mW, 2.96 μJ and 6.4 kW, respectively. As the signal wavelengths exactly locates at the absorption band of C2H2, such an Nd:GYSGG/KTA eye-safe laser has good application prospects in differential absorption lidar (DIAL) for C2H2 detection and difference frequency generation for terahertz waves at 0.77 THz.

  18. Wavelength independent interferometer

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Page, Norman A. (Inventor)

    1991-01-01

    A polychromatic interferometer utilizing a plurality of parabolic reflective surfaces to properly preserve the fidelity of light wavefronts irrespective of their wavelengths as they pass through the instrument is disclosed. A preferred embodiment of the invention utilizes an optical train which comprises three off-axis parabolas arranged in conjunction with a beam-splitter and a reference mirror to form a Twyman-Green interferometer. An illumination subsystem is provided and comprises a pair of lasers at different preselected wavelengths in the visible spectrum. The output light of the two lasers is coaxially combined by means of a plurality of reflectors and a grating beam combiner to form a single light source at the focal point of the first parabolic reflection surface which acts as a beam collimator for the rest of the optical train. By using visible light having two distinct wavelengths, the present invention provides a long equivalent wavelength interferogram which operates at visible light wherein the effective wavelength is equal to the product of the wavelengths of the two laser sources divided by their difference in wavelength. As a result, the invention provides the advantages of what amounts to long wavelength interferometry but without incurring the disadvantage of the negligible reflection coefficient of the human eye to long wavelength frequencies which would otherwise defeat any attempt to form an interferogram at that low frequency using only one light source.

  19. Determination of the labeling density of fluorophore-biomolecule conjugates with absorption spectroscopy.

    PubMed

    Grabolle, Markus; Brehm, Robert; Pauli, Jutta; Dees, Franziska M; Hilger, Ingrid; Resch-Genger, Ute

    2012-02-15

    Dye-biomolecule conjugation is frequently accompanied by considerable spectral changes of the dye's absorption spectrum that limit the use of the common photometrical method for the determination of labeling densities. Here, we describe an improvement of this method using the integral absorbance of the dye instead of its absorbance at the long wavelength maximum to determine the concentration of the biomolecule-coupled dye. This approach is illustrated for three different cyanine dyes conjugated to the antibody IgG.

  20. Sub-wavelength antenna enhanced bilayer graphene tunable photodetector

    DOEpatents

    Beechem, III, Thomas Edwin; Howell, Stephen W.; Peters, David W.; Davids, Paul; Ohta, Taisuke

    2016-03-22

    The integration of bilayer graphene with an absorption enhancing sub-wavelength antenna provides an infrared photodetector capable of real-time spectral tuning without filters at nanosecond timescales.

  1. Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm

    NASA Astrophysics Data System (ADS)

    Bristow, Alan D.; Rotenberg, Nir; van Driel, Henry M.

    2007-05-01

    The degenerate two-photon absorption coefficient β and Kerr nonlinearity n2 are measured for bulk Si at 300K using 200fs pulses with carrier wavelength of 850<λ<2200nm for which indirect gap transitions occur. With a broad peak near the indirect gap and maximum value of 2±0.5cm/GW, the dispersion of β compares favorably with theoretical calculations of Garcia and Kalyanaraman [J. Phys. B 39, 2737 (2006)]. Within our wavelength range, n2 varies by a factor of 4 with a peak value of 1.2×10-13cm2/W at λ =1800nm.

  2. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, Michael E.; Bien, Fritz; Bernstein, Lawrence S.

    1986-01-01

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined.

  3. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  4. Selection of Wavelengths for Optimum Precision in Simultaneous Spectrophotometric Determinations.

    ERIC Educational Resources Information Center

    DiTusa, Michael R.; Schilt, Alfred A.

    1985-01-01

    Although many textbooks include a description of simultaneous determinations employing absorption spectrophotometry and treat the mathematics necessary for analytical quantitations, treatment of analytical wavelength selection has been mostly qualitative. Therefore, a general method for selecting wavelengths for optimum precision in simultaneous…

  5. Absorption of CO laser radiation by NO

    NASA Technical Reports Server (NTRS)

    Hanson, R. K.; Monat, J. P.; Kruger, C. H.

    1976-01-01

    The paper describes absorption calculations and measurements at selected infrared CO laser wavelengths which are nearly coincident with absorption lines in the fundamental vibration-rotation band of NO near 5.3 microns. Initial work was directed towards establishing the optimal CO laser-NO absorption line coincidence for high temperature applications. Measurements of the absorption coefficient at this optimal laser wavelength were carried out, first using a room-temperature absorption cell for high-temperature calculations and then using a shock tube, for the temperature range 630-4000 K, to validate the high temperature calculations.

  6. Evaluation of ammonia absorption coefficients by photoacoustic spectroscopy for detection of ammonia levels in human breath

    NASA Astrophysics Data System (ADS)

    Dumitras, D. C.; Dutu, D. C.; Matei, C.; Cernat, R.; Banita, S.; Patachia, M.; Bratu, A. M.; Petrus, M.; Popa, C.

    2011-04-01

    Photoacoustic spectroscopy represents a powerful technique for measuring extremely low absorptions independent of the path length and offers a degree of parameter control that cannot be attained by other methods. We report precise measurements of the ammonia absorption coefficients at the CO2 laser wavelengths by using a photoacoustic (PA) cell in an extracavity configuration and we compare our results with other values reported in the literature. Ammonia presents a clear fingerprint spectrum and high absorption strengths in the CO2 wavelengths region. Because more than 250 molecular gases of environmental concern for atmospheric, industrial, medical, military, and scientific spheres exhibit strong absorption bands in the region 9.2-10.8 μm, we have chosen a frequency tunable CO2 laser. In the present work, ammonia absorption coefficients were measured at both branches of the CO2 laser lines by using a calibrated mixture of 10 ppm NH3 in N2. We found the maximum absorption in the 9 μm region, at 9R(30) line of the CO2 laser. One of the applications based on the ammonia absorption coefficients is used to measure the ammonia levels in exhaled human breath. This can be used to determine the exact time necessary at every session for an optimal degree of dialysis at patients with end-stage renal disease.

  7. Perfect sub-wavelength metamaterial fishnet-like film absorbers for THz applications

    SciTech Connect

    Shchegolov, Dmitry; Azad, Abul K; O' Hara, John F; Smirnova, Evgenya I

    2009-01-01

    We present two designs of robust, easy to manufacture meta material-based films of sub-wavelength thickness capable of full absorption of the incident terahertz (THz) radiation at certain frequencies. Both designs can be either made polarization sensitive, or have 90{sup o} rotation symmetry, which works equally well for waves of any polarization provided the incident angle is zero. All our designs work for a wide range of angles of incidence, and even if the films are optimized for normal incidence the absorption remains greater than 99% for angles up to {approx}35{sup o} in the TE and {approx}65{sup o} in the TM case. In the first design the maximum absorption frequency shifts considerably with angle, and in the second design the maximum absorption frequency remains almost the same at any angle. Theory, simulation data, and recent experimental results are all in a good agreement, and will be reported in the presentation. Having a low heat capacity these absorbers combined with thermo detectors can be utilized for precise frequency-selective detection of THz radiation.

  8. Multi-wavelength Luminosity Functions of Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Miller, N. A.

    2002-01-01

    Multivariate or multi-wavelength luminosity functions will reveal the interplay between star formation, chemical evolution, and absorption and re-emission of dust within evolving galaxy populations. By using principal component analysis to reduce the dimensionality of the problem, we optimally extract the relevant photometric information from large galaxy catalogs. As a demonstration of the technique, we derive the multi-wavelength luminosity function for the galaxies in the released SDSS catalog, and compare the results with those obtained by traditional methods. This technique will be applicable to catalogs of galaxies from datasets obtained by 2MASS, and the SIRTF and GALEX missions.

  9. New method for spectrofluorometer monochromator wavelength calibration.

    PubMed

    Paladini, A A; Erijman, L

    1988-09-01

    A method is presented for wavelength calibration of spectrofluorometer monochromators. It is based on the distortion that the characteristic absorption bands of glass filters (holmium or didymium oxide), commonly used for calibration of spectrophotometers, introduce in the emitted fluorescence of fluorophores like indole, diphenyl hexatriene, xylene or rhodamine 6G. Those filters or a well characterized absorber with sharp bands like benzene vapor can be used for the same purpose. The wavelength calibration accuracy obtained with this method is better than 0.1 nm, and requires no modification in the geometry of the spectrofluorometer sample compartment.

  10. Short wavelength FELS

    SciTech Connect

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  11. 1300 nm wavelength InAs quantum dot photodetector grown on silicon.

    PubMed

    Sandall, Ian; Ng, Jo Shien; David, John P R; Tan, Chee Hing; Wang, Ting; Liu, Huiyun

    2012-05-07

    The optical and electrical properties of InAs quantum dots epitaxially grown on a silicon substrate have been investigated to evaluate their potential as both photodiodes and avalanche photodiodes (APDs) operating at a wavelength of 1300 nm. A peak responsivity of 5 mA/W was observed at 1280 nm, with an absorption tail extending beyond 1300 nm, while the dark currents were two orders of magnitude lower than those reported for Ge on Si photodiodes. The diodes exhibited avalanche breakdown at 22 V reverse bias which is probably dominated by impact ionisation occurring in the GaAs and AlGaAs barrier layers. A red shift in the absorption peak of 61.2 meV was measured when the reverse bias was increased from 0 to 22 V, which we attributed to the quantum confined stark effect. This shift also leads to an increase in the responsivity at a fixed wavelength as the bias is increased, yielding a maximum increase in responsivity by a factor of 140 at the wavelength of 1365 nm, illustrating the potential for such a structure to be used as an optical modulator.

  12. Millimeter wavelength propagation studies

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.

    1974-01-01

    The investigations conducted for the Millimeter Wavelength Propagation Studies during the period December, 1966, to June 1974 are reported. These efforts included the preparation for the ATS-5 Millimeter Wavelength Propagation Experiment and the subsequent data acquisition and data analysis. The emphasis of the OSU participation in this experiment was placed on the determination of reliability improvement resulting from the use of space diversity on a millimeter wavelength earth-space communication link. Related measurements included the determination of the correlation between radiometric temperature and attenuation along the earth-space propagation path. Along with this experimental effort a theoretical model was developed for the prediction of attenuation statistics on single and spatially separated earth space propagation paths. A High Resolution Radar/Radiometer System and Low Resolution Radar System were developed and implemented for the study of intense rain cells in preparation for the ATS-6 Millimeter Wavelength Propagation Experiment.

  13. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  14. Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application

    PubMed Central

    Morawiec, Seweryn; Holovský, Jakub; Mendes, Manuel J.; Müller, Martin; Ganzerová, Kristina; Vetushka, Aliaksei; Ledinský, Martin; Priolo, Francesco; Fejfar, Antonin; Crupi, Isodiana

    2016-01-01

    A combination of photocurrent and photothermal spectroscopic techniques is applied to experimentally quantify the useful and parasitic absorption of light in thin hydrogenated microcrystalline silicon (μc-Si:H) films incorporating optimized metal nanoparticle arrays, located at the rear surface, for improved light trapping via resonant plasmonic scattering. The photothermal technique accounts for the total absorptance and the photocurrent signal accounts only for the photons absorbed in the μc-Si:H layer (useful absorptance); therefore, the method allows for independent quantification of the useful and parasitic absorptance of the plasmonic (or any other) light trapping structure. We demonstrate that with a 0.9 μm thick absorber layer the optical losses related to the plasmonic light trapping in the whole structure are insignificant below 730 nm, above which they increase rapidly with increasing illumination wavelength. An average useful absorption of 43% and an average parasitic absorption of 19% over 400–1100 nm wavelength range is measured for μc-Si:H films deposited on optimized self-assembled Ag nanoparticles coupled with a flat mirror (plasmonic back reflector). For this sample, we demonstrate a significant broadband enhancement of the useful absorption resulting in the achievement of 91% of the maximum theoretical Lambertian limit of absorption. PMID:26935322

  15. Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application

    NASA Astrophysics Data System (ADS)

    Morawiec, Seweryn; Holovský, Jakub; Mendes, Manuel J.; Müller, Martin; Ganzerová, Kristina; Vetushka, Aliaksei; Ledinský, Martin; Priolo, Francesco; Fejfar, Antonin; Crupi, Isodiana

    2016-03-01

    A combination of photocurrent and photothermal spectroscopic techniques is applied to experimentally quantify the useful and parasitic absorption of light in thin hydrogenated microcrystalline silicon (μc-Si:H) films incorporating optimized metal nanoparticle arrays, located at the rear surface, for improved light trapping via resonant plasmonic scattering. The photothermal technique accounts for the total absorptance and the photocurrent signal accounts only for the photons absorbed in the μc-Si:H layer (useful absorptance); therefore, the method allows for independent quantification of the useful and parasitic absorptance of the plasmonic (or any other) light trapping structure. We demonstrate that with a 0.9 μm thick absorber layer the optical losses related to the plasmonic light trapping in the whole structure are insignificant below 730 nm, above which they increase rapidly with increasing illumination wavelength. An average useful absorption of 43% and an average parasitic absorption of 19% over 400–1100 nm wavelength range is measured for μc-Si:H films deposited on optimized self-assembled Ag nanoparticles coupled with a flat mirror (plasmonic back reflector). For this sample, we demonstrate a significant broadband enhancement of the useful absorption resulting in the achievement of 91% of the maximum theoretical Lambertian limit of absorption.

  16. Wavelength-dependent isotope fractionation in visible light O3 photolysis and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Früchtl, Marion; Janssen, Christof; Taraborrelli, Domenico; Gromov, Sergey; Röckmann, Thomas

    2015-10-01

    The 17O and 18O isotope fractionation associated with photolysis of O3 in the Chappuis band was determined using a broadband light source with cutoff filters at 455, 550, and 620 nm and narrowband light sources at 530, 617, and 660 nm. The isotope effects follow a mass-dependent fractionation pattern (δ17O/δ18O = 0.53). Contrary to theoretical predictions, fractionations are negative for all wavelength ranges investigated and do not change signs at the absorption cross-section maximum. Our measurements differ from theoretical calculations by as much as 34‰ in 18ɛO3+hν = (18J/16J - 1). The wavelength dependence is also weaker than predicted. Photo-induced fractionation is strongest when using a low-wavelength cutoff at 620 nm with 18ɛO3+hν = -26.9(±1.4)‰. With decreasing wavelength, fractionation values diminish to 18ɛO3+hν = -12.9(±1.3)‰ at 530 nm. Results from an atmospheric model demonstrate that visible light photolysis is the most important tropospheric sink of O3, which thus contributes about one sixth to the ozone enrichment.

  17. Miniaturized optical wavelength sensors

    NASA Astrophysics Data System (ADS)

    Kung, Helen Ling-Ning

    Recently semiconductor processing technology has been applied to the miniaturization of optical wavelength sensors. Compact sensors enable new applications such as integrated diode-laser wavelength monitors and frequency lockers, portable chemical and biological detection, and portable and adaptive hyperspectral imaging arrays. Small sensing systems have trade-offs between resolution, operating range, throughput, multiplexing and complexity. We have developed a new wavelength sensing architecture that balances these parameters for applications involving hyperspectral imaging spectrometer arrays. In this thesis we discuss and demonstrate two new wavelength-sensing architectures whose single-pixel designs can easily be extended into spectrometer arrays. The first class of devices is based on sampling a standing wave. These devices are based on measuring the wavelength-dependent period of optical standing waves formed by the interference of forward and reflected waves at a mirror. We fabricated two different devices based on this principle. The first device is a wavelength monitor, which measures the wavelength and power of a monochromatic source. The second device is a spectrometer that can also act as a selective spectral coherence sensor. The spectrometer contains a large displacement piston-motion MEMS mirror and a thin GaAs photodiode flip-chip bonded to a quartz substrate. The performance of this spectrometer is similar to that of a Michelson in resolution, operating range, throughput and multiplexing but with the added advantages of fewer components and one-dimensional architecture. The second class of devices is based on the Talbot self-imaging effect. The Talbot effect occurs when a periodic object is illuminated with a spatially coherent wave. Periodically spaced self-images are formed behind the object. The spacing of the self-images is proportional to wavelength of the incident light. We discuss and demonstrate how this effect can be used for spectroscopy

  18. High Accuracy In-Flight Wavelength Calibration of Imaging Spectrometry Data

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Heidebrecht, Kathleen B.; Chrien, Thomas G.

    1995-01-01

    Accurate wavelength calibration of imaging spectrometer data is essential if proper atmospheric transmission corrections are to be made to obtain apparent surface reflectance. Accuracies of 0.1 nm are necessary for a 10 nm-sampling instrument in order to match the slopes of the deep atmospheric water vapor features that dominate the 0.7-2.3 micrometer regions. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is calibrated in the laboratory to determine the wavelength position and full-width-half-maximum (FWHM) response for each of the 224 channels. The accuracies are limited by the quality of the monochromator used as a source. The accuracies vary from plus or minus to plus or minus 1.5 nm depending on the wavelength region, in general decreasing with increasing wavelength. Green et al. make corrections to the wavelength calibrations by using the known positions of 14 atmospheric absorption features throughout the 0.4-2.5 micrometer wavelength region. These features, having varying width and intensity, were matched to the MODTRAN model with a non-linear least squares fitting algorithm. A complete calibration was developed for all 224 channels by interpolation. Instrument calibration cannot be assumed to be stable to 0.1 nm over a flight season given the rigors of thermal cycling and launch and landing loads. The upcoming sensor HYDICE will require a means for in-flight spectral calibration of each scene because the calibration is both temperature and pressure sensitive. In addition, any sensor using a two-dimensional array has the potential for systematic wavelength shifts as a function of cross-track position, commonly called 'smile'. Therefore, a rapid means for calibrating complete images will be required. The following describes a method for determining instrument wavelength calibration using atmospheric absorption features that is efficient enough to be used for entire images on workstations. This study shows the effect of the surface reflectance on

  19. Computed survey spectra of 2-5 micron atmospheric absorption

    NASA Astrophysics Data System (ADS)

    Leslie, D. H.; Lebow, P. S.

    1983-08-01

    Computed high resolution survey spectra of atmospheric absorption coefficient vs wavenumber are presented covering the wavelength region 2-5 micrometers. The 1980 AFGL atmospheric absorption parameter compilation was employed with a mid-latitude, sea-level atmospheric model.

  20. Molecular level all-optical logic with chlorophyll absorption spectrum and polarization sensitivity

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, B.; Bhattacharyya (Bhaumik), S.

    2008-06-01

    Chlorophyll is suggested as a suitable medium for realizing optical Boolean logic at the molecular level in view of its wavelength-selective property and polarization sensitivity in the visible region. Spectrophotometric studies are made with solutions of total chlorophyll and chromatographically isolated components, viz. chlorophyll a and b and carotenoids extracted from pumpkin leaves of different maturity stages. The absorption features of matured chlorophyll with two characteristic absorption peaks and one transmission band are molecular properties and independent of concentration. A qualitative explanation of such an absorption property is presented in terms of a ‘particle in a box’ model and the property is employed to simulate two-input optical logic operations. If both of the inputs are either red or blue, absorption is high. If either one is absent and replaced by a wavelength of the transmission band, e.g. green, absorption is low. Assigning these values as 0 s or 1 s, AND and OR operations can be performed. A NOT operation can be simulated with the transmittance instead of the absorbance. Also, the shift in absorbance values for two different polarizations of the same monochromatic light can simulate two logical states with a single wavelength. Cyclic change in absorbance is noted over a rotation of 360° for both red and blue peaks, although the difference is not very large. Red monochromatic light with polarizations apart by 90°, corresponding to maximum and minimum absorption, respectively, may be assigned as the two logical states. The fluorescence emissions for different pigment components are measured at different excitation wavelengths and the effect of fluorescence on the red absorbance is concluded to be negligible.

  1. Study of Evanescence Wave Absorption in Lindane

    NASA Astrophysics Data System (ADS)

    Marzuki, A.; Prasetyo, E.; Gitrin, M. P.; Suryanti, V.

    2017-02-01

    Evanescent wave field has been studied for the purpose of tailoring fiber sensor capable of detecting lindane concentration in a solution. The mounted fiber was optically polished such that part of the fiber clad is stripped off. To study the evanescent wave field absorption in lindane solution, the unclad fiber was immersed in the solution. Light coming out of the fiber was studied at different wavelength each for different lindane concentration. It was shown that evanescent wave field absorption is stronger at wavelength corresponding to lindane absorption band as has been shown from absorption studies lindane in UV-VIS-NIR spectrophotometer.

  2. Long wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1993-01-01

    Long wavelength infrared detection is achieved by a detector made with layers of quantum well material bounded on each side by barrier material to form paired quantum wells, each quantum well having a single energy level. The width and depth of the paired quantum wells, and the spacing therebetween, are selected to split the single energy level with an upper energy level near the top of the energy wells. The spacing is selected for splitting the single energy level into two energy levels with a difference between levels sufficiently small for detection of infrared radiation of a desired wavelength.

  3. First attempt to monitor atmospheric glyoxal using differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Lundin, Patrik; Somesfalean, Gabriel; Hu, Jiandong; Zhao, Guangyu; Svanberg, Sune; Bood, Joakim; Vrekoussis, Mihalis; Papayannis, Alexandros

    2012-11-01

    Glyoxal (CHOCHO), as an indicator of photochemical "hot spots", was for the first time the subject of a differential absorption lidar (DIAL) campaign. The strongest absorption line of glyoxal in the blue wavelength region - 455.1 nm - was chosen as the experimental absorption wavelength. In order to handle the effects of absorption cross-section variation of the interfering gas - nitrogen dioxide (NO2) - three-wavelength DIAL measurements simultaneously detecting glyoxal and NO2, were performed. The differential absorption curves, recorded in July 2012, indicate an extremely low glyoxal concentration in Lund, Sweden, although it is expected to be peaking at this time of the year.

  4. Novel Si(1-x)Ge(x)/Si heterojunction internal photoemission long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Maserjian, Joseph; Ksendzov, A.; Huberman, Mark L.; Terhune, R.; Krabach, T. N.

    1990-01-01

    There is a major need for long-wavelength-infrared (LWIR) detector arrays in the range of 8 to 16 microns which operate with close-cycle cryocoolers above 65 K. In addition, it would be very attractive to have Si-based infrared (IR) detectors that can be easily integrated with Si readout circuitry and have good pixel-to-pixel uniformity, which is critical for focal plane array (FPA) applications. Here, researchers report a novel Si(1-x)Ge(x)/Si heterojunction internal photoemission (HIP) detector approach with a tailorable long wavelength infrared cutoff wavelength, based on internal photoemission over the Si(1-x)Ge(x)/Si heterojunction. The HIP detectors were grown by molecular beam epitaxy (MBE), which allows one to optimize the device structure with precise control of doping profiles, layer thickness and composition. The feasibility of a novel Si(1-x)Ge(x)/Si HIP detector has been demonstrated with tailorable cutoff wavelength in the LWIR region. Photoresponse at wavelengths 2 to 10 microns are obtained with quantum efficiency (QE) above approx. 1 percent in these non-optimized device structures. It should be possible to significantly improve the QE of the HIP detectors by optimizing the thickness, composition, and doping concentration of the Si(1-x)Ge(x) layers and by configuring the detector for maximum absorption such as the use of a cavity structure. With optimization of the QE and by matching the barrier energy to the desired wavelength cutoff to minimize the thermionic current, researchers predict near background limited performance in the LWIR region with operating temperatures above 65K. Finally, with mature Si processing, the relatively simple device structure offers potential for low-cost producible arrays with excellent uniformity.

  5. Spectrophotometer spectral bandwidth calibration with absorption bands crystal standard.

    PubMed

    Soares, O D; Costa, J L

    1999-04-01

    A procedure for calibration of a spectral bandwidth standard for high-resolution spectrophotometers is described. Symmetrical absorption bands for a crystal standard are adopted. The method relies on spectral band shape fitting followed by a convolution with the slit function of the spectrophotometer. A reference spectrophotometer is used to calibrate the spectral bandwidth standard. Bandwidth calibration curves for a minimum spectral transmission factor relative to the spectral bandwidth of the reference spectrophotometer are derived for the absorption bands at the wavelength of the band absorption maximum. The family of these calibration curves characterizes the spectral bandwidth standard. We calibrate the spectral bandwidth of a spectrophotometer with respect to the reference spectrophotometer by determining the spectral transmission factor minimum at every calibrated absorption band of the bandwidth standard for the nominal instrument values of the spectral bandwidth. With reference to the standard spectral bandwidth calibration curves, the relation of the spectral bandwidth to the reference spectrophotometer is determined. We determine the discrepancy in the spectrophotometers' spectral bandwidths by averaging the spectral bandwidth discrepancies relative to the standard calibrated values found at the absorption bands considered. A weighted average of the uncertainties is taken.

  6. Short wavelength laser

    DOEpatents

    Hagelstein, P.L.

    1984-06-25

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  7. SALT spectroscopic classification of SN 2016iae (= ATLAS16dvr) as a type-Ic supernova before maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Foley, R. J.; Skelton, R.

    2016-11-01

    We obtained SALT (+RSS) spectroscopy of SN 2016iae (= ATLAS16dvr; Tonry et al. 2016, ATel #9749) on 2016 Nov 12.9 UT covering the wavelength range 350-940 nm. The spectrum shows a relatively blue continuum, with well-developed broad absorption features, including strong Si II (rest 635.5 nm). Cross-correlation of the supernova spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows SN 2016iae is a type-Ic supernova approaching maximum light.

  8. Laser wavelength effect on nanosecond laser light reflection in ablation of metals

    NASA Astrophysics Data System (ADS)

    Benavides, O.; de la Cruz May, L.; Mejia, E. B.; Ruz Hernandez, J. A.; Flores Gil, A.

    2016-12-01

    Reflection of nanosecond laser pulses with different wavelengths (1.06 and 0.69 µm) in ablation of titanium in air is studied experimentally. The laser wavelength effect on reflection is essential at low laser fluence values. However, it becomes negligible for laser fluence values by about an order of magnitude higher than the plasma ignition threshold. We speculate that the disappearance of the wavelength effect is explained by counter-acting processes of the laser light absorption in plasma, which increases with laser wavelength, and absorption in the surface layer, which decreases with increasing laser wavelength.

  9. Quasistellar Objects: Intervening Absorption Lines

    NASA Astrophysics Data System (ADS)

    Charlton, J.; Churchill, C.; Murdin, P.

    2000-11-01

    Every parcel of gas along the line of sight to a distant QUASAR will selectively absorb certain wavelengths of continuum light of the quasar due to the presence of the various chemical elements in the gas. Through the analysis of these quasar absorption lines we can study the spatial distributions, motions, chemical enrichment and ionization histories of gaseous structures from REDSHIFT five unti...

  10. Triple wavelength monitor PDIC

    NASA Astrophysics Data System (ADS)

    Park, Deukhee; Ha, Chang-woo; Shin, Sang-cheol; Kwon, Kyoung-soo; Ko, Joo-yul; Kang, Shin-jae

    2006-08-01

    Recently the demand for high-capacity optical storage systems compatible with CD, DVD, and Blue is growing. We designed the Vertical NIP photodiode with a diameter of 700um and the trans-impedance circuits by using 0.6um BiCMOS process. The measured sensitivity of the photodiode is 0.25, 0.42, and 0.48A/W for 405, 650, and 780nm wavelength lights, respectively. The capacitance of the PD is 4.5pF. Monitor PDIC for detecting triple wavelength lights is presented in this paper. The complete monitor PDIC with the NIP photodiode of 700um in diameter occupies 1900um*1200um. -3dB bandwidth is 110MHz and the temperature drift of output voltage is 3.2%.

  11. Short wavelength laser

    DOEpatents

    Hagelstein, Peter L.

    1986-01-01

    A short wavelength laser (28) is provided that is driven by conventional-laser pulses (30, 31). A multiplicity of panels (32), mounted on substrates (34), are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path (42). When the panels (32) are illuminated by the conventional-laser pulses (30, 31), single pass EUV or soft x-ray laser pulses (44, 46) are produced.

  12. Potential benefits of triethylamine as n-electron donor in the estimation of forskolin by electronic absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Raju, Gajula; Ram Reddy, A.

    2016-02-01

    Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state.

  13. Potential benefits of triethylamine as n-electron donor in the estimation of forskolin by electronic absorption and emission spectroscopy.

    PubMed

    Raju, Gajula; Reddy, A Ram

    2016-02-05

    Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state.

  14. Characteristic wavelength of textile fiber in near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Hongnian; Jin, Shangzhong; Gan, Bin

    2006-01-01

    Near Infrared (NIR) spectroscopy in the region from 1300 to 1700nm, coupled with multivariate analytic statistical techniques, have been used to predict the chemical properties of textile fiber. Molecule absorbs electromagnetic wave with especial wavelength, which leads to bring characteristic absorption spectrum. Characteristic wavelength is the most important parameter in NIR detection. How to select characteristic wavelength is the key to NIR measure. Different mathematical methods are used to find relationship between the NIR absorption spectrum and the chemical properties of the textile fiber. We adopt stepwise multiple linear regression (SMLR) to select characteristic wavelength. As objective condition is limited, this article only refers to cotton and terylene. By computing correlation coefficient, we establish calibration equation with the smoothed absorbance data. Finally, the bias was controlled under 6%. Then, we find that NIR can be used to carry on qualitative analysis and quantitative analysis of the textile.

  15. Gas sensing using wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Viveiros, D.; Ribeiro, J.; Flores, D.; Ferreira, J.; Frazao, O.; Santos, J. L.; Baptista, J. M.

    2014-08-01

    An experimental setup has been developed for different gas species sensing based on the Wavelength Modulation Spectroscopy (WMS) principle. The target is the measurement of ammonia, carbon dioxide and methane concentrations. The WMS is a rather sensitive technique for detecting atomic/molecular species presenting the advantage that it can be used in the near-infrared region using optical telecommunications technology. In this technique, the laser wavelength and intensity are modulated applying a sine wave signal through the injection current, which allows the shift of the detection bandwidth to higher frequencies where laser intensity noise is reduced. The wavelength modulated laser light is tuned to the absorption line of the target gas and the absorption information can be retrieved by means of synchronous detection using a lock-in amplifier, where the amplitude of the second harmonic of the laser modulation frequency is proportional to the gas concentration. The amplitude of the second harmonic is normalised by the average laser intensity and detector gain through a LabVIEW® application, where the main advantage of normalising is that the effects of laser output power fluctuations and any variations in laser transmission, or optical-electrical detector gain are eliminated. Two types of sensing heads based on free space light propagation with different optical path length were used, permitting redundancy operation and technology validation.

  16. Effect of wavelength change in microholographic recording

    NASA Astrophysics Data System (ADS)

    Katayama, Ryuichi

    2016-09-01

    In microholographic recording, expensive laser diodes having no spectrum broadening (single mode) and no wavelength variation are used. On the other hand, in conventional optical disk systems, cheap laser diodes having spectrum broadening (multimode) and wavelength variation are used. It is a great advantage if the laser diodes for conventional optical disk systems can be used for microholographic recording. Therefore, the effect of wavelength change in microholographic recording was investigated through a numerical simulation. The laser diodes were modeled so that the full width at 1/e2 maximum of the spectrum was 0.8 nm and the center wavelength was 405 nm. The numerical aperture of the objective lenses was 0.85 and the thickness of the recording medium was 300 μm. The diffraction efficiency of the diffracted beam from a microhologram was calculated using the coupled wave theory and the following results were obtained. The diffraction efficiency decreased by three orders of magnitude by replacing single-mode laser diodes with multimode laser diodes, which makes it necessary to enhance the readout signal. The tolerance of the optical path length difference between the signal and reference beams was -50 110 μm, which makes it necessary to adjust the optical path length difference. The tolerance of the wavelength variation was 405 +/- 0.5 nm, which makes it necessary to select the laser diodes. The conclusion was that it is not practical to use the laser diodes for conventional optical disk systems for microholographic recording.

  17. Maximum thrust mode evaluation

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    Measured reductions in acceleration times which resulted from the application of the F-15 performance seeking control (PSC) maximum thrust mode during the dual-engine test phase is presented as a function of power setting and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and maximum afterburning power settings. The time savings for the supersonic acceleration is less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Recall that even though the engine is at maximum afterburner, PSC does not trim the afterburner for the maximum thrust mode. Subsonically at military power, time to accelerate from Mach 0.6 to 0.95 was cut by between 6 and 8 percent with a single engine application of PSC, and over 14 percent when both engines were optimized. At maximum afterburner, the level of thrust increases were similar in magnitude to the military power results, but because of higher thrust levels at maximum afterburner and higher aircraft drag at supersonic Mach numbers the percentage thrust increase and time to accelerate was less than for the supersonic accelerations. Savings in time to accelerate supersonically at maximum afterburner ranged from 4 to 7 percent. In general, the maximum thrust mode has performed well, demonstrating significant thrust increases at military and maximum afterburner power. Increases of up to 15 percent at typical combat-type flight conditions were identified. Thrust increases of this magnitude could be useful in a combat situation.

  18. Single-wavelength STED microscope

    NASA Astrophysics Data System (ADS)

    Baer, Stephen C.

    2011-03-01

    The zero-point STED microscope (US Pat. 5,866,911)1 was the first far-field microscope to overcome the diffraction limit, but optimally it requires two expensive synchronized short-pulsed lasers. Replacing the synchronized pulsed lasers with CW lasers had been proposed to reduce costs1, but this seriously reduced resolution compared to a similarly powered pulsed STED microscope. A recent theoretical and experimental study (Nat. Methods 4, 915 (2007))3 argued that CW STED has better resolution than previously believed, but there appear to be flaws in the theory sufficient to raise questions about its reported experimental confirmation. We describe an alternative approach to reducing cost of the STED microscope while preserving resolution. A portion of the beam from a femtosecond pulsed laser of a wavelength able to excite fluorescence by multiphoton absorption, is passed through a long optical fiber to stretch the pulses to reduce their peak power so they can no longer excite but can quench by stimulated emission. The stretched pulses are shaped into a doughnut profile and then recombined with the first beam for interaction with the specimen. With suitable fluorophores, this instrument should be able to match the resolution performance of the pulsed laser STED microscope using separate lasers. Particularly when added to an existing multiphoton microscope, such performance should be achievable at extremely low added cost.

  19. Optical absorption, TL and IRSL of basic plagioclase megacrysts from the pinacate (Sonora, Mexico) quaternary alkalic volcanics.

    PubMed

    Chernov, V; Paz-Moreno, F; Piters, T M; Barboza-Flores, M

    2006-01-01

    The paper presents the first results of an investigation on optical absorption (OA), thermally and infrared stimulated luminescence (TL and IRSL) of the Pinacate plagioclase (labradorite). The OA spectra reveal two bands with maxima at 1.0 and 3.2 eV connected with absorption of the Fe3+ and Fe2+ and IR absorption at wavelengths longer than 2700 nm. The ultraviolet absorption varies exponentially with the photon energy following the 'vitreous' empirical Urbach rule indicating exponential distribution of localised states in the forbidden band. The natural TL is peaked at 700 K. Laboratory beta irradiation creates a very broad TL peak with maximum at 430 K. The change of the 430 K TL peak shape under the thermal cleaning procedure and dark storage after irradiation reveals a monotonous increasing of the activation energy that can be explained by the exponential distribution of traps. The IRSL response is weak and exhibits a typical decay behaviour.

  20. Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale

    USGS Publications Warehouse

    Cruikshank, D.P.; Meyer, A.W.; Brown, R.H.; Clark, R.N.; Jaumann, R.; Stephan, K.; Hibbitts, C.A.; Sandford, S.A.; Mastrapa, R.M.E.; Filacchione, G.; Ore, C.M.D.; Nicholson, P.D.; Buratti, B.J.; McCord, T.B.; Nelson, R.M.; Dalton, J.B.; Baines, K.H.; Matson, D.L.

    2010-01-01

    response profiles with a deep atmospheric CO2 absorption profile, producing distorted detector profile shapes and shifted central positions. In a laboratory blackbody spectrum used for radiance calibration, close examination of the CO2 absorption profile shows a similar deviation from that expected from a model. These modeled effects appear to be sufficient to explain the distortion in the existing wavelength calibration now in use. A modification to the wavelength calibration for 13 adjacent bands is provided. The affected channels span about 0.2 ??m centered on 4.28 ??m. The maximum wavelength change is about 10 nm toward longer wavelength. This adjustment has implications for interpretation of some of the spectral features observed in the affected wavelength interval, such as from CO2, as discussed in this paper.

  1. Analysis of frequency dependent pump light absorption

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Matthias; Pflaum, Christoph

    2011-03-01

    Simulations have to accurately model thermal lensing in order to help improving resonator design of diode pumped solid state lasers. To this end, a precise description of the pump light absorption is an important prerequisite. In this paper, we discuss the frequency dependency of the pump light absorption in the laser crystal and its influence on the simulated laser performance. The results show that the pump light absorption has to include the spectral overlap of the emitting pump source and the absorbing laser material. This information can either be used for a fully frequency dependent absorption model or, at least in the shown examples, to compute an effective value for an exponential Beer-Lambert law of absorption. This is particularly significant at pump wavelengths coinciding with a peak of absorption. Consequences for laser stability and performance are analyzed for different pump wavelengths in a Nd:YAG laser.

  2. Large Absorption Enhancement in Ultrathin Solar Cells Patterned by Metallic Nanocavity Arrays

    PubMed Central

    Wang, Wei; Zhang, Jiasen; Che, Xiaozhou; Qin, Guogang

    2016-01-01

    A new type of light trapping structure utilizing ring-shaped metallic nanocavity arrays is proposed for the absorption enhancement in ultrathin solar cells with few photonic waveguide modes. Dozens of times of broadband absorption enhancement in the spectral range of 700 to 1100 nm is demonstrated in an ultrathin Si3N4/c-Si/Ag prototype solar cell by means of finite-difference time-domain (FDTD) simulation, and this dramatic absorption enhancement can be attributed to the excitation of plasmonic cavity modes in these nanocavity arrays. The cavity modes optimally compensate for the lack of resonances in the longer wavelength range for ultrathin solar cells, and eventually a maximum Jsc enhancement factor of 2.15 is achieved under AM 1.5G solar illumination. This study opens a new perspective for light management in thin film solar cells and other optoelectronic devices. PMID:27703176

  3. Large Absorption Enhancement in Ultrathin Solar Cells Patterned by Metallic Nanocavity Arrays

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhang, Jiasen; Che, Xiaozhou; Qin, Guogang

    2016-10-01

    A new type of light trapping structure utilizing ring-shaped metallic nanocavity arrays is proposed for the absorption enhancement in ultrathin solar cells with few photonic waveguide modes. Dozens of times of broadband absorption enhancement in the spectral range of 700 to 1100 nm is demonstrated in an ultrathin Si3N4/c-Si/Ag prototype solar cell by means of finite-difference time-domain (FDTD) simulation, and this dramatic absorption enhancement can be attributed to the excitation of plasmonic cavity modes in these nanocavity arrays. The cavity modes optimally compensate for the lack of resonances in the longer wavelength range for ultrathin solar cells, and eventually a maximum Jsc enhancement factor of 2.15 is achieved under AM 1.5G solar illumination. This study opens a new perspective for light management in thin film solar cells and other optoelectronic devices.

