Science.gov

Sample records for absorption measurement technique

  1. Absorption technique for OH measurements and calibration

    SciTech Connect

    Bakalyar, D.M.; James, J.V.; Wang, C.C.

    1982-08-15

    An absorption technique is described which utilizes a stabilized frequency-doubled tunable dye laser and a long-path White cell with high mirror reflectivities both in the red and UV. In laboratory conditions we have been able to obtain routinely a detection sensitivity of 3 parts in 10/sup 6/ over absorption paths <1 m in length and a detection sensitivity of approx.6 parts in 10/sup 5/ over an absorption path of the order of 1 km. The latter number corresponds to 3 x 10/sup 6/ OH molecules/cm/sup 3/, and therefore the technique should be particularly useful for calibration of our fluorescence instrument for OH measurements. However, the presence of atmospheric fluctuations coupled with intensity variation accompanying frequency scanning appears to degrade the detection sensitivity in outdoor ambient conditions, thus making it unlikely that this technique can be employed for direct OH monitoring.

  2. Absorption technique for OH measurements and calibration

    NASA Technical Reports Server (NTRS)

    Bakalyar, D. M.; James, J. V.; Wang, C. C.

    1982-01-01

    An absorption technique is described which utilizes a stabilized frequency-doubled tunable dye laser and a long-path White cell with high mirror reflectivities both in the red and UV. In laboratory conditions it has been possible to routinely obtain a detection sensitivity of 3 parts in 1,000,000 over absorption paths less than 1 m in length and a detection sensitivity of approximately 6 parts in 100,000 over an absorption path of the order of 1 km. The latter number corresponds to 3,000,000 OH molecules/cu cm, and therefore the technique should be particularly useful for calibration the fluorescence instrument for OH measurements. However, the presence of atmospheric fluctuations coupled with intensity variation accompanying frequency scanning appears to degrade the detection sensitivity in outdoor ambient conditions, thus making it unlikely that this technique can be employed for direct OH monitoring.

  3. An isotope technique for measuring lactose absorption

    PubMed Central

    Salmon, P. R.; Read, A. E.; McCarthy, C. F.

    1969-01-01

    Expired radiocarbon dioxide has been collected by a simple autotitration method following the ingestion of lactose-1-14C. With this method, which is suitable for clinical use, 12 subjects with alactasia have been readily separated from 24 normals, both groups being defined by strict criteria. This test, which may be used to measure the absorption of other sugars, is especially suitable for population surveys and may be used to investigate the distribution of disaccharidase deficiency. A further advantage is that false low readings resulting from rapid plasma clearance of absorbed sugar do not occur with this method although they may do so in up to one in three lactose tolerance tests, thereby overestimating the prevalence of alactasia. PMID:5810982

  4. Tone-burst technique measures high-intensity sound absorption

    NASA Technical Reports Server (NTRS)

    Powell, J. G.; Van Houten, J. J.

    1971-01-01

    Tone-burst technique, in which narrow-bandwidth, short-duration sonic pulse is propagated down a standing-wave tube, measures sound absorbing capacity of materials used in jet engine noise abatement. Technique eliminates effects of tube losses and yields normal-incidence absorption coefficient of specimen.

  5. High reflector absorptance measurements by the surface thermal lensing technique

    SciTech Connect

    Chow, R.; Taylor, J.R.; Wu, Z.L.; Krupka, R.; Yang, T.

    1996-11-01

    Surface thermal lensing is an alternate configuration of a photothermal deflection system that was used to measure low levels of optical absorption. The thermal lensing configuration facilitated the alignment of the pump and probe laser beams by using a larger diameter probe beam. This technique was applied to high performance optical coatings, specifically high reflectors at 511 nm, zero degrees angle of incidence. The absorptance of these coatings was previously measured using a high power copper vapor laser system. A high power copper laser beam is focused onto a -2 mm diameter spot. A thermal camera senses the temperature rise with respect to the rest of the coating. The temperature change, power density and beam diameter were used with an empirical formula that yields optical absorption. The surface thermal lensing technique was able to resolve absorption levels lower than that achieved with the copper laser method.

  6. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  7. Absorption measurement of thin films by using photothermal techniques: The influence of thermal properties

    SciTech Connect

    Wu, Z.L.; Kuo, P.K.; Thomas, R.L.; Fan, Z.X.

    1995-12-31

    Photothermal techniques are widely used for measuring optical absorption of thin film coatings. In these applications the calibration of photothermal signal is typically based on the assumption that the thermal properties of the thin film make very little contribution. In this paper we take mirage technique as an example and present a detailed analysis of the influence of thin film thermal properties on absorption measurements. The results show that the traditional calibration method is not valid on surprisingly many situations.

  8. Direct and absolute absorption measurements in optical materials and coatings by laser induced deflection (LID) technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.

    2011-11-01

    Different strategies of the laser induced deflection (LID) technique for direct and absolute absorption measurements are presented. Besides selected strategies for bulk and coating absorption measurements, respectively, a new strategy is introduced allowing the transfer of the LID technique to very small samples and to significantly increase the sensitivity for materials with a very weak photo-thermal response. Additionally, an emphasis is placed on the importance of the calibration procedure. The electrical calibration of the LID setup is compared to two other approaches that use either doped samples or highly absorptive reference samples in combination with numerical simulations. Applying the LID technique, we report on the characterization of AR coated LBO crystals used in high power NIR/VIS laser applications. The comparison of different LBO crystals shows that there are significant differences in both, the AR coating and the LBO bulk absorption. These differences are much larger at 515 nm than at 1030 nm. Absorption spectroscopy measurements combining LID technique with a high power OPO laser system indicate that the coating process affects the LBO bulk absorption properties. Furthermore, the change of the absorption upon 1030 nm laser irradiation of a Nd:YVO4 laser crystal is investigated and compared to recent results. Finally, Ytterbium doped silica raw materials for high power fiber lasers are characterized with respect to the absorption induced attenuation at 1550 nm in order to compare these data with the total attenuation obtained for the subsequently manufactured laser active fibers.

  9. Direct and absolute absorption measurements in optical materials and coatings by laser induced deflection (LID) technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.

    2012-01-01

    Different strategies of the laser induced deflection (LID) technique for direct and absolute absorption measurements are presented. Besides selected strategies for bulk and coating absorption measurements, respectively, a new strategy is introduced allowing the transfer of the LID technique to very small samples and to significantly increase the sensitivity for materials with a very weak photo-thermal response. Additionally, an emphasis is placed on the importance of the calibration procedure. The electrical calibration of the LID setup is compared to two other approaches that use either doped samples or highly absorptive reference samples in combination with numerical simulations. Applying the LID technique, we report on the characterization of AR coated LBO crystals used in high power NIR/VIS laser applications. The comparison of different LBO crystals shows that there are significant differences in both, the AR coating and the LBO bulk absorption. These differences are much larger at 515 nm than at 1030 nm. Absorption spectroscopy measurements combining LID technique with a high power OPO laser system indicate that the coating process affects the LBO bulk absorption properties. Furthermore, the change of the absorption upon 1030 nm laser irradiation of a Nd:YVO4 laser crystal is investigated and compared to recent results. Finally, Ytterbium doped silica raw materials for high power fiber lasers are characterized with respect to the absorption induced attenuation at 1550 nm in order to compare these data with the total attenuation obtained for the subsequently manufactured laser active fibers.

  10. Intestinal radiocalcium absorption in the goat: measurement by a double-isotope technique.

    PubMed

    Hove, K

    1984-01-01

    Intestinal radiocalcium absorption was measured in goats by a double-isotope technique involving injection of 45CaCl2 intravenously and 47CaCl2 into the abomasum. Cumulative absorption of radiocalcium was calculated by deconvolution analysis form curves of plasma radioactivity. Repeated measurements at 2 d intervals gave highly reproducible results (r 0.94, P less than 0.001). No systematic difference between two consecutive measurements was observed. A good agreement between absorption of radiocalcium from simultaneously administered 47CaCl2 and 45Ca-labelled hay (r 0.93, P less than 0.001) seems to justify the use of inorganic 47Ca as a tracer for Ca in ruminant diets. Two- to three-fold increases in radiocalcium absorption 48 h after oral treatment with 1,25-dihydroxycholecalciferol or leaves of Solanum malacoxylon showed the usefulness of the method in situations of rapidly changing Ca absorption. Endogenous adaptations in intestinal radiocalcium absorption from 20 to 43% were observed in lactating goats when Ca intakes decreased from 12 to 4 g/d. It is concluded that the double-isotope technique is a suitable method for studies of Ca absorption in ruminants when tracer is introduced into the abomasum. The test is completed in 3-4 h and may therefore be used in situations where the absorption of Ca undergoes rapid changes. PMID:6546295

  11. Microwave resonance lamp absorption technique for measuring temperature and OH number density in combustion environments

    NASA Technical Reports Server (NTRS)

    Lempert, Walter R.

    1988-01-01

    A simple technique for simultaneous determination of temperature and OH number density is described, along with characteristic results obtained from measurements using a premixed, hydrogen air flat flame burner. The instrumentation is based upon absorption of resonant radiation from a flowing microwave discharge lamp, and is rugged, relatively inexpensive, and very simple to operate.

  12. Differential absorption lidar technique for measurement of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Weng, C. Y.

    1983-01-01

    A new two-wavelength lidar technique for remotely measuring the pressure profile using the trough absorption region between two strong lines in the oxygen A band is described. The theory of integrated vertical path, differential ranging, and horizontal-path pressure measurements is given, with methods to desensitize and correct for temperature effects. The properties of absorption troughs are described and shown to reduce errors due to laser frequency jitter by up to two orders of magnitude. A general analysis, including laser bandwidth effects, demonstrates that pressure measurements with an integrated-vertical-path technique are typically fifty times more accurate than with a differential ranging technique. Simulations show 0.1-0.3 percent accuracy for ground and Shuttle-based pressure-profile and surface-pressure experiments.

  13. Absorption-edge transmission technique using Ce- 139 for measurement of stable iodine concentration.

    PubMed

    Sorenson, J A

    1979-12-01

    We have investigated a technique for measuring stable iodine concentrations by absorption-edge transmission measurements using a Ce 139 radiation source. The lanthanum daughter emits characteristic x-rays whose energies just bracket the absorption edge of iodine at 33.2 keV. Relative transmission of these x-rays is sensitive to iodine concentration in the sample, but is relatively insensitive to other elements. By applying energy-selective beam filtration, it is possible to determine the relative transmission of these closely spaced x-ray energies with NaI(Tl) detectors. Optimizations of sample thickness, detector thickness, and Ce-139 source activity are discussed. Using sample volumes of about 10 ml, one can determine iodine concentration to an uncertainty (standard deviation) of +/- 5 microgram/ml with a 5-mCi source in a measurement time of 400 sec. Potential clinical applications of the in vitro technique are discussed, along with comparative aspects of the Ce-139 technique and other absorption and fluorescence techniques for measuring stable iodine. PMID:536797

  14. Measurement of nanofluids absorption coefficient by Moiré deflectometry technique

    NASA Astrophysics Data System (ADS)

    Madanipour, Khosro; Koohian, Ataollah; Shahrabi Farahani, Shahrzad

    2015-05-01

    Nanoparticles exhibit many unique and interesting optical properties which make them very useful in biomedical applications. In order to employ NPs for disease treatment, comprehensive knowledge of their important properties is crucial. One of these parameters is absorption coefficient. In this work, absorption coefficient of a nanofluid (Au nanoparticles in water) is measured by using Moiré deflectometry technique. Two laser beams are used: a comparatively high intensity laser beam as interacting beam and a low intensity as a probe beam. This method is fast, easy and nonscanning, also insensitive to vibrations.

  15. Sandwich concept: enhancement for direct absorption measurements by laser-induced deflection (LID) technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.; Bublitz, S.; Paa, W.

    2012-11-01

    The new sandwich concept for absolute photo-thermal absorption measurements using the laser induced deflection (LID) technique is introduced and tested in comparison to the standard LID concept. The sandwich concept's idea is the decoupling of the optical materials for the pump and probe beams by placing a sample of investigation in between two optical (sandwich) plates. The pump beam is guided through the sample whereas the probe beams are deflected within the sandwich plates by the thermal lens that is generated by heat transfer from the irradiated sample. Electrical simulation and laser experiments reveal that using appropriate optical materials for the sandwich plates, the absorption detection limit for photo-thermally insensitive materials can be lowered by up to two orders of magnitude. Another advantage of the sandwich concept, the shrinking of the currently required minimum sample size, was used to investigate the laser induced absorption change in a Nd:YVO4 crystal at 1030nm. It was found that the absorption in Nd:YVO4 lowers due to the laser irradiation but partially recovers during irradiation breaks. Furthermore, absorption spectroscopy has been performed at two LBO crystals in the wavelength range 410...600nm to study the absorption structure around the SHG wavelengths of common high power lasers based on Neodymium doped laser crystals.

  16. Method and apparatus for measuring butterfat and protein content using microwave absorption techniques

    DOEpatents

    Fryer, Michael O.; Hills, Andrea J.; Morrison, John L.

    2000-01-01

    A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

  17. Improved multi-element measurement of absorption via the fecal monitoring technique

    SciTech Connect

    Gibson, R.S.; Gibson, I.L.; Weber, C.E.; Atkinson, S.A.

    1986-03-01

    The fecal monitoring technique for measuring the absorption of Mn, Se and Fe was studied in eight piglets using high resolution gamma spectrometry. Four day old piglets were fed a complete liquid diet for five days prior to the administration of an isotope dose (/sup 75/Se, /sup 54/Mn, /sup 59/Fe) equilibrated with the milk feeding. /sup 51/CrCl/sub 3/ was used as a fecal marker. Subsequently stool and urine samples were collected daily for 15-21 days. Following counting, the % fecal excretion of the administered dose was calculated. As 0 to 33% of the administered /sup 51/CrCl/sub 3/ was absorbed this fecal marker is inappropriate for piglets. Results indicate that endogenous excretion for each of the isotopes was not constant but decreased exponentially with time. An improved method for calculating the endogenous excretion was therefore developed. This method is based on the pattern of endogenous excretion in comparable piglets injected intravenously with the same isotopes, and on the level of endogenous excretion in the orally fed animals in the post-absorptive phase of excretion. These findings have important implications for the estimation of endogenous excretion in future fecal monitoring absorption studies. Previous results using the latter technique have frequently underestimated true absorption.

  18. Novel Cross-Band Relative Absorption (CoBRA) technique For Measuring Atmospheric Species

    NASA Astrophysics Data System (ADS)

    Prasad, N. S.; Pliutau, D.

    2013-12-01

    We describe a methodology called Cross-Band Relative Absorption (CoBRA) we have implemented to significantly reduce interferences due to variations in atmospheric temperature and pressure in molecular mixing ration measurements [1-4]. The interference reduction is achieved through automatic compensation based on selecting spectral line pairs exhibiting similar evolution behavior under varying atmospheric conditions. The method is applicable to a wide range of molecules including CO2 and CH4 which can be matched with O2 or any other well-mixed atmospheric molecule. Such matching results in automatic simultaneous adjustments of the spectral line shapes at all times with a high precision under varying atmospheric conditions of temperature and pressure. We present the results of our selected CoBRA analysis based on line-by-line calculations and the Modern Era Retrospective Analysis for Research and Applications (MERRA) dataset including more recent evaluation of the error contributions due to water vapor interference effects. References: 1) N. S. Prasad, D. Pliutau, 'Cross-band relative absorption technique for the measurement of molecular mixing ratios.', Optics Express, Vol. 21, Issue 11, pp. 13279-13292 (2013) 2) D. Pliutau and N. S. Prasad, "Cross-band Relative Absorption Technique for Molecular Mixing Ratio Determination," in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW3L.4. 3) Denis Pliutau; Narasimha S. Prasad; 'Semi-empirical validation of the cross-band relative absorption technique for the measurement of molecular mixing ratios',.Proc. SPIE 8731, Laser Radar Technology and Applications XVIII, 87310L (May 20, 2013); doi:10.1117/12.2016661. 4) Denis Pliutau,; Narasimha S. Prasad; 'Comparative analysis of alternative spectral bands of CO2 and O2 for the sensing of CO2 mixing ratios' Proc. SPIE 8718, Advanced Environmental, Chemical, and Biological Sensing Technologies X, 87180L (May 31, 2013); doi:10.1117/12.2016337.

  19. The measurement of electrical properties of small particles using microwave Hall effect and absorption techniques

    SciTech Connect

    Walters, A.B.; Liu, C.C.; VAnnice, M.A.

    1995-12-01

    A microwave absorption technique based on cavity perturbation theory is applicable for electrical conductivity measurements of both small, single-crystal particles and finely divided powder samples when {sigma} values fall in either the low ({sigma}<0.1{Omega}{sup -1}cm{sup -1}) or the intermediate (0.1 <{sigma}<100{Omega}{sup -1}cm{sup -l}) conductivity region. If the skin depth of the material becomes significantly smaller than the sample dimension parallel to the E-field, an appreciable error can be introduced into the calculated conductivity values; however, this discrepancy is eliminated by correcting for the field attenuation associated with the penetration depth of the microwaves and accurate absolute values can be obtained. When combined with microwave Hall effect measurements of mobility, {mu}, carrier densities can be calculated, for electrons N{sub o}={sigma}/{rho}e{mu} where e is the electron charge and {sigma} is the density of the solid. This approach eliminates electrode contacts as well as errors due to charge transfer across grain boundaries and particle-particle contacts. The application of these microwave absorption techniques to small particles having high surface/volume ratios, such as catalyst supports and oxide catalysts, under controlled environments can provide fundamental information about absorption and catalytic processes on such semiconductor surfaces. Applications to ZnO, Li-promoted ZnO, and carbon black powders demonstrate this capability.

  20. In vivo measurement of human skin absorption of topically applied substances by a photoacoustic technique.

    PubMed

    Gutiérrez-Juárez, G; Vargas-Luna, M; Córdova, T; Varela, J B; Bernal-Alvarado, J J; Sosa, M

    2002-08-01

    A photoacoustic technique is used for studying topically applied substance absorption in human skin. The proposed method utilizes a double-chamber PA cell. The absorption determination was obtained through the measurement of the thermal effusivity of the binary system substance-skin. The theoretical model assumes that the effective thermal effusivity of the binary system corresponds to that of a two-phase system. Experimental applications of the method employed different substances of topical application in different parts of the body of a volunteer. The method is demonstrated to be an easily used non-invasive technique for dermatology research. The relative concentrations as a function of time of substances such as ketoconazol and sunscreen were determined by fitting a sigmoidal function to the data, while an exponential function corresponds to the best fit for the set of data for nitrofurazona, vaseline and vaporub. The time constants associated with the rates of absorption, were found to vary in the range between 10 and 58 min, depending on the substance and the part of the body. PMID:12214760

  1. [Application of near-infrared absorption spectrum scanning techniques in gas quantitative measurement].

    PubMed

    Ding, Hui; Liang, Jian-Qi; Cui, Jun-Hong; Wu, Xiang-Nan; Li, Xian-Li

    2010-03-01

    A practical gas sensing system utilizing absorption spectrum scanning techniques was developed. Using the narrow-band transmission of a fiber tunable filter (TOF) and wavelength modulation technique, the so-called cross-sensing effects of the traditional spectrum absorption based gas sensor were reduced effectively and thus the target gas was detected sensitively and selectively. In order to reduce the effects of nonlinearity of TOF on the measurement results and improve the system stability in operation, the reflection spectrum of a reference FBG was monitored and employed to control the modulation region and center of TOF wavelength precisely. Moreover, a kind of weak signal detecting circuits was developed to detect the weak response signal of the system with high sensitivity. The properties of the proposed system were demonstrated experimentally by detection of acetylene. Approximate linear relationships between the system responses and the input acetylene concentrations were demonstrated by experiments. The minimum detectable acetylene of 5 x 10(-6), with signal-noise ratio of 3, was also achieved by experiments. PMID:20496683

  2. Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures

    NASA Astrophysics Data System (ADS)

    Martín de la Cruz, M. C.; Gonzalez Vilas, L.; Yarovenko, N.; Spyrakos, E.; Torres Palenzuela, J. M.

    2013-08-01

    Biofuel production from microalgae can be both sustainable and economically viable. Particularly in the case of algal growth in wastewater an extra benefit is the removal or biotransformation of pollutants from these types of waters. A continuous monitoring system of the microalgae status and the concentration of different wastewater contaminants could be of great help in the biomass production and the water characterisation. In this study we present a system where spectral fluorescence signature (SFS) techniques are used along with absorption measurements to monitor microalgae cultures in wastewater and other mediums. This system aims to optimise the microalgae production for biofuel applications or other uses and was developed and tested in prototype indoor photo-bioreactors at the University of Vigo. SFS techniques were applied using the fluorescence analyser INSTAND-SCREENER developed by Laser Diagnostic Instruments AS. INSTAND-SCREENER permits wavelength scanning in two modes, one in UV and another in VIS. In parallel, it permits the on-line monitoring and rapid analysis of both water quality and phytoplankton status without prior treatment of the sample. Considering that different contaminants and microalgae features (density, status etc.) have different spectral signatures of fluorescence and absorption properties, it is possible to characterise them developing classification libraries. Several algorithms were used for the classification. The implementation of this system in an outdoor raceway reactor in a Spanish wastewater treatment plant is also discussed. This study was part of the Project EnerBioAlgae (http://www.enerbioalgae.com/), which was funded by the Interreg SUDOE and led by the University of Vigo.

  3. Fourier transform techniques for measuring absorption of transient species in optical limiting materials

    NASA Astrophysics Data System (ADS)

    Han, Yanong; Sonnenberg, Wendi; Short, Kurt W.; Spangler, Lee H.

    1999-10-01

    We have developed methods of measuring absorption of transient species utilizing stepped-scan Fourier transform interferometry that allows a combination of broad spectral coverage (10,000 - 15,000 cm-1 per spectrum), good spectral resolution, and up to ns temporal resolution with possibilities of extension to the ps domain. Nanosecond, psec or fsec laser systems, tunable from UV to IR can be used as the pump source to prepare the transient species. The absorption of that species is measured with broadband, incoherent light and can be simultaneously time and frequency resolved.

  4. Quantitative filter technique measurements of spectral light absorption by aquatic particles using a portable integrating cavity absorption meter (QFT-ICAM).

    PubMed

    Röttgers, Rüdiger; Doxaran, David; Dupouy, Cecile

    2016-01-25

    The accurate determination of light absorption coefficients of particles in water, especially in very oligotrophic oceanic areas, is still a challenging task. Concentrating aquatic particles on a glass fiber filter and using the Quantitative Filter Technique (QFT) is a common practice. Its routine application is limited by the necessary use of high performance spectrophotometers, distinct problems induced by the strong scattering of the filters and artifacts induced by freezing and storing samples. Measurements of the sample inside a large integrating sphere reduce scattering effects and direct field measurements avoid artifacts due to sample preservation. A small, portable, Integrating Cavity Absorption Meter setup (QFT-ICAM) is presented, that allows rapid measurements of a sample filter. The measurement technique takes into account artifacts due to chlorophyll-a fluorescence. The QFT-ICAM is shown to be highly comparable to similar measurements in laboratory spectrophotometers, in terms of accuracy, precision, and path length amplification effects. No spectral artifacts were observed when compared to measurement of samples in suspension, whereas freezing and storing of sample filters induced small losses of water-soluble pigments (probably phycoerythrins). Remaining problems in determining the particulate absorption coefficient with the QFT-ICAM are strong sample-to-sample variations of the path length amplification, as well as fluorescence by pigments that is emitted in a different spectral region than that of chlorophyll-a. PMID:26832563

  5. Measurement of Organics Using Three FTIR Techniques: Absorption, Attenuated Total Reflectance, and Diffuse Reflectance

    NASA Astrophysics Data System (ADS)

    Gebel, M. E.; Kaleuati, M. A.; Finlayson-Pitts, B. J.

    2003-06-01

    This paper describes an undergraduate junior- and senior-level instrumental analysis experiment that uses three infrared analysis techniques: conventional transmission spectroscopy, attenuated total reflection (ATR) spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Using transmission spectroscopy, methyl t-butyl ether, MTBE, in a state-supplied certification gasoline was measured to be 11.3 ± 0.4 % (v/v, 2s), in agreement with the stated MTBE content of 10.9% (v/v). Measurements were also carried out on various brands of commercial gasoline and MTBE was found to vary from 9.2 to 12.2% (v/v). ATR was used to measure the ethanol content of different brands of vodka, which ranged from 36 to 40 % (v/v) in agreement with the labeled concentration of 40% (v/v). This part of the experiment highlights the significant advantages of using ATR for the analysis of aqueous solutions that cannot be carried out using normal transmission spectroscopy. Finally, DRIFTS measurements were made of total hydrocarbons in six soil samples. The results ranged from below the detection limit of 120 ppm (w/w) for soil from a path at a residential home to 915 ppm (w/w) for a sample from the center planter of a gas station. This part of the experiment illustrates the advantages of using DRIFTS to analyze solids compared to making pellets or mulls. This experiment is carried out during one seven-hour laboratory period.

  6. A technique for measurement of material damping in metals. [absorption of structural vibration

    NASA Technical Reports Server (NTRS)

    Heine, J. C.

    1976-01-01

    The paper outlines the theory, design, and application of an apparatus based on the single beam resonant dwell technique to determine the damping capacity of metallic materials by measuring the response of a structural element to excitation at a modal frequency. In this apparatus, a cantilever beam specimen of a test material is clamped to a bar which is connected at one end to an electromagnetic shaker and at the other to a heavy base. The thickness of the bar at the base end is reduced by two saw cuts to provide a pivot around which the remainder of the bar can rotate when excited by the shaker which is connected to the bar by a rod passing through a hole in the base. The response of the supporting system to shaker excitation is measured with an accelerometer mounted on the bar at the root of the specimen. Specimen response is measured optically with a low-power microscope with a reticle. Specimen loss factor is determined in terms of acceleration at the beam root, beam tip displacement, and the beam natural frequency.

  7. Analysis for nonlinear inversion technique developed to estimate depth-distribution of absorption by spatially resolved backscattering measurement

    NASA Astrophysics Data System (ADS)

    Nishida, Kazuhiro; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi

    2015-03-01

    We have proposed a new nonlinear inversion technique to estimate the spatial distribution of the absorption coefficient (μa) in the depth direction of a turbid medium by spatially resolved backscattering measurement. With this technique, we can obtain cross-sectional image of μa as deep as the backscattered light traveled even when the transmitted light through the medium cannot be detected. In this technique, the depth distribution of absorption coefficient is determined by iterative calculation using the spatial path-length distribution (SPD) of traveled photons as a function of source-detector distance. In this calculation, the variance of path-length of many photons in each layer is also required. The SPD and the variance of path-length are obtained by Monte Carlo simulation using a known reduced scattering coefficient (μs'). Therefore, we need to know the μs' of the turbid medium beforehand. We have shown in computer simulation that this technique works well when the μs' is the typical values of mammalian body tissue, or 1.0 /mm. In this study, the accuracy of the μa estimation was analyzed and its dependence on the μs' was clarified quantitatively in various situations expected in practice. 10% deviations in μs' resulted in about 30% error in μa estimation, in average. This suggested that the measurement or the appropriate estimation of μs' is required to utilize the proposed technique effectively. Through this analysis, the effectiveness and the limitation of the newly proposed technique were clarified, and the problems to be solved were identified.

  8. Semi-Empirical Validation of the Cross-Band Relative Absorption Technique for the Measurement of Molecular Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S

    2013-01-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). . The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  9. Semi-empirical validation of the cross-band relative absorption technique for the measurement of molecular mixing ratios

    NASA Astrophysics Data System (ADS)

    Pliutau, Denis; Prasad, Narasimha S.

    2013-05-01

    Studies were performed to carry out semi-empirical validation of a new measurement approach we propose for molecular mixing ratios determination. The approach is based on relative measurements in bands of O2 and other molecules and as such may be best described as cross band relative absorption (CoBRA). The current validation studies rely upon well verified and established theoretical and experimental databases, satellite data assimilations and modeling codes such as HITRAN, line-by-line radiative transfer model (LBLRTM), and the modern-era retrospective analysis for research and applications (MERRA). The approach holds promise for atmospheric mixing ratio measurements of CO2 and a variety of other molecules currently under investigation for several future satellite lidar missions. One of the advantages of the method is a significant reduction of the temperature sensitivity uncertainties which is illustrated with application to the ASCENDS mission for the measurement of CO2 mixing ratios (XCO2). Additional advantages of the method include the possibility to closely match cross-band weighting function combinations which is harder to achieve using conventional differential absorption techniques and the potential for additional corrections for water vapor and other interferences without using the data from numerical weather prediction (NWP) models.

  10. Measurement of Hydrogen Absorption in Ternary Alloys with Volumetric (Sieverts Loop) Techniques

    SciTech Connect

    Aceves, S.

    2015-10-26

    The Sieverts loop is an inexpensive, robust and reliable methodology for calculating hydrogen absorption in materials [1]. In this approach, we start by storing a sample of the material being tested in the volume Vcell (Figure 1) and initiate the process by producing a high vacuum in the system while the material sample is heated to eliminate (most of) the hydrogen and other impurities previously absorbed. The system typically operates isothermally, with the volume Vref at ambient temperature and the sample at a temperature of interest – high enough to liquefy the alloy for the current application to nuclear fusion.

  11. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  12. Pseudorandom noise code-based technique for thin-cloud discrimination with CO2 and O2 absorption measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.

    2011-12-01

    NASA Langley Research Center is working on a continuous wave (cw) laser-based remote sensing scheme for the detection of CO2 and O2 from space-based platforms suitable for an active sensing of CO2 emissions over nights, days, and seasons (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multifrequency, intensity modulated cw laser absorption spectrometer operating at 1.57 μm for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a pseudonoise code-based technique for cloud and aerosol discrimination applications. The possibility of using maximum length sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated. Proof-of-concept experiments carried out using a sonar-based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths.

  13. Pseudorandom Noise Code-Based Technique for Thin Cloud Discrimination with CO2 and O2 Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.

    2011-01-01

    NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a pseudo noise (PN) code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths.

  14. Absorption of Low-Loss Optical Materials Measured at 1064 nm by a Position-Modulated Collinear Photothermal Detection Technique

    NASA Astrophysics Data System (ADS)

    Loriette, Vincent; Boccara, Claude

    2003-02-01

    A collinear photothermal detection bench is described that makes use of a position-modulated heating source instead of the classic power-modulated source. This new modulation scheme increases by almost a factor 2 the sensitivity of a standard mirage bench. This bench is then used to measure the absorption coefficient of OH-free synthetic fused silica at 1064 nm in the parts per 106 range, which, combined with spectrophotometric measurements, confirms that the dominant absorption source is the OH content.

  15. Applications of the direct photon absorption technique for measuring bone mineral content in vivo. Determination of body composition in vivo

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.

    1972-01-01

    The bone mineral content, BMC, determined by monoenergetic photon absorption technique, of 29 different locations on the long bones and vertebral columns of 24 skeletons was measured. Compressive tests were made on bone from these locations in which the maximum load and maximum stress were measured. Also the ultimate strain, modulus of elasticity and energy absorbed to failure were determined for compact bone from the femoral diaphysis and cancellous bone from the eighth through eleventh thoracic vertebrae. Correlations and predictive relationships between these parameters were examined to investigate the applicability of using the BMC at sites normally measured in vivo, i.e. radius and ulna in estimating the BMC and/or strength of the spine or femoral neck. It was found that the BMC at sites on the same bone were highly correlated r = 0.95 or better; the BMC at sites on different bones were also highly interrelated, r = 0.85. The BMC at various sites on the long bones could be estimated to between 10 and 15 per cent from the BMC of sites on the radius or ulna.

  16. Gold analysis by the gamma absorption technique.

    PubMed

    Kurtoglu, Arzu; Tugrul, A Beril

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement. PMID:12485656

  17. Analysis of diffential absorption lidar technique for measurements of anhydrous hydrogen chloride from solid rocket motors using a deuterium fluoride laser

    NASA Technical Reports Server (NTRS)

    Bair, C. H.; Allario, F.

    1977-01-01

    An active optical technique (differential absorption lidar (DIAL)) for detecting, ranging, and quantifying the concentration of anhydrous HCl contained in the ground cloud emitted by solid rocket motors (SRM) is evaluated. Results are presented of an experiment in which absorption coefficients of HCl were measured for several deuterium fluoride (DF) laser transitions demonstrating for the first time that a close overlap exists between the 2-1 P(3) vibrational transition of the DF laser and the 1-0 P(6) absorption line of HCl, with an absorption coefficient of 5.64 (atm-cm) to the -1 power. These measurements show that the DF laser can be an appropriate radiation source for detecting HCl in a DIAL technique. Development of a mathematical computer model to predict the sensitivity of DIAL for detecting anhydrous HCl in the ground cloud is outlined, and results that assume a commercially available DF laser as the radiation source are presented.

  18. Absorption of low-loss optical materials measured at 1064 nm by a position-modulated collinear photothermal detection technique.

    PubMed

    Loriette, Vincent; Boccara, Claude

    2003-02-01

    A collinear photothermal detection bench is described that makes use of a position-modulated heating source instead of the classic power-modulated source. This new modulation scheme increases by almost a factor 2 the sensitivity of a standard mirage bench. This bench is then used to measure the absorption coefficient of OH-free synthetic fused silica at 1064 nm in the parts per 10(6) range, which, combined with spectrophotometric measurements, confirms that the dominant absorption source is the OH content. PMID:12564484

  19. Technique for determination of human zinc absorption from measurement of radioactivity in a fecal sample or the body

    SciTech Connect

    Payton, K.B.; Flanagan, P.R.; Stinson, E.A.; Chodirker, D.P.; Chamberlain, M.J.; Valberg, L.S.

    1982-12-01

    The intestinal absorption of an oral dose of zinc chloride was determined from the ratio of /sup 65/Zn and a nonabsorbed radioactive marker, /sup 51/Cr, present in a single stool specimen or the body 24-72 h later. Chromic chloride had no effect on (/sup 65/Zn)zinc chloride absorption and /sup 51/Cr and /sup 65/Zn had similar intestinal transit times. In 17 healthy control subtects given 92 mumol ZnCl/sub 2/ labeled with 0.5 microCi /sup 65/Zn, 52 +/- 14% (SD) of the dose was taken up from the lumen. Intestinal absorption of /sup 65/Zn at 24 h correlated closely with /sup 65/Zn body retention of zinc measured by whole-body counting 7 days later, r . 0.995. Neither zinc absorption nor zinc retention correlated with blood leukocyte zinc levels. An average of 55% of /sup 65/Zn was retained in the body from doses of 18-90 mumol ZnCl/sub 2/ but a progressively smaller proportion of zinc was absorbed from doses of 180-900 mumol. The average absorption and body retention of /sup 65/Zn were significantly reduced in 7 patients with mucosal disease of the proximal intestine but they were not affected by resection of the lower jejunum, ileum, and colon. Thus the absorption of ZnCl/sub 2/ from a 92-mumol dose predominantly takes place by a rate-limited mechanism in the duodenum and upper jejunum.

  20. COMPENSATIONAL THREE-WAVELENGTH DIFFERENTIAL-ABSORPTION LIDAR TECHNIQUE FOR REDUCING THE INFLUENCE OF DIFFERENTIAL SCATTERING ON OZONE-CONCENTRATION MEASUREMENTS.

    EPA Science Inventory

    A three-wavelength differential-absorption lidar (DIAL) technique for the UV spectral region is presented that reduces the influence of aerosol differential scattering on measured O3-concentration profiles. The principal advantage of this approach is that, to a good first approxi...

  1. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.

  2. Temperature Independent Differential Absorption Spectroscopy (tidas) and Simplified Atmospheric Air Mass Factor (samf) Techniques For The Measurement of Ozone Vertical Content From Gome Data

    NASA Astrophysics Data System (ADS)

    Zehner, C.; Casadio, S.; di Sarra, A.; Putz, E.

    A simple technique for the fast retrieval of ozone vertical amount from GOME (Global Ozone Monitoring Experiment) spectra is described in detail. The TIDAS (Tempera- ture Independent Differential Absorption Spectroscopy) technique uses GOME's ca- pability of measuring atmospheric spectra over a broad wavelength range with high spectral resolution. The ozone slant columns are retrieved by applying the Beer- Lambert law to two spectral windows where the ozone absorption cross sections show similar temperature dependence. A simple geometric air mass factor is computed for a fixed height spherical atmosphere (SAMF: Simplified Atmospheric air Mass Factor) to retrieve ozone vertical amounts. Vertical ozone values are compared to the GDP (GOME Data Processor), and to ground based ozone measurements.

  3. Development of a 2-micron Pulsed Differential Absorption Lidar for Atmospheric CO2 Concentration Measurement by Direct Detection Technique

    NASA Astrophysics Data System (ADS)

    Yu, J.; Singh, U. N.; Petros, M.; Bai, Y.

    2011-12-01

    Researchers at NASA Langley Research Center are developing a 2-micron Pulsed Differential Absorption Lidar instrument for ground and airborne measurements via direct detection method. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capbility by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. A key component of the CO2 DIAL system, transceiver, is an existing, airborne ready, robust hardware which can provide 250mJ at 10Hz with double pulse format specifically designed for DIAL instrument. The exact wavelengths of the transceiver are controlled by well defined CW seed laser source to provide the required injection source for generating on-and-off line wavelength pulses sequentially. The compact, rugged, highly reliable transceiver is based on the unique Ho:Tm:YLF high-energy 2-micron pulsed laser technology. All the optical mounts are custom designed and have space heritage. They are designed to be adjustable and lockable and hardened to withstand vibrations that can occur in airborne operation. For the direct detection lidar application, a large primary mirror size is preferred. A 14 inch diameter telescope will be developed for this program. The CO2 DIAL/IPDA system requires many electronic functions to operate. These include diode, RF, seed laser, and PZT drivers; injection seeding detection and control; detector power supplies; and analog inputs to sample various sensors. Under NASA Laser Risk Reduction Program (LRRP), a control unit Compact Laser Electronics (CLE), is developed for the controlling the coherent wind lidar transceiver. Significant modifications and additions are needed to update it for CO2 lidar controls. The data acquisition system was built for ground CO2 measurement demonstration. The software will be updated for

  4. Application of a diode-laser absorption technique with the d(2) transition of atomic rb for hypersonic flow-field measurements.

    PubMed

    Trinks, O; Beck, W H

    1998-10-20

    With a first application of semiconductor lasers to absorption measurements of seeded atomic Rb in high-enthalpy flow fields, a diagnostic technique for time-resolved determination of flow velocity and gas temperature with a line-shape analysis was developed. In our measurements a GaAlAs diode laser was used to scan repetitively at 15 kHz over 1.3 cm(-1) across the D(2) resonance transition (5S(1/2) ? 5P(3/2), 780.2 nm) of seeded atomic Rb to obtain multiple absorption line shapes. The time-dependent signal contains highly resolved spectral line-shape information, which we interpret by fitting the spectrally resolved line shapes to Voigt profiles. Kinetic temperatures in the range 900-1400 K and gas velocities in the range 3900-6200 ms(-1) were obtained from the Doppler-broadened component of the line shape and from the Doppler shift, respectively, of the absorption frequency. PMID:18301526

  5. A two-laser beam technique for improving the sensitivity of low frequency open path tunable diode laser absorption spectrometer (OP-TDLAS) measurements

    NASA Astrophysics Data System (ADS)

    Mohammad, Israa L.; Anderson, Gary T.; Chen, Youhua

    2013-09-01

    Open path tunable diode-laser absorption spectroscopy (OP-TDLAS) is a promising technique to detect low concentrations of possible biogenic gases on Mars. This technique finds the concentration of a gas by measuring the amount of laser light absorbed by gaseous molecules at a specific wavelength. One of the major factors limiting sensitivity in the TDLAS systems operating at low modulation frequencies is 1/f noise. 1/f noise is minimized in many spectroscopy systems by the use of high frequency modulation techniques. However, these techniques require complex instruments that include reference cells and other devices for calibration, making them relatively large and bulky. We are developing a spectroscopy system for space applications that requires small, low mass and low power instrumentation, making the high frequency techniques unsuitable. This paper explores a new technique using two-laser beam to reduce the affect of 1/f noise and increase the signal strength for measurements made at lower frequencies. The two lasers are excited at slightly different frequencies. An algorithm is used to estimate the noise in the second harmonic from the combined spectra of both lasers. This noise is subtracted from the signal to give a more accurate measurement of gas concentration. The error in estimation of 1/f noise is negligible as it corresponds to noise level made at much higher frequencies. Simulation results using ammonia gas and two lasers operating at 500 and 510 Hz respectively shows that this technique is able to decrease the error in estimation of gas concentration to 1/6 its normal value.

  6. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  7. A two-laser beam technique for improving the sensitivity of low frequency open path tunable diode laser absorption spectrometer (OP-TDLAS) measurements

    NASA Astrophysics Data System (ADS)

    Mohammad, Isra'a. Lateef

    Open path tunable diode-laser absorption spectroscopy (OP-TDLAS) is a promising technique that is proposed for detecting low concentrations of possible biogenic gases on Mars. This technique determines the concentration of a gas by measuring the amount of laser light absorbed by molecules at a specific wavelength that is characteristic of those molecules. One of the major factors limiting sensitivity in the OP-TDLAS systems is noise. At low modulation frequencies, 1/f noise usually dominates. This 1/f noise is minimized in many spectroscopy systems by use of high frequency techniques. However, these methods use complex instruments that include reference cells and other devices for calibration, making them relatively large and bulky. We have built a spectroscopy system for space applications that requires small, low mass and low power instrumentation, making the high frequency techniques unsuitable. This work explores a new technique that uses a two-laser beam to reduce the affect of 1/f noise and increase the signal strength for measurements made at lower frequencies. The two lasers are excited at slightly different frequencies. An algorithm is used to estimate the total noise in the second harmonic from the combined spectra of both lasers. This noise is subtracted from the signal to give a more accurate measurement of gas concentration. The error in estimation of 1/f noise is negligible as it corresponds to noise level made at much higher frequencies. Experimental results using ammonia gas and two lasers operating at 500 and 510 Hz respectively shows that this technique reduces the effect of 1/f noise by 1/3 its normal value. Furthermore, the error in estimation of gas concentration is also reduced.

  8. In vivo gallbladder absorption: a new dual-isotope technique

    SciTech Connect

    Conter, R.L.; Porter-Fink, V.; Denbesten, L.; Roslyn, J.J.

    1986-10-01

    Available methods for measuring in vivo gallbladder absorption preclude the use of animals in which hepatic bile enters the gallbladder via accessory or aberrant channels. However, accessory bile ducts are present in many of the animal models currently used in gallstone research. The aim of this study, therefore, was to evaluate a new dual-isotope technique that corrects for accessory bile flow and to compare data on electrolyte and water absorption with those derived from the standard, single-isotope technique. Prairie dogs underwent gallbladder exclusion by cystic duct ligation and common bile duct cannulation. Carbon 14-polyethylene glycol-labeled lactated Ringer's solution was instilled into the gallbladder while tritiated cholic acid was administered intravenously to label the bile acid pool. There is no correlation between water or electrolyte absorption and time, nor between water and electrolyte absorption, when these parameters are calculated by the standard, single-isotope technique. In contrast, use of the dual-isotope technique quantifies accessory bile duct flow and yields a linear increase in water and electrolyte absorption, both of which are time dependent. These data suggest that the dual-isotope technique provides a means to accurately measure in vivo gallbladder absorption in animals with or without accessory bile ducts.

  9. The continuous measurement of hydrogen chloride in the ambient atmosphere using the dual isotope infrared absorption technique

    NASA Technical Reports Server (NTRS)

    Williams, K. G.

    1974-01-01

    The results of a program to develop a prototype gas filter correlation NDIR analyzer capable of providing the required HCl measurement capability, while maintaining an adequate rejection of any other gases anticipated in the atmosphere are presented. Examples of the performance of the prototype analyzer are presented which show an rms noise equivalent concentration of 0.06 ppm of HCl was achieved while maintaining an electronically determined 10% to 90% time response to gas samples of about 2 seconds. No measureable response was observed to CO2, CO, and H2O while maintaining an adequate rejection of the hydrocarbons, for example CH4 and n-hexane. The experiments were performed which demonstrate that the span stability of the HCl gas filter correlation analyzer is unaffected by the presence of water vapor and which support the belief that the incorporation of a relatively open-volume, multiple path sample cell into the instrument would enable ground station as well as airborne measurements of trace quantities of HCl in the ambient atmosphere to be performed.

  10. Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor

    SciTech Connect

    Schlaepfer, D.; Itten, K.I.; Borel, C.C.; Keller, J.

    1998-09-01

    Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, which is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.

  11. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    ERIC Educational Resources Information Center

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  12. REMOTE MONITORING OF GASEOUS POLLUTANTS BY DIFFERENTIAL ABSORPTION LASER TECHNIQUES

    EPA Science Inventory

    A single-ended laser radar (LIDAR) system was designed, built, and successfully operated to measure range-resolved concentrations of NO2, SO2, and O3 in the atmosphere using a Differential Absorption of Scattered Energy (DASE) LIDAR technique. The system used a flash-lamp pumped ...

  13. Ultrafast transient absorption measurements of heme proteins

    NASA Astrophysics Data System (ADS)

    Ye, Xiong; Demidov, Andrey; Wang, Wei; Christian, James; Champion, Paul

    1998-03-01

    Transient absorption spectra reveal the dynamics and intermediate states of the heme active site after ligand photodissociation, which helps clarify the physical process of ligand dissociation and geminate recombination. To measure the transient absorption spectra, we apply a femtosecond pump-probe technique with frequency resolved detection using a multichannel diode array. The femtosecond pulse output from a regenerative laser amplifier system is split in two; one beam pumps the optical parametric amplifier to produce a tunable wavelength pump pulse, the other beam generates a white light continuum that is varied in time with respect to pump pulse and probe the transient absorbance of the sample. We make a comparative study of myoglobin with different ligands, mutants and pH conditions.

  14. Modeling optical absorption for thermoreflectance measurements

    NASA Astrophysics Data System (ADS)

    Yang, Jia; Ziade, Elbara; Schmidt, Aaron J.

    2016-03-01

    Optical pump-probe techniques based on thermoreflectance, such as time domain thermoreflectance and frequency domain thermoreflectance (FDTR), have been widely used to characterize the thermal conductivity of thin films and the thermal conductance across interfaces. These techniques typically use a transducer layer to absorb the pump light and improve the thermoreflectance signal. The transducer, however, complicates the interpretation of the measured signal because the approximation that all the energy from the pump beam is deposited at the transducer surface is not always accurate. In this paper, we consider the effect of laser absorption in the top layer of a multilayer sample, and derive an analytical solution for the thermoreflectance signal in the diffusion regime based on volumetric heating. We analyze the measurement sensitivity to the pump absorption depth for transducers with different thermal conductivities, and investigate the additional effect of probe laser penetration depth on the measured signal. We validate our model using FDTR measurements on 490 nm thick amorphous silicon films deposited on fused silica and silicon substrates.

  15. Non-Heme Iron Absorption and Utilization from Typical Whole Chinese Diets in Young Chinese Urban Men Measured by a Double-Labeled Stable Isotope Technique

    PubMed Central

    Yang, Lichen; Zhang, Yuhui; Wang, Jun; Huang, Zhengwu; Gou, Lingyan; Wang, Zhilin; Ren, Tongxiang; Piao, Jianhua; Yang, Xiaoguang

    2016-01-01

    Background This study was to observe the non-heme iron absorption and biological utilization from typical whole Chinese diets in young Chinese healthy urban men, and to observe if the iron absorption and utilization could be affected by the staple food patterns of Southern and Northern China. Materials and Methods Twenty-two young urban men aged 18–24 years were recruited and randomly assigned to two groups in which the staple food was rice and steamed buns, respectively. Each subject received 3 meals containing approximately 3.25 mg stable 57FeSO4 (the ratio of 57Fe content in breakfast, lunch and dinner was 1:2:2) daily for 2 consecutive days. In addition, approximately 2.4 mg 58FeSO4 was administered intravenously to each subject at 30–60 min after dinner each day. Blood samples were collected from each subject to measure the enrichment of the 57Fe and 58Fe. Fourteen days after the experimental diet, non-heme iron absorption was assessed by measuring 57Fe incorporation into red blood cells, and absorbed iron utilization was determined according to the red blood cell incorporation of intravenously infused 58Fe SO4. Results Non-heme iron intake values overall, and in the rice and steamed buns groups were 12.8 ±2.1, 11.3±1.3 and 14.3±1.5 mg, respectively; the mean 57Fe absorption rates were 11±7%, 13±7%, and 8±4%, respectively; and the mean infused 58Fe utilization rates were 85±8%, 84±6%, and 85±10%, respectively. There was no significantly difference in the iron intakes, and 57Fe absorption and infused 58Fe utilization rates between rice and steamed buns groups (all P>0.05). Conclusion We present the non-heme iron absorption and utilization rates from typical whole Chinese diets among young Chinese healthy urban men, which was not affected by the representative staple food patterns of Southern and Northern China. This study will provide a basis for the setting of Chinese iron DRIs. PMID:27099954

  16. Differential absorption radar techniques: water vapor retrievals

    NASA Astrophysics Data System (ADS)

    Millán, Luis; Lebsock, Matthew; Livesey, Nathaniel; Tanelli, Simone

    2016-06-01

    Two radar pulses sent at different frequencies near the 183 GHz water vapor line can be used to determine total column water vapor and water vapor profiles (within clouds or precipitation) exploiting the differential absorption on and off the line. We assess these water vapor measurements by applying a radar instrument simulator to CloudSat pixels and then running end-to-end retrieval simulations. These end-to-end retrievals enable us to fully characterize not only the expected precision but also their potential biases, allowing us to select radar tones that maximize the water vapor signal minimizing potential errors due to spectral variations in the target extinction properties. A hypothetical CloudSat-like instrument with 500 m by ˜ 1 km vertical and horizontal resolution and a minimum detectable signal and radar precision of -30 and 0.16 dBZ, respectively, can estimate total column water vapor with an expected precision of around 0.03 cm, with potential biases smaller than 0.26 cm most of the time, even under rainy conditions. The expected precision for water vapor profiles was found to be around 89 % on average, with potential biases smaller than 77 % most of the time when the profile is being retrieved close to surface but smaller than 38 % above 3 km. By using either horizontal or vertical averaging, the precision will improve vastly, with the measurements still retaining a considerably high vertical and/or horizontal resolution.

  17. Novel absorption detection techniques for capillary electrophoresis

    SciTech Connect

    Xue, Y.

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the {mu}M level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  18. Atmospheric Measurements by Cavity Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Wu, Tao; Coeur-Tourneur, Cécile; Fertein, Eric; Gao, Xiaoming; Zhao, Weixiong; Zhang, Weijun; Chen, Weidong

    2015-04-01

    Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the infrared spectral domain [1]. In this presentation, we will overview our recent development and applications of cavity enhanced absorption spectroscopy techniques for in situ optical monitoring of chemically reactive atmospheric species (such as HONO, NO3, NO2, N2O5) in intensive campaigns [2] and/or in smog chamber studies [3]. These field deployments demonstrated that modern photonic technologies (newly emergent light sources combined with high sensitivity spectroscopic techniques) can provide a useful tool to improve our understanding of tropospheric chemical processes which affect climate, air quality, and the spread of pollution. Experimental detail and preliminary results will be presented. Acknowledgements. The financial support from the French Agence Nationale de la Recherche (ANR) under the NexCILAS (ANR-11-NS09-0002) and the CaPPA (ANR-10-LABX-005) contracts is acknowledged. References [1] X. Cui, C. Lengignon, T. Wu, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez,L. Croisé, W. Chen, et al., "Photonic Sensing of the Atmosphere by absorption spectroscopy", J. Quant. Spectrosc. Rad. Transfer 113 (2012) 1300-1316 [2] T. Wu, Q. Zha, W. Chen, Z. XU, T. Wang, X. He, "Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong", Atmos. Environ. 95 (2014) 544-551 [3] T. Wu, C. Coeur-Tourneur, G. Dhont,A. Cassez, E. Fertein, X. He, W. Chen,"Application of IBBCEAS to kinetic study of NO3 radical formation from O3 + NO2 reaction in an atmospheric simulation chamber", J. Quant. Spectrosc. Rad. Transfer 133 (2014)199-205

  19. Remote Raman measurement techniques

    NASA Astrophysics Data System (ADS)

    Leonard, D. A.

    1981-02-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  20. Remote Raman measurement techniques

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.

    1981-01-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  1. Remote Raman Measurement Techniques

    NASA Astrophysics Data System (ADS)

    Leonard, Donald A.

