Science.gov

Sample records for absorption measurements show

  1. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  2. 25. View down launch tube, showing shock absorption system. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. View down launch tube, showing shock absorption system. Lyon - Whiteman Air Force Base, Minuteman Missile Launch Facility Trainer T-12, Northeast of Oscar-01 Missile Alert Facility, Knob Noster, Johnson County, MO

  3. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  4. Temperatures of galactic molecular clouds showing CO self-absorption

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.; Knapp, G. R.; Wannier, P. G.; Huggins, P. J.; Werner, M. W.; Neugebauer, G.; Ennis, D.

    1981-01-01

    The CO J = 2-1 line has been observed and, in most cases, mapped in 10 star-forming molecular clouds (W3, NGC 1333, NGC 2071, Mon R2, CRL 961, Rho Oph, W49N, W51A, DR 21, and Cep A). The CO J = 3-2 line has been observed in W3 and DR 21. The CO lines from all these sources are strongly self-absorbed. By comparing the present results with published CO(1-0) line profiles, it is found that large corrections to the temperatures of the cloud cores, as measured by the CO(1-0) lines, are required. The corrections for self-absorption bring the CO brightness temperatures into closer agreement with the grain temperatures inferred from far-IR photometry.

  5. OH measurement by laser light absorption

    NASA Technical Reports Server (NTRS)

    Perner, D.

    1986-01-01

    Since the first attempt to measure atmospheric hydroxyl radicals by optical absorption in 1975 (Perner et al., 1976) this method has been continuously developed further and its major obstacles and limitations are known today. The laser beam needs to be expanded in order to reduce the beam divergence. At the same time the energy density of the laser beam which produces OH via ozone photolysis is reduced to such an extent that the self-produced OH concentration ranges well below the atmospheric value. Atmospheric absorptions should be observed over a wide spectral range so that not only the OH radicals are properly identified by several rotational lines but their absorption can be corrected for interfering absorptions from other air constituents as SO2, CH2O, CS2, etc., which can be identified in a wide spectral range with more confidence. Air turbulence demands fast spectral scanning or probing on and off the absorption line. Energy requirements should be kept small in field operations. In the experiment frequency doubled dye laser pulses at 308 nm are produced. The picosecond light pulses are expected to show a smooth profile (light intensity against wavelength) which will be broadened to the required spectral width according to the uncertainty principle. The pump laser will be an optoacoustically modulated Nd:YAG laser.

  6. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  7. ABSORPTION MEASURE DISTRIBUTION IN Mrk 509

    SciTech Connect

    Adhikari, T. P.; Różańska, A.; Sobolewska, M.; Czerny, B.

    2015-12-20

    In this paper we model the observed absorption measure distribution (AMD) in Mrk 509, which spans three orders of magnitude in ionization level with a single-zone absorber in pressure equilibrium. AMD is usually constructed from observations of narrow absorption lines in radio-quiet active galaxies with warm absorbers. We study the properties of the warm absorber in Mrk 509 using recently published broadband spectral energy distribution observed with different instruments. This spectrum is an input in radiative transfer computations with full photoionization treatment using the titan code. We show that the simplest way to fully reproduce the shape of AMD is to assume that the warm absorber is a single zone under constant total pressure. With this assumption, we found theoretical AMD that matches the observed AMD determined on the basis of the 600 ks reflection grating spectrometer XMM-Newton spectrum of Mrk 509. The softness of the source spectrum and the important role of the free–free emission breaks the usual degeneracy in the ionization state calculations, and the explicit dependence of the depths of AMD dips on density open a new path to the density diagnostic for the warm absorber. In Mrk 509, the implied density is of the order of 10{sup 8} cm{sup −3}.

  8. Atmospheric particulate absorption and black carbon measurement.

    PubMed

    Lindberg, J D; Douglass, R E; Garvey, D M

    1999-04-20

    It is convenient to measure the optical attenuation A of the combination of a layer of atmospheric particulate matter and the quartz fiber filter on which it has been collected. The problem of relating A to the absorption and scattering coefficients k and s of the particulate matter itself is treated as a problem in diffuse reflectance spectroscopy using the KubelkaMunk theory. The results show that although, in general, A is a nonlinear function strongly dependent on both s and k, for a limited range of s and sample thickness d, A can be a practically linear function of k. Fortunately, this range includes that common to atmospheric particulate samples. Furthermore, it is shown that if the filter's reflectance is sufficiently high, A can be nearly independent of s. This is in agreement with experimental and, for the limiting case when the substrate filter reflectance is unity, theoretical results obtained by other researchers. Use of such measurements of A as a means of determining the black carbon mass loading C on a filter is also investigated. It is shown that when the black carbon mass fraction f(c) is high, as it is for samples collected in large urban areas, A is a predictable and practically linear function of C. However, when f(c) is low, as it is for many rural locations, then the slope of the function A(C) is strongly dependent on f(c), leading to possible overestimates of C. This problem can be alleviated by making the measurement of A at near-infrared wavelengths rather than in the visible spectrum.

  9. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  10. Ultrafast transient absorption measurements of heme proteins

    NASA Astrophysics Data System (ADS)

    Ye, Xiong; Demidov, Andrey; Wang, Wei; Christian, James; Champion, Paul

    1998-03-01

    Transient absorption spectra reveal the dynamics and intermediate states of the heme active site after ligand photodissociation, which helps clarify the physical process of ligand dissociation and geminate recombination. To measure the transient absorption spectra, we apply a femtosecond pump-probe technique with frequency resolved detection using a multichannel diode array. The femtosecond pulse output from a regenerative laser amplifier system is split in two; one beam pumps the optical parametric amplifier to produce a tunable wavelength pump pulse, the other beam generates a white light continuum that is varied in time with respect to pump pulse and probe the transient absorbance of the sample. We make a comparative study of myoglobin with different ligands, mutants and pH conditions.

  11. Models of filter-based particle light absorption measurements

    NASA Astrophysics Data System (ADS)

    Hamasha, Khadeejeh M.

    allows for studying very general cases of particles of various sizes embedded on arbitrary filter media. Application of this model to the Reno Aerosol Optics Study (Laboratory data) shows that the aerosol light absorption coefficients are about half of the Aethalometer attenuation coefficients, and there is a reasonable agreement between the model calculated absorption coefficients at 521 nm and the measured photoacoustic absorption coefficients at 532 nm. For ambient data obtained during the Las Vegas study, it shows that the model absorption coefficients at 521 nm are larger than the photoacoustic coefficients at 532 nm. Use of the 2-stream model shows that particle penetration depth into the filter has a strong influence on the interpretation of filter-based aerosol light absorption measurements. This is likely explanation for the difference found between model results for filter-based aerosol light absorption and those from photoacoustic measurements for ambient and laboratory aerosol.

  12. Inferring surface solar absorption from broadband satellite measurements

    NASA Technical Reports Server (NTRS)

    Cess, Robert D.; Vulis, Inna L.

    1989-01-01

    An atmospheric solar radiation model and surface albedo models that include wavelength dependence and surface anisotropy are combined to study the possibility of inferring the surface solar absorption from satellite measurements. The model includes ocean, desert, pasture land, savannah, and bog surface categories. Problems associated with converting narrowband measurements to broadband quantities are discussed, suggesting that it would be easier to infer surface solar absorption from broadband measurements directly. The practice of adopting a linear relationship between planetary and surface albedo to estimate surface albedos from satellite measurements is examined, showing that the linear conversion between broadband planetary and surface albedos is strongly dependent on vegetation type. It is suggested that there is a linear slope-offset relationship between surface and surface-atmosphere solar absorption.

  13. Modeling optical absorption for thermoreflectance measurements

    NASA Astrophysics Data System (ADS)

    Yang, Jia; Ziade, Elbara; Schmidt, Aaron J.

    2016-03-01

    Optical pump-probe techniques based on thermoreflectance, such as time domain thermoreflectance and frequency domain thermoreflectance (FDTR), have been widely used to characterize the thermal conductivity of thin films and the thermal conductance across interfaces. These techniques typically use a transducer layer to absorb the pump light and improve the thermoreflectance signal. The transducer, however, complicates the interpretation of the measured signal because the approximation that all the energy from the pump beam is deposited at the transducer surface is not always accurate. In this paper, we consider the effect of laser absorption in the top layer of a multilayer sample, and derive an analytical solution for the thermoreflectance signal in the diffusion regime based on volumetric heating. We analyze the measurement sensitivity to the pump absorption depth for transducers with different thermal conductivities, and investigate the additional effect of probe laser penetration depth on the measured signal. We validate our model using FDTR measurements on 490 nm thick amorphous silicon films deposited on fused silica and silicon substrates.

  14. Plasma absorption evidence via chirped pulse spectral transmission measurements

    SciTech Connect

    Jedrkiewicz, Ottavia; Minardi, Stefano; Couairon, Arnaud; Jukna, Vytautas; Selva, Marco; Di Trapani, Paolo

    2015-06-08

    This work aims at highlighting the plasma generation dynamics and absorption when a Bessel beam propagates in glass. We developed a simple diagnostics allowing us to retrieve clear indications of the formation of the plasma in the material, thanks to transmission measurements in the angular and wavelength domains. This technique featured by the use of a single chirped pulse having the role of pump and probe simultaneously leads to results showing the plasma nonlinear absorption effect on the trailing part of the pulse, thanks to the spectral-temporal correspondence in the measured signal, which is also confirmed by numerical simulations.

  15. Microwave absorption measurements of melting spherical and nonspherical hydrometeors

    NASA Technical Reports Server (NTRS)

    Hansman, R. J., Jr.

    1986-01-01

    Measurements were made of the absorption behavior of melting and freezing hydrometeors using resonant cavity perturbation techniques at a wavelength of 2.82 cm. Melting ice spheres with equivalent melted diameters between 1.15 and 2.00 mm exhibit a period of strong absorption during melting as predicted by prior theoretical calculations. However, the measured magnitude of the absorption peak exceeds the predicted value. Absorption measuremets of melting oblate and prolate ice ellipsoids also exhibit enhanced absorption during melting.

  16. In vivo absorption spectroscopy for absolute measurement.

    PubMed

    Furukawa, Hiromitsu; Fukuda, Takashi

    2012-10-01

    In in vivo spectroscopy, there are differences between individual subjects in parameters such as tissue scattering and sample concentration. We propose a method that can provide the absolute value of a particular substance concentration, independent of these individual differences. Thus, it is not necessary to use the typical statistical calibration curve, which assumes an average level of scattering and an averaged concentration over individual subjects. This method is expected to greatly reduce the difficulties encountered during in vivo measurements. As an example, for in vivo absorption spectroscopy, the method was applied to the reflectance measurement in retinal vessels to monitor their oxygen saturation levels. This method was then validated by applying it to the tissue phantom under a variety of absorbance values and scattering efficiencies.

  17. Measurements of scattering and absorption changes in muscle and brain.

    PubMed Central

    Gratton, E; Fantini, S; Franceschini, M A; Gratton, G; Fabiani, M

    1997-01-01

    Non-invasive techniques for the study of human brain function based on changes of the haemoglobin content or on changes of haemoglobin saturation have recently been proposed. Among the new methods, near-infrared transmission measurements may have significant advantages and complement well-established methods such as functional magnetic resonance imaging and positron emission tomography. Near-infrared measurements can be very fast, comparable in speed to electrophysiological measurements, bur are better localized. We will present the demonstration of measurements of millisecond signals due to brain activity in humans following stimulation of the visual cortex. However, major unresolved questions remain about the origin of the signals observed. Optical measurements on exposed cortex in animals show that both the absorption and the scattering coefficient are affected by neural activity. Model calculations show that the signals we detected may originate from rapid changes of the scattering coefficient in a region about 1 to 2 cm below the scalp. We discuss our measurement protocol, which is based on a frequency-domain instrument, and the algorithm to separate the absorption from the scattering contribution in the overall response. Our method produces excellent separation between scattering and absorption in relatively homogeneous masses such as large muscles. The extrapolation of our measurement protocol to a complex structure such as the human head is critically evaluated. PMID:9232861

  18. Atmospheric Measurements by Cavity Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Wu, Tao; Coeur-Tourneur, Cécile; Fertein, Eric; Gao, Xiaoming; Zhao, Weixiong; Zhang, Weijun; Chen, Weidong

    2015-04-01

    Since the last decade, atmospheric environmental monitoring has benefited from the development of novel spectroscopic measurement techniques owing to the significant breakthroughs in photonic technology from the UV to the infrared spectral domain [1]. In this presentation, we will overview our recent development and applications of cavity enhanced absorption spectroscopy techniques for in situ optical monitoring of chemically reactive atmospheric species (such as HONO, NO3, NO2, N2O5) in intensive campaigns [2] and/or in smog chamber studies [3]. These field deployments demonstrated that modern photonic technologies (newly emergent light sources combined with high sensitivity spectroscopic techniques) can provide a useful tool to improve our understanding of tropospheric chemical processes which affect climate, air quality, and the spread of pollution. Experimental detail and preliminary results will be presented. Acknowledgements. The financial support from the French Agence Nationale de la Recherche (ANR) under the NexCILAS (ANR-11-NS09-0002) and the CaPPA (ANR-10-LABX-005) contracts is acknowledged. References [1] X. Cui, C. Lengignon, T. Wu, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez,L. Croisé, W. Chen, et al., "Photonic Sensing of the Atmosphere by absorption spectroscopy", J. Quant. Spectrosc. Rad. Transfer 113 (2012) 1300-1316 [2] T. Wu, Q. Zha, W. Chen, Z. XU, T. Wang, X. He, "Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong", Atmos. Environ. 95 (2014) 544-551 [3] T. Wu, C. Coeur-Tourneur, G. Dhont,A. Cassez, E. Fertein, X. He, W. Chen,"Application of IBBCEAS to kinetic study of NO3 radical formation from O3 + NO2 reaction in an atmospheric simulation chamber", J. Quant. Spectrosc. Rad. Transfer 133 (2014)199-205

  19. Prediction of absorption coefficients by pulsed laser induced photoacoustic measurements.

    PubMed

    Priya, Mallika; Satish Rao, B S; Ray, Satadru; Mahato, K K

    2014-06-05

    In the current study, a pulsed laser induced photoacoustic spectroscopy setup was designed and developed, aiming its application in clinical diagnostics. The setup was optimized with carbon black samples in water and with various tryptophan concentrations at 281nm excitations. The sensitivity of the setup was estimated by determining minimum detectable concentration of tryptophan in water at the same excitation, and was found to be 0.035mM. The photoacoustic experiments were also performed with various tryptophan concentrations at 281nm excitation for predicting optical absorption coefficients in them and for comparing the outcomes with the spectrophotometrically-determined absorption coefficients for the same samples. Absorption coefficients for a few serum samples, obtained from some healthy female volunteers, were also determined through photoacoustic and spectrophotometric measurements at the same excitations, which showed good agreement between them, indicating its clinical implications.

  20. Ozone absorption coefficients' role in Dobson instrument ozone measurement accuracy

    NASA Astrophysics Data System (ADS)

    Basher, R. E.

    1982-11-01

    The differences of 10% or more between the laboratory measurements of UV absorption coefficients by different investigators indicate accuracies that are quite inadequate for current needs in the measurement of atmospheric ozone. The standard band-integrated set of coefficients now used with the Dobson instrument are mutually consistent to about 2%, but their absolute accuracy is still in question. The accurate calculation of band-integrated coefficients must take account of their dependence on source spectral irradiance, atmospheric spectral transmittance, mean ozone temperature, and instrument spectral transmittance. A careful examination shows that Komhyr's (1980) case for an error of about +5% in the standard Dobson AD ozone estimation is subject to large uncertainties and certain lacks of independence. The obvious solution to this accuracy problem lies in better laboratory measurements of ozone absorption.

  1. Molar Absorptivity Measurements in Absorbing Solvents: Impact on Solvent Absorptivity Values.

    PubMed

    Bohman, Ariel; Arnold, Mark A

    2016-10-18

    Molar absorptivity is a fundamental molecular property that quantifies absorption strength as a function of wavelength. Absolute measurements of molar absorptivity demand accounting for all mechanisms of light attenuation, including reflective losses at interfaces associated with the sample. Ideally, such measurements are performed in nonabsorbing solvents and reflective losses can be determined in a straightforward manner from Fresnel equations or effectively accounted for by path length difference methods. At near-infrared wavelengths, however, many solvents, including water, are absorbing which complicates the quantification of reflective losses. Here, generalized equations are developed for calculating absolute molar absorptivities of neat liquids wherein the dependency of reflective loss on absorption properties of the liquid are considered explicitly. The resulting equations are used to characterize sensitivity of absolute molar absorptivity measurements for solvents to the absorption strength of the solvent as well as the path length of the measurement. Methods are derived from these equations to properly account for reflective losses in general and the effectiveness of these methods is demonstrated for absolute molar absorptivity measurements for water over the combination region (5000-4000 cm(-1)) of the near-infrared spectrum. Results indicate that ignoring solvent absorption effects can incorporate wide ranging systematic errors depending upon experimental conditions. As an example, systematic errors range from 0 to 10% for common conditions used in the measurement of absolute molar absorptivity of water over the combination region of the near-infrared spectrum.

  2. Direct absorption measurements in thin rods and optical fibers

    NASA Astrophysics Data System (ADS)

    Mühlig, Christian; Bublitz, Simon; Lorenz, Martin

    2015-11-01

    We report on the first realization of direct absorption measurements in thin rods and optical fibers using the laser induced deflection (LID) technique. Typically, along the fiber processing chain more or less technology steps are able to introduce additional losses to the starting material. After the final processing, the fibers are commonly characterized regarding losses using the so-called cut-back technique in combination with spectrometers. This, however, only serves for a total loss determination. For optimization of the fiber processing, it would be of great interest to not only distinguish between different loss mechanisms but also have a better understanding of possible causes. For measuring the absorption losses along the fiber processing, a particular concept for the LID technique is introduced and requirements, calibration procedure as well as first results are presented. It allows to measure thin rods, e.g. during preform manufacturing, as well as optical fibers. In addition, the results show the prospects to also apply the new concept to topics like characterizing unwanted absorption after fiber splicing or Bragg grating inscription.

  3. Integrated measurements of 222Rn by absorption in Makrofol

    NASA Astrophysics Data System (ADS)

    Pressyanov, Dobromir; Buysse, Jozef; Poffijn, André; Van Deynse, Annick; Meesen, Geert

    2004-01-01

    Recently, a method for long-term 222Rn measurements based on the radon absorption ability and track-etch properties of Makrofol has been proposed. The basic idea is to remove, after exposure, a surface layer, thicker than the range of the α-particles of the 222Rn or 220Rn progenies, and to study the track density of the electrochemically etched tracks at that depth. This paper summarizes the performance of the method under laboratory and field conditions. The effects on the response due to differences in pressure, temperature, humidity, the presence of 220Rn, dust and cigarette smoke in the air have been studied experimentally. The effect of these factors, but the temperature, is either absent, or restricted to about 10% for the very extreme cases. The variation of the response at the studied depth of 83 μm over the temperature interval 15-25°C is ±12% around the 19.5°C value. The field comparison conducted showed an agreement between the method of radon absorption in Makrofol and the conventional diffusion chambers. Therefore, a potential for long-term 222Rn measurements in the human environment by radon absorption in Makrofol or equivalent polycarbonates clearly exists.

  4. [Measurement and analysis of absorption spectrum of human blood].

    PubMed

    Zhao, Zhi-Min; Xin, Yu-Jun; Wang, Le-Xin; Zhu, Wei-Hua; Zheng, Min; Guo, Xin

    2008-01-01

    The present paper puts forward a method of disease diagnosis by using the technology of spectrum analysis of human blood serum. The generation mechanism of absorption spectrum is explained and the absorption spectra of the normal blood serum and the sick blood serum are listed from the experiments of absorption spectrometry. Though the value of absorbency of the sick blood serum is almost equal to that of the normal blood serum in the most absorption spectra, there are some differences around 278 nm in the absorption spectrum. The absorbency of the blood serum with hyperglycemia is greater than that of the normal blood serum at 285 nm in the spectrum, and besides, there comes a peak shift of absorption with hyperglycemia. In the absorption spectrum of the blood serum with hypercholesterolemia, there is a clear absorption peak at 414 nm. However there is not any peak at that wavelength in the absorption spectrum of the normal blood serum. Through comparing the characters of the spectrum, we can judge if the blood sample is or not, and this blood analysis is a new method for the diagnosis of disease. Compared with other methods of blood measurements, the method of absorption spectrum analysis of blood serum presented in this paper, is more convenient for measurement, simpler for analysis, and easier to popularize.

  5. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  6. Method for improving terahertz band absorption spectrum measurement accuracy using noncontact sample thickness measurement.

    PubMed

    Li, Zhi; Zhang, Zhaohui; Zhao, Xiaoyan; Su, Haixia; Yan, Fang; Zhang, Han

    2012-07-10

    The terahertz absorption spectrum has a complex nonlinear relationship with sample thickness, which is normally measured mechanically with limited accuracy. As a result, the terahertz absorption spectrum is usually determined incorrectly. In this paper, an iterative algorithm is proposed to accurately determine sample thickness. This algorithm is independent of the initial value used and results in convergent calculations. Precision in sample thickness can be improved up to 0.1 μm. A more precise absorption spectrum can then be extracted. By comparing the proposed method with the traditional method based on mechanical thickness measurements, quantitative analysis experiments on a three-component amino acid mixture shows that the global error decreased from 0.0338 to 0.0301.

  7. Measurements of parallel electron velocity distributions using whistler wave absorption

    SciTech Connect

    Thuecks, D. J.; Skiff, F.; Kletzing, C. A.

    2012-08-15

    We describe a diagnostic to measure the parallel electron velocity distribution in a magnetized plasma that is overdense ({omega}{sub pe} > {omega}{sub ce}). This technique utilizes resonant absorption of whistler waves by electrons with velocities parallel to a background magnetic field. The whistler waves were launched and received by a pair of dipole antennas immersed in a cylindrical discharge plasma at two positions along an axial background magnetic field. The whistler wave frequency was swept from somewhat below and up to the electron cyclotron frequency {omega}{sub ce}. As the frequency was swept, the wave was resonantly absorbed by the part of the electron phase space density which was Doppler shifted into resonance according to the relation {omega}-k{sub ||v||} = {omega}{sub ce}. The measured absorption is directly related to the reduced parallel electron distribution function integrated along the wave trajectory. The background theory and initial results from this diagnostic are presented here. Though this diagnostic is best suited to detect tail populations of the parallel electron distribution function, these first results show that this diagnostic is also rather successful in measuring the bulk plasma density and temperature both during the plasma discharge and into the afterglow.

  8. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  9. Nile blue shows its true colors in gas-phase absorption and luminescence ion spectroscopy

    NASA Astrophysics Data System (ADS)

    Stockett, M. H.; Houmøller, J.; Brøndsted Nielsen, S.

    2016-09-01

    Nile blue is used extensively in biology as a histological stain and fluorescent probe. Its absorption and emission spectra are strongly solvent dependent, with variations larger than 100 nm. The molecule is charged due to an iminium group, and it is therefore an obvious target for gas-phase ion spectroscopy. Here we report the absorption and emission spectra of the mass-selected bare ions isolated in vacuo, and based on our results we revisit the interpretation of solution-phase spectra. An accelerator mass spectrometer was used for absorption spectroscopy where the absorption is represented by the yield of photofragment ions versus excitation wavelength (action spectroscopy). The luminescence experiments were done with a newly built ion trap setup equipped with an electrospray ion source, and some details on the mass selection technique will be given which have not been described before. In vacuo, the absorption and emission maxima are at 580 ± 10 nm and 628 ± 1 nm. These values are somewhat blue-shifted relative to those obtained in most solvents; however, they are much further to the red than those in some of the most non-polar solvents. Furthermore, the Stokes shift in the gas phase (1300 cm-1) is much smaller than that in these non-polar solvents but similar to that in polar ones. An explanation based on charge localization by solvent dipoles, or by counterions in some non-polar solvents, can fully account for these findings. Hence in the case of ions, it is nontrivial to establish intrinsic electronic transition energies from solvatochromic shifts alone.

  10. 49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. INTERIOR VIEW OF HARDENER AREA SHOWING GAUGE THAT MEASURES HARDNESS, THE NAIL MUST BREAK IN THE CENTER RANGE OF THE CURVED BAR TO HAVE THE CORRECT HARDNESS (THE NAIL WILL BREAK TOO EASILY IF TOO HARD AND WILL BEND TOO MUCH IF TOO SOFT) - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  11. 10. DETAIL SHOWING THRUST MEASURING SYSTEM. Looking up from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL SHOWING THRUST MEASURING SYSTEM. Looking up from the test stand deck to east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  12. Ozone absorption cross section measurements in the Wulf bands

    NASA Technical Reports Server (NTRS)

    Anderson, Stuart M.; Hupalo, Peter; Mauersberger, Konrad

    1993-01-01

    A tandem dual-beam spectrometer has been developed to determine ozone absorption cross sections for 13 selected wavelengths between 750 and 975 nm at room temperature. The increasingly pronounced structure in this region may interfere with atmospheric trace gas transitions that are useful for remote sensing and complicate the measurement of aerosols. Ozone concentrations were determined by absorption at the common HeNe laser transition near 632.8 nm using the absolute cross section reported previously. The overall accuracy of these room temperature measurements is generally better than 2 percent. A synoptic near-IR spectrum scaled to these measurements is employed for comparison with results of previous studies.

  13. Atmospheric Water Vapour Differential Absorption Measurements with an Infrared Sounder.

    DTIC Science & Technology

    1982-03-01

    such as amonia . As the differential absorption was only of the order of 2 dB for the above measurements (at 450 m range), the measurements were repeated...frequent(ref.7), and most seriously affect surface based radio frequency sensors and communications systems. Further development and refinement of the

  14. Measurements of scattering and absorption in mammalian cell suspensions

    SciTech Connect

    Mourant, J.R.; Johnson, T.M.; Freyer, J.P.

    1996-03-01

    During the past several years a range of spectroscopies, including fluorescence and elastic-scatter spectroscopy, have been investigated for optically based detection of cancer and other tissue pathologies. Both elastic-scatter and fluorescence signals depend, in part, on scattering and absorption properties of the cells in the tissue. Therefore an understanding of the scattering and absorption properties of cells is a necessary prerequisite for understanding and developing these techniques. Cell suspensions provide a simple model with which to begin studying the absorption and scattering properties of cells. In this study we have made preliminary measurements of the scattering and absorption properties of suspensions of mouse mammary carcinoma cells (EMT6) over a broad wavelength range (380 nm to 800 nm).

  15. Integrating Sphere Microscopy for Direct Absorption Measurements of Single Nanostructures

    PubMed Central

    2017-01-01

    Nanoscale materials are promising for optoelectronic devices because their physical dimensions are on the order of the wavelength of light. This leads to a variety of complex optical phenomena that, for instance, enhance absorption and emission. However, quantifying the performance of these nanoscale devices frequently requires measuring absolute absorption at the nanoscale, and remarkably, there is no general method capable of doing so directly. Here, we present such a method based on an integrating sphere but modified to achieve submicron spatial resolution. We explore the limits of this technique by using it to measure spatial and spectral absorptance profiles on a wide variety of nanoscale systems, including different combinations of weakly and strongly absorbing and scattering nanomaterials (Si and GaAs nanowires, Au nanoparticles). This measurement technique provides quantitative information about local optical properties that are crucial for improving any optoelectronic device with nanoscale dimensions or nanoscale surface texturing. PMID:28056171

  16. Integrating Sphere Microscopy for Direct Absorption Measurements of Single Nanostructures.

    PubMed

    Mann, Sander A; Sciacca, Beniamino; Zhang, Yunyan; Wang, Jia; Kontoleta, Evgenia; Liu, Huiyun; Garnett, Erik C

    2017-02-28

    Nanoscale materials are promising for optoelectronic devices because their physical dimensions are on the order of the wavelength of light. This leads to a variety of complex optical phenomena that, for instance, enhance absorption and emission. However, quantifying the performance of these nanoscale devices frequently requires measuring absolute absorption at the nanoscale, and remarkably, there is no general method capable of doing so directly. Here, we present such a method based on an integrating sphere but modified to achieve submicron spatial resolution. We explore the limits of this technique by using it to measure spatial and spectral absorptance profiles on a wide variety of nanoscale systems, including different combinations of weakly and strongly absorbing and scattering nanomaterials (Si and GaAs nanowires, Au nanoparticles). This measurement technique provides quantitative information about local optical properties that are crucial for improving any optoelectronic device with nanoscale dimensions or nanoscale surface texturing.

  17. Absorption measurement of thin films by using photothermal techniques: The influence of thermal properties

    SciTech Connect

    Wu, Z.L.; Kuo, P.K.; Thomas, R.L.; Fan, Z.X.

    1995-12-31

    Photothermal techniques are widely used for measuring optical absorption of thin film coatings. In these applications the calibration of photothermal signal is typically based on the assumption that the thermal properties of the thin film make very little contribution. In this paper we take mirage technique as an example and present a detailed analysis of the influence of thin film thermal properties on absorption measurements. The results show that the traditional calibration method is not valid on surprisingly many situations.

  18. Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans.

    PubMed

    Gomez-Amaro, Rafael L; Valentine, Elizabeth R; Carretero, Maria; LeBoeuf, Sarah E; Rangaraju, Sunitha; Broaddus, Caroline D; Solis, Gregory M; Williamson, James R; Petrascheck, Michael

    2015-06-01

    Caenorhabditis elegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bacterial clearing assay that measures food intake by quantifying the change in the optical density of bacteria over time. The second method, termed pulse feeding, measures the absorption of food by tracking de novo protein synthesis using a novel metabolic pulse-labeling strategy. Using the bacterial clearance assay, we compare the bacterial food intake of various C. elegans strains and show that long-lived eat mutants eat substantially more than previous estimates. To demonstrate the applicability of the pulse-feeding assay, we compare the assimilation of food for two C. elegans strains in response to serotonin. We show that serotonin-increased feeding leads to increased protein synthesis in a SER-7-dependent manner, including proteins known to promote aging. Protein content in the food has recently emerged as critical factor in determining how food composition affects aging and health. The pulse-feeding assay, by measuring de novo protein synthesis, represents an ideal method to unequivocally establish how the composition of food dictates protein synthesis. In combination, these two assays provide new and powerful tools for C. elegans research to investigate feeding and how food intake affects the proteome and thus the physiology and health of an organism.

  19. Automation of long-path absorption cell measurements.

    PubMed

    Watkins, W R; Dixon, R G

    1979-01-01

    Recent advances have been made in the operation of long-path absorption cells which make them easier to align and improve the accuracy of measurements made with them. Only one person is required now for routine measurements of low absorption coefficients of atmospheric absorbers. Unique gear designs for the adjustment of the cell mirrors are described which utilize low-torque linear drives and make possible rapid changes in pathlength and precision repositioning of the cell output beam at long pathlengths. Automation of cell operation by the use of remote Selsyn controls is described. Several techniques are discussed for precision optical alignment of long-path absorption cells, including the use of infrared radiation sources. The system accuracy which results from these refinements in operation is included.

  20. Shock tube measurements of the optical absorption of triatomic carbon, C3

    NASA Technical Reports Server (NTRS)

    Jones, J. J.

    1977-01-01

    The spectral absorption of C3 has been measured in a shock tube using a test gas mixture of acetylene diluted with argon. The absorption of a pulsed xenon light source was measured by means of eight photomultiplier channels to a spectrograph and an accompanying drum camera. The postshock test gas temperature and pressure were varied over the range 3300-4300 K and 0.36 to 2.13 atmospheres, respectively. The results showed appreciable absorption from C3 for the wavelength range 300 to 540 nanometers. The computed electronic oscillator strength varied from 0.12 to 0.06 as a function of temperature.

  1. Measuring political polarization: Twitter shows the two sides of Venezuela

    NASA Astrophysics Data System (ADS)

    Morales, A. J.; Borondo, J.; Losada, J. C.; Benito, R. M.

    2015-03-01

    We say that a population is perfectly polarized when divided in two groups of the same size and opposite opinions. In this paper, we propose a methodology to study and measure the emergence of polarization from social interactions. We begin by proposing a model to estimate opinions in which a minority of influential individuals propagate their opinions through a social network. The result of the model is an opinion probability density function. Next, we propose an index to quantify the extent to which the resulting distribution is polarized. Finally, we apply the proposed methodology to a Twitter conversation about the late Venezuelan president, Hugo Chávez, finding a good agreement between our results and offline data. Hence, we show that our methodology can detect different degrees of polarization, depending on the structure of the network.

  2. Tone-burst technique measures high-intensity sound absorption

    NASA Technical Reports Server (NTRS)

    Powell, J. G.; Van Houten, J. J.

    1971-01-01

    Tone-burst technique, in which narrow-bandwidth, short-duration sonic pulse is propagated down a standing-wave tube, measures sound absorbing capacity of materials used in jet engine noise abatement. Technique eliminates effects of tube losses and yields normal-incidence absorption coefficient of specimen.

  3. Measurement of incidence angle dependence of solar absorptance

    NASA Astrophysics Data System (ADS)

    Ohnishi, A.; Hayashi, T.

    1983-12-01

    For measuring solar absorptance dependence on incidence angle, an integrating sphere, in which the sample is fixed on the surface of the sphere, and the incident angle for the monochromatic beam on the surface is adjusted by the rotation of the integrating sphere, is proposed. Results for spacecraft materials are presented. Results for aluminized Teflon are 4% better compared with the standard method.

  4. Recent improvements in PDS technique for low-absorption measurements

    NASA Astrophysics Data System (ADS)

    Montecchi, Marco; Masetti, Enrico; Emiliani, Gabriele

    1990-08-01

    Photothermal Deflection Spectroscopy (PDS) is a recently developed technique that is finding a useful application in the measurement of low optical absorptance of thin films. Among the noise sources affecting the PDS measurement, probe beam pointing instability and mechanical vibration play a considerable role. In this work an optoelectronic system for the reduction of their influence is described. Moreover, PDS measurements are typically performed keeping the sample immersed in a deflecting liquid; thus measured values of absorptance must be corrected when other surrounding media, as air, are considered. This correction is an easy task for single film coatings. Here the general case of an unknown multiplayer coating is analysed; a range of values containing the true absorptance in air is obtained by theoretical analysis and a practical method to evaluate the absorptance in air is discussed. Finally, deflecting liquids alternative to the commonly used CCI4 have been examined. Useful optical range, thermal diffusivity and "relative deflecting power" of CCI4, CS2, Iso-octane and Aceton are reported.

  5. Contact sponge water absorption test implemented for in situ measures

    NASA Astrophysics Data System (ADS)

    Gaggero, Laura; Scrivano, Simona

    2016-04-01

    The contact sponge method is a non-destructive in-situ methodology used to estimate a water uptake coefficient. The procedure, unlike other in-situ measurement was proven to be directly comparable to the water uptake laboratory measurements, and was registered as UNI 11432:2011. The UNI Normal procedure requires to use a sponge with known density, soaked in water, weighed, placed on the material for 1 minute (UNI 11432, 2011; Pardini & Tiano, 2004), then weighed again. Difficulties arise in operating on test samples or on materials with porosity varied for decay. While carrying on the test, fluctuations in the bearing of the environmental parameters were negligible, but not the pressure applied to the surface, that induced the release of different water amounts towards the material. For this reason we designed a metal piece of the same diameter of the plate carrying the sponge, to be screwed at the tip of a pocket penetrometer. With this instrument the sponge was kept in contact with the surface for 1 minute applying two different loads, at first pushed with 0.3 kg/cm2 in order to press the sponge, but not its holder, against the surface. Then, a load of 1.1 kg/ cm2 was applied, still avoiding deviating the load to the sponge holder. We applied both the current and our implemented method to determine the water absorption by contact sponge on 5 fresh rock types (4 limestones: Fine - and Coarse grained Pietra di Vicenza, Rosso Verona, Breccia Aurora, and the silicoclastic Macigno sandstone). The results show that 1) the current methodology imply manual skill and experience to produce a coherent set of data; the variable involved are in fact not only the imposed pressure but also the compression mechanics. 2) The control on the applied pressure allowed reproducible measurements. Moreover, 3) the use of a thicker sponge enabled to apply the method even on rougher surfaces, as the device holding the sponge is not in contact with the tested object. Finally, 4) the

  6. Absorption of sound in air - High-frequency measurements

    NASA Technical Reports Server (NTRS)

    Bass, H. E.; Shields, F. D.

    1977-01-01

    The absorption of sound in air at frequencies from 4 to 100 kHz in 1/12 octave intervals, for temperatures from 255.4 K (0 F) to 310.9 K (100 F) in 5.5 K (10 F) intervals, and at 10% relative-humidity increments between 0% and saturation has been measured. The values of free-field absorption have been analyzed to determine the relaxation frequency of oxygen for each of the 92 combinations of temperature and relative humidity studied and the results are compared to an empirical expression. The relaxation frequencies of oxygen have been analyzed to determine the microscopic energy-transfer rates.

  7. Towards higher stability of resonant absorption measurements in pulsed plasmas

    SciTech Connect

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-15

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called “dynamic source triggering,” between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  8. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  9. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption in Xianghe, SE of Beijing, China

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2005-12-01

    China's rapid industrialization over the last few decades has affected air quality in many regions of China, and even the regional climate. As a part of the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals since January 2005 at Xianghe, about 70 km southeast of Beijing. Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations during the winter months (January-March) ranged from 9 to 459 μg/m3 in the coarse mode with an average concentration of 122 μg/m3, and from 11 to 203 μg/m3 in the fine mode with an average concentration of 45 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Absorption efficiency measurements at 550 nm show very high values compared to measurements performed in the United States during the CLAMS experiment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in refractive indices from the several collected species and particle size effects. The absorption properties from aerosols measured in China show large absorption efficiencies, compared to aerosols measured in the US, possibly linked to different technology practices used in these countries. For organic plus black carbon aerosols, where the refractive index seems to be relatively constant, the absorption efficiency spectral dependence for fine mode aerosols falls between 1/λ and 1/λ2. The coarse mode absorption shows much less spectral dependence.

  10. Low-frequency sound absorption measurements in air

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Meredith, R. W.

    1984-01-01

    Thirty sets of sound absorption measurements in air at a pressure of 1 atmosphere are presented at temperatures from 10 C to 50 C, relative humidities from 0 to 100 percent, and frequencies from 10 to 2500 Hz. The measurements were conducted by the method of free decay in a resonant tube having a length of 18.261 m and bore diameter of 0.152 m. Background measurements in a gas consisting of 89.5 percent N2 and 10.5 percent Ar, a mixture which has the same sound velocity as air, permitted the wall and structural losses of the tube to be separated from the constituent absorption, consisting of classical rotational and vibrational absorption, in the air samples. The data were used to evaluate the vibrational relaxation frequencies of N2 and/or O2 for each of the 30 sets of meteorological parameters. Over the full range of humidity, the measured relaxation frequencies of N2 in air lie between those specified by ANSI Standard S1.26-1978 and those measured earlier in binary N2H2O mixtures. The measured relaxation frequencies could be determined only at very low values of humidity, reveal a significant trend away from the ANSI standard, in agreement with a prior investigation.

  11. Absorptance Measurements of Optical Coatings - A Round Robin

    SciTech Connect

    Chow, R; Taylor, J R; Wu, Z L; Boccara, C A; Broulik, U; Commandre, M; DiJon, J; Fleig, C; Giesen, A; Fan, Z X; Kuo, P K; Lalezari, R; Moncur, K; Obramski, H-J; Reicher, D; Ristau, D; Roche, P; Steiger, B; Thomsen, M; von Gunten, M

    2000-10-26

    An international round robin study was conducted on the absorption measurement of laser-quality coatings. Sets of optically coated samples were made by a ''reactive DC magnetron'' sputtering and an ion beam sputtering deposition process. The sample set included a high reflector at 514 nm and a high reflector for the near infrared (1030 to 1318 nm), single layers of silicon dioxide, tantalum pentoxide, and hafnium dioxide. For calibration purposes, a sample metalized with hafnium and an uncoated, superpolished fused silica substrate were also included. The set was sent to laboratory groups for absorptance measurement of these coatings. Whenever possible, each group was to measure a common, central area and another area specifically assigned to the respective group. Specific test protocols were also suggested in regards to the laser exposure time, power density, and surface preparation.

  12. Re-Evaluation of Dust Radiative Forcing Using Remote Measurements of Dust Absorption

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Karnieli, Arnon; Remer, Lorraine A.

    1998-01-01

    Spectral remote observations of dust properties from space and from the ground creates a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat spaceborne measurements at 0.47 to 2.2 microns over Senegal with ground based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater 0.6 microns. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.

  13. Scattering error corrections for in situ absorption and attenuation measurements.

    PubMed

    McKee, David; Piskozub, Jacek; Brown, Ian

    2008-11-24

    Monte Carlo simulations are used to establish a weighting function that describes the collection of angular scattering for the WETLabs AC-9 reflecting tube absorption meter. The equivalent weighting function for the AC-9 attenuation sensor is found to be well approximated by a binary step function with photons scattered between zero and the collection half-width angle contributing to the scattering error and photons scattered at larger angles making zero contribution. A new scattering error correction procedure is developed that accounts for scattering collection artifacts in both absorption and attenuation measurements. The new correction method does not assume zero absorption in the near infrared (NIR), does not assume a wavelength independent scattering phase function, but does require simultaneous measurements of spectrally matched particulate backscattering. The new method is based on an iterative approach that assumes that the scattering phase function can be adequately modeled from estimates of particulate backscattering ratio and Fournier-Forand phase functions. It is applied to sets of in situ data representative of clear ocean water, moderately turbid coastal water and highly turbid coastal water. Initial results suggest significantly higher levels of attenuation and absorption than those obtained using previously published scattering error correction procedures. Scattering signals from each correction procedure have similar magnitudes but significant differences in spectral distribution are observed.

  14. Solar absorptance measurements in space on operational spacecraft

    NASA Astrophysics Data System (ADS)

    Babel, Hank W.; Jones, Cherie A.; Wilkes, Donald R.; Linton, Roger C.

    1995-07-01

    Spacecraft hardware such as radiators requires the maintenance of solar absorptance within tight bounds for their design life. Such hardware is sized in part based on the beginning- and end-of-life absorptance. It has been difficult to make accurate end-of-life determinations based on either ground based data or flight data. The synergistic effect of atomic oxygen, ultraviolet radiation, and contamination has made it difficult to duplicate space exposures in the laboratory. The absorptance of flight exposed samples brought back to earth are not representative of the conditions in space because of changes brought about by exposure to air. This paper proposes to augment the current in-space monitoring techniques with periodic, in- space, direct measurements of the solar absorptance on operational hardware. NASA funded AZ Technology to develop a portable, space-rated device similar to the LPSR-200 portable spectroreflectometer, a space portable spectroreflectometer (SPSR). This instrument is robotically compatible and can be run using spacecraft power or batteries. The instrument also has measurement storage capacity for later retrieval and evaluation. Although extensive development work has already been completed, authorization to build a unit for a flight experiment has not been received. The Russians have expressed an interest in having absorptance measurements made on their MIR I Space Station as part of the NASA/MIR flight experiments. Proposals are currently being made to obtain authorization for the construction and use of SPSR on NASA/MIR flight experiments, to help mitigate potential problems for the International Space Station Alpha (ISSA).

  15. In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2011-10-01

    Localized spectroscopic measurements of optical properties are invaluable for diagnostic applications that involve layered tissue structures, but conventional spectroscopic techniques lack exact control over the size and depth of the probed tissue volume. We show that low-coherence spectroscopy (LCS) overcomes these limitations by measuring local attenuation and absorption coefficient spectra in layered phantoms. In addition, we demonstrate the first in vivo LCS measurements of the human epidermis and dermis only. From the measured absorption in two distinct regions of the dermal microcirculation, we determine total hemoglobin concentration (3.0+/-0.5 g/l and 7.8+/-1.2 g/l) and oxygen saturation.

  16. In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin.

    PubMed

    Bosschaart, Nienke; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G

    2011-10-01

    Localized spectroscopic measurements of optical properties are invaluable for diagnostic applications that involve layered tissue structures, but conventional spectroscopic techniques lack exact control over the size and depth of the probed tissue volume. We show that low-coherence spectroscopy (LCS) overcomes these limitations by measuring local attenuation and absorption coefficient spectra in layered phantoms. In addition, we demonstrate the first in vivo LCS measurements of the human epidermis and dermis only. From the measured absorption in two distinct regions of the dermal microcirculation, we determine total hemoglobin concentration (3.0±0.5 g∕l and 7.8±1.2 g∕l) and oxygen saturation.

  17. Lead-iodide nanowire perovskite with methylviologen showing interfacial charge-transfer absorption: a DFT analysis.

    PubMed

    Fujisawa, Jun-ichi; Giorgi, Giacomo

    2014-09-07

    Methylviologen lead-iodide perovskite (MVPb2I6) is a self-assembled one-dimensional (1-D) material consisting of lead-iodide nanowires and intervening organic electron-accepting molecules, methylviologen (MV(2+)). MVPb2I6 characteristically shows optical interfacial charge-transfer (ICT) transitions from the lead-iodide nanowire to MV(2+) in the visible region and unique ambipolar photoconductivity, in which electrons are transported through the three-dimensional (3-D) organic network and holes along the 1-D lead-iodide nanowire. In this work, we theoretically study the electronic band-structure and photocarrier properties of MVPb2I6 by density functional theory (DFT) calculations. Our results clearly confirm the experimentally reported type-II band alignment, whose valence band mainly consists of 5p (I) orbitals of the lead-iodide nanowires and the conduction band of the lowest unoccupied molecular orbital of MV(2+). The DFT calculation also reveals weak charge-transfer interactions between the lead-iodide nanowires and MV(2+). In addition, the electronic distributions of the valence and conduction bands indicate the 3-D transport of electrons and 1-D transport of holes, supporting the reported experimental result.

  18. Excited State Absorption Measurements In Some Scintillator Dye Solutions

    NASA Astrophysics Data System (ADS)

    Dharamsi, A., N.; Jong, Shawpin; Hassam, A. B.

    1986-11-01

    Time-resolved excited state triplet-triplet absorption spectra were measured for solutions of 2,5 diphenyloxazole (PPO) and 2,1 napthyl, 5 phenyloxazole (aNPO) in several solvents. Concentration quenching effects due to excimer formation in nonaromatic solvents were observed. A numerical analysis of the experimental results yielded the rate constants for intersystem crossing, triplet quenching by 02, triplet self quenching and the formation of excimers.

  19. Trajectory Hunting: Analysis of UARS Measurements showing Rapid Chlorine Activation

    NASA Technical Reports Server (NTRS)

    Danilin, M.Y.; Santee, M. L.; Rodriquez, J. M.; Ko, M. K. W.; Mergenthaler, J. M.; Kumer, J. B.; Tabazadeh, A.

    1998-01-01

    Trajectory hunting (i.e., a technique to find air parcels sampled at least twice over the course of a few days) is applied to analyze Upper Atmosphere Research Satellite (UARS) measurements in conjunction with the AER photochemical box model. In this study, we investigate rapid chlorine activation in the Arctic lower stratosphere on 29 Dec 1992 associated with a polar stratospheric cloud (PSC) event. Six air parcels that have been sampled twice were followed along 5-day trajectories at the 465 K (approximately 46 mb) and 585 K (approximately 22 mb) levels. A detailed sensitivity study with the AER. photochemical box model along these trajectories leads to the following conclusions for the episode considered: (1) model results are in better agreement with UARS measurements at these levels if the UKMO temperature is decreased by at least 1-2 K; (2) the NAT (nitric acid trihydrate) PSC formation scheme produces results in better agreement with observations than the STS (supercooled ternary solution) scheme; (3) the model can explain the UARS measurements at 585 K, but under-estimates the ClO abundance at 465 K, suggesting some inconsistency between the UARS measurements at this level.

  20. Trajectory Hunting: Analysis of UARS Measurements Showing Rapid Chlorine Activation

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Santee, M. L.; Rodriquez, J. M.; Ko, M. K. W.; Mergenthaler, J. M.; Kumer, J. B.; Tabazadeh, A.