  4. Millimeter wavelength thermographic scanner.

    PubMed

    Cacak, R K; Winans, D E; Edrich, J; Hendee, W R

    1981-01-01

    Two new types of thermographic instruments sensitive to millimeter-wave electromagnetic radiation have been designed, constructed, and tested. These instruments utilize wavelengths that are three orders of magnitude longer and much more penetrating than those used in conventional infrared thermography. The instruments are capable of detecting apparent thermal variations as small as a fraction of a degree existing at tissue depths of several millimeters below the skin. By comparison, conventional IR thermographic units are limited to sampling radiation emitted only from the surface. The millimeter wave thermographic units are designed to contribute to the clinical detection of breast abnormalities with the specific aim of accurately and noninvasively detecting breast cancer.

  5. Acoustic absorption by sunspots

    NASA Technical Reports Server (NTRS)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  6. Photonic crystal lasers using wavelength-scale embedded active region

    NASA Astrophysics Data System (ADS)

    Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Shinya, Akihiko; Nozaki, Kengo; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya; Fujii, Takuro; Hasebe, Koichi; Kakitsuka, Takaaki

    2014-01-01

    Lasers with ultra-low operating energy are desired for use in chip-to-chip and on-chip optical interconnects. If we are to reduce the operating energy, we must reduce the active volume. Therefore, a photonic crystal (PhC) laser with a wavelength-scale cavity has attracted a lot of attention because a PhC provides a large Q-factor with a small volume. To improve this device's performance, we employ an embedded active region structure in which the wavelength-scale active region is buried with an InP PhC slab. This structure enables us to achieve effective confinement of both carriers and photons, and to improve the thermal resistance of the device. Thus, we have obtained a large external differential quantum efficiency of 55% and an output power of -10 dBm by optical pumping. For electrical pumping, we use a lateral p-i-n structure that employs Zn diffusion and Si ion implantation for p-type and n-type doping, respectively. We have achieved room-temperature continuous-wave operation with a threshold current of 7.8 µA and a maximum 3 dB bandwidth of 16.2 GHz. The results of an experimental bit error rate measurement with a 10 Gbit s-1 NRZ signal reveal the minimum operating energy for transferring a single bit of 5.5 fJ. These results show the potential of this laser to be used for very short reach interconnects. We also describe the optimal design of cavity quality (Q) factor in terms of achieving a large output power with a low operating energy using a calculation based on rate equations. When we assume an internal absorption loss of 20 cm-1, the optimized coupling Q-factor is 2000.

  7. Wavelength-Selective One- and Two-Photon Uncaging of GABA

    PubMed Central

    2013-01-01

    We have synthesized photolabile 7-diethylamino coumarin (DEAC) derivatives of γ-aminobutyric acid (GABA). These caged neurotransmitters efficiently release GABA using linear or nonlinear excitation. We used a new DEAC-based caging chromophore that has a vinyl acrylate substituent at the 3-position that shifts the absorption maximum of DEAC to about 450 nm and thus is named “DEAC450”. DEAC450-caged GABA is photolyzed with a quantum yield of 0.39 and is highly soluble and stable in physiological buffer. We found that DEAC450-caged GABA is relatively inactive toward two-photon excitation at 720 nm, so when paired with a nitroaromatic caged glutamate that is efficiently excited at such wavelengths, we could photorelease glutamate and GABA around single spine heads on neurons in brain slices with excellent wavelength selectivity using two- and one-photon photolysis, respectively. Furthermore, we found that DEAC450-caged GABA could be effectively released using two-photon excitation at 900 nm with spatial resolution of about 3 μm. Taken together, our experiments show that the DEAC450 caging chromophore holds great promise for the development of new caged compounds that will enable wavelength-selective, two-color interrogation of neuronal signaling with excellent subcellular resolution. PMID:24304264

  8. Enzymic cleavage of purine ultraviolet photoproducts formed at biologically significant wavelengths

    SciTech Connect

    Gallagher, P.E.; Duker, N.J.

    1986-05-01

    A paradox of ultraviolet carcinogenesis research has been that maximal absorption and mutagenesis occurs at 254 nm irradiation, while the greatest tumor yield in irradiated animals has been at wavelengths between 275 and 300 nm. Ambient actinic radiation contains mostly wavelengths above 280 nm with no substantial 254 nm component. Therefore, the authors investigated formation of DNA damage by 250-400 nm irradiation. Irradiated, 3'-end-labeled, 92 base pair sequence of the human alphoid segment was incubated with endonuclease v, purified from T4-infected E. coli, or with a crude extract of M. luteus. Analysis by gel electrophoresis showed that besides pyrimidine photodimers, previously unreported photoproducts were incised. These are not 6-4'(pyrimidin-2'-one)-pyrimidines, apurinic or apyrimidinic sites, or ring-opened purines. The new products are at specific purine loci and are formed in quantities similar to pyridimine dimers. The optimal wavelengths for their formation are 275-295 nm, similar to the maximum peak of actinic carcinogenesis. The enzyme incising these products is inactivated by different heating conditions than the pyrimidine dimer-DNA glycosylase, and they appear to be separable by column chromatography. The authors propose that a novel family of photoproducts, possibly purine-containing dimers, are incised by previously uncharacterized DNA repair enzymes.

  9. Multi-wavelength photoplethysmography method for skin arterial pulse extraction

    PubMed Central

    Liu, Jing; Yan, Bryan Ping-Yen; Dai, Wen-Xuan; Ding, Xiao-Rong; Zhang, Yuan-Ting; Zhao, Ni

    2016-01-01

    In this work, we present a multi-wavelength (MW) PPG method exploiting the wavelength dependence of light penetration in skin tissue to provide depth resolution of skin blood pulsation. The MW PPG system requires two to three light sources in different wavelengths and extracts the arterial blood pulsation through a multi-wavelength multi-layer light-skin interaction model, which removes the capillary pulsation (determined from the short-wavelength PPG signal) from the long-wavelength PPG signal using absorption weighting factors that are quasi-analytically calibrated. The extracted pulsations are used to calculate blood pressure (BP) through pulse transit time (PTT), and the results are compared with those obtained from the single wavelength PPG method. The comparative study is clinically performed on 20 subjects including 10 patients diagnosed with cardiovascular diseases and 10 healthy subjects. The result demonstrates that the MW PPG method significantly improves the measurement accuracy of systolic BP (SBP), reducing the mean absolute difference between the reference and the estimated SBP values from 5.7 mmHg (for single-wavelength PPG) to 2.9 mmHg (for three-wavelength PPG). PMID:27867733

  10. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  11. Microwave absorption measurements of melting spherical and nonspherical hydrometeors

    NASA Technical Reports Server (NTRS)

    Hansman, R. J., Jr.

    1986-01-01

    Measurements were made of the absorption behavior of melting and freezing hydrometeors using resonant cavity perturbation techniques at a wavelength of 2.82 cm. Melting ice spheres with equivalent melted diameters between 1.15 and 2.00 mm exhibit a period of strong absorption during melting as predicted by prior theoretical calculations. However, the measured magnitude of the absorption peak exceeds the predicted value. Absorption measuremets of melting oblate and prolate ice ellipsoids also exhibit enhanced absorption during melting.

  12. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  13. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, Richard P.; Feldman, Mark

    1992-01-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.

  14. UV absorption of the in-bore plasma emission from an EML using polycarbonate insulators

    SciTech Connect

    Clothiaux, E.J. . Dept. of Physics)

    1991-01-01

    This paper reports on the in-bore continuum emission spectrum, laced by absorption lines, observed to be completely cutoff for wavelengths shorter than about 3000 {Angstrom}. This cutoff wavelength is seen to occur at longer wavelengths as the plasma armature moves down the launcher bore. A mechanism for the absorption of shortwave radiation by ablated and evaporated bore materials is given.

  15. All-fiber dual-wavelength Q-switched and mode-locked EDFL by SMF-THDF-SMF structure as a saturable absorber

    NASA Astrophysics Data System (ADS)

    Latiff, A. A.; Kadir, N. A.; Ismail, E. I.; Shamsuddin, H.; Ahmad, H.; Harun, S. W.

    2017-04-01

    We demonstrate all-fiber dual-wavelength Q-switched and mode-locked erbium-doped fiber laser (EDFL) by utilizing the thulium-holmium-doped fiber (THDF) as a fiber saturable absorber (SA) and also a Mach-Zehnder interferometer (MZI) element. The 19 cm long THDF has a core diameter of 11.5 μm, refractive index difference of 0.005, and cutoff wavelength of 1810 nm. Stable dual-wavelength Q-switching operation was generated at 1555.14 nm and 1557.64 nm with free spectral range (FSR) of 2.5 nm. The repetition rate of 14.45-78.49 kHz was obtained between 12 and 100 mW pump power. At maximum pump power, the maximum output power and pulse energy were 2.58 mW and 32.87 nJ, respectively. By adding 195 cm long SMF in the same cavity, the stable dual-wavelength mode-locking operation was started at 166 mW and continue stable to 201 mW pump power. This mode-locking operation produced stable dual-wavelength pulses at 1530.34 nm and 1532.84 nm with a repetition rate of 1 MHz with a pulse duration of 128 ns and signal-to-noise ratio (SNR) of 62 dB. It shares the same value of FSR in Q-switching operation. The highest output power of 1.57 nJ corresponds to the maximum output power of 1.57 mW was obtained. Our results validate the linear absorption characteristic at C-band region and multimode fiber effect of THDF can be utilized as SA to generate stable all-fiber dual-wavelength pulsed lasers. Remarkably, these findings expand a fiber gain medium application in short pulse generation.

  16. Structure, function, and wavelength selection in blue-absorbing proteorhodopsin.

    PubMed

    Hillebrecht, Jason R; Galan, Jhenny; Rangarajan, Rekha; Ramos, Lavoisier; McCleary, Kristina; Ward, Donald E; Stuart, Jeffrey A; Birge, Robert R

    2006-02-14

    The absorption maximum of blue proteorhodopsin (BPR) is the most blue-shifted of all retinal proteins found in archaea or bacteria, with the exception of sensory rhodopsin II (SRII). The absorption spectrum also exhibits a pH dependence larger than any other retinal protein. We examine the structural origins of these two properties of BPR by using optical spectroscopy, homology modeling, and molecular orbital theory. Bacteriorhodopsin (BR) and SRII are used as homology parents for comparative purposes. We find that the tertiary structure of BPR based on SRII is more realistic with respect to free energy, dynamic stability, and spectroscopic properties. Molecular orbital calculations including full single- and double-configuration interaction within the chromophore pi-electron system provide perspectives on the wavelength regulation in this protein and indicate that Arg-95, Gln-106, Glu-143, and Asp-229 play important, and in some cases pH-dependent roles. A possible model for the 0.22 eV red shift of BPR at low pH is examined, in which Glu-143 becomes protonated and releases Arg-95 to rotate up into the binding site, altering the electrostatic environment of the chromophore. At high pH, BPR has spectroscopic properties similar to SRII, but at low pH, BPR has spectroscopic properties more similar to BR. Nevertheless, SRII is a significantly better homology model for BPR and opens up the question of whether this protein serves as a proton pump, as commonly believed, or is a light sensor with structure-function properties more comparable to those of SRII. The function of BPR in the native organism is discussed with reference to the results of the homology model.

  17. Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths.

    PubMed

    Dam, J S; Pedersen, C B; Dalgaard, T; Fabricius, P E; Aruna, P; Andersson-Engels, S

    2001-03-01

    We present a compact, fast, and versatile fiber-optic probe system for real-time determination of tissue optical properties from spatially resolved continuous-wave diffuse reflectance measurements. The system collects one set of reflectance data from six source-detector distances at four arbitrary wavelengths with a maximum overall sampling rate of 100 Hz. Multivariate calibration techniques based on two-dimensional polynomial fitting are employed to extract and display the absorption and reduced scattering coefficients in real-time mode. The four wavelengths of the current configuration are 660, 785, 805, and 974 nm, respectively. Cross-validation tests on a 6 x 7 calibration matrix of Intralipid-dye phantoms showed that the mean prediction error at, e.g., 785 nm was 2.8% for the absorption coefficient and 1.3% for the reduced scattering coefficient. The errors are relative to the range of the optical properties of the phantoms at 785 nm, which were 0-0.3/cm for the absorption coefficient and 6-16/cm for the reduced scattering coefficient. Finally, we also present and discuss results from preliminary skin tissue measurements.

  18. Comets at radio wavelengths

    NASA Astrophysics Data System (ADS)

    Crovisier, Jacques; Bockelée-Morvan, Dominique; Colom, Pierre; Biver, Nicolas

    2016-11-01

    Comets are considered as the most primitive objects in the Solar System. Their composition provides information on the composition of the primitive solar nebula, 4.6 Gyr ago. The radio domain is a privileged tool to study the composition of cometary ices. Observations of the OH radical at 18 cm wavelength allow us to measure the water production rate. A wealth of molecules (and some of their isotopologues) coming from the sublimation of ices in the nucleus have been identified by observations in the millimetre and submillimetre domains. We present an historical review on radio observations of comets, focusing on the results from our group, and including recent observations with the Nançay radio telescope, the IRAM antennas, the Odin satellite, the Herschel space observatory, ALMA, and the MIRO instrument aboard the Rosetta space probe.

  19. Theoretical investigation of all-metal-based mushroom plasmonic metamaterial absorbers at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Kimata, Masafumi

    2015-12-01

    High-performance wavelength-selective infrared (IR) sensors require small pixel structures, a low-thermal mass, and operation in the middle-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) regions for multicolor IR imaging. All-metal-based mushroom plasmonic metamaterial absorbers (MPMAs) were investigated theoretically and were designed to enhance the performance of wavelength-selective uncooled IR sensors. All components of the MPMAs are based on thin layers of metals such as Au without oxide insulators for increased absorption. The absorption properties of the MPMAs were investigated by rigorous coupled-wave analysis. Strong wavelength-selective absorption is realized over a wide range of MWIR and LWIR wavelengths by the plasmonic resonance of the micropatch and the narrow-gap resonance, without disturbance from the intrinsic absorption of oxide insulators. The absorption wavelength is defined mainly by the micropatch size and is longer than its period. The metal post width has less impact on the absorption properties and can maintain single-mode operation. Through-holes can be formed on the plate area to reduce the thermal mass. A small pixel size with reduced thermal mass and wideband single-mode operation can be realized using all-metal-based MPMAs.

  20. Internal to external wavelength calibration

    NASA Astrophysics Data System (ADS)

    Sahu, Kailash C.

    1999-01-01

    The spectra of Hen 1357 (the Stingray nebula) were used to check the internal to external wavelength calibration of the STIS first order CCD modes. The radial velocity of the Stingray nebula is known to high accuracy (< 1 km/sec) and the line with of the nebular line is very narrow (< 8 km/sec for the integrated nebula). Thus the observations of the Stingray nebula are ideal to check the internal to external wavelength calibration of the first order modes. The observations were taken in G430L and G750M modes using a 52 x 0.05 arcsec slit covering the wavelength range 2900 to 5700 A and 6295 to 6867 A, respectively. The observed wavelength range includes many nebular emission lines. The wavelengths of the nebular lines derived using the pipeline internal wavelength calibration were compared with the wavelengths derived from other ground based observations. In all cases, the wavelength match between the two is of the same order as the accuracy to which the line center can be measured. These results imply that there is no significant offset between the internal and external wavelength calibrations for these modes. The HDF-S QSO observations were also used for this test both for the first order and the Echelle modes. The results of the HDF-S QSO observations further confirm the above finding for the first order modes, and imply that there is no significant offset between the internal and external wavelength calibration for the Echelle modes.

  1. Do shorter wavelengths improve contrast in optical mammography?

    NASA Astrophysics Data System (ADS)

    Taroni, P.; Pifferi, A.; Torricelli, A.; Spinelli, L.; Danesini, G. M.; Cubeddu, R.

    2004-04-01

    The detection of tumours with time-resolved transmittance imaging relies essentially on blood absorption. Previous theoretical and phantom studies have shown that both contrast and spatial resolution of optical images are affected by the optical properties of the background medium, and high absorption and scattering are generally beneficial. Based on these observations, wavelengths shorter than presently used (680-780 nm) could be profitable for optical mammography. A study was thus performed analysing time-resolved transmittance images at 637, 656, 683 and 785 nm obtained from 26 patients bearing 16 tumours and 15 cysts. The optical contrast proved to increase upon decreasing wavelengths for the detection of cancers in late-gated intensity images, with higher gain in contrast for lesions of smaller size (<1.5 cm diameter). For cysts either a progressive increase or decrease in contrast with wavelength was observed in scattering images.

  2. Five-Channel Infrared Laser Absorption Spectrometer for Combustion Product Monitoring Aboard Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Borgentun, Carl E.; Bagheri, Mahmood; Forouhar, Siamak; May, Randy D.

    2014-01-01

    Continuous combustion product monitoring aboard manned spacecraft can prevent chronic exposure to hazardous compounds and also provides early detection of combustion events. As future missions extend beyond low-Earth orbit, analysis of returned environmental samples becomes impractical and safety monitoring should be performed in situ. Here, we describe initial designs of a five-channel tunable laser absorption spectrometer to continuously monitor combustion products with the goal of minimal maintenance and calibration over long-duration missions. The instrument incorporates dedicated laser channels to simultaneously target strong mid-infrared absorption lines of CO, HCl, HCN, HF, and CO2. The availability of low-power-consumption semiconductor lasers operating in the 2 to 5 micron wavelength range affords the flexibility to select absorption lines for each gas with maximum interaction strength and minimal interference from other gases, which enables the design of a compact and mechanically robust spectrometer with low-level sensitivity. In this paper, we focus primarily on absorption line selection based on the availability of low-power single-mode semiconductor laser sources designed specifically for the target wavelength range.

  3. Wavelength-conserving grating router for intermediate wavelength density

    DOEpatents

    Deri, Robert J.; Patel, Rajesh R.; Bond, Steven W.; Bennett, Cory V.

    2007-03-20

    A wavelength router to be used for fiber optical networking router is based on a diffraction grating which utilizes only N wavelengths to interconnect N inputs to N outputs. The basic approach is to augment the grating with additional couplers or wavelength selective elements so than N-1 of the 2N-1 outputs are combined with other N outputs (leaving only N outputs). One embodiment uses directional couplers as combiners. Another embodiment uses wavelength-selective couplers. Another embodiment uses a pair of diffraction gratings to maintain parallel propagation of all optical beams. Also, beam combining can be implemented either by using retroflection back through the grating pair or by using couplers.

  4. Maximum Likelihood Fusion Model

    DTIC Science & Technology

    2014-08-09

    data fusion, hypothesis testing,maximum likelihood estimation, mobile robot navigation REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT...61 vi 9 Bibliography 62 vii 10 LIST OF FIGURES 1.1 Illustration of mobile robotic agents. Land rovers such as (left) Pioneer robots ...simultaneous localization and mapping 1 15 Figure 1.1: Illustration of mobile robotic agents. Land rovers such as (left) Pioneer robots , (center) Segways

  5. Investigations of medium wavelength magnetic anomalies in the eastern Pacific using Magsat data

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Three long total magnetic field profiles taken over ocean basins were analyzed. It is found that there is a significant signal in the wavelength range of 1500 to 150 km. This is too short a wavelength to be caused by the core field, which becomes insignificant at about a wavelength of 1500 km; this intermediate wavelength signal is not caused by a typical sea floor spreading process, which should give maximum power in the wavelength region about 50 km. It is shown that the external magnetic field contributes very little to this intermediate wavelength signal. Efforts to explain the cause of this signal have failed.

  6. Optimal wavelength band clustering for multispectral iris recognition.

    PubMed

    Gong, Yazhuo; Zhang, David; Shi, Pengfei; Yan, Jingqi

    2012-07-01

    This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3 clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative clustering based on two-dimensional principal component analysis. The experimental results suggest (1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance of iris multispectral recognition based on a three wavelengths-bands fusion.

  7. Dependence of Aerosol Light Absorption and Single-Scattering Albedo On Ambient Relative Humidity for Sulfate Aerosols with Black Carbon Cores

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Hamill, Patrick

    2001-01-01

    Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can

  8. PERITONEAL ABSORPTION

    PubMed Central

    Hahn, P. F.; Miller, L. L.; Robscheit-Robbins, F. S.; Bale, W. F.; Whipple, G. H.

    1944-01-01

    The absorption of red cells from the normal peritoneum of the dog can be demonstrated by means of red cells labeled with radio-iron incorporated in the hemoglobin of these red cells. Absorption in normal dogs runs from 20 to 100 per cent of the amount given within 24 hours. Dogs rendered anemic by bleeding absorb red cells a little less rapidly—ranging from 5 to 80 per cent of the injected red cells. Doubly depleted dogs (anemic and hypoproteinemic) absorb even less in the three experiments recorded. This peritoneal absorption varies widely in different dogs and even in the same dog at different times. We do not know the factors responsible for these variations but there is no question about active peritoneal absorption. The intact red cells pass readily from the peritoneal cavity into lymph spaces in diaphragm and other areas of the peritoneum. The red cells move along the lymphatics and through the lymph glands with little or no phagocytosis and eventually into the large veins through the thoracic ducts. PMID:19871404

  9. Nutrient absorption.

    PubMed

    Rubin, Deborah C

    2004-03-01

    Our understanding of nutrient absorption continues to grow, from the development of unique animal models and from studies in which cutting-edge molecular and cellular biologic approaches have been used to analyze the structure and function of relevant molecules. Studies of the molecular genetics of inherited disorders have also provided many new insights into these processes. A major advance in lipid absorption has been the cloning and characterization of several intestinal acyl CoA:monoacylglycerol acyltransferases; these may provide new targets for antiobesity drug therapy. Studies of intestinal cholesterol absorption and reverse cholesterol transport have encouraged the development of novel potential treatments for hyperlipidemia. Observations in genetically modified mice and in humans with mutations in glucose transporter 2 suggest the importance of a separate microsomal membrane transport pathway for glucose transport. The study of iron metabolism has advanced greatly with the identification of the hemochromatosis gene and the continued examination of the genetic regulation of iron absorptive pathways. Several human thiamine transporters have been identified, and their specific roles in different tissues are being explored.

  10. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Chipman, E. G.

    1981-03-01

    The Solar Maximum Mission spacecraft, launched on 1980 February 14, carries seven instruments for the study of solar flares and other aspects of solar activity. These instruments observe in spectral ranges from gamma-rays through the visible, using imaging, spectroscopy, and high-time-resolution light curves to study flare phenomena. In addition, one instrument incorporates an active cavity radiometer for accurate measurement of the total solar radiant output. This paper reviews some of the most important current observational and theoretical questions of solar flare physics and indicates the ways in which the experiments on SMM will be able to attack these questions. The SMM observing program is described.

  11. On Maximum FODO Acceptance

    SciTech Connect

    Batygin, Yuri Konstantinovich

    2014-12-24

    This note illustrates maximum acceptance of FODO quadrupole focusing channel. Acceptance is the largest Floquet ellipse of a matched beam: A = $\\frac{a^2}{β}$$_{max}$ where a is the aperture of the channel and βmax is the largest value of beta-function in the channel. If aperture of the channel is restricted by a circle of radius a, the s-s acceptance is available for particles oscillating at median plane, y=0. Particles outside median plane will occupy smaller phase space area. In x-y plane, cross section of the accepted beam has a shape of ellipse with truncated boundaries.

  12. The last glacial maximum

    USGS Publications Warehouse

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  13. The maximum oxygen intake*

    PubMed Central

    Shephard, Roy J.; Allen, C.; Benade, A. J. S.; Davies, C. T. M.; di Prampero, P. E.; Hedman, R.; Merriman, J. E.; Myhre, K.; Simmons, R.

    1968-01-01

    Lack of cardiorespiratory fitness may well contribute to the increasing prevalence of degenerative cardiovascular disease throughout the world. As a first step towards co-ordinated and internationally comparable investigation of this problem, methods of measuring the reference standard of cardiorespiratory fitness—the maximum oxygen intake, (V̇o2)max—were compared by an international working party that met in Toronto in the summer of 1967. Repeated testing of 24 subjects showed that the (V̇o2)max was greatest on the treadmill, 3.4% smaller in a stepping test, and 6.6% smaller during use of a bicycle ergometer. There were also parallel differences in cardiac stroke volume. Uphill treadmill running was recommended for the laboratory measurement of (V̇o2)max, and stepping or bicycle exercise for field studies. A discontinuous series of maximum tests caused some improvement in the fitness of subjects, and a “continuous” test (with small increases in load at 2-min intervals) was preferred. PMID:5303329

  14. Apparatus And Methods For Launching And Receiving A Broad Wavelength Range Source

    DOEpatents

    Von Drasek, William A.; Sonnenfroh, David; Allen, Mark G.; Stafford-Evans, Joy

    2006-02-28

    An apparatus and method for simultaneous detection of N gas species through laser radiation attenuation techniques is disclosed. Each of the N species has a spectral absorption band. N laser sources operate at a wavelength ?N in a spectral absorption band separated by the cutoff wavelength for single-mode transmission. Each laser source corresponds to a gas species and transmits radiation through an optical fiber constructed and arranged to provide single-mode transmission with minimal power loss.

  15. Choice of the proper wavelength for photochemotherapy

    NASA Astrophysics Data System (ADS)

    Moan, Johan; Iani, Vladimir; Ma, LiWei

    1996-01-01

    All photosensitizers applied in experimental- and clinical-photochemotherapy (PCT) have broad absorption spectra stretching from the ultraviolet up to 6 - 700 nm. Light of wavelengths in the red part of the spectrum is chosen for PCT even though the extinction coefficients of the sensitizers are usually smaller in this wavelength region than at shorter wavelengths. Thus, if one wants to treat superficial tumors or skin disorders, this may be a wrong choice. Two pieces of information are needed in order to make a proper choice of wavelength to treat a lesion of a given depth: the wavelength dependence of the optical penetration depth into tissue, and the action spectrum for tumor destruction. Additionally, the skin photosensitivity induced by the drug should be considered. We have non-invasively measured the optical penetration spectra of human tissues in vivo and the fluorescence excitation spectra for several sensitizers, including protoporphyrin (PpIX), in cells. Assuming that the action spectrum for cell inactivation can be approximated by the fluorescence excitation spectrum of the sensitizer -- which is indeed the case for a number of sensitizers in cells in vitro -- we have considered the situation for 5-aminolevulinic acid-induced PpIX in human tissue. All the way down to about 2 mm below the surface light in the Soret band (-410 nm) would give the largest cell inactivation, while at depth exceeding 2 mm, the conventional 635 nm light would be optimal. Light at the argon laser wavelength 514.5 nm is more efficient than light at 635 nm down to 1 mm. From the surface and down to 6 mm, the 635 nm peak of the excitation spectrum of PpIX, as evaluated per photon incident on the skin surface, is redshifted by less than 2 nm. In some cases photosensitizing photoproducts are formed during PCT, such as photoprotoporphyrin during PCT with PpIX. In such cases it may be advantageous to apply a broad-band light source with a spectrum that covers also part of the action

  16. Bulk and surface calorimetric measurements at CO wavelengths.

    PubMed

    Allen, S D; Rudisill, J E

    1977-11-01

    Laser calorimetry was used to measure the optical absorption of several candidate window materials for application at CO laser wavelengths. These materials include KCl, CaF(2), SrF(2), and ZnSe. The long, thin bar technique was used to separate bulk and surface absorption contributions by means of their time dependencies. One sample of KCl, known to be low absorbing at 10.6 microm, exhibited no measurable absorption within the sensitivity of the calorimeter (beta(t) < 2 x 10(-6) cm(-1)). The absorption coefficients measured for two samples of CaF(2) at 5.41 microm were higher than those measured by other investigators at 5.25 microm, but, when fitted to an exponential dependence on wavelength, compared favorably with currently measured values. To compare results from different laboratories, precise definition of the spectral power distribution is essential. The surface absorption was, in all cases, small relative to similar measurements at 10.6 microm; in several cases it was not separable from bulk absorption by the technique used.

  17. The Enhanced Light Absorptance and Device Application of Nanostructured Black Silicon Fabricated by Metal-assisted Chemical Etching

    NASA Astrophysics Data System (ADS)

    Zhong, Hao; Guo, Anran; Guo, Guohui; Li, Wei; Jiang, Yadong

    2016-07-01

    We use metal-assisted chemical etching (MCE) method to fabricate nanostructured black silicon on the surface of C-Si. The Si-PIN photoelectronic detector based on this type of black silicon shows excellent device performance with a responsivity of 0.57 A/W at 1060 nm. Silicon nanocone arrays can be created using MCE treatment. These modified surfaces show higher light absorptance in the near-infrared range (800 to 2500 nm) compared to that of C-Si with polished surfaces, and the variations in the absorption spectra of the nanostructured black silicon with different etching processes are obtained. The maximum light absorptance increases significantly up to 95 % in the wavelength range of 400 to 2500 nm. Our recent novel results clearly indicate that nanostructured black silicon made by MCE has potential application in near-infrared photoelectronic detectors.

  18. Interference comparator for laser diode wavelength and wavelength instability measurement

    NASA Astrophysics Data System (ADS)

    Dobosz, Marek; KoŻuchowski, Mariusz

    2016-04-01

    Method and construction of a setup, which allows measuring the wavelength and wavelength instability of the light emitted by a laser diode (or a laser light source with a limited time coherence in general), is presented. The system is based on Twyman-Green interferometer configuration. Proportions of phases of the tested and reference laser's interference fringe obtained for a set optical path difference are a measure of the unknown wavelength. Optical path difference in interferometer is stabilized. The interferometric comparison is performed in vacuum chamber. The techniques of accurate fringe phase measurements are proposed. The obtained relative standard uncertainty of wavelength evaluation in the tested setup is about 2.5 ṡ 10-8. Uncertainty of wavelength instability measurement is an order of magnitude better. Measurement range of the current setup is from 500 nm to 650 nm. The proposed technique allows high accuracy wavelength measurement of middle or low coherence sources of light. In case of the enlarged and complex frequency distribution of the laser, the evaluated wavelength can act as the length master in interferometer for displacement measurement.

  19. Interference comparator for laser diode wavelength and wavelength instability measurement.

    PubMed

    Dobosz, Marek; Kożuchowski, Mariusz

    2016-04-01

    Method and construction of a setup, which allows measuring the wavelength and wavelength instability of the light emitted by a laser diode (or a laser light source with a limited time coherence in general), is presented. The system is based on Twyman-Green interferometer configuration. Proportions of phases of the tested and reference laser's interference fringe obtained for a set optical path difference are a measure of the unknown wavelength. Optical path difference in interferometer is stabilized. The interferometric comparison is performed in vacuum chamber. The techniques of accurate fringe phase measurements are proposed. The obtained relative standard uncertainty of wavelength evaluation in the tested setup is about 2.5 ⋅ 10(-8). Uncertainty of wavelength instability measurement is an order of magnitude better. Measurement range of the current setup is from 500 nm to 650 nm. The proposed technique allows high accuracy wavelength measurement of middle or low coherence sources of light. In case of the enlarged and complex frequency distribution of the laser, the evaluated wavelength can act as the length master in interferometer for displacement measurement.

  20. Anomalous atmospheric absorption spectra due to water dimer

    NASA Astrophysics Data System (ADS)

    Cai, Peipei; Zhang, Hansheng; Shen, Shanxiong; Cheng, I.-Shan

    1986-11-01

    The anomalous atmospheric absorption spectra in the window wavelength region of 8-14 microns have been suggested due to the water dimer. Based on laboratory measurements, water continuum CO2 laser absorption spectra and a resonance absorption line due to the weak local wave vapor pure rotational transition have been reported. The equilibrium concentration of water dimers in the atmosphere, the electronic binding energy and the theoretical calculations for absorption attenuation have been obtained in agreement with published data.

  1. Tunneling induced absorption with competing Nonlinearities

    PubMed Central

    Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi

    2016-01-01

    We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility. PMID:27958303

  2. Resolution of overlapping spectra by wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Bullock, Audra Michiele

    Wavelength modulation absorption spectroscopy is a highly sensitive, non-intrusive technique for probing gaseous species, which employs the well-known principles of modulation spectroscopy in a novel way. With this technique, parameters such as velocity, density, and temperature can be measured with a high degree of precision. The research presented here shows that wavelength modulation is a convenient means of increasing the sensitivity of an absorption spectroscopy measurement because it allows for harmonic detection. The focus of the dissertation is resolution of overlapping spectra by harmonic detection and the advantages gained by performing detection at the higher harmonics, e.g., sixth and eighth. Additionally, it is shown that the higher harmonic detection orders can be used to identify transition line shape profiles as well as absorption line parameters. A study of the line shape profile for the oxygen A-band transitions is presented. The results of this study indicate that oxygen exhibits collisional narrowing on the order of 0.006 cm-1 atm-1 in this near infrared atmospheric band. Other general characteristics of absorption signals obtained by employing wavelength modulation spectroscopy with harmonic detection are discussed along with their corresponding applications.

  3. Reflective-tube absorption meter

    NASA Astrophysics Data System (ADS)

    Zaneveld, J. Ronald V.; Bartz, Robert; Kitchen, James C.

    1990-09-01

    The design and calibration of a proposed in situ spectral absorption meter is evaluated using a laboratory prototype. The design includes a silver coated (second-surface) glass tube, a tungsten light source (stabilized by means of optical feedback), a monochromator, and a solid state detector. The device measures the absorption coefficient plus a portion of the volume scattering function. Theoretical analyses and laboratory experiments which explore the magnitude and variation of the errors due to scattering and internal reflections are described. Similar analyses are performed on the Cary 1 18 Spectrophotometer to allow cross calibration. Algorithms to yield the abscrption coefficient and the zenith-sun diffuse attenuation coefficient are presented and evaluated. Simultaneous measurement of the beam attenuation or backscattering coefficient allows use of algoriThms with much narrower error bands. The various methods of obtaining absorption and diffuse attenuation values are compared. Procedures for using reverse osmosis filtration to produce a clean water calibration standard are described. An absorption spectrum for pure water is obtained. Development of the absorption meter is proceeding along two lines: 1) a two-wavelength side-by-side LED is being fabricated to allow an in situ chlorophyll a absorption meter to be constructed, and 2) scientific projects using a shipboard or laboratory flow.-through pumping system are being planned.

  4. The absorption and radiation of a tungsten plasma plume during nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Moscicki, T.; Hoffman, J.; Chrzanowska, J.

    2015-10-01

    In this paper, the effect of absorption of the laser beam and subsequent radiation on the dynamics of a tungsten plasma plume during pulsed laser ablation is analyzed. Different laser wavelengths are taken into consideration. The absorption and emission coefficients of tungsten plasma in a pressure range of 0.1-100 MPa and temperature up to 70 000 K are presented. The shielding effects due to the absorption and radiation of plasma may have an impact on the course of ablation. The numerical model that describes the tungsten target heating and the formation of the plasma and its expansion were made for 355 nm and 1064 nm wavelengths of a Nd:YAG laser. The laser beam with a Gaussian profile was focused to a spot size of 0.055 mm2 with a power density of 1 × 109 W/cm2 (10 ns full width half maximum pulse duration). The plasma expands into air at ambient pressure of 1 mPa. The use of the shorter wavelength causes faster heating of the target, thus the higher ablation rate. The consequences of a higher ablation rate are slower expansion and smaller dimensions of the plasma plume. The higher plasma temperature in the case of 1064 nm is due to the lower density and lower plasma radiation. In the initial phase of propagation of the plasma plume, when both the temperature and pressure are very high, the dominant radiation is emission due to photo-recombination. However, for a 1064 nm laser wavelength after 100 ns of plasma expansion, the radiation of the spectral lines is up to 46.5% of the total plasma radiation and should not be neglected.

  5. The absorption and radiation of a tungsten plasma plume during nanosecond laser ablation

    SciTech Connect

    Moscicki, T. Hoffman, J.; Chrzanowska, J.

    2015-10-15

    In this paper, the effect of absorption of the laser beam and subsequent radiation on the dynamics of a tungsten plasma plume during pulsed laser ablation is analyzed. Different laser wavelengths are taken into consideration. The absorption and emission coefficients of tungsten plasma in a pressure range of 0.1–100 MPa and temperature up to 70 000 K are presented. The shielding effects due to the absorption and radiation of plasma may have an impact on the course of ablation. The numerical model that describes the tungsten target heating and the formation of the plasma and its expansion were made for 355 nm and 1064 nm wavelengths of a Nd:YAG laser. The laser beam with a Gaussian profile was focused to a spot size of 0.055 mm{sup 2} with a power density of 1 × 10{sup 9 }W/cm{sup 2} (10 ns full width half maximum pulse duration). The plasma expands into air at ambient pressure of 1 mPa. The use of the shorter wavelength causes faster heating of the target, thus the higher ablation rate. The consequences of a higher ablation rate are slower expansion and smaller dimensions of the plasma plume. The higher plasma temperature in the case of 1064 nm is due to the lower density and lower plasma radiation. In the initial phase of propagation of the plasma plume, when both the temperature and pressure are very high, the dominant radiation is emission due to photo-recombination. However, for a 1064 nm laser wavelength after 100 ns of plasma expansion, the radiation of the spectral lines is up to 46.5% of the total plasma radiation and should not be neglected.

  6. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Piletic, Ivan R.; Matthews, Thomas E.; Warren, Warren S.

    2009-11-01

    Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain ˜46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.

  7. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy.

    PubMed

    Piletic, Ivan R; Matthews, Thomas E; Warren, Warren S

    2009-11-14

    Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750 nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain approximately 46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.