    1981-02-01

    The use of laser Raman measurement techniques in remote sensing applications is surveyed. A feasibility index is defined as a means to characterize the practicality of a given remote Raman measurement application. Specific applications of Raman scattering to the measurement of atmospheric water vapor profiles, methane plumes from liquid natural gas spills, and subsurface ocean temperature profiles are described. This paper will survey the use of laser Raman measurement techniques in remote sensing applications using as examples specific systems that the Computer Genetics Corporation (CGC) group has developed and engineered.

  2. Sensorimotor System Measurement Techniques

    PubMed Central

    Riemann, Bryan L.; Myers, Joseph B.; Lephart, Scott M.

    2002-01-01

    Objective: To provide an overview of currently available sensorimotor assessment techniques. Data Sources: We drew information from an extensive review of the scientific literature conducted in the areas of proprioception, neuromuscular control, and motor control measurement. Literature searches were conducted using MEDLINE for the years 1965 to 1999 with the key words proprioception, somatosensory evoked potentials, nerve conduction testing, electromyography, muscle dynamometry, isometric, isokinetic, kinetic, kinematic, posture, equilibrium, balance, stiffness, neuromuscular, sensorimotor, and measurement. Additional sources were collected using the reference lists of identified articles. Data Synthesis: Sensorimotor measurement techniques are discussed with reference to the underlying physiologic mechanisms, influential factors and locations of the variable within the system, clinical research questions, limitations of the measurement technique, and directions for future research. Conclusions/Recommendations: The complex interactions and relationships among the individual components of the sensorimotor system make measuring and analyzing specific characteristics and functions difficult. Additionally, the specific assessment techniques used to measure a variable can influence attained results. Optimizing the application of sensorimotor research to clinical settings can, therefore, be best accomplished through the use of common nomenclature to describe underlying physiologic mechanisms and specific measurement techniques. PMID:16558672

  3. The attribute measurement technique

    SciTech Connect

    Macarthur, Duncan W; Langner, Diana; Smith, Morag; Thron, Jonathan; Razinkov, Sergey; Livke, Alexander

    2010-01-01

    Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.

  4. New analytical technique for carbon dioxide absorption solvents

    SciTech Connect

    Pouryousefi, F.; Idem, R.O.

    2008-02-15

    The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive index models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.

  5. Measurement of plasma temperature and density using laser absorption

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Stallcop, J. R.

    1973-01-01

    A laser radiation absorption technique, suitable for temporal measurement of the electron density, the temperature, or a simultaneous determination of both, in an LTE plasma, is discussed. The theoretical calculation of the absorption coefficient for a hydrogen plasma is outlined; some results are presented for visible wavelengths. Measurements of electron density and temperature are presented and shown to be in good agreement with those values obtained by other methods. Finally, the possible use of the argon ion laser for simultaneous electron density and temperature measurement is discussed, and the theoretical curves necessary for its application to hydrogen plasma diagnostics are shown.

  6. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  7. Plasma absorption evidence via chirped pulse spectral transmission measurements

    SciTech Connect

    Jedrkiewicz, Ottavia; Minardi, Stefano; Couairon, Arnaud; Jukna, Vytautas; Selva, Marco; Di Trapani, Paolo

    2015-06-08

    This work aims at highlighting the plasma generation dynamics and absorption when a Bessel beam propagates in glass. We developed a simple diagnostics allowing us to retrieve clear indications of the formation of the plasma in the material, thanks to transmission measurements in the angular and wavelength domains. This technique featured by the use of a single chirped pulse having the role of pump and probe simultaneously leads to results showing the plasma nonlinear absorption effect on the trailing part of the pulse, thanks to the spectral-temporal correspondence in the measured signal, which is also confirmed by numerical simulations.

  8. Detector absorptivity measuring method and apparatus

    NASA Technical Reports Server (NTRS)

    Sheets, R. E. (Inventor)

    1976-01-01

    A method and apparatus for measuring the absorptivity of a radiation detector by making the detector an integral part of a cavity radiometer are described. By substituting the detector for the surface of the cavity upon which the radiation first impinges a comparison is made between the quantity of radiation incident upon the detector and the quantity reflected from the detector. The difference between the two is a measurement of the amount of radiation absorbed by the detector.

  9. OH measurement by laser light absorption

    NASA Technical Reports Server (NTRS)

    Perner, D.

    1986-01-01

    Since the first attempt to measure atmospheric hydroxyl radicals by optical absorption in 1975 (Perner et al., 1976) this method has been continuously developed further and its major obstacles and limitations are known today. The laser beam needs to be expanded in order to reduce the beam divergence. At the same time the energy density of the laser beam which produces OH via ozone photolysis is reduced to such an extent that the self-produced OH concentration ranges well below the atmospheric value. Atmospheric absorptions should be observed over a wide spectral range so that not only the OH radicals are properly identified by several rotational lines but their absorption can be corrected for interfering absorptions from other air constituents as SO2, CH2O, CS2, etc., which can be identified in a wide spectral range with more confidence. Air turbulence demands fast spectral scanning or probing on and off the absorption line. Energy requirements should be kept small in field operations. In the experiment frequency doubled dye laser pulses at 308 nm are produced. The picosecond light pulses are expected to show a smooth profile (light intensity against wavelength) which will be broadened to the required spectral width according to the uncertainty principle. The pump laser will be an optoacoustically modulated Nd:YAG laser.

  10. Aerodynamic measurement techniques. [laser based diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.

    1976-01-01

    Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.

  11. Measurements of scattering and absorption in mammalian cell suspensions

    SciTech Connect

    Mourant, J.R.; Johnson, T.M.; Freyer, J.P.

    1996-03-01

    During the past several years a range of spectroscopies, including fluorescence and elastic-scatter spectroscopy, have been investigated for optically based detection of cancer and other tissue pathologies. Both elastic-scatter and fluorescence signals depend, in part, on scattering and absorption properties of the cells in the tissue. Therefore an understanding of the scattering and absorption properties of cells is a necessary prerequisite for understanding and developing these techniques. Cell suspensions provide a simple model with which to begin studying the absorption and scattering properties of cells. In this study we have made preliminary measurements of the scattering and absorption properties of suspensions of mouse mammary carcinoma cells (EMT6) over a broad wavelength range (380 nm to 800 nm).

  12. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  13. The measurement of absolute absorption of millimeter radiation in gases - The absorption of CO and O2

    NASA Technical Reports Server (NTRS)

    Read, William G.; Cohen, Edward A.; Pickett, Herbert M.; Hillig, Kurt W., II

    1988-01-01

    An apparatus is described that will measure absolute absorption of millimeter radiation in gases. The method measures the change in the quality factor of a Fabry-Perot resonator with and without gas present. The magnitude of the change is interpreted in terms of the absorption of the lossy medium inside the resonator. Experiments have been performed on the 115-GHz CO line and the 119-GHz O2 line at two different temperatures to determine the linewidth parameter and the peak absorption value. These numbers can be combined to give the integrated intensity which can be accurately calculated from results of spectroscopy measurements. The CO results are within 2 percent percent of theoretically predicted valves. Measurements on O2 have shown that absorption can be measured as accurately as 0.5 dB/km with this technique. Results have been obtained for oxygen absolute absorption in the 60-80-GHz region.

  14. Direct Measurement of Aerosol Absorption Using Photothermal Interferometry

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J.; Lee, J. A.

    2007-12-01

    Efforts to bound the contribution of light absorption in aerosol radiative forcing is still very much an active area of research in large part because aerosol extinction is dominated by light scattering. In response to this and other technical issues, the aerosol community has actively pursued the development of new instruments to measure aerosol absorption (e.g., photoacoustic spectroscopy (PAS) and multi-angle absorption photometer (MAAP)). In this poster, we introduce the technique of photothermal interferometry (PTI), which combines the direct measurement capabilities of photothermal spectroscopy (PTS) with high-sensitivity detection of the localized heating brought about by the PT process through interferometry. At its most fundamental level, the PTI technique measures the optical pathlength change that one arm of an interferometer (referred to as the 'probe' arm) experiences relative to the other arm of the interferometer (called the 'reference' arm). When the two arms are recombined at a beamsplitter, an interference pattern is created. If the optical pathlength in one arm of the interferometer changes, a commensurate shift in the interference pattern will take place. For the specific application of measuring light absorption, the heating of air surrounding the light- absorbing aerosol following laser illumination induces the optical pathlength change. This localized heating creates a refractive index gradient causing the probe arm of the interferometer to take a slightly different optical pathlength relative to the unperturbed reference arm. This effect is analogous to solar heating of a road causing mirages. As discussed above, this altered optical pathlength results in a shift in the interference pattern that is then detected as a change in the signal intensity by a single element detector. The current optical arrangement utilizes a folded Jamin interferometer design (Sedlacek, 2006) that provides a platform that is robust with respect to sensitivity

  15. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    NASA Astrophysics Data System (ADS)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  16. Element selective detection of molecular species applying chromatographic techniques and diode laser atomic absorption spectrometry.

    PubMed

    Kunze, K; Zybin, A; Koch, J; Franzke, J; Miclea, M; Niemax, K

    2004-12-01

    Tunable diode laser atomic absorption spectroscopy (DLAAS) combined with separation techniques and atomization in plasmas and flames is presented as a powerful method for analysis of molecular species. The analytical figures of merit of the technique are demonstrated by the measurement of Cr(VI) and Mn compounds, as well as molecular species including halogen atoms, hydrogen, carbon and sulfur. PMID:15561625

  17. Measurement of the absorption coefficient of acoustical materials using the sound intensity method

    NASA Technical Reports Server (NTRS)

    Atwal, Mahabir S.; Crocker, Malcolm J.

    1987-01-01

    In this study the possibility of using the two-microphone sound intensity technique to measure the normal incidence and the random incidence sound absorption coefficient was investigated. The normal incidence absorption coefficient was determined by measuring the intensity incidence on the sample and the intensity reflected by the sample placed in an anechoic chamber. The random incidence absorption coefficient was determined by measuring the intensity incident on the sample and the intensity reflected by the sample placed in a reverberation chamber. Absorption coefficient results obtained by the sound intensity technique were compared with standard techniques, namely the reverberation chamber and the standing wave tube. The major advantages of using the sound intensity technique are that it permits 'in situ' measurements and the absorption coefficient for a large range of frequencies can be obtained from a single measurement.

  18. Measurements of Scattering and Absorption Changes in Muscle and Brain

    NASA Astrophysics Data System (ADS)

    Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela; Gratton, Gabriele; Fabiani, Monica

    1997-06-01

    Non-invasive techniques for the study of human brain function based on changes of the haemoglobin content or on changes of haemoglobin saturation have recently been proposed. Among the new methods, near-infrared transmission and reflection measurements may have significant advantages and complement well-established methods such as functional magnetic resonance imaging and positron emission tomography. Near-infrared measurements can be very fast, comparable in speed to electrophysiological measurements, but are better localized. We will present the demonstration of measurements of millisecond signals due to brain activity in humans following stimulation of the visual cortex. However, major unresolved questions remain about the origin of the signals observed. Optical measurements on exposed cortex in animals show that both the absorption and the scattering coefficient are affected by neural activity. Model calculations show that the signals we detected may originate from rapid changes of the scattering coefficient in a region about 1 to 2 cm below the scalp. We discuss our measurement protocol, which is based on a frequency-domain instrument, and the algorithm to separate the absorption from the scattering contribution in the overall optical response. Our method produces excellent separation between scattering and absorption in relatively homogeneous masses such as large muscles. The extrapolation of our measurement protocol to a complex structure such as the human head is critically evaluated.

  19. Absorption Measure Distribution in Mrk 509

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Różańska, A.; Sobolewska, M.; Czerny, B.

    2015-12-01

    In this paper we model the observed absorption measure distribution (AMD) in Mrk 509, which spans three orders of magnitude in ionization level with a single-zone absorber in pressure equilibrium. AMD is usually constructed from observations of narrow absorption lines in radio-quiet active galaxies with warm absorbers. We study the properties of the warm absorber in Mrk 509 using recently published broadband spectral energy distribution observed with different instruments. This spectrum is an input in radiative transfer computations with full photoionization treatment using the titan code. We show that the simplest way to fully reproduce the shape of AMD is to assume that the warm absorber is a single zone under constant total pressure. With this assumption, we found theoretical AMD that matches the observed AMD determined on the basis of the 600 ks reflection grating spectrometer XMM-Newton spectrum of Mrk 509. The softness of the source spectrum and the important role of the free-free emission breaks the usual degeneracy in the ionization state calculations, and the explicit dependence of the depths of AMD dips on density open a new path to the density diagnostic for the warm absorber. In Mrk 509, the implied density is of the order of 108 cm-3.

  20. OPTIMIZING EXPOSURE MEASUREMENT TECHNIQUES

    EPA Science Inventory

    The research reported in this task description addresses one of a series of interrelated NERL tasks with the common goal of optimizing the predictive power of low cost, reliable exposure measurements for the planned Interagency National Children's Study (NCS). Specifically, we w...

  1. Pulsed airborne lidar measurements of atmospheric CO2 column absorption

    NASA Astrophysics Data System (ADS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Kawa, S. Randoph; Biraud, Sebastien

    2010-11-01

    ABSTRACT We report initial measurements of atmospheric CO2 column density using a pulsed airborne lidar operating at 1572 nm. It uses a lidar measurement technique being developed at NASA Goddard Space Flight Center as a candidate for the CO2 measurement in the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. The pulsed multiple-wavelength lidar approach offers several new capabilities with respect to passive spectrometer and other lidar techniques for high-precision CO2 column density measurements. We developed an airborne lidar using a fibre laser transmitter and photon counting detector, and conducted initial measurements of the CO2 column absorption during flights over Oklahoma in December 2008. The results show clear CO2 line shape and absorption signals. These follow the expected changes with aircraft altitude from 1.5 to 7.1 km, and are in good agreement with column number density estimates calculated from nearly coincident airborne in-situ measurements.

  2. Absorption-line measurements of AGN outflows

    NASA Astrophysics Data System (ADS)

    Fields, Dale L.

    Investigations into the elemental abundances in two nearby active galaxies, the narrow-line Seyfert 1 Markarian 1044 and the Seyfert 1 Markarian 279, are reported. Spectra from three space-based observatories HST, FUSE, and CHANDRA, are used to measure absorption lines in material outflowing from the nucleus. I make multi-wavelength comparisons to better convert the ionic column densities into elemental column densities which can then be used to determine abundances (metallicities). Narrow-line Seyfert 1 galaxies are known to have extreme values of a number of properties compared to active galactic nuclei (AGNs) as a class. In particular, emission-line studies have suggested that NLS1s are unusually metal-rich compared to broad-line AGNs of comparable luminosity. To test these suggestions I perform absorption-line studies on the NLS1 Markarian 1044, a nearby and bright AGN. I use lines of H I, C IV, N V, and O VI to properly make the photoionization correction through the software Cloudy and determine abundances of Carbon, Nitrogen and Oxygen. I find two results. The first is that Markarian 1044 has a bulk metallicity greater than five times solar. The second is that the N/C ratio in Markarian 1044 is consistent with a solar mixture. This is in direct contradiction of extrapolations from local H II regions which state N/ C should scale with bulk metallicity. This implies a different enrichment history in Markarian 1044 than in the Galactic disk. I also report discovery of three new low-redshift Lya forest lines with log N HI >= 12:77 in the spectrum of Markarian 1044. This number is consistent with the 2.6 expected Lya forest lines in the path length to Markarian 1044. I also investigate the CHANDRA X-ray spectrum of Markarian 279, a broad-line Seyfert 1. I use a new code, PHASE, to self-consistently model the entire absorption spectrum simultaneously. Using solely the X-ray spectrum I am able to determine the physical parameters of this absorber to a degree only

  3. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    SciTech Connect

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.

  4. Differential Absorption Lidar (DIAL) Measurements from Air and Space

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Ismail, S.; Grant, W. B.

    1998-01-01

    Differential absorption lidar (DIAL) systems have been used for the measurement of ozone, water vapor, and aerosols from aircraft platforms for over 18 years, yielding new insights into atmospheric chemistry, composition, and dynamics in large-scale field experiments conducted all over the world. The successful deployment of the lidar in-space technology experiment (LITE) in September 1994 demonstrated that space-based lidars can also collect valuable information on the global atmosphere. This paper reviews some of the contributions of the NASA Langley Research Center's airborne ozone and water vapor DIAL systems and space-based LITE system to the understanding of the atmosphere and discusses the feasibility and advantages of putting DIAL systems in space for routine atmospheric measurements of ozone and/or water vapor and aerosols and clouds. The technology and applications of the differential absorption lidar (DIAL) technique have progressed significantly since the first DIAL measurements of Schotland, and airborne DIAL measurements of ozone and water vapor are frequently being made in a wide range of field experiments. In addition, plans are underway to develop DIAL systems for use on satellites for continuous global measurements. This paper will highlight the history of airborne lidar and DIAL systems, summarize the major accomplishments of the NASA Langley DIAL program, and discuss specifications and goals for DIAL systems in space.

  5. Determining the Uncertainty of X-Ray Absorption Measurements

    PubMed Central

    Wojcik, Gary S.

    2004-01-01

    X-ray absorption (or more properly, x-ray attenuation) techniques have been applied to study the moisture movement in and moisture content of materials like cement paste, mortar, and wood. An increase in the number of x-ray counts with time at a location in a specimen may indicate a decrease in moisture content. The uncertainty of measurements from an x-ray absorption system, which must be known to properly interpret the data, is often assumed to be the square root of the number of counts, as in a Poisson process. No detailed studies have heretofore been conducted to determine the uncertainty of x-ray absorption measurements or the effect of averaging data on the uncertainty. In this study, the Poisson estimate was found to adequately approximate normalized root mean square errors (a measure of uncertainty) of counts for point measurements and profile measurements of water specimens. The Poisson estimate, however, was not reliable in approximating the magnitude of the uncertainty when averaging data from paste and mortar specimens. Changes in uncertainty from differing averaging procedures were well-approximated by a Poisson process. The normalized root mean square errors decreased when the x-ray source intensity, integration time, collimator size, and number of scanning repetitions increased. Uncertainties in mean paste and mortar count profiles were kept below 2 % by averaging vertical profiles at horizontal spacings of 1 mm or larger with counts per point above 4000. Maximum normalized root mean square errors did not exceed 10 % in any of the tests conducted. PMID:27366627

  6. Measurement of solutes in dialysate using UV absorption

    NASA Astrophysics Data System (ADS)

    Fridolin, Ivo; Magnusson, Martin; Lindberg, Lars-Goeran

    2001-06-01

    The aim of this work was to describe a new method for optical monitoring of solutes in a spent dialysate. The method utilizes UV light absorption employing a commercially available spectrophotometer. Measurements were performed both on collected dialysate samples and on-line. The concentration of several removed solutes and electrolytes in the serum and in the dialysate was determined simultaneously using standard laboratory techniques. During on-line monitoring the spectrophotometer was connected to the fluid outlet of the dialysis machine. On-line measurements during a single hemodialysis session demonstrated a possibility to monitor deviations in the dialysator performance (e.g. dialysator in by-pass). The experimental results indicated a good correlation between UV absorption and several removed solutes (urea, creatinine) in the spent dialysate. The correlation coefficient for urea and creatinine concentrations in the dialysate was very high for every individual treatment. The UV absorbance correlates well to the concentrations of several solutes thought to be uremic toxins. The results indicate that the technique can be used as a continuous, on-line method for monitoring deviations in the dialysator performance and may estimate the removal of the overall toxins. In the future, the new method will be used to evaluate parameters describing delivery of the prescribed treatment dose such as KT/V and Urea Reduction Rate (URR).

  7. Multi-wavelength differential absorption measurements of chemical species

    NASA Astrophysics Data System (ADS)

    Brown, David M.

    algorithms to select filters for use with a MWIR (midwave infrared) imager for detection of plumes of methane, propane, gasoline vapor, and diesel vapor. These simulations were prepared for system designs operating on a down-looking airborne platform. A data analysis algorithm for use with a hydrocarbon imaging system extracts regions of interest from the field-of-view for further analysis. An error analysis is presented for a scanning DAS (Differential Absorption Spectroscopy) lidar system operating from an airborne platform that uses signals scattered from topographical targets. The analysis is built into a simulation program for testing real-time data processing approaches, and to gauge the effects on measurements of path column concentration due to ground reflectivity variations. An example simulation provides a description of the data expected for methane. Several accomplishments of this research include: (1) A new lidar technique for detection and measurement of concentrations of atmospheric species is demonstrated that uses a low-power supercontinuum source. (2) A new multi-wavelength algorithm, which demonstrates excellent performance, is applied to processing spectroscopic data collected by a longpath supercontinuum laser absorption instrument. (3) A simulation program for topographical scattering of a scanning DAS system is developed, and it is validated with aircraft data from the ITT Industries ANGEL (Airborne Natural Gas Emission Lidar) 3-lambda lidar system. (4) An error analysis procedure for DAS is developed, and is applied to measurements and simulations for an airborne platform. (5) A method for filter selection is developed and tested for use with an infrared imager that optimizes the detection for various hydrocarbons that absorb in the midwave infrared. (6) The development of a Fourier analysis algorithm is described that allows a user to rapidly separate hydrocarbon plumes from the background features in the field of view of an imaging system.

  8. A new technique to assess dermal absorption of volatile chemicals in vitro by thermal gravimetric analysis.

    PubMed

    Rauma, Matias; Isaksson, Tina S; Johanson, Gunnar

    2006-10-01

    Potential health hazards of dermal exposure, variability in reported dermal absorption rates and potential losses from the skin by evaporation indicate a need for a simple, inexpensive and standardized procedure to measure dermal absorption and desorption of chemical substances. The aim of this study was to explore the possibility to measure dermal absorption and desorption of volatile chemicals using a new gravimetric technique, namely thermal gravimetric analysis (TGA), and trypsinated stratum corneum from pig. Changes in skin weight were readily detected before, during and after exposure to vapours of water, 2-propanol, methanol and toluene. The shape and height of the weight curves differed between the four chemicals, reflecting differences in diffusivity and partial pressure and skin:air partitioning, respectively. As the skin weight is highly sensitive to the partial pressure of volatile chemicals, including water, this technique requires carefully controlled conditions with respect to air flow, temperature, chemical vapour generation and humidity. This new technique may help in the assessment of dermal uptake of volatile chemicals. Only a small piece of skin is needed and skin integrity is not necessary, facilitating the use of human samples. The high resolution weight-time curves obtained may also help to elucidate the characteristics of absorption, desorption and diffusion of chemicals in skin. PMID:16631342

  9. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  10. Ultra sound absorption measurements in rock samples at low temperatures

    NASA Technical Reports Server (NTRS)

    Herminghaus, C.; Berckhemer, H.

    1974-01-01

    A new technique, comparable with the reverberation method in room acoustics, is described. It allows Q-measurements at rock samples of arbitrary shape in the frequency range of 50 to 600 kHz in vacuum (.1 mtorr) and at low temperatures (+20 to -180 C). The method was developed in particular to investigate rock samples under lunar conditions. Ultrasound absorption has been measured at volcanics, breccia, gabbros, feldspar and quartz of different grain size and texture yielding the following results: evacuation raises Q mainly through lowering the humidity in the rock. In a dry compact rock, the effect of evacuation is small. With decreasing temperature, Q generally increases. Between +20 and -30 C, Q does not change much. With further decrease of temperature in many cases distinct anomalies appear, where Q becomes frequency dependent.

  11. Correlation analysis of optical absorption cross section and rate coefficient measurements in reacting systems

    SciTech Connect

    Hessler, J.P.; Ogren, P.J.

    1992-08-31

    A technique was developed for determining relative importance and correlation between reactions making up a complex kinetic system. This technique was used to investigate measurements of optical absorption cross sections and the correlation between cross sections and measured rate coefficients. It is concluded that (1) species, initial conditions, and temporal regions may be identified where cross sections may be measured without interference from the kinetic behavior of the observed species and (2) experiments designed to measure rate coefficients will always be correlated with the absorption cross section of the observed species. This correlation may reduce the accuracy of rate coefficient measurements.

  12. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  13. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  14. Infrared Absorption Spectroscopy Measurement of SOx using Tunable Infrared Laser

    NASA Astrophysics Data System (ADS)

    Fukuchi, Tetsuo

    The absorption characteristics of sulfur dioxide (SO2) and sulfur trioxide (SO3) in the infrared region were measured using a quantum cascade laser and an absorption cell of length 1 m heated to 150°C. The laser was scanned over the wavelength range 6.9-7.4 μm, which included the absorption bands of SO2 and SO3. Measurement results showed that the absorption bands of SO2 and SO3 partially overlapped, with peaks at 7.28 μm and 7.35 μm for SO2 and 7.14 μm and 7.25 μm for SO3. These results showed the possbility of using infrared laser absorption spectroscopy for measurement of sulfur oxides (SOx) in flue gas. For SO3 measurement, infrared absorption spectroscopy was shown to be more suitable than ultraviolet absorption spectroscopy. The absorption characteristics of open air in the same wavelength region showed that the interference due to water vapor must be efficiently removed to perform SOx measurement in flue gas.

  15. Modified Technique For Chemisorption Measurements

    NASA Technical Reports Server (NTRS)

    Schryer, David R.; Brown, Kenneth G.; Schryer, Jacqueline

    1989-01-01

    In measurements of chemisorption of CO on Pt/SnO2 catalyst observed that if small numbers of relatively large volumes of adsorbate gas are passed through sample, very little removal of CO detected. In these cases little or no CO has been chemisorbed on Pt/SnO2. Technique of using large number of small volumes of adsorbate gas to measure chemisorption applicable to many gas/material combinations other than CO on Pt/SnO2. Volume used chosen so that at least 10 percent of adsorbate gas removed during each exposure.

  16. Measuring Microwaves via Absorption and Dispersion in Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Stack, Daniel; Kunz, Paul; Meyer, David; Solmeyer, Neal

    2016-05-01

    Weak microwave frequency electromagnetic fields can be difficult to detect and fully characterize with traditional methods. However it is possible to transduce the measurement of these fields from the microwave domain to the optical domain via resonant transitions between Rydberg levels in atomic vapors using electromagnetically-induced transparency and the Autler-Townes effect. This technique allows for sensitive measurements of the microwave field amplitude, polarization, and spatial waveform (via the position of the probe and coupling laser beams) as compared to measurements performed with dipole antennas. We are able to obtain these quantities by monitoring the properties of a probe laser beam as it passes through a rubidium vapor cell. Previous experiments using Rydberg spectroscopy have typically relied on measuring the absorption of the probe laser as it passed through the atomic system. We report on progress to use the polarization rotation of the probe as it passes through the atoms in a static magnetic field, which corresponds to the real part of the susceptibility of the atomic medium, for measuring the characteristics of a microwave frequency signal. This effect is known as Nonlinear Magneto Optical Rotation (NMOR) and has been used for sensitive magnetometry.

  17. Coal thickness gauge using RRAS techniques, part 1. [radiofrequency resonance absorption

    NASA Technical Reports Server (NTRS)

    Rollwitz, W. L.; King, J. D.

    1978-01-01

    A noncontacting sensor having a measurement range of 0 to 6 in or more, and with an accuracy of 0.5 in or better is needed to control the machinery used in modern coal mining so that the thickness of the coal layer remaining over the rock is maintained within selected bounds. The feasibility of using the radiofrequency resonance absorption (RRAS) techniques of electron magnetic resonance (EMR) and nuclear magnetic resonance (NMR) as the basis of a coal thickness gauge is discussed. The EMR technique was found, by analysis and experiments, to be well suited for this application.

  18. Absorption Measurements of Periodically Poled Potassium Titanyl Phosphate (PPKTP) at 775 nm and 1550 nm

    PubMed Central

    Steinlechner, Jessica; Ast, Stefan; Krüger, Christoph; Singh, Amrit Pal; Eberle, Tobias; Händchen, Vitus; Schnabel, Roman

    2013-01-01

    The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP) at 1,550 nm and 775 nm. The measurement results are (84±40) ppm/cm and (127±24) ppm/cm, respectively. We conclude that the performance of state-of-the-art frequency doubling and squeezed light generation in PPKTP is not limited by absorption. PMID:23291574

  19. A measurement technique for hydroxyacetone

    SciTech Connect

    Klotz, P.J.

    1999-10-04

    Hydroxyacetone (HA) is mainly produced in the atmosphere from oxidation of hydrocarbons of the type, CH{sub 3}(R)C{double{underscore}bond}CH{sub 2}. Tuazon and Atkinson (1990) reported HA yield of 41% from the OH-initiated oxidation of methacrolein in the presence of NOx. Since methacrolein is a major product of isoprene oxidation (Carter and Atkinson, 1996), isoprene, a key biogenic hydrocarbon, is therefore expected to be an important source for HA. Consequently, knowledge of ambient concentration of HA would provide information needed to examine the applicability of isoprene reaction mechanisms developed in laboratory and to assess the contribution of isoprene to photooxidant production. The commonly used GC-FID technique involving cryo-focusing is unsuitable for HA owing to HA's thermal instability. When subjected to a temperature of 100 C for only a few seconds, HA was found to disappear completely. Since HA is highly soluble in water, the authors developed a wet chemical technique similar in principle to the one they reported earlier, namely, derivatization following liquid scrubbing. To increase the sensitivity, they adopted a fluorescence detection scheme based on o-phthaldialdehyde (OPA) chemistry. The technique was deployed in the field during two measurement periods at a NARSTO site located on Long Island, New York. The authors report the principle and the operation of this technique and the results obtained from these field studies.

  20. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Theory and Simulations

    NASA Technical Reports Server (NTRS)

    Borel, Christoph C.; Schlaepfer, Daniel

    1996-01-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels; (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels. (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an "Atmospheric Pre-corrected Differential Absorption" (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than +5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  1. High-Energy X-ray Absorption Diagnostics as an Experimental Combustion Technique

    NASA Astrophysics Data System (ADS)

    Dunnmon, Jared; Sobhani, Sadaf; Hinshaw, Waldo; Fahrig, Rebecca; Ihme, Matthias

    2015-11-01

    X-ray diagnostics such as X-ray Computed Tomography (XCT) have recently been utilized for measurement of scalar concentration fields in gas-phase flow phenomena. In this study, we apply high-energy X-ray absorption techniques to visualize a laboratory-scale flame via fluoroscopic measurements by using krypton as a radiodense tracer media. Advantages of X-ray absorption diagnostics in a combustion context, including application to optically inaccessible environments and lack of ambient photon interference, are demonstrated. Analysis methods and metrics for extracting physical insights from these data are presented. The accuracy of the diagnostic is assessed via comparison to known results from canonical flame configurations, and the potential for further applications is discussed. Support from the NDSEG fellowship, Bosch, and NASA are gratefully acknolwedged.

  2. The absorption of ultraviolet light by cell nuclei. A technique for identifying neoplastic change

    SciTech Connect

    Baisden, C.R.; Booker, D.; Wright, R.D. )

    1989-11-01

    A technique for measuring the absorption of 260-nm ultraviolet light by cell nuclei is described. The results of such measurements of normal thyroid epithelial cells and benign and malignant thyroid neoplastic cells demonstrate a progressive increase in absorbance that correlates with the histologic appearance of neoplasia. The possible theoretic basis for this phenomenon is explored. The increased nuclear absorbance observed in neoplastic cells is hypothesized to result from the disruption of hydrogen bonds between the DNA base pairs, which allows unwinding of the double helix and loss of the normal control of mitosis.

  3. Laser Absorption Measurements of CO at Elevated Pressures behind Reflected Shock Waves

    NASA Astrophysics Data System (ADS)

    Camou, A.; Vivanco, J. E.; Cusano, D. M.; Petersen, E. L.

    Laser absorption spectroscopy has played a major role in combustion measurements and temperature sensing. Laser spectroscopy techniques offer non-intrusive measurements that can predict gas composition in combustion systems such as IC engines and power plants, as well as in the atmosphere.

  4. A MEASUREMENT TECHNIQUE FOR HYDROXYACETONE.

    SciTech Connect

    KLOTZ,P.J.

    1999-10-04

    Hydroxyacetone (HA) is mainly produced in the atmosphere from oxidation of hydrocarbons of the type, CH{sub 3}(R)C=CH{sub 2}. Tuazon and Atkinson (1990) reported HA yield of 41% from the OH-initiated oxidation of methacrolein in the presence of NO{sub x}. Since methacrolein is a major product of isoprene oxidation (Carter and Atkinson, 1996), isoprene, a key biogenic hydrocarbon, is therefore expected to be an important source for HA. Consequently, knowledge of ambient concentration of HA would provide information needed to examine the applicability of isoprene reaction mechanisms developed in laboratory and to assess the contribution of isoprene to photooxidant production. The commonly used GC-FID technique involving cryo-focusing is unsuitable for HA owing to HA's thermal instability. When subjected to a temperature of 100 C for only a few seconds, HA was found to disappear completely. Since HA is highly soluble in water (it's Henry's law constant being {approx}2 x 10{sup 4} M atm{sup -1} at 20 C, Zhou and Lee, unpublished data), we developed a wet chemical technique similar in principle to the one we reported earlier (Lee and Zhou, 1993), namely, based on derivatization following liquid scrubbing. To increase the sensitivity, we adopted a fluorescence detection scheme based on o-phthaldialdehyde (OPA) chemistry. The technique was deployed in the field during two measurement periods at a NARSTO site located on Long Island (LI), New York. We report the principle and the operation of this technique and the results obtained from these field studies.

  5. Minute Concentration Measurements of Simple Hydrocarbon Species Using Supercontinuum Laser Absorption Spectroscopy.

    PubMed

    Yoo, Jihyung; Traina, Nicholas; Halloran, Michael; Lee, Tonghun

    2016-06-01

    Minute concentration measurements of simple hydrocarbon gases are demonstrated using near-infrared supercontinuum laser absorption spectroscopy. Absorption-based gas sensors, particularly when combined with optical fiber components, can significantly enhance diagnostic capabilities to unprecedented levels. However, these diagnostic techniques are subject to limitations under certain gas sensing applications where interference and harsh conditions dominate. Supercontinuum laser absorption spectroscopy is a novel laser-based diagnostic technique that can exceed the above-mentioned limitations and provide accurate and quantitative concentration measurement of simple hydrocarbon species while maintaining compatibility with telecommunications-grade optical fiber components. Supercontinuum radiation generated using a highly nonlinear photonic crystal fiber is used to probe rovibrational absorption bands of four hydrocarbon species using full-spectral absorption diagnostics. Absorption spectra of methane (CH4), acetylene (C2H2), and ethylene (C2H4) were measured in the near-infrared spectrum at various pressures and concentrations to determine the accuracy and feasibility of the diagnostic strategy. Absorption spectra of propane (C3H8) were subsequently probed between 1650 nm and 1700 nm, to demonstrate the applicability of the strategy. Measurements agreed very well with simulated spectra generated using the HITRAN database as well as with previous experimental results. Absorption spectra of CH4, C2H2, and C2H4 were then analyzed to determine their respective measurement accuracy and detection limit. Concentration measurements integrated from experimental results were in very good agreement with independent concentration measurements. Calculated detection limits of CH4, C2H2, and C2H4 at room temperature and atmospheric pressure are 0.1%, 0.09%, and 0.17%, respectively. PMID:27091905

  6. Inferring surface solar absorption from broadband satellite measurements

    NASA Technical Reports Server (NTRS)

    Cess, Robert D.; Vulis, Inna L.

    1989-01-01

    An atmospheric solar radiation model and surface albedo models that include wavelength dependence and surface anisotropy are combined to study the possibility of inferring the surface solar absorption from satellite measurements. The model includes ocean, desert, pasture land, savannah, and bog surface categories. Problems associated with converting narrowband measurements to broadband quantities are discussed, suggesting that it would be easier to infer surface solar absorption from broadband measurements directly. The practice of adopting a linear relationship between planetary and surface albedo to estimate surface albedos from satellite measurements is examined, showing that the linear conversion between broadband planetary and surface albedos is strongly dependent on vegetation type. It is suggested that there is a linear slope-offset relationship between surface and surface-atmosphere solar absorption.

  7. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  8. A new technique to measure the differential XAFS spectrum

    NASA Astrophysics Data System (ADS)

    Min, Wu; Li-Rong, Zheng; Sheng-Qi, Chu; Ai-Yu, Zhou; Jing, Zhang; Tian-Dou, Hu

    2016-04-01

    A new technique has been developed for direct measurement of the differential X-ray absorption fine structure (XAFS) spectrum by the energy-modulation method. To acquire the energy-oscillating incident X-ray beam, a piezoelectric actuator is used to control the double-crystal monochromator. A logarithmic converter circuit and a lock-in amplifier are used to extract the modulated signals. The normal and differential XAFS spectra of the Mn K-edge of Li2MnO3 have been collected. The X-ray-absorption near-edge-structure (XANES) spectra verify that the signal-to-noise ratio has been greatly improved by the new technique, and the extended X-ray absorption fine structure (EXAFS) spectra demonstrate that this new technique can efficiently enhance the signals of the backscattering atoms. Supported by NSFC (11175202)

  9. Element-selective trace detection of toxic species in environmental samples using chromatographic techniques and derivative diode laser absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Koch, J.; Zybin, A.; Niemax, K.

    1998-10-01

    Very sensitive laser absorption techniques based on a double-beam scheme with logarithmic processing of the detector signals and wavelength modulation of laser diodes are presented. Detection limits equivalent to 10-7 absorption per square root of detection bandwidth are obtained if sufficient laser power is available and if the absorption is also subject to additional modulation. The analytical versatility of these techniques is demonstrated by quantitative analysis of very low concentrations of (i) Cr(VI) species in tap water and (ii) chlorinated poly-aromatics (chlorophenols) in plant extracts, both after chromatographic separation. The atomic absorption measurements were performed in an air-acetylene flame (Cr) and in a low-pressure microwave-induced plasma (chlorophenols).

  10. Sensitive absorption measurements in bulk material and coatings using a photothermal and a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Fieberg, S.; Waasem, N.; Kühnemann, F.; Buse, K.

    2014-02-01

    Bulk and surface absorption in lithium triborate (LBO) and lithium niobate (LiNbO3) are measured using two sensitive measurement techniques, a photoacoustic spectrometer (PAS) and a photothermal common-path interferometer (PCI). As pump light sources, optical parametric oscillators are employed, covering the wavelength ranges 212 - 2500 nm (PAS) and 1460 - 1900 nm and 2460 - 3900 nm (PCI). The spectrometers are used to measure absorption spectra of optical materials across this wide spectral range and to compare the methods in the shared wavelength regime.

  11. [Influencing factors in measuring absorption coefficient of suspended particulate matters].

    PubMed

    Yu, Xiao-long; Shen, Fang; Zhang, Jin-fang

    2013-05-01

    Absorption coefficient of suspended particulate matters in natural water is one of the key parameters in ocean color remote sensing. In order to study the influencing factors that affect the measurement, a series of experiments were designed to measure samples using transmittance method (T method), transmittance-reflectance method (T-R method) and absorptance method (A method). The results shows that absorption coefficient measured by the A method has a much lower error compared to the T method and T-R method due to influencing factors,such as filter-to-filter variations, water content of the filter, and homogeneity of filter load and so on. Another factor influence absorption coefficient is path-length amplification induced by multiple scattering inside the filter. To determine the path-length amplification, the true absorption was measured by AC-s (WetLabs). The linear fitting result shows that the mean path-length amplification is much higher for the A method than that of the T-R method and the T method (4.01 versus 2.20 and 2.32), and the corresponding correlation coefficient are 0.90, 0.87 and 0.80. For the A method and the T-R method, higher correlation coefficients are calculated when using polynomial fitting, and the value are 0.95 and 0.94. Analysis of the mean relative error caused by different influencing factors indicates that path-length amplification is the largest error source in measuring the absorption coefficient. PMID:23914523

  12. Correction of optical absorption and scattering variations in laser speckle rheology measurements

    PubMed Central

    Hajjarian, Zeinab; Nadkarni, Seemantini K.

    2014-01-01

    Laser Speckle Rheology (LSR) is an optical technique to evaluate the viscoelastic properties by analyzing the temporal fluctuations of backscattered speckle patterns. Variations of optical absorption and reduced scattering coefficients further modulate speckle fluctuations, posing a critical challenge for quantitative evaluation of viscoelasticity. We compare and contrast two different approaches applicable for correcting and isolating the collective influence of absorption and scattering, to accurately measure mechanical properties. Our results indicate that the numerical approach of Monte-Carlo ray tracing (MCRT) reliably compensates for any arbitrary optical variations. When scattering dominates absorption, yet absorption is non-negligible, diffusing wave spectroscopy (DWS) formalisms perform similar to MCRT, superseding other analytical compensation approaches such as Telegrapher equation. The computational convenience of DWS greatly simplifies the extraction of viscoelastic properties from LSR measurements in a number of chemical, industrial, and biomedical applications. PMID:24663983

  13. Correction of optical absorption and scattering variations in Laser Speckle Rheology measurements.

    PubMed

    Hajjarian, Zeinab; Nadkarni, Seemantini K

    2014-03-24

    Laser Speckle Rheology (LSR) is an optical technique to evaluate the viscoelastic properties by analyzing the temporal fluctuations of backscattered speckle patterns. Variations of optical absorption and reduced scattering coefficients further modulate speckle fluctuations, posing a critical challenge for quantitative evaluation of viscoelasticity. We compare and contrast two different approaches applicable for correcting and isolating the collective influence of absorption and scattering, to accurately measure mechanical properties. Our results indicate that the numerical approach of Monte-Carlo ray tracing (MCRT) reliably compensates for any arbitrary optical variations. When scattering dominates absorption, yet absorption is non-negligible, diffusing wave spectroscopy (DWS) formalisms perform similar to MCRT, superseding other analytical compensation approaches such as Telegrapher equation. The computational convenience of DWS greatly simplifies the extraction of viscoelastic properties from LSR measurements in a number of chemical, industrial, and biomedical applications. PMID:24663983

  14. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  15. Photothermal measurement of absorption and scattering losses in thin films excited by surface plasmons.

    PubMed

    Domené, Esteban A; Balzarotti, Francisco; Bragas, Andrea V; Martínez, Oscar E

    2009-12-15

    We present a novel noncontact, photothermal technique, based on the focus error signal of a commercial CD pickup head that allows direct determination of absorption in thin films. Combined with extinction methods, this technique yields the scattering contribution to the losses. Surface plasmon polaritons are excited using the Kretschmann configuration in thin Au films of varying thickness. By measuring the extinction and absorption simultaneously, it is shown that dielectric constants and thickness retrieval leads to inconsistencies if the model does not account for scattering. PMID:20016617

  16. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Theory and simulations

    SciTech Connect

    Borel, C.C.; Schlaepfer, D.

    1996-03-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels; and (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an {open_quote}Atmospheric Pre-corrected Differential Absorption{close_quote} (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than {+-}5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  17. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  18. Temperature and pressure measurement based on tunable diode laser absorption spectroscopy with gas absorption linewidth detection

    NASA Astrophysics Data System (ADS)

    Meng, Yunxia; Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Wang, Tao; Wang, Ranran

    2014-11-01

    A gas temperature and pressure measurement method based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) detecting linewidth of gas absorption line was proposed in this paper. Combined with Lambert-Beer Law and ideal gas law, the relationship between temperature, pressure and gas linewidth with Lorentzian line shape was investigated in theory. Taking carbon monoxide (CO) at 1567.32 nm for example, the linewidths of gas absorption line in different temperatures and pressures were obtained by simulation. The relationship between the linewidth of second harmonic and temperature, pressure with the coefficient 0.025 pm/K and 0.0645 pm/kPa respectively. According to the relationship of simulation results and detected linewidth, the undefined temperature and pressure of CO gas were measured. The gas temperature and pressure measurement based on linewidth detection, avoiding the influence of laser intensity, is an effective temperature and pressure measurement method. This method also has the ability to detect temperature and pressure of other gases with Lorentzian line shape.

  19. Fine-structure Constancy Measurements in QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Whitmore, Jonathan B.

    2013-01-01

    The ESO Large Programme 185.A-0745 has awarded 10 nights on the VLT-UVES spectrograph for the study of the possible variation in the fine structure constant. We will present the fine-structure measurements from two lines of sight and several absorption systems. We will also present updated systematic error analyses.

  20. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  1. Differential optical absorption spectrometer for measurement of tropospheric pollutants

    NASA Astrophysics Data System (ADS)

    Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.

    1995-05-01

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  2. Differential optical absorption techniques for diagnostics of coal gasification. Technical progress report, April-June 1983

    SciTech Connect

    Not Available

    1983-08-01

    The application of differential optical absorption (DOA) techniques for the in-situ determination of the chemical composition of coal gasification process streams is investigated. Absorption spectra of relevant molecular species and the temperature and pressure effects on DOA-determined spectral characteristics of these species will be determined and cataloged. A system will be configured, assembled, and tested. 10 references, 1 figure.

  3. Cryogenic thermal absorptance measurements on small-diameter stainless steel tubing

    NASA Astrophysics Data System (ADS)

    Tuttle, James; Jahromi, Amir; Canavan, Edgar; DiPirro, Michael

    2016-03-01

    The Mid Infrared Instrument (MIRI) on the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The coolant gas flows through several meters of small-diameter stainless steel tubing, which is exposed to thermal radiation from its environment. Over much of its length this tubing is gold-plated to minimize the absorption of this radiant heat. In order to confirm that the cryocooler will meet MIRI's requirements, the thermal absorptance of this tubing was measured as a function of its environment temperature. We describe the measurement technique and present the results.

  4. Tunable diode-laser absorption measurements of methane at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Nagali, V.; Chou, S. I.; Baer, D. S.; Hanson, R. K.; Segall, J.

    1996-07-01

    A diode-laser sensor system based on absorption spectroscopy techniques has been developed to monitor CH4 nonintrusively in high-temperature environments. Fundamental spectroscopic parameters, including the line strengths of the transitions in the R(6) manifold of the 2 nu 3 band near 1.646 mu m, have been determined from high-resolution absorption measurements in a heated static cell. In addition, a corrected expression for the CH 4 partition function has been validated experimentally over the temperature range from 400 to 915 K. Potential applications of the diode-laser sensor system include process control, combustion measurements, and atmospheric monitoring.

  5. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  6. Towards higher stability of resonant absorption measurements in pulsed plasmas

    NASA Astrophysics Data System (ADS)

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-01

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  7. Towards higher stability of resonant absorption measurements in pulsed plasmas

    SciTech Connect

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-15

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called “dynamic source triggering,” between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  8. Towards higher stability of resonant absorption measurements in pulsed plasmas.

    PubMed

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-01

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source. PMID:26724013

  9. Low-frequency sound absorption measurements in air

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Meredith, R. W.

    1984-01-01

    Thirty sets of sound absorption measurements in air at a pressure of 1 atmosphere are presented at temperatures from 10 C to 50 C, relative humidities from 0 to 100 percent, and frequencies from 10 to 2500 Hz. The measurements were conducted by the method of free decay in a resonant tube having a length of 18.261 m and bore diameter of 0.152 m. Background measurements in a gas consisting of 89.5 percent N2 and 10.5 percent Ar, a mixture which has the same sound velocity as air, permitted the wall and structural losses of the tube to be separated from the constituent absorption, consisting of classical rotational and vibrational absorption, in the air samples. The data were used to evaluate the vibrational relaxation frequencies of N2 and/or O2 for each of the 30 sets of meteorological parameters. Over the full range of humidity, the measured relaxation frequencies of N2 in air lie between those specified by ANSI Standard S1.26-1978 and those measured earlier in binary N2H2O mixtures. The measured relaxation frequencies could be determined only at very low values of humidity, reveal a significant trend away from the ANSI standard, in agreement with a prior investigation.

  10. Simple Techniques for Microclimate Measurement.

    ERIC Educational Resources Information Center

    Unwin, D. M.

    1978-01-01

    Describes simple ways of measuring the very local climate near the ground, and explains what these measurements mean. Equipment included a solar radiometer, a dew point instrument, and a thermocouple psychrometer. Examples are given of field measurements taken with some of the equipment and the results and their interpretation are discussed.…

  11. Measurements of light absorption efficiency in InSb nanowires

    PubMed Central

    Jurgilaitis, A.; Enquist, H.; Harb, M.; Dick, K. A.; Borg, B. M.; Nüske, R.; Wernersson, L.-E.; Larsson, J.

    2013-01-01

    We report on measurements of the light absorption efficiency of InSb nanowires. The absorbed 70 fs light pulse generates carriers, which equilibrate with the lattice via electron-phonon coupling. The increase in lattice temperature is manifested as a strain that can be measured with X-ray diffraction. The diffracted X-ray signal from the excited sample was measured using a streak camera. The amount of absorbed light was deduced by comparing X-ray diffraction measurements with simulations. It was found that 3.0(6)% of the radiation incident on the sample was absorbed by the nanowires, which cover 2.5% of the sample. PMID:26913673

  12. Photothermal method for absorption measurements in anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Stubenvoll, M.; Schäfer, B.; Mann, K.; Novak, O.

    2016-02-01

    A measurement system for quantitative determination of both surface and bulk contributions to the photo-thermal absorption has been extended to anisotropic optical media. It bases upon a highly sensitive Hartmann-Shack wavefront sensor, accomplishing precise on-line monitoring of wavefront deformations of a collimated test beam transmitted perpendicularly through the laser-irradiated side of a cuboid sample. Caused by the temperature dependence of the refractive index as well as thermal expansion, the initially plane wavefront of the test beam is distorted. Sign and magnitude depend on index change and expansion. By comparison with thermal theory, a calibration of the measurement is possible, yielding a quantitative absolute measure of bulk and surface absorption losses from the transient wavefront distortion. Results for KTP and BBO single crystals are presented.

  13. Absorptance Measurements of Optical Coatings - A Round Robin

    SciTech Connect

    Chow, R; Taylor, J R; Wu, Z L; Boccara, C A; Broulik, U; Commandre, M; DiJon, J; Fleig, C; Giesen, A; Fan, Z X; Kuo, P K; Lalezari, R; Moncur, K; Obramski, H-J; Reicher, D; Ristau, D; Roche, P; Steiger, B; Thomsen, M; von Gunten, M

    2000-10-26

    An international round robin study was conducted on the absorption measurement of laser-quality coatings. Sets of optically coated samples were made by a ''reactive DC magnetron'' sputtering and an ion beam sputtering deposition process. The sample set included a high reflector at 514 nm and a high reflector for the near infrared (1030 to 1318 nm), single layers of silicon dioxide, tantalum pentoxide, and hafnium dioxide. For calibration purposes, a sample metalized with hafnium and an uncoated, superpolished fused silica substrate were also included. The set was sent to laboratory groups for absorptance measurement of these coatings. Whenever possible, each group was to measure a common, central area and another area specifically assigned to the respective group. Specific test protocols were also suggested in regards to the laser exposure time, power density, and surface preparation.

  14. Measurement of krypton-85 in water by absorption in polycarbonates

    NASA Astrophysics Data System (ADS)

    Mitev, K.; Pressyanov, D.; Dimitrova, I.; Georgiev, S.; Boshkova, T.; Zhivkova, V.

    2009-05-01

    This article describes a method for quantitative measurements of Kr85 in water by absorption in polycarbonates. The method is based on exposure of polycarbonate samples in water and uses the high absorption ability to noble gases of some polycarbonates like Makrofol® and Makrolon® for sampling Kr85 from the water. After the exposure, the radiation emitted from the samples is measured by gross beta counting or gamma spectrometry. The results from the conducted experiments demonstrate a very good linear correlation between the measured signal and the activity concentration of Kr85 in the water. A possible practical application of the method is to monitor Kr85 concentration in water in at-reactor pools and wet spent fuel storage facilities.

  15. Thermal Measurement Techniques in Analytical Microfluidic Devices.

    PubMed

    Davaji, Benyamin; Lee, Chung Hoon

    2015-01-01

    Thermal measurement techniques have been used for many applications such as thermal characterization of materials and chemical reaction detection. Micromachining techniques allow reduction of the thermal mass of fabricated structures and introduce the possibility to perform high sensitivity thermal measurements in the micro-scale and nano-scale devices. Combining thermal measurement techniques with microfluidic devices allows performing different analytical measurements with low sample consumption and reduced measurement time by integrating the miniaturized system on a single chip. The procedures of thermal measurement techniques for particle detection, material characterization, and chemical detection are introduced in this paper. PMID:26066563

  16. Analytical algorithm to determine the spherical particle size distribution from spectral absorption measurements

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Qi; Li, Jiangnan

    2015-11-01

    A modified anomalous diffraction theory (MADT) by including the effects of reflection and refraction is proposed. With respect to MADT, an analytical technique for retrieval of spherical particle size distribution (PSD), based on absorption was developed. Also, an MADT transform pair between the size distribution and the absorption spectrum was constructed. This provides a new tool to study the related particle optical properties. By Gaver-Stehfest inversion method, the derived complex-inversion formula is finally converted into the new real-inversion formula so that the measured absorption data can be applied directly. The inversion experiments show that the use of extended precision instead of double precision arithmetic can produce more reliable results at the expense of CPU time. The effects of complex refractive index on retrieval of PSD were examined. Also it was found that an appropriate reduction of the truncation number with the smoothing technique improved the anti-noise ability for the algorithm.