    1998-01-01

    Trajectory hunting (i.e., a technique to find air parcels sampled at least twice over the course of a few days) is applied to analyze Upper Atmosphere Research Satellite (UARS) measurements in conjunction with the AER photochemical box model. In this study, we investigate rapid chlorine activation in the Arctic lower stratosphere on 29 Dec. 1992 associated with a polar stratospheric cloud (PSC) event. Six air parcels that have been sampled twice were followed along 5-day trajectories at the 465 K (approx. 46 mb) and 585 K (approxi. 22 mb) levels. A detailed sensitivity study with the AER photochemical box model along these trajectories leads to the following conclusions for the episode considered: 1) model results are in better agreement with UARS measurements at these levels if the U.K. Meteorological Office (UKMO) temperature is decreased by at least 1-2 K; 2) the NAT (nitric acid trihydrate) PSC formation scheme produces results in better agreement with observations than the STS (supercooled ternary solution) scheme; 3) the model can explain the UARS measurements at 585 K, but under-estimates the ClO abundance at 465 K, suggesting some inconsistency between the UARS measurements at this level.

  1. Milky Way a Swifter Spinner, More Massive, New Measurements Show

    NASA Astrophysics Data System (ADS)

    2009-01-01

    Fasten your seat belts -- we're faster, heavier, and more likely to collide than we thought. Astronomers making high-precision measurements of the Milky Way say our home Galaxy is rotating about 100,000 miles per hour faster than previously understood. That increase in speed, said Mark Reid, of the Harvard-Smithsonian Center for Astrophysics, increases the Milky Way's mass by 50 percent, bringing it even with the Andromeda Galaxy. "No longer will we think of the Milky Way as the little sister of the Andromeda Galaxy in our Local Group family." Milky Way Artist's Conception of our Milky Way Galaxy: Blue, green dots indicate distance measurements. CREDIT: Robert Hurt, IPAC; Mark Reid, CfA, NRAO/AUI/NSF JPEG graphic with scale marks on sides PostScript graphic with scale marks on sides The larger mass, in turn, means a greater gravitational pull that increases the likelihood of collisions with the Andromeda galaxy or smaller nearby galaxies. Our Solar System is about 28,000 light-years from the Milky Way's center. At that distance, the new observations indicate, we're moving at about 600,000 miles per hour in our Galactic orbit, up from the previous estimate of 500,000 miles per hour. The scientists are using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to remake the map of the Milky Way. Taking advantage of the VLBA's unparalleled ability to make extremely detailed images, the team is conducting a long-term program to measure distances and motions in our Galaxy. They reported their results at the American Astronomical Society's meeting in Long Beach, California. The scientists observed regions of prolific star formation across the Galaxy. In areas within these regions, gas molecules are strengthening naturally-occuring radio emission in the same way that lasers strengthen light beams. These areas, called cosmic masers, serve as bright landmarks for the sharp radio vision of the VLBA. By observing these regions repeatedly at times

  2. A photophonic instrument concept to measure atmospheric aerosol absorption. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Engle, C. D.

    1982-01-01

    A laboratory model of an instrument to measure the absorption of atmospheric aerosols was designed, built, and tested. The design was based on the photophonic phenomenon discovered by Bell and an acoustic resonator developed by Helmholtz. Experiments were done to show ways the signal amplitude could be improved and the noise reduced and to confirm the instrument was sensitive enough to be practical. The research was undertaken to develop concepts which show promise of being improvements on the instruments that are presently used to measure the absorption of the Sun's radiation by the Earth's atmospheric aerosols.

  3. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    NASA Astrophysics Data System (ADS)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  4. Interpreting measurements obtained with the cloud absorption radiometer

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The software developed for the analysis of data from the Cloud Absorption Radiometer (CAR) is discussed. The CAR is a multichannel radiometer designed to measure the radiation field in the middle of an optically thick cloud (the diffusion domain). It can also measure the surface albedo and escape function. The instrument currently flies on a C-131A aircraft operated by the University of Washington. Most of this data was collected during the First International satellite cloud climatology project Regional Experiment (FIRE) Marine Stratocumulus Intensive Field Observation program off San Diego during July 1987. Earlier flights of the CAR have also been studied.

  5. The Importance of Optical Pathlength Control for Plasma Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, M.; Partridge, Harry (Technical Monitor)

    2001-01-01

    An inductively coupled GEC Cell with modified viewing ports has been used to measure in-situ absorption in CF4 plasmas via Fourier Transform Infrared Spectroscopy, and the results compared to those obtained in a standard viewport configuration. The viewing ports were modified so that the window boundary is inside, rather than outside, of the GEC cell. Because the absorption obtained is a spatially integrated absorption, measurements made represent an averaging of absorbing species inside and outside of the plasma. This modification is made to reduce this spatial averaging and thus allow a more accurate estimation of neutral species concentrations and temperatures within the plasmas. By reducing this pathlength, we find that the apparent CF4 consumption increases from 65% to 95% and the apparent vibrational temperature of CF4 rises by 50-75 K. The apparent fraction of etch product SiF4 decreases from 4% to 2%. The data suggests that these density changes may be due to significant temperature gradients between the plasma and chamber viewports.

  6. Excited-state absorption measurements of Tm3+-doped crystals

    NASA Astrophysics Data System (ADS)

    Szela, J. W.; Mackenzie, J. I.

    2012-06-01

    High resolution, absolute excited-state absorption (ESA) spectra, at room temperature, from the long-lived 3F4 energy level of several crystals doped with trivalent thulium (Tm3+) ions have been measured employing high-brightness narrowband (FWHM <30 nm) light emitting diodes (LEDs) as a probe wavelength. The aim of this investigation was to determine the strength of ESA channels at wavelengths addressable by commercially available semiconductor laser diodes operating around 630-680 nm. The favourable lifetime of the 3F4 manifold and negligible ground-state absorption (GSA) for the red-wavelength second-step excitation, ensures a direct and efficient route for a dual-wavelength pumping scheme of the thulium ion, which will enable blue-green laser emission from its 1G4 upper-laser level.

  7. [Development of a photoacoustic spectroscopy system for the measurement of absorption coefficient of atmospheric aerosols].

    PubMed

    Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2013-07-01

    In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state.

  8. Determining the Uncertainty of X-Ray Absorption Measurements

    PubMed Central

    Wojcik, Gary S.

    2004-01-01

    X-ray absorption (or more properly, x-ray attenuation) techniques have been applied to study the moisture movement in and moisture content of materials like cement paste, mortar, and wood. An increase in the number of x-ray counts with time at a location in a specimen may indicate a decrease in moisture content. The uncertainty of measurements from an x-ray absorption system, which must be known to properly interpret the data, is often assumed to be the square root of the number of counts, as in a Poisson process. No detailed studies have heretofore been conducted to determine the uncertainty of x-ray absorption measurements or the effect of averaging data on the uncertainty. In this study, the Poisson estimate was found to adequately approximate normalized root mean square errors (a measure of uncertainty) of counts for point measurements and profile measurements of water specimens. The Poisson estimate, however, was not reliable in approximating the magnitude of the uncertainty when averaging data from paste and mortar specimens. Changes in uncertainty from differing averaging procedures were well-approximated by a Poisson process. The normalized root mean square errors decreased when the x-ray source intensity, integration time, collimator size, and number of scanning repetitions increased. Uncertainties in mean paste and mortar count profiles were kept below 2 % by averaging vertical profiles at horizontal spacings of 1 mm or larger with counts per point above 4000. Maximum normalized root mean square errors did not exceed 10 % in any of the tests conducted. PMID:27366627

  9. Differential Absorption Lidar (DIAL) Measurements from Air and Space

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Ismail, S.; Grant, W. B.

    1998-01-01

    Differential absorption lidar (DIAL) systems have been used for the measurement of ozone, water vapor, and aerosols from aircraft platforms for over 18 years, yielding new insights into atmospheric chemistry, composition, and dynamics in large-scale field experiments conducted all over the world. The successful deployment of the lidar in-space technology experiment (LITE) in September 1994 demonstrated that space-based lidars can also collect valuable information on the global atmosphere. This paper reviews some of the contributions of the NASA Langley Research Center's airborne ozone and water vapor DIAL systems and space-based LITE system to the understanding of the atmosphere and discusses the feasibility and advantages of putting DIAL systems in space for routine atmospheric measurements of ozone and/or water vapor and aerosols and clouds. The technology and applications of the differential absorption lidar (DIAL) technique have progressed significantly since the first DIAL measurements of Schotland, and airborne DIAL measurements of ozone and water vapor are frequently being made in a wide range of field experiments. In addition, plans are underway to develop DIAL systems for use on satellites for continuous global measurements. This paper will highlight the history of airborne lidar and DIAL systems, summarize the major accomplishments of the NASA Langley DIAL program, and discuss specifications and goals for DIAL systems in space.

  10. Quantitative gas sensing by backscatter-absorption measurements of a pseudorandom code modulated lambda ~ 8-microm quantum cascade laser.

    PubMed

    Gittins, C M; Wetjen, E T; Gmachl, C; Capasso, F; Hutchinson, A L; Sivco, D L; Baillargeon, J N; Cho, A Y

    2000-08-15

    We have demonstrated quantitative chemical vapor detection with a multimode quantum cascade (QC) laser. Experiments incorporated pseudorandom code (PRC) modulation of the laser intensity to permit sensitive absorption measurements of isopropanol vapor at 8.0micro . The demonstration shows the practicality of one technical approach for implementing low-peak-power QC lasers in the transmitter portion of a differential absorption lidar (DIAL) system. With a 31-chip, 300-ns/chip PRC sequence, the measured isopropanol detection limit was 12 parts in 10(6) by volume times meters (~3x10(-3) absorption) for a simple backscatter-absorption measurement configuration.

  11. Studies of cavity enhanced absorption spectroscopy for weak absorption gas measurements

    NASA Astrophysics Data System (ADS)

    Li, Liucheng; Duo, Liping; Gong, Deyu; Ma, Yanhua; Zhang, Zhiguo; Wang, Yuanhu; Zhou, Dongjian; Jin, Yuqi

    2017-01-01

    In order to determine the concentrations of trace amount metastable species in chemical lasers, an off-axis cavity enhanced absorption spectrometer for the detection of weak absorption gases has been built with a noise equivalent absorption sensitivity of 1.6x10-8 cm-1. The absorption spectrum of trace amount gaseous ammonia and water vapor was obtained with a spectral resolution of about 78 MHz. A multiple-line absorption spectroscopic method to determine the temperature of gaseous ammonia has been developed by use of multiple lines of ammonia molecule absorption spectrum.

  12. Measurement of Acoustic Attenuation and Absorption Coefficients using Thermometry

    NASA Astrophysics Data System (ADS)

    Morris, Hugh; Rivens, Ian; Shaw, Adam; ter Haar, Gail

    2007-05-01

    Accurate knowledge of both the attenuation and the absorption coefficient of tissue are required when planning an optimal high intensity focused ultrasound treatment. A novel technique for simple measurement of this parameters has been developed in which a thin-film thermocouple (TFT) is placed between two layers of tissue of different thicknesses. The sample can be rotated about an axis through the junction of the TFT so that it can be insonated from either side leaving the tissue adjacent to the junction unchanged, but changing the overlying thickness. The attenuation and absorption coefficients can be calculated from the heating curves measured in the two orientations. Experiments have been carried out in both tissue mimicking material (TMM) and in ex vivo liver tissue. Weakly focused transducers, resonant at 1.05 MHz, 2.4 MHz and 3.55 MHz were used at free-field spatial peak intensities of 9-14 W/cm2. The temperature rise was measured as a function of time using a TFT. These thermocouples are not subject to the viscous heating artefact that is common to other thermocouple devices and so are advantageous for this purpose. Alignment was achieved with a 3D automated gantry system, which was controlled with specialised software. Timing and data acquisition were also controlled with this software. All experiments were carried out in degassed water. Results for TMM and degassed excised bovine liver are presented.

  13. Estimation of background gas concentration from differential absorption lidar measurements

    NASA Astrophysics Data System (ADS)

    Harris, Peter; Smith, Nadia; Livina, Valerie; Gardiner, Tom; Robinson, Rod; Innocenti, Fabrizio

    2016-10-01

    Approaches are considered to estimate the background concentration level of a target species in the atmosphere from an analysis of the measured data provided by the National Physical Laboratory's differential absorption lidar (DIAL) system. The estimation of the background concentration level is necessary for an accurate quantification of the concentration level of the target species within a plume, which is the quantity of interest. The focus of the paper is on methodologies for estimating the background concentration level and, in particular, contrasting the assumptions about the functional and statistical models that underpin those methodologies. An approach is described to characterise the noise in the recorded signals, which is necessary for a reliable estimate of the background concentration level. Results for measured data provided by a field measurement are presented, and ideas for future work are discussed.

  14. Transient absorption and photocurrent microscopy show that hot electron supercollisions describe the rate-limiting relaxation step in graphene.

    PubMed

    Graham, Matt W; Shi, Su-Fei; Wang, Zenghui; Ralph, Daniel C; Park, Jiwoong; McEuen, Paul L

    2013-01-01

    Using transient absorption (TA) microscopy as a hot electron thermometer, we show that disorder-assisted acoustic-phonon supercollisions (SCs) best describe the rate-limiting relaxation step in graphene over a wide range of lattice temperatures (Tl = 5-300 K), Fermi energies (E(F) = ± 0.35 eV), and optical probe energies (~0.3-1.1 eV). Comparison with simultaneously collected transient photocurrent, an independent hot electron thermometer, confirms that the rate-limiting optical and electrical response in graphene are best described by the SC-heat dissipation rate model, H = A(T(e)(3) - T(l)(3)). Our data further show that the electron cooling rate in substrate-supported graphene is twice as fast as in suspended graphene sheets, consistent with SC model prediction for disorder.

  15. Measurement of solutes in dialysate using UV absorption

    NASA Astrophysics Data System (ADS)

    Fridolin, Ivo; Magnusson, Martin; Lindberg, Lars-Goeran

    2001-06-01

    The aim of this work was to describe a new method for optical monitoring of solutes in a spent dialysate. The method utilizes UV light absorption employing a commercially available spectrophotometer. Measurements were performed both on collected dialysate samples and on-line. The concentration of several removed solutes and electrolytes in the serum and in the dialysate was determined simultaneously using standard laboratory techniques. During on-line monitoring the spectrophotometer was connected to the fluid outlet of the dialysis machine. On-line measurements during a single hemodialysis session demonstrated a possibility to monitor deviations in the dialysator performance (e.g. dialysator in by-pass). The experimental results indicated a good correlation between UV absorption and several removed solutes (urea, creatinine) in the spent dialysate. The correlation coefficient for urea and creatinine concentrations in the dialysate was very high for every individual treatment. The UV absorbance correlates well to the concentrations of several solutes thought to be uremic toxins. The results indicate that the technique can be used as a continuous, on-line method for monitoring deviations in the dialysator performance and may estimate the removal of the overall toxins. In the future, the new method will be used to evaluate parameters describing delivery of the prescribed treatment dose such as KT/V and Urea Reduction Rate (URR).

  16. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  17. Measurement of Zinc Absorption From Meals: Comparison of Extrinsi Zinc Labeling and Independent Measurements of Dietary Zinc Absorption

    PubMed Central

    Sheng, Xiao-Yang; Hambidge, K. Michael; Miller, Leland V.; Westcott, Jamie E.; Lei, Sian; Krebs, Nancy F.

    2017-01-01

    Background Extrinsic labeling techniques are typically used to measure fractional absorption of zinc (FAZextrinsic) but none have been adequately evaluated. Objective To compare determination of the quantity of zinc absorbed (TAZextrinsic) using measurements of FAZextrinsic with results of simultaneous determinations of dietary zinc absorbed (TAZmetabolic) that are not dependent on labeling ingested food with an extrinsic tracer (modified metabolic balance technique). Design 70Zn was administered orally with all meals for 6 consecutive days to 21 healthy, free-living adult women consuming a constant diet. 68Zn and 67Zn were administered intravenously. FAZextrinsic was measured using a dual isotope tracer ratio technique and multiplied by dietary zinc to give TAZextrinsic TAZmetabolic was determined by addition of net absorption of zinc and endogenous fecal zinc, the latter determined by an isotope dilution technique. Results TAZextrinsic and TAZmetabolic were 3.0 ± 1.1mg/day and 3.1 ± 1.1 mg/day respectively, paired t-test p = 0.492. The correlation coefficient for TAZextrinsic and TAZmetabolic was 0.91, and for FAZextrinsic and FAZmetabolic was 0.95. A Bland Altman analysis indicated a bias of 0.07, and the limits of agreement of −0.86 to 1.01 for TAZextrinsic and TAZmatabolic Conclusion These results from two independent methods provide reasonable validation of our extrinsic labeling technique for a wide range of composite diets. PMID:20209474

  18. Measurement of iron absorption from meals contaminated with iron

    SciTech Connect

    Hallberg, L.; Bjoern-Rasmussen, E.

    1981-12-01

    A method is described to measure in vitro the extent of isotopic exchange between the native nonheme food iron and added inorganic reduction to radioiron tracer. The food is digested with pepsin and trypsin in the presence of radioiron. The exchangeability of food iron is calculated from the specific activity in the food and in an extract of bathophenantroline in isoamyl alcohol obtained after digesting this food. The precision and accuracy of the method is illustrated by two kinds of studies, those in which different amounts of contamination iron are added to a meal and those evaluating contamination iron in natural meals. The present method will make it possible to measure validly iron absorption from meals contaminated with unknown amounts of iron of unknown exchangeability with the extrinsic radioiron tracer.

  19. Ultra sound absorption measurements in rock samples at low temperatures

    NASA Technical Reports Server (NTRS)

    Herminghaus, C.; Berckhemer, H.

    1974-01-01

    A new technique, comparable with the reverberation method in room acoustics, is described. It allows Q-measurements at rock samples of arbitrary shape in the frequency range of 50 to 600 kHz in vacuum (.1 mtorr) and at low temperatures (+20 to -180 C). The method was developed in particular to investigate rock samples under lunar conditions. Ultrasound absorption has been measured at volcanics, breccia, gabbros, feldspar and quartz of different grain size and texture yielding the following results: evacuation raises Q mainly through lowering the humidity in the rock. In a dry compact rock, the effect of evacuation is small. With decreasing temperature, Q generally increases. Between +20 and -30 C, Q does not change much. With further decrease of temperature in many cases distinct anomalies appear, where Q becomes frequency dependent.

  20. Ultraviolet absorption: Experiment MA-059. [measurement of atmospheric species concentrations

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hudson, R. D.; Rawlins, W. T.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.

    1977-01-01

    A technique devised to permit the measurement of atmospheric species concentrations is described. This technique involves the application of atomic absorption spectroscopy and the quantitative observation of resonance fluorescence in which atomic or molecular species scatter resonance radiation from a light source into a detector. A beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation was sent from Apollo to Soyuz. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Results of postflight analysis of the resonance fluorescence data are discussed.

  1. Phase measurement of fast light pulse in electromagnetically induced absorption.

    PubMed

    Lee, Yoon-Seok; Lee, Hee Jung; Moon, Han Seb

    2013-09-23

    We report the phase measurement of a fast light pulse in electromagnetically induced absorption (EIA) of the 5S₁/₂ (F = 2)-5P₃/₂ (F' = 3) transition of ⁸⁷Rb atoms. Using a beat-note interferometer method, a stable measurement without phase dithering of the phase of the probe pulse before and after it has passed through the EIA medium was achieved. Comparing the phases of the light pulse in air and that of the fast light pulse though the EIA medium, the phase of the fast light pulse at EIA resonance was not shifted and maintained to be the same as that of the free-space light pulse. The classical fidelity of the fast light pulse according to the advancement of the group velocity by adjusting the atomic density was estimated to be more than 97%.

  2. Spectral Measurements of Aerosol Absorption from UV to VISIBLE

    NASA Astrophysics Data System (ADS)

    Krotkov, N. A.; Labow, G.; Herman, J.; Bhartia, P. K.; Slusser, J.; Durham, B.; Janson, G.; Wilson, C.; Disterhoft, P.; Cede, A.; Abuhassan, N.; Eck, T. F.; Holben, B.; Bais, A.; Rapsomanikis, S.

    2007-05-01

    Amount of solar radiation reaching the Earth's surface can be strongly influenced by aerosol absorption. The aerosol absorption optical thickness (AAOT) in the visible and near IR (440 nm- 1020nm) is routinely produced from almucantar measurements made by the CIMEL instruments in the AERONET network. AAOT in the UV (300nm- 368nm) have been derived from the total and diffuse hemispherical flux measurements made by UV- Multifilter Rotating Shadowband Radiometer (UV-MFRSR, Yankee Environmental Systems, Inc.) instruments. However, no direct comparisons between these two methods exist because the CIMEL wavelengths (used in almucantar retrievals) do not overlap with the UV-MFRSR wavelengths. To enable direct comparisons between the two techniques, we have modified our UV-MFRSR, part of USDA UVB Monitoring and Research Network, by replacing standard 300nm filter with 440nm filter used in AERONET network. The instrument has been deployed at Mauna Loa Observatory, at NASA GSFC in Greenbelt, MD (July 2005 - June 2006) and during SCOUT-03 field campaign in Thessaloniki, Greece in July 2006. During these deployments the instrument's calibration was monitored daily using co-located AERONET and BREWER direct sun measurements of aerosol extinction optical thickness (AOT). Between the deployments the instrument was thoroughly calibrated at the NOAA Central UV Calibration Facility in Boulder, Colorado. We find that the UV-MSFRSR instrument is highly susceptible to calibration drifts. However, these drifts can be accurately assessed using AERONET and BREWER direct sun data. After correcting for these calibration changes, the AAOT was inferred by fitting the measurements of global and diffuse atmospheric transmittances with the forward RT model independently at each spectral channel. The AOT data and ancillary measurements of aerosol column particle size distribution and refractive index in the visible wavelengths (by CIMEL sun-sky almucantar inversions), direct -sun column NO2 and

  3. Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range.

    PubMed

    Leidinger, M; Fieberg, S; Waasem, N; Kühnemann, F; Buse, K; Breunig, I

    2015-08-24

    We employ three highly sensitive spectrometers: a photoacoustic spectrometer, a photothermal common-path interferometer and a whispering-gallery-resonator-based absorption spectrometer, for a comparative study of measuring the absorption coefficient of nominally transparent undoped, congruently grown lithium niobate for ordinarily and extraordinarily polarized light in the wavelength range from 390 to 3800 nm. The absorption coefficient ranges from below 10(-4) cm(-1) up to 2 cm(-1). Furthermore, we measure the absorption at the Urbach tail as well as the multiphonon edge of the material by a standard grating spectrometer and a Fourier-transform infrared spectrometer, providing for the first time an absorption spectrum of the whole transparency window of lithium niobate. The absorption coefficients obtained by the three highly sensitive and independent methods show good agreement.

  4. Detection of water vapour absorption around 363nm in measured atmospheric absorption spectra and its effect on DOAS evaluations

    NASA Astrophysics Data System (ADS)

    Lampel, Johannes; Polyansky, Oleg. L.; Kyuberis, Alexandra A.; Zobov, Nikolai F.; Tennyson, Jonathan; Lodi, Lorenzo; Pöhler, Denis; Frieß, Udo; Platt, Ulrich; Beirle, Steffen; Wagner, Thomas

    2016-04-01

    Water vapour is known to absorb light from the microwave region to the blue part of the visible spectrum at a decreasing magnitude. Ab-initio approaches to model individual absorption lines of the gaseous water molecule predict absorption lines until its dissociation limit at 243 nm. We present first evidence of water vapour absorption at 363 nm from field measurements based on the POKAZATEL absorption line list by Polyansky et al. (2016) using data from Multi-Axis differential optical absorption spectroscopy (MAX-DOAS) and Longpath (LP)-DOAS measurements. The predicted absorptions contribute significantly to the observed optical depths with up to 2 × 10-3. Their magnitude correlates well (R2 = 0.89) to simultaneously measured well-established water vapour absorptions in the blue spectral range from 452-499 nm, but is underestimated by a factor of 2.6 ± 0.6 in the ab-initio model. At a spectral resolution of 0.5nm this leads to a maximum absorption cross-section value of 5.4 × 10-27 cm2/molec at 362.3nm. The results are independent of the employed cross-section data to compensate for the overlayed absorption of the oxygen dimer O4. The newly found absorption can have a significant impact on the spectral retrieval of absorbing trace-gas species in the spectral range around 363 nm. Its effect on the spectral analysis of O4, HONO and OClO are discussed.

  5. A numerical study of a method for measuring the effective in situ sound absorption coefficient.

    PubMed

    Kuipers, Erwin R; Wijnant, Ysbrand H; de Boer, André

    2012-09-01

    The accuracy of a method [Wijnant et al., Proc. of ISMA 31, Leuven, Belgium (2010), Vol. 31] for measurement of the effective area-averaged in situ sound absorption coefficient is investigated. Based on a local plane wave assumption, this method can be applied to sound fields for which a model is not available. Investigations were carried out by means of finite element simulations for a typical case. The results show that the method is a promising method for determining the effective area-averaged in situ sound absorption coefficient in complex sound fields.

  6. Improved measurement of the neutron absorption cross section for very low velocities

    NASA Astrophysics Data System (ADS)

    Schroffenegger, J.; Fierlinger, P.; Hollering, A.; Geltenbort, P.; Lauer, T.; Rauch, H.; Zechlau, T.

    2016-01-01

    The absorption cross section of natural Gd and isotopic enriched 157Gd for ultra-cold neutrons (UCN) as a function of the velocity has been measured within a time-of-flight-experiment. Particular attention is paid to small velocities in the region of a few m/s. This is intended to determine the validity of the 1 / v-law governing absorption cross sections in this region and the resulting divergence at v = 0. The experiment does not show any significant violation of 1 / v for v > 3 m /s.

  7. Aerosol absorption measurement with a sinusoidal phase modulating fiber optic photo thermal interferometer

    NASA Astrophysics Data System (ADS)

    Li, Shuwang; Shao, Shiyong; Mei, Haiping; Rao, Ruizhong

    2016-10-01

    Aerosol light absorption plays an important role in the earth's atmosphere direct and semi-direct radiate forcing, simultaneously, it also has a huge influence on the visibility impairment and laser engineering application. Although various methods have been developed for measuring aerosol light absorption, huge challenge still remains in precision, accuracy and temporal resolution. The main reason is that, as a part of aerosol light extinction, aerosol light absorption always generates synchronously with aerosol light scattering, and unfortunately aerosol light scattering is much stronger in most cases. Here, a novel photo-thermal interferometry is proposed only for aerosol absorption measurement without disturbance from aerosol scattering. The photo-thermal interferometry consists of a sinusoidal phase-modulating single mode fiber-optic interferometer. The thermal dissipation, caused by aerosol energy from photo-thermal conversion when irritated by pump laser through interferometer, is detected. This approach is completely insensitive to aerosol scattering, and the single mode fiber-optic interferometer is compact, low-cost and insensitive to the polarization shading. The theory of this technique is illustrated, followed by the basic structure of the sinusoidal phase-modulating fiber-optic interferometer and demodulation algorithms. Qualitative and quantitative analysis results show that the new photo-thermal interference is a potential approach for aerosol absorption detection and environmental pollution detection.

  8. Measurements and Modeling of Aerosol Absorption and Single Scattering Albedo at Ambient Relative Hum

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Russell, P. B.; Hamill, P.

    2000-01-01

    Uncertainties in the aerosol single scattering albedo have been identified to be an important source of errors in current large-scale model estimates of the direct aerosol radiative forcing of climate. A number of investigators have obtained estimates of the single scattering albedo from a variety of remote sensing and in situ measurements during aerosol field experiments. During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, 1996) for example, estimates of the aerosol single scattering albedo were obtained (1) as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from independently measured aerosol properties; (2) from estimates of the aerosol complex index of refraction derived using a combination of airborne sunphotometer, lidar backscatter and in situ size distribution measurements; and (3) from airborne measurements of aerosol scattering and absorption using nephelometers and absorption photometers. In this paper, we briefly compare the results of the latter two methods for two TARFOX case studies, since those techniques provide height-resolved information about the aerosol single scattering albedo. Estimates of the aerosol single scattering albedo from nephelometer and absorption photometer measurements require knowledge of the scattering and absorption humidification (i.e., the increase in these properties in response to an increase in ambient relative humidity), since both measurements are usually carried out at a relative humidity different from the ambient atmosphere. In principle, the scattering humidification factor can be measured, but there is currently no technique widely available to measure the absorption of an aerosol sample as a function of relative humidity. Frequently, for lack of better knowledge, the absorption humidification is assumed to be unity (meaning that there is no change in aerosol absorption due to an increase in ambient relative humidity). This

  9. Laser induced deflection technique for absolute thin film absorption measurement: optimized concepts and experimental results

    SciTech Connect

    Muehlig, Christian; Kufert, Siegfried; Bublitz, Simon; Speck, Uwe

    2011-03-20

    Using experimental results and numerical simulations, two measuring concepts of the laser induced deflection (LID) technique are introduced and optimized for absolute thin film absorption measurements from deep ultraviolet to IR wavelengths. For transparent optical coatings, a particular probe beam deflection direction allows the absorption measurement with virtually no influence of the substrate absorption, yielding improved accuracy compared to the common techniques of separating bulk and coating absorption. For high-reflection coatings, where substrate absorption contributions are negligible, a different probe beam deflection is chosen to achieve a better signal-to-noise ratio. Various experimental results for the two different measurement concepts are presented.

  10. Quantitative measurement of endogenous amino acid absorption in unanaesthetized pigs.

    PubMed

    Rerat, A; Vaissade, P; Vaugelade, P

    1988-06-01

    The present experiment was carried out with 11 pigs (mean body weight: 53.9 +/- 1.3 kg) fitted with permanent catheters in the portal vein and carotid artery and with an electromagnetic flow probe around the portal vein. They were each subjected to 2 or 3 trials at 3 to 4-day intervals. During each trial the animals received after a previous fasting of 20 h a given amount of a protein-free diet (200 to 1200 g). The blood was collected either continuously for a quantitative determination of amino nitrogen, reducing sugars, urea and ammonia (number of meals 12, mean intake: 727 +/- 60 g) or discontinuously every 30 min between 0 and 8 h after the meal for amino acid analysis (number of meals 8; mean intake 709 +/- 105 g). A rather constant appearance (2 g/h) of amino acids in the portal blood was observed throughout the postprandial period. The intestinal absorption of each amino acid was however variable and represented between 10 and 50% of the daily requirements of the animal during the measuring period (8 h). Glutamine and to a less extent glutamic acid were exceptions as they were taken up by the gut wall from the arterial blood. There was also a marked synthesis of ornithine and citrulline by the latter. Because of the low blood level of urea, there were no apparent exchanges of urea between the blood and the intestine; in contrast, the ammonia absorption represented about 70% of that observed after ingestion of normal protein diets. Most amino acids are largely taken up by the liver and peripheral tissues, but in the case of alanine the syntheses exceed the uptake.

  11. Development of an alkali chloride vapour-generating apparatus for calibration of ultraviolet absorption measurements

    NASA Astrophysics Data System (ADS)

    Leffler, T.; Brackmann, C.; Berg, M.; Aldén, M.; Li, Z. S.

    2017-02-01

    A novel design of alkali chloride vapour-generating cell has been developed, which can serve as a calibration cell for quantitative ultraviolet absorption concentration measurements and meticulous spectral investigations of alkali compounds. The calibration cell was designed to provide alkali vapour of well-controlled concentrations and temperatures, and consisted of a sealed quartz cell measuring 0.4 m in length with a temperature-controlled reservoir containing solid alkali salt. The cell was placed in a furnace and the alkali vapours generated from the reservoir have direct access to the measuring chamber. Investigations of potassium chloride (KCl) were made on sublimated vapour at temperatures 650, 700, 750, 780, and 800 °C while the reservoir temperature was kept 50 °C lower to avoid condensation. The cell provides stable KCl vapour pressures, and the furnace provides a homogenous temperature profile along the cell. KCl vapour pressures are well characterised and conform the base for determination of the KCl concentration in the cell. The alkali chloride levels matched the concentration range of the absorption setup and indicated a previously employed calibration method to overestimate KCl concentrations. The KCl absorption cross sections for wavelengths λ =197.6 nm and λ =246.2 nm were calculated to be 3.4 × 10-17 and 2.9 × 10-17 cm2/molecule, respectively. The absorption cross section spectra did not show any structural differences with increasing temperature, which could indicate influence of dimers or significant changes of the population in the KCl vibrational states. The KCl absorption cross sections thus did not show any temperature dependence in the temperature region of 700-800 °C. Moreover, the applicability of the calibration cell for measurement of other alkali chlorides and hydroxides is discussed.

  12. Retrieval of Black Carbon Absorption from Proposed Satellite Measurements Over the Ocean Glint

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Matins, J. V.; Remer, L. A.; Schoeberl, M. R.; Yamasoe, M. A.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Haze and air pollution includes many chemicals that together form small particles suspended in the air called aerosols. One of the main ingredients found to affect climate and human health is Black Carbon. Black particles emitted from engines that do not burn the fuel completely, e.g. old trucks. Black carbon absorption of sunlight emerges as one of the key components of man-made forcing of climate. However, global characterization of black carbon emissions, distribution and pathways in which it can affect the amount of solar radiation absorbed by the atmosphere is very uncertain. A new method is proposed to measure sunlight absorption by fine aerosol particles containing black carbon over the ocean glint from a satellite mission designed for this purpose. The satellite will scan the same spot over the ocean in the glint plane and a plane 40 degrees off-glint a minute apart, collecting measurements of the reflected light across the solar spectrum. First the dark ocean off the glint is used to derive aerosol properties. Then the black carbon absorption is derived prop the attenuation of the bright glint by the aerosol layer. Such measurements if realized in a proposed future mission - COBRA are expected to produce global monthly climatology of black carbon absorption with high accuracy (110 to 15%) that can show their effect on climate.

  13. Calculation of UV attenuation and colored dissolved organic matter absorption spectra from measurements of ocean color

    NASA Astrophysics Data System (ADS)

    Johannessen, S. C.; Miller, W. L.; Cullen, J. J.

    2003-09-01

    The absorption of ultraviolet and visible radiation by colored or chromophoric dissolved organic matter (CDOM) drives much of marine photochemistry. It also affects the penetration of ultraviolet radiation (UV) into the water column and can confound remote estimates of chlorophyll concentration. Measurements of ocean color from satellites can be used to predict UV attenuation and CDOM absorption spectra from relationships between visible reflectance, UV attenuation, and absorption by CDOM. Samples were taken from the Bering Sea and from the Mid-Atlantic Bight, and water types ranged from turbid, inshore waters to the Gulf Stream. We determined the following relationships between in situ visible radiance reflectance, Lu/Ed (λ) (sr-1), and diffuse attenuation of UV, Kd(λ) (m-1): Kd(323nm) = 0.781[Lu/Ed(412)/Lu/Ed(555)]-1.07; Kd(338nm) = 0.604[Lu/Ed(412)/Lu/Ed(555)]-1.12; Kd(380 nm) = 0.302[Lu/Ed(412)/Lu/Ed(555)]-1.24. Consistent with published observations, these empirical relationships predict that the spectral slope coefficient of CDOM absorption increases as diffuse attenuation of UV decreases. Excluding samples from turbid bays, the ratio of the CDOM absorption coefficient to Kd is 0.90 at 323 nm, 0.86 at 338 nm, and 0.97 at 380 nm. We applied these relationships to SeaWiFS images of normalized water-leaving radiance to calculate the CDOM absorption and UV attenuation in the Mid-Atlantic Bight in May, July, and August 1998. The images showed a decrease in UV attenuation from May to August of approximately 50%. We also produced images of the areal distribution of the spectral slope coefficient of CDOM absorption in the Georgia Bight. The spectral slope coefficient increased offshore and changed with season.

  14. Inferring brown carbon content from UV aerosol absorption measurements during biomass burning season

    NASA Astrophysics Data System (ADS)

    Mok, J.; Krotkov, N. A.; Arola, A. T.; Torres, O.; Jethva, H. T.; Andrade, M.; Labow, G. J.; Eck, T. F.; Li, Z.; Dickerson, R. R.; Stenchikov, G. L.; Osipov, S.

    2015-12-01

    Measuring spectral dependence of light absorption by colored organic or "brown" carbon (BrC) is important, because of its effects on photolysis rates of ozone and surface ultraviolet (UV) radiation. Enhanced UV spectral absorption by BrC can in turn be exploited for simultaneous retrievals of BrC and black carbon (BC) column amounts in field campaigns. We present an innovative ground-based retrieval of BC and BrC volume fractions and their mass absorption efficiencies during the biomass burning season in Santa Cruz, Bolivia in September-October 2007. Our method combines retrieval of BC volume fraction using AERONET inversion in visible wavelengths with the inversion of total BC+BrC absorption (i.e., column effective imaginary refractive index, kmeas) using Diffuse/Direct irradiance measurements in UV wavelengths. First, we retrieve BrC volume fraction by fitting kmeas at 368nm using Maxwell-Garnett (MG) mixing rules assuming: (1) flat spectral dependence of kBC, (2) known value of kBrC at 368nm from laboratory absorption measurements or smoke chamber experiments, and (3) known BC volume fraction from AERONET inversion. Next, we derive kBrC in short UVB wavelengths by fitting kmeas at 305nm, 311nm, 317nm, 325nm, and 332nm using MG mixing rules and fixed volume fractions of BC and BrC. Our retrievals show larger than expected spectral dependence of kBrC in UVB wavelengths, implying reduced surface UVB irradiance and inhibited photolysis rates of surface ozone destruction. We use a one-dimensional chemical box model to show that the observed strong wavelength dependence of BrC absorption leads to inhibited photolysis of ozone to O(1D), a loss mechanism, while having little impact or even accelerating photolysis of NO2, an ozone production mechanism. Although BC only absorption in biomass burning aerosols is important for climate radiative forcing in the visible wavelengths, additional absorption by BrC is important because of its impact on surface UVB radiation

  15. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  16. Differential absorption lidar technique for measurement of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Weng, C. Y.

    1983-01-01

    A new two-wavelength lidar technique for remotely measuring the pressure profile using the trough absorption region between two strong lines in the oxygen A band is described. The theory of integrated vertical path, differential ranging, and horizontal-path pressure measurements is given, with methods to desensitize and correct for temperature effects. The properties of absorption troughs are described and shown to reduce errors due to laser frequency jitter by up to two orders of magnitude. A general analysis, including laser bandwidth effects, demonstrates that pressure measurements with an integrated-vertical-path technique are typically fifty times more accurate than with a differential ranging technique. Simulations show 0.1-0.3 percent accuracy for ground and Shuttle-based pressure-profile and surface-pressure experiments.

  17. Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements.

    PubMed

    Yin, Lu; Wang, Qiang; Zhang, Qizhi; Jiang, Huabei

    2007-09-01

    We present a new method that can provide high resolution images of absolute optical absorption coefficient in heterogeneous turbid media. In this method, acoustic measurements in conventional photoacoustic tomography are combined with diffusing light measurements to separate the product of absorption coefficient and optical fluence or photon density. We validate this method using a series of tissuelike phantom experiments. The experimental results show that targets as small as 0.5 mm in diameter with optical absorption contrasts as low as 1.5 relative to a 50 mm diameter scattering background medium can be clearly detected.

  18. Improved self-absorption correction for extended x-ray absorption fine-structure measurements

    SciTech Connect

    Booth, C.H.; Bridges, F.

    2003-06-04

    Extended x-ray absorption fine-structure (EXAFS) data collected in the fluorescence mode are susceptible to an apparent amplitude reduction due to the self-absorption of the fluorescing photon by the sample before it reaches a detector. Previous treatments have made the simplifying assumption that the effect of the EXAFS on the correction term is negligible, and that the samples are in the thick limit. We present a nearly exact treatment that can be applied for any sample thickness or concentration, and retains the EXAFS oscillations in the correction term.

  19. Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications.

    PubMed

    Werblinski, Thomas; Engel, Sascha R; Engelbrecht, Rainer; Zigan, Lars; Will, Stefan

    2013-06-03

    The first supercontinuum (SC) absorption spectroscopy measurements showing the feasibility of quantitative temperature evaluation are presented to the best of the authors' knowledge. Temperature and multi-species measurements were carried out at a detection rate of ~2 MHz in a high-temperature flow cell within a temperature range from 450 K to 750 K at 0.22 MPa, representing conditions during the suction and compression stroke in an internal combustion (IC) engine. The broadband SC pulses were temporally dispersed into fast wavelength sweeps, covering the overtone absorption bands 2ν(1), 2ν(3), ν(1) + ν(3) of H2O and 3ν(3) of CO2 in the near-infrared region from 1330 nm to 1500 nm. The temperature information is inferred from the peak ratio of a temperature sensitive (1362.42 nm) and insensitive (1418.91 nm) absorption feature in the ν(1) + ν(3) overtone bands of water. The experimental results are in very good agreement with theoretical intensity ratios calculated from absorption spectra based on HiTran data.

  20. In situ Gas Temperature Measurements by UV-Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fateev, A.; Clausen, S.

    2009-02-01

    The absorption spectrum of the NO A2Σ+ ← X2Πγ-system can be used for in situ evaluation of gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path in the range from 23 °C to 1,500 °C. The gas temperature was evaluated (1) from the analysis of the structure of selected NO high-resolution γ-absorption bands and (2) from the analysis of vibrational distribution in the NO γ-absorption system in the (211-238) nm spectral range. The accuracy of both methods is discussed. Validation of the classical Lambert-Beer law has been demonstrated at NO concentrations up to 500 ppm and gas temperatures up to 1,500 °C over an optical absorption path length of 0.533 m.

  1. Measurement and calculation of the sound absorption coefficient of pine wood charcoal

    NASA Astrophysics Data System (ADS)

    Suh, Jae Gap; Baik, Kyung min; Kim, Yong Tae; Jung, Sung Soo

    2013-10-01

    Although charcoal has been widely utilized for physical therapy and as a deodorant, water purifier, etc. due to its porous features, research on its role as a sound-absorbing material is rarely found. Thus, the sound absorption coefficients of pine wood charcoal were measured using an impedance tube and were compared with the theoretical predictions in the frequency range of 500˜ 5000 Hz. The theory developed in the current study only considers the lowest possible mode propagating along the air channels of the charcoal and shows good agreements with the measurements. As the frequency is increased, the sound absorption coefficients of pine wood charcoals also increase, but are lower than those of other commonly-used sound-absorbing materials.

  2. Novel approach for non-invasive glucose sensing using vibrational contrast CD absorption measurements (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vladislav V.; Tovar, Carlos; Hokr, Brett; Petrov, Georgi I.

    2016-03-01

    Noninvasive glucose sensing is a Holy Grail of diabetes mellitus management. Unfortunately, despite a number of innovative concepts and a long history of continuous instrumental improvements, the problem remains largely unsolved. Here we propose and experimentally demonstrate the first successful implementation of a novel strategy based on vibrational overtone circular dichroism absorption measurements. Such an approach uses a short-wavelength infrared excitation (1000-2000 nm), which takes the advantage of lower light scattering and intrinsic chemical contrast provided by the chemical structure of D-glucose molecule. We model the propagation of circular polarized light in scattering medium using Monte Carlo simulations to show the feasibility of such approach in turbid medium and demonstrate the proof of principle using optical detection. We also investigate the possibility of using ultrasound detection through circular dichroism absorption measurements to achieve simple and sensitive glucose monitoring.

  3. Refinement of the ice absorption spectrum in the visible using radiance profile measurements in Antarctic snow

    NASA Astrophysics Data System (ADS)

    Picard, Ghislain; Libois, Quentin; Arnaud, Laurent

    2016-11-01

    Ice is a highly transparent material in the visible. According to the most widely used database (IA2008; Warren and Brandt, 2008), the ice absorption coefficient reaches values lower than 10-3 m-1 around 400 nm. These values were obtained from a vertical profile of spectral radiance measured in a single snow layer at Dome C in Antarctica. We reproduced this experiment using an optical fiber inserted in the snow to record 56 profiles from which 70 homogeneous layers were identified. Applying the same estimation method on every layer yields 70 ice absorption spectra. They present a significant variability but absorption coefficients are overall larger than IA2008 by 1 order of magnitude at 400-450 nm. We devised another estimation method based on Bayesian inference that treats all the profiles simultaneously. It reduces the statistical variability and confirms the higher absorption, around 2 × 10-2 m-1 near the minimum at 440 nm. We explore potential instrumental artifacts by developing a 3-D radiative transfer model able to explicitly account for the presence of the fiber in the snow. The simulation shows that the radiance profile is indeed perturbed by the fiber intrusion, but the error on the ice absorption estimate is not larger than a factor of 2. This is insufficient to explain the difference between our new estimate and IA2008. The same conclusion applies regarding the plausible contamination by black carbon or dust, concentrations reported in the literature are insufficient. Considering the large number of profiles acquired for this study and other estimates from the Antarctic Muon and Neutrino Detector Array (AMANDA), we nevertheless estimate that ice absorption values around 10-2 m-1 at the minimum are more likely than under 10-3 m-1. A new estimate in the range 400-600 nm is provided for future modeling of snow, cloud, and sea-ice optical properties. Most importantly, we recommend that modeling studies take into account the large uncertainty of the ice

  4. Is There a Common Correction for Biases in Historic Filter-Based Aerosol Absorption Measurements?

    NASA Astrophysics Data System (ADS)

    McComiskey, A. C.; Jefferson, A.; Dubey, M. K.; Aiken, A. C.; Fast, J. D.; Flynn, C. J.; Kassianov, E.

    2014-12-01

    Improved characterization of aerosol absorption is a pressing need for improving estimates of climate forcing by aerosols. Measurements of aerosol absorption are difficult to make with the accuracy and precision demanded by climate science. While several different approaches have been employed and new techniques have emerged, none can yet be considered a true 'gold standard'. Instruments that use filter-based methods have been the most widely used and are the basis of historic records. However, several studies using direct photoacoustic techniques have shown that filter-based measurements can be biased relative to these direct measurements. It has been demonstrated that this bias depends strongly on aerosol chemical composition, specifically concentration of organic mass. The wealth of information in the extensive set of historical filter-based data demands that this bias be diagnosed and corrected. A correction is critical for proper evaluation and development of chemical transport models, improved retrievals from remote sensing measurements, and integrating aerosol absorption surface and sub-orbital in situ measurements with knowledge gained from these other approaches. We have performed an intercomparison of absorption coefficients from a photoacoustic and two filter-based instruments with co-located organic mass concentrations from continuous, half-hourly averaged measurements over six months at a remote, continental site in the US (ARM SGP). The results show a bias in the filter-based measurements with organic concentration that is consistent with previous studies. Previous results come from controlled lab studies or field campaigns where absorption coefficients and organic concentrations are high and may represent aerosol close to the source. The current study is important in that these quantities are much lower and the aerosol likely more aged, representing a larger portion of the global conditions, yet shows a similar bias. This site provides other measures

  5. Cavity ring-down spectrometer for high-fidelity molecular absorption measurements

    NASA Astrophysics Data System (ADS)

    Lin, H.; Reed, Z. D.; Sironneau, V. T.; Hodges, J. T.

    2015-08-01

    We present a cavity ring-down spectrometer which was developed for near-infrared measurements of laser absorption by atmospheric greenhouse gases. This system has several important attributes that make it possible to conduct broad spectral surveys and to determine line-by-line parameters with wide dynamic range, and high spectral resolution, sensitivity and accuracy. We demonstrate a noise-equivalent absorption coefficient of 4×10-12 cm-1 Hz-1/2 and a signal-to-noise ratio of 1.5×106:1 in an absorption spectrum of carbon monoxide. We also present high-resolution measurements of trace methane in air spanning more than 1.2 THz and having a frequency axing with an uncertainty less than 100 kHz. Finally, we discuss how this system enables stringent tests of advanced line shape models. To illustrate, we measured an air-broadened carbon dioxide transition over a wide pressure range and analyzed these data with a multi-spectrum fit of the partially correlated, quadratic speed-dependent Nelkin-Ghatak profile. We obtained a quality-of-fit parameter in the multispectrum fit equal to 36,000, thus quantifying small-but-measurable limitations of the model profile. This analysis showed that the line shape depends upon collisional narrowing, speed dependent effects and partial correlations between velocity- and phase-changing collisions.