  8. Generalized Maximum Entropy

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Stutz, John

    2005-01-01

    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

  9. Synchronous two-wavelength temporal interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqiong; Gao, Zhan; Qin, Jie; Li, Guangyu; Feng, Ziang; Wang, Shengjia

    2016-09-01

    Interferometry is an optical measuring method with the character of non-destructive, high sensitivity and high accuracy. However, its measurement range is limited by the phase ambiguity. Hence the method with two separate different wavelengths light source is introduced to enlarge the measurement range. As for the two-wavelength interferometry case, phase shifting is the traditional way to acquire the phase map, it needs to repeat the measurement twice, which means the measurement cannot be accomplished in real time. Hence to solve the problem, a temporal sequence interferometry has been used. This method can obtain the desired phase information in real time by using the Fourier transform methods of the interferogram recorded in a sequence while the object is being deformed. But, it is difficult to retrieve the phase information directly due to the multi extreme points in one period of the cosine function. In this paper, an algorithm based on the wavelet ridge analysis is adopted to retrieve the two wavelength phase fluctuation caused by the displacement simultaneously. The preliminary experiment is conducted and the results are compared with theoretical simulations to validate the proposed approach. The laser emits light with two wavelengths 532 nm and 473 nm, two separated interference patterns in time sequence are detected by the CCD camera in the same time. The overlapped interferograms of two colors are analyzed by this algorithm and the corresponding phase information are obtained. The maximum error value between the simulation and theory is 0.03 um and the relative error is 0.33%.

  10. Ultraviolet absorption cross sections of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Rohatgi, N. K.; Demore, W. B.

    1978-01-01

    Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.

  11. Metadevice for intensity modulation with sub-wavelength spatial resolution

    PubMed Central

    Cencillo-Abad, Pablo; Zheludev, Nikolay I.; Plum, Eric

    2016-01-01

    Effectively continuous control over propagation of a beam of light requires light modulation with pixelation that is smaller than the optical wavelength. Here we propose a spatial intensity modulator with sub-wavelength resolution in one dimension. The metadevice combines recent advances in reconfigurable nanomembrane metamaterials and coherent all-optical control of metasurfaces. It uses nanomechanical actuation of metasurface absorber strips placed near a mirror in order to control their interaction with light from perfect absorption to negligible loss, promising a path towards dynamic diffraction and focusing of light as well as holography without unwanted diffraction artefacts. PMID:27857221

  12. Multiple-wavelength tunable laser

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2010-01-01

    A tunable laser includes dispersion optics for separating generated laser pulses into first and second wavelength pulses directed along first and second optical paths. First and second reflective mirrors are disposed in the first and second optical paths, respectively. The laser's output mirror is partially reflective and partially transmissive with respect to the first wavelength and the second wavelength in accordance with provided criteria. A first resonator length is defined between the output mirror and the first mirror, while a second resonator length is defined between the output mirror and the second mirror. The second resonator length is a function of the first resonator length.

  13. AWG Filter for Wavelength Interrogator

    NASA Technical Reports Server (NTRS)

    Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Faridian, Fereydoun (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor)

    2015-01-01

    A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.

  14. Optical design of nanowire absorbers for wavelength selective photodetectors

    PubMed Central

    Mokkapati, S.; Saxena, D.; Tan, H. H.; Jagadish, C.

    2015-01-01

    We propose the optical design for the absorptive element of photodetectors to achieve wavelength selective photo response based on resonant guided modes supported in semiconductor nanowires. We show that the waveguiding properties of nanowires result in very high absorption efficiency that can be exploited to reduce the volume of active semiconductor compared to planar photodetectors, without compromising the photocurrent. We present a design based on a group of nanowires with varying diameter for multi-color photodetectors with small footprint. We discuss the effect of a dielectric shell around the nanowires on the absorption efficiency and present a simple approach to optimize the nanowire diameter-dielectric shell thickness for maximizing the absorption efficiency. PMID:26469227

  15. Reconstruction of N2O and CH4 Content by Dial Measurements at Wavelengths of Overtone CO Laser

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Matvienko, G. G.; Kharchenko, O. V.; Yakovlev, S. V.

    2016-06-01

    The paper presents the results of laboratory experiments on measurement of absorption and extinction of radiation of the overtone Co laser at wavelengths used for sensing of methane and N2O in the mid-IR spectral range with the differential absorption (DIAL) method, as well as the concentrations of the studied gases reconstructed from the analysis of experimentally obtained absorption coefficients.

  16. Molar Absorptivity Measurements in Absorbing Solvents: Impact on Solvent Absorptivity Values.

    PubMed

    Bohman, Ariel; Arnold, Mark A

    2016-10-18

    Molar absorptivity is a fundamental molecular property that quantifies absorption strength as a function of wavelength. Absolute measurements of molar absorptivity demand accounting for all mechanisms of light attenuation, including reflective losses at interfaces associated with the sample. Ideally, such measurements are performed in nonabsorbing solvents and reflective losses can be determined in a straightforward manner from Fresnel equations or effectively accounted for by path length difference methods. At near-infrared wavelengths, however, many solvents, including water, are absorbing which complicates the quantification of reflective losses. Here, generalized equations are developed for calculating absolute molar absorptivities of neat liquids wherein the dependency of reflective loss on absorption properties of the liquid are considered explicitly. The resulting equations are used to characterize sensitivity of absolute molar absorptivity measurements for solvents to the absorption strength of the solvent as well as the path length of the measurement. Methods are derived from these equations to properly account for reflective losses in general and the effectiveness of these methods is demonstrated for absolute molar absorptivity measurements for water over the combination region (5000-4000 cm(-1)) of the near-infrared spectrum. Results indicate that ignoring solvent absorption effects can incorporate wide ranging systematic errors depending upon experimental conditions. As an example, systematic errors range from 0 to 10% for common conditions used in the measurement of absolute molar absorptivity of water over the combination region of the near-infrared spectrum.

  17. THE VISIBILITY OF MONOCHROMATIC RADIATION AND THE ABSORPTION SPECTRUM OF VISUAL PURPLE

    PubMed Central

    Hecht, Selig; Williams, Robert E.

    1922-01-01

    1. After a consideration of the existing data and of the sources of error involved, an arrangement of apparatus, free from these errors, is described for measuring the relative energy necessary in different portions of the spectrum in order to produce a colorless sensation in the eye. 2. Following certain reasoning, it is shown that the reciprocal of this relative energy at any wave-length is proportional to the absorption coefficient of a sensitive substance in the eye. The absorption spectrum of this substance is then mapped out. 3. The curve representing the visibility of the spectrum at very low intensities has exactly the same shape as that for the visibility at high intensities involving color vision. The only difference between them is their position in the spectrum, that at high intensities being 48 µµ farther toward the red. 4. The possibility is considered that the sensitive substances responsible for the two visibility curves are identical, and reasons are developed for the failure to demonstrate optically the presence of a colored substance in the cones. The shift of the high intensity visibility curve toward the red is explained in terms of Kundt's rule for the progressive shift of the absorption maximum of a substance in solvents of increasing refractive index and density. 5. Assuming Kundt's rule, it is deduced that the absorption spectrum of visual purple as measured directly in water solution should not coincide with its position in the rods, because of the greater density and refractive index of the rods. It is then shown that, measured by the position of the visibility curve at low intensities, this shift toward the red actually occurs, and is about 7 or 8 µµ in extent. Examination of the older data consistently confirms this difference of position between the curves representing visibility at low intensities and those representing the absorption spectrum of visual purple in water solution. 6. It is therefore held as a possible hypothesis

  18. Optical absorption in air/monolayer MoS2/S (Sdbnd SiO2 or Si) trilayer stacks at oblique incidence

    NASA Astrophysics Data System (ADS)

    Ansari, N.; Moradi, M.

    2017-04-01

    The monolayer MoS2 with strong light-matter interaction and optoelectronic properties is useful to design different optical devices such as photonic absorbers. In this paper, the MoS2 monolayer is sandwiched in the following stacks: SiO2/MoS2/air and Si/MoS2/air to study of increasing optical absorption. We study theoretically the absorption of these stacks as a function of polarization, incident angle and wavelength to reach the maximum value in the visible regime. The absorption intensity reaches to be as high as 65% for internal reflection and s polarization, around the blue wavelength for air/MoS2/SiO2 stack. Absorption behavior including maxima points as a function of wavelength is correlated with imaginary component of refractive index of the monolayer MoS2 except around critical angle. Our results recommend important role of internal and external reflection, cover and substrate layer, angle of incidence and polarization to design elements for optical energy harvesting applications.

  19. Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS) for noninvasive early cancer detection and tissue hypoxia monitoring.

    PubMed

    Choi, Sung Soo Sean; Mandelis, Andreas; Guo, Xinxin; Lashkari, Bahman; Kellnberger, Stephan; Ntziachristos, Vasilis

    2016-04-01

    This study introduces a novel noninvasive differential photoacoustic method, Wavelength Modulated Differential Photoacoustic Spectroscopy (WM-DPAS), for noninvasive early cancer detection and continuous hypoxia monitoring through ultrasensitive measurements of hemoglobin oxygenation levels (StO2 ). Unlike conventional photoacoustic spectroscopy, WM-DPAS measures simultaneously two signals induced from square-wave modulated laser beams at two different wavelengths where the absorption difference between maximum deoxy- and oxy-hemoglobin is 680 nm, and minimum (zero) 808 nm (the isosbestic point). The two-wavelength measurement efficiently suppresses background, greatly enhances the signal to noise ratio and thus enables WM-DPAS to detect very small changes in total hemoglobin concentration (CHb ) and oxygenation levels, thereby identifying pre-malignant tumors before they are anatomically apparent. The non-invasive nature also makes WM-DPAS the best candidate for ICU bedside hypoxia monitoring in stroke patients. Sensitivity tunability is another special feature of the technology: WM-DPAS can be tuned for different applications such as quick cancer screening and accurate StO2 quantification by selecting a pair of parameters, signal amplitude ratio and phase shift. The WM-DPAS theory has been validated with sheep blood phantom measurements. Sensitivity comparison between conventional single-ended signal and differential signal.

  20. Horizontal radiative fluxes in clouds and accuracy of the independent pixel approximation at absorbing wavelengths

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Oreopoulos, L.; Davis, A. B.; Wiscombe, W. J.; Cahalan, R. F.

    For absorbing wavelengths, we discuss the effect of horizontal solar radiative fluxes in clouds on the accuracy of a conventional plane-parallel radiative transfer calculation for a single pixel, known as the Independent Pixel Approximation (IPA). Vertically integrated horizontal fluxes can be represented as a sum of three components: the IPA accuracies for reflectance, transmittance and absorptance. We show that IPA accuracy for reflectance always improves with more absorption, while the IPA accuracy for transmittance is less sensitive to the changes in absorption: with respect to the non-absorbing case, it may first deteriorate for weak absorption and then improve again for strongly absorbing wavelengths. IPA accuracy for absorptance always deteriorates with more absorption.

  1. Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage.

    PubMed

    Schomacker, K T; Domankevitz, Y; Flotte, T J; Deutsch, T F

    1991-01-01

    The wavelength dependence of the ablation threshold of a variety of tissues has been studied by using a tunable pulsed Co:MgF2 laser to determine how closely it tracks the optical absorption length of water. The Co:MgF2 laser was tuned between 1.81 and 2.14 microns, a wavelength region in which the absorption length varies by a decade. For soft tissues the ablation threshold tracks the optical absorption length; for bone there is little wavelength dependence, consistent with the low water content of bone. Thermal damage vs. wavelength was also studied for cornea and bone. Thermal damage to cornea has a weak wavelength dependence, while that to bone shows little wavelength dependence. Framing-camera pictures of the ablation of both cornea and liver show explosive removal of material, but differ as to the nature of the explosion.

  2. Expanding plasma structure and its evolution toward long wavelengths

    SciTech Connect

    Sgro, A. G.; Peter Gary, S.; Lemons, D. S.

    1989-09-01

    The expansion of a plasma slab across an initially uniform magnetic field is simulated by the use of a two-dimensional electromagnetic hybrid (particle ions, fluid electrons of nonzero mass) computer code. The expanding plasma develops magnetic-field-aligned structure on time scales faster than an ion gyroperiod. Through the full duration of the /ital m//sub /ital i////ital m//sub /ital e// =100 simulation, the structure wavelength is well predicted by the wavelength at maximum growth rate from the linear Vlasov theory of the lower hybrid drift instability modified by deceleration. At /ital m//sub /ital i////ital m//sub /ital e// =400, the late time structure wavelength is about 1.5 times the early time value. At /ital m//sub /ital i////ital m//sub /ital e// =1836, the structure wavelength at early times is close to that corresponding to the maximum growth rate of linear theory, while at later times the structure wavelength becomes about twice as long as its early time value. These three results suggest that the ratio of the late time wavelength to the early time value gradually increases with /ital m//sub /ital i////ital m//sub /ital e//. Extrapolation of this scaling to larger /ital m//sub /ital i////ital m//sub /ital e// values is consistent with structure wavelengths observed in an expanding aluminum plasma experiment (J. Appl. Phys. J. /bold 20/, 157 (1981)), as well as the observed wavelength in the expanding barium plasma of the AMPTE magnetotail experiment (J. Geophys. Res. /bold 92/, 5777 (1987)).

  3. Ultraviolet absorption spectrum of hydrogen peroxide vapor. [for atmospheric abundances

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Schinke, S. D.; Molina, M. J.

    1977-01-01

    The ultraviolet absorption cross sections of hydrogen peroxide vapor have been determined over the wavelength range 210 to 350 nm at 296 K. At the longer wavelengths, the gas phase absorptivities are significantly larger than the corresponding values in condensed phase. The atmospheric H2O2 photodissociation rate for overhead sun at the earth's surface is estimated to be about 1.3 x 10 to the -5th/sec.

  4. Field Deployments of DWEL, A Dual-Wavelength Echidna Lidar

    NASA Astrophysics Data System (ADS)

    Howe, G.; Hewawasam, K.; Strahler, A. H.; Douglas, E. S.; Martel, J.; Cook, T.; Chakrabarti, S.; Li, Z.; Schaaf, C.; Paynter, I.; Saenz, E.; Wang, Z.; Yang, X.; Erb, A.

    2013-12-01

    We describe the construction and operation of a terrestrial scanning lidar used for automated retrieval of forest structure. The Dual Wavelength Echidna Lidar (DWEL) distinguishes between leaf hits and those of trunks and branches by using simultaneous, co-axial laser pulses at 1548 nm, where leaf water content produces strong absorption, and at 1064 nm where leaves and trunks have similar reflectances. The DWEL instrument obtains three-dimensional locations and characteristics of scattering events by using an altitudinal scan mirror on an azimuthal rotating mount along with full waveform digitization. The instrument has seen two successful field deployments: to the Sierra National Forest, California in June of 2013 and to both the Karawatha Forest Park and Brisbane Forest Park near Brisbane, Australia in July/August 2013 as part of the Terrestrial Laser Scanner International Interest Group (TLSIIG) conference. Measurements of tree leaves, branches, and trunks were successfully made. Panels of known reflectance were used to calibrate and characterize the back scattered waveforms in the field. Preliminary maximum range measurements were shown to be over 75 meters for both wavelengths. To obtain accurate waveform data, the two lasers are triggered simultaneously and each has a full-width-half-max length of less than 10 meters. The light is then collimated and expanded to a diameter of 6 mm before diverging in user-selectable optics with divergences of either 1.25- or 2.5-mrad enabling scan resolutions of 1- and 2-mrad. The durations of complete scans are approximately 164 and 41 minutes, respectively. Mirrors and dichroic filters co-align the two NIR wavelength laser beams along with a continuous-wave green marker laser. The outgoing beams are directed by a rotating 10 cm scan mirror with effective field of view of ×110 degrees attitudinally while the instrument itself rotates for an effective azimuthal field of view of 360 degrees. Optical encoders in both planes

  5. Complex refractive index of Martian dust - Wavelength dependence and composition

    NASA Technical Reports Server (NTRS)

    Pang, K.; Ajello, J. M.

    1977-01-01

    The size distribution and complex refractive index of Martian dust-cloud particles observed in 1971 with the Mariner 9 UV spectrometer are determined by matching the observed single-scattering albedo and phase function with Mie-scattering calculations for size distributions of spheres. Values of phase function times single-scattering albedo are presented for 12 wavelength intervals in the range from 190 to 350 nm, and best-fit values are obtained for the absorption index. It is found that the absorption index of the dust particles increases with decreasing wavelength from 350 to about 210 nm and then drops off shortward of 210 nm, with a structural shoulder occurring in the absorption spectrum between 240 and 250 nm. A search for a candidate material that can explain the strong UV absorption yields TiO2, whose anatase polymorph has an absorption spectrum matching that of the Martian dust. The TiO2 content of the dust particles is estimated to be a few percent or less.

  6. Dye mixtures for ultrafast wavelength shifters

    SciTech Connect

    Gangopadhyay, S.; Liu, L.; Palsule, C.; Borst, W.; Wigmans, R.; Barashkov, N.

    1994-12-31

    Particle detectors based on scintillation processes have been used since the discovery of radium about 100 years ago. The fast signals that can be obtained with these detectors, although often considered a nice asset, were rarely essential for the success of experiments. However, the new generation of high energy particle accelerators require particle detectors with fast response time. The authors have produced fast wavelength shifters using mixtures of various Coumarin dyes with DCM in epoxy-polymers (DGEBA+HHPA) and measured the properties of these wavelength shifters. The particular mixtures were chosen because there is a substantial overlap between the emission spectrum of Coumarin and the absorption spectrum of DCM. The continuous wave and time-resolved fluorescence spectra have been studied as a function of component concentration to optimize the decay times, emission peaks and quantum yields. The mean decay times of these mixtures are in the range of 2.5--4.5 ns. The mean decay time increases with an increase in Coumarin concentration at a fixed DCM concentration or with a decrease in DCM concentration at a fixed Coumarin concentration. This indicates that the energy transfer is radiative at lower relative DCM concentrations and becomes non-radiative at higher DCM concentrations.

  7. Measurement of wavelength-dependent extinction to distinguish between absorbing and nonabsorbing aerosol particulates

    NASA Technical Reports Server (NTRS)

    Portscht, R.

    1977-01-01

    Measurements of spectral transmission factors in smoky optical transmission paths reveal a difference between wavelength exponents of the extinction cross section of high absorption capacity and those of low absorption capacity. A theoretical explanation of this behavior is presented. In certain cases, it is possible to obtain data on the absorption index of aerosol particles in the optical path by measuring the spectral decadic extinction coefficient at, at least, two wavelengths. In this manner it is possible, for instance, to distinguish smoke containing soot from water vapor.

  8. Multiple-wavelength free-space laser communications

    NASA Astrophysics Data System (ADS)

    Purvinskis, Robert; Giggenbach, Dirk; Henniger, Hennes; Perlot, Nicolas; David, Florian

    2003-07-01

    Free-space optical communications systems in the atmosphere, based on intensity modulation and direct detection, are heavily affected by fading caused by turbulence cells of varying scale and motion. Several data sets of fading measurements under different scenarios have been recorded demonstrating this effect. In this paper we introduce a form of free-space laser communications involving a source operating on several wavelengths. The goal is to overcome atmospheric interference on a communications link. We have performed simulations using the DLR PILab Matlab toolbox. These indicate the extent to which the turbulence and beam properties interact. Experimental investigations are planned. Further properties are also taken into account, including the choice of appropriate laser bandwidth and wavelengths, the effect of atmospheric absorption from aerosols and molecular absorption lines, as well as effects of atmospheric structure on beam propagation. Possible scenarios for application of this scheme will be presented as well.

  9. Decomposition of Wavelength Dispersive X-Ray Spectra

    PubMed Central

    Rémond, Guy; Myklebust, Robert; Fialin, Michel; Nockolds, Clive; Phillips, Matthew; Roques-Carmes, Claude

    2002-01-01

    Line shapes of atomic lines and soft x-ray emission bands measured with a wavelength dispersive spectrometer (WDS) with the Electron Probe Micro Analyzer (EPMA) are reviewed. Least square fitting to pseudo-Voigt profiles of the digitally measured spectra are used to account for the presence of non-diagram features (high and low energy satellites) and instrumental induced distortions. The effect of line width and relative intensities on the quality of fits is illustrated. Spectral distortions resulting from the presence of absorption edges within the analyzed wavelength region are illustrated for the case of FeLα,β emission bands for pure Fe and iron oxides. For quantitative analysis, an analytical approach is presented where the measured soft x-ray emission bands are corrected for self absorption before extracting the intensities from the experimental data. PMID:27446750

  10. Decomposition of Wavelength Dispersive X-Ray Spectra.

    PubMed

    Rémond, Guy; Myklebust, Robert; Fialin, Michel; Nockolds, Clive; Phillips, Matthew; Roques-Carmes, Claude

    2002-01-01

    Line shapes of atomic lines and soft x-ray emission bands measured with a wavelength dispersive spectrometer (WDS) with the Electron Probe Micro Analyzer (EPMA) are reviewed. Least square fitting to pseudo-Voigt profiles of the digitally measured spectra are used to account for the presence of non-diagram features (high and low energy satellites) and instrumental induced distortions. The effect of line width and relative intensities on the quality of fits is illustrated. Spectral distortions resulting from the presence of absorption edges within the analyzed wavelength region are illustrated for the case of FeLα,β emission bands for pure Fe and iron oxides. For quantitative analysis, an analytical approach is presented where the measured soft x-ray emission bands are corrected for self absorption before extracting the intensities from the experimental data.

  11. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  12. Discrete Wavelength-Locked External Cavity Laser

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Silver, Joel A.

    2004-01-01

    , and the frequency locking achieved by use of this signal, as a mirror is tilted through a range of angles to tune the ECL through 48 channels. The data for the frequency plot were obtained, simultaneously with the data for the locking-signal plot, by using a scanning Michelson interferometer to precisely determine the ECL wavelength (and, hence, frequency). Given the ability of the Michelson interferometer to obtain highly precise readings, the frequency plot can be taken to be a reliable indication of single-mode operation. The discontinuities in the frequency plot signify the switching of the ECL between channels; in other words, they indicate tuning with locking to discrete frequencies. The peaks of the feedbacklocking signal correspond to the centers, or near centers, of the mirror angle scan through the corresponding channels. Thus, it is clear that when the feedback-locking signal is at a local maximum, the ECL is operating at single frequency at or near the middle frequency of the selected channel. This is all that is required for precisely locking the ECL output wavelength. The locking is achieved without additional external optical components.

  13. Scattering and absorption by thin flat aerosols.

    PubMed

    Weil, H; Chu, C M

    1980-06-15

    An integral equation method is used to study spectral and polarization effects for the scattering and absorption of electromagnetic radiation incident on arbitrarily oriented flat disk aerosols of major dimension comparable to the wavelength of the radiation. Numerical results for flat plate ice crystals are presented.

  14. Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths.

    PubMed

    Balram, Krishna C; Audet, Ross M; Miller, David A B

    2013-04-22

    We demonstrate the use of a subwavelength planar metal-dielectric resonant cavity to enhance the absorption of germanium photodetectors at wavelengths beyond the material's direct absorption edge, enabling high responsivity across the entire telecommunications C and L bands. The resonant wavelength of the detectors can be tuned linearly by varying the width of the Ge fin, allowing multiple detectors, each resonant at a different wavelength, to be fabricated in a single-step process. This approach is promising for the development of CMOS-compatible devices suitable for integrated, high-speed, and energy-efficient photodetection at telecommunications wavelengths.

  15. In-vacuum long-wavelength macromolecular crystallography.

    PubMed

    Wagner, Armin; Duman, Ramona; Henderson, Keith; Mykhaylyk, Vitaliy

    2016-03-01

    Structure solution based on the weak anomalous signal from native (protein and DNA) crystals is increasingly being attempted as part of synchrotron experiments. Maximizing the measurable anomalous signal by collecting diffraction data at longer wavelengths presents a series of technical challenges caused by the increased absorption of X-rays and larger diffraction angles. A new beamline at Diamond Light Source has been built specifically for collecting data at wavelengths beyond the capability of other synchrotron macromolecular crystallography beamlines. Here, the theoretical considerations in support of the long-wavelength beamline are outlined and the in-vacuum design of the endstation is discussed, as well as other hardware features aimed at enhancing the accuracy of the diffraction data. The first commissioning results, representing the first in-vacuum protein structure solution, demonstrate the promising potential of the beamline.

  16. Wavelength dependence of the apparent diameter of retinal blood vessels

    NASA Astrophysics Data System (ADS)

    Park, Robert; Twietmeyer, Karen; Chipman, Russell; Beaudry, Neil; Salyer, David

    2005-04-01

    Imaging of retinal blood vessels may assist in the diagnosis and monitoring of diseases such as glaucoma, diabetic retinopathy, and hypertension. However, close examination reveals that the contrast and apparent diameter of vessels are dependent on the wavelength of the illuminating light. In this study multispectral images of large arteries and veins within enucleated swine eyes are obtained with a modified fundus camera by use of intravitreal illumination. The diameters of selected vessels are measured as a function of wavelength by cross-sectional analysis. A fixed scale with spectrally independent dimension is placed above the retina to isolate the chromatic effects of the imaging system and eye. Significant apparent differences between arterial and venous diameters are found, with larger diameters observed at shorter wavelengths. These differences are due primarily to spectral absorption in the cylindrical blood column.

  17. In-vacuum long-wavelength macromolecular crystallography

    PubMed Central

    Wagner, Armin; Duman, Ramona; Henderson, Keith; Mykhaylyk, Vitaliy

    2016-01-01

    Structure solution based on the weak anomalous signal from native (protein and DNA) crystals is increasingly being attempted as part of synchrotron experiments. Maximizing the measurable anomalous signal by collecting diffraction data at longer wavelengths presents a series of technical challenges caused by the increased absorption of X-rays and larger diffraction angles. A new beamline at Diamond Light Source has been built specifically for collecting data at wavelengths beyond the capability of other synchrotron macromolecular crystallography beamlines. Here, the theoretical considerations in support of the long-wavelength beamline are outlined and the in-vacuum design of the endstation is discussed, as well as other hardware features aimed at enhancing the accuracy of the diffraction data. The first commissioning results, representing the first in-vacuum protein structure solution, demonstrate the promising potential of the beamline. PMID:26960130

  18. The wavelength dependence of Martian atmospheric dust radiative properties

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Ockert-Bell, M. E.; Arvidson, R.; Shepard, M.

    1993-01-01

    One of the key radiative agents in the atmosphere of Mars is the suspended dust particles. A new analysis of two data sets of the Martian atmosphere is being carried out in order to better evaluate the radiative properties of the atmospheric dust particles. The properties of interest are the size distribution, optical constants, and other radiative properties, such as the single-scattering albedo and phase function. Of prime importance is the wavelength dependence of these radiative properties throughout the visible and near-infrared wavelengths. Understanding the wavelength dependence of absorption and scattering characteristics will provide a good definition of the influence that the atmospheric dust has on heating of the atmosphere.

  19. Use of a laboratory exercise on molar absorptivity to help students understand the authority of the primary literature.

    PubMed

    Soundararajan, Madhavan; Bailey, Cheryl P; Markwell, John

    2008-01-01

    To promote understanding of the authority of the primary literature in students taking our biochemistry laboratory courses, a biochemistry laboratory exercise on the determination of an acceptable molar absorptivity value of 2-nitrophenol (2-NP) was developed. This made the laboratory course much more relevant by linking to a thematic thread, β-galactosidase, that scaffolds concepts in one exercise with those in later exercises. The substrate for the continuous assay of β-galactosidase is the chromogenic 2-nitrophenyl-β-D-galactopyranoside that produces 2-NP. In an early laboratory exercise, students determine the wavelength of maximum absorption for the protonated and deprotonated form of 2-NP at various pH values and then determine the molar absorptivity of 2-NP. Students were encouraged to discuss apparent discrepancies not only in their own determinations of molar absorptivity values for 2-NP, but also in the published molar absorptivity values for 2-NP (2,150-21,300 M(-1) cm(-1) ) at almost the same pH and at 420 nm. Finally, the students were led to a publication that serves as an authentic source for molar absorptivity of 2-NP.

  20. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    SciTech Connect

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R.; Steenbergen, E. H.

    2015-02-09

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800 meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780 cm{sup −1} as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  1. Wavelength-tunable photoconductivity of dye-sensitized TiO2 nanoparticle films.

    PubMed

    Zheng, Wenji; He, Gaohong; Deng, Yulin

    2012-09-01

    We report in this Letter that wavelength-tunable photodetectors (PDs) can be fabricated by dye-sensitized TiO2 nanoparticle film. The photoelectric response of the detectors is fast. The photocurrent intensity strongly depends on the absorption wavelength of the dye; thus the on/off ratio as a function of light wavelength can be tuned by absorbing different dye molecules. The corresponding mechanism is also discussed. The principle reported in this Letter can be used to fabricate full spectrum PDs with distinctive wavelength selectivity.

  2. Spatial phase stepping wavelength meter

    NASA Astrophysics Data System (ADS)

    Surrel, Yves; García-Márquez, Jorge; Fodor, Jozsua; Juncar, Patrick

    2005-03-01

    A new way of evaluating the ratio between a reference wavelength radiation and an unknown wavelength radiation in a two-beam interferometer is proposed here. The advantage of two-beam interferometry is the sinusoidal fringe signal for which precise phase detection algorithms exist. Modern algorithms can cope with different sources of errors, and correct them. We recall the principle of the Michelson-type lambdameter using temporal interference and we introduce the Young-type lambdameter using spatial interference. The Young-type lambdameter is based on the acquisition of the interference pattern from two point sources (e.g. two ends of monomode fibres projected onto a CCD camera). The measurement of an unknown wavelength can be achieved by comparing with a reference wavelength. Accurate interference phase maps can be calculated using spatial phase shifting. In this way, each small group of contiguous pixels acts as a single interferometer, and the whole set of pixels corresponds to many hundreds or thousands of interferometric measurement system units. The analysis of uncertainties shows that resolutions better than 10-7 can be achieved. An advantage of the fibre wavelength metre described here is the measurement velocity that takes only a few seconds.

  3. An excitation wavelength-scanning spectral imaging system for preclinical imaging

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Rajwa, Bartek; Robinson, J. Paul

    2008-02-01

    Small-animal fluorescence imaging is a rapidly growing field, driven by applications in cancer detection and pharmaceutical therapies. However, the practical use of this imaging technology is limited by image-quality issues related to autofluorescence background from animal tissues, as well as attenuation of the fluorescence signal due to scatter and absorption. To combat these problems, spectral imaging and analysis techniques are being employed to separate the fluorescence signal from background autofluorescence. To date, these technologies have focused on detecting the fluorescence emission spectrum at a fixed excitation wavelength. We present an alternative to this technique, an imaging spectrometer that detects the fluorescence excitation spectrum at a fixed emission wavelength. The advantages of this approach include increased available information for discrimination of fluorescent dyes, decreased optical radiation dose to the animal, and ability to scan a continuous wavelength range instead of discrete wavelength sampling. This excitation-scanning imager utilizes an acousto-optic tunable filter (AOTF), with supporting optics, to scan the excitation spectrum. Advanced image acquisition and analysis software has also been developed for classification and unmixing of the spectral image sets. Filtering has been implemented in a single-pass configuration with a bandwidth (full width at half maximum) of 16nm at 550nm central diffracted wavelength. We have characterized AOTF filtering over a wide range of incident light angles, much wider than has been previously reported in the literature, and we show how changes in incident light angle can be used to attenuate AOTF side lobes and alter bandwidth. A new parameter, in-band to out-of-band ratio, was defined to assess the quality of the filtered excitation light. Additional parameters were measured to allow objective characterization of the AOTF and the imager as a whole. This is necessary for comparing the

  4. Wavelength-Modulated Differential Photoacoustic (WM-DPA) imaging: a high dynamic range modality towards noninvasive diagnosis of cancer

    NASA Astrophysics Data System (ADS)

    Dovlo, Edem; Lashkari, Bahman; Choi, Sung soo Sean; Mandelis, Andreas

    2016-03-01

    This study explores wavelength-modulated differential photo-acoustic (WM-DPA) imaging for non-invasive early cancer detection via sensitive characterization of functional information such as hemoglobin oxygenation (sO2) levels. Well-known benchmarks of tumor formation such as angiogenesis and hypoxia can be addressed this way. While most conventional photo-acoustic imaging has almost entirely employed high-power pulsed lasers, frequency-domain photo-acoustic radar (FD-PAR) has seen significant development as an alternative technique. It employs a continuous wave laser source intensity-modulated and driven by frequency-swept waveforms. WM-DPA imaging utilizes chirp modulated laser beams at two distinct wavelengths for which absorption differences between oxy- and deoxygenated hemoglobin are minimum (isosbestic point, 805 nm) and maximum (680 nm) to simultaneously generate two signals detected using a standard commercial array transducer as well as a single-element transducer that scans the sample. Signal processing is performed using Lab View and Matlab software developed in-house. Minute changes in total hemoglobin concentration (tHb) and oxygenation levels are detectable using this method since background absorption is suppressed due to the out-of-phase modulation of the laser sources while the difference between the two signals is amplified, thus allowing pre-malignant tumors to become identifiable. By regulating the signal amplitude ratio and phase shift the system can be tuned to applications like cancer screening, sO2 quantification and hypoxia monitoring in stroke patients. Experimental results presented demonstrate WM-DPA imaging of sheep blood phantoms in comparison to single-wavelength FD-PAR imaging. Future work includes the functional PA imaging of small animals in vivo.

  5. Enhancement of ammonia gas detection by integrating wavelength-modulated spectra across the line 992.69 cm-1

    NASA Astrophysics Data System (ADS)

    Dallah, Mohammad; Salloum, Akil

    2016-05-01

    A rapid tunable diode laser (TDL) absorption sensor was developed for real-time measurements of ammonia concentration by using wavelength modulation spectroscopy (WMS) at 992.698 cm-1 of the ν2 vibrational band. This line has patterns free from interference with other species in the atmosphere, and can be used for open-path detection. The 1f signal was used to normalize the 2f signal thereby eliminating the need for calibration and explaining the laser transmission variations. Using WMS with a large modulation depth and integrating the absolute value of the resulting spectra increased the limit of detection (LOD) of the sensor by a factor of seven, compared with the LOD achieved by using the maximum value of the WMS 2f signal. Furthermore, an increase by a factor of 25 compared with the direct absorption spectroscopy was achieved, which allowed obtaining LOD ∼ 1 ppb with a resolution time of <2 s for the detection of NH3 in the atmosphere using a short-path cell (a 60-cm absorption cell with four passes).

  6. Creating semiconductor metafilms with designer absorption spectra

    PubMed Central

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  7. Asymmetries in SN 2014J near Maximum Light Revealed through Spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Porter, Amber L.; Leising, Mark D.; Williams, G. Grant; Milne, Peter; Smith, Paul; Smith, Nathan; Bilinski, Christopher; Hoffman, Jennifer L.; Huk, Leah; Leonard, Douglas C.

    2016-09-01

    We present spectropolarimetric observations of the nearby Type Ia supernova SN 2014J in M82 over six epochs: +0, +7, +23, +51, +77, +109, and +111 days with respect to B-band maximum. The strong continuum polarization, which is constant with time, shows a wavelength dependence unlike that produced by linear dichroism in Milky Way dust. The observed polarization may be due entirely to interstellar dust or include a circumstellar scattering component. We find that the polarization angle aligns with the magnetic field of the host galaxy, arguing for an interstellar origin. Additionally, we confirm a peak in polarization at short wavelengths that would imply {R}V\\lt 2 along the light of sight, in agreement with earlier polarization measurements. For illustrative purposes, we include a two-component fit to the continuum polarization of our +51-day epoch that combines a circumstellar scattering component with interstellar dust where scattering can account for over half of the polarization at 4000 Å. Upon removal of the interstellar polarization signal, SN 2014J exhibits very low levels of continuum polarization. Asymmetries in the distribution of elements within the ejecta are visible through moderate levels of time-variable polarization in accordance with the Si ii λ6355 absorption line. At maximum light, the line polarization reaches ˜0.6% and decreases to ˜ 0.4 % 1 week later. This feature also forms a loop on the {q}{RSP}{--}{u}{RSP} plane, illustrating that the ion does not have an axisymmetric distribution. The observed polarization properties suggest that the explosion geometry of SN 2014J is generally spheroidal with a clumpy distribution of silicon.

  8. Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers

    PubMed Central

    Jirauschek, Christian; Huber, Robert

    2015-01-01

    We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell’s equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth. PMID:26203373

  9. Deriving in situ phytoplankton absorption for bio-optical productivity models in turbid waters

    NASA Astrophysics Data System (ADS)

    Oliver, Matthew J.; Schofield, Oscar; Bergmann, Trisha; Glenn, Scott; Orrico, Cristina; Moline, Mark

    2004-07-01

    As part of Hyperspectral Coupled Ocean Dynamics Experiment, a high-resolution hydrographic and bio-optical data set was collected from two cabled profilers at the Long-Term Ecosystem Observatory (LEO). Upwelling- and downwelling-favorable winds and a buoyant plume from the Hudson River induced large changes in hydrographic and optical structure of the water column. An absorption inversion model estimated the relative abundance of phytoplankton, colored dissolved organic matter (CDOM) and detritus, as well as the spectral exponential slopes of CDOM and detritus from in situ WET Labs nine-wavelength absorption/attenuation meter (ac-9) absorption data. Derived optical weights were proportional to the parameter concentrations and allowed for their absorptions to be calculated. Spectrally weighted phytoplankton absorption was estimated using modeled spectral irradiances and the phytoplankton absorption spectra inverted from an ac-9. Derived mean spectral absorption of phytoplankton was used in a bio-optical model estimating photosynthetic rates. Measured radiocarbon uptake productivity rates extrapolated with water mass analysis and the bio-optical modeled results agreed within 20%. This approach is impacted by variability in the maximum quantum yield (ϕmax) and the irradiance light-saturation parameter (Ek(PAR)). An analysis of available data shows that ϕmax variability is relatively constrained in temperate waters. The variability of Ek(PAR) is greater in temperate waters, but based on a sensitivity analysis, has an overall smaller impact on water-column-integrated productivity rates because of the exponential decay of light. This inversion approach illustrates the utility of bio-optical models in turbid coastal waters given the measurements of the bulk inherent optical properties.