  17. Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Spilker, Thomas R.

    1995-01-01

    A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging

  18. On the interpretation of zenith sky absorption measurements

    NASA Astrophysics Data System (ADS)

    Solomon, Susan; Schmeltekopf, Arthur L.; Sanders, Ryan W.

    1987-07-01

    Observations of several atmospheric species can be performed by measuring the absorption of visible and near-ultraviolet light scattered from the zenith sky. The determination of vertical column abundances of molecules such as ozone and NO2 from such measurements is briefly reviewed. It is shown that the conversion of NO to NO2 can be of significance in the interpretation of measurements made near twilight. On the other hand, multiple scattering from the atmosphere or by clouds is likely to be a very small effect.

  19. Measurement Techniques for Clock Jitter

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin; Schlesinger, Adam

    2012-01-01

    NASA is in the process of modernizing its communications infrastructure to accompany the development of a Crew Exploration Vehicle (CEV) to replace the shuttle. With this effort comes the opportunity to infuse more advanced coded modulation techniques, including low-density parity-check (LDPC) codes that offer greater coding gains than the current capability. However, in order to take full advantage of these codes, the ground segment receiver synchronization loops must be able to operate at a lower signal-to-noise ratio (SNR) than supported by equipment currently in use.

  20. Weathering: methods and techniques to measure

    NASA Astrophysics Data System (ADS)

    Lopez-Arce, P.; Zornoza-Indart, A.; Alvarez de Buergo, M.; Fort, R.

    2012-04-01

    Surface recession takes place when weathered material is removed from the rocks. In order to know how fast does weathering and erosion occur, a review of several methods, analyses and destructive and non-destructive techniques to measure weathering of rocks caused by physico-chemical changes that occur in bedrocks due to salt crystallization, freezing-thaw, thermal shock, influence of water, wind, temperature or any type of environmental agent leading to weathering processes and development of soils, in-situ in the field or through experimental works in the laboratory are addressed. From micro-scale to macro-scale, from the surface down to more in depth, several case studies on in-situ monitoring of quantification of decay on soils and rocks from natural landscapes (mountains, cliffs, caves, etc) or from urban environment (foundations or facades of buildings, retaining walls, etc) or laboratory experimental works, such as artificial accelerated ageing tests (a.a.e.e.) or durability tests -in which one or more than one weathering agents are selected to assess the material behaviour in time and in a cyclic way- performed on specimens of these materials are summarised. Discoloration, structural alteration, precipitation of weathering products (mass transfer), and surface recession (mass loss) are all products of weathering processes. Destructive (SEM-EDX, optical microscopy, mercury intrusion porosimetry, drilling resistance measurement, flexural and compression strength) and Non-destructive (spectrophotocolorimetry, 3D optical surface roughness, Schmidt hammer rebound tester, ultrasound velocity propagation, Nuclear Magnetic Resonance NMR, X ray computed micro-tomography or CT-scan, geo-radar differential global positioning systems) techniques and characterization analyses (e.g. water absorption, permeability, open porosity or porosity accessible to water) to assess their morphological, physico-chemical, mechanical and hydric weathering; consolidation products or

  1. A comparison of methods for the measurement of the absorption coefficient in natural waters

    NASA Technical Reports Server (NTRS)

    Pegau, W. Scott; Cleveland, Joan S.; Doss, W.; Kennedy, C. Dan; Maffione, Robert A.; Mueller, James L.; Stone, R.; Trees, Charles C.; Weidemann, Alan D.; Wells, Willard H.

    1995-01-01

    In the spring of 1992 an optical closure experiment was conducted at Lake Pend Orielle, Idaho. A primary objective of the experiment was to compare techniques for the measurement of the spectral absorption coefficent and other inherent optical properties of natural waters. Daily averages of absorption coefficents measured using six methods are compared at wavelengths of 456, 488, and 532 nm. Overall agreement was within 40% at 456 nm and improved with increasing wavelength to 25% at 532 nm. These absorption measurements were distributed over the final 9 days of the experiement, when bio-optical conditions in Lake Pend Oreille (as indexed by the beam attenuation coefficent c(sub p)(660) and chlorophyll a fluorescence profiles) were representative of those observed throughout the experiment. However, profiles of stimulated chlorophyll a fluorescence and beam transmission showed that bio-optical properties in the lake varied strongly on all time and space scales. Therefore environmental variabilty contributed significantly to deviations between daily mean absorption coefficients measured using the different techniques.

  2. Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing

    DOEpatents

    Cremers, David A.; Keller, Richard A.

    1985-01-01

    The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10.sup.-5 cm.sup.-1 has been demonstrated using this technique.

  3. Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1982-06-08

    The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be rlated to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10/sup -5/ cm/sup -1/ has been demonstrated using this technique.

  4. Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1985-10-01

    The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10[sup [minus]5] cm[sup [minus]1] has been demonstrated using this technique. 6 figs.

  5. Comparison of ozone measurement techniques using aircraft, balloon, and ground-based measurements

    NASA Technical Reports Server (NTRS)

    Briehl, D.; Reck, G. M.

    1977-01-01

    In order to verify the ultraviolet absorption technique used in the Global Atmospheric Sampling Program, two flight experiments were conducted employing several techniques, both in situ and remote, for measuring atmospheric ozone. The first experiment used the NASA CV-990 equipped with an ultraviolet absorption ozone monitor and an ultraviolet spectrophotometer, a balloon ozonesonde, and a Dobson station for determining and comparing the ozone concentration data. A second experiment compared ozone data from an automated sampling system aboard a B-747 with data from a manned system installed on the NASA CV-990 during a cross-country flight with both aircraft following the same flight path separated by 32 kilometers.

  6. Spatially resolved concentration measurements based on backscatter absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Sanders, Scott T.; Robinson, Michael A.

    2016-06-01

    We demonstrate the feasibility of spatially resolved measurements of gas properties using direct absorption spectroscopy in conjunction with backscattered signals. We report a 1-D distribution of H2O mole fraction with a spatial resolution of 5 mm. The peak and average discrepancy between the measured and expected mole fraction are 21.1 and 8.0 %, respectively. The demonstration experiment is related to a diesel aftertreatment system; a selective catalytic reduction brick made of cordierite is used. The brick causes volume scattering interference; advanced baseline fitting based on a genetic algorithm is used to reduce the effects of this interference by a factor of 2.3.

  7. Interpreting measurements obtained with the cloud absorption radiometer

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The software developed for the analysis of data from the Cloud Absorption Radiometer (CAR) is discussed. The CAR is a multichannel radiometer designed to measure the radiation field in the middle of an optically thick cloud (the diffusion domain). It can also measure the surface albedo and escape function. The instrument currently flies on a C-131A aircraft operated by the University of Washington. Most of this data was collected during the First International satellite cloud climatology project Regional Experiment (FIRE) Marine Stratocumulus Intensive Field Observation program off San Diego during July 1987. Earlier flights of the CAR have also been studied.

  8. The Importance of Optical Pathlength Control for Plasma Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, M.; Partridge, Harry (Technical Monitor)

    2001-01-01

    An inductively coupled GEC Cell with modified viewing ports has been used to measure in-situ absorption in CF4 plasmas via Fourier Transform Infrared Spectroscopy, and the results compared to those obtained in a standard viewport configuration. The viewing ports were modified so that the window boundary is inside, rather than outside, of the GEC cell. Because the absorption obtained is a spatially integrated absorption, measurements made represent an averaging of absorbing species inside and outside of the plasma. This modification is made to reduce this spatial averaging and thus allow a more accurate estimation of neutral species concentrations and temperatures within the plasmas. By reducing this pathlength, we find that the apparent CF4 consumption increases from 65% to 95% and the apparent vibrational temperature of CF4 rises by 50-75 K. The apparent fraction of etch product SiF4 decreases from 4% to 2%. The data suggests that these density changes may be due to significant temperature gradients between the plasma and chamber viewports.

  9. Cavity ring-down spectroscopy (CRDS) system for measuring atmospheric mercury using differential absorption

    NASA Astrophysics Data System (ADS)

    Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.

    2012-04-01

    Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included

  10. Measurement and feature analysis of absorption spectra of four algal species

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Zhou, Hongli; Han, Bing; Li, Tongji

    2016-04-01

    Two methods for particulate pigments (i.e., quantitative filter technique, QFT, and in vivo measurement, InVivo, respectively) and two methods for dissolved pigments (i.e., Acetone Extracts, AceEx, and high-performance liquid chromatography, HPLC, respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species. Through normalization and analysis of the spectra, it is shown that (1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments; (2) that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength, and the difference of the peak position in the near infrared wavelength was ~10 nm between each other; and (3) that the leveling effect of the absorption spectra of particulate pigments was significant. These four methods can all effectively measure the absorption coefficients of phytoplankton pigments, while each one has its unique advantages in different applications. Therefore, appropriate method should be carefully selected for various application due to their intrinsic difference.

  11. Water vapor spectroscopy in the 815-nm wavelength region for Differential Absorption Lidar measurements

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Browell, Edward V.

    1995-01-01

    The differential absorption lidar (DIAL) technique was first applied to the remote measurement of atmospheric water vapor profiles from airborne platforms in 1981. The successful interpretation of the lidar profiles relies strongly on an accurate knowledge of specific water vapor absorption line parameters: line strength, pressure broadening coefficient, pressure-induced shift coefficient and the respective temperature-dependence factors. NASA Langley Research Center has developed and is currently testing an autonomous airborne water vapor lidar system: LASE (Lidar Atmospheric Sensing Experiment). This DIAL system uses a Nd:YAG-pumped Ti:Sapphire laser seeded by a diode laser as a lidar transmitter. The tunable diode has been selected to operate in the 813-818 nm wavelength region. This 5-nm spectral interval offers a large distribution of strengths for temperature-insensitive water vapor absorption lines. In support of the LASE project, a series of spectroscopic measurements were conducted for the 16 absorption lines that have been identified for use in the LASE measurements. Prior to this work, the experimental data for this water vapor absorption band were limited - to our knowledge - to the line strengths and to the line positions.

  12. Time-resolved nonlinear polarization spectroscopy for measuring transient absorption and refraction in isotropic materials

    NASA Astrophysics Data System (ADS)

    Taranenko, Victor B.; Bazhenov, Vladimir Y.; Kulikovskaya, Olga A.

    1995-11-01

    A novel time-resolved nonlinear spectroscopic technique is described, which is based on stroboscopic registration of optical polarization transformation taking place at a vector incoherent two-wave mixing interaction in a modified Mach-Zehnder interferometer. It allows an accurate measuring of the dynamics of excitation and relaxation for real and imaginary parts of complex nonlinearity tensor components. The technique is demonstrated for measuring the light-induced change of transient absorption (delta) (alpha) e(t), (delta) (alpha) o(t) and refraction (delta) ne(t), (delta) no(t) for bacteriorhodopsin- based film pumped by linearly polarized laser pulses.

  13. Differential absorption and Raman lidar for water vapor profile measurements - A review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1991-01-01

    Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

  14. [Carbon monoxide gas detection system based on mid-infrared spectral absorption technique].

    PubMed

    Li, Guo-Lin; Dong, Ming; Song, Nan; Song, Fang; Zheng, Chuan-Tao; Wang, Yi-Ding

    2014-10-01

    Based on infrared spectral absorption technique, a carbon monoxide (CO) detection system was developed using the fundamental absorption band at the wavelength of 4.6 μm of CO molecule and adopting pulse-modulated wideband incandescence and dual-channel detector. The detection system consists of pulse-modulated wideband incandescence, open ellipsoid light-collec- tor gas-cell, dual-channel detector, main-control and signal-processing module. By optimizing open ellipsoid light-collector gas- cell, the optical path of the gas absorption reaches 40 cm, and the amplitude of the electrical signal from the detector is 2 to 3 times larger than the original signal. Therefore, by using the ellipsoidal condenser, the signal-to-noise ratio of the system will be to some extent increased to improve performance of the system. With the prepared standard CO gas sample, sensing characteris- tics on CO gas were investigated. Experimental results reveal that, the limit of detection (LOD) is about 10 ppm; the relative er- ror at the LOD point is less than 14%, and that is less than 7. 8% within the low concentration range of 20~180 ppm; the maxi- mum absolute error of 50 min long-term measurement concentration on the 0 ppm gas sample is about 3 ppm, and the standard deviation is as small as 0. 18 ppm. Compared with the CO detection systems utilizing quantum cascaded lasers (QCLs) and dis- tributed feedback lasers (DFBLs), the proposed sensor shows potential applications in CO detection under the circumstances of coal-mine and environmental protection, by virtue of high performance-cost ratio, simple optical-path structure, etc. PMID:25739235

  15. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  16. Frequency domain measurements on turbid media with strong absorption using the PN approximation.

    PubMed

    Baltes, Christof; Faris, Gregory W

    2009-06-01

    We have applied the frequency-domain technique to measurement of the optical properties of turbid media with strong absorption in the infinite medium limit. Absorption coefficients up to 2.3 cm(-1) for a modified scattering coefficient of 4.3 cm(-1) are studied, which corresponds to a reduced scattering albedo of 0.65. Low phase noise and good phase stability are required for these low albedo conditions. As the degree of absorption increases, the phase changes are reduced while amplitude changes increase. For this reason, correction of amplitude-phase cross talk is essential to achieve accurate measurements with strong absorption. Careful control of stray reflections is required to properly measure amplitude-phase cross talk. Because the diffusion approximation becomes less accurate, measurements are compared to calculations performed in the PN approximation, which is essentially an exact solution for the infinite medium limit. Agreement between theory and experiment is only obtained when correction for amplitude-phase cross talk is performed. These measurements can provide a good method for testing amplitude-phase cross talk. PMID:19488110

  17. Resonance lamp absorption measurement of OH number density and temperature in expansion tube scramjet engine tests

    NASA Technical Reports Server (NTRS)

    Lempert, Walter R.; Trucco, Richard E.; Bittner, Robert D.

    1992-01-01

    In this paper, we report results of hydroxyl radical and static temperature measurements performed in the General Applied Science Laboratories-NASA HYPULSE expansion tube facility using the microwave resonance lamp absorption technique. Data were obtained as part of a series of hydrogen/air and hydrogen/oxygen combustion tests at stagnation enthalpies corresponding to Mach 17 flight speeds. Data from a representative injector configuration is compared to a full Navier-Stokes CFD solution.

  18. Far-infrared absorption measurements of graphite, amorphous carbon, and silicon carbide

    NASA Astrophysics Data System (ADS)

    Tanabe, T.; Nakada, Y.; Kamijo, F.; Sakata, A.

    The mass absorption coefficients of graphite (G), amorphous-carbon (AC), and SiC grains at 25-250 microns are determined experimentally at room temperature and applied to the interpretation of published IR observations of IRC+10216. Absorption measurements are obtained using a single-beam grating spectrometer with a Goley-cell detector by a polyethylene-powder-tablet technique. The results are presented in a table and graphs. The mass absorption constants (in sq cm/g) are calculated as 642 for G, 281 for AC produced in Ar, 93.9 for AC produced in H2, and 19.6 for SiC; power-law relationships to wavelength, with indices of -2.18, 0.60, -0.59, and -1.37 (respectively) are established. AC is found to be the most likely constituent of the IRC+10216 dust cloud, permitting the dust mass to be estimated as 0.0001 solar mass.

  19. X-ray absorption spectroscopy of Mn doped ZnO thin films prepared by rf sputtering technique

    SciTech Connect

    Yadav, Ashok Kumar; Jha, S. N.; Bhattacharyya, D.; Haque, Sk Maidul; Shukla, Dinesh; Choudhary, Ram Janay

    2015-11-15

    A set of r.f. sputter deposited ZnO thin films prepared with different Mn doping concentrations have been characterised by Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Spectroscopy (XANES) measurements at Zn, Mn and O K edges and at Mn L{sub 2,3} edges apart from long range structural characterisation by Grazing Incident X-ray Diffraction (GIXRD) technique. Magnetic measurements show room temperature ferromagnetism in samples with lower Mn doping which is however, gets destroyed at higher Mn doping concentration. The results of the magnetic measurements have been explained using the local structure information obtained from EXAFS and XANES measurements.

  20. A new analysis of fine-structure constant measurements and modelling errors from quasar absorption lines

    NASA Astrophysics Data System (ADS)

    Wilczynska, Michael R.; Webb, John K.; King, Julian A.; Murphy, Michael T.; Bainbridge, Matthew B.; Flambaum, Victor V.

    2015-12-01

    We present an analysis of 23 absorption systems along the lines of sight towards 18 quasars in the redshift range of 0.4 ≤ zabs ≤ 2.3 observed on the Very Large Telescope (VLT) using the Ultraviolet and Visual Echelle Spectrograph (UVES). Considering both statistical and systematic error contributions we find a robust estimate of the weighted mean deviation of the fine-structure constant from its current, laboratory value of Δα/α = (0.22 ± 0.23) × 10-5, consistent with the dipole variation reported in Webb et al. and King et al. This paper also examines modelling methodologies and systematic effects. In particular, we focus on the consequences of fitting quasar absorption systems with too few absorbing components and of selectively fitting only the stronger components in an absorption complex. We show that using insufficient continuum regions around an absorption complex causes a significant increase in the scatter of a sample of Δα/α measurements, thus unnecessarily reducing the overall precision. We further show that fitting absorption systems with too few velocity components also results in a significant increase in the scatter of Δα/α measurements, and in addition causes Δα/α error estimates to be systematically underestimated. These results thus identify some of the potential pitfalls in analysis techniques and provide a guide for future analyses.

  1. Concurrent multiaxis differential optical absorption spectroscopy system for the measurement of tropospheric nitrogen dioxide.

    PubMed

    Leigh, Roland J; Corlett, Gary K; Friess, Udo; Monks, Paul S

    2006-10-01

    The development of a new concurrent multiaxis (CMAX) sky viewing spectrometer to monitor rapidly changing urban concentrations of nitrogen dioxide is detailed. The CMAX differential optical absorption spectroscopy (DOAS) technique involves simultaneous spectral imaging of the zenith and off-axis measurements of spatially resolved scattered sunlight. Trace-gas amounts are retrieved from the measured spectra using the established DOAS technique. The potential of the CMAX DOAS technique to derive information on rapidly changing concentrations and the spatial distribution of NO2 in an urban environment is demonstrated. Three example data sets are presented from measurements during 2004 of tropospheric NO2 over Leicester, UK (52.62 degrees N, 1.12 degrees W). The data demonstrate the current capabilities and future potential of the CMAX DOAS method in terms of the ability to measure real-time spatially disaggregated urban NO2. PMID:16983440

  2. Intercomparison of Nitrous Acid (HONO) Measurement Techniques during SHARP

    NASA Astrophysics Data System (ADS)

    Pinto, J. P.; Meng, Q.; Dibb, J. E.; Lefer, B. L.; Rappenglueck, B.; Ren, X.; Stutz, J.; Zhang, R.

    2010-12-01

    HONO is regarded as a potentially important radical precursor in a number of diverse environments ranging from polar to semi-tropical. As part of the SHARP (Study of Houston Atmospheric Radical Precursors), time series of HONO were obtained by five different measurement techniques. Techniques used were long path differential optical absorption spectroscopy (DOAS), long-path absorption photometry (LoPAP), mist chamber (MC), quantum cascade laser and ionization detection-chemical ionization mass spectrometry. Various combinations of techniques were in operation during the whole period from 15 April through 31 May 2009 with a common measurement period extending from 16 to 28 May. All instruments recorded a similar diurnal pattern of HONO concentrations with higher mean values from the in-situ techniques than either the low- or mid-path DOAS. The largest differences among techniques were found during the afternoon with measurements from the in-situ techniques higher than either the low- or mid-path DOAS. Principal components analysis using measurements of trace species was used to identify possible sources of interference in the chemical measurements. Two major components were identified: one associated with primary, mainly traffic related pollutants and the other with photochemical species. The afternoon differences between DOAS and MC and the U Miami LoPAP were found to be most strongly associated with the photochemical component. The results for comparison between DOAS and MC are in accord with those found previously during August-September 2006. All instruments showed some association between measurement differences and the primary component. Further details and associations with air coming from different areas of the Houston airshed will also be presented.

  3. Absorption of laser radiation in a H-He plasma. II - Experimental measurement of the absorption coefficient

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Rowley, P. D.; Stallcop, J. R.; Presley, L.

    1974-01-01

    The absorption coefficients of 0.633-, 1.15-, and 3.39-micron laser radiation for a homogeneous H-He plasma have been measured in the temperature range from 12.2 to 21.7 (x 1000 K) and in the electron number density range 0.45 to 6.5 (x 10 to the 17th power per cu cm). Good agreement is found between the experimentally determined total absorption for each of the wavelengths and that calculated from theory. Furthermore, because the 3.39-micron absorption is dominated by inverse bremsstrahlung, while the 0.633-micron absorption is dominated by photoionization and resonance absorption, the experiment indicates a correct assessment by the theory of these individual absorption mechanisms.

  4. In situ combustion measurements of CO with diode-laser absorption near 2.3 microm.

    PubMed

    Wang, J; Maiorov, M; Baer, D S; Garbuzov, D Z; Connolly, J C; Hanson, R K

    2000-10-20

    In situ measurements of CO concentration were recorded with tunable diode-laser absorption spectroscopy techniques in both the exhaust and the immediate post-flame regions of an atmospheric-pressure flat-flame burner operating on ethylene air. Two room-temperature cw single-mode InGaAsSb/AlGaAsSb diode lasers operating near 2.3 microm were tuned over individual transitions in the CO first overtone band (v' = 2 <-- v" = 0) to record high-resolution absorption line shapes in the exhaust duct [79 cm above the burner, approximately 470 K; R(15) transition at 4311.96 cm(-1)] and the immediate postflame zone [1.5 cm above the burner, 1820-1975 K; R(30) transition at 4343.81 cm(-1)]. The CO concentration was determined from the measured absorption and the gas temperature, which was monitored with type-S thermocouples. For measurements in the exhaust duct, the noise-equivalent absorbance was approximately 3 x 10(-5) (50-kHz detection bandwidth, 50-sweep average, 0.1-s total measurement time), which corresponds to a CO detection limit of 1.5 ppm m at 470 K. Wavelength modulation spectroscopy techniques were used to improve the detection limit in the exhaust to approximately 0.1 ppm m (approximately 500-Hz detection bandwidth, 20-sweep average, 0.4-s total measurement time). For measurements in the immediate postflame zone, the measured CO concentrations in the fuel-rich flames were in good agreement with chemical equilibrium predictions. These experiments demonstrate the utility of diode-laser absorption sensors operating near 2.3 microm for in situ combustion emission monitoring and combustion diagnostics. PMID:18354555

  5. Oscillator strength measurements of atomic absorption lines from stellar spectra

    NASA Astrophysics Data System (ADS)

    Lobel, Alex

    2011-05-01

    Herein we develop a new method to determine oscillator strength values of atomic absorption lines with state-of-the-art detailed spectral synthesis calculations of the optical spectrum of the Sun and of standard spectral reference stars. We update the log(gf) values of 911 neutral lines observed in the KPNO-FTS flux spectrum of the Sun and high-resolution echelle spectra (R = 80 000) of Procyon (F5 IV-V) and Eps Eri (K2 V) observed with large signal-to-noise (S/N) ratios of 2000 using the new Mercator-Hermes spectrograph at La Palma Observatory (Spain). We find for 483 Fe I, 85 Ni I, and 51 Si I absorption lines in the sample a systematic overestimation of the literature log(gf) values with central line depths below 15%. We employ a curve-of-growth analysis technique to test the accuracy of the new oscillator strength values and compare calculated equivalent line widths to the Moore, Minnaert, and Houtgast atlas of the Sun. The online SpectroWeb database at http://spectra.freeshell.org interactively displays the observed and synthetic spectra and provides the new log(gf) values together with important atomic line data. The graphical database is under development for stellar reference spectra of every spectral sub-class observed with large spectral resolution and S/N ratios.

  6. Measurements and Modeling of Aerosol Absorption and Single Scattering Albedo at Ambient Relative Hum

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Russell, P. B.; Hamill, P.

    2000-01-01

    Uncertainties in the aerosol single scattering albedo have been identified to be an important source of errors in current large-scale model estimates of the direct aerosol radiative forcing of climate. A number of investigators have obtained estimates of the single scattering albedo from a variety of remote sensing and in situ measurements during aerosol field experiments. During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, 1996) for example, estimates of the aerosol single scattering albedo were obtained (1) as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from independently measured aerosol properties; (2) from estimates of the aerosol complex index of refraction derived using a combination of airborne sunphotometer, lidar backscatter and in situ size distribution measurements; and (3) from airborne measurements of aerosol scattering and absorption using nephelometers and absorption photometers. In this paper, we briefly compare the results of the latter two methods for two TARFOX case studies, since those techniques provide height-resolved information about the aerosol single scattering albedo. Estimates of the aerosol single scattering albedo from nephelometer and absorption photometer measurements require knowledge of the scattering and absorption humidification (i.e., the increase in these properties in response to an increase in ambient relative humidity), since both measurements are usually carried out at a relative humidity different from the ambient atmosphere. In principle, the scattering humidification factor can be measured, but there is currently no technique widely available to measure the absorption of an aerosol sample as a function of relative humidity. Frequently, for lack of better knowledge, the absorption humidification is assumed to be unity (meaning that there is no change in aerosol absorption due to an increase in ambient relative humidity). This

  7. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  8. Liquid crystal quantitative temperature measurement technique

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Wu, Zongshan

    2001-10-01

    Quantitative temperature measurement using wide band thermochromic liquid crystals is an “area” thermal measurement technique. This technique utilizes the feature that liquid crystal changes its reflex light color with variation of temperature and applies an image capturing and processing system to calibrate the characteristic curve of liquid crystal’s color-temperature. Afterwards, the technique uses this curve to measure the distribution of temperature on experimental model. In this paper, firstly, each part of quantitative temperature measurement system using liquid crystal is illustrated and discussed. Then the technique is employed in a long duration hypersonic wind tunnel, and the quantitative result of the heat transfer coefficient along laminar plate is obtained. Additionally, some qualitative results are also given. In the end, comparing the experimental results with reference enthalpy theoretical results, a conclusion of thermal measurement accuracy is drawn.

  9. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    Research relative to weather radar measurement techniques, which involves some investigations related to measurement techniques applicable to meteorological radar systems in Thailand, is reported. A major part of the activity was devoted to instruction and discussion with Thai radar engineers, technicians, and meteorologists concerning the basic principles of radar meteorology and applications to specific problems, including measurement of rainfall and detection of wind shear/microburst hazards. Weather radar calibration techniques were also considered during this project. Most of the activity took place during two visits to Thailand, in December 1990 and February 1992.

  10. UV absorption technique for monitoring mobile source NO emissions. Final report, 1 October 1992-30 September 1993

    SciTech Connect

    Howard, R.P.; Phillips, W.J.

    1993-11-01

    Ultraviolet (UV) absorption techniques developed and used by the Arnold Engineering Development Center (AEDC) for measurements of nitric oxide (NO) in exhaust flows of turbine and liquid-propellant rocket engines have been adapted for measurements of NO in the exhausts of automobiles. Measurements were performed across a roadway with a 10-percent mixture of NO being released into the exhaust stream of a small truck traveling at speeds ranging from 6 to 30 mph. Emission factors for these simulated exhausts ranged from 0.92 to 23.05 gm/mi. Nitric oxide was detected in measurements using NO-resonance lamp radiation passed twice across the roadway for emission factors as low as 1.78 gm/mi. Nitric oxide absorption was not detected on exhaust measurements of automobiles traveling (coasting) at constant speeds. Nitric oxide was detected at measurable levels on automobiles forced to stop and then accelerate through the measurement station. Mobile source emissions, Nitric oxide, NO, Automobile exhaust, UV absorption.

  11. Modelling the Absorption Measurement Distribution (AMD) for Mrk 509

    NASA Astrophysics Data System (ADS)

    Adhikari, T.; Rozanska, A.; Sobolewska, M.; Czerny, B.

    2015-07-01

    Absorption Measurement Distribution (AMD) measures the distribution of absorbing column over a range of ionization parameters of the X-ray absorbers in Seyfert galaxies. In this work, we modeled the AMD in Mrk 509 using its recently published broad band Spectral Energy Distribution (SED). This SED is used as an input for radiative transfer computations with full photoionization treatment using the photoionization codes Titan and Cloudy. Assuming a photoionized medium with a uniform total pressure (gas+radiation), we reproduced the discontunity in the observed AMD distribution which is usually described as the region of thermal instability of the absorber. We also studied the structure and properties of the warm absorber in Mrk 509.

  12. Measurement of iron absorption from meals contaminated with iron

    SciTech Connect

    Hallberg, L.; Bjoern-Rasmussen, E.

    1981-12-01

    A method is described to measure in vitro the extent of isotopic exchange between the native nonheme food iron and added inorganic reduction to radioiron tracer. The food is digested with pepsin and trypsin in the presence of radioiron. The exchangeability of food iron is calculated from the specific activity in the food and in an extract of bathophenantroline in isoamyl alcohol obtained after digesting this food. The precision and accuracy of the method is illustrated by two kinds of studies, those in which different amounts of contamination iron are added to a meal and those evaluating contamination iron in natural meals. The present method will make it possible to measure validly iron absorption from meals contaminated with unknown amounts of iron of unknown exchangeability with the extrinsic radioiron tracer.

  13. Phase measurement of fast light pulse in electromagnetically induced absorption.

    PubMed

    Lee, Yoon-Seok; Lee, Hee Jung; Moon, Han Seb

    2013-09-23

    We report the phase measurement of a fast light pulse in electromagnetically induced absorption (EIA) of the 5S₁/₂ (F = 2)-5P₃/₂ (F' = 3) transition of ⁸⁷Rb atoms. Using a beat-note interferometer method, a stable measurement without phase dithering of the phase of the probe pulse before and after it has passed through the EIA medium was achieved. Comparing the phases of the light pulse in air and that of the fast light pulse though the EIA medium, the phase of the fast light pulse at EIA resonance was not shifted and maintained to be the same as that of the free-space light pulse. The classical fidelity of the fast light pulse according to the advancement of the group velocity by adjusting the atomic density was estimated to be more than 97%. PMID:24104135

  14. Guided-mode-resonance-enhanced measurement of thin-film absorption.

    PubMed

    Wang, Yifei; Huang, Yin; Sun, Jingxuan; Pandey, Santosh; Lu, Meng

    2015-11-01

    We present a numerical and experimental study of a guided-mode-resonance (GMR) device for detecting surface-bound light-absorbing thin films. The GMR device functions as an optical resonator at the wavelength strongly absorbed by the thin film. The GMR mode produces an evanescent field that results in enhanced optical absorption by the thin film. For a 100-nm-thick lossy thin film, the GMR device enhances its absorption coefficients over 26 × compared to a conventional glass substrate. Simulations show the clear quenching effect of the GMR when the extinction coefficient is greater than 0.01. At the resonant wavelength, the reflectance of the GMR surface correlates well with the degree of optical absorption. GMR devices are fabricated on a glass substrate using a surface-relief grating and a titanium-dioxide coating. To analyze a visible absorbing dye, the reflection coefficient of dye-coated GMR devices was measured. The GMR-based method was also applied to detecting acid gases, such as hydrochloric vapor, by monitoring the change in absorption in a thin film composed of a pH indicator, bromocresol green. This technique potentially allows absorption analysis in the visible and infrared ranges using inexpensive equipment. PMID:26561126

  15. Ultrashort coherence times in partially polarized stationary optical beams measured by two-photon absorption.

    PubMed

    Shevchenko, Andriy; Roussey, Matthieu; Friberg, Ari T; Setälä, Tero

    2015-11-30

    We measure the recently introduced electromagnetic temporal degree of coherence of a stationary, partially polarized, classical optical beam. Instead of recording the visibility of intensity fringes, the spectrum, or the polarization characteristics, we introduce a novel technique based on two-photon absorption. Using a Michelson interferometer equipped with polarizers and a specific GaAs photocount tube, we obtain the two fundamental quantities pertaining to the fluctuations of light: the degree of coherence and the degree of polarization. We also show that the electromagnetic intensity-correlation measurements with two-photon absorption require that the polarization dynamics, i.e., the time evolution of the instantaneous polarization state, is properly taken into account. We apply the technique to unpolarized and polarized sources of amplified spontaneous emission (Gaussian statistics) and to a superposition of two independent, narrow-band laser beams of different mid frequencies (non-Gaussian statistics). For these two sources femtosecond-range coherence times are found that are in good agreement with the traditional spectral measurements. Although previously employed for laser pulses, two-photon absorption provides a new physical principle to study electromagnetic coherence phenomena in classical and quantum continuous-wave light at extremely short time scales. PMID:26698754

  16. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Application to AVIRIS 91/95 data

    SciTech Connect

    Schlaepfer, D.; Borel, C.C.; Keller, J.

    1996-03-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 run resolution. This data includes information on constituents of the earth`s surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various rationing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. This work testS the best performing differential absorption techniques for imaging spectrometry of tropospheric water vapor.

  17. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Application to AVIRIS 91/95 Data

    NASA Technical Reports Server (NTRS)

    Schlaepfer, Daniel; Borel, Christoph C.; Keller, Johannes; Itten, Klaus I.

    1996-01-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 nm resolution. This data includes the information on constituents of the earth's surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various ratioing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, the spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. The objective of this work is to test the best performing differential absorption techniques for imaging spectrometry of

  18. Detection of water vapour absorption around 363nm in measured atmospheric absorption spectra and its effect on DOAS evaluations

    NASA Astrophysics Data System (ADS)

    Lampel, Johannes; Polyansky, Oleg. L.; Kyuberis, Alexandra A.; Zobov, Nikolai F.; Tennyson, Jonathan; Lodi, Lorenzo; Pöhler, Denis; Frieß, Udo; Platt, Ulrich; Beirle, Steffen; Wagner, Thomas

    2016-04-01

    Water vapour is known to absorb light from the microwave region to the blue part of the visible spectrum at a decreasing magnitude. Ab-initio approaches to model individual absorption lines of the gaseous water molecule predict absorption lines until its dissociation limit at 243 nm. We present first evidence of water vapour absorption at 363 nm from field measurements based on the POKAZATEL absorption line list by Polyansky et al. (2016) using data from Multi-Axis differential optical absorption spectroscopy (MAX-DOAS) and Longpath (LP)-DOAS measurements. The predicted absorptions contribute significantly to the observed optical depths with up to 2 × 10‑3. Their magnitude correlates well (R2 = 0.89) to simultaneously measured well-established water vapour absorptions in the blue spectral range from 452-499 nm, but is underestimated by a factor of 2.6 ± 0.6 in the ab-initio model. At a spectral resolution of 0.5nm this leads to a maximum absorption cross-section value of 5.4 × 10‑27 cm2/molec at 362.3nm. The results are independent of the employed cross-section data to compensate for the overlayed absorption of the oxygen dimer O4. The newly found absorption can have a significant impact on the spectral retrieval of absorbing trace-gas species in the spectral range around 363 nm. Its effect on the spectral analysis of O4, HONO and OClO are discussed.

  19. Fourier-analytic technique for the separation of the signature of atmospheric ClO absorption from the solar background spectrum in the near ultraviolet

    SciTech Connect

    Burnett, E.B.

    1989-02-01

    The high-resolution ClO absorption signature in the region of 308.1 nm has a very low absorption fraction, of the order of 6 x 10/sup -5/, and linewidths comparable with those of the solar background spectrum. Because of the need for reliable absorption measurements of the abundance of this species, which is important in ozone photochemistry, a Fourier-analysis-based technique for the deconvolution of atmospheric solar absorption spectra in this region has been developed. The technique utilizes the regularity of the ClO spectrum and results in a significant reduction in the minimum signal-to-noise required for the retrieval of ClO abundances from absorption spectra.

  20. Experimental Techniques for Thermodynamic Measurements of Ceramics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Putnam, Robert L.; Navrotsky, Alexandra

    1999-01-01

    Experimental techniques for thermodynamic measurements on ceramic materials are reviewed. For total molar quantities, calorimetry is used. Total enthalpies are determined with combustion calorimetry or solution calorimetry. Heat capacities and entropies are determined with drop calorimetry, differential thermal methods, and adiabatic calorimetry . Three major techniques for determining partial molar quantities are discussed. These are gas equilibration techniques, Knudsen cell methods, and electrochemical techniques. Throughout this report, issues unique to ceramics are emphasized. Ceramic materials encompass a wide range of stabilities and this must be considered. In general data at high temperatures is required and the need for inert container materials presents a particular challenge.

  1. In-flight aeroelastic measurement technique development

    NASA Astrophysics Data System (ADS)

    Burner, Alpheus W.; Lokos, William A.; Barrows, Danny A.

    2003-11-01

    The initial concept and development of a low-cost, adaptable method for the measurement of static and dynamic aeroelastic deformation of aircraft during flight testing is presented. The method is adapted from a proven technique used in wind tunnel testing to measure model deformation, often referred to as the videogrammetric model deformation (or VMD) technique. The requirements for in-flight measurements are compared and contrasted with those for wind tunnel testing. The methodology for the proposed measurements and differences compared with that used for wind tunnel testing is given. Several error sources and their effects are identified. Measurement examples using the new technique, including change in wing twist and deflection as a function of time, from an F/A-18 research aircraft at NASA's Dryden Flight Research Center are presented.

  2. Optical Measurement Technique for Space Column Characterization

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.

    2004-01-01

    A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.

  3. New techniques in measuring nonacidic esophageal reflux.

    PubMed

    Vaezi, M F; Shay, S S

    2001-07-01

    New techniques in esophageal monitoring are allowing for better differentiation in the role of different gastric refluxates in esophageal mucosal damage and patient symptoms. The Bilitec 2001 (Synectics, Stockholm, Sweden) is a portable spectrophotometer that measures bilirubin as a surrogate marker for bile reflux and multichannel intraluminal impedance (MII) (Sandhill Scientific Inc, Highlands Ranch, CO) is a new technique allowing measurement of esophageal volume refluxate. Both techniques assess the role of nonacidic esophageal reflux. Despite their novel approach in assessing nonacid reflux, both methods have limitations. Future studies in this area, however, will prove beneficial in identifying their role in diagnosis and management of patients with suspected nonacid reflux disease. PMID:11568871

  4. Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy.

    PubMed

    Paci, Paolo; Zvinevich, Yury; Tanimura, Shinobu; Wyslouzil, Barbara E; Zahniser, Mark; Shorter, Joanne; Nelson, David; McManus, Barry

    2004-11-22

    We used a tunable diode laser absorption spectrometer to follow the condensation of D(2)O in a supersonic Laval nozzle. We measured both the concentration of the condensible vapor and the spectroscopic temperature as a function of position and compared the results to those inferred from static pressure measurements. Upstream and in the early stages of condensation, the quantitative agreement between the different experimental techniques is good. Far downstream, the spectroscopic results predict a lower gas phase concentration, a higher condensate mass fraction, and a higher temperature than the pressure measurements. The difference between the two measurement techniques is consistent with a slight compression of the boundary layers along the nozzle walls during condensation. PMID:15549871

  5. Elementary reaction rate measurements at high temperatures by tunable-laser flash-absorption

    SciTech Connect

    Hessler, J.P.

    1993-12-01

    The major objective of this program is to measure thermal rate coefficients and branching ratios of elementary reactions. To perform these measurements, the authors constructed an ultrahigh-purity shock tube to generate temperatures between 1000 and 5500 K. The tunable-laser flash-absorption technique is used to measure the rate of change of the concentration of species which absorb below 50,000 cm{sup {minus}1} e.g.: OH, CH, and CH{sub 3}. This technique is being extended into the vacuum-ultraviolet spectral region where one can measure atomic species e.g.: H, D, C, O, and N; and diatomic species e.g.: O{sub 2}, CO, and OH.

  6. Laser Doppler measurement techniques for spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Gagliardi, Robert M.

    1986-01-01

    Two techniques are proposed for using laser links to measure the relative radial velocity of two spacecraft. The first technique determines the relative radial velocity from a measurement of the two-way Doppler shift on a transponded radio-frequency subcarrier. The subcarrier intensity-modulates reciprocating laser beams. The second technique determines the relative radial velocity from a measurement of the two-way Doppler shift on an optical frequency carrier which is transponded between spacecraft using optical Costas loops. The first technique might be used in conjunction with noncoherent optical communications, while the second technique is compatible with coherent optical communications. The first technique simultaneously exploits the diffraction advantage of laser beams and the maturity of radio-frequency phase-locked loop technology. The second technique exploits both the diffraction advantage of laser beams and the large Doppler effect at optical frequencies. The second technique has the potential for greater accuracy; unfortunately, it is more difficult to implement since it involves optical Costas loops.

  7. Characterization and Processing of Organic Nonlinear Optical Materials using Ellipsometric, Waveguiding, and Absorption Spectroscopy Techniques

    NASA Astrophysics Data System (ADS)

    Olbricht, Benjamin C.

    The first focus of this work is to describe methods for characterizing organic electro-optic materials. Teng-Man Ellipsometry and Attenuated Total Internal Reflection are reviewed. Experimental techniques for these instruments are described and the calculation of an electro-optic activity is derived. The two techniques are compared; it has been found that in Situ Teng-Man ellipsometry is useful to determine poling conditions but not for reliably evaluating electro-optic activity. Attenuated Total Internal Reflection is found to provide very reliable and precise measurements of electro-optic activity and linear optical constants. As a reference, many materials systems have been evaluated and their electro-optic activities are recorded herein. Methods for fabricating devices for test by Teng-Man ellipsometry and Attenuated Total Internal Reflection are presented. A process for inducing Pockel's response via contact-geometry electric field poling is also described, along with modifications to the simple slab dielectric device to enhance the efficacy of poling. An additional method for enhancing the efficiency of poling is presented. This technique relies on the photoisomerization of azobenzene dyes under 532nm radiation to reduce the dimensionality accessible to chromophores doped into the azobenzene matrix. This effect is known as "Laser Assisted Poling" and is shown to increase poling efficiency by more than two fold. The second purpose of this work is to present an experimental technique to measure the order parameter = 3cos 2q -12 . This method is known as Variable-Angle Polarization-Referenced Absorption Spectroscopy (VAPRAS). The experimental apparatus used for VAPRAS introduces small alterations to a UV/Vis Spectrophotometer and an order parameter is derived by exclusively using classical models for transmittance. VAPRAS provides an effective refractive index for the electro-optic material film which is used to calculate the order of absorbers in the film

  8. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer.

    PubMed

    Zhu, Wenyue; Liu, Qiang; Wu, Yi

    2015-09-01

    Atmospheric aerosol plays an important role in atmospheric radiation balance through absorbing and scattering the solar radiation, which changes local weather and global climate. Accurate measurement is highly requested to estimate the radiative effects and climate effects of atmospheric aerosol. Photoacoustic spectroscopy (PAS) technique, which observes the aerosols on their natural suspended state and is insensitive to light scattering, is commonly recognized as one of the best candidates to measure the optical absorption coefficient (OAC) of aerosols. In the present work, a method of measuring aerosol OAC at the wavelength where could also be absorbed by water vapor was proposed and corresponding measurements of the absorption properties of the atmospheric aerosol at the short wave infrared (SWIR, 1342 nm) wavelength were carried out. The spectrometer was made up of two high performance homemade photoacoustic cells. To improve the sensitivity, several methods were presented to control the noise derived from gas flow and vibration from the sampling pump. Calibration of the OAC and properties of the system were also studied in detail. Using the established PAS instrument, measurement of the optical absorption properties of the atmospheric aerosol were carried out in laboratory and field environment. PMID:26368414

  9. Principles and techniques of blood pressure measurement

    PubMed Central

    Ogedegbe, Gbenga; Pickering, Thomas

    2013-01-01

    Although the mercury sphygmomanometer is widely regarded as the “gold standard” for office blood pressure measurement, the ban on use of mercury devices continues to diminish their role in office and hospital settings. To date, mercury devices have largely been phased out in US hospitals. This has led to the proliferation of non-mercury devices and has changed (probably for ever) the preferable modality of blood pressure measurement in clinic and hospital settings. In this article, the basic techniques of blood pressure measurement and the technical issues associated with measurements in clinical practice are discussed. The devices currently available for hospital and clinic measurements and their important sources of error are presented. Practical advice is given on how the different devices and measurement techniques should be used. Blood pressure measurements in different circumstances and in special populations such as infants, children, pregnant women, elderly persons, and obese subjects are discussed. PMID:20937442

  10. Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics

    NASA Astrophysics Data System (ADS)

    Hart, Roger C.; Herring, G. C.; Balla, R. Jeffrey

    2007-06-01

    Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  11. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  12. Measurement of fission products β decay properties using a total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Zakari-Issoufou, A.-A.; Porta, A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Agramunt, J.; Äystö, J.; Bowry, M.; Bui, V. M.; Caballero-Folch, R.; Cano-Ott, D.; Eloma, V.; Estévez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttilä, H.; Regan, P. H.; Rissanen, J.; Rubio, B.; Weber, C.

    2013-12-01

    In a nuclear reactor, the β decay of fission fragments is at the origin of decay heat and antineutrino flux. These quantities are not well known while they are very important for reactor safety and for our understanding of neutrino physics. One reason for the discrepancies observed in the estimation of the decay heat and antineutrinos flux coming from reactors could be linked with the Pandemonium effect. New measurements have been performed at the JYFL facility of Jyväskylä with a Total Absorption Spectrometer (TAS) in order to circumvent this effect. An overview of the TAS technique and first results from the 2009 measurement campaign will be presented.

  13. Calibration optimization of laser-induced deflection signal for measuring absorptance of laser components.

    PubMed

    Zhang, Xiaorong; Li, Bincheng

    2015-03-10

    Different configurations of the laser-induced deflection (LID) technique have been developed recently to measure the absolute bulk and coating absorption of laser components directly. In order to obtain the absolute absorptance value of the surface or coating of a laser component, a reference sample with the same geometry and material as the test sample and with resist heating mounted on the surface of the reference sample was employed to calibrate LID signals. Due to the difference in the excitation approaches in measuring LID signals of the test and reference samples (laser beam irradiation versus surface resist heating), this calibration procedure may bring significant errors in the determination of the absorptance of the test sample. In this paper, theoretical models describing the temperature rise distributions within a test sample excited with flat-top beam irradiation and within a reference sample excited with surface resist heating are developed. Based on these temperature models and the finite-element analysis method, the LID signals used to determine the absorptance of the surface or coating of a laser component and the corresponding calibration error are analyzed. The computation results show that the calibration error depends largely on the probe beam position for normal or transverse LID signals and may be minimized by optimizing the probe beam geometry. PMID:25968359

  14. Temperature variable long path cell for absorption measurements

    NASA Technical Reports Server (NTRS)

    Shetter, R. E.; Davidson, J. A.; Cantrell, C. A.; Calvert, J. G.

    1987-01-01

    The design and construction of a long path cell for absorption measurements at temperatures ranging from 215-470 K and at pressures from vacuum to 10 atm are described. The cell consists of three concentric stainless-steel tubes; the innermost tube is 6.5-in. in internal diameter, has a volume of about 47 l, and contains White-type optics, six thermocouples, and a gas input tube; and the outermost tube provides a vacuum Dewar around the inner assembly. The optical design and temperature control system for the long path temperature variable cell are examined. The long path cell is applicable for analyzing temperature and pressure dependence of spectra and reaction rates of gases, and the cell has flow and photolysis capabilities for studying transient species and photochemically initiated reactions. A diagram of the cell is provided.

  15. X-ray phase imaging using a Gd-based absorption grating fabricated by imprinting technique

    NASA Astrophysics Data System (ADS)

    Yashiro, Wataru; Kato, Kosuke; Sadeghilaridjani, Maryam; Momose, Atsushi; Shinohara, Takenao; Kato, Hidemi

    2016-04-01

    A high-aspect-ratio absorption grating with a pitch of several µm is a key component of X-ray grating interferometery, which is an X-ray phase imaging technique that allows for highly sensitive X-ray imaging with a compact laboratory X-ray source. Here, we report that X-ray phase imaging was successfully performed at 15 keV by using a 23 ± 1-µm-height, 9-µm-pitch absorption grating (10 × 10 mm2) based on Gd (Gd60Cu25Al15) fabricated by a metallic glass imprinting technique. The imprinting technique is cost-efficient and has a high-production rate, and will be widely used for fabricating gratings not only for X-rays but also neutrons in the near future.

  16. Wastewater Sampling Methodologies and Flow Measurement Techniques.

    ERIC Educational Resources Information Center

    Harris, Daniel J.; Keffer, William J.

    This document provides a ready source of information about water/wastewater sampling activities using various commercial sampling and flow measurement devices. The report consolidates the findings and summarizes the activities, experiences, sampling methods, and field measurement techniques conducted by the Environmental Protection Agency (EPA),…

  17. Review of air flow measurement techniques

    SciTech Connect

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  18. Is There a Common Correction for Biases in Historic Filter-Based Aerosol Absorption Measurements?

    NASA Astrophysics Data System (ADS)

    McComiskey, A. C.; Jefferson, A.; Dubey, M. K.; Aiken, A. C.; Fast, J. D.; Flynn, C. J.; Kassianov, E.

    2014-12-01

    Improved characterization of aerosol absorption is a pressing need for improving estimates of climate forcing by aerosols. Measurements of aerosol absorption are difficult to make with the accuracy and precision demanded by climate science. While several different approaches have been employed and new techniques have emerged, none can yet be considered a true 'gold standard'. Instruments that use filter-based methods have been the most widely used and are the basis of historic records. However, several studies using direct photoacoustic techniques have shown that filter-based measurements can be biased relative to these direct measurements. It has been demonstrated that this bias depends strongly on aerosol chemical composition, specifically concentration of organic mass. The wealth of information in the extensive set of historical filter-based data demands that this bias be diagnosed and corrected. A correction is critical for proper evaluation and development of chemical transport models, improved retrievals from remote sensing measurements, and integrating aerosol absorption surface and sub-orbital in situ measurements with knowledge gained from these other approaches. We have performed an intercomparison of absorption coefficients from a photoacoustic and two filter-based instruments with co-located organic mass concentrations from continuous, half-hourly averaged measurements over six months at a remote, continental site in the US (ARM SGP). The results show a bias in the filter-based measurements with organic concentration that is consistent with previous studies. Previous results come from controlled lab studies or field campaigns where absorption coefficients and organic concentrations are high and may represent aerosol close to the source. The current study is important in that these quantities are much lower and the aerosol likely more aged, representing a larger portion of the global conditions, yet shows a similar bias. This site provides other measures

  19. Laboratory measurements of the ozone absorption coefficient in the wavelength region 339 to 362 nm at different temperatures

    NASA Astrophysics Data System (ADS)

    Cacciani, Marco; Disarra, Alcide; Fiocco, Giorgio

    1987-06-01

    Instrumentation for the absolute measurement of the ozone absorption coefficient in the Huggins bands at different temperatures was set up. Ozone is produced with an electrical discharge and stored cryogenically; differential absorption measurements are carried out in a slowly evolving mixture of ozone and molecular oxygen. Results in the region 339 to 362 nm at temperatures between minus 30 and plus 40 C are reported. Results support Katayama's (1979) model of the transitions giving rise to the Huggins absorption bands of ozone. For measurements of atmospheric ozone profiles by DIAL techniques, the results on the temperature dependence of the absorption coefficient at the wavelength corresponding to the third harmonic of an NdYAG laser are stressed.