  6. Model studies of laser absorption computed tomography for remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Wolfe, D. C., Jr.; Byer, R. L.

    1982-01-01

    Model studies of the potential of laser absorption-computed tomography are presented which demonstrate the possibility of sensitive remote atmospheric pollutant measurements, over kilometer-sized areas, with two-dimensional resolution, at modest laser source powers. An analysis of this tomographic reconstruction process as a function of measurement SNR, laser power, range, and system geometry, shows that the system is able to yield two-dimensional maps of pollutant concentrations at ranges and resolutions superior to those attainable with existing, direct-detection laser radars.

  7. Measurements of the Absorption by Auditorium SEATING—A Model Study

    NASA Astrophysics Data System (ADS)

    BARRON, M.; COLEMAN, S.

    2001-01-01

    One of several problems with seat absorption is that only small numbers of seats can be tested in standard reverberation chambers. One method proposed for reverberation chamber measurements involves extrapolation when the absorption coefficient results are applied to actual auditoria. Model seat measurements in an effectively large model reverberation chamber have allowed the validity of this extrapolation to be checked. The alternative barrier method for reverberation chamber measurements was also tested and the two methods were compared. The effect on the absorption of row-row spacing as well as absorption by small numbers of seating rows was also investigated with model seats.

  8. On the errors in measuring the particle density by the light absorption method

    SciTech Connect

    Ochkin, V. N.

    2015-04-15

    The accuracy of absorption measurements of the density of particles in a given quantum state as a function of the light absorption coefficient is analyzed. Errors caused by the finite accuracy in measuring the intensity of the light passing through a medium in the presence of different types of noise in the recorded signal are considered. Optimal values of the absorption coefficient and the factors capable of multiplying errors when deviating from these values are determined.

  9. [In situ temperature measurement by absorption spectroscopy based on time division multiplexing technology].

    PubMed

    Lou, Nan-zheng; Li, Ning; Weng, Chun-sheng

    2012-05-01

    Tunable diode laser absorption spectroscopy (TDLAS) technology is a kind of high sensitivity, high selectivity of non contacting gas in situ measurement technique. In the present paper, in situ gas temperature measurement of an open environment was achieved by means of direct scanning multiple characteristic lines of H2O and combined with least-squares algorithm. Through the use of HITRAN spectral database, the boundary effect on the gas temperature and concentration measurements was discussed in detail, and results showed that the combination of scanning multiple characteristic lines and least-squares algorithm can effectively reduce the boundary effect on the gas temperature measurements under the open environment. Experiments using time division multiplexing technology to simultaneously scan 7444.36, 7185.60, 7182.95 and 7447.48 cm(-1), the four characteristic H2O lines, the gas temperature of tubular furnace in the range of 573-973 K was measured under different conditions. The maximum temperature difference between absorption spectrum measurement and thermocouple signal was less than 52.4 K, and the maximum relative error of temperature measurement was 6.8%.

  10. Measurements of scattering and absorption properties of surface aerosols at a semi-arid site, Anantapur

    NASA Astrophysics Data System (ADS)

    Rama Gopal, K.; Balakrishnaiah, G.; Arafath, S. Md.; Raja Obul Reddy, K.; Siva Kumar Reddy, N.; Pavan Kumari, S.; Raghavendra Kumar, K.; Chakradhar Rao, T.; Lokeswara Reddy, T.; Reddy, R. R.; Nazeer Hussain, S.; Vasudeva Reddy, M.; Suresh Babu, S.; Mallikarjuna Reddy, P.

    2017-01-01

    Aerosol optical properties are continuously measured at a semi-arid station, Anantapur from June 2012 to May 2013 which describes the impact of surface aerosols on climate change over the region. Scattering coefficient (σsct) and absorption coefficient (σabs) are obtained from integrating Nephelometer and Aethalometer, respectively. Also, the single scattering albedo (ω0), Scattering/absorption Ångström exponents were examined during the period of study. Diurnal variations of σsct and σabs show a bi-peak pattern with two maxima and one minimum in a day. The largest values of σsct and σabs are obtained in winter while the lowest values are measured in monsoon. From the measurements σsct550 and σabs550 are found to be 110 ± 12.23 Mm- 1 and 33 ± 5.2 Mm- 1, respectively during the study period. An analysis of the ω0 suggests that there is a more absorbing fraction in the particle composition over the measurement site. The ω0 obtained in the surface boundary layer of Anantapur is below the critical value of 0.86 that determines the shift from cooling to warming. A relationship between scattering/absorption coefficients and scattering/absorption Ångström exponent and single scattering albedo is further examined. In order to understand the origins of the air masses in the study region, we performed seven-day back trajectory analyses based on the NOAA HYSPLIT model. These trajectories were computed at several altitudes (3000 m, 1500 m, and 500 m) for June 2012 and May 2013. These results put in evidence the need of efforts to reduce absorbing particles (black carbon) emissions to avoid the possible warming that would result from the reductions of the cooling aerosol only.

  11. Inference of the microwave absorption coefficient from stray radiation measurements in Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Marushchenko, N.; Stange, T.; Braune, H.; Gellert, F.; Hirsch, M.; Hoefel, U.; Knauer, J.; Oosterbeek, J. W.; Turkin, Y.; The Wendelstein 7-X Team

    2017-03-01

    The efficiency of electron cyclotron heating is determined by the microwave absorption of the plasma. Good microwave absorption is also crucial for the machine safety. In this paper we present a method of evaluating the microwave absorption coefficient from stray radiation measurements. The discussed method is computationally simple and can be applied potentially in real time. Evolution of the second harmonic extraordinary mode (X2) microwave absorption coefficient in Wendelstein 7-X during the start-up phase is presented, as well as an estimate of the absorption coefficient for the second harmonic ordinary mode (O2) wave.

  12. MAX-DOAS measurements in southern China: 1. automated aerosol profile retrieval using oxygen dimers absorptions

    NASA Astrophysics Data System (ADS)

    Li, X.; Brauers, T.; Shao, M.; Garland, R. M.; Wagner, T.; Deutschmann, T.; Wahner, A.

    2008-09-01

    We performed MAX-DOAS measurements during the PRiDe-PRD2006 campaign in the Pearl River Delta region 50 km north of Guangzhou, China, for 4 weeks in June 2006. We used an instrument which simultaneously sampled the wavelength range from 292 nm to 443 nm at 7 different elevation angles between 3° and 90°. Here we show that the O4 (O2 dimer) absorption at 360 nm can be used to retrieve the aerosol extinction and the height of the boundary layer. A comparison with simultaneously recorded, ground based nephelometer data shows an excellent agreement.

  13. Acoustic Absorption Measurements for Characterization of Gas Mixing

    DTIC Science & Technology

    2007-11-02

    of the box (Gas A). Gas B is humidified by passing the same grade CO2 through a bubbler. The humidity of the gas is varied by mixing the relative...the accuracy with which the “mixedness profile” can be inverted. 1Bhatia, A., Ultrasonic Absorption, Dover Publications: New York, 1967. 2

  14. Collisional Induced Absorption (CIA) bands measured in the IR spectral range .

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    In this work we present two experimental setup able to characterize the optical properties of gases, in particular CO_2 and H_2, at typically planetary conditions. The apparatus consists of a Fourier Transform InfraRed (FT-IT) interferometer able to work in a wide spectral range, from 350 to 25000 cm-1 (0.4 to 29 mu m ) with a relatively high spectral resolution, from 10 to 0.07 cm-1. Two dedicated gas cells have been integrated with the FT-IR. The first, called High Pressure High Temperature (HP-HT), can support pressures up to 300 bar, temperatures up to 300oC and is characterized by an optical path of 2 cm. The second one, a Multi Pass (MP) absorption gas cell, is designed to have a variable optical path, from 2.5 to 30 m, can be heated up to 200o and operate at pressures up to 10 bar. In this paper, measurements of Collision-Induced Absorption (CIA) bands in carbon dioxide and hydrogen recorded in the InfraRed spectral range will be presented. In principle, linear symmetric molecules such as CO_2 and H_2 possess no dipole moment, but, even when the pressure is only a few bar, we have observed the Collisional Induced Absorption (CIA) bands. This absorption results from a short-time collisional interaction between molecules. The band integrated intensity shows a quadratic dependence versus density opposed to the absorption by isolated molecules, which follows Beer's law \\citep{Beer's}. This behaviour suggests an absorption by pairs rather than by individual molecules. The bands integrated intensities show a linear dependence vs square density according to \\citep {CIA Shape} and \\citep{CIA posi}. For what concerns the H_2 CIA bands, a preliminary comparison between simulated data obtained with the model described in \\citep{CIA H2}and measured, shows a good agreement. These processes are very relevant in the dense atmospheres of planets, such as those of Venus and Jupiter and also in extrasolar planets. A detailed knowledge of these contributions is very

  15. [Genetic programming used for the measurement of CO concentration based on nondispersive infrared absorption spectroscopy].

    PubMed

    Chen, Jin; Duan, Fa-jie; Tong, Ying; Gao, Qiang

    2011-07-01

    Nondispersive infrared absorption spectroscopy(NDIR) is an important method to measure CO concentration in the air. In the present study, an open-path measurement system and continuous measuring device was developed, and genetic programming was used to establish the calibration model of subjects' light intensity sampling values. Continuous measurements were carried out in 10 different concentration of CO, and 40 sampled data were acquired and analyzed. For validation set, the correlation coefficient was 0.9997. The biggest relative error of validation was 4.00%, and the average relative error was 1.11%. Results show that genetic programming can be a good method for the modeling of gas concentration measurements equipped with NDIR systems.

  16. Impact of Tropospheric Aerosol Absorption on Ozone Retrieval from buv Measurements

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.

    1998-01-01

    The impact of tropospheric aerosols on the retrieval of column ozone amounts using spaceborne measurements of backscattered ultraviolet radiation is examined. Using radiative transfer calculations, we show that uv-absorbing desert dust may introduce errors as large as 10% in ozone column amount, depending on the aerosol layer height and optical depth. Smaller errors are produced by carbonaceous aerosols that result from biomass burning. Though the error is produced by complex interactions between ozone absorption (both stratospheric and tropospheric), aerosol scattering, and aerosol absorption, a surprisingly simple correction procedure reduces the error to about 1%, for a variety of aerosols and for a wide range of aerosol loading. Comparison of the corrected TOMS data with operational data indicates that though the zonal mean total ozone derived from TOMS are not significantly affected by these errors, localized affects in the tropics can be large enough to seriously affect the studies of tropospheric ozone that are currently undergoing using the TOMS data.

  17. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  18. Measurement of initial absorption of fused silica at 193nm using laser induced deflection technique (LID)

    NASA Astrophysics Data System (ADS)

    Schönfeld, Dörte; Klett, Ursula; Mühlig, Christian; Thomas, Stephan

    2008-01-01

    The ongoing development in microlithography towards further miniaturization of structures creates a strong demand for lens material with nearly ideal optical properties. Beside the highly demanding requirements on homogeneity and stress induced birefringence (SIB), low absorption is a key factor. Even a small absorption is associated with a temperature increase and results in thermally induced local variations of refractive index and SIB. This could affect the achievable resolution of the lithographic process. The total absorption of the material is composed of initial absorption and of absorption induced during irradiation. Thus, the optimization of both improves the lifetime of the material. In principal, it is possible to measure transmission and scattering with a suitable spectrometer assembly and calculate absorption from them. However, owing to the influence of sample surfaces and errors of measurement, these methods usually do not provide satisfactory results for highly light-transmissive fused silica. Therefore, it is most desirable to find a technique that is capable of directly measuring absorption coefficients in the range of (1...10)•10 -4 cm -1 (base 10) directly. We report our first results for fused silica achieved with the LID technique. Besides a fused silica grade designed for 193 nm applications, grades with higher absorption at 193 nm were measured to test the LID technique. A special focus was set on the possibility of measuring initial absorption without the influence of degradation effects.

  19. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements.

    PubMed

    Koch, Grady J; Beyon, Jeffrey Y; Gibert, Fabien; Barnes, Bruce W; Ismail, Syed; Petros, Mulugeta; Petzar, Paul J; Yu, Jirong; Modlin, Edward A; Davis, Kenneth J; Singh, Upendra N

    2008-03-01

    A 2 microm wavelength, 90 mJ, 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 2.9 GHz from the center of a CO(2) absorption line. Once detuned from the line center the laser wavelength is actively locked to keep the wavelength within 1.9 MHz standard deviation about the setpoint. This wavelength control allows optimization of the optical depth for a differential absorption lidar (DIAL) measuring atmospheric CO(2) concentrations. The laser transmitter has been coupled with a coherent heterodyne receiver for measurements of CO(2) concentration using aerosol backscatter; wind and aerosols are also measured with the same lidar and provide useful additional information on atmospheric structure. Range-resolved CO(2) measurements were made with <2.4% standard deviation using 500 m range bins and 6.7 min? (1000 pulse pairs) integration time. Measurement of a horizontal column showed a precision of the CO(2) concentration to <0.7% standard deviation using a 30 min? (4500 pulse pairs) integration time, and comparison with a collocated in situ sensor showed the DIAL to measure the same trend of a diurnal variation and to detect shorter time scale CO(2) perturbations. For vertical column measurements the lidar was setup at the WLEF tall tower site in Wisconsin to provide meteorological profiles and to compare the DIAL measurements with the in situ sensors distributed on the tower up to 396 m height. Assuming the DIAL column measurement extending from 153 m altitude to 1353 m altitude should agree with the tower in situ sensor at 396 m altitude, there was a 7.9 ppm rms difference between the DIAL and the in situ sensor using a 30 min? rolling average on the DIAL measurement.

  20. Measurements of Cs absorption and retention in man

    SciTech Connect

    Henrichs, H.; Paretzke, H.G.; Voigt, G.; Berg, D. )

    1989-10-01

    One of the consequences of the Chernobyl reactor accident in 1986 was a comparatively high contamination of foodstuffs in Southern Federal Republic of Germany. In order to test radioecological models predicting the radiological consequences of such accidents, several thousand measurements were performed to determine Cs body burdens in members of the public. For the interpretation of these data and as a contribution to the improvement of the available database on the biokinetics of Cs isotopes in humans, we followed a small group of volunteers after their consumption of highly contaminated venison. Intakes, excretion rates and total body activities were measured during a period of more than 200 d. The data obtained were evaluated in terms of a compartment model to derive gastrointestinal uptakes, biological half-lives and dose conversion factors. The resulting uptake factors range from 65-90%, the half-lives of the long-term retention from 45 to 200 d. The majority of the resulting dose conversion factors lie below the values recommended by the ICRP, showing that the ICRP model is a reasonable and safe description of the Cs biokinetics in our study group, while the great variability of the results shows that it is not an accurate representation of the individual Cs retention.

  1. THE EFFECT OF 3HE ON LOW PRESSURE HYDRIDE ABSORPTION MEASUREMENTS WITH TRITIUM

    SciTech Connect

    Staack, G.; Klein, J.

    2011-01-20

    Absorption isotherm data exists for a wide variety of hydrogen-metal systems. When working with high purity gases, appropriately sized equipment, and hydrides with equilibrium pressures above several hundred Pa, data collection is relatively straightforward. Special consideration must be given to experiments involving low equilibrium pressure hydrides, as even sub-ppm levels of gas impurities can generate partial pressures many times greater than the equilibrium pressures to be measured. Tritium absorption experiments are further complicated by the continuous generation of helium-3. The time required to transfer and absorb a known quantity of tritium onto a sample ultimately limits the minimum pressure range that can be studied using the standard technique. Equations are presented which show the pressure of helium-3 in a sample cell based on the amount of tritium to be absorbed, the sample cell volume and temperature, and the decay time of tritium. Sample calculations for zirconium show that at 300 C, the estimated helium-3 pressure in the cell will be equal to the hydrogen absorption pressure after only milliseconds of tritium decay. An alternate method is presented that permits the collection of equilibrium data at pressures orders of magnitude lower than possible using a direct approach.

  2. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  3. The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics

    NASA Astrophysics Data System (ADS)

    Hendricks, A. G.; Vandsburger, U.; Saunders, W. R.; Baumann, W. T.

    2006-01-01

    Tunable diode laser absorption spectroscopy was used to measure temperature fluctuations in acoustically forced laminar and turbulent flames. The absorption of two high-temperature water lines, at 7444.37 cm-1 (v1+v3 bands) and 7185.59 cm-1 (2v1, v1+v3 bands), yielded an instantaneous temperature measurement of the product stream. The instantaneous temperature of the gases was used as an indicator of the energy transferred to the product stream from the combustion process. The frequency response of product gas temperature to velocity perturbations was compared to the frequency response of OH* chemiluminescence, an indicator of the chemical heat release rate. Past measurements of flame dynamics used chemiluminescence as the sole indicator of heat release rate, in effect assuming that the energy input rate from the flame into the acoustic field is dynamically equivalent to the chemical reaction rate. Through the use of TDLAS, the unsteady enthalpy of the gases was measured, which includes the effects of thermal diffusion and heat transfer. The measurements show that the frequency response function of gas temperature differs significantly from the chemiluminescence frequency response.

  4. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    SciTech Connect

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.

  5. Oscillator strength measurements of atomic absorption lines from stellar spectra

    NASA Astrophysics Data System (ADS)

    Lobel, Alex

    2011-05-01

    Herein we develop a new method to determine oscillator strength values of atomic absorption lines with state-of-the-art detailed spectral synthesis calculations of the optical spectrum of the Sun and of standard spectral reference stars. We update the log(gf) values of 911 neutral lines observed in the KPNO-FTS flux spectrum of the Sun and high-resolution echelle spectra (R = 80 000) of Procyon (F5 IV-V) and Eps Eri (K2 V) observed with large signal-to-noise (S/N) ratios of 2000 using the new Mercator-Hermes spectrograph at La Palma Observatory (Spain). We find for 483 Fe I, 85 Ni I, and 51 Si I absorption lines in the sample a systematic overestimation of the literature log(gf) values with central line depths below 15%. We employ a curve-of-growth analysis technique to test the accuracy of the new oscillator strength values and compare calculated equivalent line widths to the Moore, Minnaert, and Houtgast atlas of the Sun. The online SpectroWeb database at http://spectra.freeshell.org interactively displays the observed and synthetic spectra and provides the new log(gf) values together with important atomic line data. The graphical database is under development for stellar reference spectra of every spectral sub-class observed with large spectral resolution and S/N ratios.

  6. Acoustic absorption measurement of human hair and skin within the audible frequency range.

    PubMed

    Katz, B F

    2000-11-01

    Utilizing the two-microphone impedance tube method, the acoustic absorption of human skin and hair is measured in the frequency range 1-6 kHz. Various locations on a number of human subjects are measured to determine if the presence of bone or an air pocket affects the acoustic absorption of human skin. The absorption coefficient of human hair is also measured. Additional techniques are utilized to minimize errors due to sample mounting methods. Techniques are employed to minimize potential errors in sensor and sample locations. The results of these measurements are compared to relevant historical papers on similar investigations. Results for skin measurements compare well with previous work. Measured hair absorption data do not agree with previous work in the area but do coincide with expected trends, which previous works do not.

  7. Cloud effects on atmospheric solar absorption in light of most recent surface and satellite measurements

    NASA Astrophysics Data System (ADS)

    Hakuba, Maria Z.; Folini, Doris; Wild, Martin; Long, Charles N.; Schaepman-Strub, Gabriela; Stephens, Graeme L.

    2017-02-01

    At 36 locations worldwide, we estimate the cloud radiative effect (CREatm) on atmospheric solar absorption (ASRatm) by combining ground-based measurements of surface solar radiation (SSR) with collocated satellite-derived surface albedo and top-of-atmosphere net irradiance under both all-sky and clear-sky conditions. To derive continuous clear-sky SSR from Baseline Surface Radiation Network (BSRN) in-situ measurements of global and diffuse SSR, we make use of the Long and Ackerman (2000) algorithm that identifies clear-sky measurements and empirically fits diurnal clear-sky irradiance functions using the cosine of the solar zenith angle as the independent variable. The 11-year average (2000-2010) CREatm (all-sky minus clear-sky) is overall positive at around +11 Wm-2 using direct measurements form ground and space, and at 4 Wm-2 in the CERES EBAF dataset. This discrepancy arises from a potential overestimation in clear-sky absorption by the satellite product or underestimation by the combined BSRN/CERES dataset. The forcing ratio R shows that clouds enhance ASRatm most distinctly at desert-like locations that overall experience little occurrence of clouds. This relationship is captured by both the combined dataset and CERES EBAF.

  8. Photoacoustic technique for simultaneous measurements of thermal effusivity and absorptivity of pigments in liquid solution.

    PubMed

    Balderas-López, J A; Díaz-Reyes, J; Zelaya-Angel, O

    2011-12-01

    A photoacoustic (PA) methodology, in the transmission configuration, for simultaneous measurements of thermal effusivity and molar absorption coefficient (absorptivity) for pigments in liquid solution is introduced. The analytical treatment involves a self-normalization procedure for the PA signal, as a function of the modulation frequency, for a strong absorbing material in the thermally thin regime, when the light travels across the sample under study. Two fitted parameters are obtained from the analysis of the self-normalized PA amplitude and phase, one of them proportional to the sample's optical absorption coefficient and from which, taking it for a series of samples at different concentrations, the pigment's absorptivity in liquid solution can be measured, the other one yields the sample's thermal effusivity. Methylene blue's absorptivity in distilled water was measured with this methodology at 658 nm, finding good agreement with the corresponding one reported in the literature.

  9. Sensitive and absolute absorption measurements in optical materials and coatings by laser-induced deflection technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Christian; Bublitz, Simon

    2012-12-01

    The laser-induced deflection (LID) technique, a photo-thermal deflection setup with transversal pump-probe-beam arrangement, is applied for sensitive and absolute absorption measurements of optical materials and coatings. Different LID concepts for bulk and transparent coating absorption measurements, respectively, are explained, focusing on providing accurate absorption data with only one measurement and one sample. Furthermore, a new sandwich concept is introduced that allows transferring the LID technique to very small sample geometries and to significantly increase the sensitivity for materials with weak photo-thermal responses. For each of the different concepts, a representative application example is given. Particular emphasis is placed on the importance of the calibration procedure for providing absolute absorption data. The validity of an electrical calibration procedure for the LID setup is proven using specially engineered surface absorbing samples. The electrical calibration procedure is then applied to evaluate two other approaches that use either doped samples or highly absorptive reference samples.

  10. Fourier transform infrared spectroscopy measurements of multi-phonon and free-carrier absorption in ZnO

    DOE PAGES

    Saadatkia, Pooneh; Ariyawansa, G.; Leedy, K. D.; ...

    2016-10-21

    Fourier transform infrared (FTIR) measurements were carried out on thin films and bulk single crystals of ZnO over a wide temperature range to study the free-carrier and multi-phonon infrared absorptions and the effects of hydrogen incorporation on these properties. Aluminum-doped ZnO thin films were deposited on quartz substrates using atomic-layer deposition (ALD) and sol–gel methods. Hall-effect measurements showed that the ALD films have a resistivity of ρ = 1.11 × 10–3 Ω cm, three orders of magnitude lower than sol–gel films (ρ = 1.25 Ω cm). This result is consistent with the significant difference in their free-carrier absorption as revealedmore » by FTIR spectra obtained at room temperature. By reducing the temperature to 80 K, the free carriers were frozen out, and their absorption spectrum was suppressed. From the FTIR measurements on ZnO single crystals that were grown by the chemical vapor transport method, we identified a shoulder around 3350 cm–1 and associated it with the presence of two or more hydrogen ions in a Zn vacancy. After reducing the hydrogen level in the crystal, the measurements revealed the multi-phonon absorption of ZnO in the range of 700–1200 cm–1. Furthermore, this study shows that the multi-phonon absorption bands can be completely masked by the presence of a large concentration of hydrogen in the crystals.« less

  11. Fourier Transform Infrared Spectroscopy Measurements of Multi-phonon and Free-Carrier Absorption in ZnO

    NASA Astrophysics Data System (ADS)

    Saadatkia, Pooneh; Ariyawansa, G.; Leedy, K. D.; Look, D. C.; Boatner, L. A.; Selim, F. A.

    2016-12-01

    Fourier transform infrared (FTIR) measurements were carried out on thin films and bulk single crystals of ZnO over a wide temperature range to study the free-carrier and multi-phonon infrared absorptions and the effects of hydrogen incorporation on these properties. Aluminum-doped ZnO thin films were deposited on quartz substrates using atomic-layer deposition (ALD) and sol-gel methods. Hall-effect measurements showed that the ALD films have a resistivity of ρ = 1.11 × 10-3 Ω cm, three orders of magnitude lower than sol-gel films ( ρ = 1.25 Ω cm). This result is consistent with the significant difference in their free-carrier absorption as revealed by FTIR spectra obtained at room temperature. By reducing the temperature to 80 K, the free carriers were frozen out, and their absorption spectrum was suppressed. From the FTIR measurements on ZnO single crystals that were grown by the chemical vapor transport method, we identified a shoulder around 3350 cm-1 and associated it with the presence of two or more hydrogen ions in a Zn vacancy. After reducing the hydrogen level in the crystal, the measurements revealed the multi-phonon absorption of ZnO in the range of 700-1200 cm-1. This study shows that the multi-phonon absorption bands can be completely masked by the presence of a large concentration of hydrogen in the crystals.

  12. Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines

    NASA Technical Reports Server (NTRS)

    Wei, T. H.; Hagan, D. J.; Sence, M. J.; Van Stryland, E. W.; Perry, J. W.; Coulter, D. R.

    1992-01-01

    Direct measurements are reported of the excited singlet-state absorption cross section and the associated nonlinear refractive cross section using picosecond pulses at 532 nm in solutions of phthalocyanine and naphthalocyanine dyes. By monitoring the transmittance and far-field spatial beam distortion for different pulsewidths in the picosecond regime, it is shown that both the nonlinear absorption and refraction are fluence (energy-per-unit-area) rather than irradiance dependent. Thus, excited-state absorption is the dominant nonlinear absorption process, and the observed nonlinear refraction is also due to real population excitation.

  13. Absorption coefficient measurements of particle-laden filters using laser heating: Validation with nigrosin

    NASA Astrophysics Data System (ADS)

    Presser, Cary

    2012-05-01

    A laser-heating technique, referred as the laser-driven thermal reactor, was used in conjunction with laser transmissivity measurements to determine the absorption coefficient of particle-laden substrates (e.g., quartz-fiber filters). The novelty of this approach is that it analyzes a wide variety of specific samples (not just filtered samples) and overcomes measurement issues (e.g., absorption enhancement) associated with other filter-based particle absorption techniques. The absorption coefficient was determined for nigrosin-laden, quartz-fiber filters and the effect of the filter on the absorption measurements was estimated when compared to the isolated nigrosin results. The isolated nigrosin absorption coefficient compared favorably with Lorenz-Mie calculations for an idealized polydispersion of spherical particles (based on a measured nigronsin/de-ionized water suspension size distribution) dispersed throughout a volume equivalent to that of the nigrosin-laden filter. To validate the approach, the absorption coefficient of a nigrosin/de-ionized water suspension was in good agreement with results obtained from an ultraviolet/visible spectrometer. In addition, the estimated imaginary part of the refractive index from the Lorenz-Mie calculations compared well with literature values and was used to estimate the absorption coefficient of optically opaque packed nigrosin.

  14. Contactless nondestructive measurement of bulk and surface recombination using frequency-modulated free carrier absorption

    NASA Astrophysics Data System (ADS)

    Sanii, F.; Giles, F. P.; Schwartz, R. J.; Gray, J. L.

    1992-03-01

    A measurement procedure is described which allows the contactless measurement of bulk lifetime and surface recombination. The procedure uses the the free-carrier absorption of a long-wavelength laser beam by a modulated free-carrier wave to measure and separate the bulk recombination from the surface recombination. The dependence of the absorption on the modulation frequency is used to accomplish the separation. Limitations of the technique are also discussed.

  15. Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns

    NASA Technical Reports Server (NTRS)

    May, R. D.; Molina, L. T.; Webster, C. R.

    1988-01-01

    A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.

  16. Modified Sagnac interferometer for contact-free length measurement of a direct absorption cell.

    PubMed

    Elandaloussi, Hadj; Rouillé, Christian; Marie-Jeanne, Patrick; Janssen, Christof

    2016-03-10

    Accurate path length measurements in absorption cells are recurrent requirements in quantitative molecular absorption spectroscopy. A new twin path laser interferometer for length measurements in a simple direct path absorption geometry is presented, along with a full uncertainty budget. The path in an absorption cell is determined by measuring the optical path length change due to the diminution of the refractive index when the cell originally filled with nitrogen gas is evacuated. The performance of the instrument based on a stabilized HeNe laser is verified by comparison with the results of direct mechanical length measurements of a roughly 45 mm long, specially designed absorption cell. Due to a resolution of about 1/300 of a HeNe fringe, an expanded (coverage factor k=2) uncertainty of 16 μm in the length measurement is achieved, providing an expanded relative uncertainty of 3.6·10⁻⁴ for the length of our test absorption cell. This value is about 8 times lower than what has been reported previously. The instrument will be useful for precision measurements of absorption cross sections of strong absorbers which require short light paths, such as ozone, halogen oxides, sulfur dioxide, and volatile organic compounds in the UV.

  17. [Studies on the remote measurement of the emission of formaldehyde by mobile differential optical absorption spectroscopy].

    PubMed

    Wu, Feng-Cheng; Xie, Pin-Hua; Li, Ang; Si, Fu-Qi; Dou, Ke; Liu, Yu; Xu, Jin; Wang, Jie

    2011-11-01

    Formaldehyde (HCHO) is the most abundant carbonyl compounds that play an important role in atmospheric chemistry and photochemical reactions. Formaldehyde is an important indicator of atmospheric reactivity and urban atmospheric aerosol precursors. In the present paper, the emission of formaldehyde from chemical area was measured using the mobile differential optical absorption spectroscopy (DOAS). This instrument uses the zenith scattered sunlight as the light source with successful sampling in the area loop. Vertical column density was retrieved by this system, combined with the meteorological wind field and car speed information, the emission of formaldehyde in the area was estimated. The authors carried out the measuring experiment in one chemical plant in Beijing using this technology. The result showed that the average value of the flux of formaldehyde in this area was 605 kg x h(-1) during the measuring period.

  18. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    SciTech Connect

    Brauer, Carolyn S.; Blake, Thomas A.; Guenther, Alex B.; Sharpe, Steven W.; Sams, Robert L.; Johnson, Timothy J.

    2014-11-19

    The OH- and O3- initiated oxidations of isoprene, which is one of the primary volatile organic compounds produced by vegetation, are a major source of atmospheric formaldehyde and other oxygenated organics, yet little quantitative IR data exists for isoprene. We thus report absorption coefficients and integrated band intensities for isoprene in the 600 - 6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298 and 323 K in a 19.96 cm path length cell at 0.112 cm-1 resolution, using a Bruker 66V FTIR. Composite spectra are derived from a minimum of seven pressures at each temperature.

  19. Using broadband absorption spectroscopy to measure concentration of sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Wang, H. S.; Zhang, Y. G.; Wu, S. H.; Lou, X. T.; Zhang, Z. G.; Qin, Y. K.

    2010-09-01

    A linear relationship between concentration of sulfur dioxide (SO2) and optical parameter (OP) is established using the Beer-Lambert law. The SO2 measuring system is set up to measure the concentration of sulfur dioxide in the wavelength range 275-315 nm. Experimental results indicate that the detection limit of the sulfur dioxide measuring system is below 0.2 ppm per meter of path length, and the measurement precision is better than ±1%. The proposed SO2 measuring method features limited interference from other gases and dust, and high stability and short response time.

  20. Measurements of the absorption and scattering coefficients of aerosol particles in suburb of Nanjing (China)

    NASA Astrophysics Data System (ADS)

    Yin, Yan; Chen, Yu; Wang, Weiwei; Yan, Jiade; Qian, Ling; Tong, Yaoqing; Lin, Zhenyi

    2008-08-01

    The absorption and scattering coefficients of atmospheric aerosols were continuously measured with a Photoacoustic Soot Spectrometer (PASS, DMT Inc. USA) at a suburb site of Nanjing, one of the regions experiencing rapid industrialization in China. The measurements were carried out during autumn and winter 2007. A preliminary analysis of the data shows that, the scattering coefficient, Bscat, is two to ten times larger than the absorption coefficient, Babs, implying that the aerosols formed/emitted in this area are more scattering than previous assumed, and can be more important in cooling the Earth-atmosphere system. The results also indicate that the absolute values of both parameters are very much dependent on the meteorological conditions, such as wind speed and direction, fog, rain, etc. as well as the time of the day. Higher values often appear at nighttimes when wind is weak, especially when a temperature inverse layer is present near the surface. Higher values of Bscat and Babs were also observed under hazy and foggy weather conditions or when wind is blown from east, where a large industrial zone is located. Simultaneous measurements of the number concentrations, chemical compositions, and size distributions of aerosol particles are used to explain the characteristics of the changes in Bscat and Babs.

  1. High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, F.; Behrendt, A.; Muppa, S. K.; Metzendorf, S.; Riede, A.; Wulfmeyer, V.

    2014-11-01

    The scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) is presented. The UHOH DIAL is equipped with an injection-seeded frequency-stabilized high-power Ti:sapphire laser operated at 818 nm with a repetition rate of 250 Hz. A scanning transceiver unit with a 80 cm primary mirror receives the atmospheric backscatter signals. The system is capable of water vapor measurements with temporal resolutions of a few seconds and a range resolution between 30 and 300 m at daytime. It allows to investigate surface-vegetation-atmosphere exchange processes with high resolution. In this paper, we present the design of the instrument and illustrate its performance with recent water vapor measurements taken in Stuttgart-Hohenheim and in the frame of the HD(CP)2 Observational Prototype Experiment (HOPE). HOPE was located near research center Jülich, in western Germany, in spring 2013 as part of the project "High Definition of Clouds and Precipitation for advancing Climate Prediction" (HD(CP)2). Scanning measurements reveal the 3-dimensional structures of the water vapor field. The influence of uncertainties within the calculation of the absorption cross-section at wavelengths around 818 nm for the WV retrieval is discussed. Radiosonde intercomparisons show a very small bias between the instruments of only (-0.04 ± 0.11) g m-3 or (-1.0 ± 2.3) % in the height range of 0.5 to 3 km.

  2. Cyclotron-absorption measurement of the runaway-electron distribution in a tokamak

    SciTech Connect

    Zvonkov, A.V.; Suvorov, E.V.; Timofeev, A.V.; Fraiman, A.A.

    1983-03-01

    The distribution function of runaway electrons in a tokamak can be determined in the slightly relativistic region from measurements of the absorption coefficient corresponding to electron cyclotron waves. The plasma should be probed in the vertical direction.

  3. Measurement of atmospheric precipitable water using a solar radiometer. [water vapor absorption effects

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Dillinger, A. E.; Mcallum, W. E.

    1974-01-01

    A technique is described and tested that allows the determination of atmospheric precipitable water from two measurements of solar intensity: one in a water-vapor absorption band and another in a nearby spectral region unaffected by water vapor.

  4. X-ray absorption and resonant inelastic x-ray scattering (RIXS) show the presence of Cr{sup +} at the surface and in the bulk of CrF{sub 2}

    SciTech Connect

    Jiménez-Mier, J.; Olalde-Velasco, P.; Yang, W.-L.; Denlinger, J.

    2015-07-23

    X-Ray absorption and resonant inelastic x-ray scattering (RIXS) spectra of CrF{sub 2} recorded at the chromium L{sub 2,3} are presented. An atomic multiplet crystal field calculation is compared with the experimental data. Experiment and theory are in agreement once the calculation includes three chromium oxidation states, namely Cr{sup +}, Cr{sup 2+}, and Cr{sup 3+}. X-Ray absorption allows a direct determination of the surface oxidation, while the RIXS spectra shows the presence of these three oxidation states in the sample bulk. To give a quantitative interpretation of the RIXS data the effect of the incomming and outgoing photon penetration depth and self-absorption must be considered. For the much simpler case of MnF{sub 2}, with only one metal oxidation state, the measured RIXS spectra relative intensities are found to be proportional to the square of the sample attenuation length.

  5. Decay Heat Measurements Using Total Absorption Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rice, S.; Valencia, E.; Algora, A.; Taín, J. L.; Regan, P. H.; Podolyák, Z.; Agramunt, J.; Gelletly, W.; Nichols, A. L.

    2012-09-01

    A knowledge of the decay heat emitted by thermal neutron-irradiated nuclear fuel is an important factor in ensuring safe reactor design and operation, spent fuel removal from the core, and subsequent storage prior to and after reprocessing, and waste disposal. Decay heat can be readily calculated from the nuclear decay properties of the fission products, actinides and their decay products as generated within the irradiated fuel. Much of the information comes from experiments performed with HPGe detectors, which often underestimate the beta feeding to states at high excitation energies. This inability to detect high-energy gamma emissions effectively results in the derivation of decay schemes that suffer from the pandemonium effect, although such a serious problem can be avoided through application of total absorption γ-ray spectroscopy (TAS). The beta decay of key radionuclei produced as a consequence of the neutron-induced fission of 235U and 239Pu are being re-assessed by means of this spectroscopic technique. A brief synopsis is given of the Valencia-Surrey (BaF2) TAS detector, and their method of operation, calibration and spectral analysis.

  6. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    DOE PAGES

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; ...

    2014-11-19

    Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) and is one of the primary contributors to annual global VOC emissions. Isoprene is produced primarily by vegetation as well as anthropogenic sources, and its OH- and O3-initiated oxidations are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, limiting the ability to quantify isoprene emissions via remote or in situ infrared detection. We thus report absorption cross sections and integrated band intensities for isoprene in the 600–6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298, and 323 Kmore » in a 19.94 cm path-length cell at 0.112 cm-1 resolution, using a Bruker IFS 66v/S Fourier transform infrared (FTIR) spectrometer. Composite spectra are derived from a minimum of seven isoprene sample pressures, each at one of three temperatures, and the number densities are normalized to 296 K and 1 atm.« less

  7. Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves.

    PubMed

    Oehlschlaeger, Matthew A; Davidson, David F; Jeffries, Jay B

    2005-11-01

    A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.

  8. Intestinal adaptation in patients with short bowel syndrome. Measurement by calcium absorption

    SciTech Connect

    Gouttebel, M.C.; Saint Aubert, B.; Colette, C.; Astre, C.; Monnier, L.H.; Joyeux, H. )

    1989-05-01

    Functional adaptation of remaining intestine was evaluated in 30 patients with extensive small bowel resection. Calcium and xylose absorption tests were compared. Calcium absorption was measured by a double-radiotracer technique. Serum xylosemia was measured 2 hr after D-xylose ingestion. Patients were divided into two groups according to the time interval between surgery and evaluation: less (group I) or more (group II) than two years. A statistically significant correlation was found between xylosemia and remaining small bowel length (r = 0.71; P less than 0.001) and between calcium absorption and remaining small bowel length (r = 0.75; P less than 0.001) in group I. A significant correlation was also observed between calcium absorption and time after surgery (r = 0.65; P = 0.001) but not for xylose absorption. Calcium absorption value was significantly increased in group II patients compared with group I patients matched for remaining small bowel length (36.2 +/- 12.5% vs 14.5 +/- 9.1%; P less than 0.001) while no difference was observed between the two groups concerning xylose absorption. These data indicate that intestinal calcium absorption continues to increase for more than two years after a major bowel resection in man. The intestine does not seem to recover all its functions at the same time.

  9. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  10. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2014-09-01

    Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  11. Minute Concentration Measurements of Simple Hydrocarbon Species Using Supercontinuum Laser Absorption Spectroscopy.

    PubMed

    Yoo, Jihyung; Traina, Nicholas; Halloran, Michael; Lee, Tonghun

    2016-06-01

    Minute concentration measurements of simple hydrocarbon gases are demonstrated using near-infrared supercontinuum laser absorption spectroscopy. Absorption-based gas sensors, particularly when combined with optical fiber components, can significantly enhance diagnostic capabilities to unprecedented levels. However, these diagnostic techniques are subject to limitations under certain gas sensing applications where interference and harsh conditions dominate. Supercontinuum laser absorption spectroscopy is a novel laser-based diagnostic technique that can exceed the above-mentioned limitations and provide accurate and quantitative concentration measurement of simple hydrocarbon species while maintaining compatibility with telecommunications-grade optical fiber components. Supercontinuum radiation generated using a highly nonlinear photonic crystal fiber is used to probe rovibrational absorption bands of four hydrocarbon species using full-spectral absorption diagnostics. Absorption spectra of methane (CH4), acetylene (C2H2), and ethylene (C2H4) were measured in the near-infrared spectrum at various pressures and concentrations to determine the accuracy and feasibility of the diagnostic strategy. Absorption spectra of propane (C3H8) were subsequently probed between 1650 nm and 1700 nm, to demonstrate the applicability of the strategy. Measurements agreed very well with simulated spectra generated using the HITRAN database as well as with previous experimental results. Absorption spectra of CH4, C2H2, and C2H4 were then analyzed to determine their respective measurement accuracy and detection limit. Concentration measurements integrated from experimental results were in very good agreement with independent concentration measurements. Calculated detection limits of CH4, C2H2, and C2H4 at room temperature and atmospheric pressure are 0.1%, 0.09%, and 0.17%, respectively.

  12. Measurement of Carbon Dioxide Column via Space Borne Laser Absorption

    NASA Technical Reports Server (NTRS)

    Heaps, WIlliam S.

    2007-01-01

    In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. In order to uncover the 'missing sink that is responsible for the large discrepancies in the budget as we presently understand it calculation has indicated that measurement accuracy on the order of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of .25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget in order to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong requirements on the laser system used for the measurement. This work presents an analysis of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics Several systems for meeting these requirements that are under investigation at various institutions in the US as well as Europe will be discussed.

  13. Quantitative absorption cytometry for measuring red blood cell hemoglobin mass and volume.

    PubMed

    Schonbrun, Ethan; Malka, Roy; Di Caprio, Giuseppe; Schaak, Diane; Higgins, John M

    2014-04-01

    We present an optical system, called the quantitative absorption cytometer (QAC), to measure the volume and hemoglobin mass of red blood cells flowing through a microfluidic channel. In contrast to clinical hematology analyzers, where cells are sphered in order for both volume and hemoglobin to be measured accurately, the QAC measures cells in their normal physiological shape. Human red blood cells are suspended in a refractive index-matching absorbing buffer, driven through a microfluidic channel, and imaged using a transmission light microscope onto a color camera. A red and a blue LED illuminate cells and images at each color are used to independently retrieve cell volume and hemoglobin mass. This system shows good agreement with red blood cell indices retrieved by a clinical hematology analyzer and in fact measures a smaller coefficient of variation of hemoglobin concentration. In addition to cell indices, the QAC returns height and mass maps of each measured cell. These quantitative images are valuable for analyzing the detailed morphology of individual cells as well as statistical outliers found in the data. We also measured red blood cells in hypertonic and hypotonic buffers to quantify the correlation between volume and hemoglobin mass under osmotic stress. Because this method is invariant to cell shape, even extremely nonspherical cells in hypertonic buffers can be measured accurately.

  14. Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach

    PubMed Central

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Liu, Xue-Qing; Song, Jun-Feng; Sun, Hong-Bo

    2015-01-01

    The photo-reduction of metal ions in solution induced by femtosecond laser is an important and novel method for fabricating three-dimensional metal microstructures. However, the nonlinear absorption cross section of metal ions remains unknown because its measurement is difficult. In the present study, a method based on Two-Photon Excited Sedimentation (TPES) is proposed to measure the two-photon absorption cross section (TPACS) of metal ions in solution. The power-squared dependence of the amount of sediment on the excitation intensity was confirmed, revealing that 800 nm femtosecond laser induced reduction of metal ions was a two photon absorption process. We believe that the proposed method may be applied to measure the TPACS of several metal ions, thereby opening a new avenue towards future analysis of two-photon absorption materials. PMID:26657990

  15. Method and apparatus for background signal reduction in opto-acoustic absorption measurement

    NASA Technical Reports Server (NTRS)

    Rosengren, L. G. (Inventor)

    1976-01-01

    The sensitivity of an opto-acoustic absorption detector is increased to make it possible to measure trace amounts of constituent gases. A second beam radiation path is created through the sample cell identical to a first path except as to length, alternating the beam through the two paths and minimizing the detected pressure difference for the two paths while the beam wavelength is tuned away from the absorption lines of the sample. Then with the beam wavelength tuned to the absorption line of any constituent of interest, the pressure difference is a measure of trace amounts of the constituent. The same improved detector may also be used for measuring the absorption coefficient of known concentrations of absorbing gases.

  16. Infrared collision-induced absorption by O2 near 6.4 microm for atmospheric applications: measurements and empirical modeling.

    PubMed

    Thibault, F; Menoux, V; Le Doucen, R; Rosenmann, L; Hartmann, J M; Boulet, C

    1997-01-20

    Accurate measurements of collision-induced absorption by O(2) and O(2)-N(2) mixtures in the fundamental band near 6.4 microm have been made. A Fourier-transform spectrometer was used with a resolution of 0.5 cm(-1). Absorption has been investigated in the 0-20-atm and 193-293 K pressure and temperature ranges, respectively. The current measurements confirm that the broad O(2) continuum carries small features whose attribution is not yet clear. Available experimental data in the 190-360 K temperature range have been used to build a simple, low cost computer, empirical model that is well adapted for computation of atmospheric O(2) absorption. Tests show that it is accurate, contrary to predictions of widely used atmospheric transmission codes.

  17. Design, synthesis, and properties of phthalocyanine complexes with main-group elements showing main absorption and fluorescence beyond 1000 nm.

    PubMed

    Furuyama, Taniyuki; Satoh, Koh; Kushiya, Tomofumi; Kobayashi, Nagao

    2014-01-15

    We present a comprehensive description of the unique properties of newly developed phthalocyanines (Pcs) containing main-group elements that absorb and emit in the near-IR region. Group 16 (S, Se, and Te) elements and group 15 (P, As, and Sb) elements were used as peripheral and central (core) substituents. With the introduction of group 16 elements into free-base Pc, a red-shift of the Q-band was observed, as a result of the electron-donating ability of group 16 elements particularly at the α positions. An X-ray crystallographic analysis of α-ArS-, ArSe-, and ArTe-linked free-base Pcs was also successfully performed, and the relationship between structure and optical properties was clarified. When a group 15 element ion was introduced into the center of the Pc ring, the resulting Pcs showed a single Q-band peak beyond 1000 nm (up to 1056 nm in CH2Cl2). In particular, [(ArS)8PcP(OMe)2](+) and [(ArS)8PcAs(OMe)2](+) exhibited a distinct fluorescence in the 960-1400 nm region with moderate quantum yields. The atomic radius of the group 15 element is important for determining the Pc structure, so that this can be controlled by the choice of group 15 elements. Electrochemical data revealed, while MO calculations suggested, that the red-shift of the Q-band is attributable to a decrease of the HOMO-LUMO gap due to significant and moderate stabilization of the LUMO and HOMO, respectively. The effect of peripheral substutuents and a central P(V) ion on the Q-band shift was independently predicted by MO calculations, while the magnitude of the total calculated shift was in good agreement with the experimental observations. The combination of spectral, electrochemical, and theoretical considerations revealed that all of the central group 15 elements, peripheral group 16 elements, and their positions are necessary to shift the Q-band beyond 1000 nm, indicating that the substitution effects of group 15 and 16 elements act synergistically. The Pcs having Q-bands beyond 1000 nm

  18. Method for measuring changes in light absorption of highly scattering media

    DOEpatents

    Bigio, Irving J.; Johnson, Tamara M.; Mourant, Judith R.

    2002-01-01

    The noninvasive measurement of variations in absorption that are due to changes in concentrations of biochemically relevant compounds in tissue is important in many clinical settings. One problem with such measurements is that the pathlength traveled by the collected light through the tissue depends on the scattering properties of the tissue. It is demonstrated, using both Monte Carlo simulations and experimental measurements, that for an appropriate separation between light-delivery and light-collection fibers, the pathlength of the collected photons is insensitive to scattering parameters for the range of parameters typically found in tissue. This is important for developing rapid, noninvasive, inexpensive, and accurate methods for measuring absorption changes in tissue.