  10. Incomplete intestinal absorption of fructose.

    PubMed Central

    Kneepkens, C M; Vonk, R J; Fernandes, J

    1984-01-01

    Intestinal D-fructose absorption in 31 children was investigated using measurements of breath hydrogen. Twenty five children had no abdominal symptoms and six had functional bowel disorders. After ingestion of fructose (2 g/kg bodyweight), 22 children (71%) showed a breath hydrogen increase of more than 10 ppm over basal values, indicating incomplete absorption: the increase averaged 53 ppm, range 12 to 250 ppm. Four of these children experienced abdominal symptoms. Three of the six children with bowel disorders showed incomplete absorption. Seven children were tested again with an equal amount of glucose, and in three of them also of galactose, added to the fructose. The mean maximum breath hydrogen increases were 5 and 10 ppm, respectively, compared with 103 ppm after fructose alone. In one boy several tests were performed with various sugars; fructose was the only sugar incompletely absorbed, and the effect of glucose on fructose absorption was shown to be dependent on the amount added. It is concluded that children have a limited absorptive capacity for fructose. We speculate that the enhancing effect of glucose and galactose on fructose absorption may be due to activation of the fructose carrier. Apple juice in particular contains fructose in excess of glucose and could lead to abdominal symptoms in susceptible children. PMID:6476870

  11. Enhanced light absorption of solar cells and photodetectors by diffraction

    DOEpatents

    Zaidi, Saleem H.; Gee, James M.

    2005-02-22

    Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ion etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.

  12. Wavelength-based crosstalk-aware design for hybrid optical network-on-chip

    NASA Astrophysics Data System (ADS)

    Lee, Jae Hoon; Han, Tae Hee

    2017-01-01

    We propose a single-wavelength-transmitter multiple-wavelength-receiver (STMR) architecture to minimize the intrachannel crosstalk under the constrained number of wavelengths. In addition, a source-node-based wavelength-allocation algorithm exploiting the characteristics of the STMR architecture is formulated via mixed-integer linear programming to maximize the worst-case signal-to-noise ratio (SNR). We evaluate maximum noise and worst-case SNR for various network sizes and topologies by varying the number of allocated wavelengths. The analysis results show that the SNR gain of ˜2.3 dB is achieved as the number of wavelengths is doubled by using the proposed STMR architecture and wavelength-allocation algorithm.

  13. The 1989 Solar Maximum Mission event list

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Licata, J. P.; Tolbert, A. K.

    1992-01-01

    This document contains information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1989 pointed observations. Data from the following SMM experiments are included: (1) Gamma Ray Spectrometer, (2) Hard X-Ray Burst Spectrometer, (3) Flat Crystal Spectrometer, (4) Bent Crystal Spectrometer, (5) Ultraviolet Spectrometer Polarimeter, and (6) Coronagraph/Polarimeter. Correlative optical, radio, and Geostationary Operational Satellite (GOES) X-ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included.

  14. The 1988 Solar Maximum Mission event list

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Licata, J. P.; Tolbert, A. K.

    1992-01-01

    Information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1988 pointed observations is presented. Data from the following SMM experiments are included: (1) gamma ray spectrometer; (2) hard x ray burst spectrometer; (3) flat crystal spectrometers; (4) bent crystal spectrometer; (5) ultraviolet spectrometer polarimeter; and (6) coronagraph/polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts, or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observation. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included.

  15. The 1980 solar maximum mission event listing

    NASA Technical Reports Server (NTRS)

    Speich, D. M.; Nelson, J. J.; Licata, J. P.; Tolbert, A. K.

    1991-01-01

    Information is contained on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1980 pointed observations. Data from the following SMM experiments are included: (1) Gamma Ray Spectrometer, (2) Hard X-Ray Burst Spectrometer, (3) Hard X-Ray Imaging Spectrometer, (4) Flat Crystal Spectrometer, (5) Bent Crystal Spectrometer, (6) Ultraviolet Spectrometer and Polarimeter, and (7) Coronagraph/Polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from Sun center are also included.

  16. Systematic investigation of self-absorption and conversion efficiency of 6.7 nm extreme ultraviolet sources

    SciTech Connect

    Otsuka, Takamitsu; Higashiguchi, Takeshi; Yugami, Noboru; Yatagai, Toyohiko; Kilbane, Deirdre; Dunne, Padraig; O'Sullivan, Gerry; Jiang, Weihua; Endo, Akira

    2010-12-06

    We have investigated the dependence of the spectral behavior and conversion efficiencies of rare-earth plasma extreme ultraviolet sources with peak emission at 6.7 nm on laser wavelength and the initial target density. The maximum conversion efficiency was 1.3% at a laser intensity of 1.6x10{sup 12} W/cm{sup 2} at an operating wavelength of 1064 nm, when self-absorption was reduced by use of a low initial density target. Moreover, the lower-density results in a narrower spectrum and therefore improved spectral purity. It is shown to be important to use a low initial density target and/or to produce low electron density plasmas for efficient extreme ultraviolet sources when using high-Z targets.

  17. Solid colloidal optical wavelength filter

    DOEpatents

    Alvarez, Joseph L.

    1992-01-01

    A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  18. Wavelength-shifted Cherenkov radiators

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Jacobson, V. L.; Pifer, A. E.; Polakos, P. A.; Kurz, R. J.

    1976-01-01

    The scintillation and Cherenkov responses of plastic Cherenkov radiators containing different wavelength-shifting fluors in varying concentrations have been studied in beams of low energy protons and pions. For cosmic ray applications, where large Cherenkov to scintillation ratios are desired, the optimum fluor concentrations are 0.000025 by weight or less.

  19. Wavelength-modulated photocapacitance spectroscopy

    NASA Technical Reports Server (NTRS)

    Kamieniecki, E.; Lagowski, J.; Gatos, H. C.

    1980-01-01

    Derivative deep-level spectroscopy was achieved with wavelength-modulated photocapacitance employing MOS structures and Schottky barriers. The energy position and photoionization characteristics of deep levels of melt-grown GaAs and the Cr level in high-resistivity GaAs were determined. The advantages of this method over existing methods for deep-level spectroscopy are discussed.

  20. Effect of wavelength on cutaneous pigment using pulsed irradiation

    SciTech Connect

    Sherwood, K.A.; Murray, S.; Kurban, A.K.; Tan, O.T.

    1989-05-01

    Several reports have been published over the last two decades describing the successful removal of benign cutaneous pigmented lesions such as lentigines, cafe au lait macules' nevi, nevus of Ota, and lentigo maligna by a variety of lasers such as the excimer (351 nm), argon (488,514 nm), ruby (694 nm), Nd:YAG (1060 nm), and CO/sub 2/ (10,600 nm). Laser treatment has been applied to lesions with a range of pigment depths from superficial lentigines in the epidermis to the nevus of Ota in the reticular dermis. Widely divergent laser parameters of wavelength, pulse duration, energy density, and spotsizes have been used, but the laser parameters used to treat this range of lesions have been arbitrary, with little effort focused on defining optimal laser parameters for removal of each type. In this study, miniature black pig skin was exposed to five wavelengths (504, 590, 694, 720, and 750 nm) covering the absorption spectrum of melanin. At each wavelength, a range of energy densities was examined. Skin biopsies taken from laser-exposed sites were examined histologically in an attempt to establish whether optimal laser parameters exist for destroying pigment cells in skin. Of the five wavelengths examined, 504 nm produced the most pigment specific injury; this specificity being maintained even at the highest energy density of 7.0 J/cm2. Thus, for the destruction of melanin-containing cells in the epidermal compartment, 504 nm wavelength appears optimal.

  1. Water vapor absorption of carbon dioxide laser radiation

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.; Menzies, R. T.; Margolis, J. S.; Rosengren, L.-G.

    1976-01-01

    An optoacoustic detector or spectrophone has been used to perform detailed measurements of the absorptivity of mixtures of water vapor in air. A (C-12) (O-16)2 laser was used as the source, and measurements were made at forty-nine different wavelengths from 9.2 to 10.7 microns. The details of the optoacoustic detector and its calibration are presented, along with a discussion of its performance characteristics. The results of the measurements of water vapor absorption show that the continuum absorption in the wavelength range covered is 5-10% lower than previous measurements.

  2. Effect of idler absorption in pulsed optical parametric oscillators.

    PubMed

    Rustad, Gunnar; Arisholm, Gunnar; Farsund, Øystein

    2011-01-31

    Absorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion. We also show how the beam quality depends on the beam width and pump pulse length, and present scaling relations to use the example simulations for other pulsed nanosecond OPOs.

  3. Continuous Light Absorption Photometer (CLAP) Final Campaign Report

    SciTech Connect

    Jefferson, Anne

    2014-05-01

    The Continuous Light Absorption Photometer (CLAP) measures the aerosol absorption of radiation at three visible wavelengths; 461, 522, and 653 nanometers (nm). Data from this measurement is used in radiative forcing calculations, atmospheric heating rates, and as a prediction of the amount of equivalent black carbon in atmospheric aerosol and in models of aerosol semi-direct forcing. Aerosol absorption measurements are essential to modeling the energy balance of the atmosphere.

  4. Differential optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S. (Inventor)

    1978-01-01

    A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.

  5. Contribution of ferric iron to the absorption by chromophoric dissolved matter

    NASA Astrophysics Data System (ADS)

    Xiao, Y. H.; Sara-aho, T.; Vähätalo, A. V.

    2012-04-01

    Chromophoric dissolved organic matter (CDOM) is a major absorber of ultraviolet and visible radiation in surface waters. CDOM consists primarily of humic substances (HS), which can adsorb inorganic cations such as ferric iron. Often more than 99% of dissolved iron is complexed by CDOM in natural waters. Our study assessed the contribution of ferric iron to the absorption of CDOM by mixing dissolved humic substance (HS) standards with iron(III) in acidic conditions and later adjusting the pH to 8. The maximum iron-binding capacities for Suwannee River humic acid, Suwannee River fulvic acid and Pony Lake fulvic acid were 13.0, 13.5 and 7.64 μmol iron [mg C]-1, respectively, suggesting higher iron-binding capacity for terrestrial- than microbial-derived CDOM. Iron(III) associated with HS increased the absorption coefficient by CDOM by 1.73-5.33 times (λ=254-550 nm). Inorganic iron, thus, contributed up to 4/5 of the absorption by CDOM (λ=550 nm). In other words, only less than 1/5 of the absorption by CDOM-iron mixture was generated by organic chromophores. The associated iron decreased spectral slope coefficients of HS. This finding indicates that changes of the spectral slope by CDOM can be solely caused by inorganic interference (e.g. iron). The increase of absorption by associated iron(III) was always spectrally similar among different HS standards. We calculated a specific absorption spectrum for iron associated with dissolved HS standards. This spectrum allows estimates for the absorption by iron associated with HS in circum neutral natural waters. For Löytynlähde spring water, iron contributed over 1/10 (ca. 0.108, λ=400 nm) to the total absorption. The contribution of iron to total absorption increased with wavelength. In typical CDOM absorption measurement, water samples are filtered for the removal of particulate constituents but no attempts are implemented for separating the organic chromophores from inorganic chromophores. Our findings show that

  6. Studies of OH - absorption and optical absorption spectra in LiNbO 3 : Mg, Ti crystals

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Zhang, Wanlin; Zhang, Guangyin

    1996-02-01

    The OH - absorption spectra and the UV absorption edges of LiNbO 3 : Mg, Ti crystals have been measured. It is shown that Ti doping raises the Mg doping threshold level, and shifts the absorption edge towards longer wavelengths. The results can be explained by the formation of Mg Li2+Ti Nb4+ pairs after all antisite defects Nb Li have been replaced.

  7. Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips

    NASA Astrophysics Data System (ADS)

    Kazuma, Emiko; Tatsuma, Tetsu

    2014-01-01

    Localized surface plasmon resonance (LSPR) sensors serve as sensitive analytical tools based on refractive index changes, which can be applied to affinity-based chemical sensing and biosensing. However, to select the monitoring wavelength, monodisperse Au or Ag nanoparticles must be synthesized. Here we developed LSPR sensors that operate at arbitrary wavelengths after preirradiation at the corresponding wavelength. Polydisperse plasmonic Ag nanospheroids or nanorods are photocatalytically deposited on TiO2. The nanoparticle ensemble shows a broad absorption band over the visible and near infrared regions, and absorption dips can be formed at desired wavelengths simply by photoexciting the ensemble at the wavelengths, on the basis of plasmon-induced charge separation. The dips redshift linearly in response to a positive change of refractive index, and the refractive index sensitivity linearly increases with increasing dip wavelength (e.g., 356 nm RIU-1 at 1832 nm). The dip-based sensor is applied to monitoring of selective binding between biotin and streptavidin. The present system would allow development of miniaturized and cost-effective sensors that operate at the optimum wavelength at which the sensitivity is highest within the optical window of the sample.Localized surface plasmon resonance (LSPR) sensors serve as sensitive analytical tools based on refractive index changes, which can be applied to affinity-based chemical sensing and biosensing. However, to select the monitoring wavelength, monodisperse Au or Ag nanoparticles must be synthesized. Here we developed LSPR sensors that operate at arbitrary wavelengths after preirradiation at the corresponding wavelength. Polydisperse plasmonic Ag nanospheroids or nanorods are photocatalytically deposited on TiO2. The nanoparticle ensemble shows a broad absorption band over the visible and near infrared regions, and absorption dips can be formed at desired wavelengths simply by photoexciting the ensemble at the

  8. Effect of graphene on plasmonic metasurfaces at infrared wavelengths

    SciTech Connect

    Ogawa, Shinpei Fujisawa, Daisuke; Ueno, Masashi

    2013-11-15

    Significant enhancement of infrared transmittance by the presence of a graphene layer on a plasmonic metasurface (PLM) has been demonstrated. PLMs with different configurations were fabricated, and their transmittance with and without graphene was compared. Selective enhancement by graphene occurred at the plasmon resonance wavelength. The degree of enhancement was found to depend on the width of the gap between the periodic metal regions in the PLM. A maximum enhancement of ∼210% was achieved at a wavelength of 10 μm. The ability to achieve such a drastic increase in transmittance at the plasmon resonant wavelength is expected to lead to improvements in the performance of energy collecting devices and optical sensors.

  9. Effect of graphene on plasmonic metasurfaces at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Ueno, Masashi

    2013-11-01

    Significant enhancement of infrared transmittance by the presence of a graphene layer on a plasmonic metasurface (PLM) has been demonstrated. PLMs with different configurations were fabricated, and their transmittance with and without graphene was compared. Selective enhancement by graphene occurred at the plasmon resonance wavelength. The degree of enhancement was found to depend on the width of the gap between the periodic metal regions in the PLM. A maximum enhancement of ˜210% was achieved at a wavelength of 10 μm. The ability to achieve such a drastic increase in transmittance at the plasmon resonant wavelength is expected to lead to improvements in the performance of energy collecting devices and optical sensors.

  10. High Power OPO Laser and wavelength-controlled system for 1.6μm CO2-DIAL

    NASA Astrophysics Data System (ADS)

    Abo, M.; Nagasawa, C.; Shibata, Y.

    2009-12-01

    Unlike the existing 2.0μm CO2-DIAL, a high-energy pulse laser operating in the 1.6μm absorption band of CO2 has not been realized. Quasi phase matching (QPM) devices have high conversion efficiency and high beam quality due to their higher nonlinear optical coefficient. We adapt the PPMgLT crystal as the QPM device. The PPMgLT crystal had 3mm × 3mm apertures, and the periodically poled period was 30.9 μm, with the duty ratio close to the ideal value of 0.5. The beam quality of the pumping laser was exceed M2 ≥1.2. The repetition rate was 400 Hz and the energy was 35 mJ. The pumping laser pulse was injection-seeded by the continuous-wave (CW) fiber laser, which had a narrow spectrum. The pulse pumped the PPMgLT crystal in the ring cavity with a single pass through the dielectric mirror. The PPMgLT crystal was mounted on a copper holder, and the temperature was maintained at 40 °C using a Peltier module. The holder’s temperature was stabilized to within 0.01 °C when the copper holder was covered with a plastic case. The OPO ring cavity was a singly resonant oscillator optimized for the signal wave. Single-frequency oscillation of the PPMgLT OPO was achieved by injection seeding, as described in the following. The injection seeder was a DFB laser having a power of 30mW with a 1MHz oscillation spectrum. Their oscillation wavelength was coarse tuned by temperature and fine tuned by adjusting injection currents. The partial power of the online wavelength was split in the wavelength control unit. We locked the DFB laser as an injection seeder of the online wavelength onto the line center by referencing the fiber coupled multipath gas cell (path length 800mm) containing pure CO2 at a pressure of 700 Torr. Stabilization was estimated to within 1.8MHz rms of the line center of the CO2 absorption line by monitoring the feedback signal of a wavelength-controlled unit. Injection seeding of the PPMgLT OPO was performed by matching the cavity length to the seeder

  11. Absorption Characteristics of Vertebrate Non-Visual Opsin, Opn3

    PubMed Central

    Sugihara, Tomohiro; Nagata, Takashi; Mason, Benjamin; Koyanagi, Mitsumasa; Terakita, Akihisa

    2016-01-01

    Most animals possess multiple opsins which sense light for visual and non-visual functions. Here, we show spectral characteristics of non-visual opsins, vertebrate Opn3s, which are widely distributed among vertebrates. We successfully expressed zebrafish Opn3 in mammalian cultured cells and measured its absorption spectrum spectroscopically. When incubated with 11-cis retinal, zebrafish Opn3 formed a blue-sensitive photopigment with an absorption maximum around 465 nm. The Opn3 converts to an all-trans retinal-bearing photoproduct with an absorption spectrum similar to the dark state following brief blue-light irradiation. The photoproduct experienced a remarkable blue-shift, with changes in position of the isosbestic point, during further irradiation. We then used a cAMP-dependent luciferase reporter assay to investigate light-dependent cAMP responses in cultured cells expressing zebrafish, pufferfish, anole and chicken Opn3. The wild type opsins did not produce responses, but cells expressing chimera mutants (WT Opn3s in which the third intracellular loops were replaced with the third intracellular loop of a Gs-coupled jellyfish opsin) displayed light-dependent changes in cAMP. The results suggest that Opn3 is capable of activating G protein(s) in a light-dependent manner. Finally, we used this assay to measure the relative wavelength-dependent response of cells expressing Opn3 chimeras to multiple quantally-matched stimuli. The inferred spectral sensitivity curve of zebrafish Opn3 accurately matched the measured absorption spectrum. We were unable to estimate the spectral sensitivity curve of mouse or anole Opn3, but, like zebrafish Opn3, the chicken and pufferfish Opn3-JiL3 chimeras also formed blue-sensitive pigments. These findings suggest that vertebrate Opn3s may form blue-sensitive G protein-coupled pigments. Further, we suggest that the method described here, combining a cAMP-dependent luciferase reporter assay with chimeric opsins possessing the third

  12. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  13. Optical absorption enhancement in 40 nm ultrathin film silicon solar cells assisted by photonic and plasmonic modes

    NASA Astrophysics Data System (ADS)

    Saravanan, S.; Dubey, R. S.

    2016-10-01

    Presently, energy problems and environmental issues have attracted the scientific community for the development of cost-effective and high-performance solar cells. Thin film solar cells are cheaper but weak light absorption in longer wavelength has demanded an efficient light trapping scheme for the better harvesting of solar radiation to a maximum possibility. In this paper, we numerically explore the design efforts of an ultrathin film silicon solar cell, integrated with top dielectric and bottom metal gratings. The proposed design is influenced by the localized surface plasmon modes, surface plasmon polariton and optical resonances which leads to the optimal harvesting of sunlight within 40 nm thick absorbing layer. The optimized design of solar cell shows enhanced light absorption with cell efficiency ∼25% at normal transverse magnetic polarization condition. Our design approach assisted by photonic and plasmonic modes is promising for the realization of new generation, low-cost ultrathin film solar cells.

  14. Multi-wavelength narrow linewidth fiber laser based on distributed feedback fiber lasers

    NASA Astrophysics Data System (ADS)

    Lv, Jingsheng; Qi, Haifeng; Song, Zhiqiang; Guo, Jian; Ni, Jiasheng; Wang, Chang; Peng, Gangding

    2016-09-01

    A narrow linewidth laser configuration based on distributed feedback fiber lasers (DFB-FL) with eight wavelengths in the international telecommunication union (ITU) grid is presented and realized. In this laser configuration, eight phase-shifted gratings in series are bidirectionally pumped by two 980-nm laser diodes (LDs). The final laser output with over 10-mW power for each wavelength can be obtained, and the maximum power difference within eight wavelengths is 1.2 dB. The laser configuration with multiple wavelengths and uniform power outputs can be very useful in large scaled optical fiber hydrophone fields.

  15. Absorption spectra and nonlinear transmission (at λ = 2940 nm) of a diffusion-doped Fe{sup 2+}:ZnSe single crystal

    SciTech Connect

    Bufetova, G A; Gulyamova, E S; Il'ichev, N N; Pashinin, P P; Shapkin, P V; Nasibov, A S

    2015-06-30

    Transmission spectra of a ZnSe sample diffusion-doped with Fe{sup 2+} ions have been measured in the wavelength range 500 – 7000 nm. A broad absorption band in the range 500 – 1500 nm has been observed in both doped and undoped regions of the sample. This band is possibly due to deviations from stoichiometry in the course of diffusion doping. The transmission of the Fe{sup 2+}:ZnSe sample at a wavelength of 2940 nm has been measured at various dopant concentrations and high peak pulse intensities (up to 8 MW cm{sup -2}). The samples have been shown to be incompletely bleached: during a laser pulse, the transmission first increases, reaches a maximum, and then falls off. Our results suggest that the incomplete bleaching cannot be accounted for by excited-state absorption. The incomplete bleaching (as well as the transmission maximum) is due to the heating of the sample, which leads to a reduction in upper level lifetime and, accordingly, to an increase in absorption saturation intensity. (nonlinear optical phenomena)

  16. The Effects of Space Weathering at UV Wavelengths: S-Class Asteroids

    NASA Technical Reports Server (NTRS)

    Hendrix, Amanda R.; Vilas, Faith

    2006-01-01

    We present evidence that space weathering manifests itself at near-UV wavelengths as a bluing of the spectrum, in contrast with the spectral reddening that has been seen at visible-near-IR wavelengths. Furthermore, the effects of space weathering at UV wavelengths tend to appear with less weathering than do the longer wavelength effects, suggesting that the UV wavelength range is a more sensitive indicator of weathering, and thus age. We report results from analysis of existing near-UV (approx.220-350 nm) measurements of S-type asteroids from the International Ultraviolet Explorer and the Hubble Space Telescope and comparisons with laboratory measurements of meteorites to support this hypothesis. Composite spectra of S asteroids are produced by combining UV spacecraft data with ground-based longer wavelength data. At visible-near-IR wavelengths, S-type asteroids are generally spectrally redder (and darker) than ordinary chondrite meteorites, whereas the opposite is generally true at near-UV wavelengths. Similarly, laboratory measurements of lunar samples show that lunar soils (presumably more weathered) are spectrally redder at longer wavelengths, and spectrally bluer at near-UV wavelengths, than less weathered crushed lunar rocks. The UV spectral bluing may be a result of the addition of nanophase iron to the regolith through the weathering process. The UV bluing is most prominent in the 300-400 nm range, where the strong UV absorption edge is degraded with weathering.

  17. Band gap shift and the optical nonlinear absorption of sputtered ZnO-TiO2 films.

    PubMed

    Han, Yi-Bo; Han, Jun-Bo; Hao, Zhong-Hua

    2011-06-01

    ZnO-TiO2 composite films with different Zn/Ti atomic ratios were prepared with radio frequency reactive sputtering method. The Zn percentage composition (f(Zn)) dependent optical band gap and optical nonlinear absorption were investigated using the transmittance spectrum and the Z-scan technique, respectively. The results showed that composite films with f(Zn) in the range of 23.5%-88.3% are poor crystallized and their optical properties are anomalous which exhibit adjustable optical band gap and large optical nonlinear absorption. The optical absorption edge shifted to the blue wavelength direction with the increasing of f(Zn) and reached the minimum value of 285 nm for the sample with f(Zn) = 70.5%, which has the largest direct band gap of 4.30 eV. Further increasing of f(Zn) resulted in the red-shift of the optical absorption edge. The maximum optical nonlinear absorption coefficient of 1.5 x 10(3) cm/GW was also obtained for the same sample with f(Zn) = 70.5%, which is more than 40 times larger than those of pure TiO2 and ZnO films.

  18. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms.

    PubMed

    Tahara, Tatsuki; Mori, Ryota; Kikunaga, Shuhei; Arai, Yasuhiko; Takaki, Yasuhiro

    2015-06-15

    Dual-wavelength phase-shifting digital holography that selectively extracts wavelength information from five wavelength-multiplexed holograms is presented. Specific phase shifts for respective wavelengths are introduced to remove the crosstalk components and extract only the object wave at the desired wavelength from the holograms. Object waves in multiple wavelengths are selectively extracted by utilizing 2π ambiguity and the subtraction procedures based on phase-shifting interferometry. Numerical results show the validity of the proposed technique. The proposed technique is also experimentally demonstrated.

  19. Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation.

    PubMed

    Fountaine, Katherine T; Kendall, Christian G; Atwater, Harry A

    2014-05-05

    We report design methods for achieving near-unity broadband light absorption in sparse nanowire arrays, illustrated by results for visible absorption in GaAs nanowires on Si substrates. Sparse (<5% fill fraction) nanowire arrays achieve near unity absorption at wire resonant wavelengths due to coupling into 'leaky' radial waveguide modes of individual wires and wire-wire scattering processes. From a detailed conceptual development of radial mode resonant absorption, we demonstrate two specific geometric design approaches to achieve near unity broadband light absorption in sparse nanowire arrays: (i) introducing multiple wire radii within a small unit cell array to increase the number of resonant wavelengths, yielding a 15% absorption enhancement relative to a uniform nanowire array and (ii) tapering of nanowires to introduce a continuum of diameters and thus resonant wavelengths excited within a single wire, yielding an 18% absorption enhancement over a uniform nanowire array.

  20. An efficient continuous-wave YVO4/Nd:YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode

    NASA Astrophysics Data System (ADS)

    Fan, Li; Zhao, Weiqian; Qiao, Xin; Xia, Changquan; Wang, Lichun; Fan, Huibo; Shen, Mingya

    2016-11-01

    We report an efficient continuous-wave self-Raman laser at 1176 nm based on a 20-mm-long composite YVO4/Nd:YVO4/YVO4 crystal and pumped by a wavelength-locked 878.9 nm diode laser. A maximum output power of 5.3 W is achieved at a pump power of 26 W, corresponding to an optical conversion efficiency of 20% and a slope efficiency of 21%. The Raman threshold for the diode pump power was only 0.92 W. The results reveal that in-band pumping by a wavelength-locked diode laser significantly enhances output power and efficiency of self-Raman lasers by virtue of improved pump absorption and relieved thermal loading. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130453 and BK20130434) and the National Natural Science Foundation of China (Grant No. 11304271).

  1. Plasmonically enhanced metal–insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications

    PubMed Central

    Abedini Dereshgi, Sina; Sisman, Zulkarneyn; Topalli, Kagan; Okyay, Ali Kemal

    2017-01-01

    Plasmonically enhanced metal-insulator-metal (MIM) type structures are popular among perfect absorbers and photodetectors in which the field enhancement (for increased absorption) mechanism is directly coupled with collection (photocurrent) processes. In this work we propose a device structure that decouples absorption and collection parts for independent optimization. Double-stacked MIM (i.e. MIMIM) photodetectors operating in the near-infrared (NIR) spectrum up to 1200 nm wavelength are demonstrated. In the absorbing MIM (at the top side), we have used Silver nanoparticles resulting from dewetting, yielding a very low reflection of 10% for the most part of the 400 to 1000 nm wavelength range. An unconventional plasmonic material, Chromium, exhibits an absorption peak of over 80% at 1000 nm. The complete device has been fabricated and the photo-collection tunneling MIM (at the bottom) suppresses the leakage current by metal workfunction difference. An optimized stack consisting of Silver – Hafnium Oxide – Chromium – Aluminum Oxide – Silver nanoparticles (from bottom to top) yields a dark current of 7 nA and a photoresponsivity peak of 0.962 mA/W at 1000 nm and a full width at half maximum of 300 nm, while applied bias is 50 mV and device areas are 300 μm × 600 μm. PMID:28181590

  2. Plasmonically enhanced metal–insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications

    NASA Astrophysics Data System (ADS)

    Abedini Dereshgi, Sina; Sisman, Zulkarneyn; Topalli, Kagan; Okyay, Ali Kemal

    2017-02-01

    Plasmonically enhanced metal-insulator-metal (MIM) type structures are popular among perfect absorbers and photodetectors in which the field enhancement (for increased absorption) mechanism is directly coupled with collection (photocurrent) processes. In this work we propose a device structure that decouples absorption and collection parts for independent optimization. Double-stacked MIM (i.e. MIMIM) photodetectors operating in the near-infrared (NIR) spectrum up to 1200 nm wavelength are demonstrated. In the absorbing MIM (at the top side), we have used Silver nanoparticles resulting from dewetting, yielding a very low reflection of 10% for the most part of the 400 to 1000 nm wavelength range. An unconventional plasmonic material, Chromium, exhibits an absorption peak of over 80% at 1000 nm. The complete device has been fabricated and the photo-collection tunneling MIM (at the bottom) suppresses the leakage current by metal workfunction difference. An optimized stack consisting of Silver – Hafnium Oxide – Chromium – Aluminum Oxide – Silver nanoparticles (from bottom to top) yields a dark current of 7 nA and a photoresponsivity peak of 0.962 mA/W at 1000 nm and a full width at half maximum of 300 nm, while applied bias is 50 mV and device areas are 300 μm × 600 μm.

  3. Optical absorption coefficients of pure water

    NASA Astrophysics Data System (ADS)

    Lu, Zheng; Zhao, Xianzhen; Fry, Edward S.

    2002-10-01

    The integrating cavity absorption meter(ICAM), which is independent of scattering effect, is used to measure the absolute values of small optical absorption coefficients of liquid. A modified ICAM is being used to measure the absorption of water in the wavelength range 300 to 700 nm. The ultrapure water produced by a two-stages water purification system reaches Type I quality. This is equal to or better than ASTM,CAP and NCCLS water quality standards. To avoid the fact that dissolved oxygen absorbs ultraviolet light due to the photochemical effect, the water sample is delivered through a nitrogen sealed system which will prevent the sample from contacting with oxygen. A compassion of our absorption spectrum with other existing data is given.

  4. Astrochemistry at Millimetre and Submillimetre Wavelengths

    NASA Astrophysics Data System (ADS)

    Wirström, Eva, S.

    2009-12-01

    The focus of this thesis is a series of observational tests, aiming to clarify the chemical and physical origin of interstellar molecules. Spectral lines at millimetre and submillimetre wavelengths, caused by rotational transitions in CO, H2O, NH3, CH3OH, CH3SH, C2H3CN, and several of their isotopologues, have been observed towards regions of star-formation in the Galaxy. Maps of extended H2O and CO emission from the Orion nebula demonstrate that the water probably is localised to the photon-dominated region at the surface of the molecular cloud, at higher abundances than previously thought. Water is also observed in absorption from its ground-state towards the massive star-forming region Sgr B2. Curiously enough, a water abundance similar to the one reported for Orion is found in the low-excitation gas in one of the Galactic spiral arms. Ammonia absorption was also observed from diffuse spiral arm clouds along the same line-of-sight, but at about an order of magnitude lower abundance. The observed water and ammonia absorptions caused by the Sgr B2 cloud itself are successfully modelled without invoking a morphological component of hot gas. Two independent methods of analysis are applied to observations of methanol (CH3OH) and its 13C isotopologue in the cold envelopes of young stellar objects. Both methods indicate that methanol is mainly formed by hydrogenation of CO on cold dust grains. A study comparing the interstellar abundances of CH3SH (methyl mercaptan) and CH3OH unveil a possible trend of lower relative CH3SH abundances in more evolved objects. However, the significance of this trend, in relation to the chemical origin of these molecules, needs to be further investigated. In addition, searches for two pre-biotic molecules, namely vinyl acetylene (C2H3CCH) and amino acetonitrile (H2NCH2CN), resulting in improved upper abundance limits are presented. A comprehensive conclusion of this thesis is that in order to exploit the full capacity of high

  5. Light Absorption By Coated Soot

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J.; Lee, J.; Onasch, T. B.; Davidovits, P.; Cross, E. S.

    2009-12-01

    , in contrast to this, light absorption by sulfuric acid coated soot displays unexpectedly complex behavior where the degree of amplification appears to be dependent upon the underlying soot core diameter. These preliminary results will be presented. Arnott, W. P., Hamsha, K., Moosmüller, H., Sheridan, P. J., and Ogren, J. A. (2005). Towards aerosol light absorption measurements with a 7-wavelength Aethalometer: Evaluation with a Photoacoustic instrument and a 3 wavelength nephelometer, Aerosol Sci. Tech. 39, 17-39 Bond, T. C., G. Habib, and R. W. Bergstrom (2006), Limitations in the enhancement of visible light absorption due to mixing state, J. Geophys. Res., 111, D20,211, doi:10.1029/2006/JD007,315 Lack, D. A., Lovejoy, E. R., Baynard, T., Pettersson, A., and Ravishankara,A.R. (2006). AerosolAbsorptionMeasurementusingPhotoacousticSpectroscopy: Sensitivity, Calibration, and Uncertainty Developments, Aerosol Sci. Technol. 40:697-708 Ramanathan, V., and Carmichael, G. (2008), Global and regional climate changes due to black carbon, Nature Geoscience, 1, 221-227. Sedlacek, A. J., and Lee, L. (2007), Photothermal interferometric aerosol absorption spectrometry, J. Aerosol Sci., 41, 1089-1101

  6. Intracavity Dye-Laser Absorption Spectroscopy (IDLAS) for application to planetary molecules

    NASA Technical Reports Server (NTRS)

    Lang, Todd M.; Allen, John E., Jr.

    1990-01-01

    Time-resolved, quasi-continuous wave, intracavity dye-laser absorption spectroscopy is applied to the investigation of absolute absorption coefficients for vibrational-rotational overtone bands of water at visible wavelengths. Emphasis is placed on critical factors affecting detection sensitivity and data analysis. Typical generation-time dependent absorption spectra are given.

  7. Evaluation of optical coherence quantitation of analytes in turbid media by use of two wavelengths

    SciTech Connect

    Sathyam, U.S.; Colston, B.W. Jr.; Da Silva, L.B.; Everett, M.J.

    1999-04-01

    We introduce a novel method for determining analyte concentration as a function of depth in a highly scattering media by use of a dual-wavelength optical coherence tomography system. We account for the effect of scattering on the measured attenuation by using a second wavelength that is not absorbed by the sample. We assess the applicability of this technique by measuring the concentration of water in an Intralipid phantom, using a probe wavelength of 1.53 {mu}m and a reference wavelength of 1.31 {mu}m. The results of our study show a strong correlation between the measured absorption and the water content of the sample. The accuracy of the technique, however, was limited by the dominance of scattering over absorption in the turbid media. Thus, although the effects of scattering were minimized, significant errors remained in the calculated absorption values. More-accurate results could be obtained with the use of more powerful superluminescent diodes and a choice of wavelengths at which absorption effects are more significant relative to scattering. {copyright} 1999 Optical Society of America

  8. Arctic Sea Ice Maximum 2011

    NASA Video Gallery

    AMSR-E Arctic Sea Ice: September 2010 to March 2011: Scientists tracking the annual maximum extent of Arctic sea ice said that 2011 was among the lowest ice extents measured since satellites began ...

  9. OECD Maximum Residue Limit Calculator

    EPA Pesticide Factsheets

    With the goal of harmonizing the calculation of maximum residue limits (MRLs) across the Organisation for Economic Cooperation and Development, the OECD has developed an MRL Calculator. View the calculator.

  10. Infrared Laser Therapy using IR absorption of biomolecules

    NASA Astrophysics Data System (ADS)

    Awazu, K.; Ishii, K.; Hazama, H.

    2011-02-01

    Since numerous characteristic absorption lines caused by molecular vibration exist in the mid-infrared (MIR) wavelength region, selective excitation or selective dissociation of molecules is possible by tuning the laser wavelength to the characteristic absorption lines of target molecules. By applying this feature to the medical fields, less-invasive treatment and non-destructive diagnosis with absorption spectroscopy are possible using tunable MIR lasers. A high-energy nanosecond pulsed MIR tunable laser was obtained with difference-frequency generation (DFG) between a Nd:YAG and a tunable Cr:forsterite lasers. The MIR-DFG laser was tunable in a wavelength range of 5.5-10 μm and generated a laser pulses with an energy of up to 1.4 mJ, a pulse width of 5 ns, and a pulse repetition rate of 10 Hz. Selective removal of atherosclerotic lesion was successfully demonstrated with the MIR-DFG laser tuned at a wavelength of 5.75 μm, which corresponds to the characteristic absorption of the ester bond in cholesterol esters in the atherosclerotic lesions. We have developed a non-destructive diagnostic probe with an attenuated total reflection (ATR) prism and two hollow optical fibres. An absorption spectrum of cholesterol was measured with the ATR probe by scanning the wavelength of the MIR-DFG laser, and the spectrum was in good agreement with that measured with a commercial Fourier transform infrared spectrometer.

  11. The role of laser wavelength on plasma generation and expansion of ablation plumes in air

    NASA Astrophysics Data System (ADS)

    Hussein, A. E.; Diwakar, P. K.; Harilal, S. S.; Hassanein, A.

    2013-04-01

    We investigated the role of excitation laser wavelength on plasma generation and the expansion and confinement of ablation plumes at early times (0-500 ns) in the presence of atmospheric pressure. Fundamental, second, and fourth harmonic radiation from Nd:YAG laser was focused on Al target to produce plasma. Shadowgraphy, fast photography, and optical emission spectroscopy were employed to analyze the plasma plumes, and white light interferometry was used to characterize the laser ablation craters. Our results indicated that excitation wavelength plays a crucial role in laser-target and laser-plasma coupling, which in turn affects plasma plume morphology and radiation emission. Fast photography and shadowgraphy images showed that plasmas generated by 1064 nm are more cylindrical compared to plasmas generated by shorter wavelengths, indicating the role of inverse bremsstrahlung absorption at longer laser wavelength excitation. Electron density estimates using Stark broadening showed higher densities for shorter wavelength laser generated plasmas, demonstrating the significance of absorption caused by photoionization. Crater depth analysis showed that ablated mass is significantly higher for UV wavelengths compared to IR laser radiation. In this experimental study, the use of multiple diagnostic tools provided a comprehensive picture of the differing roles of laser absorption mechanisms during ablation.