  20. Contact sponge water absorption test implemented for in situ measures

    NASA Astrophysics Data System (ADS)

    Gaggero, Laura; Scrivano, Simona

    2016-04-01

    The contact sponge method is a non-destructive in-situ methodology used to estimate a water uptake coefficient. The procedure, unlike other in-situ measurement was proven to be directly comparable to the water uptake laboratory measurements, and was registered as UNI 11432:2011. The UNI Normal procedure requires to use a sponge with known density, soaked in water, weighed, placed on the material for 1 minute (UNI 11432, 2011; Pardini & Tiano, 2004), then weighed again. Difficulties arise in operating on test samples or on materials with porosity varied for decay. While carrying on the test, fluctuations in the bearing of the environmental parameters were negligible, but not the pressure applied to the surface, that induced the release of different water amounts towards the material. For this reason we designed a metal piece of the same diameter of the plate carrying the sponge, to be screwed at the tip of a pocket penetrometer. With this instrument the sponge was kept in contact with the surface for 1 minute applying two different loads, at first pushed with 0.3 kg/cm2 in order to press the sponge, but not its holder, against the surface. Then, a load of 1.1 kg/ cm2 was applied, still avoiding deviating the load to the sponge holder. We applied both the current and our implemented method to determine the water absorption by contact sponge on 5 fresh rock types (4 limestones: Fine - and Coarse grained Pietra di Vicenza, Rosso Verona, Breccia Aurora, and the silicoclastic Macigno sandstone). The results show that 1) the current methodology imply manual skill and experience to produce a coherent set of data; the variable involved are in fact not only the imposed pressure but also the compression mechanics. 2) The control on the applied pressure allowed reproducible measurements. Moreover, 3) the use of a thicker sponge enabled to apply the method even on rougher surfaces, as the device holding the sponge is not in contact with the tested object. Finally, 4) the

  1. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    SciTech Connect

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  2. Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans

    PubMed Central

    Gomez-Amaro, Rafael L.; Valentine, Elizabeth R.; Carretero, Maria; LeBoeuf, Sarah E.; Rangaraju, Sunitha; Broaddus, Caroline D.; Solis, Gregory M.; Williamson, James R.; Petrascheck, Michael

    2015-01-01

    Caenorhabditis elegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bacterial clearing assay that measures food intake by quantifying the change in the optical density of bacteria over time. The second method, termed pulse feeding, measures the absorption of food by tracking de novo protein synthesis using a novel metabolic pulse-labeling strategy. Using the bacterial clearance assay, we compare the bacterial food intake of various C. elegans strains and show that long-lived eat mutants eat substantially more than previous estimates. To demonstrate the applicability of the pulse-feeding assay, we compare the assimilation of food for two C. elegans strains in response to serotonin. We show that serotonin-increased feeding leads to increased protein synthesis in a SER-7-dependent manner, including proteins known to promote aging. Protein content in the food has recently emerged as critical factor in determining how food composition affects aging and health. The pulse-feeding assay, by measuring de novo protein synthesis, represents an ideal method to unequivocally establish how the composition of food dictates protein synthesis. In combination, these two assays provide new and powerful tools for C. elegans research to investigate feeding and how food intake affects the proteome and thus the physiology and health of an organism. PMID:25903497

  3. Near simultaneous measurements of NO2 and NO3 over tropics by ground-based absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Lal, M.; Chakrabarty, D. K.; Sidhu, J. S.; Das, S. R.

    1994-01-01

    The present study concentrates on measurements of NO2 and NO3. NO2 has been measured during twilight period using zenith sky absorption spectrometric technique in the 436 to 448 nm region. NO3 has been measured during night time using direct moon as a source of light in the 655 to 667 nm region. These measurements have been taken at low latitude station, Ahmedabad (23 deg N, 76 deg E), India for the past two years.

  4. A discussion of dynamic stability measurement techniques

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1975-01-01

    Techniques for the measurement of the dynamic stability of linear systems are discussed. Particular attention is given to an analysis of the errors in the procedures, and to methods for calculating the system damping from the data. The techniques discussed include: transient decay, moving block analysis, spectral analysis, random decrement signatures, transfer function analysis, and parameter identification methods. The special problems of rotorcraft dynamic stability testing are discussed.

  5. Decay Heat Measurements Using Total Absorption Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rice, S.; Valencia, E.; Algora, A.; Taín, J. L.; Regan, P. H.; Podolyák, Z.; Agramunt, J.; Gelletly, W.; Nichols, A. L.

    2012-09-01

    A knowledge of the decay heat emitted by thermal neutron-irradiated nuclear fuel is an important factor in ensuring safe reactor design and operation, spent fuel removal from the core, and subsequent storage prior to and after reprocessing, and waste disposal. Decay heat can be readily calculated from the nuclear decay properties of the fission products, actinides and their decay products as generated within the irradiated fuel. Much of the information comes from experiments performed with HPGe detectors, which often underestimate the beta feeding to states at high excitation energies. This inability to detect high-energy gamma emissions effectively results in the derivation of decay schemes that suffer from the pandemonium effect, although such a serious problem can be avoided through application of total absorption γ-ray spectroscopy (TAS). The beta decay of key radionuclei produced as a consequence of the neutron-induced fission of 235U and 239Pu are being re-assessed by means of this spectroscopic technique. A brief synopsis is given of the Valencia-Surrey (BaF2) TAS detector, and their method of operation, calibration and spectral analysis.

  6. Multi-wavelength aerosol light absorption measurements in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Saturno, Jorge; Chi, Xuguang; Pöhlker, Christopher; Morán, Daniel; Ditas, Florian; Massabò, Dario; Prati, Paolo; Rizzo, Luciana; Artaxo, Paulo; Andreae, Meinrat

    2015-04-01

    The most important light-absorbing aerosol is black carbon (BC), which is emitted by incomplete combustion of fossil fuels and biomass. BC is considered the second anthropogenic contributor to global warming. Beyond BC, other aerosols like some organics, dust, and primary biological aerosol particles are able to absorb radiation. In contrast to BC, the light absorption coefficient of these aerosols is wavelength dependent. Therefore, multi-wavelength measurements become important in environments where BC is not the predominant light-absorbing aerosol like in the Amazon. The Amazon Tall Tower Observatory (ATTO) site is located in the remote Amazon rainforest, one of the most pristine continental sites in the world during the wet season. In the dry season, winds coming from the southern hemisphere are loaded with biomass burning aerosol particles originated by farming-related deforestation. BC and aerosol number concentration data from the last two years indicate this is the most polluted period. Two different techniques have been implemented to measure the light absorption at different wavelengths; one of them is the 7-wavelengths Aethalometer, model AE30, an instrument that measures the light attenuation on a filter substrate and requires multiple scattering and filter-loading corrections to retrieve the light absorption coefficient. The other method is an offline technique, the Multi-Wavelength Absorbance Analysis (MWAA), which is able to measure reflectance and absorbance by aerosols collected on a filter and, by means of a radiative model, can retrieve the light absorption coefficient. Filters collected during May-September 2014, comprehending wet-to-dry transition and most of the dry season, were analyzed. The results indicate that the Absorption Ångström Exponent (AAE), a parameter that is directly proportional to the wavelength dependence of the aerosol light absorption, is close to 1.0 during the transition period and slightly decreases in the beginning of

  7. Optical absorption depth profiling of photodegraded poly(vinylchloride) (PVC) films by quantitative photothermal deflection technique

    NASA Astrophysics Data System (ADS)

    Fu, S.-W.; Power, J. F.; Nepotchatykh, O. V.

    2000-05-01

    An improved photothermal beam deflection technique is applied for optical absorption depth profiling of UV photodegraded PVC films, for nondestructive evaluation of their decomposition mechanism. A new model-based on diffraction theory is used to describe the photothermal response (with bicell recording), induced by impulse irradiation of a depth dependent array of thin planar optical absorbers approximating the sample's depth profile. Improved techniques of alignment, sample preparation and quantitative deconvolution of the bicell impulse response have increased the signal repeatability and reduced the principal bias errors affecting this ill posed problem. By this technique and a stable solution of the inverse problem, the absorption coefficient depth profile is accurately reconstructed in PVC films. Experimental depth profiles were confirmed against destructive techniques run on identical samples of the degraded material. An excellent agreement was found between depth profiles recovered using the mirage effect and these reference methods. Observed absorption profiles were fully consistent with known patterns of depth dependent PVC degradation under nitrogen and oxygen atmospheres.

  8. Solar Cell Calibration and Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave

    2004-01-01

    The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WD15387, "Requirements for Measurement and Calibration Procedures for Space Solar Cells" was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and te international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.

  9. Solar Cell Calibration and Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave

    1997-01-01

    The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WDI 5387, 'Requirements for Measurement and Calibration Procedures for Space Solar Cells' was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and the international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.

  10. Cantilever and capacitor technique for measuring dilatation

    SciTech Connect

    Primak, W.; Monahan, E.

    1983-05-01

    The relationship of EerNisse's technique for measuring small dilatations caused by irradiation with short-range particles, which utilizes a metallized thin plate mounted as a cantilever below whose free end an electrode is placed (forming a capacitor), to a photoelastic technique and to an interferometric technique are derived. The effects of stray capacitance, the fringing field of the capacitor, the clamping stress on the cantilever plate, the electrical resistance of the metallic coating, the charging of the tank circuit of which the capacitor is an element, the flange bolting stress, and the beam heating are assessed, and examples of the manner in which they contaminate the data are given.

  11. An intercomparison of five ammonia measurement techniques

    NASA Technical Reports Server (NTRS)

    Williams, E. J.; Sandholm, S. T.; Bradshaw, J. D.; Schendel, J. S.; Langford, A. O.; Quinn, P. K.; Lebel, P. J.; Vay, S. A.; Roberts, P. D.; Norton, R. B.

    1992-01-01

    Results obtained from five techniques for measuring gas-phase ammonia at low concentration in the atmosphere are compared. These methods are: (1) a photofragmentation/laser-induced fluorescence (PF/LIF) instrument; (2) a molybdenum oxide annular denuder sampling/chemiluminescence detection technique; (3) a tungsten oxide denuder sampling/chemiluminescence detection system; (4) a citric-acid-coated denuder sampling/ion chromatographic analysis (CAD/IC) method; and (5) an oxalic-acid-coated filter pack sampling/colorimetric analysis method. It was found that two of the techniques, the PF/LIF and the CAD/IC methods, measured approximately 90 percent of the calculated ammonia added in the spiking tests and agreed very well with each other in the ambient measurements.

  12. Radionuclide counting technique for measuring wind velocity

    SciTech Connect

    Singh, J.J.; Khandelwal, G.S.

    1981-12-01

    A technique for measuring wind velocities of meteorological interest is described. It is based on inverse-square-law variation of the counting rates as the radioactive source-to-counter distance is changed by wind drag on the source ball. Results of a feasibility study using a weak bismuth 207 radiation source and three Geiger-Muller radiation counters are reported. The use of the technique is not restricted to Martian or Mars-like environments. A description of the apparatus, typical results, and frequency response characteristics are included. A discussion of a double-pendulum arrangement is presented. Measurements reported herein indicate that the proposed technique may be suitable for measuring wind speeds up to 100 m/sec, which are either steady or whose rates of fluctuation are less than 1 kHz.

  13. Mass Loss Rates for Solar-like Stars Measured from Lyα Absorption

    NASA Astrophysics Data System (ADS)

    Wood, B. E.; Müller, H.-R.; Linsky, J. L.

    2003-10-01

    We present a number of mass loss rate measurements for solar-like stars with coronal winds, computed using a Lyα absorption technique. The collision between the solar wind and the interstellar wind seen by the Sun defines the large scale structure of our heliosphere. Similar structures, ``astrospheres,'' exist around other solar-like stars. The deceleration of the interstellar wind at the solar or stellar bow shock heats the interstellar material. Heated neutral hydrogen in the outer astrosphere (and/or heliosphere) produces a broad Lyα absorption profile that is often detectable in high resolution Hubble Space Telescope spectra. The amount of absorption is dependent upon the strength of the stellar wind. With guidance from hydrodynamic models of astrospheres, we use detected astrospheric Lyα absorption to estimate the stellar mass loss rates. For the solar-like GK stars in our sample, mass loss appears to increase with stellar activity, suggesting that young, active stars have stronger winds than old, inactive stars. However, Proxima Cen (M5.5 Ve) and λ And (G8 IV-III+M V) appear to be inconsistent with this relation.

  14. Open-path tunable diode laser absorption for eddy correlation flux measurements of atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Anderson, Stuart M.; Zahniser, Mark S.

    1991-01-01

    Biogenic emissions from and dry deposition to terrestrial surfaces are important processes determining the trace gas composition of the atmosphere. An instrument has been developed for flux measurements of gases such as CH4, N2O, and O3 based on the eddy correlation technique which combines trace gas fluctuation measurements with simultaneous windfield measurements. The instrument combines a tunable diode laser infrared light source with an open-path multipass absorption cell in order to provide the fast time response and short base pathlength required for the eddy correlation method. Initial field tests using the instrument to measure methane emissions from a local wetland demonstrate the capability for high precision eddy correlation flux measurements.

  15. A comparison of infrared-emittance measurements and measurement techniques.

    PubMed

    Millard, J P; Streed, E R

    1969-07-01

    Values of directional and hemispherical emittance of twelve coatings were needed in support of a spacecraft experiment. Laboratory measurements were made by two calorimetric and four reflectance techniques and with two portable devices designed for field or laboratory operation. The measurement results are compared, primarily on the basis of hemispherical emittance values deduced from each; and the limitations and uncertainties of each technique are summarized. PMID:20072458

  16. Measurement Techniques for Hypervelocity Impact Test Fragments

    NASA Technical Reports Server (NTRS)

    Hill, Nicole E.

    2008-01-01

    The ability to classify the size and shape of individual orbital debris fragments provides a better understanding of the orbital debris environment as a whole. The characterization of breakup fragmentation debris has gradually evolved from a simplistic, spherical assumption towards that of describing debris in terms of size, material, and shape parameters. One of the goals of the NASA Orbital Debris Program Office is to develop high-accuracy techniques to measure these parameters and apply them to orbital debris observations. Measurement of the physical characteristics of debris resulting from groundbased, hypervelocity impact testing provides insight into the shapes and sizes of debris produced from potential impacts in orbit. Current techniques for measuring these ground-test fragments require determination of dimensions based upon visual judgment. This leads to reduced accuracy and provides little or no repeatability for the measurements. With the common goal of mitigating these error sources, allaying any misunderstandings, and moving forward in fragment shape determination, the NASA Orbital Debris Program Office recently began using a computerized measurement system. The goal of using these new techniques is to improve knowledge of the relation between commonly used dimensions and overall shape. The immediate objective is to scan a single fragment, measure its size and shape properties, and import the fragment into a program that renders a 3D model that adequately demonstrates how the object could appear in orbit. This information would then be used to aid optical methods in orbital debris shape determination. This paper provides a description of the measurement techniques used in this initiative and shows results of this work. The tradeoffs of the computerized methods are discussed, as well as the means of repeatability in the measurements of these fragments. This paper serves as a general description of methods for the measurement and shape analysis of

  17. Microwave techniques for physical property measurements

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1993-01-01

    Industrial processing of metals and ceramics is now being streamlined by the development of theoretical models. High temperature thermophysical properties of these materials are required to successfully apply these theories. Unfortunately, there is insufficient experimental data available for many of these properties, particularly in the molten state. Microwave fields can be used to measure specific heat, thermal diffusivity, thermal conductivity and dielectric constants at high temperatures. We propose to (1) develop a microwave flash method (analogous to the laser flash technique) that can simultaneously measure the thermal diffusivity and specific heat of insulators and semiconductors at high temperatures, (2) an appropriate theory and experimental apparatus to demonstrate the measurement of the specific heat of a metal using a new microwave ac specific heat technique, and (3) experimental methods for noncontact measurement of the real and imaginary dielectric constants.

  18. Recent advancement of turbulent flow measurement techniques

    NASA Technical Reports Server (NTRS)

    Battle, T.; Wang, P.; Cheng, D. Y.

    1974-01-01

    Advancements of the fluctuating density gradient cross beam laser Schlieren technique, the fluctuating line-reversal temperature measurement and the development of the two-dimensional drag-sensing probe to a three-dimensional drag-sensing probe are discussed. The three-dimensionality of the instantaneous momentum vector can shed some light on the nature of turbulence especially with swirling flow. All three measured fluctuating quantities (density, temperature, and momentum) can provide valuable information for theoreticians.

  19. Methane Absorption Coefficients in the 750-940 nm region derived from Intracavity Laser Absorption Spectral Measurements

    NASA Astrophysics Data System (ADS)

    O'Brien, J. J.

    2002-09-01

    The absorption spectrum of methane has been recorded in the visible to near-IR region using the intracavity laser spectroscopy technique. Spectra are recorded at high spectral resolution for narrow overlapping intervals in the region for room and 77 K temperature methane samples. After spectra are deconvolved for the instrument function, absorption coefficients are derived. These will be presented (750-940 nm for room temperature methane; 850-920 nm for 77 K methane) and compared with results reported by other workers. Future work in this area also will be indicated. Support from NASA's Planetary Atmospheres Program (NAG5-6091 and a Major Equipment Grant) is gratefully acknowledged.

  20. Heat capacity measurements - Progress in experimental techniques

    NASA Astrophysics Data System (ADS)

    Lakshmikumar, S. T.; Gopal, E. S. R.

    1981-11-01

    The heat capacity of a substance is related to the structure and constitution of the material and its measurement is a standard technique of physical investigation. In this review, the classical methods are first analyzed briefly and their recent extensions are summarized. The merits and demerits of these methods are pointed out. The newer techniques such as the a.c. method, the relaxation method, the pulse methods, the laser flash calorimetry and other methods developed to extend the heat capacity measurements to newer classes of materials and to extreme conditions of sample geometry, pressure and temperature are comprehensively reviewed. Examples of recent work and details of the experimental systems are provided for each method. The introduction of automation in control systems for the monitoring of the experiments and for data processing is also discussed. Two hundred and eight references and 18 figures are used to illustrate the various techniques.

  1. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    This grant provides for some investigations related to weather radar measurement techniques applicable to meteorological radar systems in Thailand. Quality data are needed from those systems to support TRMM and other scientific investigations. Activities carried out during a trip to the radar facilities at Phuket are described.

  2. Improved self-absorption correction for extended x-ray absorption fine-structure measurements

    SciTech Connect

    Booth, C.H.; Bridges, F.

    2003-06-04

    Extended x-ray absorption fine-structure (EXAFS) data collected in the fluorescence mode are susceptible to an apparent amplitude reduction due to the self-absorption of the fluorescing photon by the sample before it reaches a detector. Previous treatments have made the simplifying assumption that the effect of the EXAFS on the correction term is negligible, and that the samples are in the thick limit. We present a nearly exact treatment that can be applied for any sample thickness or concentration, and retains the EXAFS oscillations in the correction term.

  3. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  4. Laser induced deflection (LID) method for absolute absorption measurements of optical materials and thin films

    NASA Astrophysics Data System (ADS)

    Mühlig, Christian; Bublitz, Simon; Paa, Wolfgang

    2011-05-01

    We use optimized concepts to measure directly low absorption in optical materials and thin films at various laser wavelengths by the laser induced deflection (LID) technique. An independent absolute calibration, using electrical heaters, is applied to obtain absolute absorption data without the actual knowledge of the photo-thermal material properties. Verification of the absolute calibration is obtained by measuring different silicon samples at 633 nm where all laser light, apart from the measured reflection/scattering, is absorbed. Various experimental results for bulk materials and thin films are presented including measurements of fused silica and CaF2 at 193 nm, nonlinear crystals (LBO) for frequency conversion and AR coated fused silica for high power material processing at 1030 nm and Yb-doped silica raw materials for high power fiber lasers at 1550 nm. In particular for LBO the need of an independent calibration is demonstrated since thermal lens generation is dominated by stress-induced refractive index change which is in contrast to most of the common optical materials. The measured results are proven by numerical simulations and their influence on the measurement strategy and the obtained accuracy are shown.

  5. High accuracy radiation efficiency measurement techniques

    NASA Technical Reports Server (NTRS)

    Kozakoff, D. J.; Schuchardt, J. M.

    1981-01-01

    The relatively large antenna subarrays (tens of meters) to be used in the Solar Power Satellite, and the desire to accurately quantify antenna performance, dictate the requirement for specialized measurement techniques. The error contributors associated with both far-field and near-field antenna measurement concepts were quantified. As a result, instrumentation configurations with measurement accuracy potential were identified. In every case, advances in the state of the art of associated electronics were found to be required. Relative cost trade-offs between a candidate far-field elevated antenna range and near-field facility were also performed.

  6. Validation techniques for quantitative brain tumors measurements.

    PubMed

    Salman, Y; Assal, M; Badawi, A; Alian, S; -M El-Bayome, M

    2005-01-01

    Quantitative measurements of tumor volume becomes more realistic with the use of imaging- particularly specially when the tumor have non-ellipsoidal morphology, which remains subtle, irregular and difficult to assess by visual metric and clinical examination. The quantitative measurements depend strongly on the accuracy of the segmentation technique. The validity of brain tumor segmentation methods is an important issue in medical imaging because it has a direct impact on many applications such as surgical planning and quantitative measurements of tumor volume. Our goal was to examine two popular segmentation techniques seeded region growing and active contour "snakes" to be compared against experts' manual segmentations as the gold standard. We illustrated these methods on brain tumor volume cases using MR imaging modality. PMID:17281898

  7. Development of nonintrusive, scatter-independent techniques for measurement of liquid density inside dense sprays

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy

    1994-01-01

    A nonintrusive optical technique for measuring the liquid density in sprays used to simulate LOX injector flows is under development. This manuscript is a report on work toward that development which is currently in progress. The technique is a scatter-independent, absorption-based approach which depends on the numerical inversion of a collection of absorption profiles. For the case in which visible radiation passes through liquid-gas interfaces so numerous in sprays, substantial reductions and alterations in the signal result from scattering even in the absence of absorption. To avoid these problems, X-Rays will be used as the absorbed radiation. The experimental process is simulated by integrating the absorption spectrum for a known distribution, adding instrument noise to this 'measurement', creating a projection from the 'measurement', filtering the projection, inverting the projection, and comparing the results with the original prescribed distribution.

  8. Unsteady measurement techniques for turbomachinery flows

    NASA Astrophysics Data System (ADS)

    Jaffa, Nicholas Andrew

    Accurate unsteady measurements are required for studying the flows in high speed turbomachines, which rely on the interaction between rotating and stationary components. Using statistics of phase locked ensembles simplifies the problem, but accurate frequency response in the 10-100 kHz range significantly limits the applicable techniques. This research advances the state of the art for phase resolved measurement techniques using for high speed turbomachinery flows focusing on the following areas: development, validation, and uncertainty quantification. Four methods were developed and implemented: an unsteady total pressure probe, the multiple overheat hot-wire method, the slanted hot-wire method, and the phase peak yaw hot-wire method. These methods allow for the entire phase locked average flow field to be measured (temperature, pressure, and velocity components, swirl angle, etc.). No trusted reference measurement or representative canonical flow exists for comparison of the phase resolved quantities, making validation challenging. Five different validation exercises were performed to increase the confidence and explore the range of applicability. These exercises relied on checking for consistency with expected flow features, comparing independent measurements, and cross validation with CFD. The combined uncertainties for the measurements were quantified using uncertainty estimates from investigations into the elemental error sources. The frequency response uncertainty of constant temperature hot-wire system was investigated using a novel method of illuminating the wire with a laser pulse. The uncertainty analysis provided estimates for the uncertainty in the measurements as well as showing the sensitivity to various sources of error.

  9. Ultrasonic techniques for aircraft ice accretion measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.; Lichtenfelts, Fred

    1990-01-01

    Results of tests to measure ice growth in natural (flight) and artificial (icing wind tunnel) icing conditions are presented. Ice thickness is measured using an ultrasonic pulse-echo technique. Two icing regimes, wet and dry ice growth, are identified and the unique ultrasonic signal characteristics associated with these different types of ice growth are described. Ultrasonic measurements of ice growth on cylinders and airfoils exposed to artificial and natural icing conditions are presented. An accuracy of plus or minus 0.5 mm is achieved for ice thickness measurement using the pulse-echo technique. The performance of two-probe type ice detectors is compared to the surface mounted ultrasonic system. The ultrasonically measured ice accretion rates and ice surface condition (wet or dry) are used to compare the heat transfer characteristics for flight and icing wind tunnel environments. In general the heat transfer coefficient is inferred to be higher in the wind tunnel environment, not likely due to higher freestream turbulence levels. Finally, preliminary results of tests to measure ice growth on airfoil using an array of ultrasonic transducers are described. Ice profiles obtained during flight in natural icing conditions are shown and compared with mechanical and stereo image measurements.

  10. Rapid and accurate broadband absorption cross-section measurement of human bodies in a reverberation chamber

    NASA Astrophysics Data System (ADS)

    Flintoft, Ian D.; Melia, Gregory C. R.; Robinson, Martin P.; Dawson, John F.; Marvin, Andy C.

    2015-06-01

    A measurement methodology for polarization and angle of incidence averaged electromagnetic absorption cross-section using a reverberation chamber is presented. The method is optimized for simultaneous rapid and accurate determination of average absorption cross-section over the frequency range 1-15 GHz, making it suitable for use in human absorption and exposure studies. The typical measurement time of the subject is about 8 min with a corresponding statistical uncertainty of about 3% in the measured absorption cross-section. The method is validated by comparing measurements on a spherical phantom with Mie series calculations. The efficacy of the method is demonstrated with measurements of the posture dependence of the absorption cross-section of a human subject and an investigation of the effects of clothing on the measured absorption which are important considerations for the practical design of experiments for studies on human subjects.

  11. An optical system for measuring nitric oxide using spectral separation techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Y. G.; Somesfalean, G.; Guo, W.; Wang, H. S.; Wu, S. H.; Qin, Y. K.; Zhang, Z. G.

    2012-05-01

    An optical sensor based on differential absorption spectroscopy for real-time monitoring of industrial nitric oxide (NO) gas emission is described. The influence of gas absorption interference from sulfur dioxide (SO2) in the environment was considered and a spectral separation technique was developed in order to eliminate this interference effect. The absorption spectrum of SO2 around 226 nm was evaluated by the SO2 concentration obtained using the experimentally recorded absorption spectrum around 300 nm. The absorption spectrum of NO around 226 nm was obtained by subtracting the absorption of SO2 from the integral absorption spectrum of SO2 and NO. The concentration measurements were performed at atmospheric pressure. The technique was found to have a lower detection limit of 0.8 ppm for NO per meter path length (SNR=2) and be immune from the influence from SO2 on the NO measurement. The sensor based on this technique was successfully employed for in situ measurement of SO2 and NO concentrations in the flue gas emitted from an industrial coal-fired boiler.

  12. Pulsed thrust measurements using electromagnetic calibration techniques.

    PubMed

    Tang, Haibin; Shi, Chenbo; Zhang, Xin'ai; Zhang, Zun; Cheng, Jiao

    2011-03-01

    A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 μN s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measured to give a 310 μN s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 μN s with 95% credibility. PMID:21456799

  13. Measurements of Gastric Emptying by Biomagnetic Techniques

    NASA Astrophysics Data System (ADS)

    Vázquez, L. A.; Sosa, M.; Córdova, T.; Vargas, F. M.; Huerta, M. R.

    2006-09-01

    In the present work a new method to measure the average time of gastric emptying by using a magnetic tracer is showed, this work shows the application of foundations of the electromagnetic theory in the study of the gastrointestinal system. The presented technique is relatively cheap and can be used it to diagnose of diseases, is a noninvasive method, is a technique that does not use ionizing radiation. In this investigation was possible to measure the average time of gastric emptying with a very high precision. In this investigation measurements of 10 healthy volunteers were made, and an average time of gastric emptying of 36.45 minutes in the space of the time was obtained, in addition with the analysis to the signal by means of the use of a pass-band filter it was possible to measure the peristaltic frequencies of the stomach and an average time of 37.24 minutes in the space of frequencies. With this technique it is possible to obtain data of the walls of the stomach. A peristaltic frequency of 2.79 was obtained cpm (cycles per minute).

  14. Nonlinear-approximation technique for determining vertical ozone-concentration profiles with a differential-absorption lidar

    NASA Astrophysics Data System (ADS)

    Kovalev, Vladimir A.; Bristow, Michael P.; McElroy, James L.

    1996-08-01

    A new technique is presented for the retrieval of ozone-concentration profiles (O 3 ) from backscattered signals obtained by a multiwavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration profiles by signal noise and other phenomena such as aerosol inhomogeneity. Before the O 3 profiles are derived, the dominant measurement errors are estimated and uncertainty boundaries for the measured profiles are established. The off- to on-line signal ratio is transformed into an intermediate function, and analytical approximations of the function are then determined. The separation of low- and high-frequency constituents of the measured ozone profile is made by the application of different approximation fits to appropriate intermediate functions. The low-frequency constituents are approximated with a low-order polynomial fit, whereas the high-frequency constituents are approximated with a trigonometric fit. The latter fit makes it possible to correct the measured O 3 profiles in zones of large ozone-concentration gradients where the low-order polynomial fit is found to be insufficient. Application of this technique to experimental data obtained in the lower troposphere shows that erroneous fluctuations induced in the ozone-concentration profile by signal noise and aerosol inhomogeneity undergo a significant reduction in comparison with the results from the conventional technique based on straightforward numerical differentiation.

  15. Nonlinear-approximation technique for determining vertical ozone-concentration profiles with a differential-absorption lidar.

    PubMed

    Kovalev, V A; Bristow, M P; McElroy, J L

    1996-08-20

    A new technique is presented for the retrieval of ozone-concentration profiles (O(3)) from backscattered signals obtained by a multiwavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration profiles by signal noise and other phenomena such as aerosol inhomogeneity. Before the O(3) profiles are derived, the dominant measurement errors are estimated and uncertainty boundaries for the measured profiles are established. The off- to on-line signal ratio is transformed into an intermediate function, and analytical approximations of the function are then determined. The separation of low- and high-frequency constituents of the measured ozone profile is made by the application of different approximation fits to appropriate intermediate functions. The low-frequency constituents are approximated with a low-order polynomial fit, whereas the high-frequency constituents are approximated with a trigonometric fit. The latter fit makes it possible to correct the measured O(3) profiles in zones of large ozone-concentration gradients where the low-order polynomial fit is found to be insufficient. Application of this technique to experimental data obtained in the lower troposphere shows that erroneous fluctuations induced in the ozone-concentration profile by signal noise and aerosol inhomogeneity undergo a significant reduction in comparison with the results from the conventional technique based on straightforward numerical differentiation. PMID:21102905

  16. UV differential optical absorption method for measuring sulfur content in coal

    NASA Astrophysics Data System (ADS)

    Song, Feihu; Xu, Chuanlong; Wang, Shimin

    2012-02-01

    Determining the sulfur content in coal rapidly and accurately can provide a technical basis for the enterprises and the environmental administration departments. A novel method for measuring the sulfur content in coal based on UV differential optical absorption is presented in this paper. However, compared with the applications in atmosphere monitoring, the UV differential optical absorption spectroscopy (DOAS) for the sulfur content measurement in coal has the problems that the concentration range of SO2 in the flue gas is wider and the optical path-length of the gas cell is shorter. To solve these problems, an improved DOAS algorithm based on a finite impulse response (FIR) filter and a nonlinear compensation technique is proposed. An experimental measurement system based on the modified DOAS is designed and established. The standard SO2 gas and five kinds of standard coals are experimentally tested. Theoretical and experimental results show that the lower detection limit of the system is better than 0.014%, and the repeatability of the measurement system fairly meets the national standard of China. The system has advantages of low maintenance and shorter measurement duration (4 min).

  17. Airborne intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Gregory, Gerald L.; Mcdougal, David S.; Torres, Arnold L.; Davis, Douglas D.

    1987-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted during missions flown in the fall of 1983 and spring of 1984. Instruments intercompared included a laser-induced fluorescence (LIF) system and two chemiluminescence instruments (CL). NO mixing ratios from below 5 pptv (parts per trillion by volume) to greater than 100 pptv were reported, with the majority less than 20 pptv. Good correlation was observed between the measurements reported by the CL and LIF techniques. The general level of agreement observed for the ensemble of measurements obtained during the two missions provides the basis from which one can conclude that equally 'valid' measurements of background levels of NO can be expected from either CL or LIF instruments. At the same time the periods of disagreement that were observed between the CL and LIF instruments as well as between the two CL instruments highlight the difficulty of obtaining reliable measurements with NO mixing ratios in the 5-20 pptv range and emphasize the vigilance that should be maintained in future NO measurements.

  18. An intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, J. M., Jr.; Gregory, G. L.; Mcdougal, D. S.; Carroll, M. A.; Mcfarland, M.; Ridley, B. A.; Davis, D. D.; Bradshaw, J.; Rodgers, M. O.; Torres, A. L.

    1985-01-01

    Results from an intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted at Wallops Island, VA, in July 1983. Instruments intercompared included a laser-induced fluorescence system and two chemiluminescence instruments. The intercomparisons were performed with ambient air at NO mixing ratios ranging from 10 to 60 pptv and NO-enriched ambient air at mixing ratios from 20 to 170 pptv. All instruments sampled from a common manifold. The techniques exhibited a high degree of correlation among themselves and with changes in the NO mixing ratio. Agreement among the three techniques was placed at approximately + or - 30 percent. Within this level of agreement, no artifacts or species interferences were identified.

  19. Measurement Techniques for Cellular Biomechanics In Vitro

    PubMed Central

    Addae-Mensah, Kweku A; Wikswo, John P

    2014-01-01

    Living cells and tissues experience mechanical forces in their physiological environments that are known to affect many cellular processes. Also of importance are the mechanical properties of cells, as well as the microforces generated by cellular processes themselves in their microenvironments. The difficulty associated with studying these phenomena in vivo has led to alternatives such as using in vitro models. The need for experimental techniques for investigating cellular biomechanics and mechanobiology in vitro has fueled an evolution in the technology used in these studies. Particularly noteworthy are some of the new biomicroelectromechanical systems (BioMEMs) devices and techniques that have been introduced to the field. We describe some of the cellular micromechanical techniques and methods that have been developed for in vitro studies, and provide summaries of the ranges of measured values of various biomechanical quantities. We also briefly address some of our experiences in using these methods and include modifications we have introduced in order to improve them. PMID:18445766

  20. Extrinsic Labeling Method May Not Accurately Measure Fe Absorption from Cooked Pinto Beans (Phaseolus vulgaris):Comparison of Extrinsic and Intrinsic labeling of Beans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isotopic labeling of food has been widely used for the measurement of Fe absorption in determining requirements and evaluating the factors involved in Fe bioavailability. An extrinsic labeling technique will not accurately predict the total Fe absorption from foods unless complete isotopic exchange ...

  1. Techniques for measurement of thoracoabdominal asynchrony

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim; Hammer, J.; Newth, Christopher J L.

    2002-01-01

    Respiratory motion measured by respiratory inductance plethysmography often deviates from the sinusoidal pattern assumed in the traditional Lissajous figure (loop) analysis used to determine thoraco-abdominal asynchrony, or phase angle phi. We investigated six different time-domain methods of measuring phi, using simulated data with sinusoidal and triangular waveforms, phase shifts of 0-135 degrees, and 10% noise. The techniques were then used on data from 11 lightly anesthetized rhesus monkeys (Macaca mulatta; 7.6 +/- 0.8 kg; 5.7 +/- 0.5 years old), instrumented with a respiratory inductive plethysmograph, and subjected to increasing levels of inspiratory resistive loading ranging from 5-1,000 cmH(2)O. L(-1). sec(-1).The best results were obtained from cross-correlation and maximum linear correlation, with errors less than approximately 5 degrees from the actual phase angle in the simulated data. The worst performance was produced by the loop analysis, which in some cases was in error by more than 30 degrees. Compared to correlation, other analysis techniques performed at an intermediate level. Maximum linear correlation and cross-correlation produced similar results on the data collected from monkeys (SD of the difference, 4.1 degrees ) but all other techniques had a high SD of the difference compared to the correlation techniques.We conclude that phase angles are best measured using cross-correlation or maximum linear correlation, techniques that are independent of waveform shape, and robust in the presence of noise. Copyright 2002 Wiley-Liss, Inc.

  2. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  3. DIFFUSE MOLECULAR CLOUD DENSITIES FROM UV MEASUREMENTS OF CO ABSORPTION

    SciTech Connect

    Goldsmith, Paul F.

    2013-09-10

    We use UV measurements of interstellar CO toward nearby stars to calculate the density in the diffuse molecular clouds containing the molecules responsible for the observed absorption. Chemical models and recent calculations of the excitation rate coefficients indicate that the regions in which CO is found have hydrogen predominantly in molecular form and that collisional excitation is by collisions with H{sub 2} molecules. We carry out statistical equilibrium calculations using CO-H{sub 2} collision rates to solve for the H{sub 2} density in the observed sources without including effects of radiative trapping. We have assumed kinetic temperatures of 50 K and 100 K, finding this choice to make relatively little difference to the lowest transition. For the sources having T{sup ex}{sub 10} only for which we could determine upper and lower density limits, we find (n(H{sub 2})) = 49 cm{sup -3}. While we can find a consistent density range for a good fraction of the sources having either two or three values of the excitation temperature, there is a suggestion that the higher-J transitions are sampling clouds or regions within diffuse molecular cloud material that have higher densities than the material sampled by the J = 1-0 transition. The assumed kinetic temperature and derived H{sub 2} density are anticorrelated when the J = 2-1 transition data, the J = 3-2 transition data, or both are included. For sources with either two or three values of the excitation temperature, we find average values of the midpoint of the density range that is consistent with all of the observations equal to 68 cm{sup -3} for T{sup k} = 100 K and 92 cm{sup -3} for T{sup k} = 50 K. The data for this set of sources imply that diffuse molecular clouds are characterized by an average thermal pressure between 4600 and 6800 K cm{sup -3}.

  4. Nocturnal Measurements of HONO by Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wojtal, P.; McLaren, R.

    2011-12-01

    Differential optical absorption spectroscopy (DOAS) was used to quantify the concentration of HONO, NO2 and SO2 in the nocturnal urban atmosphere at York University over a period of one year. These measurements form a comprehensive HONO data set, including a large range of temperatures, relative humidity, surface conditions (snow, water, dry, etc.) and NO2 concentrations. Laboratory studies and observations within the nocturnal boundary layer reported in the literature suggest heterogeneous conversion of NO2 on surface adsorbed water as the major nighttime source of HONO. HONO formation and photolysis is believed to represent a major source term in the hydroxyl radical budget in polluted continental regions. Currently, most air quality models tend to significantly underpredict HONO, caused by the lack of understanding of HONO formation processes and the parameters that affect its concentration. Recently, we reported nocturnal pseudo steady states (PSS) of HONO in an aqueous marine environment and a conceptual model for HONO formation on aqueous surfaces was proposed. The data set collected at York University is being analyzed with a view towards further understanding the nighttime HONO formation mechanism and testing several hypotheses: 1) A HONO PSS can exist during certain times at night in an urban area in which the HONO concentration is independent of NO2, given the surface contains sufficient water coverage and is saturated with nitrogen containing precursors; 2) The concentration of HONO is positively correlated with temperature during periods where a PSS exists; 3) Different conversion efficiencies of NO2 to HONO exist on dry, wet and snow surfaces; 4) HONO formation has a NO2 order dependence between 0 and 2nd order, dependant on NO2 concentration, relative humidity, etc. The data set will be presented along with statistical analysis that sheds new light on the source of HONO in urban areas at night.

  5. Total ozone and aerosol optical depths inferred from radiometric measurements in the Chappuis absorption band

    SciTech Connect

    Flittner, D.E.; Herman, B.M.; Thome, K.J.; Simpson, J.M.; Reagan, J.A. )

    1993-04-15

    A second-derivative smoothing technique, commonly used in inversion work, is applied to the problem of inferring total columnar ozone amounts and aerosol optical depths. The application is unique in that the unknowns (i.e., total columnar ozone and aerosol optical depth) may be solved for directly without employing standard inversion methods. It is shown, however, that by employing inversion constraints, better solutions are normally obtained. The current method requires radiometric measurements of total optical depth through the Chappuis ozone band. It assumes no a priori shape for the aerosol optical depth versus wavelength profile and makes no assumptions about the ozone amount. Thus, the method is quite versatile and able to deal with varying total ozone and various aerosol size distributions. The technique is applied first in simulation, then to 119 days of measurements taken in Tucson, Arizona, that are compared to TOMS values for the same dates. The technique is also applied to two measurements taken at Mauna Loa, Hawaii, for which Dobson ozone values are available in addition to the TOMS values, and the results agree to within 15%. It is also shown through simulations that additional information can be obtained from measurements outside the Chappuis band. This approach reduces the bias and spread of the estimates total ozone and is unique in that it uses measurements from both the Chappuis and Huggins absorption bands. 12 refs., 6 figs., 2 tabs.

  6. Phase Retrieval Techniques In Coordinates Measurement

    SciTech Connect

    Harizanova, J. I.; Stoykova, E. V.; Sainov, V. C.

    2007-04-23

    A precise pattern projection profilometry for three-dimensional shape measurements with different methods of fringe generation is presented. The application of phase-shifting algorithm along with two-spacing illumination allow for phase retrieval and estimation of relative and absolute coordinates of the tested samples. The following experimental approaches for fringe generation are investigated: interferometric approach based on a classical Michelson interferometer, digital computation with a DMD projection and light modulation by a sinusoidal phase grating. The theoretical background, experimental results as well as comparison of the applied generation methods are analyzed. The obtained outcomes successfully display the applicability of this technique for surface profile measurement. The application of the proposed techniques for remote, non-destructive in-situ inspection of real objects from cultural heritage is discussed.

  7. [Synchronous measurement of concentrations of nitric oxide and nitric dioxide in flue gas by ultraviolet absorption analysis].

    PubMed

    Zhou, Jie; Zhang, Shi-Liang

    2008-04-01

    Ultraviolet absorption optical depths of NO and NO2 gas mixture with different concentrations were measured, using a high resolution grating monochromator. By correlating fast-varying discrete absorption and slow-varying continuous absorption with NO and NO2 contributions respectively, the mole concentrations of NO and NO2 were derived synchronously. The study results indicated that, when the total pressure of gas mixture approached to one atmospheric pressure, a strong tendency that two moles of NO2 were combined into one mole of N2O4 was found. The maximum conversion rate from NO2 to N2O4 was roughly 22.5%, resulting in the fact that the effective absorption cross-section of NO2-N2O4 mixture mainly depended on that of N2O4, which exhibited continuous characteristics in its absorption spectrum. The discrete absorption cross-section spectrum was broadened with the increase in the partial pressure of NO. It was shown that the integral of absorption cross-sections within a discrete absorption band had better linear correlation with NO concentration than the discrete absorption cross-section peak The measurement and derivation results indicated that, when the partial pressure of NO2 varied within 17-100 Pa, the average relative error for the derived NO2 concentration was 11.7%. When the partial pressure of NO varied within 63.8-181.62 Pa, the maximum and average relative error for the derivation of NO concentration was 16.9% and 9.6% respectively by using the spectrum integral method, while the corresponding data rose to 38.2% and 14.4% by using the spectral peak method. The technique can be applied to synchronous monitoring of NO and NO2 concentration with relatively simple measurement hardware. PMID:18619318

  8. Investigation of a noncontact strain measurement technique

    SciTech Connect

    Damiano, B.; Talarico, L.J.

    1996-05-01

    The goal of this project was to investigate the feasibility of a new noncontact technique for directly and continuously monitoring peak strain in rotating components. The technique utilizes the unique strain-sensitive magnetic material properties of transformation Induced Plasticity (TRIP) steel alloys to measure strain. These alloys are weakly magnetic when unstrained but become strongly ferromagnetic after mechanical deformation. A computer study was performed to determine whether the strain-induced change in the magnetic material properties of a TRIP steel gage bonded to a rotating component would cause significant perturbations in the magnetic flux of a stationary electromagnet. The effects of strain level, distance between the rotating component and the stationary electromagnet, and motion-induced eddy currents on flux perturbation magnitude were investigated. The calculated results indicate that a TRIP steel strain sensing element can cause a significant perturbation in the magnetic flux of a stationary electromagnet. The magnetic flux perturbation magnitude was found to be inversely proportional to the distance between the magnet face and the TRIP steel element and directly proportional to the TRIP steel strain level. The effect of motion-induced eddy currents on the magnetic flux was found to be negligible. It appears that the technique can be successfully applied to measure peak strain in rotating components; however, the sensitivity of the magnetic flux perturbation magnitude to the distance between the strain sensing element and the electromagnet may require making an independent proximity measurement.

  9. Carrier lifetime measurements using free carrier absorption transients. I. Principle and injection dependence

    NASA Astrophysics Data System (ADS)

    Linnros, Jan

    1998-07-01

    A contactless, all-optical technique for semiconductor charge carrier lifetime characterization is reviewed. The technique is based upon measurements of free carrier absorption transients by an infrared probe beam following electron-hole pair excitation by a pulsed laser beam. Main features are a direct probing of the excess carrier density coupled with a homogeneous carrier distribution within the sample, enabling precision studies of different recombination mechanisms. We show that the method is capable of measuring the lifetime over a broad range of injections (1013-1018 cm-3) probing both the minority carrier lifetime, the high injection lifetime and Auger recombination, as well as the transition between these ranges. Performance and limitations of the technique, such as lateral resolution, are addressed while application of the technique for lifetime mapping and effects of surface recombination is outlined in a companion article [J. Appl. Phys. 84, 284 (1998), part II]. Results from detailed studies of the injection dependence yield good agreement with the Shockley-Read-Hall theory, whereas the coefficient for Auger recombination shows an apparent shift to a higher value, with respect to the traditionally accepted value, at carrier densities below ˜2-5×1017 cm-3. Data also indicate an increased value of the coefficient for bimolecular recombination (radiative or trap-assisted Auger) from the generally accepted value. Measurements on an electron irradiated wafer and wafers of exceptionally high carrier lifetimes are also discussed within the framework of different recombination mechanisms.

  10. Stratospheric measurements of continuous absorption near 2400 cm(-1).

    PubMed

    Rinsland, C P; Smith, M A; Russell Iii, J M; Park, J H; Farmer, C B

    1981-12-15

    Solar occultation spectra obtained with a balloon-borne interferometer have been used to study continuous absorption by N(2) and CO(2) near 2400 cm(-1) in the lower stratosphere. Synthetic continuum transmittances, calculated from published coefficients for far-wing absorption by CO(2) lines and for pressure-induced absorption by the fundamental band of N(2), are in fair agreement with the observed stratospheric values. The continuum close to the nu(3) R-branch band head of CO(2) is sensitive to the CO(2) far-wing line shape. Therefore, given highly accurate knowledge of the N(2) continuum from laboratory data, high-resolution stratospheric spectra provide a sensitive means for in situ testing of various air-broadened CO(2) line shapes at low temperatures. PMID:20372347

  11. Advanced sine wave modulation of continuous wave laser system for atmospheric CO(2) differential absorption measurements.

    PubMed

    Campbell, Joel F; Lin, Bing; Nehrir, Amin R

    2014-02-10

    In this theoretical study, modulation techniques are developed to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. A continuous wave (CW) lidar system using sine waves modulated by maximum length (ML) pseudo-noise (PN) codes is described for making simultaneous online/offline differential absorption measurements. Amplitude and phase-shift keying (PSK) modulated intensity modulation (IM) carriers, in addition to a hybrid-pulse technique are investigated, which exhibit optimal autocorrelation properties. A method is presented to bandwidth limit the ML sequence based on a filter implemented in terms of Jacobi theta functions, which does not significantly degrade the resolution or introduce sidelobes as a means of reducing aliasing and IM carrier bandwidth. PMID:24663259

  12. Oscillator strengths of ultraviolet Ni I lines from hook-method and absorption measurements in a furnace

    NASA Technical Reports Server (NTRS)

    Huber, M. C. E.; Sandeman, R. J.

    1980-01-01

    Measurements of the oscillator strengths of the ultraviolet lines of neutral nickel obtained by the use of the combined hook and absorption technique are reported. A total of 221 transitions in the range 1964-4094 A was measured for nickel atoms from a high-temperature graphite furnace (2000-2500 K) using a continuum background source, a Mach-Zehnder interferometer and a 3-m Czerny-Turner spectrograph. Hook and absorption measurements are presented, and radiative lifetimes are derived from log gf values. Comparison of the present values with previous results indicates only those of Bell et al. (1966) and Lennard et al. (1975) to consistently agree with the data presented, although the reliability laser-excitation technique of lifetime measurement is supported over that of Hanle methods.

  13. UF6 enrichment measurements using TDLS techniques.

    PubMed

    Berezin, A G; Malyugin, S L; Nadezhdinskii, A I; Namestnikov, D Yu; Ponurovskii, Ya Ya; Stavrovskii, D B; Shapovalov, Yu P; Vyazov, I E; Zaslavskii, V Ya; Selivanov, Yu G; Gorshunov, N M; Grigoriev, G Yu; Nabiev, Sh Sh

    2007-04-01

    The objective of this work was investigation of possibility of tunable diode laser spectroscopy (TDLS) technique application for gaseous uranium hexafluoride (UF6) isotope measurement. Spectra of uranium hexafluoride gas mixture were investigated using two different Fourier Transform Spectrometers Vector 22 and Bruker 66v. Observed spectral features were identified and model spectra of different gas mixture components were developed. Optimal spectral range for measurements was determined near maximum of UF6 combination band nu1+nu3. Laboratory prototype of multi-channel instrument under consideration based on tunable diode lasers was built and algorithms were developed to measure gaseous UF6 isotopic ratios. Diode laser used operated at the wavelengths near lambda=7.68 microm. It was placed in a liquid nitrogen cooled cryostat. Three instrument channels were used for laser frequency calibration and spectra recording. Instrument was tested in measurements of real UF6 gas mixtures. Measurement accuracy was analyzed and error sources were identified. The root-mean-square random error in the 235U isotopic content is characterized by a spread of about 0.27% for quick measurements (at times less than 1 min) and 1% for periods of more than an hour. It was estimated that the measurement accuracy could be improved by at least an order of magnitude by minimizing the error sources. PMID:17142093

  14. UF 6 enrichment measurements using TDLS techniques

    NASA Astrophysics Data System (ADS)

    Berezin, A. G.; Malyugin, S. L.; Nadezhdinskii, A. I.; Namestnikov, D. Yu.; Ponurovskii, Ya. Ya.; Stavrovskii, D. B.; Shapovalov, Yu. P.; Vyazov, I. E.; Zaslavskii, V. Ya.; Selivanov, Yu. G.; Gorshunov, N. M.; Grigoriev, G. Yu.; Nabiev, Sh. Sh.

    2007-04-01

    The objective of this work was investigation of possibility of tunable diode laser spectroscopy (TDLS) technique application for gaseous uranium hexafluoride (UF 6) isotope measurement. Spectra of uranium hexafluoride gas mixture were investigated using two different Fourier Transform Spectrometers Vector 22 and Bruker 66v. Observed spectral features were identified and model spectra of different gas mixture components were developed. Optimal spectral range for measurements was determined near maximum of UF 6 combination band ν1 + ν3. Laboratory prototype of multi-channel instrument under consideration based on tunable diode lasers was built and algorithms were developed to measure gaseous UF 6 isotopic ratios. Diode laser used operated at the wavelengths near λ = 7.68 μm. It was placed in a liquid nitrogen cooled cryostat. Three instrument channels were used for laser frequency calibration and spectra recording. Instrument was tested in measurements of real UF 6 gas mixtures. Measurement accuracy was analyzed and error sources were identified. The root-mean-square random error in the 235U isotopic content is characterized by a spread of about 0.27% for quick measurements (at times less than 1 min) and 1% for periods of more than an hour. It was estimated that the measurement accuracy could be improved by at least an order of magnitude by minimizing the error sources.

  15. Measurements of the Absorption by Auditorium SEATING—A Model Study

    NASA Astrophysics Data System (ADS)

    BARRON, M.; COLEMAN, S.

    2001-01-01

    One of several problems with seat absorption is that only small numbers of seats can be tested in standard reverberation chambers. One method proposed for reverberation chamber measurements involves extrapolation when the absorption coefficient results are applied to actual auditoria. Model seat measurements in an effectively large model reverberation chamber have allowed the validity of this extrapolation to be checked. The alternative barrier method for reverberation chamber measurements was also tested and the two methods were compared. The effect on the absorption of row-row spacing as well as absorption by small numbers of seating rows was also investigated with model seats.

  16. Total fluxes of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano measured by differential absorption lidar and passive differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Edner, H.; Ragnarson, P.; Svanberg, S.; Wallinder, E.; Ferrara, R.; Cioni, R.; Raco, B.; Taddeucci, G.