  19. Tropospheric O3 measurement by simultaneous differential absorption lidar and null profiling and comparison with sonde measurement

    NASA Astrophysics Data System (ADS)

    Fukuchi, Tetsuo; Fujii, Takashi; Cao, Nianwen; Nemoto, Koshichi; Takeuchi, Nobuo

    2001-09-01

    A differential absorption lidar (DIAL) system consisting of two identical tunable laser systems and a single optical receiver is applied to measurement of O3 concentration profiles in the lower troposphere. Each laser is capable of emitting two wavelengths on alternate pulses, so the system is capable of simultaneous measurement of two species in the same wavelength region. We set the two lasers to emit at identical wavelength pairs consisting of on wavelength 285.0 nm and off wavelength 290.1 nm for simultaneous measurement of two null profiles, one at each wavelength, and two DIAL profiles, or O3 concentration profiles. Null profiles are useful in estimating instrumental error and checking the vertical range interval in which the DIAL profiles are accurate. Null and DIAL profiles are obtained for vertical range 1000 to 4000 m using neutral density filters of different transmissions to prevent the strong return signals from close range from saturating the photodetector. The obtained O3 concentration profiles agree with simultaneous O3 sonde measurements. An evaluation of the measurement error shows that the average O3 measurement error for vertical range 1000 to 4000 m was 3.4 ppb, or 8% relative to the average O3 concentration of 42.3 ppb, most of which is due to statistical error. The error due to differential Mie attenuation and differential backscatter gradient was found to be 0.5 ppb.

  20. Instrumentation for Combined Dispersion and Absorption Measurements in the VUV.

    PubMed

    Banfield, F P; Huber, M C; Parkinson, W H; Tubbs, E F

    1973-06-01

    When the hook method that measures anomalous dispersion is combined with photoelectric photometry, a particularly powerful tool results. An apparatus that combines these techniques over a wavelength range extending into the vacuum ultraviolet has been constructed and used chiefly on the iron-group elements. It consists of hydrogen-discharge light source, a Mach-Zehnder interferormeter, a high temperature furnace, a stigmatic spectrograph, and a photoelectric photometer.

  1. Assessment of multiphoton absorption in inert gases for the measurement of gas temperatures.

    PubMed

    Bednar, Natalie J; Walewski, Joachim W; Sanders, Scott T

    2006-03-01

    A spatially resolved optical technique to measure gas temperature was assessed. The technique relies on multiphoton absorption in inert gases. In contrast to laser-induced fluorescence, absorption is insensitive to collisional deactivation, and, in contrast to one-photon absorption, multiphoton absorption only occurs around the focus point of a typical laser beam. Multiphoton absorption features both the merits of being insensitive to quenching and of being a spatially resolved technique. In a case study we assessed two-photon absorption in xenon upon exciting the 5p6 1S0-->5p56p[5/2]2 transition in xenon at a wavelength of 256 nm. The amount of light absorbed by xenon is related to the number density of the gas, and if the gas pressure is known then the gas temperature can be inferred from the number density. Two-photon absorbance was measured as a function of xenon number density and was used to validate a theoretical model of the absorption process. We discuss the circumnavigation of experimental challenges in applying this technique and analyze its precision in terms of the inferred gas temperature.

  2. Atmospheric extinction in solar tower plants: absorption and broadband correction for MOR measurements

    NASA Astrophysics Data System (ADS)

    Hanrieder, N.; Wilbert, S.; Pitz-Paal, R.; Emde, C.; Gasteiger, J.; Mayer, B.; Polo, J.

    2015-08-01

    measurement input of a nearby sun photometer is used to enhance on-site atmospheric assumptions for description of the atmosphere in the algorithm. Comparing both uncorrected and spectral- and absorption-corrected extinction data from 1-year measurements at the Plataforma Solar de Almería, the mean difference between the scatterometer and the transmissometer is reduced from 4.4 to 0.57 %. Applying the ABC procedure without the usage of additional input data from a sun photometer still reduces the difference between both sensors to about 0.8 %. Applying an expert guess assuming a standard aerosol profile for continental regions instead of additional sun photometer input results in a mean difference of 0.8 %. Additionally, a simulation approach which just uses sun photometer and common meteorological data to determine the on-site atmospheric extinction at surface is presented and corrected FS11 and LPV4 measurements are validated with the simulation results. For T1 km equal to 0.9 and a 10 min time resolution, an uncertainty analysis showed that an absolute uncertainty of about 0.038 is expected for the FS11 and about 0.057 for the LPV4. Combining both uncertainties results in an overall absolute uncertainty of 0.068 which justifies quite well the mean RMSE between both corrected data sets. For yearly averages several error influences average out and absolute uncertainties of 0.020 and 0.054 can be expected for the FS11 and the LPV4, respectively. Therefore, applying this new correction method, both instruments can now be utilized to sufficiently accurately determine the solar broadband extinction in tower plants.

  3. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue

    NASA Astrophysics Data System (ADS)

    Kienle, Alwin; Lilge, Lothar; Patterson, Michael S.; Hibst, Raimund; Steiner, Rudolf; Wilson, Brian C.

    1996-05-01

    The absorption and transport scattering coefficients of biological tissues determine the radial dependence of the diffuse reflectance that is due to a point source. A system is described for making remote measurements of spatially resolved absolute diffuse reflectance and hence noninvasive, noncontact estimates of the tissue optical properties. The system incorporated a laser source and a CCD camera. Deflection of the incident beam into the camera allowed characterization of the source for absolute reflectance measurements. It is shown that an often used solution of the diffusion equation cannot be applied for these measurements. Instead, a neural network, trained on the results of Monte Carlo simulations, was used to estimate the absorption and scattering coefficients from the reflectance data. Tests on tissue-simulating phantoms with transport scattering coefficients between 0.5 and 2.0 mm-1 and absorption coefficients between 0.002 and 0.1 mm -1 showed the rms errors of this technique to be 2.6% for the transport scattering coefficient and 14% for the absorption coefficients. The optical properties of bovine muscle, adipose, and liver tissue, as well as chicken muscle (breast), were also measured ex vivo at 633 and 751 nm. For muscle tissue it was found that the Monte Carlo simulation did not agree with experimental measurements of reflectance at distances less than 2 mm from the incident beam. Carlo, neural network.

  4. Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Spilker, Thomas R.

    1995-01-01

    A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging

  5. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  6. Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity

    PubMed Central

    Bin, J. H.; Allinger, K.; Khrennikov, K.; Karsch, S.; Bolton, P. R.; Schreiber, J.

    2017-01-01

    Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity. PMID:28272471

  7. Active feedback regulation of a Michelson interferometer to achieve zero-background absorption measurements.

    PubMed

    Lundin, Patrik; Guan, Zuguang; Svanberg, Sune

    2011-01-20

    An active phase-controlling scheme based on a proportional-integral-derivative-controlled piezoelectric transducer is presented with the purpose of stabilizing a quasi-zero-background absorption spectrometer. A fiber-based balanced Michelson interferometer is used, and absorption due to a gas sample in one of its arms results in an increased light signal to a detector, which otherwise, thanks to destructive interference, experiences a very low light level. With the presented approach, the sensitivity of already potent absorption measurement techniques, e.g., based on modulation, could be improved even further.

  8. Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and Aethalometer observations

    SciTech Connect

    Wang, X.; Heald, C. L.; Sedlacek, A.; de Sa, S. S.; Martin, S. T.; Alexander, M. L.; Watson, T. B.; Aiken, A. C.; Springston, S. R.; Artaxo, P.

    2016-10-13

    The radiative impact of organic aerosols (OA) is a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. This radiative impact includes not only light scattering but also light absorption from a subclass of OA referred to as brown carbon (BrC). However the absorption properties of BrC are poorly understood leading to large uncertainties in modelling studies. To obtain observational constraints from measurements, a simple Absorption Ångström Exponent (AAE) method is often used to separate the contribution of BrC absorption from that of black carbon (BC). However, this attribution method is based on assumptions regarding the spectral dependence of BC that are often violated in the ambient atmosphere. Here we develop a new method that decreases the uncertainties associated with estimating BrC absorption. By applying this method to multi-wavelength absorption aerosol optical depth (AAOD) measurements at AERONET sites worldwide and surface aerosol absorption measurements at multiple ambient sites, we estimate that BrC globally contributes 6-40% of the absorption at 440nm. We find that the mass absorption coefficient of OA (OA-MAC) is positively correlated with BC/OA mass ratio. Based on the variability of BC properties and BC/OA emission ratio, we estimate a range of 0.05-1.2 m2/g for OA-MAC at 440nm. Using the combination of AERONET and OMI UV absorption observations we estimate that the AAE388/440nm for BrC is generally ~4 world-wide, with a smaller value in Europe (< 2). Our analyses of two surface sites (Cape Cod, to the southeast of Boston, and the GoAmazon2014/5 T3 site, to the west of Manaus, Brazil) reveal no significant relationship between BrC absorptivity and photochemical aging in typical urban influenced conditions. However, the absorption of BrC measured during the biomass burning season near Manaus is found to decrease with photochemical aging with a lifetime of ~1 day. This lifetime is

  9. Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and Aethalometer observations

    DOE PAGES

    Wang, X.; Heald, C. L.; Sedlacek, A.; ...

    2016-10-13

    The radiative impact of organic aerosols (OA) is a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. This radiative impact includes not only light scattering but also light absorption from a subclass of OA referred to as brown carbon (BrC). However the absorption properties of BrC are poorly understood leading to large uncertainties in modelling studies. To obtain observational constraints from measurements, a simple Absorption Ångström Exponent (AAE) method is often used to separate the contribution of BrC absorption from that of black carbon (BC). However, this attribution method is based on assumptions regardingmore » the spectral dependence of BC that are often violated in the ambient atmosphere. Here we develop a new method that decreases the uncertainties associated with estimating BrC absorption. By applying this method to multi-wavelength absorption aerosol optical depth (AAOD) measurements at AERONET sites worldwide and surface aerosol absorption measurements at multiple ambient sites, we estimate that BrC globally contributes 6-40% of the absorption at 440nm. We find that the mass absorption coefficient of OA (OA-MAC) is positively correlated with BC/OA mass ratio. Based on the variability of BC properties and BC/OA emission ratio, we estimate a range of 0.05-1.2 m2/g for OA-MAC at 440nm. Using the combination of AERONET and OMI UV absorption observations we estimate that the AAE388/440nm for BrC is generally ~4 world-wide, with a smaller value in Europe (< 2). Our analyses of two surface sites (Cape Cod, to the southeast of Boston, and the GoAmazon2014/5 T3 site, to the west of Manaus, Brazil) reveal no significant relationship between BrC absorptivity and photochemical aging in typical urban influenced conditions. However, the absorption of BrC measured during the biomass burning season near Manaus is found to decrease with photochemical aging with a lifetime of ~1 day. This lifetime is comparable to

  10. Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity

    NASA Astrophysics Data System (ADS)

    Bin, J. H.; Allinger, K.; Khrennikov, K.; Karsch, S.; Bolton, P. R.; Schreiber, J.

    2017-03-01

    Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity.

  11. Correction of optical absorption and scattering variations in laser speckle rheology measurements

    PubMed Central

    Hajjarian, Zeinab; Nadkarni, Seemantini K.

    2014-01-01

    Laser Speckle Rheology (LSR) is an optical technique to evaluate the viscoelastic properties by analyzing the temporal fluctuations of backscattered speckle patterns. Variations of optical absorption and reduced scattering coefficients further modulate speckle fluctuations, posing a critical challenge for quantitative evaluation of viscoelasticity. We compare and contrast two different approaches applicable for correcting and isolating the collective influence of absorption and scattering, to accurately measure mechanical properties. Our results indicate that the numerical approach of Monte-Carlo ray tracing (MCRT) reliably compensates for any arbitrary optical variations. When scattering dominates absorption, yet absorption is non-negligible, diffusing wave spectroscopy (DWS) formalisms perform similar to MCRT, superseding other analytical compensation approaches such as Telegrapher equation. The computational convenience of DWS greatly simplifies the extraction of viscoelastic properties from LSR measurements in a number of chemical, industrial, and biomedical applications. PMID:24663983

  12. Correction of optical absorption and scattering variations in Laser Speckle Rheology measurements.

    PubMed

    Hajjarian, Zeinab; Nadkarni, Seemantini K

    2014-03-24

    Laser Speckle Rheology (LSR) is an optical technique to evaluate the viscoelastic properties by analyzing the temporal fluctuations of backscattered speckle patterns. Variations of optical absorption and reduced scattering coefficients further modulate speckle fluctuations, posing a critical challenge for quantitative evaluation of viscoelasticity. We compare and contrast two different approaches applicable for correcting and isolating the collective influence of absorption and scattering, to accurately measure mechanical properties. Our results indicate that the numerical approach of Monte-Carlo ray tracing (MCRT) reliably compensates for any arbitrary optical variations. When scattering dominates absorption, yet absorption is non-negligible, diffusing wave spectroscopy (DWS) formalisms perform similar to MCRT, superseding other analytical compensation approaches such as Telegrapher equation. The computational convenience of DWS greatly simplifies the extraction of viscoelastic properties from LSR measurements in a number of chemical, industrial, and biomedical applications.

  13. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  14. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Ramanathan, Anand; Hasselbrack, William E.; Mao, Jianping; Weaver, Clark; Browell, Edward V.

    2012-01-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to greater than 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the Iidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected -linear change of the peak DOD with altitude. For measurements at altitudes greater than 6 km the random errors were approximately 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as wen as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly

  15. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Ramanathan, A.; Hasselbrack, W.; Mao, J.; Weaver, C. J.; Browell, E. V.

    2012-12-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the lidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected ~linear change of the peak DOD with altitude. For measurements at altitudes > 6 km the random errors were ~ 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity

  16. An instrumented pendulum system for measuring energy absorption during fracture insult to large animal joints in vivo.

    PubMed

    Diestelmeier, B W; Rudert, M J; Tochigi, Y; Baer, T E; Fredericks, D C; Brown, T D

    2014-06-01

    For systematic laboratory studies of bone fractures in general and intra-articular fractures in particular, it is often necessary to control for injury severity. Quantitatively, a parameter of primary interest in that regard is the energy absorbed during the injury event. For this purpose, a novel technique has been developed to measure energy absorption in experimental impaction. The specific application is for fracture insult to porcine hock (tibiotalar) joints in vivo, for which illustrative intra-operative data are reported. The instrumentation allowed for the measurement of the delivered kinetic energy and of the energy passed through the specimen during impaction. The energy absorbed by the specimen was calculated as the difference between those two values. A foam specimen validation study was first performed to compare the energy absorption measurements from the pendulum instrumentation versus the work of indentation performed by an MTS machine. Following validation, the pendulum apparatus was used to measure the energy absorbed during intra-articular fractures created in 14 minipig hock joints in vivo. The foam validation study showed close correspondence between the pendulum-measured energy absorption and MTS-performed work of indentation. In the survival animal series, the energy delivered ranged from 31.5 to 48.3 Js (41.3±4.0, mean±s.d.) and the proportion of energy absorbed to energy delivered ranged from 44.2% to 64.7% (53.6%±4.5%). The foam validation results support the reliability of the energy absorption measure provided by the instrumented pendulum system. Given that a very substantial proportion of delivered energy passed--unabsorbed--through the specimens, the energy absorption measure provided by this novel technique arguably provides better characterization of injury severity than is provided simply by energy delivery.

  17. Effect of Water Vapor Absorption on Measurements of Atmospheric Nitrate Radical by LP-DOAS

    NASA Astrophysics Data System (ADS)

    Li, Su-wen; Liu, Wen-qing; Xie, Pin-hua; Yang, Yi-jun; Chen, De-bao; Li, Zheng

    2008-10-01

    During the measurement of atmospheric nitrate radical by long-path differential optical absorption spec-troscopy, water vapor strong absorption could affect the measurement of nitrate radical and detection limits of system. Under the tropospheric condition, the optical density of water vapor absorption is non-linearly dependent on column density. An effective method was developed to eliminate the effect of water vapor absorption. Reference spectra of water vapor based on the daytime atmospheric absorption spectra, when fitted together with change of cross section with water vapor column densities, gave a more accurate fitting of water vapor absorptions, thus its effect on the measurements of nitrate radical could be restricted to a minimum and detection limits of system reached 3.6 ppt. The modified method was applied during an intensive field campaign in the Pearl River Delta, China. The NO3 concentration in polluted air masses varied from 3.6 ppt to 82.5 ppt with an average level of 23.6±1.8 ppt.

  18. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3x10(exp 17) and 9x10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  19. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  20. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  1. Photothermal self-phase-modulation technique for absorption measurements on high-reflective coatings.

    PubMed

    Steinlechner, Jessica; Jensen, Lars; Krüger, Christoph; Lastzka, Nico; Steinlechner, Sebastian; Schnabel, Roman

    2012-03-10

    We propose and demonstrate a new measurement technique for the optical absorption of high-reflection coatings. Our technique is based on photothermal self-phase modulation and exploits the deformation of cavity Airy peaks that occurs due to coating absorption of intracavity light. The mirror whose coating is under investigation needs to be the input mirror of a high-finesse cavity. Our example measurements were performed on a high-reflection SiO2-Ta2O5 coating in a three-mirror ring-cavity setup at a wavelength of 1064 nm. The optical absorption of the coating was determined to be α=(23.9±2.0)·10(-6) per coating. Our result is in excellent agreement with an independently performed laser calorimetry measurement that gave a value of α=(24.4±3.2)·10(-6) per coating. Since the self-phase modulation in our coating-absorption measurement affects mainly the propagation through the cavity input mirror, our measurement result is practically uninfluenced by the optical absorption of the other cavity mirrors.

  2. Evaluation of the effects of Mount Pinatubo aerosol on differential absorption lidar measurements of stratospheric ozone

    SciTech Connect

    Steinbrecht, W.; Carswell, A.I.

    1995-01-01

    Substantially increased aerosol backscattering and extinction after a major volcanic eruption can lead to errors in differential absorption lidar (DIAL) measurements of stratospheric ozone. Mie calculations, performed for the wavelengths 308 and 353 nm and based on size distributions measured over Laramie, Wyoming (41 deg), were used to assess size and temporal evolution of these errors. In many situations, neglecting the different aerosol backscattering at the absorption and reference wavelengths can lead to relative errors in the ozone concentration larger than 100% for the 308-, 353-nm pair. The error due to neglecting the differential aerosol extinction, however, will rarely exceed 2%. A correction for this differential extinction should only be attempted when high concentrations (greater than 100/cu cm) of small aerosol particles with radii below 0.1 micrometers are present, e.g., shortly after an eruption. A correction for the differential backscatter can be made by using additional lidar measurements at a second reference wavelength or by having general size distribution information on the aerosol. Possible corrections were tested and will usually reduce the error in the ozone concentration considerably. For the 308-, 353-nm pair, both Mie calculations and a comparison with ozone profiles from electrochemical cell sondes show, however, that even after the correction the uncertainty in the ozone concentration within some regions of the strongly enhanced Mt. Pinatubo aerosol layer can still be substantial, of the order of 10-50%. Wavelength separation smaller than 40 nm or use of wavelengths shorter than 300 nm will reduce the error. The best solution seems to be the addition of Raman channels. It avoids the large error due to the differential backscatter term.

  3. Size-resolved measurements of brown carbon and estimates of their contribution to ambient fine particle light absorption based on water and methanol extracts

    NASA Astrophysics Data System (ADS)

    Liu, J.; Bergin, M.; Guo, H.; King, L.; Kotra, N.; Edgerton, E.; Weber, R. J.

    2013-07-01

    to solution measurements, at all sites, Mie-predicted brown carbon absorption at 350 nm contributed a significant fraction (20 to 40%) relative to total light absorption, with highest contributions at the rural site where organic to elemental carbon ratios were highest. Brown carbon absorption, however, was highest by the roadside site due to vehicle emissions. The multi-wavelength aethalometer did not detect brown carbon, having an absorption Ångstrom exponent near one. Although the results are within the estimated Aethalometer uncertainties, the direct measurement of brown carbon in solution definitively shows that it is present and this Mie analysis suggests it is optically important in the near UV range in both a rural and urban environment during summer when biomass burning emissions are low.

  4. Broad band nonlinear optical absorption measurements of the laser dye IR26 using white light continuum Z-scan

    NASA Astrophysics Data System (ADS)

    Dey, Soumyodeep; Bongu, Sudhakara Reddy; Bisht, Prem Ballabh

    2017-03-01

    We study the nonlinear optical response of a standard dye IR26 using the Z-scan technique, but with the white light continuum. The continuum source of wavelength from 450 nm to 1650 nm has been generated from the photonic crystal fiber on pumping with 772 nm of Ti:Sapphire oscillator. The use of broadband incident pulse enables us to probe saturable absorption (SA) and reverse saturable absorption (RSA) over the large spectral range with a single Z-scan measurement. The system shows SA in the resonant region while it turns to RSA in the non-resonant regions. The low saturation intensity of the dye can be explained based on the simultaneous excitation from ground states to various higher energy levels with the help of composite energy level diagram. The cumulative effects of excited state absorption and thermal induced nonlinear optical effects are responsible for the observed RSA.

  5. Improvement in Suppression of Pulsed Nd:YAG Laser Light With Iodine Absorption Cells for Filtered Rayleigh Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E

    1997-01-01

    Filtered Rayleigh scattering using iodine absorption cells is an effective technique for obtaining density, temperature, and velocity measurements in high speed confined flows. By tuning a single frequency laser to a strong iodine absorption line, stray scattered laser light can be greatly suppressed. For example, the minimum transmission predicted by an iodine absorption model calculation is less than 10(exp -5) at the 18788.44/cm line using a 200 mm absorption cell containing iodine vapor at 0.46 T. Measurements obtained by other researches using a CW Nd:YAG laser agree with the model calculations. However, measurements made by us and by others using Q-switched, injection-seeded, frequency doubled Nd:YAG lasers only show minimum transmission of about 3 x 10(exp -3). This greatly reduces the applicability of the filtered Rayleigh scattering technique using these lasers in experiments having large amounts of stray scattered laser light. The purposes of the present study are to characterize the spectrum of the excess light transmitted by the iodine cell and to make changes to the laser to reduce the transmitted laser light. Transmission data as a function of laser frequency for the iodine absorption line at 18788.44/cm are presented. A planar mirror Fabry-Perot interferometer was used to characterize the frequency spectrum of the light passed through the cell. Measurements taken with the laser tuned to the center of the iodine absorption line show the light transmitted through the iodine cell to have a component with a bandwidth of about 40 GHz. This is probably caused by other modes in the laser that exist in spite of the single frequency injection beam. A second broadband component was also observed, possibly caused by the laser flash lamps or by fluorescence. An intracavity etalon was installed in the laser oscillator cavity to suppress the 40 GHz component. Measurements taken with the etalon tuned to the injection frequency showed a reduction in the transmitted

  6. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  7. [Research on the NO2 mean concentration measurement with target differential optical absorption spectroscopy technology].

    PubMed

    Liu, Jin; Si, Fu-Qi; Zhou, Hai-Jin; Zhao, Min-Jie; Dou, Ke; Liu, Wen-Qing

    2013-04-01

    A new monitoring method of NO2 concentration near ground with the target difference absorption spectrum technology (Target DOAS) is introduced in the present paper. This method is based on the passive difference absorption spectrum technology. The instrument collects solar reflection spectrum of remote objectives, such as wall of building and mountain, and a specific reference spectrum is chosen to subtract the influence of trace gases from the target to atmospheric top, then integrated concentration of NO2 along the path between the target and instrument can be calculated through the differential absorption spectra inversion algorithm. Since the distance between the instrument and target is given, the mean concentration of NO2 can be derived. With developed Target DOAS instrument, NO2 concentration measurement was carried out in Hefei. And comparison was made between the target DOAS and long path difference absorption spectrometer. Good consistency was presented, proving the feasibility of this method.

  8. Exospheric hydrogen density estimates from absorption dips in GOES solar irradiance measurements

    NASA Astrophysics Data System (ADS)

    Machol, J. L.; Loto'aniu, P. T. M.; Snow, M. A.; Viereck, R. A.; Woodraska, D.; Jones, A. R.; Bailey, J. J.; Gruntman, M.; Redmon, R. J.

    2015-12-01

    We use extreme ultraviolet (EUV) measurements of solar irradiance from GOES satellites to derive daily hydrogen (H) density distributions of the terrestrial upper atmosphere. GOES satellites are in geostationary orbit and measure solar irradiance in a wavelength band around the Lyman-alpha line. When the satellite is on the night-side of the Earth looking through the atmosphere at the Sun, the irradiance exhibits absorption/scattering loss. Using these daily dips in the measured irradiance, we can estimate a simple hydrogen density distribution for the exosphere based on the integrated scattering loss along the line of sight towards the Sun. We show preliminary results from this technique and compare the derived exospheric H density distributions with other data sets for different solar, geomagnetic and atmospheric conditions. The GOES observations will be available for many years into the future and so potentially can provide continuous monitoring of exospheric H density for use in full atmospheric models. These measurements may also provide a means to validate, calibrate and improve other exospheric models. Improved models will help with the understanding of the solar-upper atmospheric coupling and the decay of the ions in the magnetospheric ring current during geomagnetic storms. Long-term observations of trends can be used to monitor impacts of climate change and improved satellite drag models will help satellite operator adjust satellite orbits during geomagnetic storms. We discuss planned improvements to this technique.

  9. Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent.

    PubMed

    Rajian, Justin Rajesh; Carson, Paul L; Wang, Xueding

    2009-03-16

    In photoacoustic imaging, the intensity of photoacoustic signal induced by optical absorption in biological tissue is proportional to light energy deposition, which is the product of the absorption coefficient and the local light fluence. Because tissue optical properties are highly dependent on the wavelength, the spectrum of the local light fluence at a target tissue beneath the sample surface is different than the spectrum of the incident light fluence. Therefore, quantifying the tissue optical absorption spectrum by using a photoacoustic technique is not feasible without the knowledge of the local light fluence. In this work, a highly accurate photoacoustic measurement of the subsurface tissue optical absorption spectrum has been achieved for the first time by introducing an extrinsic optical contrast agent with known optical properties. From the photoacoustic measurements with and without the contrast agent, a quantified measurement of the chromophore absorption spectrum can be realized in a strongly scattering medium. Experiments on micro-flow vessels containing fresh canine blood buried in phantoms and chicken breast tissues were carried out in a wavelength range from 680 nm to 950 nm. Spectroscopic photoacoustic measurements of both oxygenated and deoxygenated blood specimens presented an improved match with the references when employing this technique.

  10. Photo-acoustic measurements of gas and aerosol absorption with diode lasers.

    PubMed

    Ponomarev, Yu N

    2004-12-01

    The results of designing multipurpose high-sensitive photo-acoustic (PA) detectors and their application to high-resolution diode laser spectroscopy of molecular gases, gas analysis, and aerosol absorption measurements are summarized in this paper. The hardware and software of the diode laser spectrometer with a Helmholtz resonant PA detector providing an absorption sensitivity limit of better than 10(-7)Wm(-1)Hz(-1/2) are described. A procedure is proposed for an experiment involving the measurements of the rotational structure of hot vibrational bands of molecules. The results of the application of the nonresonant PA cell with temporal resolution of signals to measurements of weak nonresonant absorption of gases and soot aerosols are presented, and the possibility of creating a broad-band PA laser diode aerosol-meter is discussed.

  11. Measurement of transient gas flow parameters by diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bolshov, M. A.; Kuritsyn, Yu A.; Liger, V. V.; Mironenko, V. R.; Nadezhdinskii, A. I.; Ponurovskii, Ya Ya; Leonov, S. B.; Yarantsev, D. A.

    2015-04-01

    An absorption spectrometer based on diode lasers is developed for measuring two-dimension maps of temperature and water vapour concentration distributions in the combustion zones of two mixing supersonic flows of fuel and oxidiser in the single run regime. The method of measuring parameters of hot combustion zones is based on detection of transient spectra of water vapour absorption. The design of the spectrometer considerably reduces the influence of water vapour absorption along the path of a sensing laser beam outside the burning chamber. The optical scheme is developed, capable of matching measurement results in different runs of mixture burning. A new algorithm is suggested for obtaining information about the mixture temperature by constructing the correlation functions of the experimental spectrum with those simulated from databases. A two-dimensional map of temperature distribution in a test chamber is obtained for the first time under the conditions of plasma-induced combusion of the ethylene - air mixture.

  12. Fourier transform infrared spectroscopy measurements of multi-phonon and free-carrier absorption in ZnO

    SciTech Connect

    Saadatkia, Pooneh; Ariyawansa, G.; Leedy, K. D.; Look, D. C.; Boatner, L. A.; Selim, F. A.

    2016-10-21

    Fourier transform infrared (FTIR) measurements were carried out on thin films and bulk single crystals of ZnO over a wide temperature range to study the free-carrier and multi-phonon infrared absorptions and the effects of hydrogen incorporation on these properties. Aluminum-doped ZnO thin films were deposited on quartz substrates using atomic-layer deposition (ALD) and sol–gel methods. Hall-effect measurements showed that the ALD films have a resistivity of ρ = 1.11 × 10–3 Ω cm, three orders of magnitude lower than sol–gel films (ρ = 1.25 Ω cm). This result is consistent with the significant difference in their free-carrier absorption as revealed by FTIR spectra obtained at room temperature. By reducing the temperature to 80 K, the free carriers were frozen out, and their absorption spectrum was suppressed. From the FTIR measurements on ZnO single crystals that were grown by the chemical vapor transport method, we identified a shoulder around 3350 cm–1 and associated it with the presence of two or more hydrogen ions in a Zn vacancy. After reducing the hydrogen level in the crystal, the measurements revealed the multi-phonon absorption of ZnO in the range of 700–1200 cm–1. Furthermore, this study shows that the multi-phonon absorption bands can be completely masked by the presence of a large concentration of hydrogen in the crystals.

  13. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  14. Cryogenic Thermal Absorptance Measurements on Small-Diameter Stainless Steel Tubing

    NASA Technical Reports Server (NTRS)

    Tuttle, James; Jahromi, Amir; Canavan, Edgar; DiPirro, Michael

    2015-01-01

    The Mid Infrared Instrument (MIRI) on the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 Kelvin operating temperature. The coolant gas flows through several meters of small-diameter stainless steel tubing, which is exposed to thermal radiation from its environment. Over much of its length this tubing is gold-plated to minimize the absorption of this radiant heat. In order to confirm that the cryocooler will meet MIRI's requirements, the thermal absorptance of this tubing was measured as a function of its environment temperature. We describe the measurement technique and present the results.

  15. Intersubband infrared absorption in Ge(x)Si(1-x)/Si superlattice by photocurrent measurement

    NASA Technical Reports Server (NTRS)

    Karunasiri, R. P. G.; Park, J. S.; Wang, K. L.; Cheng, Li-Jen

    1990-01-01

    The intersubband IR absorption of holes in a Ge(x)Si(1-x)/Si superlattice is observed for the first time. In the experiment, the photocurrent is measured as a function of applied bias which is used to inject holes to the minibands of the superlattice. Two peaks in the photocurrent as a function of bias across the device are observed due to intersubband absorption between the ground to the first and the first of the second light hole minibands. The polarization dependence measurement is used to study the nature of the transitions and is in good agreement with the selection rules.

  16. Quasi-static magnetic measurements to predict specific absorption rates in magnetic fluid hyperthermia experiments

    NASA Astrophysics Data System (ADS)

    Coral, D. F.; Mendoza Zélis, P.; de Sousa, M. E.; Muraca, D.; Lassalle, V.; Nicolás, P.; Ferreira, M. L.; Fernández van Raap, M. B.

    2014-01-01

    In this work, the issue on whether dynamic magnetic properties of polydispersed magnetic colloids modeled using physical magnitudes derived from quasi-static magnetic measurement can be extrapolated to analyze specific absorption rate data acquired at high amplitudes and frequencies of excitation fields is addressed. To this end, we have analyzed two colloids of magnetite nanoparticles coated with oleic acid and chitosan in water displaying, under a radiofrequency field, high and low specific heat power release. Both colloids are alike in terms of liquid carrier, surfactant and magnetic phase composition but differ on the nanoparticle structuring. The colloid displaying low specific dissipation consists of spaced magnetic nanoparticles of mean size around 4.8 nm inside a large chitosan particle of 52.5 nm. The one displaying high specific dissipation consists of clusters of magnetic nanoparticles of mean size around 9.7 nm inside a chitosan particle of 48.6 nm. The experimental evaluation of Néel and Brown relaxation times (˜10-10 s and 10-4 s, respectively) indicate that the nanoparticles in both colloids magnetically relax by Néel mechanism. The isothermal magnetization curves analysis for this mechanism show that the magnetic nanoparticles behave in the interacting superparamagnetic regime. The specific absorption rates were determined calorimetrically at 260 kHz and up to 52 kA/m and were well modeled within linear response theory using the anisotropy density energy retrieved from quasi-static magnetic measurement, validating their use to predict heating ability of a given polydispersed particle suspension. Our findings provide new insight in the validity of quasi-static magnetic characterization to analyze the high frequency behavior of polydispersed colloids within the framework of the linear response and Wohlfarth theories and indicate that dipolar interactions play a key role being their strength larger for the colloid displaying higher dissipation, i

  17. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  18. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  19. A benchmarking method to measure dietary absorption efficiency of chemicals by fish.

    PubMed

    Xiao, Ruiyang; Adolfsson-Erici, Margaretha; Åkerman, Gun; McLachlan, Michael S; MacLeod, Matthew

    2013-12-01

    Understanding the dietary absorption efficiency of chemicals in the gastrointestinal tract of fish is important from both a scientific and a regulatory point of view. However, reported fish absorption efficiencies for well-studied chemicals are highly variable. In the present study, the authors developed and exploited an internal chemical benchmarking method that has the potential to reduce uncertainty and variability and, thus, to improve the precision of measurements of fish absorption efficiency. The authors applied the benchmarking method to measure the gross absorption efficiency for 15 chemicals with a wide range of physicochemical properties and structures. They selected 2,2',5,6'-tetrachlorobiphenyl (PCB53) and decabromodiphenyl ethane as absorbable and nonabsorbable benchmarks, respectively. Quantities of chemicals determined in fish were benchmarked to the fraction of PCB53 recovered in fish, and quantities of chemicals determined in feces were benchmarked to the fraction of decabromodiphenyl ethane recovered in feces. The performance of the benchmarking procedure was evaluated based on the recovery of the test chemicals and precision of absorption efficiency from repeated tests. Benchmarking did not improve the precision of the measurements; after benchmarking, however, the median recovery for 15 chemicals was 106%, and variability of recoveries was reduced compared with before benchmarking, suggesting that benchmarking could account for incomplete extraction of chemical in fish and incomplete collection of feces from different tests.

  20. Near-IR diode laser absorption for measurement of tropospheric HO2

    NASA Technical Reports Server (NTRS)

    Stanton, Alan C.

    1994-01-01

    The possibility of using tunable lead salt diode lasers in the infrared for measurement of tropospheric HO2 has been frequently considered. Although the sensitivity of diode laser absorption has been improved through the use of high frequency detection techniques, nature has been unkind in that the HO2 absorption cross sections are weak. Even using the most optimistic assumptions about attainable path length and detectable absorbance, measurement of tropospheric HO2 by diode laser absorption in the mid-IR appears marginal. A possible alternative method for measuring HO2 is by absorption at near-infrared wavelengths. Several absorption bands of HO2 occur in the wavelength region between 1.2 and 1.6 micron due to electronic transitions and overtones of the fundamental vibrational modes. InGaAsP diode lasers operate in this wavelength region and can be used for high resolution spectroscopy in a manner analogous to the lead salt lasers. A diode laser system in the near-IR offers some advantages.

  1. Measurement and feature analysis of absorption spectra of four algal species

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Zhou, Hongli; Han, Bing; Li, Tongji

    2016-04-01

    Two methods for particulate pigments (i.e., quantitative filter technique, QFT, and in vivo measurement, InVivo, respectively) and two methods for dissolved pigments (i.e., Acetone Extracts, AceEx, and high-performance liquid chromatography, HPLC, respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species. Through normalization and analysis of the spectra, it is shown that (1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments; (2) that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength, and the difference of the peak position in the near infrared wavelength was ~10 nm between each other; and (3) that the leveling effect of the absorption spectra of particulate pigments was significant. These four methods can all effectively measure the absorption coefficients of phytoplankton pigments, while each one has its unique advantages in different applications. Therefore, appropriate method should be carefully selected for various application due to their intrinsic difference.

  2. Measurement and feature analysis of absorption spectra of four algal species

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Zhou, Hongli; Han, Bing; Li, Tongji

    2017-03-01

    Two methods for particulate pigments (i.e., quantitative filter technique, QFT, and in vivo measurement, InVivo, respectively) and two methods for dissolved pigments (i.e., Acetone Extracts, AceEx, and high-performance liquid chromatography, HPLC, respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species. Through normalization and analysis of the spectra, it is shown that (1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments; (2) that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength, and the difference of the peak position in the near infrared wavelength was 10 nm between each other; and (3) that the leveling effect of the absorption spectra of particulate pigments was significant. These four methods can all effectively measure the absorption coefficients of phytoplankton pigments, while each one has its unique advantages in different applications. Therefore, appropriate method should be carefully selected for various application due to their intrinsic difference.

  3. Absorption and modulus measurements in the seismic frequency and strain range on partially saturated sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Paffenholz, Josef; Burkhardt, Hans

    1989-07-01

    The absorptions 1/QE and 1/QS of partially water-saturated sedimentary rocks were determined from phase differences between stress and strain for longitudinal deformation frequencies between 0.03 and 300 Hz and torsional frequencies between 0.03 and 100 Hz. Both longitudinal and shear strain amplitudes were of the order of 10-6. For water saturation between 0 and 50%, Young's moduli and shear moduli were shown to decrease with increasing saturation. In this saturation range both 1/QE and 1/QS increased, but no distinguishable absorption maxima were observed. For saturation percentages greater than 50%, the moduli of the samples appeared independent of the water content. 1/QE increased until full saturation and showed a strong frequency dependence. 1/QS is much less affected by increasing water saturation and has no absorption maxima in general. Since the absorption and the moduli reduction show different saturation dependencies, two different mechanisms for these effects are proposed. The addition of water changes the interaction force between the molecules on opposite walls of thin cracks. This provides a mechanism for the modulus reduction. Calculations based on the Biot-Gardner theory (Gardner, 1962) indicate that part of the observed absorption may be caused by fluid flow due to the limited sample size as proposed by White (1986). Fluid-supported thermorelaxation is proposed, as a possible intrinsic absorption mechanism.

  4. Deriving brown carbon from multiwavelength absorption measurements: method and application to AERONET and Aethalometer observations

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Heald, Colette L.; Sedlacek, Arthur J.; de Sá, Suzane S.; Martin, Scot T.; Lizabeth Alexander, M.; Watson, Thomas B.; Aiken, Allison C.; Springston, Stephen R.; Artaxo, Paulo

    2016-10-01

    The radiative impact of organic aerosols (OA) is a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. This radiative impact includes not only light scattering but also light absorption from a subclass of OA referred to as brown carbon (BrC). However, the absorption properties of BrC are poorly understood, leading to large uncertainties in modeling studies. To obtain observational constraints from measurements, a simple absorption Ångström exponent (AAE) method is often used to separate the contribution of BrC absorption from that of black carbon (BC). However, this attribution method is based on assumptions regarding the spectral dependence of BC that are often violated in the ambient atmosphere. Here we develop a new AAE method which improves upon previous approaches by using the information from the wavelength-dependent measurements themselves and by allowing for an atmospherically relevant range of BC properties, rather than fixing these at a single assumed value. We note that constraints on BC optical properties and mixing state would help further improve this method. We apply this method to multiwavelength absorption aerosol optical depth (AAOD) measurements at AERONET sites worldwide and surface aerosol absorption measurements at multiple ambient sites. We estimate that BrC globally contributes up to 40 % of the seasonally averaged absorption at 440 nm. We find that the mass absorption coefficient of OA (OA-MAC) is positively correlated with the BC / OA mass ratio. Based on the variability in BC properties and BC / OA emission ratio, we estimate a range of 0.05-1.5 m2 g-1 for OA-MAC at 440 nm. Using the combination of AERONET and OMI UV absorption observations we estimate that the AAE388/440 nm for BrC is generally ˜ 4 worldwide, with a smaller value in Europe (< 2). Our analyses of observations at two surface sites (Cape Cod, to the southeast of Boston, and the GoAmazon2014/5 T3 site, to the west of

  5. Cavity ring-down spectroscopy (CRDS) system for measuring atmospheric mercury using differential absorption

    NASA Astrophysics Data System (ADS)

    Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.

    2012-04-01

    Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included

  6. Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs

    PubMed Central

    Liu, Wei; Pan, Hao; Zhang, Caiyun; Zhao, Liling; Zhao, Ruixia; Zhu, Yongtao; Pan, Weisan

    2016-01-01

    With the rapid development of nanotechnology, novel drug delivery systems comprising orally administered nanoparticles (NPs) have been paid increasing attention in recent years. The bioavailability of orally administered drugs has significant influence on drug efficacy and therapeutic dosage, and it is therefore imperative that the intestinal absorption of oral NPs be investigated. This review examines the various literature on the oral absorption of polymeric NPs, and provides an overview of the intestinal absorption models that have been developed for the study of oral nanoparticles. Three major categories of models including a total of eight measurement methods are described in detail (in vitro: dialysis bag, rat gut sac, Ussing chamber, cell culture model; in situ: intestinal perfusion, intestinal loops, intestinal vascular cannulation; in vivo: the blood/urine drug concentration method), and the advantages and disadvantages of each method are contrasted and elucidated. In general, in vitro and in situ methods are relatively convenient but lack accuracy, while the in vivo method is troublesome but can provide a true reflection of drug absorption in vivo. This review summarizes the development of intestinal absorption experiments in recent years and provides a reference for the systematic study of the intestinal absorption of nanoparticle-bound drugs. PMID:27455239

  7. Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs.

    PubMed

    Liu, Wei; Pan, Hao; Zhang, Caiyun; Zhao, Liling; Zhao, Ruixia; Zhu, Yongtao; Pan, Weisan

    2016-07-21

    With the rapid development of nanotechnology, novel drug delivery systems comprising orally administered nanoparticles (NPs) have been paid increasing attention in recent years. The bioavailability of orally administered drugs has significant influence on drug efficacy and therapeutic dosage, and it is therefore imperative that the intestinal absorption of oral NPs be investigated. This review examines the various literature on the oral absorption of polymeric NPs, and provides an overview of the intestinal absorption models that have been developed for the study of oral nanoparticles. Three major categories of models including a total of eight measurement methods are described in detail (in vitro: dialysis bag, rat gut sac, Ussing chamber, cell culture model; in situ: intestinal perfusion, intestinal loops, intestinal vascular cannulation; in vivo: the blood/urine drug concentration method), and the advantages and disadvantages of each method are contrasted and elucidated. In general, in vitro and in situ methods are relatively convenient but lack accuracy, while the in vivo method is troublesome but can provide a true reflection of drug absorption in vivo. This review summarizes the development of intestinal absorption experiments in recent years and provides a reference for the systematic study of the intestinal absorption of nanoparticle-bound drugs.

  8. Sandwich concept: enhancement for direct absorption measurements by laser-induced deflection (LID) technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.; Bublitz, S.; Paa, W.

    2012-11-01

    The new sandwich concept for absolute photo-thermal absorption measurements using the laser induced deflection (LID) technique is introduced and tested in comparison to the standard LID concept. The sandwich concept's idea is the decoupling of the optical materials for the pump and probe beams by placing a sample of investigation in between two optical (sandwich) plates. The pump beam is guided through the sample whereas the probe beams are deflected within the sandwich plates by the thermal lens that is generated by heat transfer from the irradiated sample. Electrical simulation and laser experiments reveal that using appropriate optical materials for the sandwich plates, the absorption detection limit for photo-thermally insensitive materials can be lowered by up to two orders of magnitude. Another advantage of the sandwich concept, the shrinking of the currently required minimum sample size, was used to investigate the laser induced absorption change in a Nd:YVO4 crystal at 1030nm. It was found that the absorption in Nd:YVO4 lowers due to the laser irradiation but partially recovers during irradiation breaks. Furthermore, absorption spectroscopy has been performed at two LBO crystals in the wavelength range 410...600nm to study the absorption structure around the SHG wavelengths of common high power lasers based on Neodymium doped laser crystals.

  9. Improved and Quality-assessed Emission and Absorption Line Measurements in Sloan Digital Sky Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, Marc; Schawinski, Kevin; Yi, Sukyoung K.

    2011-08-01

    We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting (pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionized gas emission. In order to check for systematic departures from the rather standard set of assumptions that enters our models, we provide a quality assessment for our fit to the SDSS spectra in our sample, for both the stellar continuum and the nebular emissions and across different wavelength regions. This quality assessment also allows the identification of objects with either problematic data or peculiar features. We hope to foster the discovery potential of our database; therefore, our spectral fit is available to the community. For example, based on the quality assessment around the Hα and [N II] λ6584 lines, approximately 1% of the SDSS spectra classified as "galaxies" by the SDSS pipeline do in fact require additional broad lines to be matched, even though they do not show a strong continuum from an active nucleus, as

  10. IMPROVED AND QUALITY-ASSESSED EMISSION AND ABSORPTION LINE MEASUREMENTS IN SLOAN DIGITAL SKY SURVEY GALAXIES

    SciTech Connect

    Oh, Kyuseok; Yi, Sukyoung K.; Sarzi, Marc; Schawinski, Kevin

    2011-08-01

    We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting (pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionized gas emission. In order to check for systematic departures from the rather standard set of assumptions that enters our models, we provide a quality assessment for our fit to the SDSS spectra in our sample, for both the stellar continuum and the nebular emissions and across different wavelength regions. This quality assessment also allows the identification of objects with either problematic data or peculiar features. We hope to foster the discovery potential of our database; therefore, our spectral fit is available to the community. For example, based on the quality assessment around the H{alpha} and [N II] {lambda}6584 lines, approximately 1% of the SDSS spectra classified as 'galaxies' by the SDSS pipeline do in fact require additional broad lines to be matched, even though they do not show a strong continuum from an active

  11. Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method

    NASA Technical Reports Server (NTRS)

    Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.

    2010-01-01

    This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.

  12. Comparison of atmospheric nitrous acid measurements by annular denuder and differential optical absorption systems

    NASA Astrophysics Data System (ADS)

    Appel, B. R.; Winer, A. M.; Tokiwa, Y.; Biermann, H. W.

    As part of the Southern California Air Quality Study (SCAQS), nitrous acid (HONO) measurements were made at Long Beach, CA during the period 11 November-12 December 1987, using two distinctly different techniqes. One of these, the annular denuder method (ADM), used two denuders in tandem, coated with an alkaline medium to obtain 4- or 6-h integrated measurements. A small FEP Tefloncoated glass cyclone preceded the denuders to exclude coarse particles while minimizing loss or artifactual formation of HONO. Nitrite recoveries from the rear denuder were used to correct for sampling artifacts. In the second method, 15 min average HONO concentrations were measured with a differential optical absorption spectrometer (DOAS) coupled to a 25 m basepath, open multiple reflection system operated at a total optical path of 800 m. Period-averaged HONO concentrations from the two techniques were highly correlated ( r = 0.94), with DOAS results averaging about 10% higher. However, ADM results were biased high at low HONO concentrations. HONO and NO concentrations showed a significant, positive correlation ( r = 0.8), consistent with a common emission source (e.g. auto exhaust) for the two pollutants.

  13. Measurement of the depolarization ratio of Rayleigh scattering at absorption bands

    NASA Astrophysics Data System (ADS)

    Anglister, J.; Steinberg, I. Z.