  12. The role of laser wavelength on plasma generation and expansion of ablation plumes in air

    SciTech Connect

    Hussein, A. E.; Diwakar, P. K.; Harilal, S. S.; Hassanein, A.

    2013-04-14

    We investigated the role of excitation laser wavelength on plasma generation and the expansion and confinement of ablation plumes at early times (0-500 ns) in the presence of atmospheric pressure. Fundamental, second, and fourth harmonic radiation from Nd:YAG laser was focused on Al target to produce plasma. Shadowgraphy, fast photography, and optical emission spectroscopy were employed to analyze the plasma plumes, and white light interferometry was used to characterize the laser ablation craters. Our results indicated that excitation wavelength plays a crucial role in laser-target and laser-plasma coupling, which in turn affects plasma plume morphology and radiation emission. Fast photography and shadowgraphy images showed that plasmas generated by 1064 nm are more cylindrical compared to plasmas generated by shorter wavelengths, indicating the role of inverse bremsstrahlung absorption at longer laser wavelength excitation. Electron density estimates using Stark broadening showed higher densities for shorter wavelength laser generated plasmas, demonstrating the significance of absorption caused by photoionization. Crater depth analysis showed that ablated mass is significantly higher for UV wavelengths compared to IR laser radiation. In this experimental study, the use of multiple diagnostic tools provided a comprehensive picture of the differing roles of laser absorption mechanisms during ablation.

  13. Continuous 1052, 1064 nm dual-wavelength Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Wang, Xiaozhong; Yuan, Haiyang; Wang, Mingshan; Huang, Wencai

    2016-10-01

    Dual-wavelength lasers are usually obtained through balancing the net gain of the two oscillating lines. Competition between transitions 1052 nm, 1061 nm and 1064 nm is utilized to realize a continuous wave 1052 and 1064 nm dual-wavelength Nd:YAG laser firstly in this paper. A specially designed Fabry-Perot band-pass filter is exploited as output coupler to control the thresholds of the oscillating wavelengths. The maximum power of the dual-wavelength laser is 1.6 W and the slope efficiency is about 10%. The power instability of the output dual-wavelength laser is smaller than ±4% in half an hour. The mechanism presented in this paper may provide a new way to obtain dual-wavelength lasers.

  14. Stable narrow spacing dual-wavelength Q-switched graphene oxide embedded in a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Soltanian, M. R. K.; Alimadad, M.; Harun, S. W.

    2014-10-01

    An ultra-stable dual-wavelength saturable absorber based on a cladding-embedded commercial graphene oxide (GO) solution by capillary action in a solid core photonic crystal fiber (PCF) is demonstrated for the first time. The saturation absorption property is achieved through evanescent coupling between the guided light and the cladding-filled graphene layers. Stable spacing dual-wavelength fiber lasing is attained by controlling the polarization state of a simple 0.9 m long ring of highly doped Leikki Er80-8/125 erbium-doped fiber as the primary gain medium with PCF, polarization controller and tunable bandpass filter. Embedded GO is used to generate the desired pulsed output, and the laser is capable of generating pulses having a repetition rate of 24 kHz with an average output power and pulse energy of 0.167 mW and 8.98 nJ, respectively, at the maximum pump power of 220 mW.

  15. Wavelength specific excitation of gold nanoparticle thin-films

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas M.; James, Kurtis T.; Beharic, Jasmin; Moiseeva, Evgeniya V.; Keynton, Robert S.; O'Toole, Martin G.; Harnett, Cindy K.

    2014-01-01

    Advances in microelectromechanical systems (MEMS) continue to empower researchers with the ability to sense and actuate at the micro scale. Thermally driven MEMS components are often used for their rapid response and ability to apply relatively high forces. However, thermally driven MEMS often have high power consumption and require physical wiring to the device. This work demonstrates a basis for designing light-powered MEMS with a wavelength specific response. This is accomplished by patterning surface regions with a thin film containing gold nanoparticles that are tuned to have an absorption peak at a particular wavelength. The heating behavior of these patterned surfaces is selected by the wavelength of laser directed at the sample. This method also eliminates the need for wires to power a device. The results demonstrate that gold nanoparticle films are effective wavelength-selective absorbers. This "hybrid" of infrared absorbent gold nanoparticles and MEMS fabrication technology has potential applications in light-actuated switches and other mechanical structures that must bend at specific regions. Deposition methods and surface chemistry will be integrated with three-dimensional MEMS structures in the next phase of this work. The long-term goal of this project is a system of light-powered microactuators for exploring cellular responses to mechanical stimuli, increasing our fundamental understanding of tissue response to everyday mechanical stresses at the molecular level.

  16. Compact fixed wavelength femtosecond oscillators for multi-photon imaging

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.; Zadoyan, R.; Baldacchini, T.; Franke, T.

    2015-03-01

    In recent years two-photon microscopy with fixed-wavelength has raised increasing interest in life-sciences: Two-photon (2P) absorption spectra of common dyes are broader than single-photon ones. Therefore, excitation of several dyes simultaneously with a single IR laser wavelength is feasible and could be seen as an advantage in 2P microscopy. We used pulsed fixed-wavelength infrared lasers with center wavelength at 1040 nm, for two-photon microscopy in a variety of biologically relevant samples, among these a mouse brain sample, a mouse artery (within the animal, acute preparation), and a preparation of mouse bladder. The 1040 nm laser proved to be efficient not only in exciting fluorescence from yellow fluorescent protein (YFP) and red fluorescent dyes, but also for second harmonic generation (SHG) signals from muscle tissue and collagen. With this work we demonstrate that economical, small-footprint fixedwavelength lasers can present an interesting alternative to tunable lasers that are commonly used in multiphoton microscopy.

  17. Note: Laser wavelength precision measurement based on a laser synthetic wavelength interferometer.

    PubMed

    Yan, Liping; Chen, Benyong; Zhang, Shihua; Liu, Pengpeng; Zhang, Enzheng

    2016-08-01

    A laser wavelength precision measurement method is presented based on the laser synthetic wavelength interferometer (LSWI). According to the linear relation between the displacements of measurement and reference arms in the interferometer, the synthetic wavelength produced by an unknown wavelength and a reference wavelength can be measured by detecting the phase coincidences of two interference signals. The advantage of the method is that a larger synthetic wavelength resulting from an unknown wavelength very close to the reference wavelength can be easily determined according to the linear relation in the interferometer. Then the unknown wavelength is derived according to the one-to-one corresponding relationship between single wavelength and synthetic wavelength. Wavelengths of an external cavity diode laser and two He-Ne lasers were determined experimentally. The experimental results show that the proposed method is able to realize a relative uncertainty on the order of 10(-8).

  18. Monitoring of MOCVD reactants by UV absorption

    SciTech Connect

    Baucom, K.C.; Killeen, K.P.; Moffat, H.K.

    1995-07-01

    In this paper, we describe how UV absorption measurements can be used to measure the flow rates of metal organic chemical vapor deposition (MOCVD) reactants. This method utilizes the calculation of UV extinction coefficients by measuring the total pressure and absorbance in the neat reactant system. The development of this quantitative reactant flow rate monitor allows for the direct measurement of the efficiency of a reactant bubbler. We demonstrate bubbler efficiency results for TMGa, and then explain some discrepancies found in the TMAl system due to the monomer to dimer equilibrium. Also, the UV absorption spectra of metal organic and hydride MOCVD reactants over the wavelength range 185 to 400 nm are reported.

  19. Wavelength tunable alexandrite regenerative amplifier

    SciTech Connect

    Harter, D.J.; Bado, P.

    1988-11-01

    We describe a wavelength tunable alexandrite regenerative amplifier which is used to amplify nanosecond slices from a single-frequency cw dye laser or 50-ps pulses emitted by a diode laser to energies in the 10-mJ range. The amplified 5-ns slices generated by the cw-pumped line narrowed dye laser are Fourier transform limited. The 50-ps pulses emitted by a gain-switched diode laser are amplified by more than 10 orders of magnitude in a single stage.

  20. Three wavelength optical oxymetry including the measurement of carboxyhemoglobin concentration

    NASA Astrophysics Data System (ADS)

    Pieralli, Christian; Devillers, Robert; Tribillon, Gilbert M.; Barthelemy, Jean-Claude; Geyssant, Andre

    1995-02-01

    The measurement of blood component concentrations is of great interest for medical applications such as anaesthetizing monitoring, heart disease evolution, respiratory insufficiency, etc. The common system is the spectroscopic analysis of blood samples. Analyzing the absorption versus wavelengths permits the determination of blood component concentrations by comparison to the theoretical extinction coefficients of the investigated components. The functional saturation rate of oxyhemoglobin HbO2 called SfO2 is therefore accessible. A new system is presented in this paper utilizing three laser diodes at wavelengths 660, 830, and 1060 nm. We have, therefore, access to a supplementary parameter which is the concentration of carboxyhemoglobin HbCO. The set-up can be portable because it utilizes small light sources, optical fibers, and integrated electrical supply and signal processing device. The performances reach a SfO2 resolution of 2% and 1% on HbCO measurement.

  1. Thin-film power-density meter for millimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Lee, Karen A.; Guo, Yong; Stimson, Philip A.; Potter, Kent A.; Chiao, Jung-Chih

    1991-01-01

    A quasi-optical power density meter for millimeter and submillimeter wavelengths has been developed. The device is a 2-cm2 thin-film bismuth bolometer deposited on a mylar membrane. The resistance responsivity is 150 Ohms/W, and the time constant is 1 min. The meter is calibrated at DC. The bolometer is much thinner than a wavelength, and can thus be modeled as a lumped resistance in a transmission-line equivalent circuit. The absorption coefficient is 0.5 for 189-Ohms/square film. The power-density meter has been used to measure absolute power densities for millimeter-wave antenna efficiency measurements. Absolute power densities of 0.5 mW/sq cm have been measured to an estimated accuracy of 5 percent.

  2. Fluorometric determination of whole blood with various excitation wavelengths

    NASA Astrophysics Data System (ADS)

    Lan, Xiufeng; Gao, Shumei; Peng, Changde; Liu, Ying; Ni, Xiao-Wu

    2003-12-01

    Autofluorescence spectra from whole blood of laboratory rat are measured in this paper. The excitation lights are light emitting diode (LED), Ar+ laser, and He-Ne laser with the wavelength located at 457nm, 457.9nm, and 632.8nm respectively. The three spectral profiles are found to be substantially different, each displaying its own characteristic fluorescence bands. Ar+ laser-induced spectrum has very rich and sharp peaks. The LED-induced one has the strongest and widest fluorescence bands. And the intensity of the spectrum induced by He-Ne laser is much lower than the former two. Comparisons of those three fluorescence spectra indicate that Ar+ laser induced spectrum can show partly fine structure of blood cells. Based on the theoretical analysis, it is presented that the absorption of the fluorophores in blood cells to the wavelength of exciting light has definite selectivity, which depend on energy level structure and state of the fluorophores.

  3. Resonance Rayleigh scattering, frequency doubling scattering and absorption spectrum of the interaction for mebendazole with 12-tungstophosphoric acid and its analytical applications.

    PubMed

    Tian, Fengling; Yang, Jidong; Huang, Wei; Zhou, Shang; Yao, Gengyang

    2013-12-01

    The interaction of mebendazole (MBZ) with 12-tungstophosphoric acid (TP) has been investigated by using resonance Rayleigh scattering (RRS) and frequency doubling scattering (FDS) combining with absorption spectrum. In pH 1.0 HCl medium, MBZ reacted with TP to form 3:1 ion-association complex. As a result, not only the spectrum of absorption was changed, but also the intensities of RRS and FDS were enhanced greatly. The maximum RRS, FDS and absorption wavelengths are located at 372, 392 and 260 nm, respectively. The increments of scattering intensity (ΔI) and absorption (ΔA) are directly proportional to the concentrations of MBZ in certain ranges. The detection limits (3σ) of RRS, FDS and absorption are 0.56, 0.86 and 130.16 ng/mL, respectively. The sensitivity of RRS method is higher than FDS and absorption methods. The optimum conditions of RRS method and the influence factors were discussed in the paper, in addition, the structure of ion-association complex and the reaction mechanism were investigated. Based on the ion-association reaction and its spectral response, the rapid, simple and sensitive RRS method for the determination of MBZ has been developed.

  4. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals

    PubMed Central

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-01-01

    The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W. PMID:27811994

  5. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals.

    PubMed

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-11-04

    The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er(3+):(4)I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.

  6. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals

    NASA Astrophysics Data System (ADS)

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-11-01

    The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.

  7. Dust in MG II Absorption Systems

    NASA Astrophysics Data System (ADS)

    Malhotra, S.

    The dust absorption feature at 2175 AA is detected in a composite spectrum of Mg II absorbers. The composite absorber spectrum is obtained by taking the geometric mean of 92 quasar spectra after aligning them in the rest-frame of 96 absorbers. By aligning the spectra according to absorber redshifts we reinforce the spectral features of the absorbers, and smooth over possible bumps and wiggles in the emission spectra. The width of the observed absorption feature is 200-300 AA (FWHM), or 0.4-0.6 microns^{-1} and the central wavelength is 2240 AA. The Galactic dust feature has a central wavelength of 2176 AA and FWHM = 0.8-1.25 microns^{-1}. Simulations show that this discrepancy between the properties of the 2175 AA feature in Mg II absorbers and Galactic ISM can be mostly explained by the different methods used to measure them (cf. Malhotra 1997).

  8. Methane Absorption Coefficients for the Jovian Planets and Titan

    NASA Astrophysics Data System (ADS)

    Karkoschka, Erich; Tomasko, M. G.

    2009-09-01

    We combined 11 data sets of methane transmission measurements within 0.4-5.5 micrometer wavelength in order to better understand the variation of methane absorption with temperature and pressure for conditions in the atmospheres of the Jovian planets and Titan. Eight data sets are based on published laboratory measurements. Another two data sets come from two spectrometers onboard the Huygens probe that measured methane absorption inside Titan's atmosphere (Tomasko et al. 2008, PSS 56, 624). We present the data with a refined analysis. The last data set consists of Hubble Space Telescope images of Jupiter taken in 2005 and 2007 as Ganymede started to be occulted by Jupiter. Using Ganymede as a light source, we probed Jupiter's stratosphere with large methane pathlengths. Below 1000 nm wavelength, we find methane absorption coefficients generally similar to those by Karkoschka (1998, Icarus 133, 134). We added descriptions of temperature and pressure dependence, which are typically small in this wavelength range. Data in this wavelength range are consistent with each other, except between 882 and 902 nm wavelength where laboratory data predict larger absorptions in the Jovian atmospheres than observed. We present possible explanations. Above 1000 nm, our analysis of the Huygens data confirms methane absorption coefficients by Irwin et al. (2006, Icarus 181, 309) at their laboratory temperatures. Huygens data are consistent with Irwin's model of the pressure dependence of methane absorption. However, when large extrapolations were needed, such as from laboratory data above 200 K to Titan's temperatures near 80 K, Irwin's model of temperature dependence predicts absorption coefficients up to 100 times lower than measured by Huygens. We combined Irwin's and Huygens' data to obtain more reliable methane absorption coefficients for the temperatures in the atmospheres of the Jovian planets and Titan. This research was supported by NASA grants NAG5-12014 and NNX08AE74G.

  9. Light dilution via wavelength management for efficient high-density photobioreactors.

    PubMed

    Ooms, Matthew D; Graham, Percival J; Nguyen, Brian; Sargent, Edward H; Sinton, David

    2017-02-06

    The spectral distribution of light influences microalgae productivity; however, development of photobioreactors has proceeded largely without regard to spectral optimization. Here we use monochromatic light to quantify the joint influence of path length, culture density, light intensity and wavelength on productivity and efficiency in Synechococcus elongatus. The productivity of green light was ∼4 x that of red at the highest levels of culture density, depth and light intensity. This performance is attributed to the combination of increased dilution and penetration of this weakly absorbed wavelength over a larger volume fraction of the reactor. In contrast, red light outperformed other wavelengths in low-density cultures with low light intensities. Low density cultures also adapted more rapidly to reduce absorption of longer wavelengths, allowing for prolonged cultivation. Taken together, these results indicate that, particularly for artificially lit photobioreactors, wavelength needs to be included as a critical operational parameter to maintain optimal performance. This article is protected by copyright. All rights reserved.

  10. Wavelength Calibration of the VLT-UVES Spectrograph

    NASA Astrophysics Data System (ADS)

    Whitmore, Jonathan B.; Murphy, Michael T.; Griest, Kim

    2010-11-01

    We attempt to measure possible miscalibration of the wavelength scale of the VLT-UVES spectrograph. We take spectra of QSO HE0515-4414 through the UVES iodine cell which contains thousands of well-calibrated iodine lines and compare these lines to the wavelength scale from the standard thorium-argon pipeline calibration. Analyzing three exposures of this z = 1.71 QSO, we find two distinct types of calibration shifts needed to correct the Th/Ar wavelength scale. First, there is an overall average velocity shift of between 100 m s-1 and 500 m s-1 depending upon the exposure. Second, within a given exposure, we find intra-order velocity distortions of 100 m s-1 up to more than 200 m s-1. These calibration errors are similar to, but smaller than, those found earlier in the Keck HIRES spectrometer. We discuss the possible origins of these two types of miscalibration. We also explore the implications of these calibration errors on the systematic error in measurements of Δ α \\over α, the change in the fine-structure constant derived from measurement of the relative redshifts of absorption lines in QSO absorption systems. The overall average, exposure-dependent shifts should be less relevant for fine-structure work, but the intra-order shifts have the potential to affect these results. Using either our measured calibration offsets or a Gaussian model with sigma of around 90 m s-1, Monte Carlo mock experiments find errors in Δ α \\over α of between 1 × 10-6 N -1/2 sys and 3 × 10-6 N -1/2 sys, where N sys is the number of systems used and the range is due to dependence on how many metallic absorption lines in each system are compared.

  11. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    SciTech Connect

    Kita, Tomohiro Tang, Rui; Yamada, Hirohito

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  12. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    NASA Astrophysics Data System (ADS)

    Kita, Tomohiro; Tang, Rui; Yamada, Hirohito

    2015-03-01

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  13. Flare stars at radio wavelengths

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1990-01-01

    The radio emission from dMe flare stars is discussed using Very Large Array and Arecibo observations as examples. Active flare stars emit weak, unpolarized, quiescent radio radiation that may be always present. Although thermal bremsstrahlung and/or thermal gyroresonance radiation account for the slowly-varying, quiescent radio radiation of solar active regions, these processes cannot account for the long-wavelength quiescent radiation observed from nearby dMe flare stars. It has been attributed to nonthermal gyrosynchrotron radiation, but some as yet unexplained mechanism must be continually producing the energetic electrons. Long duration, narrow-band radiation is also emitted from some nearby dMe stars at 20 cm wavelength. Such radiation may be attributed to coherent plasma radiation or to coherent electron-cyclotron masers. Impulsive stellar flares exhibit rapid variations that require radio sources that are smaller than the star in size, and high brightness temperatures greater than 10(exp 15) K that are also explained by coherent radiation processes. Quasi-periodic temporal fluctuations suggest pulsations during some radio flares. Evidence for frequency structure and positive or negative frequency drifts during radio flares from dMe stars is also presented.

  14. Flare stars at radio wavelengths

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1989-01-01

    The radio emission from dMe flare stars is discussed using Very Large Array and Arecibo observations as examples. Active flare stars emit weak, unpolarized, quiescent radio radiation that may be always present. Although thermal bremsstrahlung and/or thermal gyroresonance radiation account for the slowly-varying, quiescent radio radiation of solar active regions, these processes cannot account for the long-wavelength quiescent radiation observed from nearby dMe flare stars. It has been attributed to nonthermal gyrosynchrotron radiation, but some as yet unexplained mechanism must be continually producing the energetic electrons. Long duration, narrow-band radiation is also emitted from some nearby dMe stars at 20 cm wavelength. Such radiation may be attributed to coherent plasma radiation or to coherent electron-cyclotron masers. Impulsive stellar flares exhibit rapid variations that require radio sources that are smaller than the star in size, and high brightness temperatures greater than 10(exp 15) K that are also explained by coherent radiation processes. Quasi-periodic temporal fluctuations suggest pulsations during some radio flares. Evidence for frequency structure and positive or negative frequency drifts during radio flares from dMe stars is also presented.

  15. Choosing optimal wavelength for photodynamic therapy of port wine stains by mathematic simulation

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Gu, Ying; Zuo, Zhaohui; Huang, Naiyan

    2011-09-01

    Many laser wavelengths have been used in photodynamic therapy (PDT) for port wine stains (PWS). However, how these wavelengths result in different PDT outcomes has not been clearly illuminated. This study is designed to analyze which wavelengths would be the most advantageous for use in PDT for PWS. The singlet oxygen yield in PDT-treated PWS skin under different wavelengths at the same photosensitizer dosage was simulated and the following three situations were simulated and compared: 1. PDT efficiency of 488, 532, 510, 578, and 630 nm laser irradiation at clinical dosage (100 mW/cm2, 40 min); 2. PDT efficiency of different wavelength for PWS with hyperpigmentation after previous PDT; 3. PDT efficiency of different wavelengths for PWS, in which only deeply located ectatic vessels remained. The results showed that singlet oxygen yield is the highest at 510 nm, it is similar at 532 nm and 488 nm, and very low at 578 nm and 630 nm. This result is identical to the state in clinic. According to this theoretical study, the optimal wavelength for PDT in the treatment of PWS should near the absorption peaks of photosensitizer and where absorption from native chromophores (haemoglobin and melanin) is diminished.

  16. Choosing optimal wavelength for photodynamic therapy of port wine stains by mathematic simulation.

    PubMed

    Wang, Ying; Gu, Ying; Zuo, Zhaohui; Huang, Naiyan

    2011-09-01

    Many laser wavelengths have been used in photodynamic therapy (PDT) for port wine stains (PWS). However, how these wavelengths result in different PDT outcomes has not been clearly illuminated. This study is designed to analyze which wavelengths would be the most advantageous for use in PDT for PWS. The singlet oxygen yield in PDT-treated PWS skin under different wavelengths at the same photosensitizer dosage was simulated and the following three situations were simulated and compared: 1. PDT efficiency of 488, 532, 510, 578, and 630 nm laser irradiation at clinical dosage (100 mW∕cm(2), 40 min); 2. PDT efficiency of different wavelength for PWS with hyperpigmentation after previous PDT; 3. PDT efficiency of different wavelengths for PWS, in which only deeply located ectatic vessels remained. The results showed that singlet oxygen yield is the highest at 510 nm, it is similar at 532 nm and 488 nm, and very low at 578 nm and 630 nm. This result is identical to the state in clinic. According to this theoretical study, the optimal wavelength for PDT in the treatment of PWS should near the absorption peaks of photosensitizer and where absorption from native chromophores (haemoglobin and melanin) is diminished.

  17. Maximum margin Bayesian network classifiers.

    PubMed

    Pernkopf, Franz; Wohlmayr, Michael; Tschiatschek, Sebastian

    2012-03-01

    We present a maximum margin parameter learning algorithm for Bayesian network classifiers using a conjugate gradient (CG) method for optimization. In contrast to previous approaches, we maintain the normalization constraints on the parameters of the Bayesian network during optimization, i.e., the probabilistic interpretation of the model is not lost. This enables us to handle missing features in discriminatively optimized Bayesian networks. In experiments, we compare the classification performance of maximum margin parameter learning to conditional likelihood and maximum likelihood learning approaches. Discriminative parameter learning significantly outperforms generative maximum likelihood estimation for naive Bayes and tree augmented naive Bayes structures on all considered data sets. Furthermore, maximizing the margin dominates the conditional likelihood approach in terms of classification performance in most cases. We provide results for a recently proposed maximum margin optimization approach based on convex relaxation. While the classification results are highly similar, our CG-based optimization is computationally up to orders of magnitude faster. Margin-optimized Bayesian network classifiers achieve classification performance comparable to support vector machines (SVMs) using fewer parameters. Moreover, we show that unanticipated missing feature values during classification can be easily processed by discriminatively optimized Bayesian network classifiers, a case where discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.

  18. Optimizing wavelength choice for quantitative optoacoustic imaging using the Cramer-Rao lower bound

    NASA Astrophysics Data System (ADS)

    Modgil, Dimple; La Riviére, Patrick J.

    2010-12-01

    Several papers have recently addressed the issue of estimating chromophore concentration in optoacoustic imaging (OAI) using multiple wavelengths. The choice of wavelengths obviously affects the accuracy and precision of the estimates. One might assume that the wavelengths that maximize the extinction coefficients of the chromophores would be the most suitable. However, this may not always be the case since the distribution of light intensity in the medium is also wavelength dependent. In this paper, we explore a method for optimizing the choice of wavelengths based on the Cramer-Rao lower bound (CRLB) on the variance of the chromophore concentration. This lower bound on variance can be evaluated numerically for different wavelengths using the variation of the extinction coefficients and scattering coefficients with wavelength. The wavelengths that give the smallest variance will be considered optimal for multi-wavelength OAI to estimate the chromophore concentrations. The expression for the CRLB has been derived analytically for estimating the concentration of multiple chromophores for several simple phantom models for the case when the optoacoustic signal is proportional to the product of the optical absorption and the illumination function. This approach could be easily extended to other geometries.

  19. [Characteristic wavelength variable optimization of near-infrared spectroscopy based on Kalman filtering].

    PubMed

    Wang, Li-Qi; Ge, Hui-Fang; Li, Gui-Bin; Yu, Dian-Yu; Hu, Li-Zhi; Jiang, Lian-Zhou

    2014-04-01

    Combining classical Kalman filter with NIR analysis technology, a new method of characteristic wavelength variable selection, namely Kalman filtering method, is presented. The principle of Kalman filter for selecting optimal wavelength variable was analyzed. The wavelength selection algorithm was designed and applied to NIR detection of soybean oil acid value. First, the PLS (partial leastsquares) models were established by using different absorption bands of oil. The 4 472-5 000 cm(-1) characteristic band of oil acid value, including 132 wavelengths, was selected preliminarily. Then the Kalman filter was used to select characteristic wavelengths further. The PLS calibration model was established using selected 22 characteristic wavelength variables, the determination coefficient R2 of prediction set and RMSEP (root mean squared error of prediction) are 0.970 8 and 0.125 4 respectively, equivalent to that of 132 wavelengths, however, the number of wavelength variables was reduced to 16.67%. This algorithm is deterministic iteration, without complex parameters setting and randomicity of variable selection, and its physical significance was well defined. The modeling using a few selected characteristic wavelength variables which affected modeling effect heavily, instead of total spectrum, can make the complexity of model decreased, meanwhile the robustness of model improved. The research offered important reference for developing special oil near infrared spectroscopy analysis instruments on next step.

  20. Wavelength dependence of Ångström exponent and single scattering albedo observed by skyradiometer in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Koo, Ja-Ho; Kim, Jhoon; Lee, Jaehwa; Eck, Thomas F.; Lee, Yun Gon; Park, Sang Seo; Kim, Mijin; Jung, Ukkyo; Yoon, Jongmin; Mok, Jungbin; Cho, Hi-Ku

    2016-11-01

    Absorption and scattering characteristics of various aerosol events are investigated using 2-years of measurements from a skyradiometer at Yonsei University in Seoul, Korea. Both transported dust and anthropogenic aerosols are observed at distinct geo-location of Seoul, a megacity located a few thousand kilometers away from dust source regions in China. We focus on the wavelength dependence of Ångström exponent (AE) and single scattering albedo (SSA), showing the characteristics of regional aerosols. The correlation between spectral SSAs and AEs calculated using different wavelength pairs generally indicates relatively weak absorption of fine-mode aerosols (urban pollution and/or biomass burning) and strong absorption of coarse-mode aerosols (desert dust) at this location. AE ratio (AER), a ratio of AEs calculated using wavelength pair between shorter (340-675 nm) and longer wavelength pair (675-1020 nm) correlates differently with SSA according to the dominant size of local aerosols. Correlations between SSA and AER show strong absorption of aerosols for AER < 1.0 and weak absorption for AER > 2.0. Based on the seasonal pattern of wavelength dependence of AER and SSA, this correlation difference looks to reveal the separated characteristics of transported dust and anthropogenic particles from urban pollution respectively. The seasonal characteristics of AER and SSAs also show that the skyradiometer measurement with multiple wavelengths may be able to detect the water soluble brown carbon, one of the important secondary organic aerosols in the summertime atmospheric composition.

  1. Dual-wavelength quantum cascade laser for trace gas spectroscopy

    SciTech Connect

    Jágerská, J.; Tuzson, B.; Mangold, M.; Emmenegger, L.; Jouy, P.; Hugi, A.; Beck, M.; Faist, J.; Looser, H.

    2014-10-20

    We demonstrate a sequentially operating dual-wavelength quantum cascade laser with electrically separated laser sections, emitting single-mode at 5.25 and 6.25 μm. Based on a single waveguide ridge, this laser represents a considerable asset to optical sensing and trace gas spectroscopy, as it allows probing multiple gas species with spectrally distant absorption features using conventional optical setups without any beam combining optics. The laser capability was demonstrated in simultaneous NO and NO{sub 2} detection, reaching sub-ppb detection limits and selectivity comparable to conventional high-end spectroscopic systems.

  2. Multiple wavelength light collimator and monitor

    NASA Technical Reports Server (NTRS)

    Gore, Warren J. (Inventor)

    2011-01-01

    An optical system for receiving and collimating light and for transporting and processing light received in each of N wavelength ranges, including near-ultraviolet, visible, near-infrared and mid-infrared wavelengths, to determine a fraction of light received, and associated dark current, in each wavelength range in each of a sequence of time intervals.

  3. Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials.

    PubMed

    Moughames, J; Jradi, S; Chan, T M; Akil, S; Battie, Y; Naciri, A En; Herro, Z; Guenneau, S; Enoch, S; Joly, L; Cousin, J; Bruyant, A

    2016-10-04

    We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ(3), slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications.

  4. Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials

    PubMed Central

    Moughames, J.; Jradi, S.; Chan, T. M.; Akil, S.; Battie, Y.; Naciri, A. En; Herro, Z.; Guenneau, S.; Enoch, S.; Joly, L.; Cousin, J.; Bruyant, A.

    2016-01-01

    We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ3, slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications. PMID:27698476

  5. Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials

    NASA Astrophysics Data System (ADS)

    Moughames, J.; Jradi, S.; Chan, T. M.; Akil, S.; Battie, Y.; Naciri, A. En; Herro, Z.; Guenneau, S.; Enoch, S.; Joly, L.; Cousin, J.; Bruyant, A.

    2016-10-01

    We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ3, slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications.

  6. Convex Accelerated Maximum Entropy Reconstruction

    PubMed Central

    Worley, Bradley

    2016-01-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm – called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm – is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. PMID:26894476

  7. The HI absorption "Zoo"

    NASA Astrophysics Data System (ADS)

    Geréb, K.; Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.

    2015-03-01

    We present an analysis of the H I 21 cm absorption in a sample of 101 flux-selected radio AGN (S1.4 GHz> 50 mJy) observed with the Westerbork Synthesis Radio Telescope (WSRT). We detect H I absorption in 32 objects (30% of the sample). In a previous paper, we performed a spectral stacking analysis on the radio sources, while here we characterize the absorption spectra of the individual detections using the recently presented busy function. The H I absorption spectra show a broad variety of widths, shapes, and kinematical properties. The full width half maximum (FWHM) of the busy function fits of the detected H I lines lies in the range 32 km s-1absorption (FW20) lies in the range 63 km s-1 200 km s-1). We study the kinematical and radio source properties of each group, with the goal of identifying different morphological structures of H I. Narrow lines mostly lie at the systemic velocity and are likely produced by regularly rotating H I disks or gas clouds. More H I disks can be present among galaxies with lines of intermediate widths; however, the H I in these sources is more unsettled. We study the asymmetry parameter and blueshift/redshift distribution of the lines as a function of their width. We find a trend for which narrow profiles are also symmetric, while broad lines are the most asymmetric. Among the broadest lines, more lines appear blueshifted than redshifted, similarly to what was found by previous studies. Interestingly, symmetric broad lines are absent from the sample. We argue that if a profile is broad, it is also asymmetric and shifted relative to the systemic velocity because it is tracing unsettled H I gas. In particular, besides three of the broadest (up to FW20 = 825 km s-1

  8. Maximum Entropy Guide for BSS

    NASA Astrophysics Data System (ADS)

    Górriz, J. M.; Puntonet, C. G.; Medialdea, E. G.; Rojas, F.

    2005-11-01

    This paper proposes a novel method for Blindly Separating unobservable independent component (IC) Signals (BSS) based on the use of a maximum entropy guide (MEG). The paper also includes a formal proof on the convergence of the proposed algorithm using the guiding operator, a new concept in the genetic algorithm (GA) scenario. The Guiding GA (GGA) presented in this work, is able to extract IC with faster rate than the previous ICA algorithms, based on maximum entropy contrast functions, as input space dimension increases. It shows significant accuracy and robustness than the previous approaches in any case.

  9. Sub-microsecond wavelength stabilization of tunable lasers with the internal wavelength locker

    NASA Astrophysics Data System (ADS)

    Kimura, Ryoga; Tatsumoto, Yudai; Sakuma, Kazuki; Onji, Hirokazu; Shimokozono, Makoto; Ishii, Hiroyuki; Kato, Kazutoshi

    2016-08-01

    We proposed a method of accelerating the wavelength stabilization after wavelength switching of the tunable distributed amplification-distributed feedback (TDA-DFB) laser using the internal wavelength locker to reduce the size and the cost of the wavelength control system. The configuration of the wavelength stabilization system based on this locker was as follows. At the wavelength locker, the light intensity after an optical filter is detected as a current by the photodiodes (PDs). Then, for estimating the wavelength, the current is processed by the current/voltage-converting circuit (IVC), logarithm amplifier (Log Amp) and field programmable gate array (FPGA). Finally, the laser current is tuned to the desired wavelength with reference to the estimated wavelength. With this control system the wavelength is stabilized within 800 ns after wavelength switching, which is even faster than that with the conventional control system.

  10. Long-term wavelength drift compensation of tunable pulsed dye laser for sodium detection lidar

    NASA Astrophysics Data System (ADS)

    Xia, Yuan; Cheng, Xuewu; Li, Faquan; Wang, Jihong; Yang, Yong; Lin, Xin; Gong, Shunsheng

    2015-11-01

    Wavelength stabilization for a pulsed laser presents more challenges than that of continuous wave laser. We have developed a simple and efficient long-term wavelength drifts compensation technique for tunable pulsed dye lasers (PDL) applied in sodium detection lidar system. Wavelength calibration and locking are implemented by using optogalvanic (OG) spectroscopy in a Na hollow cathode lamp (HCL) in conjunction with a digital control software. Optimization of OG signals for better laser wavelength discrimination and feedback control is performed. Test results indicate that locking the multimode broadband PDL to the Na atomic transition corresponding to 589.158 nm is well achieved although the temperature in the laboratory is unstable. Through active compensation, the maximum wavelength drift is reduced from over 5 pm to 0.42 pm in 10 h and the maximum wavelength drift rate of the PDL is improved from 3.3 pm/h to 0.3 pm/h. It has been used to efficient sodium resonance fluorescence lidar detection. This technique is economical and easy to implement, and it provides flexible wavelength control and allows generalization for some other applications which require the wavelength of tunable pulsed lasers to be fixed at an atomic resonance transition references.

  11. Four-wavelength retinal vessel oximetry

    NASA Astrophysics Data System (ADS)

    Drewes, Jonathan Jensen

    1999-11-01

    This dissertation documents the design and construction of a four-wavelength retinal vessel oximeter, the Eye Oximeter (EOX). The EOX scans low-powered laser beams (at 629, 678, 821 and 899 nm) into the eye and across a targeted retinal vessel to measure the transmittance of the blood within the vessel. From the transmittance measurements, the oxygen saturation of the blood within the vessel is computed. Retinal vessel oxygen saturation has been suggested as a useful parameter for monitoring a wide range of conditions including occult blood loss and a variety of ophthalmic diseases. An artificial eye that simulates the geometry of a human retinal vessel was constructed and used to calibrate the EOX saturation measurement. A number of different oximetry equations were developed and tested. From measurements made on whole human blood in the artificial eye, an oximetry equation that places a linear wavelength dependance on the scattering losses (3% decrease from 629 to 899 nm) is found to best calibrate the EOX oxygen saturation measurement. This calibration also requires that an adjustment be made to the absorption coefficient of hemoglobin at 629 nm that has been reported in the literature. More than 4,000 measurements were made in the eyes of three human subjects during the development of the EOX. Applying the oximetry equation developed through the in vitro experiments to human data, the average human retinal venous oxygen saturation is estimated to be 0.63 +/- 0.07 and the average human retinal arterial oxygen saturation is 0.99 +/- 0.03. Furthermore, measurements made away from the optic disk resulted in a larger variance in the calculated saturation when compared to measurements made on the optic disk. A series of EOX experiments using anesthetized swine helped to verify the sensitivity of the EOX measurement of oxygen saturation. It is found that the calibration in swine differed from the calibration in the artificial eye. An empirical calibration from the

  12. Excited-state absorption measurements of Tm3+-doped crystals

    NASA Astrophysics Data System (ADS)

    Szela, J. W.; Mackenzie, J. I.

    2012-06-01

    High resolution, absolute excited-state absorption (ESA) spectra, at room temperature, from the long-lived 3F4 energy level of several crystals doped with trivalent thulium (Tm3+) ions have been measured employing high-brightness narrowband (FWHM <30 nm) light emitting diodes (LEDs) as a probe wavelength. The aim of this investigation was to determine the strength of ESA channels at wavelengths addressable by commercially available semiconductor laser diodes operating around 630-680 nm. The favourable lifetime of the 3F4 manifold and negligible ground-state absorption (GSA) for the red-wavelength second-step excitation, ensures a direct and efficient route for a dual-wavelength pumping scheme of the thulium ion, which will enable blue-green laser emission from its 1G4 upper-laser level.

  13. Light absorption by organic carbon from wood combustion

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Bond, T. C.