    1994-09-01

    The total flux of sulfur dioxide from the Italian volcanoes Etna, Stromboli, and Vulcano was determined using the differential absorption lidar technique. The measurements were performed from an oceanographic research ship making traverses under the volcanic plumes with the lidar system sounding vertically. By combining the integrated gas concentration over the plume cross section with wind velocity data, it was possible to determine the total fluxes of SO2 from the three volcanoes, all measured within a 3-day period in September 1992. We found total fluxes of about 25, 180, and 1300 t/d for Vulcano, Stromboli, and Etna, respectively. These data, collected with an active remote-sensing technique, were compared with simultaneous recording with passive differential optical absorption spectroscopy (DOAS) using the sky radiation as the light source. Since the geometry of the light paths crossing the volcanic plume is not well defined in the passive measurements, a correction to the DOAS data is required. The SO2 results are also compared with previously available data from correlation spectroscopy measurements. Lidar measurements on atomic mercury were also made for the plumes from Stromboli and Vulcano, but the system sensitivity and range only allowed estimates of upper limits for the Hg fluxes.

  17. On the errors in measuring the particle density by the light absorption method

    SciTech Connect

    Ochkin, V. N.

    2015-04-15

    The accuracy of absorption measurements of the density of particles in a given quantum state as a function of the light absorption coefficient is analyzed. Errors caused by the finite accuracy in measuring the intensity of the light passing through a medium in the presence of different types of noise in the recorded signal are considered. Optimal values of the absorption coefficient and the factors capable of multiplying errors when deviating from these values are determined.

  18. Iris as a reflector for differential absorption low-coherence interferometry to measure glucose level in the anterior chamber

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zeng, Nan; Ji, Yanhong; Li, Yao; Dai, Xiangsong; Li, Peng; Duan, Lian; Ma, Hui; He, Yonghong

    2011-01-01

    We present a method of glucose concentration detection in the anterior chamber with a differential absorption optical low-coherent interferometry (LCI) technique. Back-reflected light from the iris, passing through the anterior chamber twice, was selectively obtained with the LCI technique. Two light sources, one centered within (1625 nm) and the other centered outside (1310 nm) of a glucose absorption band were used for differential absorption measurement. In the eye model and pig eye experiments, we obtained a resolution glucose level of 26.8 mg/dL and 69.6 mg/dL, respectively. This method has a potential application for noninvasive detection of glucose concentration in aqueous humor, which is related to the glucose concentration in blood.

  19. Human lens modeling and biometric measurement technique

    NASA Astrophysics Data System (ADS)

    Huang, Yanqiao

    This dissertation conducts theoretical and instrumental aspects of research aiming at extending knowledge and understanding of the optical design of the human eye. The first part of the thesis describes a newly constructed dynamic eye model that includes a gradient index (GRIN) lens to simulate eye accommodation. The GRIN profile of the crystalline lens is defined by a single continuous GRIN equation with optical power variability. In describing the lens accommodation process, different expansion coefficients are given to the lens nucleus and cortex to mimic lens dynamics. A relaxed state eye, a 4-D accommodated eye and a 10-D accommodated eye are simulated on a computer for studying and analyzing the first order and third order properties. This eye model can be further improved if giving accurate biometric measurement data on accommodating eyes. The second part of the thesis proposes an original interferometric technique that has potential for non-invasive ocular biometric measurements. This technique, termed spatial coherence interferometry, utilizes spatially incoherent monochromatic light as the illumination source, and employs the principle of low coherence interferometry to perform optical sectioning. Generalized coherence function for a multi-layer sample is derived and the theoretical axial longitudinal resolution is formulated. A spatial coherence interferometer with tunable coherence length is built, and detailed instrumental design and specifications are illustrated. Factors affecting system longitudinal resolution are examined. The instrument is first tested on plane mirrors for characterizing the longitudinal resolution. Various experiments are conducted including target searching, curved surface profiling and multi-layer sample sectioning. Finally en face surface profiling is performed on a pair of life size model eyes, and full field interferograms from various ocular surfaces are generated sequentially due to optical sectioning. In future research

  20. A photoacoustic technique to measure the properties of single cells

    NASA Astrophysics Data System (ADS)

    Strohm, Eric M.; Berndl, Elizabeth S. L.; Kolios, Michael C.

    2013-03-01

    We demonstrate a new technique to non-invasively determine the diameter and sound speed of single cells using a combined ultrasonic and photoacoustic technique. Two cell lines, B16-F1 melanoma cells and MCF7 breast cancer cells were examined using this technique. Using a 200 MHz transducer, the ultrasound backscatter from a single cell in suspension was recorded. Immediately following, the cell was irradiated with a 532 nm laser and the resulting photoacoustic wave recorded by the same transducer. The melanoma cells contain optically absorbing melanin particles, which facilitated photoacoustic wave generation. MCF7 cells have negligible optical absorption at 532 nm; the cells were permeabilized and stained with trypan blue prior to measurements. The measured ultrasound and photoacoustic power spectra were compared to theoretical equations with the cell diameter and sound speed as variables (Anderson scattering model for ultrasound, and a thermoelastic expansion model for photoacoustics). The diameter and sound speed were extracted from the models where the spectral shape matched the measured signals. However the photoacoustic spectrum for the melanoma cell did not match theory, which is likely because melanin particles are located around the cytoplasm, and not within the nucleus. Therefore a photoacoustic finite element model of a cell was developed where the central region was not used to generate a photoacoustic wave. The resulting power spectrum was in better agreement with the measured signal than the thermoelastic expansion model. The MCF7 cell diameter obtained using the spectral matching method was 17.5 μm, similar to the optical measurement of 16 μm, while the melanoma cell diameter obtained was 22 μm, similar to the optical measurement of 21 μm. The sound speed measured from the MCF7 and melanoma cell was 1573 and 1560 m/s, respectively, which is within acceptable values that have been published in literature.

  1. Predicting both passive intestinal absorption and the dissociation constant toward albumin using the PAMPA technique.

    PubMed

    Bujard, Alban; Sol, Marine; Carrupt, Pierre-Alain; Martel, Sophie

    2014-10-15

    The parallel artificial membrane permeability assay (PAMPA) is a high-throughput screening (HTS) method that is widely used to predict in vivo passive permeability through biological barriers, such as the skin, the blood brain barrier (BBB) and the gastrointestinal tract (GIT). The PAMPA technique has also been used to predict the dissociation constant (Kd) between a compound and human serum albumin (HSA) while disregarding passive permeability. Furthermore, the assay is based on the use of two separate 5-point kinetic experiments, which increases the analysis time. In the present study, we adapted the hexadecane membrane (HDM)-PAMPA assay to both predict passive gastrointestinal absorption via the permeability coefficient logPe value and determine the Kd. Two assays were performed: one in the presence and one in the absence of HSA in the acceptor compartment. In the absence of HSA, logPe values were determined after a 4-h incubation time, as originally described, but the dimethylsulfoxide (DMSO) percentage and pH were altered to be compatible with the protein. In parallel, a second PAMPA assay was performed in the presence of HSA during a 16-h incubation period. By adding HSA, a variation in the amount of compound crossing the membrane was observed compared to the permeability measured in the absence of HSA. The concentration of compound reaching the acceptor compartment in each case was used to determine both parameters (logPe and logKd) using numerical simulations, which highlighted the originality of this method because these calculations required only two endpoint measurements instead of a complete kinetic study. It should be noted that the amount of compound that reaches the acceptor compartment in the presence of HSA is modulated by complex dissociation in the receptor compartment. Only compounds that are moderately bound to albumin (-3measured using this method. If compound permeability through the artificial membrane is low in the

  2. Improved volcanic ash detection based on a hybrid reverse absorption technique

    NASA Astrophysics Data System (ADS)

    Lee, Kwon Ho; Wong, Man Sing; Chung, Sung-Rae; Sohn, Eunha

    2014-06-01

    A noble volcanic ash (VA) detection method based on a hybrid reverse absorption technique was successfully applied in the analysis of major volcanic eruptions that occurred in Russia, Iceland, Chile, Italy, and Japan by using the MODerate-resolution Imaging Spectroradiometer (MODIS) observation data. Sensitivity studies using radiative-transfer simulations by using various environmental parameters such as ash loadings, sizes, layer heights, and surface emissions, revealed that VA effects on brightness temperatures (BT) can reach up to 40 K. The advantage of the hybrid algorithm is its ability to detect distinct VA pixels during the day and night from satellite observations. The results showed that the hybrid algorithm can minimize the false detection of VA pixels, while well-known reverse absorption methods show abundant false VA pixels over bright surfaces and cloud formations. Further, the time-and-space distribution of the VA pixels is in good agreement with the data pertaining to operational aerosol products obtained from the scanning imaging absorption spectrometer for atmospheric cartography (SCIAMACHY) instrument on board ESA's Envisat and the cloud-aerosol Lidar and infrared pathfinder satellite observations (CALIPSO). This novel algorithm is expected to provide a fine spatial and temporal resolution of VA monitoring from high spectral or geostationary satellite observation data.

  3. Photoinduced absorption measurement on a microchip equipped with organic dye-doped polymer waveguide

    NASA Astrophysics Data System (ADS)

    Kawaguchi, T.; Nagai, K.; Yamashita, K.

    2013-05-01

    We have fabricated a waveguide-type optical sensing microchip and succeeded in on-chip photoinduced absorption (PIA) spectroscopy. The PIA microchip was fabricated with a conventional photolithographic technique and consisted of plastic optical waveguides and microfluidic channels. Furthermore, a serially-cascaded polymer waveguide doped with organic dyes was integrated on this microchip, which was fabricated using a self-written waveguide process. This dye-doped waveguide was pumped by a UV light emitting diode (UV-LED) and used as a probe light source with a broad emission spectrum. At the same time, a solution of test material in the microfluidic channel was synchronously pumped by a UV-LED or UV laser diode. Since the transmission spectrum of the photo-excited test material could be measured, the PIA spectra were obtained easily. In this study, we have demonstrated the on-chip PIA measurements for two classes of test materials, rare-earth complex and chlorophyll molecules. In the measurement for the aqueous solution of Neodymium (III) acetate hydrate, PIA signals attributed to the 4f-4f transition was observed. Furthermore, by varying the modulation frequency of the pulsed optical pumping, lifetime analysis of the excited 4f states was achieved. In the measurements for the ethanol solutions of chlorophyll a and chlorophyll b, PIA signals were observed at the wavelength near the Q-band absorption peaks. These spectra were very similar to the well-known feature for the photosystem II protein complex observed in a conventional PIA system. From these results, it is expected that the onchip PIA measurement technique is applicable to the transient analyses for the material systems with photoexcited charge transfer.

  4. Thermoluminescence measurement technique using millisecond temperature pulses.

    PubMed

    Manfred, Michael E; Gabriel, Nicholas T; Yukihara, Eduardo G; Talghader, Joseph J

    2010-06-01

    A measurement technique, pulsed thermoluminescence, is described which uses short thermal pulses to excite trapped carriers leading to radiative recombination. The pulses are obtained using microstructures with approximately 500 micros thermal time constants. The technique has many of the advantages of pulsed optically stimulated luminescence without the need for optical sources and filters to isolate the luminescent signal. Charge carrier traps in alpha-Al(2)O(3):C particles on microheaters were filled using 205 nm light. Temperature pulses of 10 and 50 ms were applied to the heaters and compared with a standard thermoluminescence curve taken at a ramp rate of 5 K s(-1). This produced curves of intensity verses temperature similar to standard thermoluminescence except shifted to higher temperatures. The luminescence of single particles was read multiple times with negligible loss of population. The lower limit of the duration of useful pulses appears to be limited by particle size and thermal contact between the particle and heater. PMID:20522565

  5. Infrared radiometric technique in temperature measurement

    NASA Technical Reports Server (NTRS)

    Glazer, S.; Madding, R.

    1988-01-01

    One class of commercially available imaging infrared radiometers using cooled detectors is sensitive to radiation over the 3 to 12 micron wavelength band. Spectral filters can tailor instrument sensitivity to specific regions where the target exhibits optimum radiance. The broadband spectral response coupled with real time two-dimensional imaging and emittance/background temperature corrections make the instruments useful for remote measurement of surface temperatures from -20 C to +1500 C. Commonly used radiometric techniques and assumptions are discussed, and performance specifications for a typical modern commercial instrument are presented. The potential usefulness of an imaging infrared radiometer in space laboratories is highlighted through examples of research, nondestructive evaluation, safety, and routine maintenance applications. Future improvements in instrument design and application of the radiometric technique are discussed.

  6. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  7. New portable pipe wall thickness measuring technique

    NASA Astrophysics Data System (ADS)

    Pascente, Joseph E.

    1998-03-01

    One of the biggest inspection challenges facing many of the process industries; namely the petrochemical, refining, fossil power, and pulp and paper industries is: How to effectively examine their insulated piping? While there are a number of failure mechanisms involved in various process piping systems, piping degradation through corrosion and erosion are by far the most prevalent. This degradation can be in the form of external corrosion under insulation, internal corrosion through a variety of mechanisms, and internal erosion caused by the flow of the product through the pipe. Refineries, chemical plants and electrical power plants have MANY thousands of miles of pipe that are insulated to prevent heat loss or heat absorption. This insulation is often made up of several materials, with calcium based material being the most dense. The insulating material is usually wrapped with an aluminum or stainless steel outer wrap. Verification of wall thickness of these pipes can be accomplished by removing the insulation and doing an ultrasound inspection or by taking x- rays at a tangent to the edge of the pipe through the insulation. Both of these processes are slow and expensive. The time required to obtain data is measured in hours per meter. The ultrasound method requires that the insulation be plugged after the inspection. The surface needs to be cleaned or the resulting data will not be accurate. The tangent x-ray only shows two thicknesses and requires that the area be roped off because of radiation safety.

  8. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Huang, Hong-Hua; Wang, Yao; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2014-06-01

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm-1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol.

  9. A comparison of two swirl measurement techniques

    NASA Astrophysics Data System (ADS)

    Edwards, R. J.; Jambunathan, K.; Button, B. L.; Rhine, J. M.

    1993-01-01

    Two experimental techniques for quantifying swirling airflow in the entrance region of annular ducts are presented. Swirl numbers derived from measurements of the torque on a pivoted honeycomb structure are compared with those obtained from the fringes on the inner surface of the duct sprayed with liquid crystals. The primary flow angles measured from the fringe patterns have been verified by using a Pitot tube and smoke trials. The swirl numbers range from 0.7 to 1.4 for Reynolds numbers of 4000-15,000. Data were obtained up to 11 hydraulic diameters from the entrance of two annular ducts that had diameter ratios of 0.66 and 0.79. The results show that the liquid crystal technique is an easy-to-use and attractive low-cost alternative to the more traditional approach, although the authors recognize that more expensive, nonintrusive, full-field velocity measurements, such as laser-Doppler anemometry, are superior to either of the methods considered here.

  10. absorption sensor for sensitive temperature and species measurements in high-temperature gases

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Ren, W.; Jeffries, J. B.; Hanson, R. K.

    2014-09-01

    A continuous-wave laser absorption diagnostic, based on the infrared CO2 bands near 4.2 and 2.7 μm, was developed for sensitive temperature and concentration measurements in high-temperature gas systems using fixed-wavelength methods. Transitions in the respective R-branches of both the fundamental υ 3 band (~2,350 cm-1) and combination υ 1 + υ 3 band (~3,610 cm-1) were chosen based on absorption line-strength, spectral isolation, and temperature sensitivity. The R(76) line near 2,390.52 cm-1 was selected for sensitive CO2 concentration measurements, and a detection limit of <5 ppm was achieved in shock tube kinetics experiments (~1,300 K). A cross-band, two-line thermometry technique was also established utilizing the R(96) line near 2,395.14 cm-1, paired with the R(28) line near 3,633.08 cm-1. This combination yields high temperature sensitivity (ΔE" = 3,305 cm-1) and expanded range compared with previous intra-band CO2 sensors. Thermometry performance was validated in a shock tube over a range of temperatures (600-1,800 K) important for combustion. Measured temperature accuracy was demonstrated to be better than 1 % over the entire range of conditions, with a standard error of ~0.5 % and µs temporal resolution.

  11. Techniques for beam impedance measurements above cutoff

    SciTech Connect

    Lambertson, G.R.; Jacob, A.F.; Rimmer, R.A.; Voelker, F.

    1990-08-01

    Methods for measuring beam impedance above cutoff have been very limited. For design work on the ALS we have developed two techniques that yield data in the frequency domain with high sensitivity. The first is an extension of the wire method; the second utilizes traveling TM waves to simulate the beam's fields at the wall, and thus avoids the mechanical difficulties of mounting the wire. It is also more sensitive than the other method but the interpretation is complicated by the presence of higher order modes. With either method we were able to detect resonant peaks smaller than 1 Ohm at 10 GHz.

  12. Ion composition measurement techniques for space plasmas

    NASA Technical Reports Server (NTRS)

    Gloeckler, George

    1990-01-01

    Plasmas found in space range from the solar wind with a typical temperature of 100,000-1,000,000 K, about 400 km/s bulk flow speed, and high ionization (charge states) of ions, to the hot, slowly moving plasmas in the outer magnetospheres of the giant planets, to the cold, corotating plasmas in inner magnetospheres. Space plasma instruments and techniques are reviewed, with an emphasis on hot plasma composition measurements. Starting with Faraday Cup detectors some 30 years ago, plasma instruments have evolved to the present time-of-flight systems with excellent mass resolution and three-dimensional viewing capabilities.

  13. A Stellar Occultation Sensor Using Absorption and Refraction of Starlight for Atmospheric Profile Measurements

    NASA Astrophysics Data System (ADS)

    Morgan, F.; Yee, J.; Murphy, G.; Swartz, W.; Demajistre, R.; Vervack, R.; Morrison, D.

    2008-12-01

    The Self-Calibrating H2O and O3 Nighttime Environmental Remote Sensor (SCHOONERS) is a compact, integrated UV-IR imaging spectrograph and imager for spaceborne stellar occultation measurements, developed under the NASA Instrument Incubator Program and based on the measurement technique and retrieval demonstrated by the MSX/UVISI instrument. The imaging spectrograph, covering a spectral range between 300 and 900 nm, measures the varying absorption of starlight as a star sets through the Earth's atmosphere to determine vertical profiles of atmospheric constituents. The relative star position measured by the co-aligned imager not only provides position feedback to the active-tracking loop but also measures the star refraction angle for determining the atmospheric density and temperature profiles. The instrument has a 25-cm-diameter aperture and employs a two-axis gimbaled telescope to provide acquisition and tracking of the star. It also uses a two-axis high-precision vernier mirror to correct for spacecraft jitter and maintain the star within the field-of-view. SCHOONERS' hardware and accompanying software have been demonstrated in end-to-end laboratory tests. SCHOONERS' built-in image tracking and motion compensation mechanism, coupled with its small size and limited spacecraft resource requirements, makes it suitable for deployment on existing and future spacecraft platforms as an instrument-of-opportunity. In this paper, stellar occultation sensing technique, experiment requirements, and SCHOONERS design and expected performance will be presented.

  14. Viscosity measurement techniques in Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Jamali, Safa; Maia, Joao M.

    2015-11-01

    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  15. I-scan thermal lens experiment in the pulse regime for measuring two-photon absorption coefficient

    NASA Astrophysics Data System (ADS)

    Rodríguez, L.; Echevarria, L.; Fernandez, A.

    2007-09-01

    We present a new pump-probe mode-mismatched thermal lens method for pulse excitation aimed to the measurement of nonlinear absorption coefficient in optical materials. We develop a theoretical model based on the Fresnel diffraction approximation and their predictions are verified experimentally with samples of Rhodamine 6G and Rhodamine B in ethanol solution. The principal advantage of this technique is that it does not require any mechanical movement during measurement. Below we perform the new type of thermal lens experiment in the pulse regime for the measurement of nonlinear absorption coefficient in transparent samples and we demonstrate the validity of theoretical predictions using an alternative method to the classical thermal lens technique.

  16. A new direct absorption measurement for high precision and accurate measurement of water vapor in the UT/LS

    NASA Astrophysics Data System (ADS)

    Sargent, M. R.; Sayres, D. S.; Smith, J. B.; Anderson, J.

    2011-12-01

    Highly accurate and precise water vapor measurements in the upper troposphere and lower stratosphere are critical to understanding the climate feedbacks of water vapor and clouds in that region. However, the continued disagreement among water vapor measurements (~1 - 2 ppmv) are too large to constrain the role of different hydration and dehydration mechanisms operating in the UT/LS, with model validation dependent upon which dataset is chosen. In response to these issues, we present a new instrument for measurement of water vapor in the UT/LS that was flown during the April 2011 MACPEX mission out of Houston, TX. The dual axis instrument combines the heritage and validated accuracy of the Harvard Lyman-alpha instrument with a newly designed direct IR absorption instrument, the Harvard Herriott Hygrometer (HHH). The Lyman-alpha detection axis has flown aboard NASA's WB-57 and ER2 aircraft since 1994, and provides a requisite link between the new HHH instrument and the long history of Harvard water vapor measurements. The instrument utilizes the highly sensitive Lyman-alpha photo-fragment fluorescence detection method; its accuracy has been demonstrated though rigorous laboratory calibrations and in situ diagnostic procedures. The Harvard Herriott Hygrometer employs a fiber coupled near-IR laser with state-of-the-art electronics to measure water vapor via direct absorption in a spherical Herriott cell of 10 cm length. The instrument demonstrated in-flight precision of 0.1 ppmv (1-sec, 1-sigma) at mixing ratios as low as 5 ppmv with accuracies of 10% based on careful laboratory calibrations and in-flight performance. We present a description of the measurement technique along with our methodology for calibration and details of the measurement uncertainties. The simultaneous utilization of radically different measurement techniques in a single duct in the new Harvard Water Vapor (HWV) instrument allows for the constraint of systematic errors inherent in each technique

  17. Measurement and characterization techniques for thermoelectric materials

    SciTech Connect

    Tritt, T.M.

    1997-07-01

    Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

  18. Measurement of Physicians' Performance Using Existing Techniques

    PubMed Central

    Sanazaro, Paul J.

    1980-01-01

    Existing techniques permit objective and valid measurement of limited elements of physicians' performance. These limited aspects, however, are of considerable importance to patients. The basic components of performance in medicine and surgery can be defined and used as the basis of organized programs for such evaluation. Interhospital comparisons can provide an effective impetus for assessing and improving performance of individual staff members when this is indicated. Professional auspices are needed for the development and application of methods that can provide continuing assurance that the clinical activity of physicians corresponds to contemporary standards. A system of incentives should be provided to physicians to promote their participation in voluntary programs of self-assessment. The incentives should be in the form of performance assessment credits, comparable in definition to continuing medical education credits, but granted for participation in an accredited program that objectively measures physicians' performance against national standards of the respective specialty. PMID:7222656

  19. Uncertainty Analysis Technique for OMEGA Dante Measurements

    SciTech Connect

    May, M J; Widmann, K; Sorce, C; Park, H; Schneider, M

    2010-05-07

    The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.

  20. Uncertainty analysis technique for OMEGA Dante measurements

    SciTech Connect

    May, M. J.; Widmann, K.; Sorce, C.; Park, H.-S.; Schneider, M.

    2010-10-15

    The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.

  1. Absorption of Polyelectrolytes on Colloidal Surfaces as Studied by Electrophoretic and Dynamic Light-Scattering Techniques.

    PubMed

    Okubo; Suda

    1999-05-15

    zeta-Potential and the effective diameter of the colloidal spheres absorbed with the macro-cations and macro-anions are studied by the electrophoretic light-scattering and dynamic light-scattering measurements. Colloidal spheres used are monodispersed polystyrene (220 nm in diameter) and colloidal silica spheres (110 nm). Macro-ions used are sodium polyacrylate, sodium polymethylacrylate, sodium poly(styrene sulfonate), and poly-4-vinyl pyridines quaternized with ethyl bromide, n-butyl bromide, benzyl chloride, and 5% hexadecyl bromide and 95% benzyl chloride. Reversal of colloidal surface charges from negative to positive occurs abruptly above the critical concentration of macro-ions by the excess absorption of the macro-cations onto the anionic colloidal spheres, i.e., avalanche-type absorption. The effective diameter of colloidal spheres including the absorbed layers increases substantially by four- to tenfold. In the presence of large amount of macro-cations aggregation of colloidal spheres mediated by the layers of absorbed macro-cations may occur. Absorption also occurs on the anionic colloidal spheres in the presence of an excess amount of macro-anions by the dipole-dipole-type attractive interactions. Copyright 1999 Academic Press. PMID:10222098

  2. Summertime measurements of benzene and toluene in Athens using a differential optical absorption spectroscopy system.

    PubMed

    Petrakis, Michael; Psiloglou, Basil; Kassomenos, Pavlos A; Cartalis, Costas

    2003-09-01

    In this paper, measurements of benzene, toluene, p,m-xylene, ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2) made using the differential optical absorption spectroscopy (DOAS) technique during a 4-month period of summer 2000 (June-September) in Athens, Greece, are presented. An assessment of benzene mean value concentrations during this 4-month period exceeded 10 microg/m3, which is 2 times greater than the average yearly limit proposed by European authorities. Toluene measurements present mean values of approximately 33 microg/m3. Benzene and especially toluene measurements are highly correlated with NO2 and anticorrelated with O3. High values of benzene, NO2, and toluene are also correlated with winds from the southeast section, an area of industrial activity where emissions of volatile organic compounds (VOCs) have been recorded in previous studies. O3 is correlated with winds from the south-southwest section affected by the sea breeze circulation. Diurnal variations of O3, NO2, and SO2 concentrations are compatible with measurements from the stations of the Ministry of Environment's network. Outliers are combined with weak winds from the south-southwest. As far as p,m-xylene measurements are concerned, there is a poor correlation between gas chromatography (GC) and DOAS Opsis measurements, also observed in previous relevant campaigns and eventually a criticism in the use of the DOAS Opsis model for the measurement of p,m-xylene. PMID:13678363

  3. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  4. Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Yoon, Youngkwon; Boyd, Robert W.; Campbell, Joseph K.; Baker, Lane A.; Crooks, Richard M.; George, Michael

    1999-01-01

    We have used the z-scan technique at a wavelength (532 nm) near the transmission window of bulk gold to measure the nonlinear absorption coefficient of continuous approximately 50-Angstrom-thick gold films, deposited onto surface-modified quartz substrates. For highly absorbing media such as metals, we demonstrate that determination of either the real or imaginary part of the third-order susceptibility requires a measurement of both nonlinear absorption and nonlinear refraction, i.e. both open- and closed-aperture z-scans must be performed. Closed-aperture z-scans did not yield a sufficient signal for the determination of the nonlinear refraction. However, open-aperture z-scans yielded values ranging from Beta = 1.9 x 10(exp -3) to 5.3 x 10(exp -3) cm/W in good agreement with predictions which ascribe the nonlinear response to a Fermi smearing mechanism. We note that the sign of the nonlinearity is reversed from that of gold nanoparticle composites, in accordance with the predictions of mean field theories.

  5. NO_2 Trace Measurements by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ventrillard-Courtillot, I.; Desbois, Th.; Foldes, T.; Romanini, D.

    2009-06-01

    In order to reach the sub-ppb NO_2 detection level required for environmental applications in remote areas, we develop a spectrometer based on a technique introduced a few years ago, named Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) [1]. It allows very sensitive and selective measurements, together with the realization of compact and robust set-ups as was subsequently demonstrated during measurements campaigns in harsh environments [2]. OF-CEAS benefits from the optical feedback to efficiently inject a cw-laser in a V-shaped high finesse cavity (typically 10 000). Cavity-enhanced absorption spectra are acquired on a small spectral region (˜1 cm^{-1}) that enables selective and quantitative measurements at a fast acquisition rate with a detection limit of several 10^{-10} cm^{-1} as reported in this work. Spectra are obtained with high spectral definition (150 MHz highly precisely spaced data points) and are self calibrated by cavity rind-down measurements regularly performed (typically every second). NO_2 measurements are performed with a commercial extended cavity diode laser around 411 nm, spectral region where intense electronic transitions occur. We will describe the set-up developed for in-situ measurements allowing real time concentration measurements at typically 5 Hz; and then report on the measurements performed with calibrated NO_2 reference samples to evaluate the linearity of the apparatus. The minimum detectable absorption loss is estimated by considering the standard deviation of the residual of one spectrum. We achieved 2x10^{-10} cm^{-1} for a single spectrum recorded in less than 100 ms at 100 mbar. It leads to a potential detection limit of 3x10^8 molecules/cm^3, corresponding to about 150 pptv at this pressure. [1] J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B, 80, 1027 (2005). [2] D. Romanini, M. Chenevrier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B, 83, 659

  6. Tritium measurement technique using ``in-bed`` calorimetry

    SciTech Connect

    Klein, J.E.; Mallory, M.K.; Nobile, A. Jr.

    1991-12-31

    One of the new technologies that has been introduced to the Savannah River Site (SRS) is the production scale use of metal hydride technology to store, pump, and compress hydrogen isotopes. For tritium stored in metal hydride storage beds, a unique relationship does not exist between the amount of tritium in the bed and the pressure-volume-temperature properties of the hydride material. Determining the amount of tritium in a hydride bed after desorbing the contents of the bed to a tank and performing pressure, volume, temperature, and composition (PVTC) measurements is not practical due to long desorption/absorption times and the inability to remove tritium ``heels`` from the metal hydride materials under normal processing conditions. To eliminate the need to remove tritium from hydride storage beds for measurement purposes, and ``in-bed`` tritium calorimetric measurement technique has been developed. The steady-state temperature rise of a gas stream flowing through a jacketed metal hydride storage bed is measured and correlated with power input to electric heaters used to simulate the radiolytic power generated by the decay of tritium to {sup 3}He. Temperature rise results for prototype metal hydride storage beds and the effects of using different gases in the bed are shown. Linear regression results shows that for 95% confidence intervals, temperature rise measurements can be obtained in 14 hours and have an accuracy of {plus_minus}1.6% of a tritium filled hydride storage bed.

  7. Tritium measurement technique using in-bed'' calorimetry

    SciTech Connect

    Klein, J.E.; Mallory, M.K.; Nobile, A. Jr.

    1991-01-01

    One of the new technologies that has been introduced to the Savannah River Site (SRS) is the production scale use of metal hydride technology to store, pump, and compress hydrogen isotopes. For tritium stored in metal hydride storage beds, a unique relationship does not exist between the amount of tritium in the bed and the pressure-volume-temperature properties of the hydride material. Determining the amount of tritium in a hydride bed after desorbing the contents of the bed to a tank and performing pressure, volume, temperature, and composition (PVTC) measurements is not practical due to long desorption/absorption times and the inability to remove tritium heels'' from the metal hydride materials under normal processing conditions. To eliminate the need to remove tritium from hydride storage beds for measurement purposes, and in-bed'' tritium calorimetric measurement technique has been developed. The steady-state temperature rise of a gas stream flowing through a jacketed metal hydride storage bed is measured and correlated with power input to electric heaters used to simulate the radiolytic power generated by the decay of tritium to {sup 3}He. Temperature rise results for prototype metal hydride storage beds and the effects of using different gases in the bed are shown. Linear regression results shows that for 95% confidence intervals, temperature rise measurements can be obtained in 14 hours and have an accuracy of {plus minus}1.6% of a tritium filled hydride storage bed.

  8. Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method

    NASA Technical Reports Server (NTRS)

    Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.

    2010-01-01

    This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.

  9. Light absorption by airborne aerosols: comparison of integrating plate and spectrophone techniques.

    PubMed

    Szkarlat, A C; Japar, S M

    1981-04-01

    An excellent correlation between the integrating plate (IP) and the photoacoustic methods for measuring aerosol light absorption has been found for airborne graphitic carbon in diesel vehicle exhaust. However, the regression coefficient depends on the orientation of the Teflon membrane filter during the IP analysis. With the collected particulates between the filter and the integrating plate, the IP response is 1.85 times that for the filter reversed. In either case the response ratio of the IP method to the photoacoustic method is >1.0, i.e., 2.43 vs 1.30. The IP calibration is also probably dependent on the nature of the filter medium. PMID:20309278

  10. Investigation of potential of differential absorption Lidar techniques for remote sensing of atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Butler, C. F.; Shipley, S. T.; Allen, R. J.

    1981-01-01

    The NASA multipurpose differential absorption lidar (DIAL) system uses two high conversion efficiency dye lasers which are optically pumped by two frequency-doubled Nd:YAG lasers mounted rigidly on a supporting structure that also contains the transmitter, receiver, and data system. The DIAL system hardware design and data acquisition system are described. Timing diagrams, logic diagrams, and schematics, and the theory of operation of the control electronics are presented. Success in obtaining remote measurements of ozone profiles with an airborne systems is reported and results are analyzed.

  11. Erosive Burning Study Utilizing Ultrasonic Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Furfaro, James A.

    2003-01-01

    A 6-segment subscale motor was developed to generate a range of internal environments from which multiple propellants could be characterized for erosive burning. The motor test bed was designed to provide a high Mach number, high mass flux environment. Propellant regression rates were monitored for each segment utilizing ultrasonic measurement techniques. These data were obtained for three propellants RSRM, ETM- 03, and Castor@ IVA, which span two propellant types, PBAN (polybutadiene acrylonitrile) and HTPB (hydroxyl terminated polybutadiene). The characterization of these propellants indicates a remarkably similar erosive burning response to the induced flow environment. Propellant burnrates for each type had a conventional response with respect to pressure up to a bulk flow velocity threshold. Each propellant, however, had a unique threshold at which it would experience an increase in observed propellant burn rate. Above the observed threshold each propellant again demonstrated a similar enhanced burn rate response corresponding to the local flow environment.

  12. Diagnostic techniques for measuring suprathermal electron dynamics in plasmas (invited)

    SciTech Connect

    Coda, S.

    2008-10-15

    Plasmas, both in the laboratory and in space, are often not in thermodynamic equilibrium, and the plasma electron distribution function is accordingly non-Maxwellian. Suprathermal electron tails can be generated by external drives, such as rf waves and electric fields, or internal ones, such as instabilities and magnetic reconnection. The variety and importance of the phenomena in which suprathermal electrons play a significant role explains an enduring interest in diagnostic techniques to investigate their properties and dynamics. X-ray bremsstrahlung emission has been studied in hot magnetized plasmas for well over two decades, flanked progressively by electron-cyclotron emission in geometries favoring the high-energy end of the distribution function (high-field-side, vertical, oblique emission), by electron-cyclotron absorption, by spectroscopic techniques, and at lower temperatures, by Langmuir probes and electrostatic analyzers. Continuous progress in detector technology and in measurement and analysis techniques, increasingly sophisticated layouts (multichannel and tomographic systems, imaging geometries), and highly controlled suprathermal generation methods (e.g., perturbative rf modulation) have all been brought to bear in recent years on an increasingly detailed, although far from complete, understanding of suprathermal electron dynamics.

  13. Differential absorption lidar (DIAL) via atmospheric aerosol (cloud) backscattering: recent results of coherent CO2 lidar measurements conducted at the Maui Space Surveillance Site

    NASA Astrophysics Data System (ADS)

    Willman, Benjamin C.; Kovacs, Mark A.

    2001-01-01

    Textron Systems, under the US Army Space and Missile Defense Command's Field Ladar Tactical Transition Demonstration program, has been evaluating coherently detected, atmospheric aerosol backscattering as a method to extend the utility of the DIAL technique. This paper present recently obtained long range, multi-wavelength DIAL measurements utilizing cloud formations and a laboratory positioned absorption test cell. Good agreement between cloud and continuous wave laboratory measurements of the absorption spectra of ammonia have been obtained.

  14. Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines

    NASA Technical Reports Server (NTRS)

    Wei, T. H.; Hagan, D. J.; Sence, M. J.; Van Stryland, E. W.; Perry, J. W.; Coulter, D. R.

    1992-01-01

    Direct measurements are reported of the excited singlet-state absorption cross section and the associated nonlinear refractive cross section using picosecond pulses at 532 nm in solutions of phthalocyanine and naphthalocyanine dyes. By monitoring the transmittance and far-field spatial beam distortion for different pulsewidths in the picosecond regime, it is shown that both the nonlinear absorption and refraction are fluence (energy-per-unit-area) rather than irradiance dependent. Thus, excited-state absorption is the dominant nonlinear absorption process, and the observed nonlinear refraction is also due to real population excitation.

  15. Evaluation of iron-containing carbon nanotubes by near edge X-ray absorption technique

    NASA Astrophysics Data System (ADS)

    Osorio, A. G.; Bergmann, C. P.

    2015-10-01

    The synthesis of carbon nanotubes (CNTs) via Chemical Vapor Deposition method with ferrocene results in CNTs filled with Fe-containing nanoparticles. The present work proposes a novel route to characterize the Fe phases in CNTs inherent to the synthesis process. CNTs were synthesized and, afterwards, the CNTs were heat treated at 1000 °C for 20 min in an inert atmosphere during a thermogravimetric experiment. X-Ray Absorption Spectroscopy (XAS) experiments were performed on the CNTs before and after the heat treatment and, also, during the heat treatment, e.g., in situ tests were performed while several Near-Edge X-Ray Absorption (XANES) spectra were collected during the heating of the samples. The XAS technique was successfully applied to evaluate the phases encapsulated by CNTs. Phase transformations of the Fe-based nanoparticles were also observed from iron carbide to metallic iron when the in situ experiments were performed. Results also indicated that the applied synthesis method guarantees that Fe phases are not oxidize. In addition, the results show that heat treatment under inert atmosphere can control which phase remains encapsulated by the CNTs.

  16. Novel Spectrograph/Radiometer for Cloud Top Height Measurement Using Three Complementary Techniques

    NASA Technical Reports Server (NTRS)

    Park, Hongwoo; Soulen, Peter F.; Prasad, Coorg R.

    1997-01-01

    A proof-of-concept (POC) instrument system to measure cloud top height from space using three complementary techniques is presented. These techniques use measurements of: (1) thermal infrared (IR); (2) molecular oxygen 'A' band absorption; and (3) filling-in of Fraunhofer lines (the Ring effect), respectively. Combining three techniques is achieved with a single grating spectrograph with bandpass and order sorting filters by measuring I I jim radiation from the zeroth order of the grating for the IR, 750-780 nm radiation from the first order for the 'A' band absorption, and 390-400 mn radiation from the second order for the Ca K and H Fraunhofer line filling-in effect. The POC system and its measurement results with the POC system are described.

  17. Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie

    2009-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration

  18. Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania

    2011-01-01

    A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.

  19. Results of fission products β decay properties measurement performed with a total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Zakari-Issoufou, A.-A.; Porta, A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Agramunt, J.; Äystö, J.; Bowry, M.; Bui, V. M.; Caballero-Folch, R.; Cano-Ott, D.; Eloma, V.; Estévez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttilä, H.; Regan, P. H.; Rissanen, J.; Rubio, B.; Weber, C.

    2014-03-01

    β-decay properties of fission products are very important for applied reactor physics, for instance to estimate the decay heat released immediately after the reactor shutdown and to estimate the bar ν flux emitted. An accurate estimation of the decay heat and the bar ν emitted flux from reactors, are necessary for purposes such as reactors operation safety and non-proliferation. In order to improve the precision in the prediction for these quantities, the bias due to the Pandemonium effect affecting some important fission product data has to be corrected. New measurements of fission products β-decay, not sensitive to this effect, have been performed with a Total Absorption Spectrometer (TAS) at the JYFL facility of Jyväskylä. An overview of the TAS technique and first results from the 2009 campaign will be presented.

  20. Differential Absorption Measurements of Atmospheric Water Vapor with a Coherent Lidar at 2050.532 nm

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Dharamsi, Amin; Davis, Richard E.; Petros, Mulugeta; McCarthy, John C.

    1999-01-01

    Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.

  1. New autocorrelation technique for the IR FEL optical pulse width measurements

    SciTech Connect

    Amirmadhi, F.; Brau, K.A.; Becker, C.

    1995-12-31

    We have developed a new technique for the autocorrelation measurement of optical pulse width at the Vanderbilt University FEL center. This method is based on nonlinear absorption and transmission characteristics of semiconductors such as Ge, Te and InAs suitable for the wavelength range from 2 to over 6 microns. This approach, aside being simple and low cost, removes the phase matching condition that is generally required for the standard frequency doubling technique and covers a greater wavelength range per nonlinear material. In this paper we will describe the apparatus, explain the principal mechanism involved and compare data which have been acquired with both frequency doubling and two-photon absorption.

  2. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  3. Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns

    NASA Technical Reports Server (NTRS)

    May, R. D.; Molina, L. T.; Webster, C. R.

    1988-01-01

    A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.

  4. Modified Sagnac interferometer for contact-free length measurement of a direct absorption cell.

    PubMed

    Elandaloussi, Hadj; Rouillé, Christian; Marie-Jeanne, Patrick; Janssen, Christof

    2016-03-10

    Accurate path length measurements in absorption cells are recurrent requirements in quantitative molecular absorption spectroscopy. A new twin path laser interferometer for length measurements in a simple direct path absorption geometry is presented, along with a full uncertainty budget. The path in an absorption cell is determined by measuring the optical path length change due to the diminution of the refractive index when the cell originally filled with nitrogen gas is evacuated. The performance of the instrument based on a stabilized HeNe laser is verified by comparison with the results of direct mechanical length measurements of a roughly 45 mm long, specially designed absorption cell. Due to a resolution of about 1/300 of a HeNe fringe, an expanded (coverage factor k=2) uncertainty of 16 μm in the length measurement is achieved, providing an expanded relative uncertainty of 3.6·10⁻⁴ for the length of our test absorption cell. This value is about 8 times lower than what has been reported previously. The instrument will be useful for precision measurements of absorption cross sections of strong absorbers which require short light paths, such as ozone, halogen oxides, sulfur dioxide, and volatile organic compounds in the UV. PMID:26974791

  5. The temperature measurement research for high-speed flow based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Di, Yue; Jin, Yi; Jiang, Hong-liang; Zhai, Chao

    2013-09-01

    Due to the particularity of the high-speed flow, in order to accurately obtain its' temperature, the measurement system should has some characteristics of not interfereing with the flow, non-contact measurement and high time resolution. The traditional measurement method cannot meet the above requirements, however the measurement method based on tunable diode laser absorption spectroscopy (TDLAS) technology can meet the requirements for high-speed flow temperature measurement. When the near-infared light of a specific frequency is through the media to be measured, it will be absorbed by the water vapor molecules and then the transmission light intensity is detected by the detector. The temperature of the water vapor which is also the high-speed flow temperature, can be accurately obtained by the Beer-Lambert law. This paper focused on the research of absorption spectrum method for high speed flow temperature measurement with the scope of 250K-500K. Firstly, spectral line selection method for low temperature measurement of high-speed flow is discussed. Selected absorption lines should be isolated and have a high peak absorption within the range of 250-500K, at the same time the interference of the other lines should be avoided, so that a high measurement accuracy can be obtained. According to the near-infrared absorption spectra characteristics of water vapor, four absorption lines at the near 1395 nm and 1409 nm are selected. Secondly, a system for the temperature measurement of the water vapor in the high-speed flow is established. Room temperature are measured through two methods, direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) ,the results show that this system can realize on-line measurement of the temperature and the measurement error is about 3%. Finally, the system will be used for temperature measurement of the high-speed flow in the shock tunnel, its feasibility of measurement is analyzed.

  6. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    SciTech Connect

    Brauer, Carolyn S.; Blake, Thomas A.; Guenther, Alex B.; Sharpe, Steven W.; Sams, Robert L.; Johnson, Timothy J.

    2014-11-19

    The OH- and O3- initiated oxidations of isoprene, which is one of the primary volatile organic compounds produced by vegetation, are a major source of atmospheric formaldehyde and other oxygenated organics, yet little quantitative IR data exists for isoprene. We thus report absorption coefficients and integrated band intensities for isoprene in the 600 - 6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298 and 323 K in a 19.96 cm path length cell at 0.112 cm-1 resolution, using a Bruker 66V FTIR. Composite spectra are derived from a minimum of seven pressures at each temperature.

  7. NONLINEAR-APPROXIMATION TECHNIQUE FOR DETERMINING VERTICAL OZONE-CONCENTRATION PROFILES WITH A DIFFERENTIAL-ABSORPTION LIDAR

    EPA Science Inventory

    A new technique is presented for the retrieval of ozone concentration profiles from backscattered signals obtained by a multi-wavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration...

  8. Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde

    NASA Astrophysics Data System (ADS)

    Fried, Alan; Sewell, Scott; Henry, Bruce; Wert, Bryan P.; Gilpin, Tim; Drummond, James R.

    1997-03-01

    We describe here a sensitive tunable diode laser absorption spectrometer (TDLAS) which was employed for ambient measurements of formaldehyde (HCHO) during the 1993 Idaho Hill/Fritz Peak Photochemistry Experiment. This system incorporated many new features and approaches including a novel astigmatic Herriott sampling cell which achieves a 100-m pathlength in a 3-L volume. We also describe procedures and tests carried out to ensure high accuracy, including the verification of HCHO standards by means of four techniques. During the field campaign, ambient HCHO measurements were acquired with an average 1σ measurement precision of 0.17 ppbv employing 1-5 min integration times. When combined with a maximum systematic uncertainty of 10%, ambient HCHO concentrations around 1.5 ppbv were measured with an average total (random plus systematic) 1σ uncertainty of 15% during the field campaign. In the intervening 2 years since the field experiment, additional features have been implemented for continuous unattended operation and improved performance. Rapid background subtraction now routinely allows HCHO measurements to be acquired with replicate precisions of 0.040 to 0.056 ppbv employing a 5-min integration period. This corresponds to routine minimum detectable absorbances of 1.2 to 1.6×10-6 in an actual mobile laboratory field environment.

  9. Error analysis of Raman differential absorption lidar ozone measurements in ice clouds.

    PubMed

    Reichardt, J

    2000-11-20

    A formalism for the error treatment of lidar ozone measurements with the Raman differential absorption lidar technique is presented. In the presence of clouds wavelength-dependent multiple scattering and cloud-particle extinction are the main sources of systematic errors in ozone measurements and necessitate a correction of the measured ozone profiles. Model calculations are performed to describe the influence of cirrus and polar stratospheric clouds on the ozone. It is found that it is sufficient to account for cloud-particle scattering and Rayleigh scattering in and above the cloud; boundary-layer aerosols and the atmospheric column below the cloud can be neglected for the ozone correction. Furthermore, if the extinction coefficient of the cloud is ?0.1 km(-1), the effect in the cloud is proportional to the effective particle extinction and to a particle correction function determined in the limit of negligible molecular scattering. The particle correction function depends on the scattering behavior of the cloud particles, the cloud geometric structure, and the lidar system parameters. Because of the differential extinction of light that has undergone one or more small-angle scattering processes within the cloud, the cloud effect on ozone extends to altitudes above the cloud. The various influencing parameters imply that the particle-related ozone correction has to be calculated for each individual measurement. Examples of ozone measurements in cirrus clouds are discussed. PMID:18354611

  10. Airborne intercomparison of vacuum ultraviolet fluorescence and tunable diode laser absorption measurements of tropospheric carbon monoxide

    NASA Astrophysics Data System (ADS)

    Holloway, John S.; Jakoubek, Roger O.; Parrish, David D.; Gerbig, Christoph; Volz-Thomas, Andreas; Schmitgen, Sandra; Fried, Alan; Wert, Brian; Henry, Bruce; Drummond, James R.

    2000-01-01

    During the fall 1997 North Atlantic Regional Experiment (NARE 97), two separate intercomparisons of aircraft-based carbon monoxide measurement instrumentation were conducted. On September 2, CO measurements were simultaneously made aboard the National Oceanic and Atmospheric Administration (NOAA) WP-3 by vacuum ultraviolet (VUV) fluorescence and by tunable diode laser absorption spectroscopy (TDLAS). On September 18, an intercomparison flight was conducted between two separate instruments, both employing the VUV fluorescence method, on the NOAA WP-3 and the U.K. Meteorological Office C-130 Hercules. The results indicate that both of the VUV fluorescence instruments and the TDLAS system are capable of measuring ambient CO accurately and precisely with no apparent interferences in 5 s. The accuracy of the measurements, based upon three independent calibration systems, is indicated by the agreement to within 11% with systematic offsets of less than 1 ppbv. In addition, one of the groups participated in the Measurement of Air Pollution From Satellite (MAPS) intercomparison [Novelli et al., 1998] with a different measurement technique but very similar calibration system, and agreed with the accepted analysis to within 5%. The precision of the measurements is indicated by the variability of the ratio of simultaneous measurements from the separate instruments. This variability is consistent with the estimated precisions of 1.5 ppbv and 2.2 ppbv for the 5 s average results of the C-130 and the WP-3 instruments, respectively, and indicates a precision of approximately 3.6% for the TDLAS instrument. The excellent agreement of the instruments in both intercomparisons demonstrates that significant interferences in the measurements are absent in air masses that ranged from 7 km in the midtroposphere to boundary layer conditions including subtropical marine air and continental outflow with embedded urban plumes. The intercomparison of the two VUV instruments that differed widely

  11. Tunable diode laser measurements of CH3OOH absorption cross-sections near 1320 CM-1

    NASA Astrophysics Data System (ADS)

    Becker, K. H.; Brockmann, K. J.; Bechara, J.

    Infrared absorption spectra and absorption cross-sections in the C-H deformation band of CH3OOH near 1320 cm-1 have been measured with a tunable diode laser spectrometer. Methylhydroperoxide concentrations in a slowly flowing gas mixture were determined by UV absorption. Peak absorption cross-sections of the strongest lines observed were found to lie in the range (0.5 -1.5) × 10-18 cm² under near Doppler-limited conditions. The dependence of the peak absorption cross-sections on total air pressure in the range 2.5-90 torr was also investigated, and the possibility of CH3OOH atmospheric mixing ratio measurement with a tunable diode laser assessed.

  12. Absorption of Solar Radiation by the Cloudy Atmosphere Interpretations of Collocated Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.; Cess, Robert D.; Zhang, Minghua; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Vitko, John, Jr.

    1997-01-01

    As part of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), we have obtained and analyzed measurements made from collocated aircraft of the absorption of solar radiation within the atmospheric column between the two aircraft. The measurements were taken during October 1995 at the ARM site in Oklahoma. Relative to a theoretical radiative transfer model, we find no evidence for excess solar absorption in the clear atmosphere and significant evidence for its existence in the cloudy atmosphere. This excess cloud solar absorption appears to occur in both visible (0.224-0.68 microns) and near-infrared (0.68-3.30 microns) spectral regions, although not at 0.5 microns for the visible contribution, and it is shown to be true absorption rather than an artifact of sampling errors caused by measuring three-dimensional clouds.

  13. Microbial Sulfate Reduction Measured by an Automated Electrical Impedance Technique

    NASA Technical Reports Server (NTRS)

    Oremland, R. S.; Silverman, M. P.

    1979-01-01

    Electrical impedance measurements are used to investigate the rates of sulfate reduction by pure cultures of and sediments containing sulfur-reducing bacteria. Changes in the electrical impedance ratios of pure cultures of Desulfovibrio aestuarii and samples of reduced sediments from San Francisco Bay were measured by a Bactometer 32, and sulfate reduction was followed by measuring the incorporation of (S-35) sulfate into metal sulfides. The growth of the bacteria in pure culture is found to result in an increase of 0.2200 in the impedance ratio within 24 h, accompanied by increases in protein, ATP, sulfide and absorptance at 660 nm, all of which are inhibited by the addition of molybdate. Similar responses were observed in the sediments, although impedance ratio responses were not completely inhibited upon the addition of molybdate, due to the presence of nonsulfate-respiring microorganisms. Experiments conducted with sterile media and autoclaved sediments indicate that the presence of H2S together with iron is responsible for the impedance effect, and sulfate reduction rates ranging between 0.85 and 1.78 mmol/l per day are estimated for the sediments by the impedance technique.

  14. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    DOE PAGESBeta

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; Sharpe, S. W.; Sams, R. L.; Johnson, T. J.

    2014-11-19

    Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) and is one of the primary contributors to annual global VOC emissions. Isoprene is produced primarily by vegetation as well as anthropogenic sources, and its OH- and O3-initiated oxidations are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, limiting the ability to quantify isoprene emissions via remote or in situ infrared detection. We thus report absorption cross sections and integrated band intensities for isoprene in the 600–6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298, and 323 Kmore » in a 19.94 cm path-length cell at 0.112 cm-1 resolution, using a Bruker IFS 66v/S Fourier transform infrared (FTIR) spectrometer. Composite spectra are derived from a minimum of seven isoprene sample pressures, each at one of three temperatures, and the number densities are normalized to 296 K and 1 atm.« less

  15. a Technique for Biaxial Damping Measurement

    NASA Astrophysics Data System (ADS)

    Hooker, R. J.; Foster, C. G.