    1981-01-01

    Measurements of the depolarization ratio ρv of light scattered by the pigments lycopene and β-carotene at the red part of their absorption bands yielded values which are very close to the theoretical value 1/3 of a fully anisotropic molecular polarizability, i.e., that due to an electric dipole moment. Measurements of ρv at the blue edge of the visible absorption band of pinacyanol chloride yielded a value of 0.75 at 472.2 nm, which is the maximum value that a depolarization ratio can assume, and is attained if the average molecular polarizability is zero. This is possible only if the diagonalized polarizability tensor has at least one negative element to counterbalance the positive ones. A negative refractive index at the blue edge of the absorption band is thus experimentally demonstrated.

  14. Experimental determination of the self-absorption factor for MTR plates by passive gamma spectrometric measurement

    NASA Astrophysics Data System (ADS)

    Berndt, R.; Mortreau, P.

    2011-07-01

    The measurement of the absolute activity or the mass of radioactive substances by gamma spectrometry needs to include a correction for the radiation absorption inside the source volume, the so-called self-absorption factor. It depends on geometry and material composition of the source, the detector geometry and on the geometrical arrangement of source and gamma radiation detector; it can be calculated if full information about all that is available. This article however describes how to determine the self-absorption factor from measurements if the radiation sources are plates of uranium fuel with typical parameters of nuclear fuel for MTR reactors and without using detail information on the source geometry, thus allowing easy inspection without relying on - potentially falsified - declarations on the internal properties of the fuel objects and without calculation.

  15. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  16. Differences in molar absorptivity of 4-NP with the reaction solution and apparatus affect ALP measurement.

    PubMed

    Huang, W F; Yang, M Q; Zeng, J; Li, L Z; Cheng, G R

    1997-11-01

    We examined the differences in molar absorptivity of 4-NP obtained using different kits for ALP measurement and different instruments. The apparent molar absorptivity of 4-NP in the same reaction solution determined by six different instruments was 15.98, 16.72, 16.06, 17.00, 16.27, 17.62 and that using four different reaction solution kits for ALP with the same instrument was 16.90, 17.38, 17.72, 16.11. We measured ALP in three serum samples with six instruments using the same kit and in twelve serum samples with the same instrument using four kits. ALP activities measured using the same molar absorptivity value differed with the instrument(p < 0.01). However, those measured using the apparent molar absorptivity value for each instrument revealed no significant differences(p > 0.05). In conclusion, we suggest that standard material should be contained in each kit for enzyme measurement and the apparent epsilon for each kit and instrument should be obtained to minimize the systematic error caused by using the same epsilon in different laboratories.

  17. Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region.

    PubMed

    Ambrico, P F; Amodeo, A; Di Girolamo, P; Spinelli, N

    2000-12-20

    The availability of new laser sources that are tunable in the IR spectral region opens new perspectives for differential absorption lidar (DIAL) measurements. A region of particular interest is located in the near IR, where some of the atmospheric pollutants have absorption lines that permit monitoring of emissions from industrial plants and in urban areas. In DIAL measurements, the absorption lines for the species to be measured must be carefully chosen to prevent interference from other molecules, to minimize the dependence of the absorption cross section on temperature, and to optimize the measurements with respect to the optical depth. We analyze the influence of these factors and discuss a set of criteria for selecting the best pairs of wavelengths (lambda(on) and lambda(off)) to be used in DIAL measurements of several molecular species (HCl, CO, CO(2), NO(2), CH(4), H(2)O, and O(2)). Moreover, a sensitivity study has been carried out for selected lines in three different regimes: clean air, urban polluted air, and emission from an incinerator stack.

  18. Improved And Quality Assessed Emission And Absorption Line Measurements In Sloan Digital Sky Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, M.; Schawinski, K.; Yi, S. K.

    2011-01-01

    We have established a new database of absorption and emission line measurements from the Sloan Digital Sky Survey 7th data release for the galaxies within a redshift of 0.2. This work used publicly available codes, pPXF(penalized pixel-fitting) and GANDALF(gas and absorption line fitting), to achieve robust spectral fits and reliable measurements. The absorption line strengths measured by SDSS pipeline are seriously contaminated by emission fill-in. We effectively separate emission lines from absorption lines. For instance, this work successfully extract [NI] doublet from Mgb and it leads to more realistic result of alpha enhancement on late-type galaxies compared to the previous database. Besides accurately measuring line strengths, the database will be provided with new parameters that are indicative of line strength measurement quality. Users can build a subset of database optimal for their studies using specific cuts in the fitting quality parameters as well as empirical signal-to-noise. Applying these parameters, we found galaxies with dramatically broad line regions among the galaxies with poor fitting quality parameters. We applied a new continuum finding prescriptions to newly identified BLRs and they turned out to be Seyfert I nuclei.

  19. Differential Absorption Measurements of Carbon Dioxide for Carbon Sequestration Site Monitoring Using a Temperature Tunable Diode Laser

    NASA Astrophysics Data System (ADS)

    Humphries, S. D.; Nehrir, A. R.; Repasky, K. S.; Carlsten, J. L.; Spangler, L. H.; Dobeck, L. M.; Shaw, J. A.

    2007-12-01

    Carbon capture and sequestration in geologic formations provides a method to remove carbon dioxide (CO2) from entering the Earth's atmosphere. An important issue for the successful storage of CO2 is the ability to monitor geologic sequestration sites for leakage to verify site integrity. A differential absorption measurement instrument based on a continuous wave (cw) temperature tunable distributed feedback (DFB) laser has been developed for measuring atmospheric concentrations of CO2. The tunable DFB laser is capable of tuning across two CO2 absorption features at 2003.50 nm and 2004.02 nm. The measured normalized transmission through the atmosphere is then related to the atmospheric concentration of CO2 through the line strength and normalized line width associated with each absorption feature. A description of this instrument will be presented including the instrument design, operation, and performance characteristics. A field site for testing the performance of CO2 detection instruments and techniques has been developed by the Zero Emissions Research Technology (ZERT) group at Montana State University. The field site allows a controlled flow rate of CO2 to be released underground through a 100 m long horizontal pipe placed below the water table. Two release experiments were performed this past summer with flow rates of 0.1 and 0.3 tons CO2/day. The first release experiment lasted ten days while the second release lasted seven days. Measurements taken with the differential absorption instrument over the horizontal well during these release experiments showed an increase of greater than 300 parts per million (ppm) over the background CO2 concentration. These results indicate the capabilities of the above ground differential absorption instrument for carbon sequestration site monitoring.

  20. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements.

    PubMed

    Ptashnik, Igor V; McPheat, Robert A; Shine, Keith P; Smith, Kevin M; Williams, R Gary

    2012-06-13

    For a long time, it has been believed that atmospheric absorption of radiation within wavelength regions of relatively high infrared transmittance (so-called 'windows') was dominated by the water vapour self-continuum, that is, spectrally smooth absorption caused by H(2)O--H(2)O pair interaction. Absorption due to the foreign continuum (i.e. caused mostly by H(2)O--N(2) bimolecular absorption in the Earth's atmosphere) was considered to be negligible in the windows. We report new retrievals of the water vapour foreign continuum from high-resolution laboratory measurements at temperatures between 350 and 430 K in four near-infrared windows between 1.1 and 5 μm (9000-2000 cm(-1)). Our results indicate that the foreign continuum in these windows has a very weak temperature dependence and is typically between one and two orders of magnitude stronger than that given in representations of the continuum currently used in many climate and weather prediction models. This indicates that absorption owing to the foreign continuum may be comparable to the self-continuum under atmospheric conditions in the investigated windows. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by approximately 0.46 W m(-2) (or 0.6% of the total clear-sky absorption) by using these new measurements when compared with calculations applying the widely used MTCKD (Mlawer-Tobin-Clough-Kneizys-Davies) foreign-continuum model.

  1. The influence of water vapor on atmospheric exchange measurements with an ICOS* based Laser absorption analyzer

    NASA Astrophysics Data System (ADS)

    Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen

    2014-05-01

    Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was

  2. O absorption measurements in an engineering-scale high-pressure coal gasifier

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Sur, Ritobrata; Jeffries, Jay B.; Hanson, Ronald K.; Clark, Tommy; Anthony, Justin; Machovec, Scott; Northington, John

    2014-10-01

    A real-time, in situ water vapor (H2O) sensor using a tunable diode laser near 1,352 nm was developed to continuously monitor water vapor in the synthesis gas of an engineering-scale high-pressure coal gasifier. Wavelength-scanned wavelength-modulation spectroscopy with second harmonic detection (WMS-2 f) was used to determine the absorption magnitude. The 1 f-normalized, WMS-2 f signal (WMS-2 f/1 f) was insensitive to non-absorption transmission losses including beam steering and light scattering by the particulate in the synthesis gas. A fitting strategy was used to simultaneously determine the water vapor mole fraction and the collisional-broadening width of the transition from the scanned 1 f-normalized WMS-2 f waveform at pressures up to 15 atm, which can be used for large absorbance values. This strategy is analogous to the fitting strategy for wavelength-scanned direct absorption measurements. In a test campaign at the US National Carbon Capture Center, the sensor demonstrated a water vapor detection limit of ~800 ppm (25 Hz bandwidth) at conditions with more than 99.99 % non-absorption transmission losses. Successful unattended monitoring was demonstrated over a 435 h period. Strong correlations between the sensor measurements and transient gasifier operation conditions were observed, demonstrating the capability of laser absorption to monitor the gasification process.

  3. Development of a cavity enhanced absorption spectrometer for airborne measurements of CH4 and CO2

    NASA Astrophysics Data System (ADS)

    O'Shea, S. J.; Bauguitte, S. J.-B.; Gallagher, M. W.; Lowry, D.; Percival, C. J.

    2013-01-01

    High-resolution CH4 and CO2 measurements were made onboard the FAAM BAe 146 UK atmospheric research aircraft during a number of field campaigns. The system was based on an infrared spectrometer using the cavity enhanced absorption spectroscopy technique. Correction functions to convert the mole fractions retrieved from the spectroscopy to dry air mole fractions were derived using laboratory experiments and over a 3 month period showed good stability. Long-term performance of the system was monitored using WMO traceable calibration gases. During the first year of operation (29 flights) analysis of the system's in-flight calibrations suggest that its measurements are accurate to -0.07 ppbv (1 σ precision at 1 Hz = 2.48 ppbv) for CH4 and -0.06 ppmv (1 σ precision at 1 Hz = 0.66 ppmv) for CO2. The system was found to be very robust, no major motion or altitude dependency could be detected in the measurements. An inter-comparison between whole air samples that were analysed post-flight for CH4 and CO2 by cavity ring down spectroscopy showed a mean difference between the two techniques of -2.4 ppbv (1 σ = 2.3 ppbv) for CH4 and -0.22 ppmv (1 σ = 0.45 ppmv) for CO2. In September 2012, the system was used to sample biomass burning plumes in Brazil as part of the SAMBBA project (South American biomass burning analysis). From these and simultaneous CO measurements, emission factors for savannah fires were calculated. These were found to be 2.2 ± 0.2 g (kg dry matter)-1 for CH4 and 1710 ± 171 g (kg dry matter)-1 for CO2, which are in excellent agreement with previous estimates in the literature.

  4. Atmospheric Solar Absorption measurements in the lowest 3-km of the atmosphere with small UAVs

    NASA Astrophysics Data System (ADS)

    Ramana, M. V.; Ramanathan, V.; Roberts, G.; Corrigan, C.; Nguyen, H. V.; McFarquhar, G.

    2007-12-01

    This paper reports unique measurements of atmospheric solar absorption and heating rates in the visible (0.4- 0.7 Ým) and broadband (0.3-2.8 Ým) spectral regions using vertically stacked multiple light weight autonomous unmanned aerial vehicles (UAVs) during the Maldives autonomous UAV campaign (MAC). The UAVs and ground based remote sensing instruments determined most of the parameters required for calculating the albedo and vertical distribution of solar fluxes. Measured fluxes have been compared with those derived from a Monte-Carlo radiative transfer algorithm which can incorporate both gaseous and aerosol components. The analysis focuses on a cloud-free day when the air was polluted due to long range transport from India, and the mean aerosol optical depth (AOD) was 0.31 and mean single scattering albedo was 0.92. The UAV measured absorption AOD was 0.019 which agreed within 20% of the value of 0.024 reported by a ground based instrument. The observed and simulated solar absorption agreed within 5% above 1.0 km and aerosol absorption accounted for 30% to 50% of the absorption depending upon the altitude and solar zenith angle. Thus there was no need to invoke anomalous or excess absorption or unknown physics in clear skies, provided we account for aerosol black carbon. The diurnal mean absorption values for altitudes between 0.5 and 3.0 km msl were observed to be 41¡Ó3 Wm-2 (1.5 K/day) in the broadband region and 8¡Ó2 Wm-2 (0.3 K/day) in the visible region. Future investigations into the atmospheric absorption in cloudy skies will characterize the spatial and temporal variation of the cloudy atmosphere in sufficient detail to simulate the vertical distribution of net solar fluxes to permit comparison with the collected radiative observations. This next phase will utilize 4 stacked UAVs to observe the extended cloud decks off the coast of California. A combination of observations and models will then be used to assess if the amount of solar absorption

  5. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    NASA Technical Reports Server (NTRS)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  6. Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption

    NASA Astrophysics Data System (ADS)

    Liu, J.; Bergin, M.; Guo, H.; King, L.; Kotra, N.; Edgerton, E.; Weber, R. J.

    2013-12-01

    highest. Brown carbon absorption, however, was highest by the roadside site due to vehicle emissions. The direct size-resolved measurement of brown carbon in solution definitively shows that it is present and optically important in the near-UV range in both a rural and urban environment during the summer when biomass burning emissions are low. These results allow estimates of brown carbon aerosol absorption from direct measurements of chromophores in aerosol extracts.

  7. Uranyl ion: A convenient standard for transient molar absorption coefficient measurements

    SciTech Connect

    Bakac, A.; Burrows, H.D.

    1997-12-01

    Transient absorption spectra of an aqueous solution of uranyl sulfate have been measured in the ultraviolet and visible spectra. The excited uranyl ion may be a convenient standard for actinometry and photoacoustic calorimetry. (AIP) {copyright} {ital 1997} {ital Society for Applied Spectroscopy}

  8. Developing and Validating Field Measurement Scales for Absorptive Capacity and Experienced Community of Practice

    ERIC Educational Resources Information Center

    Cadiz, David; Sawyer, John E.; Griffith, Terri L.

    2009-01-01

    Research on knowledge transfer in organizations has been hampered by the lack of tools yielding valid scores for studying critical constructs in concert. The authors developed survey measures of absorptive capacity (the ability to transform new knowledge into usable knowledge) and experienced community of practice (the extent to which a person is…

  9. A balloon ozone measurement utilizing an optical absorption cell and an ejector air sampler

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Ashenfelter, T. E.

    1976-01-01

    Stratospheric ozone was measured from a balloon utilizing an ultraviolet absorption cell. The ambient air was sampled by means of an aspirator attached to the output end of the optical cell. A nominal ozone distribution was obtained from 16 km to the float altitude of 38 km.

  10. Optimal frequency selection of multi-channel O2-band different absorption barometric radar for air pressure measurements

    NASA Astrophysics Data System (ADS)

    Lin, Bing; Min, Qilong

    2017-02-01

    Through theoretical analysis, optimal selection of frequencies for O2 differential absorption radar systems on air pressure field measurements is achieved. The required differential absorption optical depth between a radar frequency pair is 0.5. With this required value and other considerations on water vapor absorption and the contamination of radio wave transmission, frequency pairs of present considered radar system are obtained. Significant impacts on general design of differential absorption remote sensing systems are expected from current results.

  11. Saharan Dust: Particle Size Distributions and Light Absorption From Measurements During PRIDE and AEROCE

    NASA Astrophysics Data System (ADS)

    Savoie, D. L.; Maring, H. B.

    2001-12-01

    variability of the dust size distribution and the uncertainties associated with the sample analyses, we could not positively identify any significant differences between the size distributions at Izana and those at Puerto Rico for particle sizes less than about 6 or 7 um. Our measured dust size distributions at both locations show a broad peak that is flat topped from 3.5 to 8.5 um diameter. dV/dlogD decreases sharply above this range, but with a much gentler slope toward smaller particles. This size distribution is consistent with the TEOM total mass concentrations at both Puerto Rico and Izana. Mie estimates of the Saharan dust absorbance based on our measured size distributions and a previously reported dust refractive index yield a dust light absorption efficiency of 0.08 to 0.09 m2/g at 565 nm. Comparable Saharan dust specific absorbances at 565 nm were obtained from the diffuse reflectance technique for samples collected at Izana and Puerto Rico as well as at Barbados and Miami. Notably, the specific absorbance for dust derived from the PSAP measurements during PRIDE were more than a factor of two lower. In contrast, our previous results have shown that the PSAP and diffuse reflectance techniques yield nearly identical results for absorbing aerosols that are dominated by black, submicron particles, i.e. soot.

  12. Added value measures in education show genetic as well as environmental influence.

    PubMed

    Haworth, Claire M A; Asbury, Kathryn; Dale, Philip S; Plomin, Robert

    2011-02-02

    Does achievement independent of ability or previous attainment provide a purer measure of the added value of school? In a study of 4000 pairs of 12-year-old twins in the UK, we measured achievement with year-long teacher assessments as well as tests. Raw achievement shows moderate heritability (about 50%) and modest shared environmental influences (25%). Unexpectedly, we show that for indices of the added value of school, genetic influences remain moderate (around 50%), and the shared (school) environment is less important (about 12%). The pervasiveness of genetic influence in how and how much children learn is compatible with an active view of learning in which children create their own educational experiences in part on the basis of their genetic propensities.

  13. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The

  14. Cesium oscillator strengths measured with a multiple-path-length absorption cell

    NASA Technical Reports Server (NTRS)

    Exton, R. J.

    1976-01-01

    Absorption-oscillator-strength measurements for the principal series in cesium were measured using a multiple-path-length cell. The optical arrangement included a movable transverse path for checking the uniformity of the alkali density along the length of the cell and which also allowed strength measurements to be made simultaneously on both strong and weak lines. The strengths measured on the first 10 doublets indicate an increasing trend in the doublet ratio. The individual line strengths are in close agreement with the high resolution measurements of Pichler (1974) and with the calculations of Norcross (1973).

  15. Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1982-06-08

    The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be rlated to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10/sup -5/ cm/sup -1/ has been demonstrated using this technique.

  16. Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing

    DOEpatents

    Cremers, David A.; Keller, Richard A.

    1985-01-01

    The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10.sup.-5 cm.sup.-1 has been demonstrated using this technique.

  17. Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.

    2012-01-01

    We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".

  18. Photothermal measurement of absorption and scattering losses in thin films excited by surface plasmons.

    PubMed

    Domené, Esteban A; Balzarotti, Francisco; Bragas, Andrea V; Martínez, Oscar E

    2009-12-15

    We present a novel noncontact, photothermal technique, based on the focus error signal of a commercial CD pickup head that allows direct determination of absorption in thin films. Combined with extinction methods, this technique yields the scattering contribution to the losses. Surface plasmon polaritons are excited using the Kretschmann configuration in thin Au films of varying thickness. By measuring the extinction and absorption simultaneously, it is shown that dielectric constants and thickness retrieval leads to inconsistencies if the model does not account for scattering.

  19. Measurement of optical absorption coefficient of bio-tissue at 532nm wavelength

    NASA Astrophysics Data System (ADS)

    Huang, Chuyun; Li, Zhengjia; Yao, Yucheng; He, Yanyan

    2007-05-01

    Laser technology has succeeded in medical application. High power 532nm laser has applied in prostate ablation and other clinic application. To understand optical property of bio-tissue at 532nm wavelength, a method of monitoring surface temperature was used to measure absorption coefficient of gall-stone, porcine liver and canine prostate. The absorption coefficient of gall-stone is about 62cm -1 at 532nm wavelength, and those of porcine liver and canine prostate are about 13cm -1 and 5.4cm -1, respectively. These results help to understand the optical property of bio-tissue and offer theoretic reference for optical dosimetry in clinic application.

  20. Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1985-10-01

    The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10[sup [minus]5] cm[sup [minus]1] has been demonstrated using this technique. 6 figs.

  1. Vibrational relaxation of the bending mode of shock-heated CO2 by laser-absorption measurements.

    NASA Technical Reports Server (NTRS)

    Eckstrom, D. J.; Bershader, D.

    1972-01-01

    Study of the vibrational relaxation characteristics of shock-heated CO2 using a tuned CO2 laser absorption technique. Absorption-coefficient histories were obtained for a single rotational state in each of the -10 0- and -02 0- levels over the temperature range from 500 to 2000 K, and for 21 rotational states of the -10 0- level at 1000 K. These histories have been combined with translational-rotational temperature histories based on interferometer measurements to calculate vibrational relaxation times for the bending mode. The results verify the mutual equilibrium of the bending and symmetric-stretch modes due to Fermi resonance. The bending mode relaxation times are approximately 10% shorter than predicted from interferometer results using the ratio of specific heats. Furthermore, relaxation times based on measurements of different rotational states at 1000 K show a variation with quantum number J, indicating a possible rotational nonequilibrium during the vibration relaxation process.

  2. Assimilation of real-time riometer measurements into models of 30 MHz polar cap absorption

    NASA Astrophysics Data System (ADS)

    Rogers, Neil Christopher; Honary, Farideh

    2015-04-01

    Space weather events may adversely affect high frequency (HF) radio propagation, hence the ability to provide nowcasting and forecasting of HF radio absorption is key for industries that rely on HF communications. This paper presents methods of assimilating 30 MHz radio absorption measurements into two types of ionospheric polar cap absorption (PCA) model to improve their performance as nowcasting tools. Type 1 models calculate absorption as m times the square root of the flux of solar protons above an energy threshold, Et. Measurements from 14 riometers during 94 solar proton events (1995-2010) are assimilated by optimising the day and night values of m by linear regression. Further non-linear optimisations are demonstrated in which parameters such as Et are also optimised and additional terms characterise local time and seasonal variations. These optimisations reduce RMS errors by up to 36%. Type 2 models incorporate altitude profiles of electron and neutral densities and electron temperatures. Here the scale height of the effective recombination coefficient profile in the D-region is optimised by regression. Furthermore, two published models of the rigidity cut-off latitude (CL) are assessed by comparison with riometer measurements. A small improvement in performance is observed by introducing a 3-h lag in the geomagnetic index Kp in the CL models. Assimilating data from a single riometer in the polar cap reduces RMS errors below 1 dB with less than 0.2 dB bias. However, many high-latitude riometers now provide absorption measurements in near-real time and we demonstrate how these data may be assimilated by fitting a low-order spherical harmonic function to both the measurements and a PCA model with optimised parameters.

  3. [Measurements of IR absorption across section and spectrum simulation of lewisite].

    PubMed

    Zhang, Yuan-peng; Wang, Hai-tao; Zhang, Lin; Yang, Liu; Guo, Xiao-di; Bai, Yun; Sun, Hao

    2015-02-01

    The vapor infrared transmission spectra of varied concentration of lewisite-1 were measured by a long-path FT-IR spectrometer, and its characteristic frequencies are 814, 930, 1563 cm(-1); their infrared absorption cross section (a) were determined using Beer-Lambert law. The corresponding sigma values are 3.89 +/- 0.01, 1.43 +/- 0.06, 4.47 +/- 0.05 ( X 10(-20) cm2 x molecule(-1)). Two little teeny peaks, 1158, 1288 cm(-1) were found in the measured spectra. Density Functional Theory (DFT) was applied to calculated the infrared spectra of lewisite-1, -2, -3 on a b3lyp/6-311+g(d, p) level by Gauss09 package. The vibration modes were assigned by Gaussview5. 08. The calculated spectra and experimental spectra are in good agreement with each other in 600-1600 cm(-1) range, for the Person's r is 0.9991. The calculated spectra also showed three characteristic frequencies (293, 360, 374 cm(-1)) related to As atom. 0.977 was a scaling factor we determined for lewisite-1 through least-square error and its performance to scale lewisite-1, -2, -3 was acceptable. The results of this work are useful for monitoring environmental atmospheric concentrations of lewisite.

  4. Differential Optical Absorption Spectroscopy (DOAS) using Targets: SO2 and NO2 Measurements in Montevideo City

    NASA Astrophysics Data System (ADS)

    Louban, Ilia; Píriz, Gustavo; Platt, Ulrich; Frins, Erna

    2008-04-01

    SO2 and NO2 were remotely measured in a main street of Montevideo city using Multiaxis-Differential Optical Absorption Spectroscopy (MAX-DOAS) combined with on-field selected targets. Target-based measurements are the basis of a new experimental procedure called Topographic Target Light scattering-DOAS (TOTAL-DOAS) that provides a well define absorption path to measure the near surface distribution of trace gases in the boundary layer. It combines the measurement principles of the long-path DOAS and zenith-scattered sunlight DOAS, within the near UV and VIS spectral range. We give a general description of the procedure and present first results of the 2006 campaign at Montevideo.

  5. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption and Range During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar only on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear C02 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs

  6. A method for measuring magnetic fields in sunspots using Zeeman-broadened absorption lines

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2017-04-01

    We present measurements of magnetic fields in several sunspots using high-resolution spectra obtained with the ESPARTACO spectrograph at the Universidad de los Andes, with the aim to explore experimental possibilities for students. Because the Zeeman line splitting is smaller than the line width, our work only observes broadened absorption lines. This broadening, however, can be measured and suitably modeled, giving realistic quantitative results.

  7. Combined laser calorimetry and photothermal technique for absorption measurement of optical coatings

    SciTech Connect

    Li Bincheng; Blaschke, Holger; Ristau, Detlev

    2006-08-10

    To the best of our knowledge, a combined sensitive technique employing both laser calorimetry and a surface thermal lens scheme for measuring absorption values of optical coatings is presented for the first time. Laser calorimetric and pulsed surface thermal lens signals are simultaneously obtained with a highly reflecting UV coating sample irradiated at 193 nm. The advantages and potential applications of the combined technique and the experimental factors limiting the measurement sensitivity are discussed.

  8. Combined laser calorimetry and photothermal technique for absorption measurement of optical coatings.

    PubMed

    Li, Bincheng; Blaschke, Holger; Ristau, Detlev

    2006-08-10

    To the best of our knowledge, a combined sensitive technique employing both laser calorimetry and a surface thermal lens scheme for measuring absorption values of optical coatings is presented for the first time. Laser calorimetric and pulsed surface thermal lens signals are simultaneously obtained with a highly reflecting UV coating sample irradiated at 193 nm. The advantages and potential applications of the combined technique and the experimental factors limiting the measurement sensitivity are discussed.

  9. Measurement of the absorption rate of carbon dioxide into aqueous diethanolamine

    SciTech Connect

    Rowley, R.L.; Adams, M.E.; Marshall, T.L.; Oscarson, J.L.; Wilding, W.V.; Anderson, D.J.

    1998-05-01

    Aqueous alkanolamine solutions are commonly used in natural gas sweetening processes to remove the acid gases CO{sub 2} and H{sub 2}S. Absorption rates of gaseous CO{sub 2} into aqueous diethanolamine (DEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate, protonated DEA, and carbamate ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. The diffusion coefficient of DEA in water was also measured using a Taylor dispersion apparatus. A numerical model was developed and used to regress diffusion coefficients of bicarbonate, carbamate, and protonated amine from measured absorption rates. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate, carbamate, and protonated DEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % DEA in water.

  10. Broadband spectroscopy with external cavity quantum cascade lasers beyond conventional absorption measurements.

    PubMed

    Lambrecht, Armin; Pfeifer, Marcel; Konz, Werner; Herbst, Johannes; Axtmann, Felix

    2014-05-07

    Laser spectroscopy is a powerful tool for analyzing small molecules, i.e. in the gas phase. In the mid-infrared spectral region quantum cascade lasers (QCLs) have been established as the most frequently used laser radiation source. Spectroscopy of larger molecules in the gas phase, of complex mixtures, and analysis in the liquid phase requires a broader tuning range and is thus still the domain of Fourier transform infrared (FTIR) spectroscopy. However, the development of tunable external cavity (EC) QCLs is starting to change this situation. The main advantage of QCLs is their high spectral emission power that is enhanced by a factor of 10(4) compared with thermal light sources. Obviously, transmission measurements with EC-QCLs in strongly absorbing samples are feasible, which can hardly be measured by FTIR due to detector noise limitations. We show that the high power of EC-QCLs facilitates spectroscopy beyond simple absorption measurements. Starting from QCL experiments with liquid samples, we show results of fiber evanescent field analysis (FEFA) to detect pesticides in drinking water. FEFA is a special case of attenuated total reflection spectroscopy. Furthermore, powerful CW EC-QCLs enable fast vibrational circular dichroism (VCD) spectroscopy of chiral molecules in the liquid phase - a technique which is very time consuming with standard FTIR equipment. We present results obtained for the chiral compound 1,1'-bi-2-naphthol (BINOL). Finally, powerful CW EC-QCLs enable the application of laser photothermal emission spectroscopy (LPTES). We demonstrate this for a narrowband and broadband absorber in the gas phase. All three techniques have great potential for MIR process analytical applications.

  11. NitroMAC: An instrument for the measurement of HONO and intercomparison with a long-path absorption photometer.

    PubMed

    Afif, Charbel; Jambert, Corinne; Michoud, Vincent; Colomb, Aurélie; Eyglunent, Gregory; Borbon, Agnès; Daële, Véronique; Doussin, Jean-François; Perros, Pascal

    2016-02-01

    NitroMAC (French acronym for continuous atmospheric measurements of nitrogenous compounds) is an instrument which has been developed for the semi-continuous measurement of atmospheric nitrous acid (HONO). This instrument relies on wet chemical sampling and detection using high performance liquid chromatography (HPLC)-visible absorption at 540 nm. Sampling proceeds by dissolution of gaseous HONO in a phosphate buffer solution followed by derivatization with sulfanilamide/N-(1-naphthyl)-ethylenediamine. The performance of this instrument was found to be as follows: a detection limit of around 3 ppt with measurement uncertainty of 10% over an analysis time of 10 min. Intercomparison was made between the instrument and a long-path absorption photometer (LOPAP) during two experiments in different environments. First, air was sampled in a smog chamber with concentrations up to 18 ppb of nitrous acid. NitroMAC and LOPAP measurements showed very good agreement. Then, in a second experiment, ambient air with HONO concentrations below 250 ppt was sampled. While NitroMAC showed its capability of measuring HONO in moderate and highly polluted environments, the intercomparison results in ambient air highlighted that corrections must be made for minor interferences when low concentrations are measured.

  12. Highly sensitive absorption measurements in lithium niobate using whispering gallery resonators

    NASA Astrophysics Data System (ADS)

    Leidinger, Markus; Buse, Karsten; Breunig, Ingo

    2015-02-01

    The absorption coefficient of undoped, congruently grown lithium niobate (LiNbO3) for ordinarily and extraordinarily polarized light is measured in the wavelength range from 390 to 2600 nm using whispering gallery resonators (WGRs). These monolithic cavities guide light by total internal reflection. Their high Q-factor provides several hundred meters of propagation for the coupled light in millimetre size resonators allowing for the measurement of absorption coefficients below 10-2 cm-1, where standard methods such as Fourier-transform or grating spectroscopy meet their limit. In this work the lowest measured value is 10-4 cm-1 at 1700 nm wavelength. Furthermore, the known OH- overtone at 1470 nm wavelength can be resolved clearly.

  13. Resonant tube for measurement of sound absorption in gases at low frequency/pressure ratios

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Griffin, W. A.

    1980-01-01

    The paper describes a resonant tube for measuring sound absorption in gases, with specific emphasis on the vibrational relaxation peak of N2, over a range of frequency/pressure ratios from 0.1 to 2500 Hz/atm. The experimental background losses measured in argon agree with the theoretical wall losses except at few isolated frequencies. Rigid cavity terminations, external excitation, and a differential technique of background evaluation were used to minimize spurious contributions to the background losses. Room temperature measurements of sound absorption in binary mixtures of N2-CO2 in which both components are excitable resulted in the maximum frequency/pressure ratio in Hz/atm of 0.063 + 123m for the N2 vibrational relaxation peak, where m is mole percent of added CO2; the maximum ratio for the CO2 peak was 34,500 268m where m is mole percent of added N2.

  14. Ultraviolet-absorption photometer for measurement of ozone on a rocket-boosted payload

    NASA Astrophysics Data System (ADS)

    Sen, B.; Sheldon, W. R.; Benbrook, J. R.

    1996-10-01

    We developed a rocket payload to perform in situ measurements of atmospheric ozone at the University of Houston. The ozone detector is a dual-beam UV-absorption photometer that uses the 253.7-nm radiation from a low-pressure mercury-vapor lamp to illuminate two identical absorption chambers. We describe the design features and the operation of the instrument. The fundamental resolution of the photometer is shown to be 2.7 10 15 molecules m 3 . We present the ozone profile measured during parachute descent following boosted ascent to 60 km by a Nike Orion rocket. The uncertainty in the measurement of this ozone profile is estimated to be 8.2 .

  15. Experimental measurements of the collisional absorption of XUV radiation in warm dense aluminium

    NASA Astrophysics Data System (ADS)

    Kettle, B.; Dzelzainis, T.; White, S.; Li, L.; Dromey, B.; Zepf, M.; Lewis, C. L. S.; Williams, G.; Künzel, S.; Fajardo, M.; Dacasa, H.; Zeitoun, Ph.; Rigby, A.; Gregori, G.; Spindloe, C.; Heathcote, R.; Riley, D.

    2016-08-01

    The collisional (or free-free) absorption of soft x rays in warm dense aluminium remains an unsolved problem. Competing descriptions of the process exist, two of which we compare to our experimental data here. One of these is based on a weak scattering model, another uses a corrected classical approach. These two models show distinctly different behaviors with temperature. Here we describe experimental evidence for the absorption of 26-eV photons in solid density warm aluminium (Te≈1 eV). Radiative x-ray heating from palladium-coated CH foils was used to create the warm dense aluminium samples and a laser-driven high-harmonic beam from an argon gas jet provided the probe. The results indicate little or no change in absorption upon heating. This behavior is in agreement with the prediction of the corrected classical approach, although there is not agreement in absolute absorption value. Verifying the correct absorption mechanism is decisive in providing a better understanding of the complex behavior of the warm dense state.

  16. Experimental measurements of the collisional absorption of XUV radiation in warm dense aluminium.

    PubMed

    Kettle, B; Dzelzainis, T; White, S; Li, L; Dromey, B; Zepf, M; Lewis, C L S; Williams, G; Künzel, S; Fajardo, M; Dacasa, H; Zeitoun, Ph; Rigby, A; Gregori, G; Spindloe, C; Heathcote, R; Riley, D

    2016-08-01

    The collisional (or free-free) absorption of soft x rays in warm dense aluminium remains an unsolved problem. Competing descriptions of the process exist, two of which we compare to our experimental data here. One of these is based on a weak scattering model, another uses a corrected classical approach. These two models show distinctly different behaviors with temperature. Here we describe experimental evidence for the absorption of 26-eV photons in solid density warm aluminium (T_{e}≈1 eV). Radiative x-ray heating from palladium-coated CH foils was used to create the warm dense aluminium samples and a laser-driven high-harmonic beam from an argon gas jet provided the probe. The results indicate little or no change in absorption upon heating. This behavior is in agreement with the prediction of the corrected classical approach, although there is not agreement in absolute absorption value. Verifying the correct absorption mechanism is decisive in providing a better understanding of the complex behavior of the warm dense state.

  17. Results of measurement of radio wave absorption in the ionosphere by the AI method

    NASA Technical Reports Server (NTRS)

    Korinevskaya, N. A.

    1972-01-01

    Median noon absorption values for each month from 1964 through 1967, the diurnal variations of absorption on the regular world days, and the seasonal variations of absorption are given. The dependence of the absorption coefficient on sunspot number is analyzed.

  18. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer.

    PubMed

    Zhu, Wenyue; Liu, Qiang; Wu, Yi

    2015-09-07

    Atmospheric aerosol plays an important role in atmospheric radiation balance through absorbing and scattering the solar radiation, which changes local weather and global climate. Accurate measurement is highly requested to estimate the radiative effects and climate effects of atmospheric aerosol. Photoacoustic spectroscopy (PAS) technique, which observes the aerosols on their natural suspended state and is insensitive to light scattering, is commonly recognized as one of the best candidates to measure the optical absorption coefficient (OAC) of aerosols. In the present work, a method of measuring aerosol OAC at the wavelength where could also be absorbed by water vapor was proposed and corresponding measurements of the absorption properties of the atmospheric aerosol at the short wave infrared (SWIR, 1342 nm) wavelength were carried out. The spectrometer was made up of two high performance homemade photoacoustic cells. To improve the sensitivity, several methods were presented to control the noise derived from gas flow and vibration from the sampling pump. Calibration of the OAC and properties of the system were also studied in detail. Using the established PAS instrument, measurement of the optical absorption properties of the atmospheric aerosol were carried out in laboratory and field environment.

  19. Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Kamat, Pratyuma C.; Roller, Chad B.; Namjou, Khosrow; Jeffers, James D.; Faramarzalian, Ali; Salas, Rodolfo; McCann, Patrick J.

    2007-07-01

    A high-resolution liquid-nitrogen-free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system was used to perform real-time measurement of acetaldehyde concentrations in human exhaled breath following ingestion of an alcoholic beverage. Acetaldehyde absorption features were measured near 5.79 μm (1727 cm-1) using a IV-VI semiconductor laser, a 100 m long path optical gas cell, and second- harmonic detection coupled with wavelength modulation. Acetaldehyde levels were measured with a minimum detection limit of 80 ppb for 5 s integration time. The variations in exhaled acetaldehyde levels over time were analyzed prior to and following ingestion of two different amounts of white wine. A method to calibrate acetaldehyde measurements internally using water vapor absorption lines was investigated to eliminate the need for system calibration with gas standards. The potential of a TDLAS system to be used as a noninvasive clinical tool for measurements of large volatile compounds with possible applications in cancer detection is demonstrated.

  20. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  1. Cavity-enhanced measurements of hydrogen peroxide absorption cross sections from 353 to 410 nm.

    PubMed

    Kahan, Tara F; Washenfelder, Rebecca A; Vaida, Veronica; Brown, Steven S

    2012-06-21

    We report near-ultraviolet and visible absorption cross sections of hydrogen peroxide (H(2)O(2)) using incoherent broad-band cavity-enhanced absorption spectroscopy (IBBCEAS), a recently developed, high-sensitivity technique. The measurements reported here span the range of 353-410 nm and extend published electronic absorption cross sections by 60 nm to absorption cross sections below 1 × 10(-23) cm(2) molecule(-1). We have calculated photolysis rate constants for H(2)O(2) in the lower troposphere at a range of solar zenith angles by combining the new measurements with previously reported data at wavelengths shorter than 350 nm. We predict that photolysis at wavelengths longer than those included in the current JPL recommendation may account for up to 28% of the total hydroxyl radical (OH) production from H(2)O(2) photolysis under some conditions. Loss of H(2)O(2) via photolysis may be of the same order of magnitude as reaction with OH and dry deposition in the lower atmosphere; these processes have very different impacts on HO(x) loss and regeneration.

  2. Diffuse reflectance spectroscopy as a tool to measure the absorption coefficient in skin: system calibration.

    PubMed

    Karsten, A E; Singh, A; Karsten, P A; Braun, M W H

    2013-02-01

    An individualised laser skin treatment may enhance the treatment and reduces risks and side-effects. The optical properties (absorption and scattering coefficients) are important parameters in the propagation of laser light in skin tissue. The differences in the melanin content of different skin phototypes influence the absorption of the light. The absorption coefficient at the treatment wavelength for an individual can be determined by diffuse reflectance spectroscopy, using a probe containing seven fibres. Six of the fibres deliver the light to the measurement site and the central fibre collects the diffused reflected light. This is an in vivo technique, offering benefits for near-real-time results. Such a probe, with an effective wavelength band from 450 to 800 nm, was used to calibrate skin-simulating phantoms consisting of intralipid and ink. The calibration constants were used to calculate the absorption coefficients from the diffuse reflectance measurements of three volunteers (skin phototypes, II, IV and V) for sun-exposed and non-exposed areas on the arm.

  3. In vivo measurement of the absorption of strontium in the rumen and small intestine of sheep as an index of calcium absorption capacity.

    PubMed

    Hyde, Michelle L; Fraser, David R

    2014-09-14

    In the present study, a method was developed for determining the alimentary tract Ca absorption capacity of ruminant animals by measuring the absorption rate of Sr after the administration of an oral dose of strontium chloride acting as a tracer analogue of Ca. A close correlation between the absorption rates of the two tracers was observed upon simultaneous administration of an oral dose of stable Sr and radioactive calcium (r 0·98). The Ca absorption capacity of the rumen and small intestine was determined separately by either directing the solution into the rumen or by diverting it into the post-ruminal tract by vasopressin-induced closure of the ruminoreticular groove. The animals were treated with 1α-hydroxyvitamin D3 administered via subcutaneously implanted mini-osmotic pumps. The effect of elevated plasma 1,25-dihydroxycholecalciferol concentrations on the Ca absorption capacity of the alimentary tract was then determined. An increased rate of Sr absorption was observed in both the rumen and small intestine of sheep after treatment, although it is unclear whether the rumen possesses the same vitamin D-dependent Ca absorption pathway as the small intestine.

  4. Optical beam induced current measurements based on two-photon absorption process in 4H-SiC bipolar diodes

    SciTech Connect

    Hamad, H.; Raynaud, C.; Bevilacqua, P.; Tournier, D.; Planson, D.; Vergne, B.

    2014-02-24

    Using a pulsed green laser with a wavelength of 532 nm, a duration pulse of ∼1 ns, and a mean power varying between 1 and 100 mW, induced photocurrents have been measured in 4H-SiC bipolar diodes. Considering the photon energy (2.33 eV) and the bandgap of 4H-SiC (3.2 eV), the generation of electron-hole pair by the conventional single photon absorption process should be negligible. The intensity of the measured photocurrents depends quadratically on the power beam intensity. This clearly shows that they are generated using two-photon absorption process. As in conventional OBIC (Optical Beam Induced Current), the measurements give an image of the electric field distribution in the structure under test, and the minority carrier lifetime can be extracted from the decrease of the photocurrent at the edge of the structure. The extracted minority carrier lifetime of 210 ns is consistent with results obtained in case of single photon absorption.

  5. Simulations of an airborne laser absorption spectrometer for atmospheric CO2 measurements

    NASA Astrophysics Data System (ADS)

    Lin, B.; Ismail, S.; Harrison, F. W.; Browell, E. V.; Dobler, J. T.; Refaat, T.; Kooi, S. A.

    2012-12-01

    Atmospheric column amount of carbon dioxide (CO2), a major greenhouse gas of the atmosphere, has significantly increased from a preindustrial value of about 280 parts per million (ppm) to more than 390 ppm at present. Our knowledge about the spatiotemporal change and variability of the greenhouse gas, however, is limited. Thus, a near-term space mission of the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) is crucial to increase our understanding of global sources and sinks of CO2. Currently, NASA Langley Research Center (LaRC) and ITT Exelis are jointly developing and testing an airborne laser absorption spectrometer (LAS) as a prototype instrument for the mission. To assess the space capability of accurate atmospheric CO2 measurements, accurate modeling of the instrument and practical evaluation of space applications are the keys for the success of the ASCENDS mission. This study discusses the simulations of the performance of the airborne instrument and its CO2 measurements. The LAS is a multi-wavelength spectrometer operating on a 1.57 um CO2 absorption line. The Intensity-Modulated Continuous-Wave (IM-CW) approach is implemented in the instrument. To reach accurate CO2 measurements, transmitted signals are monitored internally as reference channels. A model of this kind of instrument includes all major components of the spectrometer, such as modulation generator, fiber amplifier, telescope, detector, transimpedance amplifier, matched filter, and other signal processors. The characteristics of these components are based on actual laboratory tests, product specifications, and general understanding of the functionality of the components. For simulations of atmospheric CO2 measurements, environmental conditions related to surface reflection, atmospheric CO2 and H2O profiles, thin clouds, and aerosol layers, are introduced into the model. Furthermore, all major noise sources such as those from detectors, background radiation, speckle, and

  6. Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption

    NASA Astrophysics Data System (ADS)

    Kawazoe, Hiromitsu; Inagaki, Kazuhisa; Emi, Y.; Yoshino, Fumio

    1997-11-01

    A system to measure gaseous hydrocarbon distributions was devised, which is based on IR light absorption by C-H stretch mode of vibration and computed tomography method. It is called IR-CT method in the paper. Affection of laser light power fluctuation was diminished by monitoring source light intensity by the second IR light detector. Calibration test for methane fuel was carried out to convert spatial data of line absorption coefficient into quantitative methane concentration. This system was applied to three flow fields. The first is methane flow with lifted flame which is generated by a gourd-shaped fuel nozzle. Feasibility of the IR-CT method was confirmed through the measurement. The second application is combustion field with diffusion flame. Calibration to determine absorptivity was undertaken, and measured line absorption coefficient was converted spatial fuel concentration using corresponding temperature data. The last case is modeled in cylinder gas flow of internal combustion engine, where gaseous methane was led to the intake valve in steady flow state. The fuel gas flow simulates behavior of gaseous gasoline which is evaporated at intake valve tulip. Computed tomography measurement of inner flow is essentially difficult because of existence of surrounding wall. In this experiment, IR laser beam was led to planed portion by IR light fiber. It is found that fuel convection by airflow takes great part in air-fuel mixture formation and the developed IR-CT system to measure fuel concentration is useful to analyze air-fuel mixture formation process and to develop new combustors.

  7. Impact of atmospheric state uncertainties on retrieved XCO2 columns from laser differential absorption spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Zaccheo, T. Scott; Pernini, Timothy; Snell, Hilary E.; Browell, Edward V.

    2014-01-01

    This work assesses the impact of uncertainties in atmospheric state knowledge on retrievals of carbon dioxide column amounts (XCO2) from laser differential absorption spectroscopy (LAS) measurements. LAS estimates of XCO2 columns are normally derived not only from differential absorption observations but also from measured or prior knowledge of atmospheric state that includes temperature, moisture, and pressure along the viewing path. In the case of global space-based monitoring systems, it is often difficult if not impossible to provide collocated in situ measurements of atmospheric state for all observations, so retrievals often rely on collocated remote-sensed data or values derived from numerical weather prediction (NWP) models to describe the atmospheric state. A radiative transfer-based simulation framework, combined with representative global upper-air observations and matched NWP profiles, was used to assess the impact of model differences on estimates of column CO2 and O2 concentrations. These analyses focus on characterizing these errors for LAS measurements of CO2 in the 1.57-μm region and of O2 in the 1.27-μm region. The results provide a set of signal-to-noise metrics that characterize the errors in retrieved values associated with uncertainties in atmospheric state and provide a method for selecting optimal differential absorption line pairs to minimize the impact of these noise terms.

  8. Evaluation of laser absorption spectroscopic techniques for eddy covariance flux measurements of ammonia.

    PubMed

    Whitehead, James D; Twigg, Marsailidh; Famulari, Daniela; Nemitz, Eiko; Sutton, Mark A; Gallagher, Martin W; Fowler, David

    2008-03-15

    An intercomparison was made between eddy covariance flux measurements of ammonia by a quantum cascade laser absorption spectrometer (QCLAS) and a lead-salt tunable diode laser absorption spectrometer (TDLAS). The measurements took place in September 2004 and again in April 2005 over a managed grassland site in Southern Scotland, U.K. These were also compared with a flux estimate derived from an "Ammonia Measurement by ANnular Denuder with online Analysis" (AMANDA), using the aerodynamic gradient method (AGM). The concentration and flux measurements from the QCLAS correlated well with those of the TDLAS and the AGM systems when emissions were high, following slurry application to the field. Both the QCLAS and TDLAS, however, underestimated the flux when compared with the AMANDA system, by 64%. A flux loss of 41% due to chemical reaction of ammonia in the QCLAS (and 37% in the TDLAS) sample tube walls was identified and characterized using laboratory tests but did not fully accountforthis difference. Recognizing these uncertainties, the agreement between the systems was nevertheless very close (R2 = 0.95 between the QCLAS and the TDLAS; R2 = 0.84 between the QCLAS and the AMANDA) demonstrating the suitability of the laser absorption methods for quantifying the temporal dynamics of ammonia fluxes.