    2010-02-01

    Carbonaceous aerosols affect the radiative balance of the Earth by absorbing and scattering light. While black carbon (BC) is highly absorbing, some organic carbon (OC) also has significant absorption, especially at near-ultraviolet and blue wavelengths. To the extent that OC absorbs visible light, it may be a non-negligible contributor to positive direct aerosol radiative forcing. Quantification of that absorption is necessary so that radiative-transfer models can evaluate the net radiative effect of OC. In this work, we examine absorption by primary OC emitted from solid fuel pyrolysis. We provide absorption spectra of this material, which can be related to the imaginary refractive index. This material has polar character but is not fully water-soluble: more than 92% was extractable by methanol or acetone, compared with 73% for water and 52% for hexane. Water-soluble OC contributes to light absorption at both ultraviolet and visible wavelengths. However, a larger portion of the absorption comes from OC that is extractable only by methanol. Absorption spectra of water-soluble OC are similar to literature reports. We compare spectra for material generated with different wood type, wood size and pyrolysis temperature. Higher wood temperature is the main factor creating OC with higher absorption; changing wood temperature from a devolatilizing state of 210 °C to a near-flaming state of 360 °C causes about a factor of four increase in mass-normalized absorption at visible wavelengths. A clear-sky radiative transfer model suggests that, despite the absorption, both high-temperature and low-temperature OC result in negative top-of-atmosphere radiative forcing over a surface with an albedo of 0.19 and positive radiative forcing over bright surfaces. Unless absorption by real ambient aerosol is higher than that measured here, it probably affects global average clear-sky forcing very little, but could be important in energy balances over bright surfaces.

  14. Light absorption by organic carbon from wood combustion

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Bond, T. C.

    2009-09-01

    Carbonaceous aerosols affect the radiative balance of the Earth by absorbing and scattering light. While BC is highly absorbing, some organic compounds also have significant absorption, which is greater at near-ultraviolet and blue wavelengths. To the extent that OC absorbs visible light, it may be a non-negligible contributor to direct aerosol radiative forcing. In this work, we examine absorption by primary OC emitted from solid fuel pyrolysis. We provide absorption spectra of this material, which can be related to the imaginary refractive index. This material has polar character but is not fully water-soluble: more than 92% was extractable by methanol or acetone, compared with 73% for water and 52% for hexane. Water-soluble organic carbon contributed to light absorption at both ultraviolet and visible wavelengths. However, a larger portion came from organic carbon that is extractable only by methanol. The spectra of water-soluble organic carbon are similar to others in the literature. We compared spectra for material generated with different wood type, wood size and pyrolysis temperature. Higher wood temperature is the main factor creating organic aerosol with higher absorption, causing about a factor of four increase in mass-normalized absorption at visible wavelengths. A simple model suggests that, despite the absorption, both high-temperature and low-temperature carbon have negative climate forcing over a surface with average albedo.

  15. Ultraviolet spectra of quenched carbonaceous composite derivatives: Comparison to the '217 nanometer' interstellar absorption feature

    NASA Technical Reports Server (NTRS)

    Sakata, Akira; Wada, Setsuko; Tokunaga, Alan T.; Narisawa, Takatoshi; Nakagawa, Hidehiro; Ono, Hiroshi

    1994-01-01

    QCCs (quenched carbonaceous composite) are amorphus carbonaceous material formed from a hydrocarbon plasma. We present the UV-visible spectra of 'filmy QCC; (obtained outside of the beam ejected from the hydrocarbon plasma) and 'dark QCC' (obtained very near to the beam) for comparison to the stellar extinction curve. When filmy QCC is heated to 500-700 C (thermally altered), the wavelength of the absorption maximum increases form 204 nm to 220-222 nm. The dark QCC has an absorption maximum at 217-222 nm. In addition, the thermally altered filmy QCC has a slope change at about 500 nm which resmbles that in the interstellar extinction curve. The resemblance of the extinction curve of the QCCs to that of the interstellar medium suggests that QCC derivatives may be representative of the type of interstellar material that produces the 217 nm interstellar medium feature. The peak extinction of the dark QCC is higher than the average interstellar extinction curve while that of the thermally altered filmy QCC is lower, so that a mixture of dark and thermally altered filmy QCC can match the peak extinction observed in the interstellar medium. It is shown from electron micrographs that most of the thermally altered flimy QCC is in the form of small grainy structure less than 4 nm in diameter. This shows that the structure unit causing the 217-222 nm feature in QCC is very small.

  16. Bolometric Arrays for Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Castillo, E.; Serrano, A.; Torres-Jácome, A.

    2009-11-01

    During last years, semiconductor bolometers using thin films have been developed at INAOE, specifically boron-doped hydrogenated amorphous silicon films. The characteristics shown by these devices made them attractive to be used in astronomical instrumentation, mainly in two-dimentional arrays. These detector arrays used at the Large Millimeter Telescope will make possible to obtain astronomical images in millimeter and sub-millimeter wavelengths. With this in mind, we are developing a method to produce, with enough reliability, bolometer arrays at INAOE. Until now, silicon nitride diaphragm arrays, useful as radiation absorbers, have succesfully been obtained. Sizes going from one to four millimeter by element in a consistent way; however we have not tested thermometers and metallic contact deposition yet. At the same time, we are working on two possible configurations for the readout electronics; one of them using commercial components while the other will be an integrated circuit specifically designed for this application. Both versions will work below 77K.

  17. The Maximum Density of Water.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1985-01-01

    Discusses a series of experiments performed by Thomas Hope in 1805 which show the temperature at which water has its maximum density. Early data cast into a modern form as well as guidelines and recent data collected from the author provide background for duplicating Hope's experiments in the classroom. (JN)

  18. [Intercross cascaded dual-layer resonant sub-wavelength gratings].

    PubMed

    Chen, Yong-li; Zhao, Da-zun

    2009-04-01

    A security grating structure, intercross cascaded dual-layer resonant sub-wavelength grating structure, is presented. It can broaden the resonant wavelength width of resonant sub-wavelength gratings and obtain the better optical variable effect. The full-width-at half-maximum (FWHM) broadening mechanism of security grating structures is analyzed. The FWHM is dependent on the energy coupled into the grating waveguide layer. The grating structure parameters are optimized and designed. The resonance performance and grating fabrication tolerances are also studied numerically using the vector diffraction theory (the rigorous coupled wave theory). Simulation results indicate that the value of the spectral resonant peak for the security grating structure is not decreased as the incident angle increases or decreases and the maximum FWHM of different depth of grating grooves is about seven times that of the basic resonant grating structure. The resonant dual grating waveguide structure is a kind of security grating configuration with the potential to achieve higher industry application value and its resonance performance is not sensitive to manufacture errors.

  19. Two-photon absorption properties of fluorescent proteins

    PubMed Central

    Drobizhev, Mikhail; Makarov, Nikolay S.; Tillo, Shane E.; Hughes, Thomas E.; Rebane, Aleksander

    2016-01-01

    Two-photon excitation of fluorescent proteins is an attractive approach for imaging living systems. Today researchers are eager to know which proteins are the brightest, and what the best excitation wavelengths are. Here we review the two-photon absorption properties of a wide variety of fluorescent proteins, including new far-red variants, to produce a comprehensive guide to choosing the right FP and excitation wavelength for two-photon applications. PMID:21527931

  20. Water vapour and greenhouse trapping: The role of far infrared absorption

    NASA Astrophysics Data System (ADS)

    Sinha, Ashok; Harries, John E.

    Few observations have been made of atmospheric absorption across the far infra-red. Yet water vapour absorption in this spectral region may significantly effect climate. The impact of far infra-red absorption is assessed by calculating the spectral variation of the total and water vapour greenhouse effects, for the sub-arctic winter (SAW) and tropical (TRP) standard atmospheres. Although the calculated efficiency of greenhouse trapping peaks outside of the far infra-red, the low strength there of the Planck function causes relatively small absolute forcings, except in the carbon dioxide and ozone bands. The sensitivity of the normalised greenhouse effect to water vapour concentration is largest in the far infra-red for the SAW atmosphere, and in the window region for the TRP. The sensitivity differs most between the two atmospheres in the far infra-red. Maximum water vapour greenhouse trapping arises in the far infra-red, over the middle/upper troposphere; in the SAW case the contribution from the water vapour continuum is virtually eliminated. Improved spectral observations and simulations at far infra-red wavelengths thus appear necessary to better understand the contemporary greenhouse effect, and to validate models of climate change.

  1. Absorption of very high energy gamma rays in the Milky Way

    NASA Astrophysics Data System (ADS)

    Vernetto, Silvia; Lipari, Paolo

    2016-09-01

    Galactic gamma ray astronomy at very high energy (Eγ≳30 TeV ) is a vital tool in the study of the nonthermal universe. The interpretation of the observations in this energy region requires the precise modeling of the attenuation of photons due to pair production interactions (γ γ →e+e- ) where the targets are the radiation fields present in interstellar space. For gamma rays with energy Eγ≳300 TeV the attenuation is mostly due to the photons of the cosmic microwave background radiation. At lower energy the most important targets are infrared photons with wavelengths in the range λ ≃50 - 500 μ m emitted by dust. The evaluation of the attenuation requires a good knowledge of the density, and energy and angular distributions of the target photons for all positions in the Galaxy. In this work we discuss a simple model for the infrared radiation that depends on only few parameters associated to the space and temperature distributions of the emitting dust. The model allows to compute with good accuracy the effects of absorption for any space and energy distribution of the diffuse Galactic gamma ray emission. The absorption probability due to the Galactic infrared radiation is maximum for Eγ≃150 TeV , and can be as large as Pabs≃0.45 for distant sources on lines of sight that pass close to the Galactic center. The systematic uncertainties on the absorption probability are estimated as Δ Pabs≲0.08 .

  2. Angular Structure of the Radio Sources at Decameter Wavelengths

    NASA Astrophysics Data System (ADS)

    Brazhenko, A. I.; Inyutin, G. A.; Koshovyy, V. V.; Lozins'kyy, A. B.; Lytvinenko, O. A.; Megn, A. V.; Rashkovskiy, S. L.; Shepelyev, V. A.; Vaschishin, R. V.

    2006-08-01

    The world biggest decameter radio telescope UTR-2 and four smaller arrays forms the Ukrainian VLBI network URAN with an angular resolution up to 1" operated at decameter wavelengths. A number of galactic and extragalactic radio sources were studed with the URAN interferometers. At decimeter and centimeter wavelengths the studied extragalactic radio sources usually possess compact components and a total size of the sources is of about or less than a resolving power of the shortest baseline of the network. The obtained results allow us to affirm that the structure of the studied extragalactic radio sources changes at the decameter wavelengths. The reason of the changes usually is a combination of various phenomena of radio wave generation and propagation. The peculiarities of the brightness distribution in the range are: - The compact details (hot spots and sources associated with AGN) in the radio galaxies and quasars are usually less prominent at the decameter wavelengths because of synchrotron self-absorption. Their angular diameters are equal to those at higher frequencies or enlarged by the interstellar scattering. - Dimensions of lobes are enlarged as a rule. - A characteristic feature of the quasars structure at lower frequencies is extended components with steep spectra producing the main part of a flux of the sources at the decameter wavelengths. Their angular diameters exceed the total size of the source measured at higher frequencies. Such halos have been revealed in some radio galaxies too. The galactic supernova remnants studied with the URAN mainly possess the same features of their structure as at higher frequencies. Some modificatios of their structure at lower frequencies are caused by interstellar scattering, which increases a size of their compact details and difference of spectral indexes that changes relative fluxes of source parts at the decameters.

  3. Multi-wavelength Characterization of Brown and Black Carbon from Filter Samples

    NASA Astrophysics Data System (ADS)

    Johnson, M. M.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Gyawali, M. S.; Arnott, W. P.; Wang, X.; Chakrabarty, R. K.; Moosmüller, H.; Watson, J. G.; Chow, J. C.

    2014-12-01

    Particulate matter (PM) scatters and absorbs solar radiation and thereby affects visibility, the Earth's radiation balance, and properties and lifetimes of clouds. Understanding the radiative forcing (RF) of PM is essential to reducing the uncertainty in total anthropogenic and natural RF. Many instruments that measure light absorption coefficients (βabs [λ], Mm-1) of PM have used light at near-infrared (NIR; e.g., 880 nm) or red (e.g., 633 nm) wavelengths. Measuring βabs over a wider wavelength range, especially including the ultraviolet (UV) and visible, allows for contributions from black carbon (BC), brown carbon (BrC), and mineral dust (MD) to be differentiated. This will help to determine PM RF and its emission sources. In this study, source and ambient samples collected on Teflon-membrane and quartz-fiber filters are used to characterize and develop a multi-wavelength (250 - 1000 nm) filter-based measurement method of PM light absorption. A commercially available UV-visible spectrometer coupled with an integrating sphere is used for quantifying diffuse reflectance and transmittance of filter samples, from which βabs and absorption Ǻngström exponents (AAE) of the PM deposits are determined. The filter-based light absorption measurements of laboratory generated soot and biomass burning aerosol are compared to 3-wavelength photoacoustic absorption measurements to evaluate filter media and loading effects. Calibration factors are developed to account for differences between filter types (Teflon-membrane vs. quartz-fiber), and between filters and in situ photoacoustic absorption values. Application of multi-spectral absorption measurements to existing archived filters, including specific source samples (e.g. diesel and gasoline engines, biomass burning, dust), will also be discussed.

  4. Bulk damage and absorption in fused silica due to high-power laser applications

    NASA Astrophysics Data System (ADS)

    Nürnberg, F.; Kühn, B.; Langner, A.; Altwein, M.; Schötz, G.; Takke, R.; Thomas, S.; Vydra, J.

    2015-11-01

    Laser fusion projects are heading for IR optics with high broadband transmission, high shock and temperature resistance, long laser durability, and best purity. For this application, fused silica is an excellent choice. The energy density threshold on IR laser optics is mainly influenced by the purity and homogeneity of the fused silica. The absorption behavior regarding the hydroxyl content was studied for various synthetic fused silica grades. The main absorption influenced by OH vibrational excitation leads to different IR attenuations for OH-rich and low-OH fused silica. Industrial laser systems aim for the maximum energy extraction possible. Heraeus Quarzglas developed an Yb-doped fused silica fiber to support this growing market. But the performance of laser welding and cutting systems is fundamentally limited by beam quality and stability of focus. Since absorption in the optical components of optical systems has a detrimental effect on the laser focus shift, the beam energy loss and the resulting heating has to be minimized both in the bulk materials and at the coated surfaces. In collaboration with a laser research institute, an optical finisher and end users, photo thermal absorption measurements on coated samples of different fused silica grades were performed to investigate the influence of basic material properties on the absorption level. High purity, synthetic fused silica is as well the material of choice for optical components designed for DUV applications (wavelength range 160 nm - 260 nm). For higher light intensities, e.g. provided by Excimer lasers, UV photons may generate defect centers that effect the optical properties during usage, resulting in an aging of the optical components (UV radiation damage). Powerful Excimer lasers require optical materials that can withstand photon energy close to the band gap and the high intensity of the short pulse length. The UV transmission loss is restricted to the DUV wavelength range below 300 nm and

  5. Systems having optical absorption layer for mid and long wave infrared and methods for making the same

    DOEpatents

    Kuzmenko, Paul J

    2013-10-01

    An optical system according to one embodiment includes a substrate; and an optical absorption layer coupled to the substrate, wherein the optical absorption layer comprises a layer of diamond-like carbon, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). A method for applying an optical absorption layer to an optical system according to another embodiment includes depositing a layer of diamond-like carbon of an optical absorption layer above a substrate using plasma enhanced chemical vapor deposition, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). Additional systems and methods are also presented.

  6. Fluid Properties Measurements Using Wavelength Modulation Spectroscopy with First Harmonic Detection

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh (Inventor); Silver, Joel A. (Inventor)

    2014-01-01

    An apparatus and method for monitoring gas velocity, temperature, and pressure in combustion systems and flow devices, in particular at inlets and isolators of scramjet engines. The invention employs wavelength modulation spectroscopy with first harmonic detection and without the need to scan the full absorption spectra.

  7. GaN/AlN Quantum Wells and Quantum Dots for Unipolar Devices at Telecommunication Wavelengths

    SciTech Connect

    Julien, Francois H.; Tchernycheva, Maria; Doyennette, Laetitia; Nevou, Laurent; Lupu, Anatole; Warde, Elias; Guillot, Fabien; Monroy, Eva; Bellet-Amalric, Edith

    2007-04-10

    We report on the latest achievements in terms of growth and optical investigation of ultrathin GaN/AlN isolated and coupled quantum wells grown by plasma-assisted molecular-beam epitaxy. We also present the observation of intraband absorption in self-organized GaN quantum dots and on the application to infrared photodetection at telecommunication wavelengths.

  8. Absorption spectra of isomeric OH adducts of 1,3,7-trimethylxanthine

    SciTech Connect

    Vinchurkar, M.S.; Rao, B.S.M.; Mohan, H.; Mittal, J.P.; Schmidt, K.H.; Jonah, C.D.

    1997-04-17

    The reactions of OH{sup .}, O{sup .-}, and SO{sub 4}{sup .-} with 1,3,7-trimethylxanthine (caffeine) were studied by pulse radiolysis with optical and conductance detection techniques. The absorption spectra of transients formed in OH{sup .} reaction in neutral solutions exhibited peaks at 310 and 335 nm, as well as a broad absorption maximum at 500 nm, which decayed by first-order kinetics. The rate (k = (4.0 {+-} 0.5) x 10{sup 4} s{sup -1}) of this decay is independent of pH in the range 4-9 and is in agreement with that determined from the conductance detection (k = 4 x 10{sup 4} s{sup -1}). The spectrum in acidic solutions has only a broad peak around 330 nm with no absorption in the higher wavelength region. The intermediates formed in reaction of O{sup .-} absorb around 310 and at 350 nm, and the first-order decay at the latter wavelength was not seen. The OH radical adds to C-4 (X-40H{sup .}) and C-8 (X-80H{sup .}) positions of caffeine in the ratio 1:2 as determined from the redox titration and conductivity measurements. H abstraction from the methyl group is an additional reaction channel in O{sup .-} reaction. Dehydroxylation of the X-40H{sup .} adduct occurs, whereas the X-80H{sup .} adduct does not undergo ring opening. The spectrum obtained for OH{sup .} reaction in oxygenated solutions is similar to that observed in SO{sub 4}{sup .-} reaction in basic solutions. 25 refs., 5 figs., 1 tab.

  9. Ratio of Dust to Metal Abundance in Quasar Absorption Line Systems from 1.9 < z < 3.3

    NASA Astrophysics Data System (ADS)

    Stawinski, Stephanie; Malhotra, Sangeeta

    2017-01-01

    Measuring the ratio of dust to metal abundance in quasar absorption line systems will provide insight to the chemical evolution of galaxies, dust formation, and dust properties in the early universe. Quasar absorption systems allow us to study the abundance of dust from many different redshifts, in this project up to z ~ 3.3 for absorber redshift. The absorption bump at 2175 Å is a broad, but strong, dust feature within the UV-optical wavelength range. This feature, if detected, can be directly related to the optical depth of the dust in the absorbing systems. However, the 2175 Å bump is very broad, having a full-width half-maximum approximately 350 * (1 + z) Å, and therefore hard to distinguish from a single spectrum. To find this bump, it is important to co-add many quasar spectra. In this project, we look at how the abundance of dust compares to that of metals for 105 quasar spectra with strong damped Lyman alpha systems with absorber redshifts ranging from 1.9 < z < 3.3. From these spectra, we created a composite spectrum to analyze the 2175 Å bump and the absorption of heavy elements. We will present the results including the strength of the 2175 Å feature found in our composite spectrum.

  10. pH-dependent absorption spectra of rhodopsin mutant E113Q: On the role of counterions and protein

    NASA Astrophysics Data System (ADS)

    Xie, Peng; Zhou, Panwang; Alsaedi, Ahmed; Zhang, Yan

    2017-03-01

    The absorption spectra of bovine rhodopsin mutant E113Q in solutions were investigated at the molecular level by using a hybrid quantum mechanics/molecular mechanics (QM/MM) method. The calculations suggest the mechanism of the absorption variations of E113Q at different pH values. The results indicate that the polarizations of the counterions in the vicinity of Schiff base under protonation and unprotonation states of the mutant E113Q would be a crucial factor to change the energy gap of the retinal to tune the absorption spectra. Glu-181 residue, which is close to the chromophore, cannot serve as the counterion of the protonated Schiff base of E113Q in dark state. Moreover, the results of the absorption maximum in mutant E113Q with the various anions (Cl-, Br-, I- and NO3-) manifested that the mutant E113Q could have the potential for use as a template of anion biosensors at visible wavelength.

  11. Absorption enhancement and total absorption in a graphene-waveguide hybrid structure

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Wu, Leiming; Dai, Xiaoyu; Xiang, Yuanjiang; Fan, Dianyuan

    2017-02-01

    We propose a graphene/planar waveguide hybrid structure, and demonstrate total absorption in the visible wavelength range by means of attenuated total reflectance. The excitation of planar waveguide mode, which has strong near field enhancement and increased light interaction length with graphene, plays a vital role in total absorption. We analyze the origin and physical insight of total absorption theoretically by using an approximated reflectance, and show how to design such hybrid structure numerically. Utilizing the tunability of doped graphene, we discuss the possible application in optical modulators. We also achieve broadband absorption enhancement in near-IR range by cascading multiple graphene-waveguide hybrid structures. We believe our results will be useful not only for potential applications in optical devices, but also for studying other two-dimension materials.

  12. Direct and quantitative photothermal absorption spectroscopy of individual particulates

    SciTech Connect

    Tong, Jonathan K.; Hsu, Wei-Chun; Eon Han, Sang; Burg, Brian R.; Chen, Gang; Zheng, Ruiting; Shen, Sheng

    2013-12-23

    Photonic structures can exhibit significant absorption enhancement when an object's length scale is comparable to or smaller than the wavelength of light. This property has enabled photonic structures to be an integral component in many applications such as solar cells, light emitting diodes, and photothermal therapy. To characterize this enhancement at the single particulate level, conventional methods have consisted of indirect or qualitative approaches which are often limited to certain sample types. To overcome these limitations, we used a bilayer cantilever to directly and quantitatively measure the spectral absorption efficiency of a single silicon microwire in the visible wavelength range. We demonstrate an absorption enhancement on a per unit volume basis compared to a thin film, which shows good agreement with Mie theory calculations. This approach offers a quantitative approach for broadband absorption measurements on a wide range of photonic structures of different geometric and material compositions.

  13. Super-Resonant Intracavity Coherent Absorption

    NASA Astrophysics Data System (ADS)

    Malara, P.; Campanella, C. E.; Giorgini, A.; Avino, S.; de Natale, P.; Gagliardi, G.

    2016-07-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator’s quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes.

  14. Multistage quantum absorption heat pumps

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.

    2014-04-01

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N -2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  15. Multistage quantum absorption heat pumps.

    PubMed

    Correa, Luis A

    2014-04-01

    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N-2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  16. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  17. Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging

    PubMed Central

    Mazhar, Amaan; Dell, Steven; Cuccia, David J.; Gioux, Sylvain; Durkin, Anthony J.; Frangioni, John V.; Tromberg, Bruce J.

    2010-01-01

    Spatial frequency-domain imaging (SFDI) utilizes multiple-frequency structured illumination and model-based computation to generate two-dimensional maps of tissue absorption and scattering properties. SFDI absorption data are measured at multiple wavelengths and used to fit for the tissue concentration of intrinsic chromophores in each pixel. This is done with a priori knowledge of the basis spectra of common tissue chromophores, such as oxyhemoglobin (ctO2Hb), deoxyhemoglobin (ctHHb), water (ctH2O), and bulk lipid. The quality of in vivo SFDI fits for the hemoglobin parameters ctO2Hb and ctHHb is dependent on wavelength selection, fitting parameters, and acquisition rate. The latter is critical because SFDI acquisition time is up to six times longer than planar two-wavelength multispectral imaging due to projection of multiple-frequency spatial patterns. Thus, motion artifact during in vivo measurements compromises the quality of the reconstruction. Optimal wavelength selection is examined through matrix decomposition of basis spectra, simulation of data, and dynamic in vivo measurements of a human forearm during cuff occlusion. Fitting parameters that minimize cross-talk from additional tissue chromophores, such as water and lipid, are determined. On the basis of this work, a wavelength pair of 670 nm∕850 nm is determined to be the optimal two-wavelength combination for in vivo hemodynamic tissue measurements provided that assumptions for water and lipid fractions are made in the fitting process. In our SFDI case study, wavelength optimization reduces acquisition time over 30-fold to 1.5s compared to 50s for a full 34-wavelength acquisition. The wavelength optimization enables dynamic imaging of arterial occlusions with improved spatial resolution due to reduction of motion artifacts. PMID:21198164

  18. Calibration-Free Pulse Oximetry Based on Two Wavelengths in the Infrared — A Preliminary Study

    PubMed Central

    Nitzan, Meir; Noach, Salman; Tobal, Elias; Adar, Yair; Miller, Yaacov; Shalom, Eran; Engelberg, Shlomo

    2014-01-01

    The assessment of oxygen saturation in arterial blood by pulse oximetry (SpO2) is based on the different light absorption spectra for oxygenated and deoxygenated hemoglobin and the analysis of photoplethysmographic (PPG) signals acquired at two wavelengths. Commercial pulse oximeters use two wavelengths in the red and infrared regions which have different pathlengths and the relationship between the PPG-derived parameters and oxygen saturation in arterial blood is determined by means of an empirical calibration. This calibration results in an inherent error, and pulse oximetry thus has an error of about 4%, which is too high for some clinical problems. We present calibration-free pulse oximetry for measurement of SpO2, based on PPG pulses of two nearby wavelengths in the infrared. By neglecting the difference between the path-lengths of the two nearby wavelengths, SpO2 can be derived from the PPG parameters with no need for calibration. In the current study we used three laser diodes of wavelengths 780, 785 and 808 nm, with narrow spectral line-width. SaO2 was calculated by using each pair of PPG signals selected from the three wavelengths. In measurements on healthy subjects, SpO2 values, obtained by the 780–808 nm wavelength pair were found to be in the normal range. The measurement of SpO2 by two nearby wavelengths in the infrared with narrow line-width enables the assessment of SpO2 without calibration. PMID:24763216

  19. Parametric wavelength conversion in photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Yang, Sigang; Wu, Zhaohui; Yang, Yi; Chen, Minghua; Xie, Shizhong

    2016-11-01

    Nonlinear wavelength conversion provides flexible solutions for generating wideband tunable radiation in novel wavelength band. Parametric process in photonic crystal fibers (PCFs) has attracted comprehensive interests since it can act as broadband tunable light sources in non-conventional wavelength bands. The current state-of-the-art photonic crystal fibers can provide more freedom for customizing the dispersion and nonlinearity which is critical to the nonlinear process, such as four wave mixing (FWM), compared with the traditional fibers fabricated with doping techniques. Here we demonstrate broadband parametric wavelength conversion in our homemade photonic crystal fibers. The zero dispersion wavelength (ZDW) of PCFs is critical for the requirement of phase matching condition in the parametric four wave mixing process. Firstly a procedure of the theoretical design of PCF with the ZDW at 1060 nm is proposed through our homemade simulation software. A group of PCF samples with gradually variable parameters are fabricated according to the theoretical design. The broadband parametric gain around 1060 nm band is demonstrated pumped with our homemade mode locked fiber laser in the anomalous dispersion region. Also a narrow gain band with very large wavelength detune with the pump wavelength in the normal dispersion region is realized. Wavelength conversion with a span of 194 nm is realized. Furthermore a fiber optical parametric oscillator based on the fabricated PCF is built up. A wavelength tunable range as high as 340 nm is obtained. This report demonstrates a systematic procedure to realize wide band wavelength conversion based on PCFs.

  20. Total absorption in ultra-thin lossy layer on transparent substrate using dielectric resonance structure

    NASA Astrophysics Data System (ADS)

    Matsui, T.; Iizuka, H.

    2017-03-01

    A resonant sub-wavelength structure made of a high-refractive-index dielectric material exhibits a resonator-like response and provides unity reflection. We show that near-unity absorption is obtained by using a sub-wavelength resonant structure, which consists of periodic high-refractive-index nano-blocks, when an ultra-thin absorption layer is attached to a transparent dielectric substrate. The resonant structure does not necessarily touch the absorption layer and, therefore, a coating film can be inserted between the absorption layer and the periodic structure. Our results significantly extend application scenarios of detectors and optoelectronic devices that can be implemented on transparent dielectric substrates.

  1. Derivation of water vapour absorption cross-sections in the red region

    NASA Technical Reports Server (NTRS)

    Lal, M.; Chakrabarty, D. K.

    1994-01-01

    Absorption spectrum in 436 to 448 nm wavelength region gives NO2 and O3 column densities. This spectrum can also give H2O column density. The spectrum in the range of 655 to 667 nm contains absorption due to NO3 and H2O. Combining the absorption spectra in the wavelength ranges of 436 to 448 and 655 to 667 nm, water vapor absorption cross-sections in this range comes out to be of the order of 2.0 x 10(exp -24) cm(exp -2).

  2. Solar maximum: Solar array degradation

    NASA Technical Reports Server (NTRS)

    Miller, T.

    1985-01-01

    The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.

  3. Influence of Adapted Wavelengths on Temperature Fields and Melt Pool Geometry in Laser Transmission Welding

    NASA Astrophysics Data System (ADS)

    Schkutow, A.; Frick, T.

    Laser transmission welding is an established joining technology for the creation of strong, hermetic and aesthetic weld seams between thermoplastic parts. However, weld seam properties are strongly dependent on the optical properties of the materials involved. This paper investigates the wavelength-dependent absorption properties of polymeric materials and carbon black, their influence on temperature field generation and the resulting melt pool geometry in laser transmission welding. A FE simulation model is developed to examine the possibilities of influencing the temperature fields during contour and quasi-simultaneous laser transmission welding by adapting the wavelengths under consideration of the absorption and scattering properties. The application of laser wavelengths in the spectral range of 1400 nm to 2000 nm leads to modified temperature fields and melt pool geometries, which are expected to feature a better load-bearing capacity and a much improved gap-bridging capability.

  4. Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer

    SciTech Connect

    Wang, Hao; Yang, Yue; Wang, Liping

    2014-08-18

    We numerically demonstrate a switchable metamaterial absorber/emitter by thermally turning on or off the excitation of magnetic resonance upon the phase transition of vanadium dioxide (VO{sub 2}). Perfect absorption peak exists around the wavelength of 5 μm when the excitation of magnetic resonance is supported with the insulating VO{sub 2} spacer layer. The wavelength-selective absorption is switched off when the magnetic resonance is disabled with metallic VO{sub 2} that shorts the top and bottom metallic structures. The resonance wavelength can be tuned with different geometry, and the switchable metamaterial exhibits diffuse behaviors at oblique angles. The results would facilitate the design of switchable metamaterials for active control in energy and sensing applications.

  5. Efficient wavelength-tunable operation of tandem-pumped Yb fiber lasers

    NASA Astrophysics Data System (ADS)

    Jung, Y. J.; Jeon, M. J.; Jeong, H.; Kim, J. W.

    2017-02-01

    Highly efficient operation of double-clad Yb fiber lasers with fixed-wavelength and wavelength-tunable resonator configurations tandem-pumped by tunable Yb fiber lasers is reported. When wavelength selection was achieved using volume Bragg gratings in an external feedback cavity, the tandem-pumped Yb fiber laser produced maximum output powers of 7.0, 6.8, and 6.4 W at 1070 nm, corresponding to slope efficiencies of 88.2, 87.8, and 89.5%, for pump wavelengths of 1020, 1025, and 1030 nm, respectively. The wavelength-tunable fiber laser employing volume Bragg gratings and diffraction gratings was tuned from 1055 to 1112 nm with a linewidth of 0.3 nm (FWHM), which was in good agreement with the calculated gain spectra. Optimization of tandem-pumped Yb fiber lasers and the prospect for further improvement in performance are considered.

  6. Switchable dual-wavelength CNT-based Q-switched using arrayed waveguide gratings (AWG)

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Hamdan, K. Z.; Muhammad, F. D.; Harun, S. W.; Zulkifli, M. Z.

    2015-02-01

    In this paper, a dual-wavelength synchronously pulsed fiber laser Q-switched by carbon nanotube-based saturable absorber with switchable wavelength spacing enabled using arrayed waveguide grating (AWG) is proposed and demonstrated. By just switching the channels of the AWG, discrete tuning in wavelength spacing of the dual-wavelength Q-switched laser operation can be attained over several nanometers, ranging from 1.6 to 4.0 nm in a stable dual-wavelength regime without employing any modulation technique or intracavity spectral filters. Our experimental results show that the fiber laser can generate Q-switched microsecond pulses with a wide repetition rate range, starting from 12.0 kHz to a maximum value of 54.9 kHz. This proposed system is also reasonably simple to realize at low cost.

  7. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems.

    PubMed

    Berera, Rudi; van Grondelle, Rienk; Kennis, John T M

    2009-01-01

    The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment-protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy.

  8. Ultraviolet absorption spectra of metalorganic molecules diluted in hydrogen gas

    NASA Astrophysics Data System (ADS)

    Itoh, Hideo; Watanabe, Masanobu; Mukai, Seiji; Yajima, Hiroyoshi

    1988-12-01

    Ultraviolet absorption spectra of trimethyl gallium, triethyl gallium, and trimethyl aluminum diluted in hydrogen gas were measured as a function of the wavelength (185-350 nm) and the concentration of the molecules (4.8×10 -6 -1.6×10 -4 mol/liter). Their absorbances changed linearly with the concentration of the molecules, which allowed us to calculate the molar absorption coefficients of the molecules on the basis of the Beer-Lambert law.

  9. A spectroscopic study of the wavelength-dependent photoisomerizations of bilirubins bound to human serum albumin

    NASA Astrophysics Data System (ADS)

    Mazzoni, Marina; Agati, Giovanni; Pratesi, Riccardo; Persico, Maurizio

    2005-12-01

    The wavelength-dependent photoisomerizations of the asymmetric bilirubin BR-IXα and of the symmetric bilirubin-IIIα (BR-III) and mesobilirubin-XIIIα (MBR-XIII) bound to human serum albumin (HSA) in aqueous solution were analysed with the help of an exciton coupling model. The modelling was based on the absorption and circular dichroism (CD) spectra (bisignate Cotton effect). Time-dependent density functional theory (TD-DFT) of the free BR-IX molecule suggested the presence of two main bands of exciton coupling character in the blue region of the spectrum, and other weaker bands of charge transfer character at longer wavelengths. These peculiarities were taken into account to fit the photoisomerization quantum yields in the blue-green region as functions of the wavelength, obtaining the bandshape of the exciton coupling bands from the experimental CD spectra. The other excitons were extracted from the decomposition of the band resulting from the difference between the absorption spectrum and the sum (normalized-to-absorption) of the two CD excitons. We expressed photoisomerization quantum yields in terms of the sum of the contributions to photon absorption deriving from all the exciton states normalized to total absorption. For all the reversible photoprocesses of bilirubins and for the irreversible one of BR-IXα in HSA (i.e. lumirubin formation), we give reliable mean values of the individual state excitation probabilities and photoisomerization efficiencies in the pigment protein complex.

  10. Development of formulae for estimating amylose content, amylopectin chain length distribution, and resistant starch content based on the iodine absorption curve of rice starch.

    PubMed

    Nakamura, Sumiko; Satoh, Hikaru; Ohtsubo, Ken'ichi

    2015-01-01

    Not only amylose but also amylopectin greatly affects the gelatinization properties of rice starch and the quality of cooked rice grains. We here characterized the starches of 32 rice cultivars and evaluated the relationship between their iodine absorption curve, apparent amylose content (AAC), pasting property, resistant starch (RS) content, and chain length distribution of amylopectin. We found that the iodine absorption curve differed among the various sample rice cultivars. Using the wavelength at which absorbance becomes maximum on iodine staining of starch (λmax), we propose a novel index, "new λmax" (AAC/(λmax of sample rice starches-λmax of glutinous rice starch)). We developed the novel estimation formulae for AAC, RS contents, and amylopectin fractions with the use of λmax and "new λmax." These formulae would lead to the improved method for estimating starch properties using an easy and rapid iodine colorimetric method.

  11. Broadband absorption spectroscopy by combining frequency-domain and steady-state techniques

    NASA Astrophysics Data System (ADS)

    Berger, Andrew J.; Bevilacqua, Frederic; Jakubowski, Dorota B.; Cerussi, Albert E.; Butler, John A.; Hsiang, D.; Tromberg, Bruce J.

    2001-06-01

    A technique for measuring broadband near-infrared absorption spectra of turbid media is presented using a combination of frequency-domain (FD) and steady-state (SS) reflectance methods. Most of the wavelength coverage is provided by a white-light SS measurement, while the FD data are acquired at a few selected wavelengths. Coefficients of absorption ((mu) a) and reduced scattering ((mu) s') derived from the FD data are used to intensity-calibrate the SS measurements and to estimate (mu) s' at all wavelengths in the spectral window of interest. After these steps are performed, (mu) a can be determined by comparing the SS reflectance values to the predictions of diffusion theory, wavelength by wavelength. We present an application of this method to breast tumor characterization. A case study of a fibroadenoma is shown, where different absorption spectra were found between the normal and the tumor sides.

  12. Room-temperature short-wavelength infrared Si photodetector

    PubMed Central

    Berencén, Yonder; Prucnal, Slawomir; Liu, Fang; Skorupa, Ilona; Hübner, René; Rebohle, Lars; Zhou, Shengqiang; Schneider, Harald; Helm, Manfred; Skorupa, Wolfgang

    2017-01-01

    The optoelectronic applications of Si are restricted to the visible and near-infrared spectral range due to its 1.12 eV-indirect band gap. Sub-band gap light detection in Si, for instance, has been a long-standing scientific challenge for many decades since most photons with sub-band gap energies pass through Si unabsorbed. This fundamental shortcoming, however, can be overcome by introducing non-equilibrium deep-level dopant concentrations into Si, which results in the formation of an impurity band allowing for strong sub-band gap absorption. Here, we present steady-state room-temperature short-wavelength infrared p-n photodiodes from single-crystalline Si hyperdoped with Se concentrations as high as 9 × 1020 cm−3, which are introduced by a robust and reliable non-equilibrium processing consisting of ion implantation followed by millisecond-range flash lamp annealing. We provide a detailed description of the material properties, working principle and performance of the photodiodes as well as the main features in the studied wavelength region. This work fundamentally contributes to establish the short-wavelength infrared detection by hyperdoped Si in the forefront of the state-of-the-art of short-IR Si photonics. PMID:28262746

  13. Ammonia sensing system based on wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Viveiros, Duarte; Ferreira, João; Silva, Susana O.; Ribeiro, Joana; Flores, Deolinda; Santos, José L.; Frazão, Orlando; Baptista, José M.