    1995-11-01

    A description is given of a novel technique by means of which experimental studies may be made of the energy dissipation behaviour of materials subjected to biaxial (i.e., combined stress) loading. A specimen in the form a thin cylinder is subjected to simultaneous but separately controlled fluctuating fluid pressures internally, externally and axially. Pressure control is achieved by electro-hydraulic servo-systems and strain response is measured by miniature electrical resistance strain gauges. The apparatus is believed to be unique in its ability to apply biaxial with uniform stress distribution and uniform ratio of principal stresses over the full range -1 ≤ σ 2/σ 1≤ 1 with adequate control and accuracy and absence of means tress. Hysteresis loops in the two principal directions are recorded. The principles of the apparatus and the special features of its design are discussed. Experimental results are presented. The errors associated with operation of the apparatus correspond to loss factors of the order of 0·001-0·002 and hence the apparatus may be considered satisfactory for studies of materials of loss factor 0·01 and higher.

  16. Direct Measurements of Brown Carbon Absorption in A Wide Range of Biomass Burning Plumes

    NASA Astrophysics Data System (ADS)

    Murphy, S. M.; Pokhrel, R. P.; Beamesderfer, E.; Lack, D.; Langridge, J.; Wagner, N. L.

    2014-12-01

    Biomass burning represents one of the largest global sources of absorbing aerosol. Despite the importance of biomass burning emissions on the Earth's radiative balance, there remains significant uncertainty about the optical properties of emitted particles. Of particular interest is the impact of lensing on black carbon absorption and the impact of brown carbon. This presentation describes results from the Fire Lab at Missoula Experiment-4 (FLAME-4), which occurred in October 2012. Multi-channel photoacoustic (PAS) and Cavity Ringdown (CRDS) spectrometers were used to measure absorption, extinction, and absorption enhancement of aerosol particles produced from a wide range of globally relevant biomass fuels. Measurements were made at 405, 532, and 660 nm with duplicate channels at 405 and 660 measuring denuded particles, allowing for direct observation of the enhancement of absorption by black carbon particles caused by clear and brown organic coatings. Fuels were chosen based on their contribution to global wildfire emissions and a wide range of fuels will be discussed including some of the first optical measurements of Indonesian peat. The SSA and absorption angstrom exponent (AAE) of different biomass fuels will be explored and the relative importance of black and brown carbon emitted from different biomass fuels will be assessed, demonstrating that for certain fuels absorption from brown carbon is as important, or even more important than absorption from black carbon.

  17. Shock tube measurements of the optical absorption of triatomic carbon, C3

    NASA Technical Reports Server (NTRS)

    Jones, J. J.

    1977-01-01

    The spectral absorption of C3 has been measured in a shock tube using a test gas mixture of acetylene diluted with argon. The absorption of a pulsed xenon light source was measured by means of eight photomultiplier channels to a spectrograph and an accompanying drum camera. The postshock test gas temperature and pressure were varied over the range 3300-4300 K and 0.36 to 2.13 atmospheres, respectively. The results showed appreciable absorption from C3 for the wavelength range 300 to 540 nanometers. The computed electronic oscillator strength varied from 0.12 to 0.06 as a function of temperature.

  18. Multi-harmonic measurements of line shape under low absorption conditions

    NASA Astrophysics Data System (ADS)

    Lan, L. J.; Ding, Y. J.; Peng, Z. M.; Du, Y. J.; Liu, Y. F.; Li, Z.

    2014-06-01

    We propose a method that employs the ratios of the 2nd and 4th harmonics at the line center to measure line shape under low absorption conditions. To verify this method, the transition of CO2 at 6,982.0678 cm-1 is selected to measure line shape by using the proposed method and direct absorption spectroscopy in laboratory conditions. The results from both methods have a high degree of consistency. This satisfactory agreement indicates the validity of the proposed method.

  19. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2014-09-01

    Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  20. Portable Instrument to Measure CDOM Light Absorption in Aquatic Systems: WPI Success Story

    NASA Technical Reports Server (NTRS)

    2001-01-01

    World Precision Instruments, Inc. (WPI), of Sarasota, FL, in collaboration with NASA's John C. Stennis Space Center, has developed an innovative instrument to accurately measure Colored Dissolved Organic Matter (CDOM) absorption in the field. This successful collaboration has culminated in an exciting new device, called the UltraPath, now commercially available through WPI. Traditional methods of measuring absorption of dissolved materials require special handling and storage prior to measurement. Use of laboratory spectrophotometers as the measuring devices have proven time consuming, cumbersome, and delicate to handle. The UltraPath provides a low-cost, highly sensitive, rugged, portable system that is capable of high sensitivity measurements in widely divergent waters.

  1. Simple system for measuring tritium Ad/absorption using a 2. pi. counter and thermal desorption spectrometer

    SciTech Connect

    Miyake, H.; Matsuyama, M.; Watanabe, K. ); Cowgill, D.F. )

    1992-03-01

    In this paper, the authors develop a simple system using tritium tracer and thermal desorption techniques to measure the tritium adsorption and/or absorption on/in a material having typical surface conditions: namely, not cleaned surface. The tritium counting devices used were a 2{pi} counter and conventional proportional counter. With this system, the amounts of ad/absorption could be measured without exposing the samples to air after exposing them to tritium gas. The overall efficiency (F) of the 2{pi} counter was described at F = exp({minus}2.64h), where h is the distance from the sample to the detector. Ad/absorption measurements were carried out for several materials used for fabricating conventional vacuum systems. The results were, in the order of decreasing amounts of ad/absorption, as (fiber reinforced plastics(FRP)) {gt} (nickel(Ni), molybdenum disulfide(MoS{sub 2})) {gt} (stainless steel (SS304), iron(Fe), aluminum alloy(A2219)) {gt} (boron nitride(h-BN), silicon carbide (SiC), SS304 passivated by anodic oxidation layers(ASS) and that by boron nitride segregation layers (BSS)). The relative amounts were abut 100 for Ni and 0.1 for ASS and BSS, being normalized to Fe = 1.

  2. Sensor for headspace pressure and H2O concentration measurements in closed vials by tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cai, Tingdong; Wang, Guishi; Cao, Zhensong; Zhang, Weijun; Gao, Xiaoming

    2014-07-01

    The concentration of H2O and the pressure in the headspace of vials are simultaneously measured by a tunable diode laser sensor based on absorption spectroscopy techniques. The 7168.437 cm-1 spectral line of H2O is chosen as the sensing transition for its strong absorption strength and being reasonably far away from its neighboring molecular transitions. In order to prevent interference absorption by ambient water vapor in the room air, a difference between the measured signal and the referenced signal is used to calculate the pressure and H2O concentration in the headspace of vials, eliminating the need for inert gas purges and calibration with known gas. The validation of the sensor is conducted in a static vial, yielding an accuracy of 1.23% for pressure and 3.81% for H2O concentration. The sensitivity of the sensor is estimated to be about 2.5 Torr for pressure and 400 ppm for H2O concentration over a 3 cm absorption path length respectively. Accurate measurements for commercial freeze-dried products demonstrate the in-line applications of the sensor for the pharmaceutical industry.

  3. Innovative measurement techniques in surface science.

    PubMed

    Freund, Hans-Joachim; Nilius, Niklas; Risse, Thomas; Schauermann, Swetlana; Schmidt, Thomas

    2011-01-17

    We describe four new experimental techniques advanced during the last decade in the authors' laboratory. The techniques include photon scanning tunneling microscopy; aberration-corrected low-energy electron microscopy in combination with photoelectron emission microscopy, microcalorimetry, and electron-spin resonance spectroscopy. It is demonstrated how those techniques may be applied to solve fundamental problems in surface science with growing demands to tackle complex nanoscopic systems, and, in particular in catalysis science, which, without the availability of those techniques, would be difficult if not impossible to address. PMID:21226183

  4. Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.

    1991-01-01

    An overview is given of the capabilities and recent progress in laser-spectroscopic measurement techniques for use in aerodynamic test facilities and flight research vehicles. It includes a survey of the literature which is centered on this application of laser spectroscopy. The intended reader is the specialist in experimental fluid dynamics who is not intimately familiar with the physics or applications of laser spectroscopy. Thus, some discussion is also included of the nature of each laser-spectroscopic technique and the practical aspects of its use for aerodynamic measurements. The specific techniques reviewed include laser absorption, laser-induced fluorescence, laser Rayleigh scattering, and laser Raman scattering including spontaneous and coherent processes.

  5. Comparing and assessing different measurement techniques for mercury in coal systhesis gas

    SciTech Connect

    Maxwell, D.P.; Richardson, C.F.

    1995-11-01

    Three mercury measurement techniques were performed on synthesis gas streams before and after an amine-based sulfur removal system. The syngas was sampled using (1) gas impingers containing a nitric acid-hydrogen peroxide solution, (2) coconut-based charcoal sorbent, and (3) an on-line atomic absorption spectrophotometer equipped with a gold amalgamation trap and cold vapor cell. Various impinger solutions were applied upstream of the gold amalgamation trap to remove hydrogen sulfide and isolate oxidized and elemental species of mercury. The results from these three techniques are compared to provide an assessment of these measurement techniques in reducing gas atmospheres.

  6. Measurement of Carbon Dioxide Column via Space Borne Laser Absorption

    NASA Technical Reports Server (NTRS)

    Heaps, WIlliam S.

    2007-01-01

    In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. In order to uncover the 'missing sink that is responsible for the large discrepancies in the budget as we presently understand it calculation has indicated that measurement accuracy on the order of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of .25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget in order to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong requirements on the laser system used for the measurement. This work presents an analysis of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics Several systems for meeting these requirements that are under investigation at various institutions in the US as well as Europe will be discussed.

  7. Thermooptic-based differential measurements of weak solute absorptions with an interferometer.

    PubMed

    Cremers, D A; Keller, R A

    1982-05-01

    An interferometric method of measuring small differences between weak optical absorptions of solutions has been developed using the thermooptic effect. To record the small changes in optical path length ~lambda/200 due to heating, it was necessary to stabilize the fringe pattern with respect to slow thermal drift using a galvanometer-driven compensator plate controlled by a closed feedback loop. Fringe shifts from background absorptions were nulled out to better than 1 part in 400, permitting the measurement of differences in absorptions between two solutions that were l/100th of background. Using laser powers of 100 mW, absorptions approximately 5 x 10(-6) cm(-1) (base e) could be measured with CC1(4) solutions. PMID:20389912

  8. Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach.

    PubMed

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Liu, Xue-Qing; Song, Jun-Feng; Sun, Hong-Bo

    2015-01-01

    The photo-reduction of metal ions in solution induced by femtosecond laser is an important and novel method for fabricating three-dimensional metal microstructures. However, the nonlinear absorption cross section of metal ions remains unknown because its measurement is difficult. In the present study, a method based on Two-Photon Excited Sedimentation (TPES) is proposed to measure the two-photon absorption cross section (TPACS) of metal ions in solution. The power-squared dependence of the amount of sediment on the excitation intensity was confirmed, revealing that 800 nm femtosecond laser induced reduction of metal ions was a two photon absorption process. We believe that the proposed method may be applied to measure the TPACS of several metal ions, thereby opening a new avenue towards future analysis of two-photon absorption materials. PMID:26657990

  9. Method and apparatus for background signal reduction in opto-acoustic absorption measurement

    NASA Technical Reports Server (NTRS)

    Rosengren, L. G. (Inventor)

    1976-01-01

    The sensitivity of an opto-acoustic absorption detector is increased to make it possible to measure trace amounts of constituent gases. A second beam radiation path is created through the sample cell identical to a first path except as to length, alternating the beam through the two paths and minimizing the detected pressure difference for the two paths while the beam wavelength is tuned away from the absorption lines of the sample. Then with the beam wavelength tuned to the absorption line of any constituent of interest, the pressure difference is a measure of trace amounts of the constituent. The same improved detector may also be used for measuring the absorption coefficient of known concentrations of absorbing gases.

  10. Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach

    PubMed Central

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Liu, Xue-Qing; Song, Jun-Feng; Sun, Hong-Bo

    2015-01-01

    The photo-reduction of metal ions in solution induced by femtosecond laser is an important and novel method for fabricating three-dimensional metal microstructures. However, the nonlinear absorption cross section of metal ions remains unknown because its measurement is difficult. In the present study, a method based on Two-Photon Excited Sedimentation (TPES) is proposed to measure the two-photon absorption cross section (TPACS) of metal ions in solution. The power-squared dependence of the amount of sediment on the excitation intensity was confirmed, revealing that 800 nm femtosecond laser induced reduction of metal ions was a two photon absorption process. We believe that the proposed method may be applied to measure the TPACS of several metal ions, thereby opening a new avenue towards future analysis of two-photon absorption materials. PMID:26657990

  11. Direct Measurement of Polarized Absorption Cross-Section of Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Islam, M. F.; Milkie, D. E.; Kane, C. L.; Yodh, A. Y.; Kikkawa, J. M.

    2004-03-01

    We use a combination of polarized Raman scattering and linear optical absorption to infer optical absorption cross-sections of single-wall carbon nanotube ensembles for visible light co- and cross-polarized with respect to the nanotube axes. These data reveal a strong linear absorption anisotropy, and provide a rapid method by which linear absorption spectra can be used to quantitatively measure the orientation of dispersed nanotubes, even in strongly absorbing media for which Raman approaches are complicated by anisotropic re-absorption processes. Comparison with theory demonstrates that local field depolarization plays a crucial role in affecting optical spectra of the nanotubes. This work supported by NSF through DMR-0203378, DMR-079909 and DGE-0221664, NASA through NAG8-2172, DARPA/ONR through N00014-01-1-0831, and SENS.

  12. Spectroscopic Measurement Techniques for Aerospace Flows

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett F.; Johansen, Craig T.; Cutler, Andrew D.; Hurley, Samantha

    2014-01-01

    The conditions that characterize aerospace flows are so varied, that a single diagnostic technique is not sufficient for its measurement. Fluid dynamists use knowledge of similarity to help categorize and focus on different flow conditions. For example, the Reynolds number represents the ratio of inertial to viscous forces in a flow. When the velocity scales, length scales, and gas density are large and the magnitude of the molecular viscosity is low, the Reynolds number becomes large. This corresponds to large scale vehicles (e.g Airbus A380), fast moving objects (e.g. artillery projectiles), vehicles in dense fluids (e.g. submarine in water), or flows with low dynamic viscosity (e.g. skydiver in air). In each of these cases, the inertial forces dominate viscous forces, and unsteady turbulent fluctuations in the flow variables are observed. In contrast, flows with small length scales (e.g. dispersion of micro-particles in a solid rocket nozzle), slow moving objects (e.g. micro aerial vehicles), flows with low density gases (e.g. atmospheric re-entry), or fluids with a large magnitude of viscosity (e.g. engine coolant flow), all have low Reynolds numbers. In these cases, viscous forces become very important and often the flows can be steady and laminar. The Mach number, which is the ratio of the velocity to the speed of sound in the medium, also helps to differentiate types of flows. At very low Mach numbers, acoustic waves travel much faster than the object, and the flow can be assumed to be incompressible (e.g. Cessna 172 aircraft). As the object speed approaches the speed of sound, the gas density can become variable (e.g. flow over wing of Learjet 85). When the object speed is higher than the speed of sound (Ma > 1), the presences of shock waves and other gas dynamic features can become important to the vehicle performance (e.g. SR-71 Blackbird). In the hypersonic flow regime (Ma > 5), large changes in temperature begin to affect flow properties, causing real

  13. VUV absorption spectroscopy measurements of the role of fast neutral atoms in high-power gap breakdown

    SciTech Connect

    FILUK,A.B.; BAILEY,JAMES E.; CUNEO,MICHAEL E.; LAKE,PATRICK WAYNE; NASH,THOMAS J.; NOACK,DONALD D.; MARON,Y.

    2000-03-20

    The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently-discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. The authors describe a newly-developed diagnostic tool that provides the first direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1 mm spatial resolution in the 10 mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption is seen, setting upper limits of 0.12--1.5 x 10{sup 14} cm{sup {minus}3} for ground state fast neutral atom densities of H, C, N, O, F. The absence of molecular absorption bands also sets upper limits of 0.16--1.2 x 10{sup 15} cm{sup {minus}3} for common simple molecules. These limits are low enough to rule out ionization throughout the gap as a breakdown mechanism. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

  14. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.

    PubMed

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho; Fernandez-Grande, Efren; Trojgaard, Per; Tiana-Roig, Elisabet

    2016-01-01

    Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which combines microphone array measurements over a finite sample with the sound field model in an inverse manner, is proposed. Besides, a temporal subtraction method, a microphone array method, impedance tube measurements, and an equivalent fluid model are used for validation. The finite surface method gives promising agreement with theory, especially at near grazing incidence. Thus, the finite surface method is proposed for further measurements at large incidence angles. PMID:26827003

  15. Cavity Ringdown Technique for negative-hydrogen-ion measurement in ion source for neutral beam injector

    NASA Astrophysics Data System (ADS)

    Nakano, H.; Tsumori, K.; Shibuya, M.; Geng, S.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.

    2016-03-01

    The Cavity Ringdown Technique (CRD) is applied for negative hydrogen ion (H-) density measurement in H- source for the neutral beam injector. The CRD is one of the laser absorption techniques. Nd:YAG pulse laser was utilized for negative-hydrogen-ion photodetachment. The H- density related to extracted H- beam was successfully observed by a fixed position CRD. A two-dimensional movable CRD has been developed to measure the H- density profile. Measured profiles were consistent with expected profiles from the H- production area in pure hydrogen and cesium seeded plasmas. By applying absorption saturation in the optical cavity, negative hydrogen ion temperature was evaluated and was confirmed as being a similar value measured with other diagnostics.

  16. Improvement in Suppression of Pulsed Nd:YAG Laser Light With Iodine Absorption Cells for Filtered Rayleigh Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E

    1997-01-01

    Filtered Rayleigh scattering using iodine absorption cells is an effective technique for obtaining density, temperature, and velocity measurements in high speed confined flows. By tuning a single frequency laser to a strong iodine absorption line, stray scattered laser light can be greatly suppressed. For example, the minimum transmission predicted by an iodine absorption model calculation is less than 10(exp -5) at the 18788.44/cm line using a 200 mm absorption cell containing iodine vapor at 0.46 T. Measurements obtained by other researches using a CW Nd:YAG laser agree with the model calculations. However, measurements made by us and by others using Q-switched, injection-seeded, frequency doubled Nd:YAG lasers only show minimum transmission of about 3 x 10(exp -3). This greatly reduces the applicability of the filtered Rayleigh scattering technique using these lasers in experiments having large amounts of stray scattered laser light. The purposes of the present study are to characterize the spectrum of the excess light transmitted by the iodine cell and to make changes to the laser to reduce the transmitted laser light. Transmission data as a function of laser frequency for the iodine absorption line at 18788.44/cm are presented. A planar mirror Fabry-Perot interferometer was used to characterize the frequency spectrum of the light passed through the cell. Measurements taken with the laser tuned to the center of the iodine absorption line show the light transmitted through the iodine cell to have a component with a bandwidth of about 40 GHz. This is probably caused by other modes in the laser that exist in spite of the single frequency injection beam. A second broadband component was also observed, possibly caused by the laser flash lamps or by fluorescence. An intracavity etalon was installed in the laser oscillator cavity to suppress the 40 GHz component. Measurements taken with the etalon tuned to the injection frequency showed a reduction in the transmitted

  17. Measurement of aluminum in neuronal tissues using electrothermal atomization atomic absorption spectrophotometry

    SciTech Connect

    Pierson, K.B.; Evenson, M.A.

    1986-07-01

    Studies characterizing aluminum complexes isolated from neuronal tissues require accurate and precise techniques for aluminum measurement. A solution of 0.01 M nitric acid containing 0.2% Triton X-100 was the optimal diluent for aluminum measurement under the experimental conditions used. Three National Bureau of Standards Standard Reference Materials (SRM) were digested, and the aluminum concentration of each was measured with a Perkin-Elmer 503 atomic absorption spectrophotometer equipped with a Perkin-Elmer HGA 2100 controller. The calculated detection limit of aluminum was 120 pg using 15-..mu..L sample injections (8 ..mu..g/L). Aluminum concentrations present in citrus leaves (SRM 1572), pine needles (SRM 1575), and tomato leaves (SRM 1573) were 100 +- 12 (certified value, 92 +- 15), 522 +- 45 (certified value, 454 +- 30), and 1273 +- 112 (provisional value, 1200) ..mu..g/g, respectively. The within- and between-day precision had coefficients of variation for citrus leaves, pine needles, and tomato leaves of 18 and 12%, 6.3 and 8.6%, and 3.7 and 8.7%, respectively. Aluminum absorbance was enhanced at high pH values and by zinc.

  18. [Studies on the data processing method in chlorine measurement by differential optical absorption spectroscopy technology].

    PubMed

    Ye, Cong-Lei; Xie, Pin-Hua; Qin, Min; Li, Ang; Ling, Liu-Yi; Hu, Ren-Zhi; Yang, Jing-Wen

    2012-07-01

    In this paper, based on Differential Optical Absorption Spectroscopy (DOAS) technique, experimental measurements of chlorine was carried out in the laboratory with a small self-built experimental system. In dealing with the standard cross-section of chlorine, we presented two different methods: triangle filtering and polynomial fitting. Experiments showed that the concentration of chlorine could be accurately retrieved by the latter one. Simulation results showed that the error of retrieval result by fifth-order polynomial fitting was smaller than by other orders and an actual retrieval example shows that the fitting spectrums were nearly coincident with the measured spectrums with a residual delta(peak to peak) below 5 per hundred; The results measured in different sample pools displayed a high linearity of 0.9961 by this method. The main sources of errors during the entire experiment were simply analyzed. According to the experimental result above, it is feasible to detect chlorine using DOAS technology by polynomial fitting. PMID:23016314

  19. Measurement of the Spectral Absorption of Liquid Water in Melting Snow With an Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the Earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. In this paper we present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation. the air temperature did not drop below freezing the night of the May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  20. Measurement of the spectral absorption of liquid water in melting snow with an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. We present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation, the air temperature did not drop below freezing the night of May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  1. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Ramanathan, Anand; Hasselbrack, William E.; Mao, Jianping; Weaver, Clark; Browell, Edward V.

    2012-01-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to greater than 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the Iidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected -linear change of the peak DOD with altitude. For measurements at altitudes greater than 6 km the random errors were approximately 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as wen as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly

  2. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Ramanathan, A.; Hasselbrack, W.; Mao, J.; Weaver, C. J.; Browell, E. V.

    2012-12-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the lidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected ~linear change of the peak DOD with altitude. For measurements at altitudes > 6 km the random errors were ~ 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity

  3. Method for measuring changes in light absorption of highly scattering media

    DOEpatents

    Bigio, Irving J.; Johnson, Tamara M.; Mourant, Judith R.

    2002-01-01

    The noninvasive measurement of variations in absorption that are due to changes in concentrations of biochemically relevant compounds in tissue is important in many clinical settings. One problem with such measurements is that the pathlength traveled by the collected light through the tissue depends on the scattering properties of the tissue. It is demonstrated, using both Monte Carlo simulations and experimental measurements, that for an appropriate separation between light-delivery and light-collection fibers, the pathlength of the collected photons is insensitive to scattering parameters for the range of parameters typically found in tissue. This is important for developing rapid, noninvasive, inexpensive, and accurate methods for measuring absorption changes in tissue.

  4. Measurements of the optical absorption coefficient of Ar8+ ion implanted silicon layers using the photothermal radiometry and the modulated free carrier absorption methods

    NASA Astrophysics Data System (ADS)

    Chrobak, Ł.; Maliński, M.; Pawlak, M.

    2014-11-01

    This paper presents a method of the measurement of the optical absorption coefficient of the Ar8+ ions implanted layers in the p-type silicon substrate. The absorption coefficient is calculated using a value of the attenuation of amplitudes of a photothermal radiometry (PTR) and/or a modulation free carrier absorption (MFCA) signals and the implanted layer thickness calculated by means of the TRIM program. The proposed method can be used to indicate the amorphization of the ions implanted layers.

  5. Vibrational relaxation of the bending mode of shock-heated CO2 by laser-absorption measurements.

    NASA Technical Reports Server (NTRS)

    Eckstrom, D. J.; Bershader, D.

    1972-01-01

    Study of the vibrational relaxation characteristics of shock-heated CO2 using a tuned CO2 laser absorption technique. Absorption-coefficient histories were obtained for a single rotational state in each of the -10 0- and -02 0- levels over the temperature range from 500 to 2000 K, and for 21 rotational states of the -10 0- level at 1000 K. These histories have been combined with translational-rotational temperature histories based on interferometer measurements to calculate vibrational relaxation times for the bending mode. The results verify the mutual equilibrium of the bending and symmetric-stretch modes due to Fermi resonance. The bending mode relaxation times are approximately 10% shorter than predicted from interferometer results using the ratio of specific heats. Furthermore, relaxation times based on measurements of different rotational states at 1000 K show a variation with quantum number J, indicating a possible rotational nonequilibrium during the vibration relaxation process.

  6. Statistical Estimation of the Atmospheric Aerosol Absorption Coefficient Based on the Data of Optical Measurements

    SciTech Connect

    Uzhegov, V.N.; Kozlov, V.S.; Panchenko, M.V.; Pkhalagov, Yu.A.; Pol'kin, V.V.; Terpugova, S.A.; Shmargunov, V.P.; Yausheva, E.P.

    2005-03-18

    The problem of the choice of the aerosol optical constants and, in particular, imaginary part of the refractive index of particles in visible and infrared (IR) wavelength ranges is very important for calculation of the global albedo of the atmosphere in climatic models. The available models of the aerosol optical constants obtained for the prescribed chemical composition of particles (see, for example, Ivlev et al. 1973; Ivlev 1982; Volz 1972), often are far from real aerosol. It is shown in (Krekov et al. 1982) that model estimates of the optical characteristics of the atmosphere depending on the correctness of real and imaginary parts of the aerosol complex refractive index can differ by some hundreds percent. It is known that the aerosol extinction coefficient {alpha}({lambda}) obtained from measurements on a long horizontal path can be represented as {alpha}({lambda})={sigma}({lambda})+{beta}({lambda}), where {sigma} is the directed light scattering coefficient, and {beta} is the aerosol absorption coefficient. The coefficient {sigma}({lambda}) is measured by means of a nephelometer. Seemingly, if measure the values {alpha}({lambda}) and {sigma}({lambda}), it is easy to determine the value {beta}({lambda}). However, in practice it is almost impossible for a number of reasons. Firstly, the real values {alpha}({lambda}) and {sigma}({lambda}) are very close to each other, and the estimate of the parameter {beta}({lambda}) is concealed by the errors of measurements. Secondly, the aerosol optical characteristics on the long path and in the local volume of nephelometer can be different, that also leads to the errors in estimating {beta}({lambda}). Besides, there are serious difficulties in performing spectral measurements of {sigma}({lambda}) in infrared wavelength range. Taking into account these circumstances, in this paper we consider the statistical technique, which makes it possible to estimate the absorption coefficient of real aerosol on the basis of analysis

  7. Broadband Lidar Technique for Precision CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2008-01-01

    Presented are preliminary experimental results, sensitivity measurements and discuss our new CO2 lidar system under development. The system is employing an erbium-doped fiber amplifier (EDFA), superluminescent light emitting diode (SLED) as a source and our previously developed Fabry-Perot interferometer subsystem as a detector part. Global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. The goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission is to significantly enhance the understanding of the role of CO2 in the global carbon cycle. The National Academy of Sciences recommended in its decadal survey that NASA put in orbit a CO2 lidar to satisfy this long standing need. Existing passive sensors suffer from two shortcomings. Their measurement precision can be compromised by the path length uncertainties arising from scattering within the atmosphere. Also passive sensors using sunlight cannot observe the column at night. Both of these difficulties can be ameliorated by lidar techniques. Lidar systems present their own set of problems however. Temperature changes in the atmosphere alter the cross section for individual CO2 absorption features while the different atmospheric pressures encountered passing through the atmosphere broaden the absorption lines. Currently proposed lidars require multiple lasers operating at multiple wavelengths simultaneously in order to untangle these effects. The current goal is to develop an ultra precise, inexpensive new lidar system for precise column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with the newly available high power SLED as the source. This approach reduces the number of individual lasers used in the system from three or more

  8. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  9. Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements.

    PubMed

    Ahn, Tai-Sang; Al-Kaysi, Rabih O; Müller, Astrid M; Wentz, Katherine M; Bardeen, Christopher J

    2007-08-01

    A new method is presented for analyzing the effects of self-absorption on photoluminescence integrating sphere quantum yield measurements. Both the observed quantum yield and luminescence spectrum are used to determine the self-absorption probability, taking into account both the initial emission and subsequent absorption and reemission processes. The analysis is experimentally validated using the model system of the laser dye perylene red dispersed in a polymer film. This approach represents an improvement over previous methods that tend to overestimate the true quantum yield, especially in cases with high sample absorbance or quantum yield values. PMID:17764365

  10. Communication: On the difficulty of reproducibly measuring PbCl2 X-ray absorption spectra

    NASA Astrophysics Data System (ADS)

    Schwartz, Craig P.; Prendergast, David

    2015-09-01

    Previous measurements of the X-ray absorption spectra of PbCl2 at the chlorine K-edge have shown significant variation between different studies. Herein, using first principles simulations of X-ray absorption spectroscopy, we show that the observed spectral variations are due to the generation of Cl2 gas and depletion of chlorine from PbCl2, consistent with what is observed during ultraviolet absorption for the same compound. We note that Cl2 gas generation can also be initiated using higher resonant X-ray energies, including Pb X-ray absorption edges. While this casts doubt on previous interpretations of certain measurements, it does indicate a means of generating chlorine gas during in situ experiments by passing high energy x-rays through a hard x-ray transparent medium and onto PbCl2.

  11. Experimental measurements of the spectral absorption coefficient of pure fused silica optical fibers.

    PubMed

    Moore, Travis J; Jones, Matthew R

    2015-02-20

    Knowledge of the spectral absorption coefficient of fused silica optical fibers is important in modeling heat transfer in the processes and applications in which these fibers are used. An experimental method used to measure the spectral absorption coefficient of optical fibers is presented. Radiative energy from a blackbody radiator set at different temperatures is directed through the optical fibers and into an FTIR spectrometer. Spectral instrument response functions are calculated for different fiber lengths. The ratios of the slopes of the instrument response functions for the different lengths of fibers are used to solve for the spectral absorption coefficient of the fibers. The spectral absorption coefficient of low OH pure fused silica optical fibers is measured between the wavelengths 1.5 and 2.5 μm. PMID:25968202

  12. Communication: On the difficulty of reproducibly measuring PbCl2 X-ray absorption spectra.

    PubMed

    Schwartz, Craig P; Prendergast, David

    2015-09-21

    Previous measurements of the X-ray absorption spectra of PbCl2 at the chlorine K-edge have shown significant variation between different studies. Herein, using first principles simulations of X-ray absorption spectroscopy, we show that the observed spectral variations are due to the generation of Cl2 gas and depletion of chlorine from PbCl2, consistent with what is observed during ultraviolet absorption for the same compound. We note that Cl2 gas generation can also be initiated using higher resonant X-ray energies, including Pb X-ray absorption edges. While this casts doubt on previous interpretations of certain measurements, it does indicate a means of generating chlorine gas during in situ experiments by passing high energy x-rays through a hard x-ray transparent medium and onto PbCl2. PMID:26395677

  13. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  14. WVR-GPS comparison measurements and calibration of the 20-32 GHz tropospheric water vapor absorption model.

    SciTech Connect

    Keihm, S. J.; Bar-Server, Y.; Liljegren, J. C.; Environmental Research; NASA

    2002-06-01

    Collocated measurements of opacity (from water vapor radiometer brightness temperatures) and wet path delay (from ground-based tracking of global positioning satellites) are used to constrain the model of atmospheric water vapor absorption in the 20-32 GHz band. A differential approach is presented in which the slope of opacity-versus-wet delay data is used as the absorption model constraint. This technique minimizes the effects of radiometric calibration errors and oxygen model uncertainties in the derivation of a best-fit vapor absorption model. A total of approximately five months of data was obtained from two experiment sites. At the Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma, three independent water vapor radiometers (WVRs) provided near-continuous opacity measurements over the interval July-September 1998. At the NASA/Goldstone tracking station in the California desert two WVRs; obtained opacity data over the September-October 1997 interval. At both sites a Global Positioning Satellite (GPS) receiver and surface barometer obtained the data required for deriving the zenith wet delays over the same time frames. Measured values of the opacity-versus-wet delay slope parameter were obtained at four WVR frequencies (20.7, 22.2, 23.8, and 31.4 GHz) and compared with predictions of four candidate absorption models referenced in the literature. With one exception, all three models provide agreement within 5% of the opacity-versus-wet delay slope measurements at all WVR frequencies at both sites. One model provides agreement for all channels at both sites to the 2-3% level. This absorption model accuracy level represents a significant improvement over that attainable using radiosondes.

  15. Novel Techniques and Approaches to Unravel the Nature of X-Ray Absorption Spectra

    SciTech Connect

    Groot, F. M. F. de

    2007-02-02

    This paper discusses the role of resonant inelastic X-ray scattering (RIXS) to unravel the nature of the states that are visible in the pre-edge region of the 3d metal K edges. The traditional pre-edge analysis into quadrupole transitions to the 3d-states plus dipole transitions to the 4p states is outlined, with special attention to the situation of TiO2. The general possibilities of RIXS are described, including the various possible cross-sections through the 2D RIXS plane. Recent developments in High-Energy Resolution Fluorescence Detection (HERFD) are discussed, that yield XANES-like spectra with unprecedented resolution. Using the 1s2p RIXS of LiCoO2 as example, the presence of an extra peak due to non-local dipole transitions is explained. The non-local nature of this dipole pre-edge peak is proven from its behavior in the 2D RIXS plane. The paper also discusses a range of selective X-ray absorption experiments, where the selectivity is towards (a) the spin-state, (b) the valence, (c) the neighbor atom and (d) the edge. In the outlook, a number of additional experimental routes is suggested, which shows that the use of RIXS, HERFD and selective XAS techniques is only just starting.

  16. Tomographic multiaxis-differential optical absorption spectroscopy observations of Sun-illuminated targets: a technique providing well-defined absorption paths in the boundary layer.

    PubMed

    Frins, Erna; Bobrowski, Nicole; Platt, Ulrich; Wagner, Thomas

    2006-08-20

    A novel experimental procedure to measure the near-surface distribution of atmospheric trace gases by using passive multiaxis differential absorption optical spectroscopy (MAX-DOAS) is proposed. The procedure consists of pointing the receiving telescope of the spectrometer to nonreflecting surfaces or to bright targets placed at known distances from the measuring device, which are illuminated by sunlight. We show that the partial trace gas absorptions between the top of the atmosphere and the target can be easily removed from the measured total absorption. Thus it is possible to derive the average concentration of trace gases such as NO(2), HCHO, SO(2), H(2)O, Glyoxal, BrO, and others along the line of sight between the instrument and the target similar to the well-known long-path DOAS observations (but with much less expense). If tomographic arrangements are used, even two- or three-dimensional trace gas distributions can be retrieved. The basic assumptions of the proposed method are confirmed by test measurements taken across the city of Heidelberg. PMID:16892129

  17. Effect of nonlinear absorption on electric field applied lead chloride by Z-scan technique

    NASA Astrophysics Data System (ADS)

    Rejeena, I.; Lillibai, Rahimkutty, M. H.; Nampoori, V. P. N.; Radhakrishnan, P.

    2014-10-01

    The preparation, spectral response and optical nonlinearity of gel grown lead chloride single crystals subjected to electric field of 20V using parallel plate arrangements have been investigated. Optical band gap of the samples were determined using linear absorption spectra. Open aperture z-scan was employed for the determination of nonlinear absorption coefficient of PbCl2 solution. The normalized transmittance curve exhibits a valley shows reverse saturable absorption. The non linear absorption at different input fluences were recorded using a single Gaussian laser beam in tight focus geometry. The RSA nature of the sample makes it suitable for optical limiting applications.

  18. Effect of nonlinear absorption on electric field applied lead chloride by Z-scan technique

    SciTech Connect

    Rejeena, I.; Lillibai,; Nampoori, V. P. N.; Radhakrishnan, P.; Rahimkutty, M. H.

    2014-10-15

    The preparation, spectral response and optical nonlinearity of gel grown lead chloride single crystals subjected to electric field of 20V using parallel plate arrangements have been investigated. Optical band gap of the samples were determined using linear absorption spectra. Open aperture z-scan was employed for the determination of nonlinear absorption coefficient of PbCl{sub 2} solution. The normalized transmittance curve exhibits a valley shows reverse saturable absorption. The non linear absorption at different input fluences were recorded using a single Gaussian laser beam in tight focus geometry. The RSA nature of the sample makes it suitable for optical limiting applications.

  19. Measurements of Cs absorption and retention in man.

    PubMed

    Henrichs, H; Paretzke, H G; Voigt, G; Berg, D

    1989-10-01

    One of the consequences of the Chernobyl reactor accident in 1986 was a comparatively high contamination of foodstuffs in Southern Federal Republic of Germany. In order to test radioecological models predicting the radiological consequences of such accidents, several thousand measurements were performed to determine Cs body burdens in members of the public. For the interpretation of these data and as a contribution to the improvement of the available database on the biokinetics of Cs isotopes in humans, we followed a small group of volunteers after their consumption of highly contaminated venison. Intakes, excretion rates and total body activities were measured during a period of more than 200 d. The data obtained were evaluated in terms of a compartment model to derive gastrointestinal uptakes, biological half-lives and dose conversion factors. The resulting uptake factors range from 65-90%, the half-lives of the long-term retention from 45 to 200 d. The majority of the resulting dose conversion factors lie below the values recommended by the ICRP, showing that the ICRP model is a reasonable and safe description of the Cs biokinetics in our study group, while the great variability of the results shows that it is not an accurate representation of the individual Cs retention. PMID:2793472

  20. Measurements of Cs absorption and retention in man

    SciTech Connect

    Henrichs, H.; Paretzke, H.G.; Voigt, G.; Berg, D. )

    1989-10-01

    One of the consequences of the Chernobyl reactor accident in 1986 was a comparatively high contamination of foodstuffs in Southern Federal Republic of Germany. In order to test radioecological models predicting the radiological consequences of such accidents, several thousand measurements were performed to determine Cs body burdens in members of the public. For the interpretation of these data and as a contribution to the improvement of the available database on the biokinetics of Cs isotopes in humans, we followed a small group of volunteers after their consumption of highly contaminated venison. Intakes, excretion rates and total body activities were measured during a period of more than 200 d. The data obtained were evaluated in terms of a compartment model to derive gastrointestinal uptakes, biological half-lives and dose conversion factors. The resulting uptake factors range from 65-90%, the half-lives of the long-term retention from 45 to 200 d. The majority of the resulting dose conversion factors lie below the values recommended by the ICRP, showing that the ICRP model is a reasonable and safe description of the Cs biokinetics in our study group, while the great variability of the results shows that it is not an accurate representation of the individual Cs retention.

  1. Measurement of Absorption and Scattering With an Integrating Sphere Detector: Application to Microalgae

    PubMed Central

    Gaigalas, A. K.; He, Hua-Jun; Wang, Lili

    2009-01-01

    A spectrometer with an integrating sphere (IS) detector was used to measure the absorbance due to scattering and absorption. Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal spectrometer position, and the second with the cuvette placed next to the entrance aperture of the IS detector, provide enough information to separate the contributions from scattering and molecular absorption. Measurements were carried out with mixtures of microsphere and chromophore solutions. Two cases were examined: microspheres suspended in an aqueous fluorescein solution, and microspheres suspended in an aqueous holmium oxide solution. In both cases, the proposed measurement model gave results which were in good agreement with the expected response. Measurements on microalgae suspensions yielded a molecular absorption contribution and a scattering contribution. The scattering contribution had significant spectral structure which was inversely related to the molecular absorption contribution. The absorption and scattering contributions may provide independent information on the status of chlorophyll molecules and the structure of chloroplasts in microalgae. PMID:27504214

  2. Intergrating cavity absorption meter measurements of dissolved substances and suspended particles in ocean water

    NASA Astrophysics Data System (ADS)

    Pope, Robin M.; Weidemann, Alan D.; Fry, Edward S.

    2000-01-01

    We have developed a new device to measure the separate contributions to the spectral absorption coefficient due to a pure liquid, due to the particles suspended in it, and due to the substances dissolved in it. This device, the Integrating Cavity Absorption Meter (ICAM), is essentially independent of scattering effects in the sample. In April 1993, a prototype of the ICAM was field tested on board the research vessel USNS Bartlett. A major part of the cruise track included criss-crossing the area where the Mississippi flows into the Gulf of Mexico at various ranges from the mouth of the river; thus samples were collected from areas of blue, green, and brown/black water. We evaluated 35 seawater samples collected with 5-l Niskin bottles from 22 locations to determine absorption spectra (380-700 nm) of suspended particles and dissolved substances (gelbstoff). Results validate the ICAM as a viable tool for marine optical absorption research. Gelbstoff absorption at 432.5 nm ranged from 0.024 to 0.603 m -1. Over the spectral region 380→560 nm, gelbstoff absorption by each of the samples could be accurately fit to a decaying exponential. The particle absorption spectra are generally characteristic of those of phytoplankton and exhibit a local maximum at 430-440 nm. Absorption values at 432.5 nm ranged from ˜zero to ˜1.0 m -1. Some samples with moderate particulate absorption, however, did not show the characteristic local maximum of phytoplankton in the blue and instead resembled the characteristic decaying exponential of detritus with a shape similar to that observed in the gelbstoff. The ratio of gelbstoff to particulate absorption at 432.5 nm ranged from 0.46 to 152.

  3. An indoor test campaign of the tomography long path differential optical absorption spectroscopy technique.

    PubMed

    Mettendorf, K U; Hartl, A; Pundt, I

    2006-02-01

    In this study we validate the two-dimensional long path DOAS tomography measurement technique by means of an indoor experiment with well-known concentration distributions. The experiment was conducted over an area of 10 m x 15 m using one and two cylindrical polycarbonate containers of diameter 2 m, respectively, filled with NO2. The setup was realized with three of the multibeam instruments recently developed by Pundt and Mettendorf (Appl. Opt., 2005, in press), which allow the simultaneous measurement along at least four light paths each. The configuration consisted of twelve simultaneous light beams, 39 horizontal light paths in total, and 18 different cylinder positions inside the field. It was found that for the discretization and inversion technique shown here reconstructions of the concentration distributions from experimental data agree well with simulated reconstructions. In order to draw conclusions for atmospheric applications, numerical studies including instrumental errors were carried out. It was found that with the presented measurement setup it is possible to measure and reconstruct one or two NO2 plumes of 600 m diameter and average concentrations above 4.2 ppbv each, on a scale of 13.5 km2. Theoretical investigations show that it should be possible to localize and quantify 600 m diameter plumes of SO2 > 1.5 ppbv, H2CO > 6.3 ppbv, HONO > 3.2 ppbv, and ozone > 46.2 ppbv. Larger plumes can be measured with higher precision. PMID:16470260

  4. Broadband spectroscopy with external cavity quantum cascade lasers beyond conventional absorption measurements.

    PubMed

    Lambrecht, Armin; Pfeifer, Marcel; Konz, Werner; Herbst, Johannes; Axtmann, Felix

    2014-05-01

    Laser spectroscopy is a powerful tool for analyzing small molecules, i.e. in the gas phase. In the mid-infrared spectral region quantum cascade lasers (QCLs) have been established as the most frequently used laser radiation source. Spectroscopy of larger molecules in the gas phase, of complex mixtures, and analysis in the liquid phase requires a broader tuning range and is thus still the domain of Fourier transform infrared (FTIR) spectroscopy. However, the development of tunable external cavity (EC) QCLs is starting to change this situation. The main advantage of QCLs is their high spectral emission power that is enhanced by a factor of 10(4) compared with thermal light sources. Obviously, transmission measurements with EC-QCLs in strongly absorbing samples are feasible, which can hardly be measured by FTIR due to detector noise limitations. We show that the high power of EC-QCLs facilitates spectroscopy beyond simple absorption measurements. Starting from QCL experiments with liquid samples, we show results of fiber evanescent field analysis (FEFA) to detect pesticides in drinking water. FEFA is a special case of attenuated total reflection spectroscopy. Furthermore, powerful CW EC-QCLs enable fast vibrational circular dichroism (VCD) spectroscopy of chiral molecules in the liquid phase - a technique which is very time consuming with standard FTIR equipment. We present results obtained for the chiral compound 1,1'-bi-2-naphthol (BINOL). Finally, powerful CW EC-QCLs enable the application of laser photothermal emission spectroscopy (LPTES). We demonstrate this for a narrowband and broadband absorber in the gas phase. All three techniques have great potential for MIR process analytical applications. PMID:24367797

  5. Measurement of the Absorption and Scattering Properties of Turbid Liquid Foods Using Hyperspectral Imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports on the development of a hyperspectral imaging technique for rapid determination of the absorption and scattering properties of turbid liquid foods over the visible and near-infrared region of 530-900 nm. A hyperspectral imaging system in line scanning mode was first tested and val...

  6. An evaluation of techniques for the extraction of mineral absorption features from high spectral resolution remote sensing data

    NASA Technical Reports Server (NTRS)

    Rast, Michael; Hook, Simon J.; Alley, Ronald E.; Elvidge, Christopher D.

    1991-01-01

    Airborne Visible/Infrared Imaging Spectrometer data covering the wavelength range between 2000 and 2400 nm are examined for their ability to display the diagnostic mineral absorption features of certain alteration minerals, employing various data processing techniques. The techniques may be separated into two broad categories: scene based techniques that use parameters derived from the data themselves, and correction techniques utilizing external information such as solar/atmospheric models. Results indicate that the data corrected utilizing the LOWTRAN 7 atmospheric transfer code constrained with local weather station data are the most effective at showing the diagnostic absorption features of the regions of known mineralogy and introduce the least number of artifacts into the data.

  7. Measurement of the absorption of nonlinear crystals used for high-average-power frequency doubling

    NASA Astrophysics Data System (ADS)

    Mann, Guido; Seidel, Stefan

    1997-07-01

    The absorption coefficients of nonlinear crystals for fundamental and second harmonic wave are of great importance for high average power second harmonic generation. A practical method to measure low absorption coefficients for high average power second harmonic generation. A practical method to measure low absorption coefficients is to use an interferometric laser calorimeter with high power lasers. Therefore Q-switched Nd:YAG laser systems with intracavity second harmonic generation are used. The measurements are made with optical powers up to 300 W and 45 W, respectively. Because of the high power, the resolution limit for the absorption coefficients is 0.001 percent/cm. The absorption coefficients of KTP and LBO crystals of different manufacturers are determined. The results are used for a numerical model which takes into account the decrease of conversion efficiency due to thermal effects caused by the absorption of laser power in the nonlinear crystal. This model describes saturation effects which appear in the range of 100 W in the green using a KTP crystal. A new idea for compensation of thermal effects will be presented.

  8. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures

    NASA Astrophysics Data System (ADS)

    Alrefae, Majed; Es-sebbar, Et-touhami; Farooq, Aamir

    2014-09-01

    Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging 296-1100 K and pressures near atmospheric. As temperature increases, the peak cross-sections decrease but the wings of the bands increase as higher rotational lines appear. Integrated band intensity is also calculated over the measured spectral region and is found to be a very weak function of temperature. The absorption cross-sections of the relatively small fuels studied here show dependence on the bath gas. This effect is investigated by studying the variation of absorption cross-sections at 3.392 μm using a HeNe laser in mixtures of fuel and nitrogen, argon, or helium. Mixtures of fuel with He have the highest value of absorption cross-sections followed by Ar and N2. Molecules with narrow absorption lines, such as methane and methanol, show strong dependence on bath gas than molecules with relatively broader absorption features i.e. ethane and ethylene.

  9. Long-path supercontinuum absorption spectroscopy for measurement of atmospheric constituents.

    PubMed

    Brown, David M; Shi, Kebin; Liu, Zhiwen; Philbrick, C R

    2008-06-01

    A supercontinuum source has been proposed as a new tool for measurement of minor species concentrations on long paths through the atmosphere. The present work describes results from recent experiments that demonstrate the potential for Differential Absorption Spectroscopy (DAS) and Spectral Pattern Recognition Differential Absorption Lidar (SPR-DIAL) measurements utilizing a supercontinuum source. As an initial example of this measurement approach, the results include the quantification of water vapor concentration through indoor and outdoor path absorption measurements using a collimated supercontinuum source. Experimental spectra are compared with equivalent simulations from MODTRAN??? versions 4 and 5 to examine the water vapor band between 1300 and 1500 nm to demonstrate the feasibility of the approach. PMID:18545560

  10. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3x10(exp 17) and 9x10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  11. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  12. [Development of a photoacoustic spectroscopy system for the measurement of absorption coefficient of atmospheric aerosols].

    PubMed

    Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2013-07-01

    In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state. PMID:24059163

  13. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube.

    NASA Astrophysics Data System (ADS)

    Meyer, Scott Andrew

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 times 10 ^{17} and 9 times 10^{17} cm ^{-3}. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  14. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  15. Excitation ahead of shock fronts in krypton measured by single line laser absorption

    NASA Astrophysics Data System (ADS)

    Boetticher, W.; Kilpin, D.

    1984-12-01

    The absorption of single-mode radiation (from a dye laser tuned to 587.25 and 557.18 nm) by Kr in front of shock waves with Mach numbers 12-21 in a 50-mm-diameter 4.4-m-long free-position driver shock tube at preshock pressures 0.7-2.7 kPa is measured to determine the number densities of the metastable 5s(1 1/2)2 and 5s(1 1/2)1 precursor states (1s5 and 1s4 in Paschen notation, respectively). The measurement technique and calculations follow those of Ernst (1982). The results are presented in tables and graphs and characterized in comparison with previous findings. The time constant of the exponential rise of the precursor is found to be about 8 microsec, and the concentration of 1s5 + 1s4 for Mach 20 is calculated as about 10 ppm, in agreement (to within a factor of 5) with model predictions for Ar and Xe.

  16. ATLAS: Airborne Tunable Laser Absorption Spectrometer for stratospheric trace gas measurements

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max; Podolske, James R.; Strahan, Susan E.

    1990-01-01

    The ATLAS instrument is an advanced technology diode laser based absorption spectrometer designed specifically for stratospheric tracer studies. This technique was used in the acquisition of N2O tracer data sets on the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition. These data sets have proved valuable for comparison with atmospheric models, as well as in assisting in the interpretation of the entire ensemble of chemical and meteorological data acquired on these two field studies. The N2O dynamical tracer data set analysis revealed several ramifications concerning the polar atmosphere: the N2O/NO(y) correlation, which is used as a tool to study denitrification in the polar vertex; the N2O Southern Hemisphere morphology, showing subsidence in the winter polar vortex; and the value of the N2O measurements in the interpretation of ClO, O3, and NO(y) measurements and of the derived dynamical tracer, potential vorticity. Field studies also led to improved characterization of the instrument and to improved accuracy.

  17. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The

  18. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption during the ASCENDS 2009-2011 Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G.; Hasselbrack, W.; Browell, E. V.

    2011-12-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs

  19. Measuring Cognitive Ability with the Overclaiming Technique

    ERIC Educational Resources Information Center

    Paulhus, Delroy L.; Harms, P. D.

    2004-01-01

    The overclaiming technique requires respondents to rate their familiarity with a list of general knowledge items (persons, places, things). Because 20[percent] of the items are foils (i.e., do not exist), the response pattern can be analyzed with signal detection methods to yield the accuracy and bias scores for each respondent. In Study 1, the…

  20. Absorption cross section measurements of oxygen in the wavelength region 195-241 nm of the Herzberg continuum

    NASA Technical Reports Server (NTRS)

    Cheung, A. S.-C.; Yoshino, K.; Parkinson, W. H.; Freeman, D. E.; Guberman, S. L.

    1986-01-01

    The continuous absorption cross section of oxygen in the region 205-241 nm is studied as a function of path length and oxygen pressure. The technique used to study the continuous absorption cross section is described. Cross section measurements of oxygen in the wavelength region 193-205 nm obtained by Cheung et al. (1984) are applied in this experiment. The measured cross section is analyzed in terms of a Herzberg continuum and a pressure-dependent continuum. The total measured continuum cross section, the cross section involving two molecules of O2, and the Herzberg continuum absorption cross section values are calculated. It is observed that the Herzberg continuum cross section of oxygen values measured at 1 nm intervals in the region 195-241 nm, increase from 6.3 x 10 to the -24th sq cm at 195 nm to a maximum of 6.6 x 10 to the -24th sq cm at 201 nm and then decrease to 0.85 x 10 to the -24th sq cm at 241 nm. The Herzberg values are compared with data from previous investigations and the values correlate well.