  9. Method and apparatus for measuring butterfat and protein content using microwave absorption techniques

    DOEpatents

    Fryer, Michael O.; Hills, Andrea J.; Morrison, John L.

    2000-01-01

    A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

  10. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Blancon, Jean-Christophe; Paillet, Matthieu; Tran, Huy Nam; Than, Xuan Tinh; Guebrou, Samuel Aberra; Ayari, Anthony; Miguel, Alfonso San; Phan, Ngoc-Minh; Zahab, Ahmed-Azmi; Sauvajol, Jean-Louis; Fatti, Natalia Del; Vallée, Fabrice

    2013-09-01

    The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction.

  11. Water vapor concentration measurement in singlet oxygen generator by using emission spectroscopy method and absorption at 1392nm

    NASA Astrophysics Data System (ADS)

    Zhao, Weili; Wang, Zengqiang; Fang, Benjie; Li, Qingwei; Jin, Yuqi; Sang, Fengting

    2005-12-01

    By using emission spectroscopy method and absorption at 1392nm, partial water pressure at the exit of a square pipe-array jet-type singlet oxygen generator (SPJSOG) for chemical oxygen-iodine laser (COIL) was measured. The water vapor fraction was calculated from the partial water pressure in the diagnostic cell when we assumed the water vapor fraction in the diagnostic cell is the same as that in the generator. The results from the two methods showed that the water vapor concentration is less than 0.08 in this SPJSOG during normal operation. The water vapor fraction decreases with the increasing of the pressure in the generator and rises with the increasing of buffer gas flow rate and the basic hydrogen peroxide (BHP) temperature in the case of constant chlorine flow rate. Measurements showed that the change of water vapor fraction due to BHP temperature could be ignored during normal operation. It is indicated that the gas flow velocity is the main reason that affects on the water vapor fraction in COIL. It is proved that the emission spectroscopy method is one of the simple and convenient ways to measure the water vapor concentration in singlet oxygen generator (SOG), especially in real time measurements. But absorption spectroscopy method, as a direct measurement, can give the more factual results of the water concentration.

  12. Measuring absorption coefficient of scattering liquids using a tube inside an integrating sphere.

    PubMed

    Villanueva, Yolanda; Veenstra, Colin; Steenbergen, Wiendelt

    2016-04-10

    A method for measuring the absorption coefficient μa of absorbing and scattering liquid samples is presented. The sample is injected into a small transparent tube mounted through an integrating sphere. Two models for determining the absorption coefficient using the relative optical output signal are described and validated using aqueous ink absorbers of 0.5 vol.% (0.3  mm-1a<1.55  mm-1) and 1.0 vol.% (1.0  mm-1a<4.0  mm-1) concentrations with 1 vol.% (μs'≈1.4  mm-1) and 10 vol.% (μs'≈14  mm-1) Intralipid dilutions. The low concentrations give μa and μs values, which are comparable with those of biological tissues. One model assumes a uniform light distribution within the sample, which is valid for low absorption. Another model considers light attenuation that obeys Lambert-Beer's law, which may be used for relatively high absorption. Measurements with low and high scattering samples are done for the wavelength range of 400-900 nm. Measured spectra of purely absorbing samples are within 15% agreement with measurements using standard transmission spectrophotometry. For 0.5 vol.% ink absorbers and at wavelengths below 700 nm, measured μa values are higher for samples with low scattering and lower for those with high scattering. At wavelengths above 700 nm, measured μa values do not vary significantly with amount of scattering. For 1.0 vol.% ink absorbers, measured spectra do not change with low scattering. These results indicate that the method can be used for measuring absorption spectra of scattering liquid samples with optical properties similar to biological absorbers, particularly at wavelengths above 700 nm, which is difficult to accomplish with standard transmission spectrophotometry.

  13. Accurate measurement of the specific absorption rate using a suitable adiabatic magnetothermal setup

    NASA Astrophysics Data System (ADS)

    Natividad, Eva; Castro, Miguel; Mediano, Arturo

    2008-03-01

    Accurate measurements of the specific absorption rate (SAR) of solids and fluids were obtained by a calorimetric method, using a special-purpose setup working under adiabatic conditions. Unlike in current nonadiabatic setups, the weak heat exchange with the surroundings allowed a straightforward determination of temperature increments, avoiding the usual initial-time approximations. The measurements performed on a commercial magnetite aqueous ferrofluid revealed a good reproducibility (4%). Also, the measurements on a copper sample allowed comparison between experimental and theoretical values: adiabatic conditions gave SAR values only 3% higher than the theoretical ones, while the typical nonadiabatic method underestimated SAR by 21%.

  14. Atmospheric absorption versus deep ultraviolet (pre-)resonance in Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Hallen, Hans D.; Willitsford, Adam H.; Neely, Ryan R.; Chadwick, C. Todd; Philbrick, C. Russell

    2016-05-01

    The Raman scattering of several liquids and solid materials has been investigated near the deep ultraviolet absorption features corresponding to the electron energy states of the chemical species present. It is found to provide significant enhancement, but is always accompanied by absorption due to that or other species along the path. We investigate this trade-off for water vapor, although the results for liquid water and ice will be quantitatively very similar. An optical parametric oscillator (OPO) was pumped by the third harmonic of a Nd:YAG laser, and the output frequency doubled to generate a tunable excitation beam in the 215-600 nm range. We use the tunable laser excitation beam to investigate pre-resonance and resonance Raman spectroscopy near an absorption band of ice. A significant enhancement in the Raman signal was observed. The A-term of the Raman scattering tensor, which describes the pre-resonant enhancement of the spectra, is also used to find the primary observed intensities as a function of incident beam energy, although a wide resonance structure near the final-state-effect related absorption in ice is also found. The results suggest that use of pre-resonant or resonant Raman LIDAR could increase the sensitivity to improve spatial and temporal resolution of atmospheric water vapor measurements. However, these shorter wavelengths also exhibit higher ozone absorption. These opposing effects are modeled using MODTRAN for several configurations relevant for studies of boundary layer water and in the vicinity of clouds. Such data could be used in studies of the measurement of energy flow at the water-air and cloud-air interface, and may help with understanding some of the major uncertainties in current global climate models.

  15. Atmospheric solar absorption measurements in the 9-11 micron region using a diode laser heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Harward, C. N.; Hoell, J. M., Jr.

    1980-01-01

    A tunable diode laser heterodyne radiometer was developed for ground based measurements of atmospheric solar absorption spectra in the 9 to 12 micron spectral range. The performance and operating characteristics of this tunable infrared heterodyne radiometer (TIHR) is discussed along with recently measured heterodyne solar absorption spectra in the 10 to 11 micron spectral region.

  16. Specific absorption rate determination of magnetic nanoparticles through hyperthermia measurements in non-adiabatic conditions

    NASA Astrophysics Data System (ADS)

    Coïsson, M.; Barrera, G.; Celegato, F.; Martino, L.; Vinai, F.; Martino, P.; Ferraro, G.; Tiberto, P.

    2016-10-01

    An experimental setup for magnetic hyperthermia operating in non-adiabatic conditions is described. A thermodynamic model that takes into account the heat exchanged by the sample with the surrounding environment is developed. A suitable calibration procedure is proposed that allows the experimental validation of the model. Specific absorption rate can then be accurately determined just from the measurement of the sample temperature at the equilibrium steady state. The setup and the measurement procedure represent a simplification with respect to other systems requiring calorimeters or crucial corrections for heat flow. Two families of magnetic nanoparticles, one superparamagnetic and one characterised by larger sizes and static hysteresis, have been characterised as a function of field intensity, and specific absorption rate and intrinsic loss power have been obtained.

  17. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    SciTech Connect

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1997-01-01

    A pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode is described. The goal is to produce a {approximately}10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced fluorescence or absorption spectroscopy. A {approximately}10 ns full width at half-maximum (FWHM), 1.06 {mu}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately}1 {mu}s FWHM dye laser beam tuned to 5890 {Angstrom} is used for absorption measurement of the NaI resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated charge-coupled-device camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately}0.1 {Angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5{endash}2 eV. Laser-induced fluorescence from {approximately}1{times}10{sup 12} cm{sup {minus}3} NaI 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately}{plus_minus}0.06 {Angstrom} wavelength shift measurements in a mock-up of an ion diode experiment. {copyright} {ital 1997 American Institute of Physics.}

  18. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    SciTech Connect

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  19. Measurement of optical absorption by calorimetry and analysis of a solar collector

    NASA Astrophysics Data System (ADS)

    Allen, L. C.; Wallace, J.; Deutscher, G.; Lindenfeld, P.

    1988-01-01

    An apparatus is described for the measurement of absorptance, emittance, and selectivity. It can be used to illustrate the relative importance of heat losses by radiation, conduction, and convection in a solar collector, as well as the effects of selectivity and of full or partial evacuation on the efficiency. The apparatus can be constructed in a reasonably well-equipped departmental machine shop, and is suitable for projects or experiments by advanced undergraduate students.

  20. Optical measurements of absorption changes in two-layered diffusive media

    NASA Astrophysics Data System (ADS)

    Fabbri, Francesco; Sassaroli, Angelo; Henry, Michael E.; Fantini, Sergio

    2004-04-01

    We have used Monte Carlo simulations for a two-layered diffusive medium to investigate the effect of a superficial layer on the measurement of absorption variations from optical diffuse reflectance data processed by using: (a) a multidistance, frequency-domain method based on diffusion theory for a semi-infinite homogeneous medium; (b) a differential-pathlength-factor method based on a modified Lambert-Beer law for a homogeneous medium and (c) a two-distance, partial-pathlength method based on a modified Lambert-Beer law for a two-layered medium. Methods (a) and (b) lead to a single value for the absorption variation, whereas method (c) yields absorption variations for each layer. In the simulations, the optical coefficients of the medium were representative of those of biological tissue in the near-infrared. The thickness of the first layer was in the range 0.3-1.4 cm, and the source-detector distances were in the range 1-5 cm, which is typical of near-infrared diffuse reflectance measurements in tissue. The simulations have shown that (1) method (a) is mostly sensitive to absorption changes in the underlying layer, provided that the thickness of the superficial layer is ~0.6 cm or less; (2) method (b) is significantly affected by absorption changes in the superficial layer and (3) method (c) yields the absorption changes for both layers with a relatively good accuracy of ~4% for the superficial layer and ~10% for the underlying layer (provided that the absorption changes are less than 20-30% of the baseline value). We have applied all three methods of data analysis to near-infrared data collected on the forehead of a human subject during electroconvulsive therapy. Our results suggest that the multidistance method (a) and the two-distance partial-pathlength method (c) may better decouple the contributions to the optical signals that originate in deeper tissue (brain) from those that originate in more superficial tissue layers.

  1. Absorption of Solar Radiation by Clouds: A Second Look at Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; King, Michael D.; Cahalan, Robert F.; Lau, William K.-M. (Technical Monitor)

    2001-01-01

    A decade ago, Stephens and Tsay provided an overview of the subject of absorption of solar radiation by clouds in the earth's atmosphere. They summarized the available evidence that pointed to disagreements between theoretical and observed values of cloud absorption (and reflection). At that time, a theoretician's approach (assuming perfect flux measurements) was adopted to test the model uncertainty under various hypotheses, such as the omitted large drops, excess absorbing aerosols, enhanced water vapor continuum absorption, and cloud inhomogeneity. Since then, several advances in theoretical work have been made, but a satisfactory answer for the discrepancy is still lacking. Now, we offer an experimentalist's approach (focusing on field, not laboratory) to examine the observational uncertainty under numerous field factors, such as the temperature dependence, attitude control, and sampling strategy in the spatial and spectral domain. Examples from recent field campaigns have pointed out that these sources of error may be responsible for the unacceptable level of uncertainty (e.g., as large as 20 W/square m). We give examples of each, discuss their contribution to overall uncertainty in shortwave absorption, and suggest a coordinated approach to their solution.

  2. Measurement of transient gas flow parameters by diode laser absorption spectroscopy

    SciTech Connect

    Bolshov, M A; Kuritsyn, Yu A; Liger, V V; Mironenko, V R; Nadezhdinskii, A I; Ponurovskii, Ya Ya; Leonov, S B; Yarantsev, D A

    2015-04-30

    An absorption spectrometer based on diode lasers is developed for measuring two-dimension maps of temperature and water vapour concentration distributions in the combustion zones of two mixing supersonic flows of fuel and oxidiser in the single run regime. The method of measuring parameters of hot combustion zones is based on detection of transient spectra of water vapour absorption. The design of the spectrometer considerably reduces the influence of water vapour absorption along the path of a sensing laser beam outside the burning chamber. The optical scheme is developed, capable of matching measurement results in different runs of mixture burning. A new algorithm is suggested for obtaining information about the mixture temperature by constructing the correlation functions of the experimental spectrum with those simulated from databases. A two-dimensional map of temperature distribution in a test chamber is obtained for the first time under the conditions of plasma-induced combusion of the ethylene – air mixture. (laser applications and other topics in quantum electronics)

  3. Analysis of diffential absorption lidar technique for measurements of anhydrous hydrogen chloride from solid rocket motors using a deuterium fluoride laser

    NASA Technical Reports Server (NTRS)

    Bair, C. H.; Allario, F.

    1977-01-01

    An active optical technique (differential absorption lidar (DIAL)) for detecting, ranging, and quantifying the concentration of anhydrous HCl contained in the ground cloud emitted by solid rocket motors (SRM) is evaluated. Results are presented of an experiment in which absorption coefficients of HCl were measured for several deuterium fluoride (DF) laser transitions demonstrating for the first time that a close overlap exists between the 2-1 P(3) vibrational transition of the DF laser and the 1-0 P(6) absorption line of HCl, with an absorption coefficient of 5.64 (atm-cm) to the -1 power. These measurements show that the DF laser can be an appropriate radiation source for detecting HCl in a DIAL technique. Development of a mathematical computer model to predict the sensitivity of DIAL for detecting anhydrous HCl in the ground cloud is outlined, and results that assume a commercially available DF laser as the radiation source are presented.

  4. GRACE, GLDAS and measured groundwater data products show water storage loss in Western Jilin, China.

    PubMed

    Moiwo, Juana Paul; Lu, Wenxi; Tao, Fulu

    2012-01-01

    Water storage depletion is a worsening hydrological problem that limits agricultural production in especially arid/semi-arid regions across the globe. Quantifying water storage dynamics is critical for developing water resources management strategies that are sustainable and protective of the environment. This study uses GRACE (Gravity Recovery and Climate Experiment), GLDAS (Global Land Data Assimilation System) and measured groundwater data products to quantify water storage in Western Jilin (a proxy for semi-arid wetland ecosystems) for the period from January 2002 to December 2009. Uncertainty/bias analysis shows that the data products have an average error <10% (p < 0.05). Comparisons of the storage variables show favorable agreements at various temporal cycles, with R(2) = 0.92 and RMSE = 7.43 mm at the average seasonal cycle. There is a narrowing soil moisture storage change, a widening groundwater storage loss, and an overall storage depletion of 0.85 mm/month in the region. There is possible soil-pore collapse, and land subsidence due to storage depletion in the study area. Invariably, storage depletion in this semi-arid region could have negative implications for agriculture, valuable/fragile wetland ecosystems and people's livelihoods. For sustainable restoration and preservation of wetland ecosystems in the region, it is critical to develop water resources management strategies that limit groundwater extraction rate to that of recharge rate.

  5. A Near-Infrared Spectrometer to Measure Zodiacal Light Absorption Spectrum

    NASA Technical Reports Server (NTRS)

    Kutyrev, A. S.; Arendt, R.; Dwek, E.; Kimble, R.; Moseley, S. H.; Rapchun, D.; Silverberg, R. F.

    2010-01-01

    We have developed a high throughput infrared spectrometer for zodiacal light fraunhofer lines measurements. The instrument is based on a cryogenic dual silicon Fabry-Perot etalon which is designed to achieve high signal to noise Fraunhofer line profile measurements. Very large aperture silicon Fabry-Perot etalons and fast camera optics make these measurements possible. The results of the absorption line profile measurements will provide a model free measure of the zodiacal Light intensity in the near infrared. The knowledge of the zodiacal light brightness is crucial for accurate subtraction of zodiacal light foreground for accurate measure of the extragalactic background light after the subtraction of zodiacal light foreground. We present the final design of the instrument and the first results of its performance.

  6. X-ray Absorption Spectroscopy of Zinc in Airborne Particulate Matter Shows Tire Debris Concentrated in > 0.5 μm Fraction

    NASA Astrophysics Data System (ADS)

    Pingitore, N. E.; Clague, J. W.; Gill, T. E.; Amaya, M. A.; Cahill, T. A.

    2009-12-01

    Using X-ray absorption spectroscopy (XAS), we speciated Zn in size-resolved fractions of particulate matter (PM) from El Paso, Texas. Spectral patterns indicated that Zn in tire debris is the dominant form of Zn in PM coarser than 0.5 μm in aerodynamic diameter. Although concentrated in the > 0.5 μm fraction, a large portion of the tire debris in PM is small enough to penetrate and deposit in the lower respiratory tract. We collected 3 sets of size-resolved samples of airborne particulate matter (PM) over periods of several days to several weeks in November 2008, and April and May 2009. Local PM compositions typically are dominated by anthropogenic input in November and geologic sources in April, and a mixture in May. The collection site is in the urban core of El Paso, TX, contiguous to the University of Texas at El Paso, 0.6 km from Interstate Highway 10, 0.4 km from State Highway 20, and 1 km from Cd. Juarez, Chihuahua, Mexico. The DRUM sampler (Davis Rotating Uniform size-cut Monitor) employs a rotating Lundgren-type impactor, draws 10 l per minute, and deposits PM on plastic strips mounted on rotating drums. The sampler collected and segregated ambient PM into 8 size cuts: 12-5 μm, 5-2.5, 2.5-1.15, 1.15-0.75, 0.75-0.56, 0.56-0.34, 0.34-0.26, and 0.26-0.09. We conducted the X-ray absorption spectroscopy (XAS) experiments at the Stanford Synchrotron Radiation Lightsource on beam line 7-3. Spectra of the 24 samples of PM and numerous model compounds were collected at the Zn K absorption edge in fluorescence mode using a 30-element Ge solid-state detector. The overall spectral patterns from the 3 seasons were similar to one another. But strikingly, each set of 8 XAS spectra displayed an obvious change in the Zn speciation at the 0.56-0.75 μm size cut. We compared the PM spectra to those of our suite of known model compounds and materials. The spectral pattern of the coarser size cuts was quite similar to those of the tires we tested. The Zn in the tires

  7. NO2 measurements in Hong Kong using LED based long path differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chan, K. L.; Pöhler, D.; Kuhlmann, G.; Hartl, A.; Platt, U.; Wenig, M. O.

    2012-05-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into the telescope using a Y-fibre bundle. The LP-DOAS instrument measures NO2 levels in the Kowloon Tong and Mongkok district of Hong Kong and we compare the measurement results to mixing ratios reported by monitoring stations operated by the Hong Kong Environmental Protection Department in that area. Hourly averages of coinciding measurements are in reasonable agreement (R = 0.74). Furthermore, we used the long-term data set to validate the Ozone Monitoring Instrument (OMI) NO2 data product. Monthly averaged LP-DOAS and OMI measurements correlate well (R = 0.84) when comparing the data for the OMI overpass time. We analyzed weekly patterns in both data sets and found that the LP-DOAS detects a clear weekly cycle with a reduction on weekends during rush hour peaks, whereas OMI is not able to observe this weekly cycle due to its fix overpass time (13:30-14:30 LT - local time).

  8. Atmospheric extinction in solar tower plants: the Absorption and Broadband Correction for MOR measurements

    NASA Astrophysics Data System (ADS)

    Hanrieder, N.; Wilbert, S.; Pitz-Paal, R.; Emde, C.; Gasteiger, J.; Mayer, B.; Polo, J.

    2015-05-01

    Losses of reflected Direct Normal Irradiance due to atmospheric extinction in concentrating solar tower plants can vary significantly with site and time. The losses of the direct normal irradiance between the heliostat field and receiver in a solar tower plant are mainly caused by atmospheric scattering and absorption by aerosol and water vapor concentration in the atmospheric boundary layer. Due to a high aerosol particle number, radiation losses can be significantly larger in desert environments compared to the standard atmospheric conditions which are usually considered in raytracing or plant optimization tools. Information about on-site atmospheric extinction is only rarely available. To measure these radiation losses, two different commercially available instruments were tested and more than 19 months of measurements were collected at the Plataforma Solar de Almería and compared. Both instruments are primarily used to determine the meteorological optical range (MOR). The Vaisala FS11 scatterometer is based on a monochromatic near-infrared light source emission and measures the strength of scattering processes in a small air volume mainly caused by aerosol particles. The Optec LPV4 long-path visibility transmissometer determines the monochromatic attenuation between a light-emitting diode (LED) light source at 532 nm and a receiver and therefore also accounts for absorption processes. As the broadband solar attenuation is of interest for solar resource assessment for Concentrating Solar Power (CSP), a correction procedure for these two instruments is developed and tested. This procedure includes a spectral correction of both instruments from monochromatic to broadband attenuation. That means the attenuation is corrected for the actual, time-dependent by the collector reflected solar spectrum. Further, an absorption correction for the Vaisala FS11 scatterometer is implemented. To optimize the Absorption and Broadband Correction (ABC) procedure, additional

  9. Spatially resolved measurements of nitrogen dioxide in an urban environment using concurrent multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Leigh, R. J.; Corlett, G. K.; Frieß, U.; Monks, P. S.

    2006-12-01

    A novel system using the technique of concurrent multi-axis differential optical absorption spectroscopy system has been developed and applied to the measurement of nitrogen dioxide in an urban environment. Using five fixed telescopes, slant columns of nitrogen dioxide, ozone, water vapour, and the oxygen dimer, O4, are simultaneously retrieved in five vertically separated viewing directions. The application of this remote sensing technique in the urban environment is explored. Through, the application of several simplifying assumptions a tropospheric concentration of NO2 is derived and compared with an urban background in-situ chemiluminescence detector. The remote sensing and in-situ techniques show good agreement. Owing to the high time resolution of the measurements, the ability to image and quantify plumes within the urban environment is demonstrated. The CMAX-DOAS measurements provide a useful measure of overall NO2 concentrations on a city-wide scale.

  10. Differential absorption and Raman lidar for water vapor profile measurements - A review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1991-01-01

    Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

  11. Note: Measurement of saturable absorption by intense vacuum ultraviolet free electron laser using fluorescent material.

    PubMed

    Inubushi, Y; Yoneda, H; Higashiya, A; Ishikawa, T; Kimura, H; Kumagai, T; Morimoto, S; Nagasono, M; Ohashi, H; Sato, F; Tanaka, T; Togashi, T; Tono, K; Yabashi, M; Yamaguchi, Y; Kodama, R

    2010-03-01

    Advances in free electron lasers (FELs) which generate high energy photons are expected to open novel nonlinear optics in the x-ray and vacuum ultraviolet (VUV) regions. In this paper, we report a new method for performing VUV-FEL focusing experiments. A VUV-FEL was focused with Kirkpatrick-Baez optics on a multilayer target, which contains fused silica as a fluorescent material. By measuring the fluorescence, a 5.6x4.9 microm(2) focal spot was observed in situ. Fluorescence was used to measure the saturable absorption of VUV pulses in the tin layer. The transmission increases nonlinearly higher with increasing laser intensity.

  12. Coherent differential absorption lidar for combined measurement of wind and trace atmospheric gases

    NASA Astrophysics Data System (ADS)

    Koch, Grady James

    A lidar system was developed for making combined range-resolved measurements of wind speed and direction, water vapor concentration, and carbon dioxide concentration in the atmosphere. This lidar combines the coherent Doppler technique for wind detection and the differential absorption lidar (DIAL) technique to provide a multifunctional capability. DIAL and coherent lidars have traditionally been thought of and implemented as separate instruments, but the research reported here has shown a demonstration of combining the coherent and DIAL techniques into a single instrument using solid-state lasers. The lasers used are of Ho:Tm:YLF, which operates at a wavelength of 2 mum. This wavelength is a further advantage to the lidar, as this wavelength offers a much higher level of eyesafety than shorter wavelengths conventionally used for DIAL. Two generations are lidars are described, with the first design making combined measurement of wind and water vapor. Wind speed measurements are shown of a precision better than 1 m/s, making it useful for many meteorological applications. Water vapor concentration measurements were of 86% accuracy, requiring improvement for scientific applications. This preliminary experiment revealed the largest source of error in concentration measurement to be a lack of stability in the wavelength of the laser. This problem was solved by implementing a means to precisely control the continuous-wave laser that injection seeds a pulsed laser. The finely tunable Ho:Tm:YLF laser was stabilized to absorption lines of both carbon dioxide and water vapor using a wavelength modulation technique. Long-term stabilization to within 13.5 MHz of absorption line center is shown, representing the first frequency-stabilized laser at or within 500 run of 2mum wavelength. Results are presented on injection seeding a pulsed Ho:Tm:YLF laser to impart the tunability and stabilization to the pulsed laser output. The stabilized laser system was incorporated into a

  13. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  14. Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics.

    PubMed

    Hart, Roger C; Herring, G C; Balla, R Jeffrey

    2007-06-15

    Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  15. [Measurement of trace elements in blood serum by atomic absorption spectroscopy with electrothermal atomization].

    PubMed

    Rogul'skiĭ, Iu V; Danil'chenko, S N; Lushpa, A P; Sukhodub, L F

    1997-09-01

    Describes a method for measuring trace elements Cr, Mn, Co, Fe, Cu, Zn, and Mo in the blood serum using non-flame atomization (KAC 120.1 complex). Optimal conditions for preparing the samples were defined, temperature regimens for analysis of each element selected, and original software permitting automated assays created. The method permits analysis making use of the minimal samples: 0.1 ml per 10 parallel measurements, which is 100 times less than needed for atomic absorption spectroscopy with flame atomization of liquid samples. Metrological characteristics of the method are assessed.

  16. Continuous wave laser absorption techniques for gasdynamic measurements in supersonic flows

    NASA Technical Reports Server (NTRS)

    Davidson, David F.; Chang, Albert Y.; Dirosa, Michael D.; Hanson, Ronald K.

    1991-01-01

    Line-of-sight measurements of velocity, temperature, pressure, density, and mass flux were performed in a transient shock tube flow using three laser absorption schemes. All methods employed an intracavity-doubled ring dye laser tuned to an OH transition at 306 nm. In the first scheme, the gas was labeled by 193.3-nm excimer photolysis of H2O, and the passage of the generated OH was detected downstream. In the second method, the laser was tuned at a rate of 3 kHz over the R1(7) and R1(11) line pair, and absorption was simultaneously monitored at 90 and 60 deg with respect to the flow. Velocity was determined from the Doppler shift of the profiles and the temperature from the intensity ratio of the lines. Pressure was determined from both the magnitude of absorption and the collisional broadening. In the third method, the laser wavelength was fixed at a single frequency, and a continuous measurement of velocity and pressure was obtained using the signals from the two beam paths. All methods gave results which compare favorably to calculated values.

  17. Development of a Pulsed 2-Micron Integrated Path Differential Absorption Lidar for CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Refaat, Tamer

    2013-01-01

    Atmospheric carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and global radiation budget on Earth. Active remote sensing of CO2 is important to address several limitations that contend with passive sensors. A 2-micron double-pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This active remote sensing instrument will provide an alternate approach of measuring atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise ratio level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. Commercial, on the shelf, components are implemented for the detection system. Instrument integration will be presented in this paper as well as a background for CO2 measurement at NASA Langley research Center

  18. Development of a pulsed 2-micron integrated path differential absorption lidar for CO2 measurement

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl

    2013-09-01

    Atmospheric carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and global radiation budget on Earth. Active remote sensing of CO2 is important to address several limitations that contend with passive sensors. A 2-micron double-pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This active remote sensing instrument will provide an alternate approach of measuring atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise ratio level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. Commercial, on the shelf, components are implemented for the detection system. Instrument integration will be presented in this paper as well as a background for CO2 measurement at NASA Langley research Center.

  19. Higher-order mode absorption measurement of X-band choke-mode cavities in a radial line structure

    NASA Astrophysics Data System (ADS)

    Zha, Hao; Shi, Jiaru; Wu, Xiaowei; Chen, Huaibi

    2016-04-01

    An experiment is presented to study the higher-order mode (HOM) suppression of X-band choke-mode structures with a vector network analyzer (VNA). Specific radial line disks were built to test the reflection from the corresponding damping load and different choke geometries. The mismatch between the radial lines and the VNA was calibrated through a special multi-short-load calibration method. The measured reflections of different choke geometries showed good agreement with the theoretical calculations and verified the HOM absorption feature of each geometric design.

  20. The airborne Laser Absorption Spectrometer - A new instrument of remote measurement of atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.; Menzies, R. T.

    1978-01-01

    The Laser Absorption Spectrometer is a portable instrument developed by JPL for remote measurement of trace gases from an aircraft platform. It contains two carbon dioxide lasers, two optical heterodyne receivers, appropriate optics to aim the lasers at the ground and detect the backscattered energy, and signal processing and recording electronics. Operating in the differential-absorption mode, it is possible to monitor one atmospheric gas at a time and record the data in real time. The system can presently measure ozone, ethylene, water vapor, and chlorofluoromethanes with high sensitivity. Airborne measurements were made in early 1977 from the NASA/JPL twin-engine Beechcraft and in May 1977 from the NASA Convair 990 during the ASSESS-II Shuttle Simulation Study. These flights resulted in measurements of ozone concentrations in the lower troposphere which were compared with ground-based values provided by the Air Pollution Control District. This paper describes the details of the instrument and results of the airborne measurements.

  1. Recent Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption to 13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Mao, J.; Hasselbrack, W.; Sun, X.; Rodriguez, M. R.

    2010-12-01

    We have developed a lidar technique for measuring atmospheric CO2 concentrations as a candidate for NASA’s ASCENDS mission. It uses pulsed laser transmitters to simultaneously measure a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers step in wavelength across the CO2 line and an O2 line pair during the measurement. The receiver uses a telescope and photon counting detectors, and measures the time resolved backscatter of the laser echoes. Signal processing is used to isolate the laser echo signals from the surface, estimate their range, and reject laser photons scattered in the atmosphere. The gas extinction and column densities for the CO2 and O2 gases are estimated via the IPDA technique. We developed a lidar to demonstrate the CO2 measurement from aricraft. The lidar steps the pulsed laser’s wavelength across a selected CO2 line with 20 or 30 steps per scan. The line scan rate is 450 Hz and laser pulse widths are 1 usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. During July and August 2009 we made 5 two hour long flights while installed on the NASA Glenn Lear-25 aircraft. We measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surfaces in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay. Strong laser signals and clear line shapes were observed at all altitudes, and some measurements were made through thin clouds. The Oklahoma and east coast flights were coordinated with the NASA LaRC/ITT CO2 lidar on their UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. Ed Browell

  2. Analysis of Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Weaver, Clark J.; Riris, Haris; Mao, Jianping; Sun, Xiaoli; Allan, Graham R.; Hasselbrack, William; Browell, Edward V.

    2011-01-01

    through thin clouds. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, and in-situ measurements were made using its CO2 sensor and radiosondes. We have conducted an analysis of the ranging and IPDA lidar measurements from these four flights. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We used a cross-correlation approach to process the laser echo records. This was used to estimate the range to the scattering surface, to define the edges of the laser pulses and to determine echo pulse energy at each wavelength. We used a minimum mean square approach to fit an instrument response function and to solve for the best-fit CO2 absorption line shape. We then calculated the differential optical depth (DOD) of the fitted CO2 line. We computed its statistics at the various altitude steps, and compare them to the DODs calculated from spectroscopy based on HITRAN 2008 and the column conditions calculated from the airborne in-situ readings. The results show the lidar and in-situ measurements have very similar DOD change with altitude and greater than 10 segments per flight where the scatter in the lidar measurements are less than or equal to 1ppm. We also present the results from subsequent CO2 column absorption measurements, which were made with stronger detected signals during three flights on the NASA DC-8 over the southwestern US in during July 2010.

  3. Extended x-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser

    SciTech Connect

    Yaakobi, B.; Boehly, T. R.; Sangster, T. C.; Meyerhofer, D. D.; Remington, B. A.; Allen, P. G.; Pollaine, S. M.; Lorenzana, H. E.; Lorenz, K. T.; Hawreliak, J. A.

    2008-06-15

    The use of in situ extended x-ray absorption fine structure (EXAFS) for characterizing nanosecond laser-shocked vanadium, titanium, and iron has recently been demonstrated. These measurements are extended to laser-driven, quasi-isentropic compression experiments (ICE). The radiation source (backlighter) for EXAFS in all of these experiments is obtained by imploding a spherical target on the OMEGA laser [T. R. Boehly et al., Rev. Sci. Instrum. 66, 508 (1995)]. Isentropic compression (where the entropy is kept constant) enables to reach high compressions at relatively low temperatures. The absorption spectra are used to determine the temperature and compression in a vanadium sample quasi-isentropically compressed to pressures of up to {approx}0.75 Mbar. The ability to measure the temperature and compression directly is unique to EXAFS. The drive pressure is calibrated by substituting aluminum for the vanadium and interferometrically measuring the velocity of the back target surface by the velocity interferometer system for any reflector (VISAR). The experimental results obtained by EXAFS and VISAR agree with each other and with the simulations of a hydrodynamic code. The role of a shield to protect the sample from impact heating is studied. It is shown that the shield produces an initial weak shock that is followed by a quasi-isentropic compression at a relatively low temperature. The role of radiation heating from the imploding target as well as from the laser-absorption region is studied. The results show that in laser-driven ICE, as compared with laser-driven shocks, comparable compressions can be achieved at lower temperatures. The EXAFS results show important details not seen in the VISAR results.

  4. A new ground-based differential absorption sunphotometer for measuring atmospheric columnar CO2 and preliminary applications

    NASA Astrophysics Data System (ADS)

    Xie, Yisong; Li, Zhengqiang; Zhang, Xingying; Xu, Hua; Li, Donghui; Li, Kaitao

    2015-10-01

    Carbon dioxide is commonly considered as the most important greenhouse gas. Ground-based remote sensing technology of acquiring CO2 columnar concentration is needed to provide validation for spaceborne CO2 products. A new groundbased sunphotometer prototype for remotely measuring atmospheric CO2 is introduced in this paper, which is designed to be robust, portable, automatic and suitable for field observation. A simple quantity, Differential Absorption Index (DAI) related to CO2 optical depth, is proposed to derive the columnar CO2 information based on the differential absorption principle around 1.57 micron. Another sun/sky radiometer CE318, is used to provide correction parameters of aerosol extinction and water vapor absorption. A cloud screening method based on the measurement stability is developed. A systematic error assessment of the prototype and DAI is also performed. We collect two-year DAI observation from 2010 to 2012 in Beijing, analyze the DAI seasonal variation and find that the daily average DAI decreases in growing season and reaches to a minimum on August, while increases after that until January of the next year, when DAI reaches its highest peak, showing generally the seasonal cycle of CO2. We also investigate the seasonal differences of DAI variation and attribute the tendencies of high in the morning and evening while low in the noon to photosynthesis efficiency variation of vegetation and anthropogenic emissions. Preliminary comparison between DAI and model simulated XCO2 (Carbon Tracker 2011) is conducted, showing that DAI roughly reveals some temporal characteristics of CO2 when using the average of multiple measurements.

  5. Supercontinuum based absorption spectrometer for cycle-resolved multiparameter measurements in a rapid compression machine.

    PubMed

    Werblinski, Thomas; Kleindienst, Stefan; Engelbrecht, Rainer; Zigan, Lars; Will, Stefan

    2016-06-10

    A broadband supercontinuum (SC) based absorption spectrometer capable of cycle-resolved multiparameter measurements at internal combustion (IC) engine conditions is presented. Three parameters, temperature, pressure and water mole fraction, were extracted from broadband near-infrared H2O absorption spectra, spanning the wavelength-range from 1340 to 1405.5 nm, which exhibits a large number of specific H2O transitions. The spectrometer is based on spatial domain detection and features a near-infrared line scan camera as a detector. Measurements were performed during a compression cycle of a rapid compression machine comprising a pressure and temperature range from 2.5 to 65 bar and 300 to 900 K, respectively. With the new spectrometer, we are for the first time, based on the authors' knowledge, able to perform measurements based on SC radiation over a complete compression and expansion stroke at measurement rates up to 50 kHz. A detailed overview is provided about the best match algorithm between theory and experiments, including parameters from two different spectral databases, namely the Barber-Tennyson database (BT2) and HITRAN2012. The results indicate that spectral broadening effects are not properly described by theory, especially at pressure levels exceeding 20 bar, which culminates in a clear underestimation of the derived pressure data by SC absorption spectroscopy. Nevertheless, temperature can be determined accurately by performing a three-parameter fit based on water mole fraction, temperature, and pressure. In contrast, making use of pressure transducer data as look-up values and varying only temperature and H2O mole fraction to find the best match leads to a clear overestimation of temperature at elevated pressures.

  6. The wildgeographer avatar shows how to measure soil erosion rates by means of a rainfall simulator

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; González Pelayo, Óscar; Pereira, Paulo; Novara, Agata; Iserloh, Thomas; Prosdocimi, Massimo

    2015-04-01

    This contribution to the immersed worlds wish to develop the avatar that will teach the students and other scientists how to develop measurements of soil erosion, surface runoff and wetting fronts by means of simulated rainfall experiments. Rainfall simulation is a well established and knows methodology to measure the soil erosion rates and soil hydrology under controlled conditions (Cerdà 1998a; Cerdà, 1998b; Cerdà and Jurgensen, 2011; Dunkerley, 2012; Iserloh et al., 2012; Iserloh et al., 2013; Ziadat and Taimeh, 2013; Butzen et al., 2014). However, is a method that requires a long training and expertise to avoid mismanagement and mistaken. To use and avatar can help in the teaching of the technique and the dissemination of the findings. This contribution will show to other avatars how to develop an experiment with simulated rainfall and will help to take the right decision in the design of the experiments. Following the main parts of the experiments and measurements the Wildgeographer avatar must develop: 1. Determine the objectives and decide which rainfall intensity and distribution, and which plot size to be used. Choose between a laboratory or a field rainfall simulation. 2. Design of the rainfall simulator to achieve the objectives: type of rainfall simulator (sprayer or drop former) and calibrate. 3. The experiments are carried out. 4. The results are show. Acknowledgements To the "Ministerio de Economía and Competitividad" of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R). The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Butzen, V., Seeger, M., Wirtz, S., Huemann, M., Mueller, C., Casper, M., Ries, J. B. 2014. Quantification of Hortonian overland flow generation and soil erosion in a Central European low mountain range using rainfall experiments. Catena, 113, 202-212. Cerdà, A

  7. Elementary reaction rate measurements at high temperatures by tunable-laser flash-absorption

    SciTech Connect

    Hessler, J.P.

    1993-12-01

    The major objective of this program is to measure thermal rate coefficients and branching ratios of elementary reactions. To perform these measurements, the authors constructed an ultrahigh-purity shock tube to generate temperatures between 1000 and 5500 K. The tunable-laser flash-absorption technique is used to measure the rate of change of the concentration of species which absorb below 50,000 cm{sup {minus}1} e.g.: OH, CH, and CH{sub 3}. This technique is being extended into the vacuum-ultraviolet spectral region where one can measure atomic species e.g.: H, D, C, O, and N; and diatomic species e.g.: O{sub 2}, CO, and OH.

  8. Determining CDOM Absorption Spectra in Diverse Coastal Environments Using a Multiple Pathlength, Liquid Core Waveguide System. Measuring the Absorption of CDOM in the Field Using a Multiple Pathlength Liquid Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2000-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, a(sub CDOM), and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values (r > 0.99) and showed a linear response across all four pathlengths. Values of a(sub CDOM) measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of a(sub CDOM) for MPLCW measurements was 0.002 - 231.5/m. At low CDOM concentrations (a(sub 370) < 0.1/m) spectrophotometric a(sub CDOM) were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples. The maximum deviation in replicate MPLCW spectra was less than 0.001 absorbance units. The portability, sampling, and optical characteristics of a MPLCW system provide significant enhancements for routine CDOM absorption measurements in a broad range of natural waters.

  9. Measurement of urinary mercury excretion by atomic absorption in health and disease

    PubMed Central

    Taylor, Andrew; Marks, Vincent

    1973-01-01

    Taylor, A., and Marks, V. (1973).British Journal of Industrial Medicine,30, 293-296. Measurement of urinary excretion by atomic absorption in health and disease. Excretion of mercury was measured by a cold-vapour atomic absorption technique on samples of urine from five groups of people having varying exposure to mercury. Serial investigations of up to 14 days were carried out on eight subjects to determine the temporal relationship between exposure and excretion. Subjects with no exposure excreted 0-10 μg mercury per gramme creatinine. Similar values were found in laboratory staff and men assembling hollow cathode lamps. Excretion of mercury by dental workers was significantly increased. No correlation between exposure and excretion of mercury was seen in the subjects investigated. The significance of measuring urinary excretion in the detection of mercury intoxication is discussed. The suggestion is made that urinary mercury excretion of more than 20 μg/g creatinine or 40 μg mercury per 24 hours should be considered evidence of recent or remote exposure to mercury. It is concluded that measurement of urinary mercury excretion is important in revealing those persons who may ultimately develop symptoms of toxicity. PMID:4723792

  10. Development of a Coherent Differential Absorption Lidar for Range Resolved Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulgueta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo. C.; Koch, Grady J.; Beyon, Jeffery J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-m coherent Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument will measure atmospheric CO2 profiles (by DIAL) initially from a ground platform, and then be prepared for aircraft installation to measure the atmospheric CO2 column densities in the atmospheric boundary layer (ABL) and lower troposphere. The airborne prototype CO2 lidar can measure atmospheric CO2 column density in a range bin of 1km with better than 1.5% precision at horizontal resolution of less than 50km. It can provide the image of the pooling of CO2 in lowlying areas and performs nighttime mass balance measurements at landscape scale. This sensor is unique in its capability to study the vertical ABL-free troposphere exchange of CO2 directly. It will allow the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop.

  11. Nitrogen dioxide and kerosene-flame soot calibration of photoacoustic instruments for measurement of light absorption by aerosols

    SciTech Connect

    Arnott, W. Patrick; Moosmu''ller, Hans; Walker, John W.

    2000-12-01

    A nitrogen dioxide calibration method is developed to evaluate the theoretical calibration for a photoacoustic instrument used to measure light absorption by atmospheric aerosols at a laser wavelength of 532.0 nm. This method uses high concentrations of nitrogen dioxide so that both a simple extinction and the photoacoustically obtained absorption measurement may be performed simultaneously. Since Rayleigh scattering is much less than absorption for the gas, the agreement between the extinction and absorption coefficients can be used to evaluate the theoretical calibration, so that the laser gas spectra are not needed. Photoacoustic theory is developed to account for strong absorption of the laser beam power in passage through the resonator. Findings are that the photoacoustic absorption based on heat-balance theory for the instrument compares well with absorption inferred from the extinction measurement, and that both are well within values represented by published spectra of nitrogen dioxide. Photodissociation of nitrogen dioxide limits the calibration method to wavelengths longer than 398 nm. Extinction and absorption at 532 and 1047 nm were measured for kerosene-flame soot to evaluate the calibration method, and the single scattering albedo was found to be 0.31 and 0.20 at these wavelengths, respectively.

  12. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 and 2013 Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W.; Weaver, C. J.; Browell, E. V.

    2013-12-01

    We have developed a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan with 300 scans per second. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength every second. We then solve for the optimum CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak and the column average CO2 concentrations. We compared these to radiative transfer calculations based on the HITRAN 2008 database, the atmospheric conditions, and the CO2 concentrations sampled by in-situ sensors on the aircraft. Our team participated in the ASCENDS science flights during July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 absorption line shapes were recorded. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds and to stratus cloud tops. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption profile (averaged for 50 sec) matched the predicted profile to better than 1% RMS error for all flight altitudes. For 10 second averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by signal shot noise (i.e. the signal photon count). For flight

  13. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    US Department of Energy's (DOE) SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The increasing CO2 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. In spring 2009 we improved the aircraft's nadir window and during July and August we made 9 additional 2 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and eastern Virginia. Strong laser signals and clear CO2 line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. Analysis shows that the average signal levels follow predicted values, the altimetry measurements had an uncertainty of about 4 m, and that the average optical line depths follow the number density calculated from in-situ sensor readings. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. More details of the flights, measurements, analysis and scaling to space will be described in the presentation.

  14. Towards a standard for the dynamic measurement of pressure based on laser absorption spectroscopy

    PubMed Central

    Douglass, K O; Olson, D A

    2016-01-01

    We describe an approach for creating a standard for the dynamic measurement of pressure based on the measurement of fundamental quantum properties of molecular systems. From the linewidth and intensities of ro-vibrational transitions we plan on making an accurate determination of pressure and temperature. The goal is to achieve an absolute uncertainty for time-varying pressure of 5 % with a measurement rate of 100 kHz, which will in the future serve as a method for the traceable calibration of pressure sensors used in transient processes. To illustrate this concept we have used wavelength modulation spectroscopy (WMS), due to inherent advantages over direct absorption spectroscopy, to perform rapid measurements of carbon dioxide in order to determine the pressure. The system records the full lineshape profile of a single ro-vibrational transition of CO2 at a repetition rate of 4 kHz and with a systematic measurement uncertainty of 12 % for the linewidth measurement. A series of pressures were measured at a rate of 400 Hz (10 averages) and from these measurements the linewidth was determined with a relative uncertainty of about 0.5 % on average. The pressures measured using WMS have an average difference of 0.6 % from the absolute pressure measured with a capacitance diaphragm sensor. PMID:27881884

  15. Towards a standard for the dynamic measurement of pressure based on laser absorption spectroscopy.

    PubMed

    Douglass, K O; Olson, D A

    2016-06-01

    We describe an approach for creating a standard for the dynamic measurement of pressure based on the measurement of fundamental quantum properties of molecular systems. From the linewidth and intensities of ro-vibrational transitions we plan on making an accurate determination of pressure and temperature. The goal is to achieve an absolute uncertainty for time-varying pressure of 5 % with a measurement rate of 100 kHz, which will in the future serve as a method for the traceable calibration of pressure sensors used in transient processes. To illustrate this concept we have used wavelength modulation spectroscopy (WMS), due to inherent advantages over direct absorption spectroscopy, to perform rapid measurements of carbon dioxide in order to determine the pressure. The system records the full lineshape profile of a single ro-vibrational transition of CO2 at a repetition rate of 4 kHz and with a systematic measurement uncertainty of 12 % for the linewidth measurement. A series of pressures were measured at a rate of 400 Hz (10 averages) and from these measurements the linewidth was determined with a relative uncertainty of about 0.5 % on average. The pressures measured using WMS have an average difference of 0.6 % from the absolute pressure measured with a capacitance diaphragm sensor.

  16. Evanescent wave absorption measurements of corroded materials using ATR and optical fibers

    NASA Astrophysics Data System (ADS)

    Namkung, Juock; Hoke, Mike; Schwartz, Andy

    2011-06-01

    The purpose of this research effort is to develop an in-situ corrosion sensing capability. The technique will permit detection of corrosion on and within aircraft structures. This includes component junctions that are susceptible to corrosion but which are not accessible for visual inspection. The prototype experimental configuration we are developing includes long wave infrared transmitting optical fiber probes interfaced with a Fourier Transform Infrared (FTIR) interferometer for evanescent wave absorption spectroscopic measurements. The mature and fielded technique will allow periodic remote sensing for detection of corrosion and for general onboard aircraft structural health monitoring. An experimental setup using an Attenuated Total Reflection (ATR) crystal integrated with an FTIR spectrometer has been assembled. Naturally occurring corrosion including Aluminum Hydroxide [Al(OH)3] is one of the main corrosion products of aluminum the principle structural metal of aircraft. Absorption spectra of our model corrosion product, pure Al(OH)3, have been collected with this ATR/FTIR experimental setup. The Al(OH)3spectra serve as reference spectral signatures. The spectra of corrosion samples from a simulated corrosion process have been collected and compared with the reference Al(OH)3 spectra. Also absorption spectra of naturally occurring corrosion collected from a fielded corroded aircraft part have been obtained and compared with the spectra from the simulated corrosion.