    2015-06-01

    A sensing system in the near infrared region has been developed for ammonia sensing based on the wavelength modulation spectroscopy (WMS) principle. The WMS is a rather sensitive technique for detecting atomic/molecular species, presenting the advantage that it can be used in the near-infrared region by using the optical telecommunications technology. In this technique, the laser wavelength and intensity were modulated by applying a sine wave signal through the injection current, which allowed the shift of the detection bandwidth to higher frequencies where laser intensity noise was typically lower. Two multi-pass cells based on free space light propagation with 160 cm and 16 cm of optical path length were used, allowing the redundancy operation and technology validation. This system used a diode laser with an emission wavelength at 1512.21 nm, where NH3 has a strong absorption line. The control of the NH3 gas sensing system, as well as acquisition, processing and data presentation was performed.

  14. Silicon photonic crystal thermal emitter at near-infrared wavelengths.

    PubMed

    O'Regan, Bryan J; Wang, Yue; Krauss, Thomas F

    2015-08-21

    Controlling thermal emission with resonant photonic nanostructures has recently attracted much attention. Most of the work has concentrated on the mid-infrared wavelength range and/or was based on metallic nanostructures. Here, we demonstrate the experimental operation of a resonant thermal emitter operating in the near-infrared (≈1.5 μm) wavelength range. The emitter is based on a doped silicon photonic crystal consisting of a two dimensional square array of holes and using silicon-on-insulator technology with a device-layer thickness of 220 nm. The device is resistively heated by passing current through the photonic crystal membrane. At a temperature of ≈1100 K, we observe relatively sharp emission peaks with a Q factor around 18. A support structure system is implemented in order to achieve a large area suspended photonic crystal thermal emitter and electrical injection. The device demonstrates that weak absorption together with photonic resonances can be used as a wavelength-selection mechanism for thermal emitters, both for the enhancement and the suppression of emission.

  15. Room-temperature short-wavelength infrared Si photodetector

    NASA Astrophysics Data System (ADS)

    Berencén, Yonder; Prucnal, Slawomir; Liu, Fang; Skorupa, Ilona; Hübner, René; Rebohle, Lars; Zhou, Shengqiang; Schneider, Harald; Helm, Manfred; Skorupa, Wolfgang

    2017-03-01

    The optoelectronic applications of Si are restricted to the visible and near-infrared spectral range due to its 1.12 eV-indirect band gap. Sub-band gap light detection in Si, for instance, has been a long-standing scientific challenge for many decades since most photons with sub-band gap energies pass through Si unabsorbed. This fundamental shortcoming, however, can be overcome by introducing non-equilibrium deep-level dopant concentrations into Si, which results in the formation of an impurity band allowing for strong sub-band gap absorption. Here, we present steady-state room-temperature short-wavelength infrared p-n photodiodes from single-crystalline Si hyperdoped with Se concentrations as high as 9 × 1020 cm‑3, which are introduced by a robust and reliable non-equilibrium processing consisting of ion implantation followed by millisecond-range flash lamp annealing. We provide a detailed description of the material properties, working principle and performance of the photodiodes as well as the main features in the studied wavelength region. This work fundamentally contributes to establish the short-wavelength infrared detection by hyperdoped Si in the forefront of the state-of-the-art of short-IR Si photonics.

  16. Dual-wavelength photoacoustic imaging of a photoswitchable reporter protein

    NASA Astrophysics Data System (ADS)

    Dortay, Hakan; Märk, Julia; Wagener, Asja; Zhang, Edward; Grötzinger, Carsten; Hildebrandt, Peter; Friedrich, Thomas; Laufer, Jan

    2016-03-01

    Photoacoustic (PA) imaging has been shown to provide detailed 3-D images of genetically expressed reporters, such as fluorescent proteins and tyrosinase-induced melanin. Their unambiguous detection in vivo is a vital prerequisite for molecular imaging of biological processes at a cellular and molecular level. This typically requires multiwavelength imaging and spectral unmixing techniques, which can be computationally expensive. In addition, fluorescent proteins often exhibit fluence-dependent ground state depopulation and photobleaching which can adversely affect the specificity of unmixing methods. To overcome these problems, a phytochrome-based reporter protein and a dual-wavelength excitation method have been developed to obtain reporter-specific PA contrast. Phytochromes are non-fluorescent proteins that exhibit two isomeric states with different absorption spectra. Using dual-wavelength excitation pulses in the red and near-infrared wavelength region, these states can be switched, resulting in a modulation of the total absorption coefficient, and hence the PA signal amplitude. Since this is not observed in endogenous chromophores, signals acquired using simultaneous pulses can be subtracted from the sum of signals obtained from separate pulses to provide a reporterspecific contrast mechanism and elimination of the tissue background. PA signals measured in protein solutions using separate and simultaneous excitation pulses at 670 nm and 755 nm (< 6 mJ cm-2) showed a difference in amplitude of a factor of five. Photobleaching was not observed. To demonstrate suitability for in vivo applications, mammalian cells were transduced virally to express phytochrome, and imaged in tissue phantoms and in mice in an initial preclinical study. The results show that this method has the potential to enable deep-tissue PA reporter gene imaging with high specificity.

  17. Atmospheric absorption cell characterization

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The measurement capability of the Avionics Laboratory IR Facility was used to evaluate an absorption cell that will be used to simulate atmospheric absorption over horizontal paths of 1 - 10 km in length. Band models were used to characterize the transmittance of carbon dioxide (CO2), nitrogen (N2), and nitrous oxide (N2O) in the cell. The measured transmittance was compared to the calculated values. Nitrous oxide is important in the 4 - 4.5 micron range in shaping the weak line absorption of carbon dioxide. The absorption cell is adequate for simulating atmospheric absorption over these paths.

  18. Wavelength-doubling optical parametric oscillator

    DOEpatents

    Armstrong, Darrell J.; Smith, Arlee V.

    2007-07-24

    A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.

  19. Theory of absorption-induced transparency

    NASA Astrophysics Data System (ADS)

    Rodrigo, Sergio G.; García-Vidal, F. J.; Martín-Moreno, L.

    2013-10-01

    Recent experiments [Hutchison, O’Carroll, Schwartz, Genet, and Ebbesen, Angew. Chem. Int. Ed.1433-785110.1002/anie.201006019 50, 2085 (2011)] have demonstrated that optical transmission through an array of subwavelength holes in a metal film can be enhanced by the intentional presence of dyes in the system. As the transmission maximum occurs spectrally close to the absorption resonances of the dyes, this phenomenon was christened “absorption induced transparency”. Here, a theoretical study on absorption induced transparency is presented. The results show that the appearance of transmission maxima requires that the absorbent fills the holes and that it occurs also for single holes. Furthermore, it is shown that the transmission process is nonresonant, being composed by a sequential passage of the electromagnetic field through the hole. Finally, the physical origin of the phenomenon is demonstrated to be nonplasmonic, which implies that absorption induced transparency should also occur at the infrared or terahertz frequency regimes.

  20. Maximum life spur gear design

    NASA Technical Reports Server (NTRS)

    Savage, M.; Mackulin, M. J.; Coe, H. H.; Coy, J. J.

    1991-01-01

    Optimization procedures allow one to design a spur gear reduction for maximum life and other end use criteria. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial guess values. The optimization algorithm is described, and the models for gear life and performance are presented. The algorithm is compact and has been programmed for execution on a desk top computer. Two examples are presented to illustrate the method and its application.

  1. Formaldehyde Absorption toward W51

    SciTech Connect

    Kogut, A.; Smoot, G.F.; Bennett, C.L.; Petuchowski, S.J.

    1988-04-01

    We have measured formaldehyde (H{sub 2}CO) absorption toward the HII region complex W51A (G49.5-0.4) in the 6 cm and 2 cm wavelength rotational transitions with angular resolution of approximately 4 inch. The continuum HII region shows a large, previously undetected shell structure 5.5 pc along the major axis. We observe no H{sub 2}CO emission in regions of low continuum intensity. The absorption, converted to optical depth, shows a higher degree of clumping than previous maps at lower resolution. The good S/N of the maps allows accurate estimation of the complicated line profiles, showing some of the absorbing clouds to be quite patchy. We list the properties of the opacity spectra for a number of positions both in the clumps and in the more diffuse regions of the absorbing clouds, and derive column densities for the 1{sub 11} and 2{sub 12} rotational levels of ortho-formaldehyde.

  2. QED-driven laser absorption

    NASA Astrophysics Data System (ADS)

    Levy, Matthew; Blackburn, T.; Ratan, N.; Sadler, J.; Ridgers, C.; Kasim, M.; Ceurvorst, L.; Holloway, J.; Baring, M.; Bell, A.; Glenzer, S.; Gregori, G.; Ilderton, A.; Marklund, M.; Tabak, M.; Wilks, S.; Norreys, P.

    2016-10-01

    Absorption covers the physical processes which convert intense photon flux into energetic particles when a high-power laser (I >1018 W cm-2 where I is intensity at 1 μm wavelength) illuminates optically-thick matter. It underpins important applications of petawatt laser systems today, e.g., in isochoric heating of materials. Next-generation lasers such as ELI are anticipated to produce quantum electrodynamical (QED) bursts of γ-rays and anti-matter via the multiphoton Breit-Wheeler process which could enable scaled laboratory probes, e.g., of black hole winds. Here, applying strong-field QED to advances in plasma kinematic theory, we present a model elucidating absorption limited only by an avalanche of self-created electron-positron pairs at ultra-high-field. The model, confirmed by multidimensional QED-PIC simulations, works over six orders of magnitude in optical intensity and reveals this cascade is initiated at 1.8 x 1025 W cm-2 using a realistic linearly-polarized laser pulse. Here the laser couples its energy into highly-collimated electrons, ions, γ-rays, and positrons at 12%, 6%, 58% and 13% efficiency, respectively. We remark on attributes of the QED plasma state and possible applications.

  3. Octave-spanning coherent perfect absorption in a thin silicon film.

    PubMed

    Pye, Lorelle N; Villinger, Massimo L; Shabahang, Soroush; Larson, Walker D; Martin, Lane; Abouraddy, Ayman F

    2017-01-01

    Although optical absorption is an intrinsic materials property, it can be manipulated through structural modification. Coherent perfect absorption increases absorption to 100% interferometrically but is typically realized only over narrow bandwidths using two laser beams with fixed phase relationship. We show that engineering a thin film's photonic environment severs the link between the effective absorption of the film and its intrinsic absorption while eliminating, in principle, bandwidth restrictions. Employing thin aperiodic dielectric mirrors, we demonstrate coherent perfect absorption in a 2 μm thick film of polycrystalline silicon using a single incoherent beam of light at all the resonances across a spectrally flat, octave-spanning near-infrared spectrum, ≈800-1600  nm. Critically, these mirrors have wavelength-dependent reflectivity devised to counterbalance the decline in silicon's intrinsic absorption at long wavelengths.

  4. Experimental demonstration of coherent perfect absorption in a silicon photonic racetrack resonator.

    PubMed

    Rothenberg, Jacob M; Chen, Christine P; Ackert, Jason J; Dadap, Jerry I; Knights, Andrew P; Bergman, Keren; Osgood, Richard M; Grote, Richard R

    2016-06-01

    We present the first experimental demonstration of coherent perfect absorption (CPA) in an integrated device using a silicon racetrack resonator at telecommunication wavelengths. Absorption in the racetrack is achieved by Si+-ion-implantation, allowing for phase controllable amplitude modulation at the resonant wavelength. The device is measured to have an extinction of 24.5 dB and a quality-factor exceeding 3000. Our results will enable integrated CPA devices for data modulation and detection.

  5. Near-infrared absorptance enhancement and device application of nanostructured black silicon fabricated by metal-assist chemical etching

    NASA Astrophysics Data System (ADS)

    Huang, Lieyun; Zhong, Hao; Liao, Naiman; Long, Fei; Guo, Guohui; Li, Wei

    2016-11-01

    We use metal-assist chemical etching (MCE) method to fabricate nanostructured black silicon on the surface of C-Si. In our MCE process, a chemical reduction reaction of silver cation (Ag+) will happen on the surface of silicon substrate, and at the same time the silicon atoms around Ag particles are oxidized and dissolved, generating nanopores and finally forming a layer called black silicon on the top of the substrates. The nanopores have diameter and depth of about 400 nm and 2 μm, respectively. Furthermore, these modified surfaces show higher light absorptance in near-infrared range (800 to 2500 nm) compared to that of C-Si with polished surfaces, and the maximum light absorptance increases significantly up to 95% in the wavelength region of 400 to 2500 nm. The Si-PIN photoelectronic detector based on this type of black silicon, in which the black silicon layer is directly set as the photosensitive surface, has a substantial increase in responsivity with about 80 nm red shift of peak responsivity, particularly at near-infrared wavelengths, rising to 0.57 A/W at 1060 nm and 0.37 A/W at 1100 nm, respectively. Our recent novel results clearly indicate that nanostructured black silicon made by MCE has a potential application in near-infrared photoelectronic detectors.

  6. Observational Studies of the Angular Structure of the Radio Galaxy 3C 234 at Decameter Wavelengths

    NASA Astrophysics Data System (ADS)

    Megn, A. V.; Braude, S. Ya.; Rashkovskiy, S. L.; Sharykin, N. K.; Shepelev, V. A.; Inyutin, G. A.; Vashchishin, R. V.; Brazhenko, A. I.; Bulatsen, V. G.

    2003-12-01

    An analysis of the angular structure of the radio galaxy 3C 234 at decameter wavelengths based on data obtained on the URAN-1 and URAN-2 interferometers is presented. Four of the five model components that describe the radio-brightness distribution at centimeter wavelengths are observed at decameter wavelengths: two compact components and two neighboring extended components. The fifth, undetected, component is the most extended, and encompasses the central region of the radio source, including the nucleus of the galaxy. Self-absorption is detected in the compact components, whose angular sizes are determined to be 0.27±0.03″ (northeast component) and 0.55±0.05″ (southwest component), in agreement with direct measurements at centimeter wavelengths. Most of the decameter emission of the radio galaxy is associated with its extended components.

  7. High-temperature long-wavelength vertical-cavity lasers

    NASA Astrophysics Data System (ADS)

    Margalit, Near Moses

    Vertical cavity lasers(VCLs) have recently been the subject of much research effort around the world. These lasers hold the promise of inexpensive, low threshold, high speed sources for optical communication. Short wavelength lasers have many applications, including free space optical interconnects and short distance datacom, but have limited potential for longer distances due to the absorption and dispersion spectrum of standard optical fiber. The longer wavelength sources near 1.3 or 1.5 /mu m are ideally suited for medium and long distance applications. Interoperability as well as compatibility with existing fiber optic infrastructure also call for longer wavelength sources. However, large volume commercialization of such devices, for applications such as FTTH(fiber to the home), requires a wide temperature range of operation ([-]40o C to 85o C). Historically, the realization of such high performance long-wavelength vertical cavity- lasers has been difficult. Nonetheless, advances in fabrication techniques, such as wafer fusion, have allowed for ever increasing device performance. In this thesis, we present recent results that include devices with multigigahetz frequency responses, hundred of microwatts of cw output powers, as well as 65o C continuous-wave operating temperatures. In addition, these devices have now been demonstrated as sources in link transmission experiment at 2.5 Gb/s over 200 km of optical fiber, far surpassing the record distance-bandwidth products of any other VCL experiment. We analyze here the design and fabrication of these record performance devices. Further advancements may soon lead to commercial level performance.

  8. Quantitative broadband absorption and scattering spectroscopy in turbid media by combined frequency-domain and steady state methodologies

    DOEpatents

    Tromberg, Bruce J.; Berger, Andrew J.; Cerussi, Albert E.; Bevilacqua, Frederic; Jakubowski, Dorota

    2008-09-23

    A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.

  9. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.

    1985-01-01

    Radio absorptivity data for the Venus middle atmosphere (1 to 6 atm, temperatures from 500 to 575K) obtained from spacecraft radio occultation experiments (at 3.6 to 13.4 cm wavelengths) and earth-based radio astronomical observations (1 to 3 cm wavelength range) are compared to laboratory observations at the latter wavelength range under simulated Venus conditions to infer abundances of microwave-absorbing atmospheric constituents, i.e. H2SO4 in a CO2 atmosphere.

  10. [Optical properties of human normal bladder tissue at five different wavelengths of laser and their linearly polarized laser irradiation in vitro].

    PubMed

    Wei, Hua-jiang; Xing, Da; Wu, Guo-yong; Jin, Ying; Gu, Huai-min

    2004-09-01

    A double-integrating-spheres system, the basic principle of measuring technology of radiation, and an optical model of biological tissues were used for the study. Optical properties of human normal bladder tissue at 476.5, 488, 496.5, 514.5 and 532 nm of laser and their linearly polarized laser irradiation were studied. The results of measurement showed that total attenuation coefficient and scattering coefficient of human normal bladder tissue at these wavelengths of laser and their linearly polarized laser irradiation increased with decreasing wavelengths. And these was an obvious distinction between the results at these wavelengths of laser and their linearly polarized laser irradiation. Absorption coefficient of human normal bladder tissue at these wavelengths of laser and their linearly polarized laser irradiation was tardily increased with decreasing wavelengths. But there were a number of gurgitations. And these were independent of the wavelengths of laser or their linearly polarized laser irradiation. Mean cosine of scattering of human normal bladder tissue at these wavelengths of laser and their linearly polarized laser irradiation also increased with decreasing wavelengths. And these was an obvious distinction with these wavelengths of laser and their linearly polarized laser irradiation. But penetration depth of human normal bladder tissue at these wavelengths of laser and their linearly polarized laser irradiation also increased with increasing wavelengths. But there were a number of gurgitations. Refractive index of human normal bladder tissue at these wavelengths of laser ranged from 1.37 to 1.44. Absorption coefficient, scattering coefficient, total attenuation coefficient, and effective attenuation coefficients of human normal bladder tissue in Kubelka-Munk two-flux model at the same wavelength of laser and the linearly polarized laser irradiation do not exhibit prominent distinction (P > 0.05). Some absorption coefficient, scattering coefficient

  11. Semiconductor laser with multiple lasing wavelengths

    DOEpatents

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-07-29

    A new class of multi-terminal vertical-cavity semiconductor laser components has been developed. These multi-terminal laser components can be switched, either electrically or optically, between distinct lasing wavelengths, or can be made to lase simultaneously at multiple wavelengths.

  12. Optical wavelength modulation in free electron lasers

    SciTech Connect

    Mabe, R.M.; Wong, R.K.; Colson, W.B.

    1995-12-31

    An attribute of the free electron laser (FEL) is the continuous tunability of the optical wavelength by modulation of the electron beam energy. The variation of the wavelength and power of the optical beam is studied as a function of FEL operating parameters. These results will be applied to the Stanford SCA FEL and Boeing FEL.

  13. System for Memorizing Maximum Values

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1996-01-01

    The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either liner or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.

  14. The strong maximum principle revisited

    NASA Astrophysics Data System (ADS)

    Pucci, Patrizia; Serrin, James

    In this paper we first present the classical maximum principle due to E. Hopf, together with an extended commentary and discussion of Hopf's paper. We emphasize the comparison technique invented by Hopf to prove this principle, which has since become a main mathematical tool for the study of second order elliptic partial differential equations and has generated an enormous number of important applications. While Hopf's principle is generally understood to apply to linear equations, it is in fact also crucial in nonlinear theories, such as those under consideration here. In particular, we shall treat and discuss recent generalizations of the strong maximum principle, and also the compact support principle, for the case of singular quasilinear elliptic differential inequalities, under generally weak assumptions on the quasilinear operators and the nonlinearities involved. Our principal interest is in necessary and sufficient conditions for the validity of both principles; in exposing and simplifying earlier proofs of corresponding results; and in extending the conclusions to wider classes of singular operators than previously considered. The results have unexpected ramifications for other problems, as will develop from the exposition, e.g. two point boundary value problems for singular quasilinear ordinary differential equations (Sections 3 and 4); the exterior Dirichlet boundary value problem (Section 5); the existence of dead cores and compact support solutions, i.e. dead cores at infinity (Section 7); Euler-Lagrange inequalities on a Riemannian manifold (Section 9); comparison and uniqueness theorems for solutions of singular quasilinear differential inequalities (Section 10). The case of p-regular elliptic inequalities is briefly considered in Section 11.

  15. OH measurement by laser light absorption

    NASA Technical Reports Server (NTRS)

    Perner, D.

    1986-01-01

    Since the first attempt to measure atmospheric hydroxyl radicals by optical absorption in 1975 (Perner et al., 1976) this method has been continuously developed further and its major obstacles and limitations are known today. The laser beam needs to be expanded in order to reduce the beam divergence. At the same time the energy density of the laser beam which produces OH via ozone photolysis is reduced to such an extent that the self-produced OH concentration ranges well below the atmospheric value. Atmospheric absorptions should be observed over a wide spectral range so that not only the OH radicals are properly identified by several rotational lines but their absorption can be corrected for interfering absorptions from other air constituents as SO2, CH2O, CS2, etc., which can be identified in a wide spectral range with more confidence. Air turbulence demands fast spectral scanning or probing on and off the absorption line. Energy requirements should be kept small in field operations. In the experiment frequency doubled dye laser pulses at 308 nm are produced. The picosecond light pulses are expected to show a smooth profile (light intensity against wavelength) which will be broadened to the required spectral width according to the uncertainty principle. The pump laser will be an optoacoustically modulated Nd:YAG laser.

  16. Ultraviolet absorption spectrum of methylhydroperoxide vapor. [in troposphere

    NASA Technical Reports Server (NTRS)

    Molina, M. J.; Arguello, G.

    1979-01-01

    The ultraviolet absorption cross sections of methylhydroperoxide, CH3OOH, have been measured over the wavelength range 210 nm to 350 nm at 294 K. It was concluded that solar photolysis is a dominant sink for tropospheric CH3OOH. For midlatitudes the photodissociation rate was estimated for 0 deg, for 30 deg, and for 70 deg zenith angles.

  17. GHRS Cycle 5 Echelle Wavelength Monitor

    NASA Astrophysics Data System (ADS)

    Soderblom, David

    1995-07-01

    This proposal defines the spectral lamp test for Echelle A. It is an internal test which makes measurements of the wavelength lamp SC2. It calibrates the carrousel function, Y deflections, resolving power, sensitivity, and scattered light. The wavelength calibration dispersion constants will be updated in the PODPS calibration data base. This proposal defines the spectral lamp test for Echelle B. It is an internal test which makes measurements of the wavelength lamp SC2. It calibrates the carrousel function, Y deflections, resolving power, sensitivity, and scattered light. The wavelength calibration dispersion constants will be updated in the PODPS calibration data base. It will be run every 4 months. The wavelengths may be out of range according to PEPSI or TRANS. Please ignore the errors.

  18. [Measurement and analysis of absorption spectrum of human blood].

    PubMed

    Zhao, Zhi-Min; Xin, Yu-Jun; Wang, Le-Xin; Zhu, Wei-Hua; Zheng, Min; Guo, Xin

    2008-01-01

    The present paper puts forward a method of disease diagnosis by using the technology of spectrum analysis of human blood serum. The generation mechanism of absorption spectrum is explained and the absorption spectra of the normal blood serum and the sick blood serum are listed from the experiments of absorption spectrometry. Though the value of absorbency of the sick blood serum is almost equal to that of the normal blood serum in the most absorption spectra, there are some differences around 278 nm in the absorption spectrum. The absorbency of the blood serum with hyperglycemia is greater than that of the normal blood serum at 285 nm in the spectrum, and besides, there comes a peak shift of absorption with hyperglycemia. In the absorption spectrum of the blood serum with hypercholesterolemia, there is a clear absorption peak at 414 nm. However there is not any peak at that wavelength in the absorption spectrum of the normal blood serum. Through comparing the characters of the spectrum, we can judge if the blood sample is or not, and this blood analysis is a new method for the diagnosis of disease. Compared with other methods of blood measurements, the method of absorption spectrum analysis of blood serum presented in this paper, is more convenient for measurement, simpler for analysis, and easier to popularize.

  19. Laser-plasma interaction experiments at laser wavelengths of 1. 064. mu. m, 0. 532. mu. m, and 0. 355. mu. m

    SciTech Connect

    Campbell, E.M.; Mead, W.C.; Turner, R.E.

    1982-01-01

    The effect of laser wavelength on laser-plasma coupling is one of the critical issues facing the laser driven inertial confinement community. The advantages of using lasers with output wavelength less than 1 ..mu..m, such as enhanced absorption and hydrodynamic efficiency, reduction in parametric instabilities and corresponding suprathermal electron generation, have long been predicted theoretically.

  20. Informative wavelengths for trace atmospheric gas sounding with an opo-lidar in the 3-4 μm spectral region

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Kharchenko, O. V.; Sadovnikov, S. A.; Yakovlev, S. V.

    2015-11-01

    In this work, a search for information-bearing mid-IR wavelengths for HCl and HBr sounding with a differential absorption lidar based on an optical parametric oscillator has been carried out. Lidar echo signals have been calculated at the wavelengths chosen during sounding of gas components along vertical paths 0-5 km long.

  1. Method for wavelength stabilization of pulsed difference frequency laser at 1572 nm for CO(2) detection lidar.

    PubMed

    Gong, Wei; Ma, Xin; Han, Ge; Xiang, Chengzhi; Liang, Ailin; Fu, Weidong

    2015-03-09

    High-accuracy on-line wavelength stabilization is required for differential absorption lidar (DIAL), which is ideal for precisely measuring atmospheric CO(2) concentration. Using a difference-frequency laser, we developed a ground-based 1.57-μm pulsed DIAL for performing atmospheric CO(2) measurements. Owing to the system complexity, lacking phase, and intensity instability, the stabilization method was divided into two parts-wavelength calibration and locking-based on saturated absorption. After obtaining the on-line laser position, accuracy verification using statistical theory and locking stabilization using a one-dimensional template matching method, namely least-squares matching (LSM), were adopted to achieve wavelength locking. The resulting system is capable of generating a stable wavelength.

  2. A broadband cavity-enhanced spectrometer for measuring the extinction of aerosols at blue and near-UV wavelengths

    NASA Astrophysics Data System (ADS)

    Venables, Dean; Fullam, Donovan; Hoa Le, Phuoc; Chen, Jun; Böge, Olaf; Herrmann, Hartmut

    2016-04-01

    We describe a new broadband cavity-enhanced absorption spectrometer for sensitive extinction measurements of aerosols. The instrument is distinguished by its broad and continuous spectral coverage from the near-UV to blue wavelengths (ca. 320 to 450 nm). The short wavelength region has been little explored compared to visible wavelengths, but is important because (1) brown carbon (BrC) absorbs strongly in this wavelength region, and (2) absorption of near-UV radiation in the atmosphere alters the photolysis rate of the key atmospheric species O3, NO2, and HONO, with implications for air quality and atmospheric oxidation capacity. The instrument performance and the effect of a switchable in-line filter are characterised. Early results using the instrument in the TROPOS atmospheric simulation chamber are presented. These experiments include studies of secondary organic aerosol formation (SOA), and biomass burning experiments of rice and wheat straw, followed by experiments simulating particle aging under daytime and nighttime conditions.

  3. Mid-infrared FEL absorption spectra

    NASA Astrophysics Data System (ADS)

    Kozub, John A.; Feng, Bibo; Gabella, William E.

    2002-04-01

    The Vanderbilt Mark III FEL is a tunable source of high- intensity coherent mid-infrared radiation occurring as a train of picosecond pulses spaced 350ps apart. The laser beam is transported to each laboratory under vacuum, but is typically transmitted through some distance of atmosphere before reaching the target. Losses due to absorption by water vapor and CO2 can be large, and since the bandwidth of the FEL is several percent of the wavelength, the spectrum can be altered by atmospheric absorptions. In order to provide an accurate representation of the laser spectrum delivered to the target, and to investigate any non-linear effects associated with transport of the FEL beam, we have recorded the spectrum of the FEL output using a vacuum spectrometer positioned after measured lengths of atmosphere. The spectrometer is equipped with a linear pyroelectric array which provides the laser spectrum for each pulse. Absorption coefficients are being measured for laboratory air, averaged over the bandwidth of the FEL. The high peak powers of this Fel have induced damage in common infrared-transparent materials; we are also measuring damage thresholds for several materials at various wavelengths.

  4. Four NASA submillimeter-wavelength space-astrophysics missions

    NASA Technical Reports Server (NTRS)

    Mahoney, M. J.

    1991-01-01

    For several years studies have been conducted at the NASA/Jet Propulsion Laboratory on four passively-cooled submillimeter-wavelength, space observatories. Two exploratory missions were studied: a 2.5-m Submillimeter Explorer (SMME) and a more ambitious 3.7-m Submillimeter Imager and Line Survey (SMILS). Only one of these missions would actually be flown, and its goal would be to perform a high-spectral-resolution survey of several hundreds of sources at wavelengths between 100 and about 750 microns with modest angular resolution. Following either SMME or SMILS, the Large Deployable Reflector (LDR) and/or the Synthesis Array for Lunar Submillimeter Astronomy (SALSA) would be flown. LDR is a 10- to 20-m diameter telescope with greatly increased sensitivity and imaging capabilities compared to the exploratory missions. SALSA is a lunar-based array consisting of twelve 3.5-m diameter telescopes with a maximum baseline of nearly 1-km. With operating wavelengths between 30 and 500 microns, SALSA would achieve 10 milliarcsecond angular resolution, and thus could explore source structure in much greater detail than the other missions. The purpose of this paper is to present the current conceptual designs for these missions, and to discuss the most recent payload analysis.

  5. Free-space wavelength-multiplexed optical scanner demonstration.

    PubMed

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.

  6. Free-Space Wavelength-Multiplexed Optical Scanner Demonstration

    NASA Astrophysics Data System (ADS)

    Yaqoob, Zahid; Riza, Nabeel A.

    2002-09-01

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92° as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.

  7. Laser selection based on maximum permissible exposure limits for visible and middle-near infrared repetitively pulsed lasers.

    SciTech Connect

    Augustoni, Arnold L.

    2004-03-01

    The Maximum Permissible Exposure (MPE) is central to laser hazard analysis and is in general a function of the radiant wavelength. The selection of a laser for a particular application may allow for flexibility in the selection of the radiant wavelength. This flexibility would allow the selection of a particular laser based on the MPE and the hazards associated with that radiant wavelength. The Calculations of the MPEs for various laser wavelength ranges are presented. Techniques for determining eye safe viewing distances for both aided and unaided viewing and the determination of flight hazard distances are presented as well.

  8. Optical Path Switching Based Differential Absorption Radiometry for Substance Detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2000-01-01

    A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  9. Stabilized master laser system for differential absorption lidar.

    PubMed

    Dinovitser, Alex; Hamilton, Murray W; Vincent, Robert A

    2010-06-10

    Wavelength accuracy and stability are key requirements for differential absorption lidar (DIAL). We present a control and timing design for the dual-stabilized cw master lasers in a pulsed master-oscillator power-amplifier configuration, which forms a robust low-cost water-vapor DIAL transmitter system. This design operates at 823 nm for water-vapor spectroscopy using Fabry-Perot-type laser diodes. However, the techniques described could be applied to other laser technologies at other wavelengths. The system can be extended with additional off-line or side-line wavelengths. The on-line master laser is locked to the center of a water absorption line, while the beat frequency between the on-line and the off-line is locked to 16 GHz using only a bandpass microwave filter and low-frequency electronics. Optical frequency stabilities of the order of 1 MHz are achieved.

  10. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    SciTech Connect

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1997-01-01

    A pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode is described. The goal is to produce a {approximately}10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced fluorescence or absorption spectroscopy. A {approximately}10 ns full width at half-maximum (FWHM), 1.06 {mu}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately}1 {mu}s FWHM dye laser beam tuned to 5890 {Angstrom} is used for absorption measurement of the NaI resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated charge-coupled-device camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately}0.1 {Angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5{endash}2 eV. Laser-induced fluorescence from {approximately}1{times}10{sup 12} cm{sup {minus}3} NaI 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately}{plus_minus}0.06 {Angstrom} wavelength shift measurements in a mock-up of an ion diode experiment. {copyright} {ital 1997 American Institute of Physics.}

  11. On seeing yellow: the case for, and against, short-wavelength light-absorbing intraocular lenses.

    PubMed

    Simunovic, Matthew P

    2012-07-01

    The normal human crystalline lens absorbs UV and short-wavelength visible electromagnetic radiation. Early intraocular lenses (IOLs) permitted the transmission of such radiation to the retina following cataract extraction. Experimental studies of the absorption profile of the crystalline lens and animal studies demonstrating the deleterious effects of short-wavelength radiation on the retina led to the development of UV-absorbing, and later, short-wavelength light-absorbing (SLA) IOLs. Short-wavelength light-absorbing IOLs were designed to mimic the absorption properties of the normal crystalline lens by absorbing some short-wavelength light in addition to UV radiation; however, debate continues regarding the relative merits of such lenses over UV-absorbing IOLs. Advocates of SLA IOLs suggest that they may theoretically offer increased photoprotection and decreased glare sensitivity and draw on in vitro, animal, and limited clinical studies that infer possible benefits. Detractors suggest that there is no direct evidence supporting a role for SLA IOLs in preventing retinal dysfunction in humans and suggest that they may have negative effects on color perception, scotopic vision, and circadian rhythms. This article examines the theoretical and empirical evidence for, and against, such lenses.

  12. Optical properties of circulating human blood in the wavelength range 400-2500 nm

    NASA Astrophysics Data System (ADS)

    Roggan, Andre; Friebel, Moritz; Doerschel, Klaus; Hahn, Andreas; Mueller, Gerhard J.

    1999-01-01

    Knowledge about the optical properties (mu) a, (mu) s, and g of human blood plays an important role for many diagnostic and therapeutic applications in laser medicine and medical diagnostics. They strongly depend on physiological parameters such as oxygen saturation, osmolarity, flow conditions, haematocrit, etc. The integrating sphere technique and inverse Monte Carlo simulations were applied to measure (mu) a, (mu) s, and g of circulating human blood. At 633 nm the optical properties of human blood with a haematocrit of 10% and an oxygen saturation of 98% were found to be 0.210 +/- 0.002 mm-1 for (mu) a, 77.3 +/- 0.5 mm-1 for (mu) s, and 0.994 +/- 0.001 for the g factor. An increase of the haematocrit up to 50% lead to a linear increase of absorption and reduced scattering. Variations in osmolarity and wall shear rate led to changes of all three parameters while variations in the oxygen saturation only led to a significant change of the absorption coefficient. A spectrum of all three parameters was measured in the wavelength range 400 - 2500 nm for oxygenated and deoxygenated blood, showing that blood absorption followed the absorption behavior of haemoglobin and water. The scattering coefficient decreased for wavelengths above 500 nm with approximately (lambda) -1.7; the g factor was higher than 0.9 over the whole wavelength range.

  13. [Quantitative determination of total flavonoids in sea-buckthorn fruit juice by three wavelength spectrophotometry].

    PubMed

    Hui, Rui-hua; Hou, Dong-yan; Guan, Chong-xin; Liu, Xiao-yuan

    2005-02-01

    Numerous studies dealing with the quantitative determination of total flavonoids in sea-buckthorn fruit juice by spectrophotometry are presented. The flavonoids in sea-buckthorn fruit juice and aluminate produce stable complex whose absorption occurred at longer wavelength. To determine the total flavonoids in sea-buckthorn fruit juice by traditional spectrophotometry method, baseline shift and asymmetric absorption peak occurred on the absorption curve. Quantitative determination of flavonoids in sea-buckthorn fruit juice by three wavelength spectrophotometry method can eliminate the absorbance error caused interfering components in turbid solution and the scattering effect. Background changing with the concentration change and asymmetric absorption peak problems can also be solved. The regression equation of concentration vs deltaA was obtained: deltaA = - 0.00703 + 0.00048c with a relation coefficient gamma = 0.9991. The experimental results demostrate the total flavonoids concentrations in 0-800 microg x mL(-1) with deltaA obeying linear relation when the absorbance was measured at wavelength lambda1 = 495 nm, lambda2 = 415 nm and lambda3 = 368 nm. The recovery is 97.0%-101.0% and the coefficient of variation is 0.058% (n = 9). The method is more advantageous than tranditional spectrophotometry method.

  14. Light absorption of organic aerosol from pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Chen, Yanju; Bond, Tami C.

    2016-11-01

    Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.

  15. Mechanochemical Tuning of Pyrene Absorption Spectrum Using Force Probes.

    PubMed

    Fernández-González, Miguel Ángel; Rivero, Daniel; García-Iriepa, Cristina; Sampedro, Diego; Frutos, Luis Manuel

    2017-02-14

    Control of absorption spectra in chromophores is a fundamental aspect of many photochemical and photophysical processes as it constitutes the first step of the global photoinduced process. Here we explore the use of mechanical forces to modulate the light absorption process. Specifically, we develop a computational formalism for determining the type of mechanical forces permitting a global tuning of the absorption spectrum. This control extends to the excitation wavelength, absorption bands overlap, and oscillator strength. The determination of these optimal forces permits us to rationally guide the design of new mechano-responsive chromophores. Pyrene has been chosen as the case study for applying these computational tools because significant absorption spectra information is available for the chromophore as well as for different strained derivatives. Additionally, pyrene presents a large flexibility, which makes it a good system to test the inclusion of force probes as the strategy to exert forces on the system.

  16. 20 CFR 228.14 - Family maximum.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Family maximum. 228.14 Section 228.14... SURVIVOR ANNUITIES The Tier I Annuity Component § 228.14 Family maximum. (a) Family maximum defined. Under... person's earnings record is limited. This limited amount is called the family maximum. The family...

  17. 20 CFR 229.48 - Family maximum.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... used for determining the monthly maximum for the following year. (c) Disability family maximum. If an... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Family maximum. 229.48 Section 229.48... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.48 Family maximum. (a)...

  18. 20 CFR 228.14 - Family maximum.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Family maximum. 228.14 Section 228.14... SURVIVOR ANNUITIES The Tier I Annuity Component § 228.14 Family maximum. (a) Family maximum defined. Under... person's earnings record is limited. This limited amount is called the family maximum. The family...

  19. Molar absorptivity and the blank correction factor.

    PubMed

    Kroll, M H; Elin, R J

    1985-03-01

    In photometry, where both the product formed and one or several reactants absorb light at the same wavelength, the absorbance of the "blank" of the sample at the end of the reaction may be less than that measured at the beginning of the reaction, because of consumption of reactant(s). The blank correction factor for the determined result with one light-absorbing reagent is epsilon P / (epsilon P - epsilon R), where epsilon R and epsilon P are the molar absorptivities of the reagent and the product, respectively. We derived a factor for the case when more than one reagent absorbs light at the same wavelength as the measured product. This factor is independent of the concentration of reagent(s) and can correct the determined result or absorbance for the consumption of light-absorbing reagent(s) during the reaction.