  1. The influence of the sensor type on the measured impact absorption of mouthguard material.

    PubMed

    Takeda, Tomotaka; Ishigami, Keiichi; Jun, Handa; Nakajima, Kazunori; Shimada, Atsushi; Ogawa, Toru

    2004-02-01

    Mouthguards have been tested for impact energy absorption using drop-ball and/or pendulum devices. While all reports show efficiency of the mouthguard, the impact absorption abilities reported differ considerably. This difference has been attributed to differences of mouthguard material, design, and the impact force used. However, it is also possibly because of the difference in the sensors used in the experiments. The purpose of this study was to test three types of sensors and to assess which type was most appropriate for measurement of the impact absorption ability of mouthguards. A pendulum-type testing equipment and steel ball, wooden bat, baseball, field-hockey ball were used as the impact object. For all sensors or impact objects, the mouthguard decreased the impact forces. However, the absorption ability of the mouthguard varied according to the sensor or impact object. The absorbency values became smaller with the strain gauge, the accelerometer, and the load cell, respectively. With the steel ball as the impact object, 80.3% of impact absorption was measured with the strain gauge and the accelerometer but, only 62.1% with the load cell sensor. With the wooden bat, impact absorption was 76.3% with the strain gauge and 38.8% for the load cell. For the baseball ball, the absorption measurement decreased from 46.3% with the strain gauge to 4.36 with the load cell and for the field-hockey ball, the decrease in measurement values were similar (23.6% with the strain gauge and 2.43% with the load cell). It is clear that the sensor plays an important role in the measurement values reported for absorbency of mouthguard materials and a standard sensor should be used for all experiments. PMID:14998412

  2. The EEG measurement technique under exercising.

    PubMed

    Hosaka, Naoya; Tanaka, Junya; Koyama, Akira; Magatani, Kazushige

    2006-01-01

    Our purpose of the research is a development of the detecting method of EEG under exercising. Usually, measuring EEG is done in the quiet state. In case of the measuring EEG under exercising, a movement of the body causes vibration of electrodes and artifact for the EEG. Therefore, generally detection of the EEG under exercising is said to be difficult. So, we developed the measuring method of EEG under exercising by using algorithm that we designed. Five normal subjects were tested with our method, and EEG without artifact was able to be measured in all cases. PMID:17945632

  3. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption and Range During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar only on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear C02 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs

  4. Multi-angle fluorometer technique for the determination of absorption and scattering coefficients of subwavelength nanoparticles.

    PubMed

    Shortell, Matthew P; Hewins, Rodney A; Fernando, Joseph F S; Walden, Sarah L; Waclawik, Eric R; Jaatinen, Esa A

    2016-07-25

    A thorough analysis of the resonance light scattering (RLS) technique for quantitative scattering measurements of subwavelength nanoparticles is reported. The systematic error associated with using a measurement at a single angle to represent all of the scattered light is investigated. In-depth analysis of the reference material was performed to identify and minimize the error associated with the reference material. Semiconductor ZnO nanobullets and spherical Au nanoparticles of various sizes were used to verify the approach. A simple and inexpensive modification to standard fluorometers is demonstrated using a glass prism allowing scattering measurements in the slightly forward and backwards directions. This allows quantification of the systematic error associated with RLS which is consistently overlooked. PMID:27464160

  5. Superresolution and other mathematical techniques for quantitative analysis of infrared absorption and emission spectra of gases

    NASA Astrophysics Data System (ADS)

    Davies, Nicholas M.; Lettington, Alan H.; Hilton, Moira

    1997-05-01

    Fourier transform IR (FTIR) spectroscopy has become a powerful analytical tool for the detection and measurement of atmospheric pollutant gases. This work describes the application of concentration analysis techniques to data recorded with a versatile FTIR spectroscopy system, developed at the University of Reading PHysics Department. Spectra were recorded at three separate sites, each possessing a distinct source of atmospheric pollution gases. The two sites monitored in the active mode were a traffic congested town center at rush hour and a dairy farm cow shed. The site monitored passively contained three 5 m high methane burners. The analysis techniques have been designed to provide rapid and accurate analysis of the spectrometer data, without the need for high computing power, thus making analysis possible in the field using a laptop PC. In an attempt to enhance the resolution of the spectral data, and therefore resolve overlapping spectral lines, a super- resolution algorithm has been tested on part of the recorded data. The results of applying the algorithm has been tested on part of the recorded data. The results of applying the algorithm, predominantly an image processing technique, are shown and improvements to the algorithm are discussed. Results from the urban and agricultural sites show that CO, CH4, and NH3 can be measured to a ppm level with a maximum uncertainly of 8 percent.

  6. A Simple Technique for High Resistance Measurement

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguia; Landin, Ramon Ochoa

    2012-01-01

    A simple electronic system for the measurement of high values of resistance is shown. This system allows the measurement of resistance in the range of a few megohm up to 10[superscript 9] [omega]. We have used this system for the evaluation of CdS thin film resistance, but other practical uses in the basic physics laboratory are presented.…

  7. Helium-flow measurement using ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Sondericker, J. H.

    1983-08-01

    The ideal cryogenic instrumentation for the colliding beam accelerator helium distribution system does not add pressure drop to the system, functions over the entire temperature range, has high resolution, and delivers accurate mass flow measurement data. The design and testing of an ultrasonic flowmeter which measures helium flow under different temperatures are described.

  8. A Wireless Fluid-Level Measurement Technique

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2006-01-01

    This paper presents the application of a recently developed wireless measurement acquisition system to fluid-level measurement. This type of fluid-level measurement system alleviates many shortcomings of fluid-level measurement methods currently being used, including limited applicability of any one fluid-level sensor design. Measurement acquisition shortcomings include the necessity for power to be supplied to each sensor and for the measurement to be extracted from each sensor via a physical connection to the sensor. Another shortcoming is existing measurement systems require that a data channel and signal conditioning electronics be dedicated to each sensor. Use of wires results in other shortcomings such as logistics needed to add or replace sensors, weight, potential for electrical arcing and wire degradations. The fluid level sensor design is a simple passive inductor-capacitor circuit that is not subject to mechanical failure that is possible when float and lever-arm systems are used. Methods are presented for using the sensor in caustic, acidic or cryogenic fluids. Oscillating magnetic fields are used to power the sensor. Once electrically excited, the sensor produces a magnetic field response. The response frequency corresponds to the amount to fluid within the capacitor s electric field. The sensor design can be modified for measuring the level of any fluid or fluent substance that can be stored in a non-conductive reservoir. The interrogation method for discerning changes in the sensor response frequency is also presented.

  9. Liquidus temperature and optical properties measurement by containerless techniques

    NASA Technical Reports Server (NTRS)

    Anderson, Collin D.

    1993-01-01

    Reactive alloy liquidus temperatures measured by conventional, contained techniques are often in error due to reactions with containers and gaseous impurities. This paper describes a new liquidus temperature measurement technique that avoids these problems by employing containerless processing. This technique relies on precise and accurate noncontact temperature measurements (NCTM), which are made possible by spectral emissivity values. The spectral emissivities, epsilon(sub lambda), are measured along with the optical properties (real, n, and imaginary, k, components of the index of refraction) using polarimetric techniques on electromagnetically levitated specimens. Results from work done at Vanderbilt University and Intersonics on the Ti-Al system are presented to demonstrate the above techniques.

  10. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  11. [Research on the NO2 mean concentration measurement with target differential optical absorption spectroscopy technology].

    PubMed

    Liu, Jin; Si, Fu-Qi; Zhou, Hai-Jin; Zhao, Min-Jie; Dou, Ke; Liu, Wen-Qing

    2013-04-01

    A new monitoring method of NO2 concentration near ground with the target difference absorption spectrum technology (Target DOAS) is introduced in the present paper. This method is based on the passive difference absorption spectrum technology. The instrument collects solar reflection spectrum of remote objectives, such as wall of building and mountain, and a specific reference spectrum is chosen to subtract the influence of trace gases from the target to atmospheric top, then integrated concentration of NO2 along the path between the target and instrument can be calculated through the differential absorption spectra inversion algorithm. Since the distance between the instrument and target is given, the mean concentration of NO2 can be derived. With developed Target DOAS instrument, NO2 concentration measurement was carried out in Hefei. And comparison was made between the target DOAS and long path difference absorption spectrometer. Good consistency was presented, proving the feasibility of this method. PMID:23841393

  12. Artifacts in Absorption Measurements of Organometal Halide Perovskite Materials: What Are the Real Spectra?

    PubMed

    Tian, Yuxi; Scheblykin, Ivan G

    2015-09-01

    Organometal halide (OMH) perovskites have attracted lots of attention over the last several years due to their very promising performance as the materials for solar cells and light-emitting devices. Photophysical processes in these hybrid organic-inorganic semiconductors are still heavily debated. To know precise absorption spectra is absolutely necessary for quantitative understanding of the fundamental properties of OMH perovskites. We show that to measure the absorption of perovskite materials correctly is a difficult task which could be easily overlooked by the community. Many of the published absorption spectra exhibit a characteristic step-like featureless shape due to light scattering, high optical density of individual perovskite crystals and poor coverage of the substrate. We show how to recognize these artifacts, to avoid them, and to use absorption spectra of films for estimation of the surface coverage ratio. PMID:27120683

  13. Characterization of a Photoacoustic Aerosol Absorption Spectrometer for Aircraft-based Measurements

    NASA Astrophysics Data System (ADS)

    Mason, B. J.; Wagner, N. L.; Richardson, M.; Brock, C. A.; Murphy, D. M.; Adler, G.

    2015-12-01

    Atmospheric aerosol directly impacts the Earth's climate through extinction of incoming and outgoing radiation. The optical extinction is due to both scattering and absorption. In situ measurements of aerosol extinction and scattering are well established and have uncertainties less than 5%. However measurements of aerosol absorption typically have uncertainties of 20-30%. Development and characterization of more accurate and precise instrumentation for measurement of aerosol absorption will enable a deeper understand of significance and spatial distribution of black and brown carbon aerosol, the effect of atmospheric processes on aerosol optical properties, and influence of aerosol optical properties on direct radiative forcing. Here, we present a detailed characterization of a photoacoustic aerosol absorption spectrometer designed for deployment aboard research aircraft. The spectrometer operates at three colors across the visible spectrum and is calibrated in the field using ozone. The field calibration is validated in the laboratory using synthetic aerosol and simultaneous measurements of extinction and scattering. In addition, the sensitivity of the instrument is characterized under conditions typically encountered during aircraft sampling e.g. as a function of changing pressure. We will apply this instrument characterization to ambient aerosol absorption data collected during the SENEX and SEAC4RS aircraft based field campaigns.

  14. Development of techniques for measuring pilot workload

    NASA Technical Reports Server (NTRS)

    Spyker, D. A.; Stackhouse, S. P.; Khalafalla, A. S.; Mclane, R. C.

    1971-01-01

    An objective method of assessing information workload based on physiological measurements was developed. Information workload, or reserve capacity, was measured using a visual discrimination secondary task and subjective rating of task difficulty. The primary task was two axis (pitch and roll) tracking, and the independent variables in this study were aircraft pitch dynamics and wind gust disturbances. The study was structured to provide: (1) a sensitive, nonloading measure of reserve capacity, and (2) an unencumbering reliable measurement of the psychophysiological state. From these, a measured workload index (MWI) and physiological workload index (PWI) were extracted. An important measure of the success of this study was the degree to which the MWI and PWI agreed across the 243 randomly-presented, four-minute trials (9 subjects X 9 tasks X 3 replications). The electrophysiological data collected included vectorcardiogaram, respiration, electromyogram, skin impedance, and electroencephalogram. Special computer programs were created for the analysis of each physiological variable. The digital data base then consisted of 82 physiological features for each of the 243 trials. A prediction of workload based on physiological observations was formulated as a simultaneous least-squares prediction problem. A best subset of 10 features was chosen to predict the three measures of reserve capacity. The cannonical correlation coefficient was .754 with a chi squared value of 91.3 which allows rejection of the null hypothesis with p of .995.

  15. Mid-infrared carbon monoxide detection system using differential absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Dong, Ming; Sui, Yue; Li, Guo-lin; Zheng, Chuan-tao; Chen, Mei-mei; Wang, Yi-ding

    2015-11-01

    A differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g. light-collector) and a multi-pass gas-chamber is presented in this paper. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path and environmental changes. Detection principle of the device is described, and both the optical part and the electrical part are developed. Experiments are carried out to evaluate the sensing performance on CO concentration. The results indicate that at 1.013×105 Pa and 298 K, the limit of detection (LoD) is about 11.5 mg/m3 with an absorption length of 40 cm. As the gas concentration gets larger than 115 mg/m3 (1.013×105 Pa, 298 K), the relative detection error falls into the range of -1.7%—+1.9%. Based on 12 h long-term measurement on the 115 mg/m3 and 1 150 mg/m3 CO samples, the maximum detection errors are about 0.9% and 5.5%, respectively. Due to the low cost and competitive characteristics, the proposed device shows potential applications in CO detection in the circumstances of coal-mine production and environmental protection.

  16. Apparatus and techniques for measuring bedload

    USGS Publications Warehouse

    Hubbell, David Wellington

    1964-01-01

    The need for accurate determinations of the total sediment discharge of particles of bedload size has prompted this investigation of available and possible measuring apparatus and procedures. The accuracy of measurements of sediment discharge made with trap-type samplers is affected by the variability of sampler efficiency, by the oscillatory variation of bedload discharge, and by sampler placement. Equations that were developed for determining total discharge from measured bedioad discharge and measured suspended-sediment discharge are simplest if the bedload apparatus measures only the true bedload. Early bedload samplers are generally unsatisfactory. Recently developed or suggested apparatus include various improved samplers of the pressure-difference type, a pumping sampler, a magnetic sampler, acoustical instruments that measure the magnitude of the sound of particle collisions, an ultrasonic bedload sampler designed to measure and integrate electronically the concentration and velocity, and a tiltmeter designed to measure the total sediment discharge from the ground tilt that results from the passage of flow. All the pressure-difference samplers are improvements over early samplers, but none are void of the inherent shortcomings of trap-type apparatus; probably the Sphinx (Dutch) and VUV (Hungarian) samplers are the most satisfactory. The acoustical instruments are capable of measuring only the relative discharge. The ultrasonic sampler and the tiltmeter are not adequate without further development. Some new possible apparatus and means for measuring or aiding in measuring bedload discharge are small pit samplers, ultrasonic sounders, pressure transducers, and photography. A small pit sampler for measuring bedload discharge was designed to provide self-placement and portability ; however, its practicability and efficiency are undetermined. Exploratory films show that by using slowmotion photography the discharge of particles larger than about pea size can be

  17. Technique for measuring gas conversion factors

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sprinkle, D. R. (Inventor)

    1985-01-01

    A method for determining hydrocarbon conversion factors for a flowmeter. A mixture of air, O2 and C sub x H sub y is burned and the partial paressure of O2 in the resulting gas is forced to equal the partial pressure of O2 in air. The flowrate of O2 flowing into the mixture is measured by flowmeter and the flowrate of C sub x H sub y flowing into the mixture is measured by the flowmeter conversion factor is to be determined. These measured values are used to calculate the conversion factor.

  18. Measurement of transient gas flow parameters by diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bolshov, M. A.; Kuritsyn, Yu A.; Liger, V. V.; Mironenko, V. R.; Nadezhdinskii, A. I.; Ponurovskii, Ya Ya; Leonov, S. B.; Yarantsev, D. A.

    2015-04-01

    An absorption spectrometer based on diode lasers is developed for measuring two-dimension maps of temperature and water vapour concentration distributions in the combustion zones of two mixing supersonic flows of fuel and oxidiser in the single run regime. The method of measuring parameters of hot combustion zones is based on detection of transient spectra of water vapour absorption. The design of the spectrometer considerably reduces the influence of water vapour absorption along the path of a sensing laser beam outside the burning chamber. The optical scheme is developed, capable of matching measurement results in different runs of mixture burning. A new algorithm is suggested for obtaining information about the mixture temperature by constructing the correlation functions of the experimental spectrum with those simulated from databases. A two-dimensional map of temperature distribution in a test chamber is obtained for the first time under the conditions of plasma-induced combusion of the ethylene - air mixture.

  19. New technique for oil backstreaming contamination measurements

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Speier, H. J.; Sieg, R. M.; Drotos, M. N.; Dunning, J. E.

    1993-01-01

    Due to the large size and the number of diffusion pumps, space simulation chambers cannot be easily calibrated by the usual test dome method for measuring backstreaming from oil diffusion pumps. In addition, location dependent contamination may be an important parameter of the test. The backstreaming contamination in the Space Power Facility (SPF) near Sandusky, Ohio, the largest space simulation vacuum test chamber in the U.S.A. was measured. Small size clean silicon wafers as contamination sensors placed at all desired measurement sites were used. The facility used diffusion pumps with DC 705 oil. The thickness of the contamination oil film was measured using ellipsometry. Since the oil did not wet uniformly the silicon substrate, two analysis models were developed to measure the oil film: continuous, homogeneous film and islands of oil with the islands varying in coverage fraction and height. In both cases, the contamination film refractive index was assumed to be that of DC 705. The second model improved the ellipsometric analysis quality parameter by up to two orders of magnitude, especially for the low coverage cases. Comparison of the two models for our case shows that the continuous film model overestimates the oil volume by less than 50 percent. Absolute numbers for backstreaming are in good agreement with published results for diffusion pumps. Good agreement was also found between the ellipsometric results and measurements done by x ray photoelectron spectroscopy (XPS) and by scanning electron microscopy (SEM) on samples exposed to the same vacuum runs.

  20. Traffic-related differences in indoor and personal absorption coefficient measurements in Amsterdam, the Netherlands

    NASA Astrophysics Data System (ADS)

    Wichmann, Janine; Janssen, Nicole A. H.; van der Zee, Saskia; Brunekreef, Bert

    Population studies indicate that study participants living near major roads are more prone to chronic respiratory symptoms, lung function decrements and hospital admissions for asthma. The majority of the studies used proxy measures, such as distance to major roads or traffic intensity in the surroundings of the home. Few studies have communicated findings of concurrently performed measurements of outdoor, indoor and personal air pollution in urban streets with high- and low-traffic density. Measuring light absorption or reflectance of particulate matter (PM) collected on filters is an alternative method to determine elemental carbon, a marker for particles produced by incomplete combustion, compared to expensive and destructive analytical methods. This study sets out to test the null hypothesis that there is no difference in personal and indoor filter absorption coefficients for participants living along busy and quiet roads in Amsterdam. In one study we measured personal and indoor absorption coefficients in a sample of adults (50-70 years) and, in another study, the indoor levels in a population of adults (50-70 years) and school children (10-12 years). In the first study, the ratios of personal and indoor absorption coefficients in homes along busy roads compared with homes on quiet streets were significantly higher by 29% for personal measurements ( n=16 days, p<0.001), and by 19% for indoor measurements ( n=20, p<0.001), while in the second study, the ratio for the indoor measurements was higher by 26% ( n=25 days, p<0.05). Exposure differences between homes along busy compared to homes along quiet streets remained and significant after adjustment for potential indoor sources (such as cooking and use of unvented heating appliances). This study therefore provides tentative support for the use of the type of road as proxy measure for indoor and personal absorption coefficient measurements in epidemiological studies due to the limitations of the study.

  1. Electromagnetic probe technique for fluid flow measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Carl, J. R.

    1994-01-01

    The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constant of the fluid is possible, several or even many fluids can be measured in the same flow stream. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans to solve this problem will be discussed herein.

  2. A photophonic instrument concept to measure atmospheric aerosol absorption. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Engle, C. D.

    1982-01-01

    A laboratory model of an instrument to measure the absorption of atmospheric aerosols was designed, built, and tested. The design was based on the photophonic phenomenon discovered by Bell and an acoustic resonator developed by Helmholtz. Experiments were done to show ways the signal amplitude could be improved and the noise reduced and to confirm the instrument was sensitive enough to be practical. The research was undertaken to develop concepts which show promise of being improvements on the instruments that are presently used to measure the absorption of the Sun's radiation by the Earth's atmospheric aerosols.

  3. The rising bubble technique for discharge measurements

    NASA Astrophysics Data System (ADS)

    Luxemburg, W.; Hilgersom, K.; van Eekelen, M.

    2010-12-01

    The rising bubble technique is an elegant method to determine the full discharge of a river or a canal in a short moment of time. The method is not new [Sargent, 1982], but hardly applied so far. The method applies air bubbles released from the bottom of a river or canal. While the bubbles rise to the surface they are dragged along by the current. The deeper the stream and the faster the current the longer will be the distance they are dragged along. The horizontal displacement L, of the bubbles can be observed at the surface of the stream. To obtain a discharge, the rising velocity vr, of the bubble is required additionally. When the rising velocity is assumed constant the discharge per unit width amounts to q= Lvr. Placing a tube on the bottom of the stream and releasing bubbles at regular intervals results in a complete discharge profile. The ongoing research is focusing on factors affecting the rising velocity, solving practicalities in applying the method in the field and how modern image processing techniques can enhance determining in a glance the distance travelled by the bubbles. Surfacing of air bubbles in a canal

  4. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions. PMID:20941181

  5. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  6. Measurement techniques in animal locomotion analysis.

    PubMed

    Schamhardt, H C; van den Bogert, A J; Hartman, W

    1993-01-01

    Animal performance can be determined by subjective observations or objective measurements. Numerical data are only then superior to results of subjective observations when they are the result of measurements carried out to test a well-defined hypothesis or to give the answer to a clear, precisely formulated question. In the analysis of kinematics a careful evaluation of the set-up of the measurement equipment and the resulting accuracy in the data is required. Measurements in three dimensions (3D) are theoretically better than those in 2D. Practically, however, collection, analysis, interpretation and presentation of 3D data are so much more complicated that frequently 2D analysis appears to be more useful. The minimal size of markers necessary to obtain a certain accuracy in kinematic data is usually too big for practical use. Smaller markers impair accuracy. Reduction of measurement noise is obligatory when time derivatives are to be calculated. Skin movement artefacts cannot be removed by data smoothing. Forces occurring between the digits and the ground can be determined using a force plate or an instrumented shoe. A force plate is accurate, but repeated trials are necessary. Using a force shoe each ground contact results in useful data. However, the shoe itself may affect locomotion. Surface strains on long bones can be recorded relatively easily. Determination of loading forces from surface strains is complicated but can be carried out using multiple strain gauges and a post-mortem calibration test. Strain in tendons is difficult to measure due to problems in defining a'zero' or reference length.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8470454

  7. Absorption measurements of very low quantities of graphite microfibers and nanofibers

    NASA Astrophysics Data System (ADS)

    Boergert, Michael

    2012-10-01

    In order to determine the absorption coefficients of graphite microfibers, a He-Ne laser incorporating a 2-D photoacoustic system was used. In this system particles were deposited through fluid suspension onto polycarbonate filters. One objective was to determine if the absorption coefficient of vapor-grown microfibers as well as of three size distributions of nanofibers could be measured in areal densities as low as a single fiber in a focused beam. Although measuring single vapor-grown microfibers was deemed not possible with this equipment, the mass density limit was approximately 20 ng/cm^2 for a beam of approximately 2100 microns in diameter, giving about 690 pg or several thousand fibers in the beam spot. However, if the beam were fully focused, it would have a diameter of approximately 310 microns, which would correspond to about 15 pg or approximately 100 particles in the beam. The absorption coefficient analysis was then extended to three size distributions of graphite nanotubes. The mass normalized absorption cross sections were determined from measurements of absorption vs. areal mass density on filters. Calibration was done by using the published value for soot.

  8. Evaluation of different indirect measures of rate of drug absorption in comparative pharmacokinetic studies.

    PubMed

    Lacey, L F; Keene, O N; Duquesnoy, C; Bye, A

    1994-02-01

    As indirect measures of rate of drug absorption (metrics), maximum plasma concentration (Cmax) is confounded by extent of drug absorption and the time to reach Cmax (tmax) is a discrete variable, dependent on blood sampling frequency. Building on the work of Endrenyi et al., we have compared different metrics, including Cmax/area under the curve of concentration versus time from time zero to infinity (AUC infinity), partial AUC from zero to tmax (AUCp), and Cmax.tmax with simulated experiments. Importantly, the performance of these metrics was assessed with the results of actual pharmacokinetic studies involving Glaxo drugs. The results of the simulated and real experiments were consistent and produced the following unambiguous findings: (1) Cmax/AUC infinity is a more powerful metric than Cmax in establishing bioequivalence when the formulations are truly bioequivalent; (2) Cmax/AUC infinity is more sensitive than Cmax at detecting differences in rate of absorption when they exist; and (3) the treatment ratios for AUCp, AUCp/AUC infinity, and Cmax.tmax are very imprecisely estimated and are of no practical value as measures of rate of absorption. Of the metrics examined, Cmax/AUC infinity is the most sensitive and powerful indirect measure of rate of drug absorption in comparative pharmacokinetic studies involving immediate-release dosage forms and should be used instead of Cmax in bioequivalence testing. PMID:8169791

  9. AN EXPERIMENTALLY ROBUST TECHNIQUE FOR HALO MEASUREMENT

    SciTech Connect

    Amundson, J.; Pellico, W.; Spentzouris, P.; Sullivan, T.; Spentzouris, Linda; /IIT, Chicago

    2006-03-01

    We propose a model-independent quantity, L/G, to characterize non-Gaussian tails in beam profiles observed with the Fermilab Booster Ion Profile Monitor. This quantity can be considered a measure of beam halo in the Booster. We use beam dynamics and detector simulations to demonstrate that L/G is superior to kurtosis as an experimental measurement of beam halo when realistic beam shapes, detector effects and uncertainties are taken into account. We include the rationale and method of calculation for L/G in addition to results of the experimental studies in the Booster where we show that L/G is a useful halo discriminator.

  10. Amplitude Frequency Response Measurement: A Simple Technique

    ERIC Educational Resources Information Center

    Satish, L.; Vora, S. C.

    2010-01-01

    A simple method is described to combine a modern function generator and a digital oscilloscope to configure a setup that can directly measure the amplitude frequency response of a system. This is achieved by synchronously triggering both instruments, with the function generator operated in the "Linear-Sweep" frequency mode, while the oscilloscope…

  11. IMAGE-BASED EROSION MEASUREMENT TECHNIQUE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two and three - dimensional analysis using close range digital photographs can be very useful in measuring changes in erosion on the landscape. Computer software exists for conducting photographic analysis but is often either cost prohibitive or very labor intensive to use. This paper describes a ...

  12. Model measurements for new accelerating techniques

    SciTech Connect

    Aronson, S.; Haseroth, H.; Knott, J.; Willis, W.

    1988-06-01

    We summarize the work carried out for the past two years, concerning some different ways for achieving high-field gradients, particularly in view of future linear lepton colliders. These studies and measurements on low power models concern the switched power principle and multifrequency excitation of resonant cavities. 15 refs., 12 figs.

  13. Ultra Narrowband Optical Filters for Water Vapor Differential Absorption Lidar (DIAL) Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Stenholm, Ingrid; DeYoung, Russell J.

    2001-01-01

    Differential absorption lidar (DIAL) systems are being deployed to make vertical profile measurements of atmospheric water vapor from ground and airborne platforms. One goal of this work is to improve the technology of such DIAL systems that they could be deployed on space-based platforms. Since background radiation reduces system performance, it is important to reduce it. One way to reduce it is to narrow the bandwidth of the optical receiver system. However, since the DIAL technique uses two or more wavelengths, in this case separated by 0.1 nm, a fixed-wavelength narrowband filter that would encompass both wavelengths would be broader than required for each line, approximately 0.02 nm. The approach employed in this project is to use a pair of tunable narrowband reflective fiber Bragg gratings. The Bragg gratings are germanium-doped silica core fiber that is exposed to ultraviolet radiation to produce index-of-refraction changes along the length of the fiber. The gratings can be tuned by stretching. The backscattered laser radiation is transmitted through an optical circulator to the gratings, reflected back to the optical circulator by one of the gratings, and then sent to a photodiode. The filter reflectivities were >90 percent, and the overall system efficiency was 30 percent.

  14. Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma

    SciTech Connect

    Marshall, F. J. Radha, P. B.

    2014-11-15

    A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.

  15. Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma.

    PubMed

    Marshall, F J; Radha, P B

    2014-11-01

    A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions. PMID:25430361

  16. Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs.

    PubMed

    Liu, Wei; Pan, Hao; Zhang, Caiyun; Zhao, Liling; Zhao, Ruixia; Zhu, Yongtao; Pan, Weisan

    2016-01-01

    With the rapid development of nanotechnology, novel drug delivery systems comprising orally administered nanoparticles (NPs) have been paid increasing attention in recent years. The bioavailability of orally administered drugs has significant influence on drug efficacy and therapeutic dosage, and it is therefore imperative that the intestinal absorption of oral NPs be investigated. This review examines the various literature on the oral absorption of polymeric NPs, and provides an overview of the intestinal absorption models that have been developed for the study of oral nanoparticles. Three major categories of models including a total of eight measurement methods are described in detail (in vitro: dialysis bag, rat gut sac, Ussing chamber, cell culture model; in situ: intestinal perfusion, intestinal loops, intestinal vascular cannulation; in vivo: the blood/urine drug concentration method), and the advantages and disadvantages of each method are contrasted and elucidated. In general, in vitro and in situ methods are relatively convenient but lack accuracy, while the in vivo method is troublesome but can provide a true reflection of drug absorption in vivo. This review summarizes the development of intestinal absorption experiments in recent years and provides a reference for the systematic study of the intestinal absorption of nanoparticle-bound drugs. PMID:27455239

  17. Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs

    PubMed Central

    Liu, Wei; Pan, Hao; Zhang, Caiyun; Zhao, Liling; Zhao, Ruixia; Zhu, Yongtao; Pan, Weisan

    2016-01-01

    With the rapid development of nanotechnology, novel drug delivery systems comprising orally administered nanoparticles (NPs) have been paid increasing attention in recent years. The bioavailability of orally administered drugs has significant influence on drug efficacy and therapeutic dosage, and it is therefore imperative that the intestinal absorption of oral NPs be investigated. This review examines the various literature on the oral absorption of polymeric NPs, and provides an overview of the intestinal absorption models that have been developed for the study of oral nanoparticles. Three major categories of models including a total of eight measurement methods are described in detail (in vitro: dialysis bag, rat gut sac, Ussing chamber, cell culture model; in situ: intestinal perfusion, intestinal loops, intestinal vascular cannulation; in vivo: the blood/urine drug concentration method), and the advantages and disadvantages of each method are contrasted and elucidated. In general, in vitro and in situ methods are relatively convenient but lack accuracy, while the in vivo method is troublesome but can provide a true reflection of drug absorption in vivo. This review summarizes the development of intestinal absorption experiments in recent years and provides a reference for the systematic study of the intestinal absorption of nanoparticle-bound drugs. PMID:27455239

  18. Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission

    NASA Astrophysics Data System (ADS)

    Delahaye, T.; Maxwell, S. E.; Reed, Z. D.; Lin, H.; Hodges, J. T.; Sung, K.; Devi, V. M.; Warneke, T.; Spietz, P.; Tran, H.

    2016-06-01

    In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2ν3 band of 12CH4. High-fidelity modeling of this absorption spectrum for atmospheric temperature and pressure conditions will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise ratio absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa-1013 hPa with methane molar fractions between 1 µmol mol-1 and 12 µmol mol-1. All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room temperature, methane absorption coefficient to better than 0.1% at the online position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations.

  19. A neutron activation technique for manganese measurements in humans.

    PubMed

    Bhatia, C; Byun, S H; Chettle, D R; Inskip, M J; Prestwich, W V

    2015-01-01

    Manganese (Mn) is an essential element for humans, animals, and plants and is required for growth, development, and maintenance of health. Studies show that Mn metabolism is similar to that of iron, therefore, increased Mn levels in humans could interfere with the absorption of dietary iron leading to anemia. Also, excess exposure to Mn dust, leads to nervous system disorders similar to Parkinson's disease. Higher exposure to Mn is essentially related to industrial pollution. Thus, there is a benefit in developing a clean non-invasive technique for monitoring such increased levels of Mn in order to understand the risk of disease and development of appropriate treatments. To this end, the feasibility of Mn measurements with their minimum detection limits (MDL) has been reported earlier from the McMaster group. This work presents improvement to Mn assessment using an upgraded system and optimized times of irradiation and counting for induced gamma activity of Mn. The technique utilizes the high proton current Tandetron accelerator producing neutrons via the (7)Li(p,n)(7)Be reaction at McMaster University and an array of nine NaI (Tl) detectors in a 4 π geometry for delayed counting of gamma rays. The neutron irradiation of a set of phantoms was performed with protocols having different proton energy, current and time of irradiation. The improved MDLs estimated using the upgraded set up and constrained timings are reported as 0.67 μgMn/gCa for 2.3 MeV protons and 0.71 μgMn/gCa for 2.0 MeV protons. These are a factor of about 2.3 times better than previous measurements done at McMaster University using the in vivo set-up. Also, because of lower dose-equivalent and a relatively close MDL, the combination of: 2.0 MeV; 300 μA; 3 min protocol is recommended as compared to 2.3 MeV; 400 μA; 45 s protocol for further measurements of Mn in vivo. PMID:25169978

  20. Nitrous Acid: Intercomparison of techniques and Implications of measurements for photochemistry

    NASA Astrophysics Data System (ADS)

    Pinto, J. P.; Dibb, J. E.; Stutz, J.; Tsai, J.; Ren, X.; Wood, E. C.; Zhang, R.; Lee, B.; Levy, M. E.; Rappenglueck, B.; Lefer, B. L.; Oakes, M. M.; Olaguer, E.

    2013-12-01

    Because of the importance of HONO as a radical reservoir, consistent and accurate measurements of its concentration are needed. As part of the SHARP (Study of Houston Atmospheric Radical Precursors), time series of HONO were obtained by six different measurement techniques on the roof of the Moody Tower (MT) at the University of Houston. Techniques used were long path differential optical absorption spectroscopy (DOAS), stripping coil- (UVVIS) absorption photometry (SC-AP), long-path absorption photometry (LOPAP), mist chamber/ ion chromatography (MC-IC), quantum cascade-tunable infrared laser differential absorption spectroscopy (QC-TILDAS) and ion drift -chemical ionization mass spectrometry (ID-CIMS). Various combinations of techniques were in operation during the period from 15 April through 31 May 2009. This study comparing methods is unique in that it compares several techniques entirely at ambient conditions in a polluted atmosphere. All instruments recorded a similar diurnal pattern of HONO concentrations with higher median and mean values during the night and lower values during the day throughout the entire measurement period. Highest values were observed in the final two weeks of the campaign. The MC-IC, SC-AP, and QC-TILDAS, and to a lesser extent the DOAS, tracked each other most closely. Largest differences between pairs of measurements were evident during the day for concentrations < ~100 ppt. Above ~ 200 ppt, concentrations from the SC-AP, MC-IC and QC-TILDAS converged to within about 20%, with slightly larger discrepancies when DOAS was considered. Relationships between HONO and other gas phase and aerosol species will also be considered.

  1. Measurement of the depolarization ratio of Rayleigh scattering at absorption bands

    NASA Astrophysics Data System (ADS)

    Anglister, J.; Steinberg, I. Z.

    1981-01-01

    Measurements of the depolarization ratio ρv of light scattered by the pigments lycopene and β-carotene at the red part of their absorption bands yielded values which are very close to the theoretical value 1/3 of a fully anisotropic molecular polarizability, i.e., that due to an electric dipole moment. Measurements of ρv at the blue edge of the visible absorption band of pinacyanol chloride yielded a value of 0.75 at 472.2 nm, which is the maximum value that a depolarization ratio can assume, and is attained if the average molecular polarizability is zero. This is possible only if the diagonalized polarizability tensor has at least one negative element to counterbalance the positive ones. A negative refractive index at the blue edge of the absorption band is thus experimentally demonstrated.

  2. Large antenna measurement and compensation techniques

    NASA Technical Reports Server (NTRS)

    Rahmatsamii, Y.

    1989-01-01

    Antennas in the range of 20 meters or larger will be an integral part of future satellite communication and scientific payloads. In order to commercially use these large, low sidelobe and multiple-beam antennas, a high level of confidence must be established as to their performance in the 0-g and space environment. It is also desirable to compensate for slowly varying surface distortions which could results from thermal effects. An overview of recent advances in performing rf measurements on large antennas is presented with emphasis given to the application of a space-based far-field range utilizing the Space Shuttle. The concept of surface distortion compensation is discussed by providing numerical and measurement results.

  3. A measurement plan of gas concentration and temperature distribution reconstruction based on the tunable diode laser absorption tomography

    NASA Astrophysics Data System (ADS)

    Liu, Zhao-ran; Jin, Xing; Wang, Guang-yu; Song, Jun-ling

    2014-11-01

    Based on the tunable diode laser absorption tomography, gas concentration and temperature two-dimensional distribution reconstruction is realized using algebraic iterative reconstruction technique (ART). A measurement plan is proposed based on the beam splitting lens, and the corresponding beam arrangement is put forward. The beam splitting lenses are used in the plan to making one laser beam cross the measurement area repeatedly. Thus can raise the utilization ratio of laser beam and simplify the structure of measurement platform. A model for H2O vapor concentration and temperature distribution is assumed, and numerical simulation is utilized using two absorption transitions. The feasibility of the measurement plan is proved by the simulation experiment. The influences of initial beam angle, the number of beams and grids on the reconstructed results are analyzed numerically. A concept of phantom description method using in simulation experiments is proposed in order to getting closer to the real experiments. The phantom description method is used in the numerical simulation to evaluating concentration and temperature field reconstruction. Through this method, expected data is sampled from initial data, and reconstructed result is obtained by interpolation. The influence of random errors in projections on distribution reconstruction is also analyzed. The measurement plan can reconstruct the gas concentration and temperature distribution with a simplified measurement platform using beam splitting lenses. The feasibility of the phantom description method is also proved by the simulation experiment.

  4. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements.

    PubMed

    Ptashnik, Igor V; McPheat, Robert A; Shine, Keith P; Smith, Kevin M; Williams, R Gary

    2012-06-13

    For a long time, it has been believed that atmospheric absorption of radiation within wavelength regions of relatively high infrared transmittance (so-called 'windows') was dominated by the water vapour self-continuum, that is, spectrally smooth absorption caused by H(2)O--H(2)O pair interaction. Absorption due to the foreign continuum (i.e. caused mostly by H(2)O--N(2) bimolecular absorption in the Earth's atmosphere) was considered to be negligible in the windows. We report new retrievals of the water vapour foreign continuum from high-resolution laboratory measurements at temperatures between 350 and 430 K in four near-infrared windows between 1.1 and 5 μm (9000-2000 cm(-1)). Our results indicate that the foreign continuum in these windows has a very weak temperature dependence and is typically between one and two orders of magnitude stronger than that given in representations of the continuum currently used in many climate and weather prediction models. This indicates that absorption owing to the foreign continuum may be comparable to the self-continuum under atmospheric conditions in the investigated windows. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by approximately 0.46 W m(-2) (or 0.6% of the total clear-sky absorption) by using these new measurements when compared with calculations applying the widely used MTCKD (Mlawer-Tobin-Clough-Kneizys-Davies) foreign-continuum model. PMID:22547232

  5. Investigation of 2D-Trace Gas Field Reconstruction Techniques From Tomographic AMAX-DOAS Measurements

    NASA Astrophysics Data System (ADS)

    Laepple, T.; Heue, K.; Friedeburg, C. V.; Wang, P.; Knab, V.; Pundt, I.

    2002-12-01

    Tomographic-Differential-Optical-Absorption-Spectroscopy (Tom-DOAS) is a new application of the DOAS method designed to measure 2-3-dimensional concentration fields of different trace gases (e.g. NO2, HCHO, Ozone) in the troposphere. Numerical reconstruction techniques are used to obtain spatially resolved data from the slant column densities provided by DOAS instruments. We discuss the detection of emission plumes by AMAX (Airborne Multi AXis) DOAS Systems which measure sunlight by telescopes pointing in different directions. 2D distributions are reconstructed from slant columns by using airmass factor matrices and inversion techniques. We discuss possibilities and limitations of this technique gained with the use of simulated test fields. Therefore the effect of the parameter choice (e.g. flight track, algorithm changes) and measurement errors is investigated. Further, first results from the Partenavia aircraft measurements over Milano (Italy) during the European FORMAT campaign will be presented.

  6. THz techniques for human skin measurement

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Mizukoshi, Koji; Suizu, Koji; Kawase, Kodo

    2011-03-01

    Metal meshes work as band-pass filters in the terahertz (THz) region, with their transmission spectra acutely affected by the refractive index of the material inside and above the metal mesh openings. We used a metal mesh for high-sensitivity observations by focusing on the "dip", that is, a sudden change in transmittance that only appeared when the THz wave was obliquely incident onto the metal mesh. Here we report a measurement of stratum corneum to inspect the feasibility of applying the metal mesh sensor to observations of human skin.

  7. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration.

    PubMed

    Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2016-06-13

    We propose a new methodology to measure gas concentration by light-absorption spectroscopy when the light source spectrum is larger than the spectral width of one or several molecular gas absorption lines. We named it optical similitude absorption spectroscopy (OSAS), as the gas concentration is derived from a similitude between the light source and the target gas spectra. The main OSAS-novelty lies in the development of a robust inversion methodology, based on the Newton-Raphson algorithm, which allows retrieving the target gas concentration from spectrally-integrated differential light-absorption measurements. As a proof, OSAS is applied in laboratory to the 2ν3 methane absorption band at 1.66 µm with uncertainties revealed by the Allan variance. OSAS has also been applied to non-dispersive infra-red and the optical correlation spectroscopy arrangements. This all-optics gas concentration retrieval does not require the use of a gas calibration cell and opens new tracks to atmospheric gas pollution and greenhouse gases sources monitoring. PMID:27410280

  8. O absorption measurements in an engineering-scale high-pressure coal gasifier

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Sur, Ritobrata; Jeffries, Jay B.; Hanson, Ronald K.; Clark, Tommy; Anthony, Justin; Machovec, Scott; Northington, John

    2014-10-01

    A real-time, in situ water vapor (H2O) sensor using a tunable diode laser near 1,352 nm was developed to continuously monitor water vapor in the synthesis gas of an engineering-scale high-pressure coal gasifier. Wavelength-scanned wavelength-modulation spectroscopy with second harmonic detection (WMS-2 f) was used to determine the absorption magnitude. The 1 f-normalized, WMS-2 f signal (WMS-2 f/1 f) was insensitive to non-absorption transmission losses including beam steering and light scattering by the particulate in the synthesis gas. A fitting strategy was used to simultaneously determine the water vapor mole fraction and the collisional-broadening width of the transition from the scanned 1 f-normalized WMS-2 f waveform at pressures up to 15 atm, which can be used for large absorbance values. This strategy is analogous to the fitting strategy for wavelength-scanned direct absorption measurements. In a test campaign at the US National Carbon Capture Center, the sensor demonstrated a water vapor detection limit of ~800 ppm (25 Hz bandwidth) at conditions with more than 99.99 % non-absorption transmission losses. Successful unattended monitoring was demonstrated over a 435 h period. Strong correlations between the sensor measurements and transient gasifier operation conditions were observed, demonstrating the capability of laser absorption to monitor the gasification process.

  9. Optical reflectance of pyrheliometer absorption cavities: progress toward SI-traceable measurements of solar irradiance.

    PubMed

    Patrick, Heather J; Germer, Thomas A; Zarobila, Clarence J; Cooksey, Catherine C; Yoon, Howard W

    2016-08-10

    We have accurately determined the absorptance of three pyrheliometer cavities at 532 nm by measuring the residual reflectance using an angle-resolved bidirectional reflectometer. Measurements were performed at a normal incidence as a function of the viewing angle and position on the cavity cone. By numerically integrating the measured angle-resolved scatter over both the direction and position and accounting for an obstructed view of the cavity, we determined that the effective cavity reflectance was between 8×10-4 and 9×10-4. Thus, the absorptance of the three cavities ranged from 0.99909±0.00014 to 0.99922±0.00012 (k=2 combined expanded uncertainties). These measurements, when extended over the spectral range of operation of the pyrheliometer, are required to establish SI traceability for absolute solar irradiance measurements. PMID:27534478

  10. Combined Acquisition Technique (CAT) for Neuroimaging of Multiple Sclerosis at Low Specific Absorption Rates (SAR)

    PubMed Central

    Biller, Armin; Choli, Morwan; Blaimer, Martin; Breuer, Felix A.; Jakob, Peter M.; Bartsch, Andreas J.

    2014-01-01

    Purpose To compare a novel combined acquisition technique (CAT) of turbo-spin-echo (TSE) and echo-planar-imaging (EPI) with conventional TSE. CAT reduces the electromagnetic energy load transmitted for spin excitation. This radiofrequency (RF) burden is limited by the specific absorption rate (SAR) for patient safety. SAR limits restrict high-field MRI applications, in particular. Material and Methods The study was approved by the local Medical Ethics Committee. Written informed consent was obtained from all participants. T2- and PD-weighted brain images of n = 40 Multiple Sclerosis (MS) patients were acquired by CAT and TSE at 3 Tesla. Lesions were recorded by two blinded, board-certificated neuroradiologists. Diagnostic equivalence of CAT and TSE to detect MS lesions was evaluated along with their SAR, sound pressure level (SPL) and sensations of acoustic noise, heating, vibration and peripheral nerve stimulation. Results Every MS lesion revealed on TSE was detected by CAT according to both raters (Cohen’s kappa of within-rater/across-CAT/TSE lesion detection κCAT = 1.00, at an inter-rater lesion detection agreement of κLES = 0.82). CAT reduced the SAR burden significantly compared to TSE (p<0.001). Mean SAR differences between TSE and CAT were 29.0 (±5.7) % for the T2-contrast and 32.7 (±21.9) % for the PD-contrast (expressed as percentages of the effective SAR limit of 3.2 W/kg for head examinations). Average SPL of CAT was no louder than during TSE. Sensations of CAT- vs. TSE-induced heating, noise and scanning vibrations did not differ. Conclusion T2−/PD-CAT is diagnostically equivalent to TSE for MS lesion detection yet substantially reduces the RF exposure. Such SAR reduction facilitates high-field MRI applications at 3 Tesla or above and corresponding protocol standardizations but CAT can also be used to scan faster, at higher resolution or with more slices. According to our data, CAT is no more uncomfortable than TSE scanning. PMID

  11. AN INTRALABORATORY COMPARATIVE STUDY OF HYDRIDE GENERATION AND GRAPHITE FURNACE ATOMIC ABSORPTION TECHNIQUES FOR DETERMINING ORGANIC AND INORGANIC ARSENIC IN COMPLEX WASTEWATERS

    EPA Science Inventory

    A detailed intralaboratory comparison of the determination of arsenic in complex wastewater samples by hydride generation and graphite furnace atomic absorption techniques has been conducted. Two hydride generation techniques were employed. One consisted of the use of sodium boro...

  12. Tear film measurement by optical reflectometry technique.

    PubMed

    Lu, Hui; Wang, Michael R; Wang, Jianhua; Shen, Meixiao

    2014-02-01

    Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle. PMID:24500519

  13. Remote measurement of corrosion using ultrasonic techniques

    SciTech Connect

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy`s treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation.

  14. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  15. Rate-equation model for quantitative concentration measurements in flames with picosecond pump-probe absorption spectroscopy.

    PubMed

    Fiechtner, G J; King, G B; Laurendeau, N M

    1995-02-20

    Measurement of radical concentrations is important in understanding the chemical kinetics involved in combustion. Application of optical techniques allows for the nonintrusive determination of specific radical concentrations. One of the most challenging problems for investigators is to obtain flame data that are independent of the collisional environment. We seek to obviate this difficulty by the use of picosecond pump-probe absorption spectroscopy. A picosecond pump-probe absorption model is developed by rate-equation analysis. Implications are discussed for a laser-pulse width that is much smaller than the excited-state lifetime of the absorbing atom or molecule. The possibility of quantitative, quenching-independent concentration measurements is discussed, and detection limits for atomic sodium and the hydroxyl radical are estimated. For a three-level absorber-emitter, the model leads to a novel pump-probe strategy, called dual-beam asynchronous optical sampling, that can be used to obtain both the electronic quenching-rate coefficient and the doublet mixing-rate coefficient during a single measurement. We discuss the successful demonstration of the technique in a companion paper [Appl. Opt. 34, XXX (1995)]. PMID:21037640

  16. Atmospheric Solar Absorption measurements in the lowest 3-km of the atmosphere with small UAVs

    NASA Astrophysics Data System (ADS)

    Ramana, M. V.; Ramanathan, V.; Roberts, G.; Corrigan, C.; Nguyen, H. V.; McFarquhar, G.

    2007-12-01

    This paper reports unique measurements of atmospheric solar absorption and heating rates in the visible (0.4- 0.7 Ým) and broadband (0.3-2.8 Ým) spectral regions using vertically stacked multiple light weight autonomous unmanned aerial vehicles (UAVs) during the Maldives autonomous UAV campaign (MAC). The UAVs and ground based remote sensing instruments determined most of the parameters required for calculating the albedo and vertical distribution of solar fluxes. Measured fluxes have been compared with those derived from a Monte-Carlo radiative transfer algorithm which can incorporate both gaseous and aerosol components. The analysis focuses on a cloud-free day when the air was polluted due to long range transport from India, and the mean aerosol optical depth (AOD) was 0.31 and mean single scattering albedo was 0.92. The UAV measured absorption AOD was 0.019 which agreed within 20% of the value of 0.024 reported by a ground based instrument. The observed and simulated solar absorption agreed within 5% above 1.0 km and aerosol absorption accounted for 30% to 50% of the absorption depending upon the altitude and solar zenith angle. Thus there was no need to invoke anomalous or excess absorption or unknown physics in clear skies, provided we account for aerosol black carbon. The diurnal mean absorption values for altitudes between 0.5 and 3.0 km msl were observed to be 41¡Ó3 Wm-2 (1.5 K/day) in the broadband region and 8¡Ó2 Wm-2 (0.3 K/day) in the visible region. Future investigations into the atmospheric absorption in cloudy skies will characterize the spatial and temporal variation of the cloudy atmosphere in sufficient detail to simulate the vertical distribution of net solar fluxes to permit comparison with the collected radiative observations. This next phase will utilize 4 stacked UAVs to observe the extended cloud decks off the coast of California. A combination of observations and models will then be used to assess if the amount of solar absorption

  17. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    NASA Technical Reports Server (NTRS)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  18. Subpicosecond IR transient absorption spectroscopy: measurement of internal conversion rates in DABCO vapor

    NASA Astrophysics Data System (ADS)

    Glownia, J. H.; Misewich, J.; Sorokin, P. P.

    1987-09-01

    An apparatus combining subpicosecond 248.5 nm pump pulses with a time-resolved subpicosecond broadband infrared absorption spectroscopy probe has been utilized to measure an internal conversion rate in 1,4-diazabicyclo[2.2.2]octane vapor. A subpicosecond (⪅ 500 fs) internal conversion rate has been determined.

  19. Energy harvesting in high voltage measuring techniques

    NASA Astrophysics Data System (ADS)

    Żyłka, Pawel; Doliński, Marcin

    2016-02-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed.

  20. GAS CHROMATOGRAPHIC TECHNIQUES FOR THE MEASUREMENT OF ISOPRENE IN AIR

    EPA Science Inventory

    The chapter discusses gas chromatographic techniques for measuring isoprene in air. Such measurement basically consists of three parts: (1) collection of sufficient sample volume for representative and accurate quantitation, (2) separation (if necessary) of isoprene from interfer...

  1. Simulations of an airborne laser absorption spectrometer for atmospheric CO2 measurements

    NASA Astrophysics Data System (ADS)

    Lin, B.; Ismail, S.; Harrison, F. W.; Browell, E. V.; Dobler, J. T.; Refaat, T.; Kooi, S. A.