  17. MEASUREMENTS OF ABSORPTION, EMISSIVITY REDUCTION, AND LOCAL SUPPRESSION OF SOLAR ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui; Sun, M.-T.

    2009-05-01

    The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 {+-} 1.3%, emissivity reduction 8.2 {+-} 1.4%, and local suppression 68.5 {+-} 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10{sup -5} rad s{sup -1}.

  18. Distribution Surge Arrester Failures due to Winter Lightning and Measurement of Energy Absorption Capability of Arresters

    NASA Astrophysics Data System (ADS)

    Sugimoto, Hitoshi; Shimasaki, Katsuhiko; Kado, Hiroyuki

    Surge arresters and distribution equipments with zinc-oxide elements are used for lightning protection of overhead power distribution lines in Japan. However, these surge arresters are sometimes damaged by direct lightning strokes, especially in winter. Increasing of surge arrester failures in winter is attributed to a very large electric charge of winter lightning than that of summer lightning. For improvement of surge arresters, we have measured the energy absorption capability of surge arresters using a half cycle of alternating current with a frequency of 50Hz for simulating a winter lightning current. The mean values of arrester failure energy increased in proportion to the volume of zinc-oxide element, however the values of arrester failure energy were quite uneven. We also have observed the aspects of damaged zinc-oxide elements, and have investigated the relationship between the arrester failure energy and the failure types of zinc-oxide elements. From these results, we suggest the improvement of the energy absorption capability of distribution surge arresters, especially for the uniform energy absorption capability.

  19. Metal powder absorptivity: Modeling and experiment

    DOE PAGES

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.; ...

    2016-08-10

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  20. Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Moosmüller, H.; Sheridan, P. J.; Ogren, J. A.; Raspet, R.; Slaton, W. V.; Hand, J. L.; Kreidenweis, S. M.; Collett, J. L.

    2003-01-01

    Ambient measurements are reported of aerosol light absorption from photoacoustic and filter-based instruments (aethalometer and a particle soot absorption photometer (PSAP)) to provide insight on the measurement science. Measurements were obtained during the Big Bend Regional Aerosol and Visibility Observational Study at the Big Bend National Park in South Texas. The aethalometer measurements of black carbon concentration at this site correlate reasonably well with photoacoustic measurements of aerosol light absorption, with a slope of 8.1 m2/g and a small offset. Light absorption at this site never exceeded 2.1 Mm-1 during the month of collocated measurements. Measurements were also obtained, as a function of controlled relative humidity between 40% and 90%, during the Photoacoustic IOP in 2000 at the Department of Energy Southern Great Plains Cloud and Radiation Testbed site (SGP). PSAP measurements of aerosol light absorption correlated very well with photoacoustic measurements, but the slope of the correlation indicated the PSAP values were larger by a factor of 1.61. The photoacoustic measurements of light absorption exhibited a systematic decrease when the RH increased beyond 70%. This apparent decrease in light absorption with RH may be due to the contribution of mass transfer to the photoacoustic signal. Model results for the limiting case of full water saturation are used to evaluate this hypothesis. A second PSAP measured the light absorption for the same humidified samples, and indicated very erratic response as the RH changed, suggesting caution when interpreting PSAP data under conditions of rapid relative humidity change.

  1. Density Measurement for MORB Melts by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Urakawa, S.; Ohtani, E.; Suzuki, A.; Katayama, Y.

    2005-12-01

    Density of silicate melts at high pressure is one of the most important properties to understand magma migration in the planetary interior and the differentiation of the terrestrial planets. The density measurements of silicate melts have been carried out by several methods (shock compression experiments and sink-float method in static experiments, etc.). However, since these methods have difficulties in acquisition of data at a desired pressure and temperature, the density of the silicate melt have been measured under only a few conditions. Recently a new density measurement was developed by the X-ray absorption method. Advantage of this method is to measure density of liquids at a desired pressure and temperature. In the present study we measured the density of MORB melt by X-ray absorption method. Experiments were carried out at the BL22XU beamline at SPring-8. A DIA-type cubic anvil apparatus was used for generation of high pressure and temperature. We used tungsten carbide anvils with the edge-length of 6 mm. The energy of monochromateized X-ray beam was 23 keV. The intensities of incident and transmitted X-ray were measured by ion chambers. The density of the melt was calculated on the basis of Beer-Lambert law. The starting material was a glass with the MORB composition. Experiments were made from 1 atm to 4 GPa, from 300 to 2200 K. We compared the density of MORB melt with the compression curve of the melt in previous works. The density measured by this study is lower than that expected from the compression curve determined at higher pressures by the sink-float method. Structural change of the MORB melt with increasing pressure might be attributed to this discrepancy.

  2. Density Measurement for MORB Melts by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Urakawa, S.; Suzuki, A.; Ohtani, E.; Katayama, Y.

    2006-12-01

    Density of silicate melts at high pressure is one of the most important properties to understand magma migration in the planetary interior and the differentiation of the terrestrial planets. The density measurements of silicate melts have been carried out by several methods (shock compression experiments and sink-float method in static experiments, etc.). However, since these methods have difficulties in acquisition of data at a desired pressure and temperature, the density of the silicate melt have been measured under only a few conditions. Recently a new density measurement was developed by the X-ray absorption method. Advantage of this method is to measure density of liquids at a desired pressure and temperature. In the present study we measured the density of MORB melt by X-ray absorption method. Experiments were carried out at the BL22XU beamline at SPring-8. A DIA-type cubic anvil apparatus was used for generation of high pressure and temperature. We used tungsten carbide anvils with the top anvil sizes of 6 mm and 4 mm. The energy of monochromateized X-ray beam was 23 keV. The intensities of incident and transmitted X-ray were measured by ion chambers. The density of the melt was calculated on the basis of Beer-Lambert law. The starting material was a glass with the MORB composition. Experiments were made from 1 atm to 5 GPa, from 300 to 2000 K. We compared the density of MORB melt with the compression curve of the melt in previous works. The density measured by this study is lower than that expected from the compression curve determined at higher pressures by the sink-float method. Structural change of the MORB melt with increasing pressure might be attributed to this discrepancy.

  3. NO_2 Trace Measurements by Optical-Feedback Cavity-Enhanced Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ventrillard-Courtillot, I.; Desbois, Th.; Foldes, T.; Romanini, D.

    2009-06-01

    In order to reach the sub-ppb NO_2 detection level required for environmental applications in remote areas, we develop a spectrometer based on a technique introduced a few years ago, named Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) [1]. It allows very sensitive and selective measurements, together with the realization of compact and robust set-ups as was subsequently demonstrated during measurements campaigns in harsh environments [2]. OF-CEAS benefits from the optical feedback to efficiently inject a cw-laser in a V-shaped high finesse cavity (typically 10 000). Cavity-enhanced absorption spectra are acquired on a small spectral region (˜1 cm^{-1}) that enables selective and quantitative measurements at a fast acquisition rate with a detection limit of several 10^{-10} cm^{-1} as reported in this work. Spectra are obtained with high spectral definition (150 MHz highly precisely spaced data points) and are self calibrated by cavity rind-down measurements regularly performed (typically every second). NO_2 measurements are performed with a commercial extended cavity diode laser around 411 nm, spectral region where intense electronic transitions occur. We will describe the set-up developed for in-situ measurements allowing real time concentration measurements at typically 5 Hz; and then report on the measurements performed with calibrated NO_2 reference samples to evaluate the linearity of the apparatus. The minimum detectable absorption loss is estimated by considering the standard deviation of the residual of one spectrum. We achieved 2x10^{-10} cm^{-1} for a single spectrum recorded in less than 100 ms at 100 mbar. It leads to a potential detection limit of 3x10^8 molecules/cm^3, corresponding to about 150 pptv at this pressure. [1] J. Morville, S. Kassi, M. Chenevier, and D. Romanini, Appl. Phys. B, 80, 1027 (2005). [2] D. Romanini, M. Chenevrier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, and H.-J. Jost, Appl. Phys. B, 83, 659

  4. A Fourier transform spectrometer for visible and near ultra-violet measurements of atmospheric absorption

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.

    1982-01-01

    The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.

  5. High Spectral Resolution Lidar Measurements Using an I2 Absorption Filter

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piironen, P.

    1996-01-01

    The University of Wisconsin high spectral resolution lidar (HSRL) measures optical properties of the atmosphere by separating the Doppler-broadened molecular backscatter return from the unbroadened aerosol return. The HSRL was modified to use an I2 absorption cell The modified HSRL transmitter uses a continuously pumped, Q-switched, injection seeded, frequency doubled Nd:YAG laser operating at a 4 kHz pulse repetition rate. This laser is tunable over a 124 GHz frequency range by temperature tuning the seed laser under computer control.

  6. Multiple disadvantages among older citizens: what a multidimensional measure of poverty can show.

    PubMed

    Callander, Emily J; Schofield, Deborah J; Shrestha, Rupendra N

    2012-01-01

    Using the newly created Freedom Poverty Measure, a multidimensional measure of poverty, it can be seen that there were 534,700 individuals who were in freedom poverty, who had either poor health or poor education in addition to having low incomes. This multidimensional disadvantage would not normally be captured by single measures of poverty, such as income poverty measures. Men were significantly less likely to be in freedom poverty than women (OR = 0.63, 95% CI: 0.54-0.74, p < .0001), and the proportion of individuals in freedom poverty increased with age, with those older than 85 being 2.3 times more likely to be in freedom poverty than those aged 65 to 69 years (95% CI: 1.73-3.11, p < .0001). Policy responses to address the marginalization of disadvantaged older people should take a multidisciplinary approach, addressing health inequalities in particular, not just low income.

  7. New Oxygen Isotope Measurements of Four Stardust Impact Crater Residues Show IDP-Like Compositions

    NASA Astrophysics Data System (ADS)

    Snead, C. J.; McKeegan, K. D.

    2015-07-01

    We have measured the oxygen isotope compositions of four Stardust impact crater residues. These analyses reveal compositions that are similar to those found in interplanetary dust particles, antarctic micrometeorites and CI chondrite components.

  8. Extending differential optical absorption spectroscopy for limb measurements in the UV

    NASA Astrophysics Data System (ADS)

    Puä·Ä«Te, J.; Kühl, S.; Deutschmann, T.; Platt, U.; Wagner, T.

    2010-05-01

    Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS). While the Beer-Lambert law is strictly valid for a single light path only, the relation between the optical depth and the concentration of any absorber can be approximated as linear also for scattered light observations at a single wavelength if the absorption is weak. If the light path distribution is approximated not to vary with wavelength, also linearity between the optical depth and the product of the cross-section and the concentration of an absorber can be assumed. These assumptions are widely made for DOAS applications for scattered light observations. For medium and strong absorption of scattered light (e.g. along very long light-paths like in limb geometry) the relation between the optical depth and the concentration of an absorber is no longer linear. In addition, for broad wavelength intervals the differences in the travelled light-paths at different wavelengths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength. However, the DOAS method can be extended to cases with medium to strong absorptions and for broader wavelength intervals by the so called air mass factor modified (or extended) DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs), but also require a priori knowledge for the air mass factor or the weighting function from radiative transfer modelling. We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as additional fitting parameters in the DOAS analysis

  9. Measurement of acoustic absorption coefficient with phase-conjugate ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Smagin, N. V.; Krutyansky, L. M.; Brysev, A. P.; Bunkin, F. V.

    2011-07-01

    Experimental results on measurements of the acoustic absorption coefficient in test objects that were obtained with two methods, i.e., a standard insert-substitution method and a modification thereof using phase-conjugate waves, are given. Samples of gelatin and biological tissue in vitro (porcine muscle fibers) were used as test objects. Gelatin objects were manufactured that were both homogeneous and with inhomogeneities in the form of a rough surface or inclusions (air bubbles) distributed over the volume. A rough surface leads mainly to phase distortions of a probe beam, while bubble inclusions cause additional field scattering. For all homogeneous samples, both compared methods produce identical results. In the case of inhomogeneous samples including biological tissues, absorption measurement by a standard method may lead to significant errors. It is demonstrated that the use of properties of phase-conjugate waves provides an opportunity to eliminate almost completely the measurement error connected with phase distortions and reduce the error in the case of a medium with scatterers.

  10. absorption sensor for sensitive temperature and species measurements in high-temperature gases

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Ren, W.; Jeffries, J. B.; Hanson, R. K.

    2014-09-01

    A continuous-wave laser absorption diagnostic, based on the infrared CO2 bands near 4.2 and 2.7 μm, was developed for sensitive temperature and concentration measurements in high-temperature gas systems using fixed-wavelength methods. Transitions in the respective R-branches of both the fundamental υ 3 band (~2,350 cm-1) and combination υ 1 + υ 3 band (~3,610 cm-1) were chosen based on absorption line-strength, spectral isolation, and temperature sensitivity. The R(76) line near 2,390.52 cm-1 was selected for sensitive CO2 concentration measurements, and a detection limit of <5 ppm was achieved in shock tube kinetics experiments (~1,300 K). A cross-band, two-line thermometry technique was also established utilizing the R(96) line near 2,395.14 cm-1, paired with the R(28) line near 3,633.08 cm-1. This combination yields high temperature sensitivity (ΔE" = 3,305 cm-1) and expanded range compared with previous intra-band CO2 sensors. Thermometry performance was validated in a shock tube over a range of temperatures (600-1,800 K) important for combustion. Measured temperature accuracy was demonstrated to be better than 1 % over the entire range of conditions, with a standard error of ~0.5 % and µs temporal resolution.

  11. Diode laser-based standoff absorption measurement of water film thickness in retro-reflection

    NASA Astrophysics Data System (ADS)

    Pan, R.; Brocksieper, C.; Jeffries, J. B.; Dreier, T.; Schulz, C.

    2016-09-01

    A dual-wavelength diode laser-based absorption sensor for standoff point measurements of water film thickness on an opaque surface is presented. The sensor consists of a diode laser source, a foil as backscattering target, and off-axis paraboloids for collecting the fraction of the laser radiation transmitted through the liquid layer via retro-reflection. Laser wavelengths in the near infrared at 1412 and 1353 nm are used where the temperature dependence of the liquid water absorption cross section is known. The lasers are fiber coupled and the detection of the retro-reflected light was accomplished through a multimode fiber and a single photodiode using time-division multiplexing. The water film thickness at a given temperature was determined from measured transmittance ratios at the two laser wavelengths. The sensor concept was first validated with measurement using a temperature-controlled calibration cell providing liquid layers of variable and known thickness between 100 and 1000 µm. Subsequently, the sensor was demonstrated successfully during recording the time-varying thickness of evaporating water films at fixed temperatures. The film thickness was recorded as a function of time at three temperatures down to 50 µm.

  12. Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy.

    PubMed

    Nations, Marcel; Wang, Shengkai; Goldenstein, Christopher S; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2015-10-10

    We report the use of cavity-enhanced absorption spectroscopy (CEAS) using two distributed feedback diode lasers near 777.2 and 844.6 nm for sensitive, time-resolved, in situ measurements of excited-state populations of atomic oxygen in a shock tube. Here, a 1% O2/Ar mixture was shock-heated to 5400-8000 K behind reflected shock waves. The combined use of a low-finesse cavity, fast wavelength scanning of the lasers, and an off-axis alignment enabled measurements with 10 μs time response and low cavity noise. The CEAS absorption gain factors of 104 and 142 for the P35←S520 (777.2 nm) and P0,1,23←S310 (844.6 nm) atomic oxygen transitions, respectively, significantly improved the detection sensitivity over conventional single-pass measurements. This work demonstrates the potential of using CEAS to improve shock-tube studies of nonequilibrium electronic-excitation processes at high temperatures.

  13. Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms

    SciTech Connect

    Mourant, J.R.; Fuselier, T.; Boyer, J.; Johnson, T.M.; Bigio, I.J.

    1997-02-01

    Predictions from Mie theory regarding the wavelength dependence of scattering in tissue from the near UV to the near IR are discussed and compared with experiments on tissue phantoms. For large fiber separations it is shown that rapid, simultaneous measurements of the elastic scatter signal for several fiber separations can yield the absorption coefficient and reduced scattering coefficient. With this information, the size of the scattering particles can be estimated, and this is done for Intralipid. Measurements made at smaller source detector separations support Mie theory calculations, demonstrating that the sensitivity of elastic scatter measurements to morphological features, such as scatterer size, is enhanced when the distance between the source and detector fibers is small. {copyright} 1997 Optical Society of America

  14. Laser absorption measurements of OH concentration and temperature in pulsed facilities

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John A.; Newfield, Mark E.; Loomis, Mark P.

    1992-01-01

    A laser absorption flow diagnostic application has been developed at the NASA Ames 16-inch Shock Tunnel for purposes of measuring the thermochemical state of OH in flow environments of interest. Research objectives include the investigation of high temperature, low pressure chemistry pertinent to scramjet combustors and high altitude flight. The system can be operated in either the fixed frequency mode or in the rapid wavelength scanning mode to measure species mole fraction and temperature. Emission diagnostics have been employed to determine shock tunnel flow quality and assist in the proper application of the diagnostic and its data interpretation. Rotational lines in the OH system were probed in the expanding facility nozzle flow, and time-resolved measurements of temperature and mole fraction are provided.

  15. Light absorption coefficient measurement of SOA using a UV-Visible spectrometer connected with an integrating sphere

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Jang, Myoseon

    2011-08-01

    A method for measuring an aerosol light absorption coefficient ( B a) has been developed using a conventional UV-visible spectrometer equipped with an integrating sphere covering a wide range of wavelengths (280-800 nm). The feasibility of the proposed method was evaluated in both the transmittance mode (TUV-IS) and the reflective mode (RUV-IS) using the reference aerosol known for the cross-sectional area. The aerosol was collected on a conventional filter and measured for B a values. The resulting RUV-IS method was applied to measure light absorption of secondary organic aerosol (SOA). SOA was produced through photooxidation of different precursor hydrocarbons such as toluene, d-limonene and α-pinene in the presence of NO x (60-70 ppb) and inorganic seed aerosol using a 2-m 3 indoor Teflon film chamber. Of the three precursor hydrocarbons, the B a value of toluene SOA (0.574 m 2 g -1 at 350 nm) was the highest compared with B a values for α-pinene SOA (0.029 m 2 g -1) and d-limonene SOA (0.038 m 2 g -1). When d-limonene SOA or toluene SOA was internally mixed with neutral [(NH 4) 2SO 4] or acidic inorganic seed (NH 4HSO 4:H 2SO 4 = 1:1 by mole), the SOA showed 2-3 times greater B a values at 350 nm than the SOA with no seed. Aerosol aging with a light source for this study reduced B a values of SOA (e.g., on average 10% for toluene SOA and 30% for d-limonene SOA within 4 h). Overall, weak absorption appeared for chamber-generated SOA over wavelengths ranging from 280 to 550 nm, which fall into the sunlight spectrum.

  16. Data Analysis of a Pulsed 2-micron Coherent Differential Absorption Lidar For Atmospheric CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Lu, J.; Yu, J.

    2013-12-01

    The study of climate change requires precise measurement of the production, migration, and sinking of greenhouse gases. Carbon Dioxide (CO2) is one of the principal greenhouse gases. NASA Langley Research Center (LARC) has developed a pulsed 2-micron coherent differential absorption lidar (DiAL) for CO2 measurement, operating on the R30 absorption line. On April 5, 2010, the lidar instrument transmitted alternating On-line and Off-line pulses from LARC into a residential area in Poquoson, Virginia; while a passive in-situ sensor measured the local CO2 concentration. This paper outlines a procedure to estimate CO2 concentration from atmospheric lidar return signal using the DiAL method; our calculation produced results in line with the in-situ measurement and matched the current state of DiAL instrument accuracy. Data from April 5 is part of a series of experiments validating the measurement accuracy and precision of this lidar. After a summative verification, a packaged lidar may be installed on research aircraft to perform CO2 studies at a great range of latitudes throughout the year, and to discover sources, sinks, and migration trends for this key greenhouse gas. The following procedure is used to estimate CO2 concentration from atmospheric lidar return using the DiAL method. First, MATLAB software developed at LARC sorts the lidar return into On-only and Off-only files containing pulses of only that type. The sorted pulses are reexamined for quality based on the center frequency, energy, and power - unsatisfactory pulses are removed. A 512-point Fast Fourier Transform (FFT) with 256-point shift is performed on each pulse to discretize the atmospheric return signal according to 63 distance 'bins'. Next, comparing decay rates of the On-line and Off-line atmospheric return intensity with distance yields the Differential Absorption Optical Slope (DAOD), which is proportional to the concentration of the desired gas. Then, in-situ meteorological data - pressure

  17. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH3CFCl2

    NASA Technical Reports Server (NTRS)

    Fahr, A.; Braun, W.; Kurylo, M. J.

    1993-01-01

    Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.

  18. Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model

    NASA Astrophysics Data System (ADS)

    Liebert, Adam; Wabnitz, Heidrun; Elster, Clemens

    2012-05-01

    Time-resolved near-infrared spectroscopy allows for depth-selective determination of absorption changes in the adult human head that facilitates separation between cerebral and extra-cerebral responses to brain activation. The aim of the present work is to analyze which combinations of moments of measured distributions of times of flight (DTOF) of photons and source-detector separations are optimal for the reconstruction of absorption changes in a two-layered tissue model corresponding to extra- and intra-cerebral compartments. To this end we calculated the standard deviations of the derived absorption changes in both layers by considering photon noise and a linear relation between the absorption changes and the DTOF moments. The results show that the standard deviation of the absorption change in the deeper (superficial) layer increases (decreases) with the thickness of the superficial layer. It is confirmed that for the deeper layer the use of higher moments, in particular the variance of the DTOF, leads to an improvement. For example, when measurements at four different source-detector separations between 8 and 35 mm are available and a realistic thickness of the upper layer of 12 mm is assumed, the inclusion of the change in mean time of flight, in addition to the change in attenuation, leads to a reduction of the standard deviation of the absorption change in the deeper tissue layer by a factor of 2.5. A reduction by another 4% can be achieved by additionally including the change in variance.

  19. Real-time HF Radio Absorption Maps Incorporating Riometer and Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Rogers, Neil; Honary, Farideh; Warrington, Mike; Stocker, Alan; Danskin, Donald

    2016-04-01

    A real-time model of HF radio propagation conditions is being developed as a service for aircraft communications at high latitudes. An essential component of this is a real-time map of the absorption of HF (3-30 MHz) radio signals in the D-region ionosphere. Empirical, climatological Polar Cap Absorption (PCA) models in common usage cannot account for day-to-day variations in ionospheric composition and are inaccurate during the large changes in recombination rate at twilight. However, parameters of such models may be optimised using an age-weighted regression to absorption measurements from riometers in Canada and Scandinavia. Such parameters include the day- and night-time sensitivity to proton flux as measured on a geostationary satellite (GOES). Modelling the twilight transition as a linear or Gauss error function over a range of solar-zenith angles (χl < χ < χu) is found to provide greater accuracy than 'Earth shadow' methods (as applied in the Sodankylä Ionospheric Chemistry (SIC) model, for example) due to a more gradual ionospheric response for χ < 90° . The fitted χl parameter is found to be most variable, with smaller values (as low as 60°) post-sunrise compared with pre-sunset. Correlation coefficients of model parameters between riometers are presented and these provide a means of appropriately weighting individual riometer contributions in an assimilative PCA model. At times outside of PCA events, the probability of absorption in the auroral zones is related to the energetic electron flux inside the precipitation loss cone, as measured on the polar-orbiting POES satellites. This varies with magnetic local time, magnetic latitude and geomagnetic activity, and its relation to the real-time solar wind - magnetospheric coupling function [Newell et al., 2007] will be presented. Reference: Newell, P. T., T. Sotirelis, K. Liou, C.-I. Meng, and F. J. Rich (2007), A nearly universal solar wind-magnetosphere coupling function inferred from 10

  20. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.

    2009-01-01

    altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. This spring we improved the aircraft's nadir window. During July and August 2009 we made 9 additional 2 hour long flights and measured the atmospheric C02 absorption and line shapes using the 1572.33 nm C02 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and Virginia. Strong laser signals and clear line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. The Oklahoma and east coast t1ights were coordinated with a LaRC/ITT C02 lidar on the LaRC UC-12 aircraft, a LaRC insitu C02 sensor, and the Oklahoma flights also included a JPL C02 lidar on a Twin Otter aircraft. Ed Browell and Gary Spiers led the LaRC and JPL teams. More details of the t1ights, measurements and analysis will be described in the presentation.

  1. Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Hasselbrack, W. E.; Sun, X.

    2009-12-01

    increasing CO2 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. This spring we improved the aircraft’s nadir window. During July and August 2009 we made 9 additional 2 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and Virginia. Strong laser signals and clear line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. Ed Browell and Gary Spiers led the LaRC and JPL teams. More details of the flights, measurements and their analysis will be described in the presentation.

  2. [Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption].

    PubMed

    Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi

    2015-02-01

    High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.

  3. Assessment Measures Showing Institutional Effectiveness in Relation to External Stakeholder Expectations for Accountability

    ERIC Educational Resources Information Center

    Clites, Mona Lynn

    2013-01-01

    Community colleges face a growing demand from a wide range of stakeholders for more transparent accountability but struggle to select appropriate measures and to use them in effective ways. The multiple demands of various stakeholders, and the calls to respond to those demands in effective and appropriate ways, are leading to a confusing array of…

  4. Integrated catchment modeling for nutrient reduction: scenarios showing impacts, potential, and cost of measures.

    PubMed

    Arheimer, Berit; Löwgren, Marianne; Pers, Bodil Charlotta; Rosberg, Jörgen

    2005-11-01

    A hydrological-based model (HBV-NP) was applied to a catchment (1900 km2) in the southern part of Sweden. Careful characterization of the present load situation and the potential for improved treatment or reduced soil leaching were analyzed. Several scenarios were modeled to find strategies to reach the Swedish environmental goals of reducing anthropogenic nitrogen load by 30% and phosphorus load by 20%. It was stated that the goals could be reached by different approaches that would affect different polluters and social sectors. However, no single measure was enough by itself. Instead, a combination of measures was necessary to achieve the goals. The nitrogen goal was the most difficult to attain. In order to be cost-effective, these measures should be applied to areas contributing the most to the net loading of the sea. This strategy could reduce the costs by 70%-80% when compared with implementing the measures in the entire catchment. Integrated catchment models may thus be helpful tools for reducing costs in environmental control programs.

  5. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  6. Measurement of CO2 concentration at high-temperature based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jiuying; Li, Chuanrong; Zhou, Mei; Liu, Jianguo; Kan, Ruifeng; Xu, Zhenyu

    2017-01-01

    A diode laser sensor based on absorption spectroscopy has been developed for sensitive measurement of CO2 concentration at high-temperature. Measurement of CO2 can provide information about the extent of combustion and mix in a combustor that may be used to improve fuel efficiency. Most methods of in-situ combustion measurement of CO2 use the spectroscopic parameters taken from database like HITEMP which is mainly derived from the theoretical calculation and remains a high degree of uncertainty in the spectroscopic parameters. A fiber-coupled diode laser system for measurement of CO2 in combustion environment by use of the high-temperature spectroscopic parameters which are obtained by experiment was proposed. Survey spectra of the R(50) line of CO2 at 5007.787 cm-1 were recorded at high-temperature and various pressures to determine line intensities. The line intensities form the theoretical foundation for future applications of this diode laser sensor system. Survey spectra of four test gas mixtures containing 5.01%CO2, 10.01%CO2, 20.08%CO2, and 49.82%CO2 were measured to verify the accuracy of the diode laser sensor system. The measured results indicate that this sensor can measure CO2 concentration with 2% uncertainty in high temperatures.

  7. Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurement

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-10-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 mJ and up to 10 Hz repetition rate. The two laser pulses are separated by 200 µs and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-µm direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-μm IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  8. Influence of electrically induced refraction and absorption on the measurement of spin current by pockels effect in GaAs

    SciTech Connect

    Liu, Houquan; She, Weilong

    2015-03-14

    The pockels effect could be utilized to measure spin current in semiconductors for linear electro-optic coefficient can be induced by spin current. When dc electric field is applied, the carriers will shift in k space, which could lead to the change of refraction and absorption coefficients. In this paper, we investigate the influence of the induced change of the refraction and absorption coefficients on the measurement of spin current by pockels effect in GaAs.

  9. Comparison Between X-rays Absorption and Emission Spectroscopy Measurements on a Ceramic Envelop Lamp

    NASA Astrophysics Data System (ADS)

    Lafitte, Bruno; Aubes, Michel; Zissis, Georges

    2007-12-01

    Burners of metal halide lamps used for illumination are generally made of polycrystalline alumina ceramic (PCA) which is translucent to visible light. We show that the difficulty of selecting a line of sight through the lamp prevents the use of optical emission diagnostic. X-rays photons are mainly absorbed and not scattered by PCA. Absorption by mercury atoms contributing to the discharge allowed us to determine the density of mercury in the lamp. By comparing diagnostic methods, we put in evidence the difficulty of taking into account the scattering of light mathematically.

  10. Slow-Reduction Synthesis of a Thiolate-Protected One-Dimensional Gold Cluster Showing an Intense Near-Infrared Absorption.

    PubMed

    Takano, Shinjiro; Yamazoe, Seiji; Koyasu, Kiichirou; Tsukuda, Tatsuya

    2015-06-10

    Slow reduction of Au ions in the presence of 4-(2-mercaptoethyl)benzoic acid (4-MEBA) gave Au76(4-MEBA)44 clusters that exhibited a strong (3 × 10(5) M(-1) cm(-1)) near-infrared absorption band at 1340 nm. Powder X-ray diffraction studies indicated that the Au core has a one-dimensional fcc structure that is elongated along the {100} direction.

  11. Made-to-measure galaxy modelling utilising absorption line strength data

    NASA Astrophysics Data System (ADS)

    Long, R. J.

    2016-12-01

    We enhance the Syer & Tremaine made-to-measure (M2M) particle method of stellar dynamical modelling to model simultaneously both kinematic data and absorption line strength data, thus creating a ‘chemo-M2M’ modelling scheme. We apply the enhanced method to four galaxies (NGC 1248, NGC 3838, NGC 4452, NGC 4551) observed using the SAURON integral-field spectrograph as part of the ATLAS3D programme. We are able to reproduce successfully the 2D line strength data achieving mean χ2 per bin values of ≈ 1 with > 95% of particles having converged weights. Because M2M uses a 3D particle system, we are also able to examine the underlying 3D line strength distributions. The extent to which these distributions are plausible representations of real galaxies requires further consideration. Overall, we consider the modelling exercise to be a promising first step in developing a ‘chemo-M2M’ modelling system and in understanding some of the issues to be addressed. While the made-to-measure techniques developed have been applied to absorption line strength data, they are in fact general and may be of value in modelling other aspects of galaxies.

  12. Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Yoon, Youngkwon; Boyd, Robert W.; Campbell, Joseph K.; Baker, Lane A.; Crooks, Richard M.; George, Michael

    1999-01-01

    We have used the z-scan technique at a wavelength (532 nm) near the transmission window of bulk gold to measure the nonlinear absorption coefficient of continuous approximately 50-Angstrom-thick gold films, deposited onto surface-modified quartz substrates. For highly absorbing media such as metals, we demonstrate that determination of either the real or imaginary part of the third-order susceptibility requires a measurement of both nonlinear absorption and nonlinear refraction, i.e. both open- and closed-aperture z-scans must be performed. Closed-aperture z-scans did not yield a sufficient signal for the determination of the nonlinear refraction. However, open-aperture z-scans yielded values ranging from Beta = 1.9 x 10(exp -3) to 5.3 x 10(exp -3) cm/W in good agreement with predictions which ascribe the nonlinear response to a Fermi smearing mechanism. We note that the sign of the nonlinearity is reversed from that of gold nanoparticle composites, in accordance with the predictions of mean field theories.

  13. Direct measurements show decreasing methane emissions from natural gas local distribution systems in the United States.

    PubMed

    Lamb, Brian K; Edburg, Steven L; Ferrara, Thomas W; Howard, Touché; Harrison, Matthew R; Kolb, Charles E; Townsend-Small, Amy; Dyck, Wesley; Possolo, Antonio; Whetstone, James R

    2015-04-21

    Fugitive losses from natural gas distribution systems are a significant source of anthropogenic methane. Here, we report on a national sampling program to measure methane emissions from 13 urban distribution systems across the U.S. Emission factors were derived from direct measurements at 230 underground pipeline leaks and 229 metering and regulating facilities using stratified random sampling. When these new emission factors are combined with estimates for customer meters, maintenance, and upsets, and current pipeline miles and numbers of facilities, the total estimate is 393 Gg/yr with a 95% upper confidence limit of 854 Gg/yr (0.10% to 0.22% of the methane delivered nationwide). This fraction includes emissions from city gates to the customer meter, but does not include other urban sources or those downstream of customer meters. The upper confidence limit accounts for the skewed distribution of measurements, where a few large emitters accounted for most of the emissions. This emission estimate is 36% to 70% less than the 2011 EPA inventory, (based largely on 1990s emission data), and reflects significant upgrades at metering and regulating stations, improvements in leak detection and maintenance activities, as well as potential effects from differences in methodologies between the two studies.

  14. Velocity measurements of the liquid - gas flow using gamma absorption and modified conditional averaging

    NASA Astrophysics Data System (ADS)

    Hanus, Robert; Zych, Marcin; Kowalczyk, Adam; Petryka, Leszek

    2015-05-01

    The paper presents idea and an exemplary application of gamma-absorption in the measurement of gas bubbles transportation in a gas-liquid mixture flow through a horizontal pipeline. In the tests on laboratory installation two 241Am radioactive sources and probes with NaI(Tl) scintillation crystals have been used. For analysis of electrical signals obtained from detectors the modified conditional averaging of the absolute value of delayed signal (CAAV) is proposed. The proposed method is based on the quotient of classical cross-correlation (CCF) and CAAV. Results of the time delay estimation and gas-phase velocity measurements are compared with one obtained using CCF. The combined uncertainties of the mean velocity of air bubbles evaluation in the presented experiment did not exceed 2.1% (CCF) and 1.7% (CCF/CAAV), which is a satisfactory result in industrial applications.

  15. Ultraviolet absorption measurements of CF2 in the parallel plate pyrolytic chemical vapour deposition process

    NASA Astrophysics Data System (ADS)

    Cruden, Brett A.; Gleason, Karen K.; Sawin, Herbert H.

    2002-03-01

    Polytetrafluoroethylene films have been deposited for use as low dielectric constant materials. Deposition is performed through pyrolysis of hexafluoropropylene oxide (HFPO) to produce CF2, which can then polymerize and deposit as a thin film. The variation of CF2 concentration as a function of reactor conditions has been characterized by ultraviolet absorption spectroscopy. CF2 concentration is observed to go through a maximum with respect to both pressure and pyrolysis temperature when it is present in large amounts (~1014 cm-3). A one-dimensional model including known kinetic reactions for HFPO decomposition and CF2 recombination and multi-component diffusive transport has been applied to the parallel plate system. The result is seen to overestimate the measured concentration and does not capture the maxima observed versus pressure and temperature. An additional mechanism of particle formation, by CF2 insertion into (CF2)n oligomers, has been introduced to produce a kinetic model that explains the CF2 concentration measurements.

  16. Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra.

    PubMed

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2014-10-20

    We report new methods for retrieving atmospheric constituents from symmetrically-measured lidar-sounding absorption spectra. The forward model accounts for laser line-center frequency noise and broadened line-shape, and is essentially linearized by linking estimated optical-depths to the mixing ratios. Errors from the spectral distortion and laser frequency drift are substantially reduced by averaging optical-depths at each pair of symmetric wavelength channels. Retrieval errors from measurement noise and model bias are analyzed parametrically and numerically for multiple atmospheric layers, to provide deeper insight. Errors from surface height and reflectance variations are reduced to tolerable levels by "averaging before log" with pulse-by-pulse ranging knowledge incorporated.

  17. Airborne Measurements of Formaldehyde Employing a Tunable Diode Laser Absorption Spectrometer During TRACE-P

    NASA Technical Reports Server (NTRS)

    Fried, Alan; Drummond, James

    2003-01-01

    This final report summarizes the progress achieved over the entire 3-year proposal period including two extensions spanning 1 year. These activities include: 1) Preparation for and participation in the NASA 2001 TRACE-P campaign using our airborne tunable diode laser system to acquire measurements of formaldehyde (CH2O); 2) Comprehensive data analysis and data submittal to the NASA archive; 3) Follow up data interpretation working with NASA modelers to place our ambient CH2O measurements into a broader photochemical context; 4) Publication of numerous JGR papers using this data; 5) Extensive follow up laboratory tests on the selectivity and efficiency of our CH20 scrubbing system; and 6) An extensive follow up effort to assess and study the mechanical stability of our entire optical system, particularly the multipass absorption cell, with aircraft changes in cabin pressure.

  18. High-resolution absorption measurements of NH3 at high temperatures: 2100-5500 cm-1

    NASA Astrophysics Data System (ADS)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan; Clausen, Sønnik; Fateev, Alexander

    2017-03-01

    High-resolution absorption spectra of NH3 in the region 2100-5500 cm-1 at 1027 °C and approximately atmospheric pressure (1045±3 mbar) are measured. An NH3 concentration of 10% in volume fraction is used in the measurements. Spectra are recorded in a high-temperature gas-flow cell using a Fourier Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm-1. The spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. 2308 lines have been assigned to 45 different bands, of which 1755 and 15 have been assigned or observed for the first time in this work.

  19. Method for direct measurement of cosmic acceleration by 21-cm absorption systems.

    PubMed

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-25

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively.

  20. Method for Direct Measurement of Cosmic Acceleration by 21-cm Absorption Systems

    NASA Astrophysics Data System (ADS)

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-01

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively.

  1. Development and Testing of a Differential Absorption LIDAR system for Greenhouse Gas Measurements

    NASA Astrophysics Data System (ADS)

    Maxwell, S. E.; Douglass, K.; Plusquellic, D.; Whetstone, J. R.

    2013-12-01

    Our objective is to develop accurate and reliable methods for quantifying distributed carbon sources and sinks to support both mitigation efforts and climate change research. We will describe progress toward a field-deployable, eye-safe differential absorption LIDAR system. The current version of our system utilizes a high repetition rate (>200 kHz), 200 ns pulsed fiber amplifier driven by tunable DFB lasers around 1602 nm. Collection is performed using a small (3' diameter) telescope and an avalanche photodiode. We demonstrate a rapid hard target measurement of ambient levels of CO2 in our 100m test facility using low powers from the fiber laser and a highly-retro-reflecting target. We also discuss progress toward a range resolved measurement in the test facility, planned upgrades to the facility, and the development of a low-backscatter beam dump for range-limited applications.

  2. The overview of the radon and environmental characteristics measurements in the Czech show caves.

    PubMed

    Thinová, L; Froňka, A; Rovenská, K

    2015-06-01

    This paper focuses on the measurement and assessment of absorbed doses of radiation in caves of the Czech Republic, some of which exhibit high activity concentration of radon in air. Presented is an analysis and recommendations based on measurement results obtained in the underground caves over the past 12 y. The most important results for cave environments were as follows: integral radon monitoring using RAMARN detectors can provide more consistent results for calculating the effective dose; no major differences were shown in the average radon activity concentration during working time as opposed to non-working time; the unattached fraction of radioactive particles in air ranged from 0.03 to 0.6, with arithmetical average fp = 0.13; the direct dependence between equilibrium factor F and the size of the unattached fraction fp was described using the Log-Power expression ln(1/fp) = a*ln(1/F)(b); the calculated values for coefficients a and b were 1.85 and -1.096, respectively. The individual cave factor for each investigated underground area was calculated.

  3. High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell

    SciTech Connect

    Hong, X.; Newville, M.; Prakapenka, V.B.; Rivers, M.L.; Sutton, S.R.

    2009-07-31

    We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within {+-}3{sup o} relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO{sub 2} recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO{sub 2} glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO{sub 2} glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.

  4. A new direct absorption measurement for high precision and accurate measurement of water vapor in the UT/LS

    NASA Astrophysics Data System (ADS)

    Sargent, M. R.; Sayres, D. S.; Smith, J. B.; Anderson, J.

    2011-12-01

    Highly accurate and precise water vapor measurements in the upper troposphere and lower stratosphere are critical to understanding the climate feedbacks of water vapor and clouds in that region. However, the continued disagreement among water vapor measurements (~1 - 2 ppmv) are too large to constrain the role of different hydration and dehydration mechanisms operating in the UT/LS, with model validation dependent upon which dataset is chosen. In response to these issues, we present a new instrument for measurement of water vapor in the UT/LS that was flown during the April 2011 MACPEX mission out of Houston, TX. The dual axis instrument combines the heritage and validated accuracy of the Harvard Lyman-alpha instrument with a newly designed direct IR absorption instrument, the Harvard Herriott Hygrometer (HHH). The Lyman-alpha detection axis has flown aboard NASA's WB-57 and ER2 aircraft since 1994, and provides a requisite link between the new HHH instrument and the long history of Harvard water vapor measurements. The instrument utilizes the highly sensitive Lyman-alpha photo-fragment fluorescence detection method; its accuracy has been demonstrated though rigorous laboratory calibrations and in situ diagnostic procedures. The Harvard Herriott Hygrometer employs a fiber coupled near-IR laser with state-of-the-art electronics to measure water vapor via direct absorption in a spherical Herriott cell of 10 cm length. The instrument demonstrated in-flight precision of 0.1 ppmv (1-sec, 1-sigma) at mixing ratios as low as 5 ppmv with accuracies of 10% based on careful laboratory calibrations and in-flight performance. We present a description of the measurement technique along with our methodology for calibration and details of the measurement uncertainties. The simultaneous utilization of radically different measurement techniques in a single duct in the new Harvard Water Vapor (HWV) instrument allows for the constraint of systematic errors inherent in each technique

  5. (n,m)-Specific Absorption Cross Sections of Single-Walled Carbon Nanotubes Measured by Variance Spectroscopy.

    PubMed

    Sanchez, Stephen R; Bachilo, Sergei M; Kadria-Vili, Yara; Lin, Ching-Wei; Weisman, R Bruce

    2016-11-09

    A new method based on variance spectroscopy has enabled the determination of absolute absorption cross sections for the first electronic transition of 12 (n,m) structural species of semiconducting single-walled carbon nanotubes (SWCNTs). Spectrally resolved measurements of fluorescence variance in dilute bulk samples provided particle number concentrations of specific SWCNT species. These values were converted to carbon concentrations and correlated with resonant components in the absorbance spectrum to deduce (n,m)-specific absorption cross sections (absorptivities) for nanotubes ranging in diameter from 0.69 to 1.03 nm. The measured cross sections per atom tend to vary inversely with nanotube diameter and are slightly greater for structures of mod 1 type than for mod 2. Directly measured and extrapolated values are now available to support quantitative analysis of SWCNT samples through absorption spectroscopy.

  6. Measurement of phthalates in skin wipes: estimating exposure from dermal absorption.

    PubMed

    Gong, Mengyan; Zhang, Yinping; Weschler, Charles J

    2014-07-01

    This study has determined the levels of six phthalates (dimethyl phthalate (DMP), diethyl phthalate (DEP), di(isobutyl) phthalate (DiBP), di(n-butyl) phthalate (DnBP), butyl benzyl phthalate (BBzP), and di(2-ethylhexyl) phthalate (DEHP)) in skin wipes; examined factors that might influence the levels, including body location, time of sampling, and hand-washing; and estimated dermal absorption based on the measured levels. Skin wipes were collected from the forehead, forearm, back-of-hand, and palm of 20 participants using gauze pads moistened with isopropanol. DiBP, DnBP, and DEHP were most frequently detected; DEHP levels were substantially higher than DnBP and DiBP levels, and DnBP levels were somewhat lower than DiBP levels. The levels differed at different body locations, with palm > back-of-hand > forearm ≥ forehead. Repeated wipe sampling from six participants over a 1 month period indicated that levels at the same body location did not vary significantly. The estimated median total dermal absorption from skin surface lipids on the palm, back-of-hand, arm, and head are 0.48, 0.68, and 0.66 (μg/kg)/day for DiBP, DnBP, and DEHP, respectively. These estimates are roughly 10-20% of the total uptake reported for Chinese adults and suggest that dermal absorption contributes significantly to the uptake of these phthalates. Washing with soap and water removed more than 50% of the phthalates on the hands and may be a useful tool in decreasing aggregate phthalate exposure.

  7. Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return

    NASA Astrophysics Data System (ADS)

    Ishii, S.; Koyama, M.; Baron, P.; Iwai, H.; Mizutani, K.; Itabe, T.; Sato, A.; Asai, K.

    2013-05-01

    The National Institute of Information and Communications Technology (NICT) has made a great deal of effort to develop a coherent 2 μm differential absorption and wind lidar (Co2DiaWiL) for measuring CO2 and wind speed. First, coherent Integrated Path Differential Absorption (IPDA) lidar experiments were conducted using the Co2DiaWiL and a foothill target (tree and ground surface) located about 7.12 km south of NICT on 11, 27, and 28 December 2010. The detection sensitivity of a 2 μm IPDA lidar was examined in detail using the CO2 concentration measured by the foothill reflection. The precisions of CO2 measurements for the foothill target and 900, 4500 and 27 000 shot pairs were 6.5, 2.8, and 1.2%, respectively. The results indicated that a coherent IPDA lidar with a laser operating at a high pulse repetition frequency of a few tens of KHz is necessary for XCO2 (column-averaged dry air mixing ratio of CO2) measurement with a precision of 1-2 ppm in order to observe temporal and spatial variations in the CO2. Statistical comparisons indicated that, although a small amount of in situ data and the fact that they were not co-located with the foothill target made comparison difficult, the CO2 volume mixing ratio obtained by the Co2DiaWiL measurements for the foothill target and atmospheric returns was about -5 ppm lower than the 5 min running averages of the in situ sensor. Not only actual difference of sensing volume or the natural variability of CO2 but also the fluctuations of temperature could cause this difference. The statistical results indicated that there were no biases between the foothill target and atmospheric return measurements. The 2 μm coherent IPDA lidar can detect the CO2 volume mixing ratio change of 3% in the 5 min signal integration. In order to detect the position of the foothill target, to measure a range with a high SNR (signal-to-noise ratio), and to reduce uncertainty due to the presence of aerosols and clouds, it is important to make a

  8. Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere

    NASA Astrophysics Data System (ADS)

    Volten, H.; Bergwerff, J. B.; Haaima, M.; Lolkema, D. E.; Berkhout, A. J. C.; van der Hoff, G. R.; Potma, C. J. M.; Wichink Kruit, R. J.; van Pul, W. A. J.; Swart, D. P. J.

    2012-02-01

    We present two Differential Optical Absorption Spectroscopy (DOAS) instruments built at RIVM: the RIVM DOAS and the miniDOAS. Both instruments provide virtually interference-free measurements of NH3 concentrations in the atmosphere, since they measure over an open path, without suffering from inlet problems or interference problems by ammonium aerosols dissociating on tubes or filters. They measure concentrations up to at least 200 μg m-3, have a fast response, low maintenance demands, and a high up-time. The RIVM DOAS has a high accuracy of typically 0.15 μg m-3 for ammonia for 5-min averages and over a total light path of 100 m. The miniDOAS has been developed for application in measurement networks such as the Dutch National Air Quality Monitoring Network (LML). Compared to the RIVM DOAS it has a similar accuracy, but is significantly reduced in size, costs, and handling complexity. The RIVM DOAS and miniDOAS results showed excellent agreement (R2 = 0.996) during a field measurement campaign in Vredepeel, the Netherlands. This measurement site is located in an agricultural area and is characterized by highly variable, but on average high ammonia concentrations in the air. The RIVM-DOAS and miniDOAS results were compared to the results of the AMOR instrument, a continuous-flow wet denuder system, which is currently used in the LML. Averaged over longer time spans of typically a day, the (mini)DOAS and AMOR results agree reasonably well, although an offset of the AMOR values compared to the (mini)DOAS results exists. On short time scales, the (mini)DOAS shows a faster response and does not show the memory effects due to inlet tubing and transport of absorption fluids encountered by the AMOR. Due to its high accuracy, high uptime, low maintenance and its open path, the (mini)DOAS shows a good potential for flux measurements by using two (or more) systems in a gradient set-up and applying the aerodynamic gradient technique.