  20. Wavelengths effective in induction of malignant melanoma.

    PubMed Central

    Setlow, R B; Grist, E; Thompson, K; Woodhead, A D

    1993-01-01

    It is generally agreed that sunlight exposure is one of the etiologic agents in malignant melanoma of fair-skinned individuals. However, the wavelengths responsible for tumorigenesis are not known, although DNA is assumed to be the target because individuals defective in the repair of UV damage to DNA are several thousandfold more prone to the disease than the average population. Heavily pigmented backcross hybrids of the genus Xiphophorus (platyfish and swordtails) are very sensitive to melanoma induction by single exposures to UV. We irradiated groups of five 6-day-old fish with narrow wavelength bands at 302, 313, 365, 405, and 436 nm and scored the irradiated animals for melanomas 4 months later. We used several exposures at each wavelength to obtain estimates of the sensitivity for melanoma induction as a function of exposure and wavelength. The action spectrum (sensitivity per incident photon as a function of wavelength) for melanoma induction shows appreciable sensitivity at 365, 405, and probably 436 nm, suggesting that wavelengths not absorbed directly in DNA are effective in induction. We interpret the results as indicating that light energy absorbed in melanin is effective in inducing melanomas in this animal model and that, in natural sunlight, 90-95% of melanoma induction may be attributed to wavelengths > 320 nm--the UV-A and visible spectral regions. Images Fig. 4 PMID:8341684

  1. Wavelengths effective in induction of malignant melanoma

    SciTech Connect

    Setlow, R.B.; Grist, E.; Thompson, K.; Woodhead, A.D. )

    1993-07-15

    It is generally agreed that sunlight exposure is one of the etiologic agents in malignant melanoma of fair-skinned individuals. However, the wavelengths responsible for tumorigenesis are not known, although DNA is assumed to be the target because individuals defective in the repair of UV damage to DNA are several thousandfold more prone to the disease than the average population. Heavily pigmented back-cross hybrids of the genus Xiphophorus (platyfish and swordtails) are very sensitive to melanoma induction by single exposures to UV. The authors irradiated groups of five 6-day-old fish with narrow wavelength bands at 302, 313, 365, 405, and 436 nm and score the irradiated animals for melanomas 4 months later. They used several exposures at each wavelength to obtain estimates of the sensitivity for melanoma induction as a function of exposure and wavelength. The action spectrum (sensitivity per incident photon as a function of wavelength) for melanoma induction shows appreciable sensitivity at 365, 405, and probably 436 nm, suggesting that wavelengths not absorbed directly in DNA are effective in induction. They interpret the results as indicating that light energy absorbed in melanin is effective in inducing melanomas in this animal model and that, in natural sunlight, 90-95% of melanoma induction may be attributed to wavelengths >320 nm-the UV-A and visible spectral regions. 25 refs., 4 figs., 1 tab.

  2. The maximum drag reduction asymptote

    NASA Astrophysics Data System (ADS)

    Choueiri, George H.; Hof, Bjorn

    2015-11-01

    Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re < 100. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].

  3. Maximum entropy production in daisyworld

    NASA Astrophysics Data System (ADS)

    Maunu, Haley A.; Knuth, Kevin H.

    2012-05-01

    Daisyworld was first introduced in 1983 by Watson and Lovelock as a model that illustrates how life can influence a planet's climate. These models typically involve modeling a planetary surface on which black and white daisies can grow thus influencing the local surface albedo and therefore also the temperature distribution. Since then, variations of daisyworld have been applied to study problems ranging from ecological systems to global climate. Much of the interest in daisyworld models is due to the fact that they enable one to study self-regulating systems. These models are nonlinear, and as such they exhibit sensitive dependence on initial conditions, and depending on the specifics of the model they can also exhibit feedback loops, oscillations, and chaotic behavior. Many daisyworld models are thermodynamic in nature in that they rely on heat flux and temperature gradients. However, what is not well-known is whether, or even why, a daisyworld model might settle into a maximum entropy production (MEP) state. With the aim to better understand these systems, this paper will discuss what is known about the role of MEP in daisyworld models.

  4. Absorption Cross-Sections of Sodium Diatomic Molecules

    NASA Technical Reports Server (NTRS)

    Fong, Zeng-Shevan

    1985-01-01

    The absorption cross sections of sodium dimers were studied using a heat pipe over operating in the non-heat-pipe mode. Three wavelength regions were observed. They are in the red, the green-blue, and the near ultraviolet regions. The absorption cross section depends on the wavelength of the incident light. Representative peak values for the v"=0 progression in the red and green-blue regions are 2.59 A sup 2 (average value) and 11.77 A sup 2 (T sub ave=624 K). The value for the C greater than X transitions is several tenths A sup 2. The cross sections were measured from absorption spectra taken as a function of temperature.

  5. Sub-wavelength focusing meta-lens.

    PubMed

    Roy, Tapashree; Rogers, Edward T F; Zheludev, Nikolay I

    2013-03-25

    We show that a planar plasmonic metamaterial with spatially variable meta-atom parameters can focus transmitted light into sub-wavelength hot-spots located beyond the near-field of the metamaterial. By nano-structuring a gold film we created an array of meta-lenses generating foci of 160 nm (0.2λ) in diameter when illuminated by a wavelength of 800 nm. We attribute the occurrence of sub-wavelength hotspots beyond the near field to the phenomenon of superoscillation.

  6. High Power Short Wavelength Laser Development

    DTIC Science & Technology

    1977-11-01

    Unlimited güä^äsjäsiiiüüü X NRTC-77-43R P I High Power Short Wavelength Laser Development November 1977 D. B. Cohn and W. B. Lacina...NO NRTC-77-43R, «. TITLE fana »uetjjitj BEFORE COMPLETING FORM CIPIENT’S CATALOO NUMBER KIGH.POWER SHORT WAVELENGTH LASER DEVELOPMENT , 7...fWhtn Data Enterte NRTC-77-43R HIGH POWER SHORT WAVELENGTH LASER DEVELOPMENT ARPA Order Number: Program Code Number: Contract Number: Principal

  7. Multimode fiber optic wavelength division multiplexing

    NASA Technical Reports Server (NTRS)

    Spencer, J. L.

    1982-01-01

    Optical wavelength division multiplexing (WDM) systems, with signals transmitted on different wavelengths through a single optical fiber, can have increased bandwidth and fault isolation properties over single wavelength optical systems. Two WDM system designs that might be used with multimode fibers are considered and a general description of the components which could be used to implement the system are given. The components described are sources, multiplexers, demultiplexers, and detectors. Emphasis is given to the demultiplexer technique which is the major developmental component in the WDM system.

  8. Wavelength multicasting in silicon photonic nanowires.

    PubMed

    Biberman, Aleksandr; Lee, Benjamin G; Turner-Foster, Amy C; Foster, Mark A; Lipson, Michal; Gaeta, Alexander L; Bergman, Keren

    2010-08-16

    We demonstrate a scalable, energy-efficient, and pragmatic method for high-bandwidth wavelength multicasting using FWM in silicon photonic nanowires. We experimentally validate up to a sixteen-way multicast of 40-Gb/s NRZ data using spectral and temporal responses, and evaluate the resulting data integrity degradation using BER measurements and power penalty performance metrics. We further examine the impact of this wavelength multicasting scalability on conversion efficiency. Finally, we experimentally evaluate up to a three-way multicast of 160-Gb/s pulsed-RZ data using spectral and temporal responses, representing the first on-chip wavelength multicasting of pulsed-RZ data.

  9. Magic wavelengths for terahertz clock transitions

    SciTech Connect

    Zhou Xiaoji; Xu Xia; Chen Xuzong; Chen Jingbiao

    2010-01-15

    Magic wavelengths for laser trapping of boson isotopes of alkaline-earth metal atoms Sr, Ca, and Mg are investigated while considering terahertz clock transitions between the {sup 3}P{sub 0}, {sup 3}P{sub 1}, and {sup 3}P{sub 2} metastable triplet states. Our calculation shows that magic wavelengths for laser trapping do exist. This result is important because those metastable states have already been used to make accurate clocks in the terahertz frequency domain. Detailed discussions for magic wavelengths for terahertz clock transitions are given in this article.

  10. Optical amplification at the 1. 31 wavelength

    DOEpatents

    Cockroft, N.J.

    1994-02-15

    An optical amplifier operating at the 1.31 [mu]m wavelength for use in such applications as telecommunications, cable television, and computer systems is described. An optical fiber or other waveguide device is doped with both Tm[sup 3+] and Pr[sup 3+] ions. When pumped by a diode laser operating at a wavelength of 785 nm, energy is transferred from the Tm[sup 3+] ions to the Pr[sup 3+] ions, causing the Pr[sup 3+] ions to amplify at a wavelength of 1.31. 1 figure.

  11. Magic wavelengths for terahertz clock transitions

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoji; Xu, Xia; Chen, Xuzong; Chen, Jingbiao

    2010-01-01

    Magic wavelengths for laser trapping of boson isotopes of alkaline-earth metal atoms Sr, Ca, and Mg are investigated while considering terahertz clock transitions between the 3P0, 3P1, and 3P2 metastable triplet states. Our calculation shows that magic wavelengths for laser trapping do exist. This result is important because those metastable states have already been used to make accurate clocks in the terahertz frequency domain. Detailed discussions for magic wavelengths for terahertz clock transitions are given in this article.

  12. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography

    PubMed Central

    Kawagoe, H.; Ishida, S.; Aramaki, M.; Sakakibara, Y.; Omoda, E.; Kataura, H.; Nishizawa, N.

    2014-01-01

    We developed a high power supercontinuum source at a center wavelength of 1.7 μm to demonstrate highly penetrative ultrahigh-resolution optical coherence tomography (UHR-OCT). A single-wall carbon nanotube dispersed in polyimide film was used as a transparent saturable absorber in the cavity configuration and a high-repetition-rate ultrashort-pulse fiber laser was realized. The developed SC source had an output power of 60 mW, a bandwidth of 242 nm full-width at half maximum, and a repetition rate of 110 MHz. The average power and repetition rate were approximately twice as large as those of our previous SC source [20]. Using the developed SC source, UHR-OCT imaging was demonstrated. A sensitivity of 105 dB and an axial resolution of 3.2 μm in biological tissue were achieved. We compared the UHR-OCT images of some biological tissue samples measured with the developed SC source, the previous one, and one operating in the 1.3 μm wavelength region. We confirmed that the developed SC source had improved sensitivity and penetration depth for low-water-absorption samples. PMID:24688825

  13. Highly efficient tunable mid-infrared optical parametric oscillator pumped by a wavelength locked, Q-switched Er:YAG laser.

    PubMed

    Liu, Jun; Tang, Pinghua; Chen, Yu; Zhao, Chujun; Shen, Deyuan; Wen, Shuangchun; Fan, Dianyuan

    2015-08-10

    A highly efficient and stable mid-infrared optical parametric oscillator is demonstrated, pumped by an electro-optic Q-switched Er:YAG laser with operating wavelength locked at 1645 nm by a volume Bragg grating. The oscillator, based on MgO-doped periodically poled lithium niobate (MgO:PPLN) crystal, yields a maximum overall average output power in excess of 1 W, corresponding to a conversion efficiency of 35.5% and a slope efficiency of 43.6%. The signal and idler wavelengths of the OPO are around ~2.7 μm and ~4.3 μm, respectively, corresponding to the two peak absorption bands of CO(2). Lasing characteristics of the oscillator, including the time evolution of the pump, signal and idler pulses at different pump power levels, are also investigated. Temperature tuning of the MgO:PPLN crystal gives signal and idler ranges of 2.67 to 2.72 μm and 4.17 to 4.31 μm, respectively.

  14. Gain Characteristics of Polymer Waveguide Amplifiers Based on NaYF4:Ybl+, Er3+ Nanocrystals at 0.54 µm Wavelength.

    PubMed

    Zhang, Meiling; Yin, Jiao; Jia, Zhixu; Song, Weiye; Wang, Xibin; Qin, Guanshi; Zhao, Dan; Qin, Weiping; Wang, Fei; Zhang, Daming

    2016-04-01

    Gain characteristics of polymer waveguide amplifiers based on NaYF4:Yb3+, Er3+ nanocrystals (NCs) at 0.54 µm wavelength were investigated through numerical simulations. NaYF4:18%Yb3+, 1 0%Er3+ NCs were doped into SU-8 2005 polymer matrix as the core of a polymer waveguide. The absorption spectrum and photoluminescence spectrum of the NCs were recorded and analyzed. The Judd-Ofelt parameters were achieved by means of Judd-Ofelt theory: Ω2 = 6.302 x 10(-20) cm2, Ω4 = 0.69 x 10(-20) cm2, Ω6 =7.572 x 10(-20) cm2. We simulated the gain characteristics of the waveguide amplifier at 0.54 µm wavelength by combining the atomic rate equations with power propaga- tion equations. The gain curves had the saturation effects. A maximum gain -4.3 dB for the 5 cm waveguide with the Er3+ concentration of ~7.5 x 1025 m-3 was obtained.

  15. Short-wavelength infrared (1.3-2.6 μm) observations of the nucleus of Comet 19P/Borrelly

    USGS Publications Warehouse

    Soderblom, L.A.; Britt, D.T.; Brown, R.H.; Buratti, B.J.; Kirk, R.L.; Owen, T.C.; Yelle, R.V.

    2004-01-01

    During the last two minutes before closest approach of Deep Space 1 to Comet 19P/Borrelly, a long exposure was made with the short-wavelength infrared (SWIR) imaging spectrometer. The observation yielded 46 spectra covering 1.3–2.6 μm; the footprint of each spectrum was ∼160 m × width of the nucleus. Borrelly's highly variegated and extremely dark 8-km-long nucleus exhibits a strong red slope in its short-wavelength infrared reflection spectrum. This slope is equivalent to J–K and H–K colors of ∼0.82 and ∼0.43, respectively. Between 2.3–2.6 μm thermal emission is clearly detectable in most of the spectra. These data show the nucleus surface to be hot and dry; no trace of H2O ice was detected. The surface temperature ranged continuously across the nucleus from ⩽300 K near the terminator to a maximum of ∼340 K, the expected sub-solar equilibrium temperature for a slowly rotating body. A single absorption band at ∼2.39 μm is quite evident in all of the spectra and resembles features seen in nitrogen-bearing organic molecules that are reasonable candidates for compositional components of cometary nuclei. However as of yet the source of this band is unknown.

  16. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  17. Rectal absorption of propylthiouracil.

    PubMed

    Bartle, W R; Walker, S E; Silverberg, J D

    1988-06-01

    The rectal absorption of propylthiouracil (PTU) was studied and compared to oral absorption in normal volunteers. Plasma levels of PTU after administration of suppositories of PTU base and PTU diethanolamine were significantly lower compared to the oral route. Elevated plasma reverse T3 levels were demonstrated after each treatment, however, suggesting a desirable therapeutic effect at this dosage level for all preparations.

  18. One by N wavelength-selected optical switch based on tunable Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Li, Xinwan; Chen, Jian-Ping; Lu, Jialin; Ye, Ailun

    2005-02-01

    In this paper, a kind of tunable wavelength selective optical switch was proposed with two-input/two-output fiber ports. It is based on tunable Fabry-Perot cavity by a pair of multi-layered piezoelectric ceramics. Each fiber carries N wavelengths, one of which can be selected. The tunable span can reach 5.43 nm under 10 V DC voltages. The relation of wavelength tuning ability and driving voltage is linear. The maximum of difference between theoretical and experimental results is less than 0.08nm. The quantities of maximum insertion loss, switching time and on/off ratio are about 3 dB, 1 ms and 28 dB

  19. Fiber-coupled diode laser modules with wavelengths around 2 μm

    NASA Astrophysics Data System (ADS)

    Haverkamp, Mark; Wieching, Kristin; Traub, Martin; Boucke, Konstantin

    2007-02-01

    The common wavelength regime for high-power diode laser modules is the range between 800 nm and 1000 nm. However, there are also many applications that demand for a wavelength of around 2 μm. This wavelength range is extremely interesting for applications such as the processing of plastics, medical applications as well as environmental analytics. The interest in lasers with this wavelength is based on the special absorption characteristics of different types of material: Numerous plastics possess an intrinsic absorption around 2 μm, so that the use of additives is no longer necessary. This is of great value especially for medical-technical products, where additives require a separate approval. Furthermore the longer wavelength allows the processing of plastics which are clear and transparent at the visible. In addition, water, which is an essential element of biologic soft tissue, absorbs radiation at the wavelength about 2 μm very efficiently. As radiation of this wavelength can be guided by glass fibers, this wavelength may be very helpful for laser surgery. Currently available lasers at the spectral range about 2 μm are solid-state lasers based on Ho- and Tmdoped crystals. These systems suffer from high purchase costs as well as size and weight. In contrast to this, diode lasers can be built more compact, are much cheaper and more efficient. For this background, GaSb based high-power laser diodes for the wavelength regime of 1.9 - 2.3 μm are developed at the Fraunhofer Institute for Solid State Physics (IAF). At the Fraunhofer Institute for Laser Technology (ILT), fiber-coupled laser diode modules based on these laser bars are designed and realized. A first module prototype uses two laser bars with a wavelength of 1.9 μm to provide an output power of approx. 15 W from a 600 μm, NA 0.22 fiber. The module setup as well as the characteristics of the laser bars at 1.9 μm wavelength are described in this paper.

  20. o-nitrobenzyl photolabile protecting groups with red-shifted absorption: syntheses and uncaging cross-sections for one- and two-photon excitation.

    PubMed

    Aujard, Isabelle; Benbrahim, Chouaha; Gouget, Marine; Ruel, Odile; Baudin, Jean-Bernard; Neveu, Pierre; Jullien, Ludovic

    2006-09-06

    We evaluated the o-nitrobenzyl platform for designing photolabile protecting groups with red-shifted absorption that could be photolyzed upon one- and two-photon excitation. Several synthetic pathways to build different conjugated o-nitrobenzyl backbones, as well as to vary the benzylic position, are reported. Relative to the reference 4,5-dimethoxy-2-nitrobenzyl group, several o-nitrobenzyl derivatives exhibit a large and red-shifted one-photon absorption within the near-UV range. Uncaging after one-photon excitation was studied by measuring UV-visible absorption and steady-state fluorescence emission on model caged ethers and esters. In the whole series investigated, the caged substrates were released cleanly upon photolysis. Quantum yields of uncaging after one-photon absorption lie within the 0.1-1 % range. We observed that these drop as the maximum wavelength absorption of the o-nitrobenzyl protecting group is increased. A new method based on fluorescence correlation spectroscopy (FCS) after two-photon excitation was used to measure the action uncaging cross section for two-photon excitation. The series of o-nitrobenzyl caged fluorescent coumarins investigated exhibit values within the 0.1-0.01 Goeppert-Mayer (GM) range. Such results are in line with the low quantum yields of uncaging associated with cross-sections of 1-50 GM for two-photon absorption. Although the cross-sections for one- and two-photon absorption of o-nitrobenzyl photolabile protecting groups can be readily improved, we emphasize the difficulty in enlarging the corresponding action uncaging cross-sections in view of the observed trend of their quantum yield of uncaging.

  1. Photon Counting Detectors for the 1.0 - 2.0 Micron Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2004-01-01

    We describe results on the development of greater than 200 micron diameter, single-element photon-counting detectors for the 1-2 micron wavelength range. The technical goals include quantum efficiency in the range 10-70%; detector diameter greater than 200 microns; dark count rate below 100 kilo counts-per-second (cps), and maximum count rate above 10 Mcps.

  2. High sensitive translational temperature measurement using characteristic curve of second harmonic signal in wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsui, Makoto; Yamada, Tohru

    2017-01-01

    A high sensitive measurement system of translational temperature of plasma was developed. In this system, which is based on wavelength modulation spectroscopy, a peak value of second harmonic signal was measured as a function of modulation depth. The translational temperature was estimated by fitting the theoretically calculated curve to the measured characteristic curve. The performance of this system was examined using microwave discharge plasma. As a result of comparison with conventional laser absorption spectroscopy, both results show good agreement in the measurable region of the laser absorption spectroscopy. Next, the measurable limit of this system was investigated by decreasing the target number density. The detectable fractional absorption was as low as 3.7 × 10-5 in which condition the signal to noise ratio was the order of single digit at the averaging number of 40. This value is more than two orders of magnitude lower than that of the laser absorption spectroscopy.

  3. Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2012-05-30

    Fluorine was determined via the rotational molecular absorption line of aluminum mono fluoride (AlF) generated in C(2)H(2)/N(2)O flame at 227.4613 nm using a high-resolution continuum source flame atomic absorption spectrophotometer (HR-CS-FAAS). The effects of AlF wavelength, burner height, fuel rate (C(2)H(2)/N(2)O) and amount of Al on the accuracy, precision and sensitivity were investigated and optimized. The Al-F absorption band at 227.4613 nm was found to be the most suitable analytical line with respect to sensitivity and spectral interferences. Maximum sensitivity and a good linearity were obtained in acetylene-nitrous oxide flame at a flow rate of 210 L h(-1) and a burner height of 8mm using 3000 mg L(-1) of Al for 10-1000 mg L(-1)of F. The accuracy and precision of the method were tested by analyzing spiked samples and waste water certified reference material. The results were in good agreement with the certified and spiked amounts as well as the precision of several days during this study was satisfactory (RSD<10%). The limit of detection and characteristic concentration of the method were 5.5 mg L(-1) and 72.8 mg L(-1), respectively. Finally, the fluorine concentrations in several toothpaste samples were determined. The results found and given by the producers were not significantly different. The method was simple, fast, accurate and sensitive.

  4. Study of preferential solvation of 2,6-diaminoanthraquinone in binary mixtures by absorption and fluorescence studies

    NASA Astrophysics Data System (ADS)

    Sasirekha, V.; Ramakrishnan, V.

    2008-08-01

    The role of solute-solvent and solvent-solvent interaction on the preferential solvation characteristics of 2,6-diaminoanthraquinone (DAAQ) has been analysed by monitoring the optical absorption and fluorescence emission spectra. Binary mixtures consist of dimethylformamide (DMF)-ethanol (EtOH), DMF-dimelthylsulfoxide (DMSO), benzene (BZ)-DMF and acetonitrile (ACN)-DMF. The optical absorption spectra maximum and emission spectra maximum of DAAQ show the changes with varying the solvents and change in the composition in the case of binary mixtures. Non-ideal solvation characteristics are observed in all binary mixtures. It is found that at certain concentrations two mixed solvents interact to form a common structure with a ν12 (wave number in cm -1) value not always intermediate ( ν1 and ν2) between the values of the solvents mixed. Synergistic effect is observed in the case of DMF-EtOH mixtures. The preferential solvation parameters local mole fraction X2L, solvation index δS2, exchange constant K12 are calculated in all binary mixtures expect in the case of DMF-BZ mixture and DMF-EtOH mixture in the ground state. We have also monitored excitation wavelength effect on the probe molecule in aprotic polar and protic polar solvents.

  5. Broadband light absorption of silicon nanowires embedded in Ag nano-hole arrays

    NASA Astrophysics Data System (ADS)

    Rao, Lei; Ji, Chun-Lei; Li, Ming

    2016-09-01

    Silicon nanowires (SiNWs) embedded in Ag nano-hole arrays with broadband light absorption is proposed in this paper. Finite Difference Time Domain (FDTD) simulations were utilized to obtain absorptivity and band diagrams for both SiNWs and SiNWs embedded in Ag nano-hole arrays. A direct relationship between waveguide modes and extraordinary absorptivity is established qualitatively, which helps to optimal design the structure parameters to achieve broadband absorptivity. After introducing Ag nano-hole arrays at the rear side of SiNWs, the band modes are extended into leaky regions and light energy can be fully absorbed, resulting in high absorptivity at long wavelength. Severe reflection is also suppressed by light trapping capability of SiNWs at short wavelength. Over 70% average absorptivity from 400 nm to 1100 nm is realized finally. This kinds of design give promising route for high efficiency solar cells and optical absorbers.

  6. Polarization dependence of absorption by bound electrons in self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Ameen, Tarek A.; El-Batawy, Yasser M.

    2013-05-01

    In this paper, the effects of the incident light polarization on the bound to continuum linear absorption coefficient of quantum dot devices have been investigated. The study is based on the effective mass theory and the Non Equilibrium Green's Function formalism. For the bound to continuum component of the absorption coefficient, both of in-plane and perpendicular polarization effects are studied for different sizes of conical quantum dots. Generally, decreasing the dot's dimensions results in an increase of the in-plane polarized light absorption and in moving the absorption peak towards longer wavelengths. On the other hand, decreasing the dot's dimensions results in a decrease of the perpendicularly polarized light absorption coefficient and in moving the absorption peak towards longer wavelengths.

  7. Ultrasensitive optical absorption in graphene based on bound states in the continuum

    PubMed Central

    Zhang, Mingda; Zhang, Xiangdong

    2015-01-01

    We have designed a sphere-graphene-slab structure so that the electromagnetic wave can be well confined in the graphene due to the formation of a bound state in a continuum (BIC) of radiation modes. Based on such a bound state, we have realized strong optical absorption in the monolayer graphene. Such a strong optical absorption exhibits many advantages. It is ultrasensitive to the wavelength because the Q factor of the absorption peak can be more than 2000. By taking suitable BICs, the selective absorption for S and P waves has not only been realized, but also all-angle absorption for the S and P waves at the same time has been demonstrated. We have also found that ultrasensitive strong absorptions can appear at any wavelength from mid-infrared to far-infrared band. These phenomena are very beneficial to biosensing, perfect filters and waveguides. PMID:25652437

  8. Maximum entropy principal for transportation

    SciTech Connect

    Bilich, F.; Da Silva, R.

    2008-11-06

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  9. Vestige: Maximum likelihood phylogenetic footprinting

    PubMed Central

    Wakefield, Matthew J; Maxwell, Peter; Huttley, Gavin A

    2005-01-01

    Background Phylogenetic footprinting is the identification of functional regions of DNA by their evolutionary conservation. This is achieved by comparing orthologous regions from multiple species and identifying the DNA regions that have diverged less than neutral DNA. Vestige is a phylogenetic footprinting package built on the PyEvolve toolkit that uses probabilistic molecular evolutionary modelling to represent aspects of sequence evolution, including the conventional divergence measure employed by other footprinting approaches. In addition to measuring the divergence, Vestige allows the expansion of the definition of a phylogenetic footprint to include variation in the distribution of any molecular evolutionary processes. This is achieved by displaying the distribution of model parameters that represent partitions of molecular evolutionary substitutions. Examination of the spatial incidence of these effects across regions of the genome can identify DNA segments that differ in the nature of the evolutionary process. Results Vestige was applied to a reference dataset of the SCL locus from four species and provided clear identification of the known conserved regions in this dataset. To demonstrate the flexibility to use diverse models of molecular evolution and dissect the nature of the evolutionary process Vestige was used to footprint the Ka/Ks ratio in primate BRCA1 with a codon model of evolution. Two regions of putative adaptive evolution were identified illustrating the ability of Vestige to represent the spatial distribution of distinct molecular evolutionary processes. Conclusion Vestige provides a flexible, open platform for phylogenetic footprinting. Underpinned by the PyEvolve toolkit, Vestige provides a framework for visualising the signatures of evolutionary processes across the genome of numerous organisms simultaneously. By exploiting the maximum-likelihood statistical framework, the complex interplay between mutational processes, DNA repair and

  10. The Sherpa Maximum Likelihood Estimator

    NASA Astrophysics Data System (ADS)

    Nguyen, D.; Doe, S.; Evans, I.; Hain, R.; Primini, F.

    2011-07-01

    A primary goal for the second release of the Chandra Source Catalog (CSC) is to include X-ray sources with as few as 5 photon counts detected in stacked observations of the same field, while maintaining acceptable detection efficiency and false source rates. Aggressive source detection methods will result in detection of many false positive source candidates. Candidate detections will then be sent to a new tool, the Maximum Likelihood Estimator (MLE), to evaluate the likelihood that a detection is a real source. MLE uses the Sherpa modeling and fitting engine to fit a model of a background and source to multiple overlapping candidate source regions. A background model is calculated by simultaneously fitting the observed photon flux in multiple background regions. This model is used to determine the quality of the fit statistic for a background-only hypothesis in the potential source region. The statistic for a background-plus-source hypothesis is calculated by adding a Gaussian source model convolved with the appropriate Chandra point spread function (PSF) and simultaneously fitting the observed photon flux in each observation in the stack. Since a candidate source may be located anywhere in the field of view of each stacked observation, a different PSF must be used for each observation because of the strong spatial dependence of the Chandra PSF. The likelihood of a valid source being detected is a function of the two statistics (for background alone, and for background-plus-source). The MLE tool is an extensible Python module with potential for use by the general Chandra user.

  11. Ultrafast light induced unusually broad transient absorption in the sub-bandgap region of GeSe2 thin film

    PubMed Central

    Barik, A. R.; Bapna, Mukund; Drabold, D. A.; Adarsh, K. V.

    2014-01-01

    In this paper, we show for the first time that ultrafast light illumination can induce an unusually broad transient optical absorption (TA), spanning of ≈ 200 nm in the sub-bandgap region of chalcogenide GeSe2 thin films, which we interpret as being a manifestation of creation and annihilation of light induced defects. Further, TA in ultrashort time scales show a maximum at longer wavelength, however blue shifts as time evolves, which provides the first direct evidence of the multiple decay mechanisms of these defects. Detailed global analysis of the kinetic data clearly demonstrates that two and three decay constants are required to quantitatively model the experimental data at ps and ns respectively. PMID:24418896

  12. Ultrafast light induced unusually broad transient absorption in the sub-bandgap region of GeSe2 thin film

    NASA Astrophysics Data System (ADS)

    Barik, A. R.; Bapna, Mukund; Drabold, D. A.; Adarsh, K. V.

    2014-01-01

    In this paper, we show for the first time that ultrafast light illumination can induce an unusually broad transient optical absorption (TA), spanning of ~ 200 nm in the sub-bandgap region of chalcogenide GeSe2 thin films, which we interpret as being a manifestation of creation and annihilation of light induced defects. Further, TA in ultrashort time scales show a maximum at longer wavelength, however blue shifts as time evolves, which provides the first direct evidence of the multiple decay mechanisms of these defects. Detailed global analysis of the kinetic data clearly demonstrates that two and three decay constants are required to quantitatively model the experimental data at ps and ns respectively.

  13. Wavelength dependence for the photoreactions of DNA-Psoralen monoadducts. 1. Photoreversal of monoadducts

    SciTech Connect

    Shi, Y.; Hearst, J.E.

    1987-06-30

    The authors have studied the wavelength dependence for the photoreversal of a monoadducted psoralen derivative, HMT (4'(hydroxymethyl)-4,5',8-trimethylpsoralen), in a single-stranded deoxyoligonucleotide (5'-GAAGCTACGAGC-3'). The psoralen was covalently attached to the thymidine residue in the oligonucleotide as either a furan-side monoadduct, which is formed through the cycloaddition between the 4',5' double bond of the psoralen and the 5,6 double bond of the thymidine, or a pyrone-side monoadduct, which is formed through the cycloaddition between the 3,4 double bond of the psoralen and the 5,6 double bond of the thymidine. As a comparison, they have also investigated the wavelength-dependent photoreversal of the isolated thymidine-HMT monoadducts. All photoreversal action spectra correlate with the extinction spectra of the isolate monoadducts. In the case of the pyrone-side monoadduct, two absorption bands contribute to the photoreversal with a quantum yield of 2 x 10/sup -2/ at wavelengths below 250 nm and 7 x 10/sup -3/ at wavelengths from 287 to 314 nm. The incorporation of the monoadduct into the DNA oligomer had little effect upon the photoreversal rate. For the furan-side monoadduct at least three absorption bands contribute to the photoreversal. The quantum yield varied from 5 x 10/sup -2/ at wavelengths below 250 nm to 7 x 10/sup -4/ at wavelengths between 295 and 365 nm. In contrast to the case of the pyrone-side monoadduct, the incorporation of the furan-side monoadduct into the DNA oligomer reduced the photoreversal rate constant at wavelengths above 285 nm.

  14. Distributed Bragg Reflectors With Reduced Optical Absorption

    DOEpatents

    Klem, John F.

    2005-08-16

    A new class of distributed Bragg reflectors has been developed. These distributed Bragg reflectors comprise interlayers positioned between sets of high-index and low-index quarter-wave plates. The presence of these interlayers is to reduce photon absorption resulting from spatially indirect photon-assisted electronic transitions between the high-index and low-index quarter wave plates. The distributed Bragg reflectors have applications for use in vertical-cavity surface-emitting lasers for use at 1.55 .mu.m and at other wavelengths of interest.

  15. Motion compensation for detecting glucose through dual wavelength polarimetric system

    NASA Astrophysics Data System (ADS)

    Dixon, J. B.; Wan, Qiujie; Cote, Gerard L.

    2005-03-01

    The increasing prevalence of diabetes in the United States has led many to pursue methods for non-invasive glucose detection using various optical approaches such as NIR absorption spectroscopy, Raman spectroscopy, fluorescence spectroscopy, and polarization. Polarization approaches using the aqueous humor as the sensing site have been previously shown to achieve 5 mg/dl accuracy in vitro, however accuracy in vivo has yet to be obtained due to motion induced birefringence changes in the cornea. A dual-wavelength close-looped system was developed to compensate for motion artifact. This method has shown 15 mg/dl accuracy in the presence of birefringence changes in the optical path in vitro similar to those that occur in the cornea -- something previous systems were not capable of doing.

  16. Reactivation of sub-bandgap absorption in chalcogen-hyperdoped silicon

    NASA Astrophysics Data System (ADS)

    Newman, Bonna K.; Sher, Meng-Ju; Mazur, Eric; Buonassisi, Tonio

    2011-06-01

    Silicon doped with nonequilibrium concentrations of chalcogens using a femtosecond laser exhibits near-unity absorption of sub-bandgap photons to wavelengths of at least 2500 nm. Previous studies have shown that sub-bandgap absorptance decreases with thermal annealing up to 1175 K and that the absorption deactivation correlates with chalcogen diffusivity. In this work, we show that sub-bandgap absorptance can be reactivated by annealing at temperatures between 1350 and 1550 K followed by fast cooling (>50 K/s). Our results suggest that the defects responsible for sub-bandgap absorptance are in equilibrium at high temperatures in hyperdoped Si:chalcogen systems.

  17. Laser induced deflection technique for absolute thin film absorption measurement: optimized concepts and experimental results

    SciTech Connect

    Muehlig, Christian; Kufert, Siegfried; Bublitz, Simon; Speck, Uwe

    2011-03-20

    Using experimental results and numerical simulations, two measuring concepts of the laser induced deflection (LID) technique are introduced and optimized for absolute thin film absorption measurements from deep ultraviolet to IR wavelengths. For transparent optical coatings, a particular probe beam deflection direction allows the absorption measurement with virtually no influence of the substrate absorption, yielding improved accuracy compared to the common techniques of separating bulk and coating absorption. For high-reflection coatings, where substrate absorption contributions are negligible, a different probe beam deflection is chosen to achieve a better signal-to-noise ratio. Various experimental results for the two different measurement concepts are presented.

  18. Theoretical investigation of one-photon and two-photon absorption properties for multiply N-confused porphyrins.

    PubMed

    Yang, Zhao-Di; Feng, Ji-Kang; Ren, Ai-Min; Sun, Chia-Chung

    2006-12-28

    We have theoretically investigated a series of multiply N-confused porphyrins and their Zn or Cu complexes for the first time by using DFT(B3LYP/6-31G*) and ZINDO/SOS methods. The electronic structure, one-photon absorption (OPA), and two-photon absorption (TPA) properties have been studied in detail. The calculated results indicate that the OPA spectra of multiply N-confused porphyrins are red-shifted and the OPA intensities decrease compared to normal porphyrin. The maximum two photon absorption wavelengths lambda(max) are blue-shifted and the TPA cross sections delta(max) are increased 22.7-112.1 GM when the N atoms one by one are inverted from core to beta position to form multiply N-confused porphyrins. Especially delta(max) of N3CP get to 164.7 GM. The electron donors -C6F5s at meso-position can make the TPA cross section delta(max) increase. After forming metal complexes with Cu or Zn, the TPA properties of multiply N-confused porphyrins are further increased except for N3CP, N4CP. Our theoretical findings demonstrate that the multiply N-confused prophyrins as well as their metal complexes and derivatives are promising molecules that can be assembled series of materials with large TPA cross section, and are sure to be the subject of further investigation.

  19. Influence of excitation wavelength on photoluminescence properties of CdSe/CdZnS colloidal quantum dots on micro-patterned silver films

    NASA Astrophysics Data System (ADS)

    Khan, Rizwan; Jeon, Ju-Won; Jang, Lee-Woon; Kim, Min-Kyu; Ko, Eun-Yee; Lee, Joo-In; Lee, In-Hwan

    2014-03-01

    We examined the excitation wavelength dependence of photoluminescence (PL) property in CdSe/CdZnS colloidal quantum dots (QDs) on micro-patterned silver (Ag) films (MPSFs). PL quenching of the fluorophore was observed when the excitation wavelength was out of the absorption range of MPSF substrates. In contrast, when the excitation wavelength was within the absorption spectrum range, the PL intensity on Ag films was markedly enhanced by a factor of two. It was expected that the principal causes on the PL properties of the fluorophore on Ag films would be the energy match between the incident light and the surface plasmon of Ag metal films.

  20. Determining CDOM Absorption Spectra in Diverse Coastal Environments Using a Multiple Pathlength, Liquid Core Waveguide System. Measuring the Absorption of CDOM in the Field Using a Multiple Pathlength Liquid Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2000-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, a(sub CDOM), and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values (r > 0.99) and showed a linear response across all four pathlengths. Values of a(sub CDOM) measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of a(sub CDOM) for MPLCW measurements was 0.002 - 231.5/m. At low CDOM concentrations (a(sub 370) < 0.1/m) spectrophotometric a(sub CDOM) were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples. The maximum deviation in replicate MPLCW spectra was less than 0.001 absorbance units. The portability, sampling, and optical characteristics of a MPLCW system provide significant enhancements for routine CDOM absorption measurements in a broad range of natural waters.