    2012-12-01

    Atmospheric column amount of carbon dioxide (CO2), a major greenhouse gas of the atmosphere, has significantly increased from a preindustrial value of about 280 parts per million (ppm) to more than 390 ppm at present. Our knowledge about the spatiotemporal change and variability of the greenhouse gas, however, is limited. Thus, a near-term space mission of the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) is crucial to increase our understanding of global sources and sinks of CO2. Currently, NASA Langley Research Center (LaRC) and ITT Exelis are jointly developing and testing an airborne laser absorption spectrometer (LAS) as a prototype instrument for the mission. To assess the space capability of accurate atmospheric CO2 measurements, accurate modeling of the instrument and practical evaluation of space applications are the keys for the success of the ASCENDS mission. This study discusses the simulations of the performance of the airborne instrument and its CO2 measurements. The LAS is a multi-wavelength spectrometer operating on a 1.57 um CO2 absorption line. The Intensity-Modulated Continuous-Wave (IM-CW) approach is implemented in the instrument. To reach accurate CO2 measurements, transmitted signals are monitored internally as reference channels. A model of this kind of instrument includes all major components of the spectrometer, such as modulation generator, fiber amplifier, telescope, detector, transimpedance amplifier, matched filter, and other signal processors. The characteristics of these components are based on actual laboratory tests, product specifications, and general understanding of the functionality of the components. For simulations of atmospheric CO2 measurements, environmental conditions related to surface reflection, atmospheric CO2 and H2O profiles, thin clouds, and aerosol layers, are introduced into the model. Furthermore, all major noise sources such as those from detectors, background radiation, speckle, and

  2. Cesium oscillator strengths measured with a multiple-path-length absorption cell

    NASA Technical Reports Server (NTRS)

    Exton, R. J.

    1976-01-01

    Absorption-oscillator-strength measurements for the principal series in cesium were measured using a multiple-path-length cell. The optical arrangement included a movable transverse path for checking the uniformity of the alkali density along the length of the cell and which also allowed strength measurements to be made simultaneously on both strong and weak lines. The strengths measured on the first 10 doublets indicate an increasing trend in the doublet ratio. The individual line strengths are in close agreement with the high resolution measurements of Pichler (1974) and with the calculations of Norcross (1973).

  3. Optical fiber sensor technique for strain measurement

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1989-01-01

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study.

  4. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect

    Wells, C

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  5. Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.

    2012-01-01

    We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".

  6. Quantitative Measurement of Protease-Activity with Correction of Probe Delivery and Tissue Absorption Effects

    PubMed Central

    Salthouse, Christopher D.; Reynolds, Fred; Tam, Jenny M.; Josephson, Lee; Mahmood, Umar

    2009-01-01

    Proteases play important roles in a variety of pathologies from heart disease to cancer. Quantitative measurement of protease activity is possible using a novel spectrally matched dual fluorophore probe and a small animal lifetime imager. The recorded fluorescence from an activatable fluorophore, one that changes its fluorescent amplitude after biological target interaction, is also influenced by other factors including imaging probe delivery and optical tissue absorption of excitation and emission light. Fluorescence from a second spectrally matched constant (non-activatable) fluorophore on each nanoparticle platform can be used to correct for both probe delivery and tissue absorption. The fluorescence from each fluorophore is separated using fluorescence lifetime methods. PMID:20161242

  7. Digital measurements of LF radio wave absorption in the lower ionosphere and inferred gravity wave activity

    NASA Astrophysics Data System (ADS)

    Lastovicka, J.; Boska, J.; Buresova, D.

    1993-10-01

    Low frequency (LF) radio wave absorption in the lower ionosphere has been measured at Pruhonice (approximately 50 deg N) since 1957. A new digital computer-controlled measuring-recording-processing system was introduced in 1988. The A3 method of radio wave absorption measurement, the measuring equipment used for the digital measurements at 270 kHz, is briefly described. The digital nighttime LF A3 measurements allow the use of absorption data for studying and monitoring the gravity wave activity in the upper middle atmosphere in the period range 10 min-3(2) hours. The resulting gravity wave spectra are as expected even though their shapes vary. Individual period bands sometimes exhibit a similar general pattern of variability in gravity wave activity (winter 1990), while in other intervals we observe a shift of gravity wave energy from one period band to another (winter 1991). No strong, pronounced and consistent response to strong geomagnetic storms and midwinter stratospheric warming is found. An apparent seasonal variation with winter minima observed in shorter-period gravity wave activity is an artefact of the changing length of the night. There is no significant seasonal variation of gravity wave activity in the analysed data. The method is very cheap -- the results are a by-product of measurements made for ionospheric purposes.

  8. Application of the Z-scan technique to determine the optical Kerr coefficient and two-photon absorption coefficient of magnetite nanoparticles colloidal suspension

    NASA Astrophysics Data System (ADS)

    Vivacqua, Marco; Espinosa, Daniel; Martins Figueiredo Neto, Antônio

    2012-06-01

    We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n2) and two-photon absorption coefficient (β). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n2 and β. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications.

  9. Absorption of Solar Radiation by the Cloudy Atmosphere: Further Interpretations of Collocated Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, Minghua; Valero, Francisco P. J.; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Zender, Charles S.

    1998-01-01

    We have extended the interpretations made in two prior studies of the aircraft shortwave radiation measurements that were obtained as part of the Atmospheric Radiation Measurements (ARM) Enhanced Shortwave Experiments (ARESE). These extended interpretations use the 500 nm (10 nm bandwidth) measurements to minimize sampling errors in the broadband measurements. It is indicated that the clouds present during this experiment absorb more shortwave radiation than predicted by clear skies and thus by theoretical models, that at least some (less than or equal to 20%) of this enhanced cloud absorption occurs at wavelengths less than 680 nm, and that the observed cloud absorption does not appear to be an artifact of sampling errors nor of instrument calibration errors.

  10. Precision compliance techniques for slow crack growth measurements

    NASA Technical Reports Server (NTRS)

    Noronha, P. J.

    1975-01-01

    A method is presented for using simple electronic components to obtain the high sensitivity needed to measure very slow crack growth rates. The technique presented can reduce the experimental time considerably and also yield a greater amount of data more accurately than optical techniques for measuring crack growth rates.

  11. Laser-excitation technique for the measurement of absolute transition probabilities of weak atomic lines

    NASA Technical Reports Server (NTRS)

    Kwong, H. S.; Smith, P. L.; Parkinson, W. H.

    1982-01-01

    A new technique is presented for the measurement of transition probabilities for weak allowed, intersystem, and forbidden lines. The method exploits the fact that oscillator strength is proportional to the number of stimulated absorptions and emissions produced by a narrow-band laser pulse of known energy which is in resonance with an atomic transition. The method is tested for a particular transition of Mg I with a known oscillator strength value and of appropriate magnitude. The number densities are measured using a Mach-Zehnder interferometer and the hook method for the lower level population and by measuring an absorption-equivalent width for the other. The apparatus consisted of a high-power tunable laser and a magnesium oven to produce excited Mg vapor, and a laser-plasma background continuum. The results are in good agreement with theoretical and other experimental data.

  12. Intercomparison of six ambient [CH2O] measurement techniques

    NASA Astrophysics Data System (ADS)

    Gilpin, Tim; Apel, Eric; Fried, Alan; Wert, Bryan; Calvert, Jack; Genfa, Zhang; Dasgupta, Purnendu; Harder, Jerry W.; Heikes, Brian; Hopkins, Brian; Westberg, Hal; Kleindienst, Tad; Lee, Yin-Nan; Zhou, Xianliang; Lonneman, William; Sewell, Scott

    1997-09-01

    From May 29 to June 3, 1995 a blind intercomparison of six ambient formaldehyde measurement techniques took place at a field site near the National Center for Atmospheric Research in Boulder, Colorado. The continuous measurement methods intercompared were tunable diode laser absorption spectroscopy, (TDLAS); coil/2,4-dinitrophenylhydrazine, (CDNPH); 1,3-cyclohexanedione-diffusion scrubber (CHDDS); and the coil enzyme method (CENZ). In addition, two different cartridge methods were compared: silica gel-2,4-dinitrophenylhydrazine (DPNH) systems and a C-18-DNPH system. The intercomparison was conducted with spiked zero air (part 1) and ambient air (part 2). The CH2O standards for part 1 were calibrated by several independent methods and delivered to participants via a common glass manifold with potential trace gas interférants common to ambient air (O3, SO2, NO2, isoprene, H2O). The TDLAS system was used to confirm the absolute accuracy of the standards and served as a mission reference for part 1. The ambient phase lasted 44 hours with all participants sampling from a common glass tower. Differences between the ambient [CH2O] observed by the TDLAS and the other continuous methods were significant in some cases. For matched ambient measurement times the average ratios (±1σ) [CH2O]measured/[CH2O]TDLAS were: 0.89±0.12 (CDNPH); 1.30±0.02 (CHDDS); 0.63±0.03 (CENZ). The methods showed similar variations but different absolute values and the divergences appeared to result largely from calibration differences (no gas phase standards were used by groups other than NCAR). When the regressions of the participant [CH2O] values versus the TDLAS values, (measured in part 1), were used to normalize all of the results to the common gas phase standards of the NCAR group, the average ratios (±1σ), [CH2O]corrected/[CH2O]TDLAS for the first measurement period were much closer to unity: 1.04±0.14 (CDNPH), 1.00±0.11 (CHDDS), and 0.82±0.08 (CENZ). With the continuous methods

  13. Laser plasma diagnostics and self-absorption measurements of the Hβ Balmer series line

    NASA Astrophysics Data System (ADS)

    Gautam, Ghaneshwar; Parigger, Christian G.; Surmick, David M.; EL Sherbini, Ashraf M.

    2016-02-01

    In this work, the peak-separation of the Balmer series hydrogen beta line was measured to determine the electron density of laser-induced plasma from spatially and temporally resolved spectra collected in laboratory air at standard ambient temperature and pressure. The self-absorption phenomenon is investigated by using a mirror that retro-reflects the emitted radiation through the plasma. The experimental data with and without the mirror were analyzed with available hydrogen beta computer simulations. Hardly any self-absorption was found as indicated by the correction factors that only marginally differ from unity. The obtained electron density values are also compared with the electron densities from nearby nitrogen lines. The hydrogen beta Hβ peak-separation method yields reliable results for an electron density of the order of 1 ×1017cm-3 for time delays of 5 μs from plasma generation, which confirms that self-absorption is insignificant for such electron densities.

  14. Measuring the acoustic absorption coefficient in biological tissue specimens using ultrasonic phase conjugation

    NASA Astrophysics Data System (ADS)

    Smagin, N. V.; Krutyansky, L. M.; Zelenova, Z. V.; Brysev, A. P.

    2014-03-01

    Acoustic absorption has been measured in a series of biological tissue specimens—porcine muscle, renal and fat tissues—by the standard insert-substitution method, as well as by ultrasonic phase conjugation. Comparison of the experimental results and revealed differences confirm the promise of using phase conjugate waves to measure acoustic losses in biological objects. It is demonstrated that in inhomogeneous tissues, the phase conjugation method makes it possible to obtain a more reliable estimate of dissipative losses.

  15. Photoacoustic measurements of black carbon light absorption coefficients in Irbid city, Jordan.

    PubMed

    Hamasha, Khadeejeh M; Arnott, W Patrick

    2010-07-01

    There is a need to recognize air pollution levels by particles, especially in developing countries such as Jordan where data are scarce due to the absence of routine monitoring of ambient air quality. This study aims at studying the air quality in different locations at Irbid, Jordan through the measurement and analysis of the time series of black carbon light absorption coefficients (B (abs)). Black carbon light absorption coefficients were measured with a photoacoustic instrument at a wavelength of 870 nm. The measurements were conducted during July 2007 at six sites in Irbid city, Jordan. Comparisons of black carbon concentrations at various locations were conducted to understand where values tend to be largest. The average value of B (abs) of all sites was 40.4 Mm(-1). The largest value of B (abs) was 61.2 Mm(-1) at Palestine Street which is located at a very crowded street in a highly populated region in the city center. The lowest value was 14.1 Mm(-1) at Thirtieth Street which is located at a main street in an open plain region in the east of the city. The black carbon light absorption coefficients fluctuate above a background level (transported black carbon from the neighboring states), which are almost identical at all sampling sites. The light absorption coefficients will be used as a benchmark in later years as combustion efficiencies and population patterns change. PMID:19479334

  16. Retrieval of Black Carbon Absorption from Proposed Satellite Measurements Over the Ocean Glint

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Matins, J. V.; Remer, L. A.; Schoeberl, M. R.; Yamasoe, M. A.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Haze and air pollution includes many chemicals that together form small particles suspended in the air called aerosols. One of the main ingredients found to affect climate and human health is Black Carbon. Black particles emitted from engines that do not burn the fuel completely, e.g. old trucks. Black carbon absorption of sunlight emerges as one of the key components of man-made forcing of climate. However, global characterization of black carbon emissions, distribution and pathways in which it can affect the amount of solar radiation absorbed by the atmosphere is very uncertain. A new method is proposed to measure sunlight absorption by fine aerosol particles containing black carbon over the ocean glint from a satellite mission designed for this purpose. The satellite will scan the same spot over the ocean in the glint plane and a plane 40 degrees off-glint a minute apart, collecting measurements of the reflected light across the solar spectrum. First the dark ocean off the glint is used to derive aerosol properties. Then the black carbon absorption is derived prop the attenuation of the bright glint by the aerosol layer. Such measurements if realized in a proposed future mission - COBRA are expected to produce global monthly climatology of black carbon absorption with high accuracy (110 to 15%) that can show their effect on climate.

  17. Measuring the Particulate Backscattering of Inland Waters: a Comparison of Techniques

    NASA Astrophysics Data System (ADS)

    Campbell, G.; Phinn, S. R.

    2012-07-01

    The objective of this work was to examine whether the standard particulate backscattering IOP (Inherent Optical Properties) measurement method could be simplified. IOP measurements are essential for parameterising several forms of algorithms used to estimate water quality parameters from airborne and satellite images. Field measurements of the backscattering IOPs are more difficult to make than absorption measurements as correction of the raw Hydroscat-6 backscattering sensor observations is required to allow for the systematic errors associated with the water and water quality parameter absorption. The standard approach involves making simultaneous measurement of the absorption and attenuation of the water with an absorption and attenuation meter (ac-9) or making assumptions about the particulate backscattering probability. Recently, a number of papers have been published that use an alternative method to retrieve the particulate backscattering spectrum by using laboratory measured absorption values and in situ spectroradiometric observations. The alternative method inverts a model of reflectance iteratively using non-linear least squares fitting to solve for the particulate backscattering at 532 nm (bbp0(532)) and the particulate backscattering spectral slope (γ). In this paper, eleven observations made at Burdekin Falls Dam, Australia are used to compare the alternative reflectance method to the conventional corrected Hydroscat-6 observations. Assessment of the alternative reflectance method showed that the result of the inversions were highly dependent on the starting conditions. To overcome this limitation, Particle Swarm Optimisation, a stochastic search technique which includes a random element in the search approach, was used. It was found that when compared to the conventionally corrected Hydroscat-6 observations, the alternative reflectance method underestimated bbp0(532) by approximately 50% and overestimated γ by approximately 40%. Differences of this

  18. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the

  19. Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-05-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the

  20. Measurement of UV absorption of single living cell for cell manipulation using NIR femtosecond laser

    NASA Astrophysics Data System (ADS)

    Cho, Sung-Hak; Chang, Won-Seok; Kim, Kwang-Ryul; Hong, Jong Wook

    2009-02-01

    Optical UV absorption of single human living cells ranging from 200 nm to 360 nm was measured in situ for the study of cell manipulation using the near-infrared (NIR) femtosecond laser . Human breast living cells of MCF-10A, MCF-7, and MDA-MB-231 were used in this experiment. The selective photo-disruptions of single living cell and its sub-organelle (nucleus) were also demonstrated using the tightly focused 790 nm wavelength femtosecond laser with pulse duration of 110 fs. It was found that each living cell has its own absorption spectrum in UV wavelength ranges. It was also inferred that intrinsic absorption spectrum is attributed to the amount of DNA and protein of living cell. For the study of photo-disruption of single cell using the multi-photon absorption excited by the NIR femtosecond laser pulse, the origin UV absorption spectrum of targeted living cell is important and fundamental information to understand nonlinear interaction between NIR ultrashort, high-intensity laser light and transparent living cell.

  1. Analysis of Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Weaver, Clark J.; Riris, Haris; Mao, Jianping; Sun, Xiaoli; Allan, Graham R.; Hasselbrack, William; Browell, Edward V.

    2011-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS space mission [1]. It uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1575 nm band, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver measures the energies of the laser echoes from the surface along with the range profile of scattering in the path. The column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off-line signals via the integrated path differential absorption (IPDA) technique. The time of flight of the laser pulses is used to estimate the height of the scattering surface and to reject laser photons scattered in the atmosphere. We developed an airborne lidar to demonstrate an early version of the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar stepped the pulsed laser's wavelength across the selected CO2 line with 20 wavelength steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a NIR photomultiplier and is recorded on every other reading by a photon counting system [2]. During August 2009 we made a series of 2.5 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over locations in the US, including the SGP ARM site in Oklahoma, central Illinois, north-eastern North Carolina, and over the Chesapeake Bay and the eastern shore of Virginia. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes, and some measurements were made

  2. Inferring brown carbon content from UV aerosol absorption measurements during biomass burning season

    NASA Astrophysics Data System (ADS)

    Mok, J.; Krotkov, N. A.; Arola, A. T.; Torres, O.; Jethva, H. T.; Andrade, M.; Labow, G. J.; Eck, T. F.; Li, Z.; Dickerson, R. R.; Stenchikov, G. L.; Osipov, S.

    2015-12-01

    Measuring spectral dependence of light absorption by colored organic or "brown" carbon (BrC) is important, because of its effects on photolysis rates of ozone and surface ultraviolet (UV) radiation. Enhanced UV spectral absorption by BrC can in turn be exploited for simultaneous retrievals of BrC and black carbon (BC) column amounts in field campaigns. We present an innovative ground-based retrieval of BC and BrC volume fractions and their mass absorption efficiencies during the biomass burning season in Santa Cruz, Bolivia in September-October 2007. Our method combines retrieval of BC volume fraction using AERONET inversion in visible wavelengths with the inversion of total BC+BrC absorption (i.e., column effective imaginary refractive index, kmeas) using Diffuse/Direct irradiance measurements in UV wavelengths. First, we retrieve BrC volume fraction by fitting kmeas at 368nm using Maxwell-Garnett (MG) mixing rules assuming: (1) flat spectral dependence of kBC, (2) known value of kBrC at 368nm from laboratory absorption measurements or smoke chamber experiments, and (3) known BC volume fraction from AERONET inversion. Next, we derive kBrC in short UVB wavelengths by fitting kmeas at 305nm, 311nm, 317nm, 325nm, and 332nm using MG mixing rules and fixed volume fractions of BC and BrC. Our retrievals show larger than expected spectral dependence of kBrC in UVB wavelengths, implying reduced surface UVB irradiance and inhibited photolysis rates of surface ozone destruction. We use a one-dimensional chemical box model to show that the observed strong wavelength dependence of BrC absorption leads to inhibited photolysis of ozone to O(1D), a loss mechanism, while having little impact or even accelerating photolysis of NO2, an ozone production mechanism. Although BC only absorption in biomass burning aerosols is important for climate radiative forcing in the visible wavelengths, additional absorption by BrC is important because of its impact on surface UVB radiation

  3. Dependence of intestinal glucose absorption on sodium, studied with a new arterial infusion technique

    PubMed Central

    Fisher, R. B.; Gardner, M. L. G.

    1974-01-01

    1. A new preparation of isolated rat jejunum plus ileum (ca. 100 cm) is described in which a saline infusate is pumped into the superior mesenteric artery, the superior mesenteric vein having been ligated. 2. The arterial infusate washes out the tissue spaces: the lumen is perfused in a single pass with a segmented flow as by Fisher & Gardner (1974). 3. At an arterial infusion rate of 3 ml./min, steady states are set up in the tissue fluid within 10-15 min: the compositions of the fluids bathing both sides of the mucosa can therefore be controlled. 4. The rate of glucose absorption from the lumen falls only gradually when the luminal sodium is replaced by choline abruptly while the tissue fluid sodium is maintained at 144 m-equiv/l. by arterial infusion. 5. The rate of glucose absorption from the lumen is unaffected by replacement of sodium in the arterial infusate by choline. 6. Ouabain (10-4 M) in an arterial infusate containing sodium 144 m-equiv/l. causes inhibition of glucose and water absorption from the lumen. There is no effect of ouabain when the arterial infusate contains sodium, 0 or 72 m-equiv/l. 7. Arterial ouabain does not reverse the effects of depletion of luminal sodium. Simultaneous removal of luminal sodium and application of arterial ouabain causes faster inhibition of glucose absorption than does either treatment alone. 8. Glucose absorption is more likely to depend on rate of efflux of sodium from mucosal cell to tissue fluid than on a sodium gradient at the brush border or on intracellular sodium concentration. PMID:4422318

  4. Resonance lamp absorption technique for simultaneous determination of the OH concentration and temperature at 10 spatial positions in combustion environments

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Gregory, Ray W.

    1994-01-01

    A rugged, easy to implement, line-of-sight absorption instrument which utilizes a low pressure water vapor microwave discharge cell as the light source, has been developed to make simultaneous measurements of the OH concentration and temperature at 10 spatial positions. The design, theory, and capability of the instrument are discussed. Results of the measurements obtained on a methane/air flat flame burner are compared with those obtained using a single-frequency, tunable dye laser system.

  5. [Ammonia gas concentration and velocity measurement using tunable diode laser absorption spectroscopy and optical signal cross-correlation method].

    PubMed

    Zhang, Chun-Xiao; Wang, Fei; Li, Ning; Yan, Jian-Hua; Chi, Yong; Cen, Ke-Fa

    2009-10-01

    Simultaneous online measurement of gas concentration and velocity can be realized by tunable diode laser absorption spectroscopy (TDLAS) technique and optical signal cross-correlation method. The fundamental and relative factors of gas concentration and velocity measurement are described in the present paper. The spectral lines of NH3 used for gas sensing at communication band in near infrared range were selected and analyzed by the calculation based on the HITRAN database. In the verification experiment, NH3 and N2 were mixed by two mass flow meters and sent to flow through the quartz tube 0. 016 m in inner diameter and 1 m in length at normal temperature and pressure. The spectral line located at 6,548.7 cm(-1) was scanned at high frequency by the diode laser of 15 MHz linewidth and 1 cm' tunable range with no mode hoppings. The instantaneous NH3 absorbance was obtained using direct absorption method and the gas concentration was calculated. At the same time, the non-intrusive optical absorption signal cross-correlation method was utilized to obtain two concentration signals from two adjacent detectors mounted along the gas tube. The corresponding transit time of gas passing through the detectors was calculated by cross-correlation algorithm, and the average gas velocity was inferred according to the distance between the two detectors and the transit time. The relative errors were less than 7% for the gas concentration measurement, and less than 10% for the gas velocity measurement. Experimental results were proved to be of high precision and good repeatability in the lab. The feature of fast response and capacity immune to the in situ disturbance would lead to a potential in industry application for the real time measurement and control of gas pollutant emission in the future. PMID:20038016

  6. Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Hasselbrack, W. E.; Sun, X.

    2009-12-01

    We have developed a lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA’s planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the CO2 line and an O2 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser’s wavelength across a selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, laser pulse energy is 25 uJ and laser pulse widths are 1 usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric CO2 column measurements using the 1571.4, 1572.02 and 1572.33 nm CO2 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The

  7. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.

    2009-01-01

    We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the C02 measurement from the NASA Glenn Lear 25 aircraft. The airborne lidar steps the pulsed laser's wavelength across a selected C02 line with 20 steps per scan. The line scan rate is 450 Hz and laser pulse widths are I usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric C02 column measurements using the 1571.4, 1572.02 and 1572.33 nm C02 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These nights were coordinated with DOE investigators who Hew an in-situ C02 sensor on a Cessna aircraft under the path. The increasing C02 line absorptions with

  8. The scatter-to-primary ratio as a function of varying X-ray absorption measured by computed radiography.

    PubMed

    Miettunen, R; Korhola, O; Savikurki, S

    1991-01-01

    Some scatter studies have previously been conducted using film as a detector. The serious limitations caused by the narrow latitude, the non-linear density response, and the required optical densitometric measurements of film can be avoided by computed radiography (CR) which provides linear numeric data over a wide dynamic range. The imaging plate is used as a large-area detector and the data is analyzed from the computer memory. Variation in the scatter-to-primary ratio within an image caused by absorption differences was simulated in a water-aluminum phantom. The measurement technique showed repeatable results, being comparable to the values expected on the basis of previous studies. A multiple pencil-beam (MPB) imaging device was also compared to a standard 1:12 grid by this technique. The maximal scatter-to-primary ratio in our model was up to 7.9 with no scatter reduction, 1.5 with grid, and 0.4 with the MPB device. The variation caused by the absorption of primary radiation was much less in the MPB modality, and the MPB system was also less sensitive to an increase in the used tube voltage from 60 to 120 kVp. The benefits of multiple pencil-beam imaging in scatter reduction are briefly discussed. PMID:1743195

  9. Continuous measurements of stable carbon isotopes in CO2 with a near-IR laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Tanaka, Kotaro; Kojima, Ryota; Takahashi, Kenshi; Tonokura, Kenichi

    2013-09-01

    A near-IR laser absorption spectrometer using a technique of wavelength modulation spectroscopy is used to measure stable carbon isotope ratios of ambient CO2 (δ13C) via the absorption lines 12CO2 R(17) (2ν1 + ν12 - ν12 + ν3) at 4978.205 cm-1 and 13CO2 P(16) (ν1 + 2ν2 + ν3) at 4978.023 cm-1. The isotope ratios are measured with a reproducibility of 0.02‰ (1σ) in a 130-s integration time over a 12-h period. The humidity effect on δ13C values has been evaluated in laboratory experiments. The δ13C values of CO2 in ambient air were measured continuously over 8 days and agreed well with those from isotope ratio mass spectrometry of canister samples. The spectrometer is thus capable of real-time, in situ measurements of stable carbon isotope ratios of CO2 under ambient conditions.

  10. Techniques for measuring vitamin A activity from β-carotene.

    PubMed

    Tang, Guangwen

    2012-11-01

    Dietary β-carotene is the most important precursor of vitamin A. However, the determination of the efficiency of in vivo conversion of β-carotene to vitamin A requires sensitive and safe techniques. It presents the following challenges: 1) circulating β-carotene concentration cannot be altered by eating a meal containing ≤6 mg β-carotene; 2) because retinol concentrations are homeostatically controlled, the conversion of β-carotene into vitamin A cannot be estimated accurately in well-nourished humans by assessing changes in serum retinol after supplementation with β-carotene. In the past half-century, techniques using radioisotopes of β-carotene and vitamin A, depletion-repletion with vitamin A and β-carotene supplements, measurement of postprandial chylomicron fractions after consumption of a β-carotene dose, and finally, stable isotopes as tracers to follow the absorption and conversion of β-carotene in humans have been developed. The reported values for β-carotene to vitamin A conversion showed a wide variation from 2 μg β-carotene to 1 μg retinol (for synthetic pure β-carotene in oil) and 28 μg β-carotene to 1 μg retinol (for β-carotene from vegetables). In recent years, a stable isotope reference method (IRM) was developed that used labeled synthetic β-carotene. The IRM method provided evidence that the conversion of β-carotene to vitamin A is likely dose dependent. With the development of intrinsically labeled plant foods harvested from a hydroponic system with heavy water, vitamin A activity of stable isotope-labeled biosynthetic β-carotene from various foods consumed by humans was studied. The efficacy of plant foods rich in β-carotene, such as natural (spinach, carrots, spirulina), hybrid (high-β-carotene yellow maize), and bioengineered (Golden Rice) foods, to provide vitamin A has shown promising results. The results from these studies will be of practical importance in recommendations for the use of pure β-carotene and foods

  11. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non

  12. Results of measurement of radio wave absorption in the ionosphere by the AI method

    NASA Technical Reports Server (NTRS)

    Korinevskaya, N. A.

    1972-01-01

    Median noon absorption values for each month from 1964 through 1967, the diurnal variations of absorption on the regular world days, and the seasonal variations of absorption are given. The dependence of the absorption coefficient on sunspot number is analyzed.

  13. Ultraviolet-absorption photometer for measurement of ozone on a rocket-boosted payload

    NASA Astrophysics Data System (ADS)

    Sen, B.; Sheldon, W. R.; Benbrook, J. R.

    1996-10-01

    We developed a rocket payload to perform in situ measurements of atmospheric ozone at the University of Houston. The ozone detector is a dual-beam UV-absorption photometer that uses the 253.7-nm radiation from a low-pressure mercury-vapor lamp to illuminate two identical absorption chambers. We describe the design features and the operation of the instrument. The fundamental resolution of the photometer is shown to be 2.7 10 15 molecules m 3 . We present the ozone profile measured during parachute descent following boosted ascent to 60 km by a Nike Orion rocket. The uncertainty in the measurement of this ozone profile is estimated to be 8.2 .

  14. Highly sensitive absorption measurements in lithium niobate using whispering gallery resonators

    NASA Astrophysics Data System (ADS)

    Leidinger, Markus; Buse, Karsten; Breunig, Ingo

    2015-02-01

    The absorption coefficient of undoped, congruently grown lithium niobate (LiNbO3) for ordinarily and extraordinarily polarized light is measured in the wavelength range from 390 to 2600 nm using whispering gallery resonators (WGRs). These monolithic cavities guide light by total internal reflection. Their high Q-factor provides several hundred meters of propagation for the coupled light in millimetre size resonators allowing for the measurement of absorption coefficients below 10-2 cm-1, where standard methods such as Fourier-transform or grating spectroscopy meet their limit. In this work the lowest measured value is 10-4 cm-1 at 1700 nm wavelength. Furthermore, the known OH- overtone at 1470 nm wavelength can be resolved clearly.

  15. Measurement of erosion rate by absorption spectroscopy in a Hall thruster

    SciTech Connect

    Yamamoto, Naoji; Yokota, Shigeru; Matsui, Makoto; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2005-08-15

    The erosion rate of a Hall thruster was estimated with the objective of building a real-time erosion rate monitoring system using a 1 kW class anode layer type Hall thruster. This system aids the understanding of the tradeoff between lifetime and performance. To estimate the flux of the sputtered wall material, the number density of the sputtered iron was measured by laser absorption spectroscopy using an absorption line from ground atomic iron at 371.9935 nm. An ultravioletAl{sub x}In{sub y}Ga{sub (1-x-y)}N diode laser was used as the probe. The estimated number density of iron was 1.1x10{sup 16} m{sup -3}, which is reasonable when compared with that measured by duration erosion tests. The relation between estimated erosion rate and magnetic flux density also agreed with that measured by duration erosion tests.

  16. Measurement of exhaled nitric oxide in beef cattle using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Roller, C. B.; Holland, B. P.; McMillen, G.; Step, D. L.; Krehbiel, C. R.; Namjou, K.; McCann, P. J.

    2007-03-01

    Measurement of nitric oxide (NO) in the expired breath of crossbred calves received at a research facility was performed using tunable diode laser absorption spectroscopy. Exhaled NO (eNO) concentrations were measured using NO absorption lines at 1912.07 cm-1 and employing background subtraction. The lower detection limit and measurement precision were determined to be ˜330 parts in 1012 per unit volume. A custom breath collection system was designed to collect lower airway breath of spontaneously breathing calves while in a restraint chute. Breath was collected and analyzed from calves upon arrival and periodically during a 42 day receiving period. There was a statistically significant relationship between eNO, severity of bovine respiratory disease (BRD) in terms of number of times treated, and average daily weight gain over the first 15 days postarrival. In addition, breathing patterns and exhaled CO2 showed a statistically significant relationship with BRD morbidity.

  17. Effect of differential spectral reflectance on DIAL measurements using topographic targets. [Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Grant, W. B.

    1982-01-01

    Differential absorption lidar (DIAL) measurements of atmospheric gases and temperature made using topographic targets to provide the backscattered signal are subject to errors from the differential spectral reflectance of the target materials. The magnitude of this effect is estimated for a number of DIAL measurements reported in the literature. Calculations are presented for several topographic targets. In general the effect on a DIAL measurement increases directly with increasing wavelength and laser line separation, and inversely with differential absorption coefficient and distance to the target. The effect can be minimized by using tunable or isotope lasers to reduce the laser line separation or by using additional reference wavelengths to determine the surface differential spectral reflectance.

  18. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  19. Optical nonlinear properties of InAs quantum dots by means of transient absorption measurements

    NASA Astrophysics Data System (ADS)

    Nakamura, H.; Nishikawa, S.; Kohmoto, S.; Kanamoto, K.; Asakawa, K.

    2003-07-01

    The optical nonlinear properties of self-assembled InAs/GaAs quantum dots (QDs) were experimentally verified by means of transient absorption measurements. A saturation pulse energy Ps of 13 fJ/μm2 and an absorption recovery time τr of 55 ps were obtained from transmission bleaching and pump/probe measurements for a waveguide sample with ten-layer-stacked QDs. An absorption saturation intensity Is of 2.5×104W/cm2, calculated from Ps and τr, was found. The saturation pulse energy is up to an order of magnitude smaller than, or at least comparable with, the reported values for excitons in quantum wells of III-V compound semiconductors. The dipole length, as calculated from the absorption cross section, is of the same order as the lattice constant of the InAs QDs. The results are expected to experimentally verify that QDs show a delta-function-like density of states.

  20. [The measurement and analysis of visible-absorption spectrum and fluorescence spectrum of lycopene].

    PubMed

    Yang, Xiao-zhan; Li, Ping; Dai, Song-hui; Wu, Da-cheng; Li, Rui-xia; Yang, Jian-hui; Xiao, Hai-bo

    2005-11-01

    Using ICCD spectral detection system, the absorbency of lycopene-carbon bisulfide solution with different concentration was measured, and the result shows that in a specified range the absorption rule of lycopene solution agrees with Lambert-Beer Law. Absorption spectral wavelength shifts were measured respectively when lycopene was dissolved in acetone, normal hexane, petroleum ether, benzene, ethyl acetate, and carbon bisulfide, and comparing to acetone, different red-shift appeared when lycopene was dissolved in benzene, ethyl acetate, and carbon bisulfide when water was added in lycopene-acetone solution, t he absorbency of lycopene dropped, the fine structure of absorption spectrum became indistinct, and a new absorption peak appeared in UV. The reason for these phenomena is that the solvent molecule had different effect on lycopene molecule when lycopene was dissolved in different solvent. Using fluorecence spectrophotometer, fluorescence spectra of lycopene in different concentrations were collected, and the results show that the fluorescence spectra of lycopene were mainly in 500-680 nm. When concentration was lower than 50 microg x mL(-1), the fluorescence intensity linearly increased with increasing concentration, and when concentration was higher than 60 microg x mL(-1), the fluorescence intensity dropped because of the interaction between lycopene molecules. PMID:16499057

  1. Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications.

    PubMed

    Werblinski, Thomas; Engel, Sascha R; Engelbrecht, Rainer; Zigan, Lars; Will, Stefan

    2013-06-01

    The first supercontinuum (SC) absorption spectroscopy measurements showing the feasibility of quantitative temperature evaluation are presented to the best of the authors' knowledge. Temperature and multi-species measurements were carried out at a detection rate of ~2 MHz in a high-temperature flow cell within a temperature range from 450 K to 750 K at 0.22 MPa, representing conditions during the suction and compression stroke in an internal combustion (IC) engine. The broadband SC pulses were temporally dispersed into fast wavelength sweeps, covering the overtone absorption bands 2ν(1), 2ν(3), ν(1) + ν(3) of H2O and 3ν(3) of CO2 in the near-infrared region from 1330 nm to 1500 nm. The temperature information is inferred from the peak ratio of a temperature sensitive (1362.42 nm) and insensitive (1418.91 nm) absorption feature in the ν(1) + ν(3) overtone bands of water. The experimental results are in very good agreement with theoretical intensity ratios calculated from absorption spectra based on HiTran data. PMID:23736618

  2. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign: Measurement Analysis

    NASA Astrophysics Data System (ADS)

    Ramanathan, A.; Mao, J.; Allan, G. R.; Weaver, C. J.; Hasselbrack, W.; Riris, H.; Sun, X.; Abshire, J. B.

    2012-12-01

    Trace gas LIDAR has the potential to actively sense greenhouse gas concentrations in the earth's atmosphere continuously without being affected by day or night. This will enable identifying greenhouse gas sources and sinks, which will help better predict future atmospheric trends of these gases. However, in order to ensure reliable and accurate measurements, it is important to establish metrics to quantify performance. As part of the ASCENDS (Active Sensing of Co2 over Nights, Days and Seasons) program, we conducted an airborne campaign of our CO2 pulsed LIDAR system in August 2011, flying over a variety of terrain and conditions, including snow, ocean, clouds, desert and mountains. Our instrument uses an IPDA (Integrated Path Differential Absorption) approach probing 30 wavelengths across a 1572 nm CO2 absorption line. Our multi-wavelength approach provides redundancy for evaluating the stability of the instrument, and also allows us to perform spectroscopic analysis of the atmosphere. Here, we present our detailed analysis and results. Tracking long-term stability of our instrument by using the Allan deviation formalism for wavelengths away from the absorption line-center, we find that the measured pulse energy (normalized to eliminate ground reflectivity) is stable down to 0.2% across varying terrain, surface reflectivity, flight altitude and LIDAR range. Comparing our measured CO2 absorption line-shape (at regions of constant, known CO2 concentrations) with the predicted line-shape based on the LIDAR range, flight altitude and relevant atmosphere parameters (based on in situ measurements by instruments aboard the aircraft), we find the agreement to be better than 1% (RMS error), once we average 50 s to eliminate shot noise. Our multi-wavelength approach also allows us to track the position of the line-center. The altitude dependence of the atmospheric pressure causes a shift in the CO2 absorption as a function of aircraft altitude. Our measured pressure shift

  3. Development of a tunable diode laser absorption sensor for online monitoring of industrial gas total emissions based on optical scintillation cross-correlation technique.

    PubMed

    Zhang, Zhirong; Pang, Tao; Yang, Yang; Xia, Hua; Cui, Xiaojuan; Sun, Pengshuai; Wu, Bian; Wang, Yu; Sigrist, Markus W; Dong, Fengzhong

    2016-05-16

    We report the first application of gas total emission using a DFB diode laser for gas concentration measurements combined with two LEDs for gas velocity measurements. In situ gas total emissions and particle density measurements in an industrial pipeline using simultaneous tunable diode laser absorption spectroscopy (TDLAS) and optical scintillation cross-correlation technique (OSCC) are presented. Velocity mean values obtained are 7.59 m/s (OSCC, standard deviation is 1.37 m/s) and 8.20 m/s (Pitot tube, standard deviation is 1.47 m/s) in a steel plant pipeline for comparison. Our experiments demonstrate that the combined system of TDLAS and OSCC provides a new versatile tool for accurate measurements of total gas emissions. PMID:27409967

  4. An ultraviolet video technique for visualization of stack plumes and for measuring sulfur dioxide concentration and effluent velocity

    NASA Technical Reports Server (NTRS)

    Exton, R. J.

    1977-01-01

    Absorption spectroscopy utilizing a video sensing technique was investigated as a means of visualizing SO2 in power plant stack plumes and for measuring SO2 concentration and effluent velocity in these plumes. The absorption of SO2 is measured in the ultraviolet region by using the sky as a background source. An additional spectral channel is used to correct for particulate scattering encountered in coal fired power plant plumes. The video system also tracks fluctuations in the SO2 concentration which leads to the determination of an eddy convection velocity. Field measurements were performed to show that the eddy convection velocity is proportional to the average in-stack velocity and to empirically determine their relationship. It was concluded that the video absorption technique is an attractive method for remotely determining both SO2 concentration and plume velocity with the same instrument.

  5. Ileal mucosal absorption of bile acid in man: validation of a miniature flux chamber technique.

    PubMed Central

    Hosie, K B; Davie, R J; Panagamuwa, B; Grobler, S; Keighley, M R; Birch, N J

    1992-01-01

    A method that allows the quantitative assessment of ileal mucosal cell uptake and transport of bile acids in mucosal biopsy specimens has been validated. Viability of the tissue was confirmed by maintenance of normal cell morphology, wet weight, extracellular space, porosity to polyethylene glycol-900, lactate dehydrogenase release, and transmucosal potential difference. Using 14C-taurocholic acid, absorption was shown to be directional, capable of working against a concentration gradient, reduced by metabolic inhibitors, and sodium dependent. The system showed saturation kinetics with an estimated Km of 10 mumol/l. At a standard substrate concentration of 10 mumol/l ileal mucosal bile acid absorption was compared in patients with colorectal cancer (n = 6), ulcerative colitis (n = 10), and slow transit constipation (n = 8). There was no significant difference in tissue uptake or transport between the three groups. Images Figure 2 PMID:1582593

  6. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    DOE PAGESBeta

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; et al

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level ofmore » the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.« less

  7. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    SciTech Connect

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th.; Heimann, P. A.; Dorchies, F.

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.

  8. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    PubMed Central

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.

    2014-01-01

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes. PMID:24740172

  9. Modulation transfer function measurement technique for image sensor arrays

    NASA Astrophysics Data System (ADS)

    Jin, Hui; Jiang, Huilin; Zhang, XiaoHui

    2010-08-01

    A new technique is demonstrated for measurement of modulation transfer function (MTF) on image sensor arrays. Fourier analysis of a low frequency bar target pattern is used to extract MTF at odd harmonics of a target pattern frequency up to and beyond Nyquist. The technique is particularly useful for linear image arrays (either conventional linescan or time-delay- integration devices) where conventional slanted-edge technique is not always applicable. The technique is well suited to simple implementation and can provide live presentation of the MTF curve, which helps to ensure optimal alignment conditions are achieved. Detailed analysis of the technique and demonstration of experimental results are presented.

  10. A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Weng, C. Y.

    1982-01-01

    The theory of differential absorption lidar measurements for lines with a Voigt profile is given and applied to a two-wavelength technique for measuring the atmospheric temperature profile using a high J line in the oxygen A band. Explicit expressions for the temperature and pressure dependence of the absorption coefficient are developed for lines with a Voigt profile. An iteration procedure for calculating the temperature for narrow laser bandwidths is described which has an accuracy better than 0.2 K for bandwidths less than 0.01/cm. To reduce the errors in lidar measurements due to uncertainties in pressure, a method for estimating the pressure from the temperature profile is described. A procedure for extending the differential absorption technique to the case of finite laser bandwidth with good accuracy is also described. Simulation results show that a knowledge of the laser frequency is needed to 0.005/cm for accurate temperature measurements. Evaluation of the sensitivity for both ground- and Shuttle-based measurements shows accuracies generally better than 1 K. This technique allows up to an order of magnitude improvement in sensitivity compared to other differential absorption lidar techniques.

  11. Interaction of chlorophyll with light: Calculations of absorption spectra and dichroism with a new technique

    NASA Astrophysics Data System (ADS)

    Hamilton, Robert Bryan

    1999-12-01

    The response of a single chlorophyll molecule to light was studied using a semiempirical tight-binding model together with the Peierls substitution. Over a range of wavelengths, the absorption was calculated for unpolarized, linearly polarized, and circularly polarized light. The results are consistent with previous experiments, although detailed comparisons are not possible because the experiments involve chlorophyll molecules in more complicated environments. For unpolarized light, the absorption peaks in the red part of the visible spectrum. There is a secondary shoulder in the blue. For linearly polarized light, the absorption depends on wavelength and the direction of polarization. This can be understood as arising from the joint density of states for transitions at each photon energy, together with matrix-element effects (both of which are included in the present formulation). For circular polarization, the dichroism as a function of wavelength is slightly more subtle, but again can be understood in terms of matrix elements for the states involved in a transition at a given photon energy. We also found that an ``effective helicity'' is useful in understanding the circular dichroism. One advantage of the method used here is that it can be employed for other molecules that are important in photobiology-for example, retinal and melanin.

  12. VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.

    PubMed

    Prakash, P Giri; Rao, J Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites. PMID:16043053

  13. Companding technique for high dynamic range measurements using Gafchromic films

    SciTech Connect

    Van den Heuvel, Frank; Crijns, Wouter; Defraene, Gilles

    2011-12-15

    Purpose: To introduce a methodology to perform dose measurements using Gafchromic films which can span several decades of dose levels. Methods: The technique is based on a rescaling approach using different films irradiated at different dose levels. This is combined with a registration protocol correcting positioning and scaling factors for each film. The methodology is validated using TLD's for out-of-field doses. Furthermore, two examples are provided using the technique to characterize small sized radiosurgery cones and compared with measurements made with a pinpoint chamber. Results: Excellent agreement with TLD, planning systems and measurement was found. The superior resolution of the film technique was apparent. Conclusions: The authors have introduced a new technique allowing users to quantify very low doses in conjunction with commissioning measurements. The use of film also provides 2D information on beam characteristics in high resolution measurements.

  14. Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption

    NASA Astrophysics Data System (ADS)

    Kawazoe, Hiromitsu; Inagaki, Kazuhisa; Emi, Y.; Yoshino, Fumio

    1997-11-01

    A system to measure gaseous hydrocarbon distributions was devised, which is based on IR light absorption by C-H stretch mode of vibration and computed tomography method. It is called IR-CT method in the paper. Affection of laser light power fluctuation was diminished by monitoring source light intensity by the second IR light detector. Calibration test for methane fuel was carried out to convert spatial data of line absorption coefficient into quantitative methane concentration. This system was applied to three flow fields. The first is methane flow with lifted flame which is generated by a gourd-shaped fuel nozzle. Feasibility of the IR-CT method was confirmed through the measurement. The second application is combustion field with diffusion flame. Calibration to determine absorptivity was undertaken, and measured line absorption coefficient was converted spatial fuel concentration using corresponding temperature data. The last case is modeled in cylinder gas flow of internal combustion engine, where gaseous methane was led to the intake valve in steady flow state. The fuel gas flow simulates behavior of gaseous gasoline which is evaporated at intake valve tulip. Computed tomography measurement of inner flow is essentially difficult because of existence of surrounding wall. In this experiment, IR laser beam was led to planed portion by IR light fiber. It is found that fuel convection by airflow takes great part in air-fuel mixture formation and the developed IR-CT system to measure fuel concentration is useful to analyze air-fuel mixture formation process and to develop new combustors.

  15. Cavity ring-down spectrometer for high-fidelity molecular absorption measurements

    NASA Astrophysics Data System (ADS)

    Lin, H.; Reed, Z. D.; Sironneau, V. T.; Hodges, J. T.

    2015-08-01

    We present a cavity ring-down spectrometer which was developed for near-infrared measurements of laser absorption by atmospheric greenhouse gases. This system has several important attributes that make it possible to conduct broad spectral surveys and to determine line-by-line parameters with wide dynamic range, and high spectral resolution, sensitivity and accuracy. We demonstrate a noise-equivalent absorption coefficient of 4×10-12 cm-1 Hz-1/2 and a signal-to-noise ratio of 1.5×106:1 in an absorption spectrum of carbon monoxide. We also present high-resolution measurements of trace methane in air spanning more than 1.2 THz and having a frequency axing with an uncertainty less than 100 kHz. Finally, we discuss how this system enables stringent tests of advanced line shape models. To illustrate, we measured an air-broadened carbon dioxide transition over a wide pressure range and analyzed these data with a multi-spectrum fit of the partially correlated, quadratic speed-dependent Nelkin-Ghatak profile. We obtained a quality-of-fit parameter in the multispectrum fit equal to 36,000, thus quantifying small-but-measurable limitations of the model profile. This analysis showed that the line shape depends upon collisional narrowing, speed dependent effects and partial correlations between velocity- and phase-changing collisions.

  16. Extinction measurement with open-path cavity ring-down technique of variable cavity length.

    PubMed

    Cui, Hao; Li, Bincheng; Han, Yanling; Wang, Jing; Gao, Chunming; Wang, Yafei

    2016-06-13

    Open-path cavity ring down (OPCRD) technique with variable cavity length was developed to measure optical extinction including scattering and absorption of air in laboratory environment at 635 nm wavelength. By moving the rear cavity mirror of the ring-down cavity to change cavity length, ring-down time with different cavity lengths was experimentally obtained and the dependence of total cavity loss on cavity length was determined. The extinction coefficient of air was determined by the slope of linear dependence of total cavity loss on cavity length. The extinction coefficients of air with different particle concentrations at 635 nm wavelength were measured to be from 10.46 to 84.19 Mm-1 (ppm/m) in a normal laboratory environment. This variable-cavity-length OPCRD technique can be used for absolute extinction measurement and real-time environmental monitoring without closed-path sample cells and background measurements. PMID:27410351

  17. Extending differential optical absorption spectroscopy for limb measurements in the UV

    NASA Astrophysics Data System (ADS)

    Puä·Ä«Te, J.; Kühl, S.; Deutschmann, T.; Platt, U.; Wagner, T.

    2009-11-01

    Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS). Therefore they are strictly valid for weak absorptions and narrow wavelength intervals (strictly only for monochromatic radiation). For medium and strong absorption (e.g. along very long light-paths like in limb geometry) the relation between the optical depth and the concentration of an absorber is not linear anymore. As well, for large wavelength intervals the wavelength dependent differences in the travelled light-paths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength. However, by taking into account these dependencies, the applicability of the DOAS method can be extended also to cases with medium to strong absorptions and for broader wavelength intervals. Common approaches for this correction are the so called air mass factor modified (or extended) DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs), but also require a-priori knowledge for the air mass factor or the weighting function calculation by radiative transfer modelling. We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as additional fitting parameters in the DOAS analysis. Thus the variability of the SCD in the fit window is determined by the retrieval itself. This new approach gives a description of the SCD that is as close to reality as desired (depending on the order of the Taylor expansion), and is independent from any assumptions or a-priori knowledge of the considered absorbers. In case studies for

  18. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  19. Food Iron Absorption in Man APPLICATIONS OF THE TWO-POOL EXTRINSIC TAG METHOD TO MEASURE HEME AND NONHEME IRON ABSORPTION FROM THE WHOLE DIET

    PubMed Central

    Björn-Rasmussen, Erik; Hallberg, Leif; Isaksson, Björn; Arvidsson, Bertil

    1974-01-01

    A new radioisotope method to measure iron absorption from the whole diet was used in this study. The method is based on the concept that food iron is absorbed from two pools, the heme iron pool and the nonheme iron pool, which can be especially labeled with two radioiron isotopes given as hemoglobin and as an iron salt. The purpose of this study was to test the accuracy of this two-pool extrinsic tag method. The meals served were composed as an average of 6 wk consumption in the present material of 32 young enlisted men. The mean and total heme and nonheme iron absorption in all the 32 young men was 1.01±0.11. This figure agrees well with the mean daily losses expected for this group of subjects (1.0 mg). The conclusion can therefore be made that there are no major systematic errors of the present method to measure the total iron absorption from a mixed diet. In one series a comparison was made of the absorption of heme and nonheme iron from the meals. A significant correlation between the absorption of the two kinds of iron was found. However, a much greater fraction of the heme iron was absorbed (37%) than of the nonheme iron (5%). The absorption both from breakfast and lunch was in two series found to give a good prediction of the total daily nonheme iron absorption. One series was designed to compare the effect of two levels of iron fortification. There was a significant increase in iron absorption when the level of iron fortification of the meals was increased. PMID:4808639

  20. Measuring absorption coefficient of scattering liquids using a tube inside an integrating sphere.

    PubMed

    Villanueva, Yolanda; Veenstra, Colin; Steenbergen, Wiendelt

    2016-04-10

    A method for measuring the absorption coefficient μa of absorbing and scattering liquid samples is presented. The sample is injected into a small transparent tube mounted through an integrating sphere. Two models for determining the absorption coefficient using the relative optical output signal are described and validated using aqueous ink absorbers of 0.5 vol.% (0.3  mm-1a<1.55  mm-1) and 1.0 vol.% (1.0  mm-1a<4.0  mm-1) concentrations with 1 vol.% (μs'≈1.4  mm-1) and 10 vol.% (μs'≈14  mm-1) Intralipid dilutions. The low concentrations give μa and μs values, which are comparable with those of biological tissues. One model assumes a uniform light distribution within the sample, which is valid for low absorption. Another model considers light attenuation that obeys Lambert-Beer's law, which may be used for relatively high absorption. Measurements with low and high scattering samples are done for the wavelength range of 400-900 nm. Measured spectra of purely absorbing samples are within 15% agreement with measurements using standard transmission spectrophotometry. For 0.5 vol.% ink absorbers and at wavelengths below 700 nm, measured μa values are higher for samples with low scattering and lower for those with high scattering. At wavelengths above 700 nm, measured μa values do not vary significantly with amount of scattering. For 1.0 vol.% ink absorbers, measured spectra do not change with low scattering. These results indicate that the method can be used for measuring absorption spectra of scattering liquid samples with optical properties similar to biological absorbers, particularly at wavelengths above 700 nm, which is difficult to accomplish with standard transmission spectrophotometry. PMID:27139871