  9. Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere

    NASA Astrophysics Data System (ADS)

    Volten, H.; Bergwerff, J. B.; Haaima, M.; Lolkema, D. E.; Berkhout, A. J. C.; van der Hoff, G. R.; Potma, C. J. M.; Wichink Kruit, R. J.; van Pul, W. A. J.; Swart, D. P. J.

    2011-08-01

    We present two Differential Optical Absorption Spectroscopy (DOAS) instruments built at RIVM, the RIVM DOAS and the miniDOAS. Both instruments provide virtually interference free measurements of NH3 concentrations in the atmosphere, since they measure over an open path, without suffering from inlet problems or interference problems by ammonium aerosols dissociating on tubes or filters. They measure concentrations up to at least 200 μg m-3, have a fast response, low maintenance demands, and a high up-time. The RIVM DOAS has a high accuracy of typically 0.15 μg m-3 for ammonia over 5-min averages and over a total light path of 100 m. The miniDOAS has been developed for application in measurement networks such as the Dutch National Air Quality Monitoring Network (LML). Compared to the RIVM DOAS it has a similar accuracy, but is significantly reduced in size, costs, and handling complexity. The RIVM DOAS and miniDOAS results showed excellent agreement (R2 = 0.996) during a field measurement campaign in Vredepeel, the Netherlands. This measurement site is located in an agricultural area and is characterized by highly variable, but on average high ammonia concentrations in the air. The RIVM-DOAS and miniDOAS results were compared to the results of the AMOR instrument, a continuous-flow wet denuder system, which is currently used in the LML. Averaged over longer time spans of typically a day the (mini)DOAS and AMOR results agree reasonably well, although an offset of the AMOR values compared to the (mini)DOAS results exists. On short time scales the (mini)DOAS shows a faster response and does not show the memory effects due to inlet tubing and transport of absorption fluids encountered by the AMOR. Due to its high accuracy, high uptime, low maintenance and its open path, the (mini)DOAS shows a good potential for flux measurements by using two (or more) systems in a gradient set-up and applying the aerodynamic gradient technique.

  10. Total ozone and aerosol optical depths inferred from radiometric measurements in the Chappuis absorption band

    SciTech Connect

    Flittner, D.E.; Herman, B.M.; Thome, K.J.; Simpson, J.M.; Reagan, J.A. )

    1993-04-15

    A second-derivative smoothing technique, commonly used in inversion work, is applied to the problem of inferring total columnar ozone amounts and aerosol optical depths. The application is unique in that the unknowns (i.e., total columnar ozone and aerosol optical depth) may be solved for directly without employing standard inversion methods. It is shown, however, that by employing inversion constraints, better solutions are normally obtained. The current method requires radiometric measurements of total optical depth through the Chappuis ozone band. It assumes no a priori shape for the aerosol optical depth versus wavelength profile and makes no assumptions about the ozone amount. Thus, the method is quite versatile and able to deal with varying total ozone and various aerosol size distributions. The technique is applied first in simulation, then to 119 days of measurements taken in Tucson, Arizona, that are compared to TOMS values for the same dates. The technique is also applied to two measurements taken at Mauna Loa, Hawaii, for which Dobson ozone values are available in addition to the TOMS values, and the results agree to within 15%. It is also shown through simulations that additional information can be obtained from measurements outside the Chappuis band. This approach reduces the bias and spread of the estimates total ozone and is unique in that it uses measurements from both the Chappuis and Huggins absorption bands. 12 refs., 6 figs., 2 tabs.

  11. Hemodynamic measurements in rat brain combining diffuse near-infrared absorption and correlation spectroscopies

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Durduran, Turgut; Furuya, Daisuke; Greenberg, Joel H.; Yodh, Arjun G.

    2002-09-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An instrument has been built that combines two near-infrared diffuse optical techniques to simultaneously monitor blood flow, blood volume and blood oxygen saturation. Diffuse correlation spectroscopy (DCS) monitors blood flow by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave (DPDW) spectroscopy measured tissue absorption and scattering. The modularized design of the instrument provides the instrument great flexibility for trading off the temporal, spectral and spatial resolution by selecting the number of source-detector pairs and wavelengths. The frame acquisition rate of the current instrument is 0.2 Hz with 3l (wavelengths) x 15s (source positions) x 4d (detectors) for DPDW measurement in the frequency domain, and 1λ x 3s; x 9d for DCS. Higher frame acquisition rate could be achieved by reducing the spatial resolution, for example, 2 Hz with 3λ x 1s x 4d for DPDW and 1l x 1s x 9d for DCS. The unique non-contact probe mounted on the back of a camera allows non-contact measurement that avoids potentially altering blood flow. We used this instrument to monitor in vivo the hemodynamic responses in rat brain during KCl induced cortical spreading depression (CSD).

  12. Error analysis of Raman differential absorption lidar ozone measurements in ice clouds.

    PubMed

    Reichardt, J

    2000-11-20

    A formalism for the error treatment of lidar ozone measurements with the Raman differential absorption lidar technique is presented. In the presence of clouds wavelength-dependent multiple scattering and cloud-particle extinction are the main sources of systematic errors in ozone measurements and necessitate a correction of the measured ozone profiles. Model calculations are performed to describe the influence of cirrus and polar stratospheric clouds on the ozone. It is found that it is sufficient to account for cloud-particle scattering and Rayleigh scattering in and above the cloud; boundary-layer aerosols and the atmospheric column below the cloud can be neglected for the ozone correction. Furthermore, if the extinction coefficient of the cloud is ?0.1 km(-1), the effect in the cloud is proportional to the effective particle extinction and to a particle correction function determined in the limit of negligible molecular scattering. The particle correction function depends on the scattering behavior of the cloud particles, the cloud geometric structure, and the lidar system parameters. Because of the differential extinction of light that has undergone one or more small-angle scattering processes within the cloud, the cloud effect on ozone extends to altitudes above the cloud. The various influencing parameters imply that the particle-related ozone correction has to be calculated for each individual measurement. Examples of ozone measurements in cirrus clouds are discussed.

  13. Measurements of the Absorption of Atmospheric Gases in Bulk Lithium Metal using a Mass Balance

    NASA Astrophysics Data System (ADS)

    Hart, Connor A.; Skinner, Charles H.; Capece, Angela M.; Koel, Bruce E.

    2014-10-01

    Lithium conditioning of plasma facing components has enhanced the performance of several fusion devices. However, metallic lithium is very reactive and it is important to quantify the processes leading to the passivation of lithium upon exposure to air. Passivation, as used here, refers to the absorption of atmospheric gases by lithium to ultimately form lithium species including lithium hydroxide, carbonate, and oxide. The current work uses a mass balance with microgram sensitivity to measure the mass gain during the absorption of atmospheric gases by bulk lithium. Metallic lithium films with thicknesses of 0.3 and 1.0 mm are exposed to humid air as well as dry synthetic air at atmospheric conditions in order to reproduce the environment of a tokamak exposed to air during maintenance activities and venting. The data yield the reaction rates and interdiffusion of these lithium species as functions of thickness and time. These results provide critical insight into the chemical state of a lithiated surface after air exposure. In addition, the depth of passivation versus time is of interest in determining the length of exposure required to completely passivate a lithium layer of a given thickness, making it safe to handle. Science Undergraduate Laboratory Internship funded by Department of Energy.

  14. Two-photon absorption measurements in graphene fragments: Role of electron-electron interactions

    NASA Astrophysics Data System (ADS)

    Sandhu, A.; Roberts, A.; Aryanpour, K.; Shukla, A.; Mazumdar, S.

    2012-02-01

    Many-body interactions in graphene are an active field of research. There is a clear evidence of strong electron correlation effects in other carbon based materials which have the same sp^2 hybridization as graphene. For example, in linear-polyenes, the electron-electron interactions are considered responsible for the occurrence of lowest two-photon state below the optical one-photon state. The electronic correlation in these linear systems is a strong function of the chain length. Thus, it is pertinent to question if the two-dimensional graphene fragments also exhibit strong correlation effects and how these effects scale with fragment size. Using a white light super-continuum source, we perform z-scan measurements to extract frequency-dependent two-photon absorption coefficients in symmetric molecular fragments of graphene, e.g. coronene and hexabenzocoronene. A comparison of one-photon and two-photon absorption coefficients is then used to uncover the extent of correlation effects. In the smallest fragment, coronene, our results indicate a strong signature of the Coulomb interactions. We will discuss how the importance of electron-electron interaction varies with system size and its implication for the correlation effects in graphene.

  15. O2 absorption cross sections /187-225 nm/ from stratospheric solar flux measurements

    NASA Astrophysics Data System (ADS)

    Herman, J. R.; Mentall, J. E.

    1982-10-01

    The absorption cross sections of molecular oxygen are calculated in the wavelength range from 187 to 230 nm from solar flux measurements obtained within the stratosphere. Within the Herzberg continuum wavelength region the molecular oxygen cross sections are found to be about 30% smaller than the laboratory results of Shardanand and Rao (1977) from 200 to 210 nm and about 50% smaller than those of Hasson and Nicholls (1971). At wavelengths longer than 210 nm the cross sections agree with those of Shardanand and Rao. The effective absorption cross sections of O2 in the Schumann-Runge band region from 187 to 200 nm are calculated and compared to the empirical fit given by Allen and Frederick (1982). The calculated cross sections indicate that the transmissivity of the atmosphere may be underestimated by the use of the Allen and Frederic cross sections between 195 and 200 nm. The ozone column content between 30 and 40 km and the relative ozone cross sections are determined from the same solar flux data set.

  16. O2 absorption cross sections /187-225 nm/ from stratospheric solar flux measurements

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Mentall, J. E.

    1982-01-01

    The absorption cross sections of molecular oxygen are calculated in the wavelength range from 187 to 230 nm from solar flux measurements obtained within the stratosphere. Within the Herzberg continuum wavelength region the molecular oxygen cross sections are found to be about 30% smaller than the laboratory results of Shardanand and Rao (1977) from 200 to 210 nm and about 50% smaller than those of Hasson and Nicholls (1971). At wavelengths longer than 210 nm the cross sections agree with those of Shardanand and Rao. The effective absorption cross sections of O2 in the Schumann-Runge band region from 187 to 200 nm are calculated and compared to the empirical fit given by Allen and Frederick (1982). The calculated cross sections indicate that the transmissivity of the atmosphere may be underestimated by the use of the Allen and Frederic cross sections between 195 and 200 nm. The ozone column content between 30 and 40 km and the relative ozone cross sections are determined from the same solar flux data set.

  17. Nitrogen dioxide in the stratosphere and troposphere measured by ground-based absorption spectroscopy.

    PubMed

    Noxon, J F

    1975-08-15

    The NO(2) abundance in the stratosphere has been determined from ground-based spectra of the rising and setting sun and moon and of the twilight sky near 4500 angstroms. The spectra were taken at the Fritz Peak Observatory, at an altitude of 3 kilometers in the Colorado mountains. Separation of the stratospheric contribution requires observations at a relatively unpolluted site; direct measurement of the tropospheric absorption in the Colorado mountains often yields an upper limit on the tropospheric mixing ratio of 0.1 part per billion. The stratospheric NO(2) abundance is two to three times greater at night than during the day and increases significantly during the course of a sunlit day; these changes are related to photolytic decomposition of NO(2) and N(2)O(5) in the daytime stratosphere. Absorption by NO(3) was sought but not found; the results set an upper limit of 2 percent on the nighttime abundance ratio of NO(3) to NO(2) in the stratosphere.

  18. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  19. Compressional Wave Speed and Absorption Measurements in a Saturated Kaolinite-Water Artificial Sediment.

    DTIC Science & Technology

    OCEAN BOTTOM, ULTRASONIC PROPERTIES), (*UNDERWATER SOUND, SOUND TRANSMISSION), KAOLINITE , ABSORPTION, COMPRESSIVE PROPERTIES, POROSITY, VELOCITY, VISCOELASTICITY, MATHEMATICAL MODELS, THESES, SEDIMENTATION

  20. Optical volume and mass measurements show that mammalian cells swell during mitosis.

    PubMed

    Zlotek-Zlotkiewicz, Ewa; Monnier, Sylvain; Cappello, Giovanni; Le Berre, Mael; Piel, Matthieu

    2015-11-23

    The extent, mechanism, and function of cell volume changes during specific cellular events, such as cell migration and cell division, have been poorly studied, mostly because of a lack of adequate techniques. Here we unambiguously report that a large range of mammalian cell types display a significant increase in volume during mitosis (up to 30%). We further show that this increase in volume is tightly linked to the mitotic state of the cell and not to its spread or rounded shape and is independent of the presence of an intact actomyosin cortex. Importantly, this volume increase is not accompanied by an increase in dry mass and thus corresponds to a decrease in cell density. This mitotic swelling might have important consequences for mitotic progression: it might contribute to produce strong pushing forces, allowing mitotic cells to round up; it might also, by lowering cytoplasmic density, contribute to the large change of physicochemical properties observed in mitotic cells.

  1. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and

  2. Measurements of methane emissions from landfills using a time correlation tracer method based on FTIR absorption spectroscopy.

    PubMed

    Galle, B; Samuelsson, J; Svensson, B H; Borjesson, G

    2001-01-01

    Methane is an important climate gas contributing significantly to global warming. A large part of the anthropogenic emissions of methane comes from landfills. Due to the biogenic origin of these emissions and the inhomogeneous characteristics of landfills and their soil cover, these emissions show large spatial variation. Thus, development of reliable and cost-effective methods for measurements of these emissions is an important task and a challenge to the scientific community. Traditionally, field chamber methods have been used but also different area integrating methods based on downwind plume measurements. These measurements have been supported by meteorological data either directly from local measurements or by controlled release of tracer gas from the landfill providing the dispersion characteristics of the plume. In this paperwe describe a method,the Time Correlation Tracer method, combining controlled tracer gas release from the landfill with time-resolved concentration measurements downwind the landfill using FTIR absorption spectroscopy. The method has been tested and used on measurements at a landfill in southern Sweden over the past 1.5 years. The method has proven to be a usable method for measurements of total methane emission from landfills, and under favorable meteorological conditions we estimate an achievable accuracy of 15-30%. The real time analysis capability of the FTIR makes it possible to judge the success of the measurement already on site and to decide whether more measurements are necessary. The measurement strategy is relatively simple and straightforward, and one person can make a measurement from a medium sized landfill (1-4 ha) within a few days to a week depending on the meteorological situation.

  3. Two photon absorption laser induced fluorescence measurements of neutral density in a helicon plasma

    SciTech Connect

    Galante, M. E.; Magee, R. M.; Scime, E. E.

    2014-05-15

    We have developed a new diagnostic based on two-photon absorption laser induced fluorescence (TALIF). We use a high intensity (5 MW/cm{sup 2}), narrow bandwidth (0.1 cm{sup −1}) laser to probe the ground state of neutral hydrogen, deuterium and krypton with spatial resolution better than 0.2 cm, a time resolution of 10 ns, and a measurement cadence of 20 Hz. Here, we describe proof-of-principle measurements in a helicon plasma source that demonstrate the TALIF diagnostic is capable of measuring neutral densities spanning four orders of magnitude; comparable to the edge neutral gradients predicted in the DIII-D tokamak pedestal. The measurements are performed in hydrogen and deuterium plasmas and absolute calibration is accomplished through TALIF measurements in neutral krypton. The optical configuration employed is confocal, i.e., both light injection and collection are accomplished with a single lens through a single optical port in the vacuum vessel. The wavelength resolution of the diagnostic is sufficient to separate hydrogen and deuterium spectra and we present measurements from mixed hydrogen and deuterium plasmas that demonstrate isotopic abundance measurements are feasible. Time resolved measurements also allow us to explore the evolution of the neutral hydrogen density and temperature and effects of wall recycling. We find that the atomic neutral density grows rapidly at the initiation of the discharge, reaching the steady-state value within 1 ms. Additionally, we find that neutral hydrogen atoms are born with 0.08 eV temperatures, not 2 eV as is typically assumed.

  4. High-temperature measurements of methane and acetylene using quantum cascade laser absorption near 8 μm

    NASA Astrophysics Data System (ADS)

    Sajid, M. B.; Javed, T.; Farooq, A.

    2015-04-01

    The mid-infrared wavelength region near 8 μm contains absorption bands of several molecules such as water vapor, hydrogen peroxide, nitrous oxide, methane and acetylene. A new laser absorption sensor based on the ν4 band of methane and the ν4+ν5 band of acetylene is reported for interference-free, time-resolved measurements under combustion-relevant conditions. A detailed line-selection procedure was used to identify optimum transitions. Methane and acetylene were measured at the line centers of Q12 (1303.5 cm-1) and P23 (1275.5 cm-1) transitions, respectively. High-temperature absorption cross sections of methane and acetylene were measured at peaks (on-line) and valleys (off-line) of the selected absorption transitions. The differential absorption strategy was employed to eliminate interference absorption from large hydrocarbons. Experiments were performed behind reflected shock waves over a temperature range of 1200-2200 K, between pressures of 1-4 atm. The diagnostics were then applied to measure the respective species time-history profiles during the shock-heated pyrolysis of n-pentane.

  5. Evaluating the bonding condition of NASA spray on foam insulation (SOFI) using audio frequency sound absorption measurements

    NASA Astrophysics Data System (ADS)

    Thompson, Todd A.; Mann, J. Adin

    2005-09-01

    The bonding condition of the spray on foam insulation (SOFI) used to insulate the external tank of the NASA space shuttle can be found by using the audio frequency sound absorption coefficient. The ASTM E1050 standard method for sound absorption measurements was used with an open-ended 1-in-diam cast acrylic impedance tube sealed to the SOFI with closed cell PVC foam. Two artificially disbonded locations, measuring 1.0 in. by 5.5 in. by 0.0625 in. and 2.0 in. by 8.0 in. by 0.0625 in., were detected by peaks in the sound absorption coefficient spectrum. The peaks in the sound absorption spectrum between 1000 and 4000 Hz were 25% to 50% higher over disbonded areas when compared to bonded locations. The maximum and minimum sound absorption levels for the foam ranged between approximately 0.1 and 0.3. The entire sample was scanned using the sound absorption peaks as indicators. Samples of 2-in.-thick polystyrene foam were used with different sized defects at different locations in the foam to relate defect size and location to peaks in absorption coeffi-cient spectrum. [Work supported by NASA under Award No. NAG102098.

  6. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    NASA Technical Reports Server (NTRS)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  7. X-ray absorption fine structure measurement with a 9 V electric battery x-ray emitter

    SciTech Connect

    Mitsuya, Shota; Ishii, Hideshi; Kawai, Jun; Tanaka, Keiichi

    2006-09-25

    X-ray absorption spectral analysis is a well known technique for analyzing the chemical environment of an element in a specimen. It has been believed that high intensity and monochromatized x rays such as the synchrotron radiation are required for an x-ray absorption experiment. In the present study, however, we demonstrate that the x-ray absorption spectral measurement of transition metal foils with an energy resolution of 10 eV is possible with a combination of a 9 V dry electric battery pyroelectric x-ray generator and a superconducting microcalorimeter.

  8. Measurement and analysis of the far infrared absorption spectrum of the gaseous mixture H2-CH4

    NASA Technical Reports Server (NTRS)

    Birnbaum, George; Borysow, Aleksandra; Sutter, Herbert G.

    1987-01-01

    The collision-induced absorption of H2-CH4 mixtures was measured from 20 to 900/cm at 195 and 297 K. By subtracting the absorption due to H2-H2 and CH4-CH4 collisions from that of the mixture, the absorption due to H2-CH4 collisions was obtained. This spectrum was analyzed using the BC model line shape to provide a way of estimating the far-IR spectrum of H2-CH4 for various concentrations of H2 and CH4. Theoretical spectral moments were computed with different potential functions and compared with experimental values.

  9. Absorption/transmission measurements of PSAP particle-laden filters from the Biomass Burning Observation Project (BBOP) field campaign

    SciTech Connect

    Presser, Cary; Nazarian, Ashot; Conny, Joseph M.; Chand, Duli; Sedlacek, Arthur; Hubbe, John M.

    2016-12-02

    Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) nonreacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). Here, the particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques).

  10. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  11. Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton

    NASA Astrophysics Data System (ADS)

    McKee, David; Röttgers, Rüdiger; Neukermans, Griet; Calzado, Violeta Sanjuan; Trees, Charles; Ampolo-Rella, Marina; Neil, Claire; Cunningham, Alex

    2014-12-01

    Understanding variability in the chlorophyll-specific absorption of marine phytoplankton, aph*Chl (λ), is essential for primary production modelling, calculation of underwater light field characteristics, and development of algorithms for remote sensing of chlorophyll concentrations. Previous field and laboratory studies have demonstrated significant apparent variability in aph*Chl (λ) for natural samples and algal cultures. However, the potential impact of measurement uncertainties on derived values of aph*Chl (λ) has received insufficient study. This study presents an analysis of measurement uncertainties for a data set collected in the Ligurian Sea in Spring and assesses the impact on estimates of aph*Chl (λ). It is found that a large proportion of apparent variability in this set of aph*Chl (λ) can be attributed to measurement errors. Application of the same analysis to the global NOMAD data set suggests that a significant fraction of variability in aph*Chl (λ) may also be due to measurement errors. The copyright line for this article was changed on 16 JAN 2015 after original online publication.

  12. High-Frequency Isotope Measurements in Nitrous Oxide by Using Mid-Ir Laser Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, F.; Baer, D. S.

    2010-12-01

    The stable isotope composition of atmosphere trace gases provides information of their origin and fate that cannot be determined from their concentration measurements alone. Biological source and loss processes, like bacterial production of N2O, are typically accompanied by isotopic selectivity associated with the kinetics of bond formation and destruction. Of the three important biologically mediated greenhouse gases (CO2, CH4 and N2O), the understanding of N2O isotopic budget in air lags far behind the other two gases. One of the reasons of this is due to the low concentration of N2O in ambient air (~320 ppbv), which leads to inherent difficulties in collection, extraction and analysis. We report on the development of novel instrumentation for real-time measurements of nitrogen-isotope ratio (δ15N) and mixing ratio [N2O] of nitrous oxide over a very wide range of mixing ratios. This novel technology, which employs cavity enhanced absorption and a mid-infrared laser and does not require any cryogenic components, has been developed for in situ simultaneous measurements of the mixing ratios of three main isotopomers - 14N14N16O, 15N14N16O and 14N15N16O, which leads to the nitrogen-isotope ratio (δ15N) and the 15N position-dependent enrichment. A precision of better than 1 per mil may be achieved in ambient air (300 ppbv N2O) in less than 300 seconds measurement time.

  13. In-Line Capacitance Sensor for Real-Time Water Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Perusich, Stephen A.

    2010-01-01

    A capacitance/dielectric sensor was designed, constructed, and used to measure in real time the in-situ water concentration in a desiccant water bed. Measurements were carried out with two experimental setups: (1) passing nitrogen through a humidity generator and allowing the gas stream to become saturated at a measured temperature and pressure, and (2) injecting water via a syringe pump into a nitrogen stream. Both water vapor generating devices were attached to a downstream vertically-mounted water capture bed filled with 19.5 g of Moisture Gone desiccant. The sensor consisted of two electrodes: (1) a 1/8" dia stainless steel rod placed in the middle of the bed and (2) the outer shell of the stainless steel bed concentric with the rod. All phases of the water capture process (background, heating, absorption, desorption, and cooling) were monitored with capacitance. The measured capacitance was found to vary linearly with the water content in the bed at frequencies above 100 kHz indicating dipolar motion dominated the signal; below this frequency, ionic motion caused nonlinearities in the water concentration/capacitance relationship. The desiccant exhibited a dielectric relaxation whose activation energy was lowered upon addition of water indicating either a less hindered rotational motion or crystal reorientation.

  14. Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania

    2011-01-01

    A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.

  15. Measurement of the ozone absorption cross-section at the 253. 7 nm Mercury line

    SciTech Connect

    Mauersberger, K.; Barnes, J.; Hanson, D.; Morton, J.

    1986-07-01

    The absorption cross-section of ozone at 253.7 nm is frequently used as a standard for the entire UV wavelength range. The presently accepted value is 1.147 x 10/sup -17/ cm/sup 2/, known with an uncertainty of about 2%. The cross-section has been recently measured by simultaneously monitoring the ozone pressure, the impurities in the ozone gas, the gas temperature and the UV beam intensity. The cross-section at room temperature was found to be 1.137 x 10/sup -17/ cm/sup 2/, having an uncertainty of +- .7%. The improved accuracy will aid a number of ozone experiments including the i-italicn-italic s-italici-italict-italicu-italic photometers and Solar Backscatter Ultraviolet instruments.

  16. The coefficient of bond thermal expansion measured by extended x-ray absorption fine structure.

    PubMed

    Fornasini, P; Grisenti, R

    2014-10-28

    The bond thermal expansion is in principle different from the lattice expansion and can be measured by correlation sensitive probes such as extended x-ray absorption fine structure (EXAFS) and diffuse scattering. The temperature dependence of the coefficient α(bond)(T) of bond thermal expansion has been obtained from EXAFS for CdTe and for Cu. A coefficient α(tens)(T) of negative expansion due to tension effects has been calculated from the comparison of bond and lattice expansions. Negative lattice expansion is present in temperature intervals where α(bond) prevails over α(tens); this real-space approach is complementary but not equivalent to the Grüneisen theory. The relevance of taking into account the asymmetry of the nearest-neighbours distribution of distances in order to get reliable bond expansion values and the physical meaning of the third cumulant are thoroughly discussed.

  17. An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements.

    PubMed

    Cano, M E; Barrera, A; Estrada, J C; Hernandez, A; Cordova, T

    2011-11-01

    The development of a device for generating ac magnetic fields based on a resonant inverter is presented, which has been specially designed to carry out experiments of magnetic hyperthermia. By determining the electric current in the LC resonant circuit, a maximum intensity of magnetic field around of 15 mT is calculated, with a frequency around of 206 kHz. This ac magnetic field is able to heat powdered magnetic materials embedded in biological systems to be used in biomedical applications. Indeed, in order to evaluate the sensitivity of the device we also present the measurements of the specific absorption rate in phantoms performed with commercially prepared Fe(3)O(4) and distilled water at different concentrations.

  18. Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie

    2009-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration

  19. Eddy covariance carbonyl sulfide flux measurements with a quantum cascade laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gerdel, Katharina; Spielmann, Felix M.; Hammerle, Albin; Wohlfahrt, Georg

    2016-04-01

    Carbonyl sulfide (COS) is the most abundant sulfur containing trace gas present in the troposphere at concentrations of around 500 ppt. Recent interest in COS by the ecosystem-physiological community has been sparked by the fact that COS co-diffuses into plant leaves pretty much the same way as carbon dioxide (CO2) does, but in contrast to CO2, COS is not known to be emitted by plants. Thus uptake of COS by vegetation has the potential to be used as a tracer for canopy gross photosynthesis, which cannot be measured directly, however represents a key term in the global carbon cycle. Since a few years, quantum cascade laser absorption spectrometers (QCLAS) are commercially available with the precision, sensitivity and time response suitable for eddy covariance (EC) flux measurements. While there exist a handful of published reports on EC flux measurements in the recent literature, no rigorous investigation of the applicability of QCLAS for EC COS flux measurements has been carried out so far, nor have been EC processing and QA/QC steps developed for carbon dioxide and water vapor flux measurements within FLUXNET been assessed for COS. The aim of this study is to close this knowledge gap, to discuss critical steps in the post-processing chain of COS EC flux measurements and to devise best-practice guidelines for COS EC flux data processing. To this end we collected EC COS (and CO2, H2O and CO) flux measurements above a temperate mountain grassland in Austria over the vegetation period 2015 with a commercially available QCLAS. We discuss various aspects of EC data post-processing, in particular issues with the time-lag estimation between sonic anemometer and QCLAS signals and QCLAS time series detrending, as well as QA/QC, in particular flux detection limits, random flux uncertainty, the interaction of various processing steps with common EC QA/QC filters (e.g. detrending and stationarity tests), u*-filtering, etc.

  20. WAVELENGTH MEASUREMENTS OF K TRANSITIONS OF OXYGEN, NEON, AND MAGNESIUM WITH X-RAY ABSORPTION LINES

    SciTech Connect

    Liao Jinyuan; Zhang Shuangnan; Yao Yangsen

    2013-09-10

    Accurate atomic transition data are important in many astronomical research areas, especially for studies of line spectroscopy. Whereas transition data of He-like and H-like ions (i.e., ions in high-charge states) have been accurately calculated, the corresponding data of K transitions of neutral or low-ionized metal elements are still very uncertain. Spectroscopy of absorption lines produced in the interstellar medium (ISM) has been proven to be an effective way to measure the central wavelengths of these atomic transitions. In this work, we analyze 36 Chandra High Energy Transmission Grating observations to search for and measure the ISM absorption lines along sight lines to 11 low-mass X-ray binaries. We correct the Galactic rotation velocity to the rest frame for every observation and then use two different methods to merge all the corrected spectra to a co-added spectrum. However, the co-added spectra obtained by this method exhibit biases, toward to either observations with high counts or lines with high signal-to-noise ratios. We do a Bayesian analysis of several significantly detected lines to obtain the systematic uncertainty and the bias correction for other lines. Compared to previous studies, our results improve the wavelength accuracy by a factor of two to five and significantly reduce the systematic uncertainties and biases. Several weak transitions (e.g., 1s-2p of Mg IV and Mg V; 1s-3p of Mg III and Mg V) are also detected for the first time, albeit with low significance; future observations with improved accuracy are required to confirm these detections.

  1. Energy-partition diagnostic for measuring time-resolved scattering and absorption in burst-mode laser ablation.

    PubMed

    Qian, Z; Schoenly, J E; Covarrubias, A; Lilge, L; Marjoribanks, R S

    2014-03-01

    We describe an energy-partition diagnostic based on integrating sphere principle for measuring absorption and scattering in plasma-mediated ablation by a high repetition-rate (133 MHz), pulsetrain-burst ultrafast-pulse laser. The system time-resolves the partition of elastically scattered laser light into specular reflection, diffuse reflection, and transmission, giving access to per-pulse absorption dynamics. Physical events such as optical breakdown and incubation effects in glass and aluminum are illustrated.

  2. Collisional Induced Absorption (CIA) bands of CO2 and H2 measured in the IR spectral range

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    2015-10-01

    In this paper we present the results on the Collisional Induced Absorption (CIA) bands of CO2 and H2 measured employing two different experimental setup. Each of them allows us to reproduce typical planetary conditions, at a pressure and temperature from 1 up to 50 bar and from 298 up to 500 K respectively. A detailed study on the temperature dependence of the CO2 CIA absorption bands will be presented.

  3. Energy-partition diagnostic for measuring time-resolved scattering and absorption in burst-mode laser ablation

    NASA Astrophysics Data System (ADS)

    Qian, Z.; Schoenly, J. E.; Covarrubias, A.; Lilge, L.; Marjoribanks, R. S.

    2014-03-01

    We describe an energy-partition diagnostic based on integrating sphere principle for measuring absorption and scattering in plasma-mediated ablation by a high repetition-rate (133 MHz), pulsetrain-burst ultrafast-pulse laser. The system time-resolves the partition of elastically scattered laser light into specular reflection, diffuse reflection, and transmission, giving access to per-pulse absorption dynamics. Physical events such as optical breakdown and incubation effects in glass and aluminum are illustrated.

  4. Two Photon Absorption Laser Induced Fluorescence for Neutral Hydrogen Profile Measurements

    SciTech Connect

    Scime, Earl E.

    2016-09-23

    The magnitude and spatial dependence of neutral density in magnetic confinement fusion experiments is a key physical parameter, particularly in the plasma edge. Modeling codes require precise measurements of the neutral density to calculate charge-exchange power losses and drag forces on rotating plasmas. However, direct measurements of the neutral density are problematic. In this work, we proposed to construct a laser-based diagnostic capable of providing spatially resolved measurements of the neutral density in the edge of plasma in the DIII-D tokamak. The diagnostic concept is based on two-photon absorption laser induced fluorescence (TALIF). By injecting two beams of 205 nm light (co or counter propagating), ground state hydrogen (or deuterium or tritium) can be excited from the n = 1 level to the n = 3 level at the location where the two beams intersect. Individually, the beams experience no absorption, and therefore have no difficulty penetrating even dense plasmas. After excitation, a fraction of the hydrogen atoms decay from the n = 3 level to the n = 2 level and emit photons at 656 nm (the Hα line). Calculations based on the results of previous TALIF experiments in magnetic fusion devices indicated that a laser pulse energy of approximately 3 mJ delivered in 5 ns would provide sufficient signal-to-noise for detection of the fluorescence. In collaboration with the DIII-D engineering staff and experts in plasma edge diagnostics for DIII-D from Oak Ridge National Laboratory (ORNL), WVU researchers designed a TALIF system capable of providing spatially resolved measurements of neutral deuterium densities in the DIII-D edge plasma. The laser systems were specified, purchased, and assembled at WVU. The TALIF system was tested on a low-power hydrogen discharge at WVU and the plan was to move the instrument to DIII-D for installation in collaboration with ORNL researchers. After budget cuts at DIII-D, the DIII-D facility declined to support

  5. Application of online UV absorption measurements for ozone process control in secondary effluent with variable nitrite concentration.

    PubMed

    Stapf, Michael; Miehe, Ulf; Jekel, Martin

    2016-11-01

    Ozone process control in secondary effluent used for elimination of trace organic compounds (TrOCs) requires the use of surrogates, such as the relative reduction of UV absorption at 254 nm (ΔUVA254) to adapt the ozone dose to a varying water quality. In the present study, a closed-loop process control based on two online UVA254 measurements was successfully implemented and tested under realistic conditions with ozone doses from 0.2 to 1.05 mg-O3/mg-DOC at a pilot scale ozonation system with subsequent coagulation filtration at a municipal wastewater treatment plant (DOC ∼ 13 mg/L, UVA254 ∼ 27 m(-1), and nitrite peaks of up to 1.6 mg-N/L). It could be shown that measuring the UVA254 at the ozonation effluent was superior to the measurement of UVA254 at the filter effluent in terms of response time due to changes in water quality, whereas online measurement at the filter effluent showed a better agreement with laboratory data and a reduced maintenance interval due to less particles. Additional online nitrite measurement is not necessary as the ozone consumption by nitrite directly impacts ΔUVA254.

  6. Measurements of atmospheric NO3 radicals in Hefei using LED-based long path differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Xue, Lu; Min, Qin; Pin-Hua, Xie; Jun, Duan; Wu, Fang; Liu-Yi, Ling; Lan-Lan, Shen; Jian-Guo, Liu; Wen-Qing, Liu

    2016-02-01

    NO3 radicals accumulate during the night, thereby being the most critical night oxidant. Owing to the low concentration and dramatic variation, the detection of atmospheric NO3 radicals is still challenging. In this paper, an LED-based Long Path Differential Optical Absorption Spectroscopy (LPDOAS) instrument is developed for measuring the atmospheric NO3 radicals. This instrument is composed of a Schmidt-Cassegrain telescope, a combined emitting and receiving fiber, and a red LED equipped with a thermostat, and has a center wavelength of 660 nm, covering the NO3 strongest absorption peak (662 nm). The influence of LED temperature fluctuations is discussed. The temperature of the LED lamp with a home-made thermostat is tested, showing a stability of ±0.1 °C. The principle and fitting analyses of LED-LPDOAS are presented. A retrieval example and a time series of NO3 radical concentrations with good continuity for one night are shown. The detection limit of NO3 for 2.6-km optical path is about 10 ppt. Project supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant Nos. XDB05040200 and XDB05010500).

  7. Hot Carrier Dynamics in the X Valley in Si and Ge Measured by Pump-IR-Probe Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wang, W. B.; Cavicchia, M. A.; Alfano, R. R.

    1996-01-01

    Si is the semiconductor of choice for nanoelectronic roadmap into the next century for computer and other nanodevices. With growing interest in Si, Ge, and Si(sub m)Ge(sub n) strained superlattices, knowledge of the carrier relaxation processes in these materials and structures has become increasingly important. The limited time resolution for earlier studies of carrier dynamics in Ge and Si, performed using Nd:glass lasers, was not sufficient to observe the fast cooling processes. In this paper, we present a direct measurement of hot carrier dynamics in the satellite X valley in Si and Ge by time-resolved infrared(IR) absorption spectroscopy, and show the potential of our technique to identify whether the X valley is the lowest conduction valley in semiconductor materials and structures.

  8. Evaluation of the electrode performance for PAFC by using acid absorption, acceleration and ac-impedance measurement

    SciTech Connect

    Kim, Chang-Soo; Song, Rak-Hyun; Choi, Byung-Woo

    1996-12-31

    In PAFC, the degradation on cathode electrode caused by carbon corrosion, platinum dissolution and growth is especially severe. An acceleration test is a good technique for evaluating the degradation of electrode performance, because it does not need long time. Coleman et al used thermal cycling and on-off cycling as an acceleration test. Song et al showed that hydrogen shortage decreased the electrode performance more rapidly than that of air shortage in gas shortage test. Honji et al reported that the rate of coarsening of Pt particle is rapid in open circuit potential and this is one of major causes on the performance degradation of electrode. The cathode performance has been studied by using acid absorption, acceleration and ac-impedance measurements as functions of the polytetrafluoroethylene (PTFE) contents and sintering temperatures of the electrode.

  9. Measurement of aluminum in neuronal tissues using electrothermal atomization atomic absorption spectrophotometry

    SciTech Connect

    Pierson, K.B.; Evenson, M.A.

    1986-07-01

    Studies characterizing aluminum complexes isolated from neuronal tissues require accurate and precise techniques for aluminum measurement. A solution of 0.01 M nitric acid containing 0.2% Triton X-100 was the optimal diluent for aluminum measurement under the experimental conditions used. Three National Bureau of Standards Standard Reference Materials (SRM) were digested, and the aluminum concentration of each was measured with a Perkin-Elmer 503 atomic absorption spectrophotometer equipped with a Perkin-Elmer HGA 2100 controller. The calculated detection limit of aluminum was 120 pg using 15-..mu..L sample injections (8 ..mu..g/L). Aluminum concentrations present in citrus leaves (SRM 1572), pine needles (SRM 1575), and tomato leaves (SRM 1573) were 100 +- 12 (certified value, 92 +- 15), 522 +- 45 (certified value, 454 +- 30), and 1273 +- 112 (provisional value, 1200) ..mu..g/g, respectively. The within- and between-day precision had coefficients of variation for citrus leaves, pine needles, and tomato leaves of 18 and 12%, 6.3 and 8.6%, and 3.7 and 8.7%, respectively. Aluminum absorbance was enhanced at high pH values and by zinc.

  10. Measurement of the Spectral Absorption of Liquid Water in Melting Snow With an Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the Earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. In this paper we present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation. the air temperature did not drop below freezing the night of the May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  11. Measurement of the spectral absorption of liquid water in melting snow with an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. We present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation, the air temperature did not drop below freezing the night of May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  12. Differential Absorption Measurements of Atmospheric Water Vapor with a Coherent Lidar at 2050.532 nm

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Dharamsi, Amin; Davis, Richard E.; Petros, Mulugeta; McCarthy, John C.

    1999-01-01

    Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.

  13. Development of the laser absorption radiation thermometry technique to measure thermal diffusivity in addition to temperature

    NASA Astrophysics Data System (ADS)

    Levick, Andrew; Lobato, Killian; Edwards, Gordon

    2003-01-01

    A comparative technique based on photothermal radiometry has been developed to measure thermal diffusivity of semi-infinite targets with arbitrary geometry. The technique exploits the principle that the frequency response of the temperature modulation induced by a periodic modulated heating source (in this case a laser spot) scales with thermal diffusivity. To demonstrate this technique, a photothermal radiometer has been developed, which detects modulated thermal radiance at a wavelength of 2 μm due to a small temperature modulation induced on the target surface by a modulated erbium fiber laser of power 1 W. Two frequency responses were measured for platinum and oxidized Inconel 600 targets (the frequency response is a scan of the amplitude of the modulated thermal radiance over laser modulation frequency). Scaling the two responses with respect to frequency gives a ratio of thermal diffusivities Dplatinum/DInconel of 4.45(33) which compares with a literature value of 4.46(50). The aim is to combine this technique with laser absorption radiation thermometry to produce multithermal property instrument for measuring "industrial" targets.

  14. Comparison of measured and theoretical inverse bremsstrahlung and photoionization absorption of infrared radiation in a H-He plasma.

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Stallcop, J. R.; Rowley, P. D.; Presley, L. L.

    1972-01-01

    The absorption coefficients of 1.15- and 3.39-micrometer radiation for a homogeneous H-He plasma have been measured in a temperature and electron density range where the major absorption mechanisms are electron-ion inverse bremsstrahlung and neutral-atom photoionization. Measurements were made behind both the incident and reflected shock waves in a driven tube by recording the laser intensity transmitted along the tube diameter as a function of time. The measured values compare well with those obtained from theoretical calculations for a gas in thermodynamic equilibrium.

  15. Two-step tomographic reconstructions of temperature and species concentration in a flame based on laser absorption measurements with a rotation platform

    NASA Astrophysics Data System (ADS)

    Xia, Huihui; Kan, Ruifeng; Xu, Zhenyu; He, Yabai; Liu, Jianguo; Chen, Bing; Yang, Chenguang; Yao, Lu; Wei, Min; Zhang, Guangle

    2017-03-01

    We present a system for accurate tomographic reconstruction of the combustion temperature and H2O vapor concentration of a flame based on laser absorption measurements, in combination with an innovative two-step algebraic reconstruction technique. A total of 11 collimated laser beams generated from outputs of fiber-coupled diode lasers formed a two-dimensional 5 × 6 orthogonal beam grids and measured at two H2O absorption transitions (7154.354/7154.353 cm-1 and 7467.769 cm-1). The measurement system was designed on a rotation platform to achieve a two-folder improvement in spatial resolution. Numerical simulation showed that the proposed two-step algebraic reconstruction technique for temperature and concentration, respectively, greatly improved the reconstruction accuracy of species concentration when compared with a traditional calculation. Experimental results demonstrated the good performances of the measurement system and the two-step reconstruction technique for applications such as flame monitoring and combustion diagnosis.

  16. Using OMI Observations to Measure Aerosol Absorption of Biomass Burning Aerosols Above Clouds

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Jethva, Hiren

    2011-01-01

    The presence of absorbing aerosol layers above clouds is unambiguously detected by the TOMS/OMI UV Aerosol Index (AI) that uses satellite observations at two near-UV channels. A sensitivity study using radiative transfer calculations shows that the AI signal of resulting from the presence of aerosols above clouds is mainly driven by the aerosol absorption optical depth and the optical depth of the underlying cloud. Based on these results, an inversion algorithm has been developed to retrieve the aerosol optical depth (AOD) of aerosol layers above clouds. In this presentation we will discuss the sensitivity analysis, describe the retrieval approach, and present results of applications of the retrieval method to OMI observations over the South Atlantic Ocean. Preliminary error analyses, to be discussed, indicate that the AOD can be underestimated (up to -30%) or overestimated (up to 60%) depending on algorithmic assumptions.

  17. Aerosol light absorption measurements during the Reno Aerosol Optics Experiment: Photoacoustic measurements and a multiple-scattering model for the aethalometer response.

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Moosmueller, H.; Sheridan, P. J.; Ogren, J. A.

    2002-12-01

    The filter used on the aethalometer is a multiple scattering substrate, yet the current parameterization of the instrument simply uses Beer's law for its analysis when obtaining black carbon concentration. Specific characterizations of the instrument response, where filter attenuation was obtained as a function of wavelength, gave the following impressions. 1. Filter attenuation generally increases inversely with wavelength for all aerosol types. 2. When subjected to a constant flow of low single scattering albedo aerosol, the instrument shows a non-constant response. The response is highest when the filter single scattering albdeo is highest, and it decreases as the filter blackens. 3. When subjected to a constant flow of essentially unity single scattering albedo aerosol, the instrument shows a non-zero response, even though it should do so. A few percent of scattering is converted to absorption, because the addition of purely scattering aerosol is analogous to a simple thickening of the filter. The effect is more pronounced at shorter wavelengths, and is related to item 1. The multiple scattering model reproduces these behaviors. The photoacoustic instrument light absorption calibration with nitrogen dioxide gas will be presented along with closure data from extinction minus scattering as evaluations of its measurement accuracy.

  18. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  19. Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures

    NASA Astrophysics Data System (ADS)

    Martín de la Cruz, M. C.; Gonzalez Vilas, L.; Yarovenko, N.; Spyrakos, E.; Torres Palenzuela, J. M.

    2013-08-01

    Biofuel production from microalgae can be both sustainable and economically viable. Particularly in the case of algal growth in wastewater an extra benefit is the removal or biotransformation of pollutants from these types of waters. A continuous monitoring system of the microalgae status and the concentration of different wastewater contaminants could be of great help in the biomass production and the water characterisation. In this study we present a system where spectral fluorescence signature (SFS) techniques are used along with absorption measurements to monitor microalgae cultures in wastewater and other mediums. This system aims to optimise the microalgae production for biofuel applications or other uses and was developed and tested in prototype indoor photo-bioreactors at the University of Vigo. SFS techniques were applied using the fluorescence analyser INSTAND-SCREENER developed by Laser Diagnostic Instruments AS. INSTAND-SCREENER permits wavelength scanning in two modes, one in UV and another in VIS. In parallel, it permits the on-line monitoring and rapid analysis of both water quality and phytoplankton status without prior treatment of the sample. Considering that different contaminants and microalgae features (density, status etc.) have different spectral signatures of fluorescence and absorption properties, it is possible to characterise them developing classification libraries. Several algorithms were used for the classification. The implementation of this system in an outdoor raceway reactor in a Spanish wastewater treatment plant is also discussed. This study was part of the Project EnerBioAlgae (http://www.enerbioalgae.com/), which was funded by the Interreg SUDOE and led by the University of Vigo.

  20. Electronically excited dipole moment of 4-aminobenzonitrile from thermochromic absorption and fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2006-07-01

    The effect of temperature on absorption and fluorescence spectra of 4-aminobenzonitrile (ABN) in 1,2-dichloroethane is studied for temperature ranging from 296 K to 343 K. The analysis of absorption and fluorescence band shift on the basis of Bilot and Kawski theory [L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621], for the known dipole moment in the ground state μg = 5.92 D, and α/ a3 = 0.5 ( α is the polarizability and a is the Onsager interaction radius of the solute) yields for ABN: (1) the empirical Onsager interaction radius a = 3.3 Å, (2) the dipole moment in the excited S 1 state μe = 7.14 D which agrees very well with the value of μe = 7.20 D obtained by Borst et al. [D.R. Borst, T.M. Korter, D.W. Pratt, Chem. Phys. Lett. 350 (2001) 485] from Stark effect studies. Both values of μe concern free ABN molecule and differ significantly from the values of μg (8.0 D, 8.5 D and 8.3 D in cyclohexane, benzene and 1,4-dioxane, respectively) obtained by Schuddeboom et al. [W. Schuddeboom, S.A. Jonker, J.M. Warman, U. Leinhos, W. Kühnle, K.A. Zachariasse, J. Phys. Chem. 96 (1992) 10809] from the time-resolved microwave conductivity measurements which are solvent-dependent. The group moment additivity law in the case of ABN molecule is approximately applicable, both in the ground and in the excited electronic state.

  1. Near simultaneous measurements of NO2 and NO3 over tropics by ground-based absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Lal, M.; Chakrabarty, D. K.; Sidhu, J. S.; Das, S. R.

    1994-01-01

    The present study concentrates on measurements of NO2 and NO3. NO2 has been measured during twilight period using zenith sky absorption spectrometric technique in the 436 to 448 nm region. NO3 has been measured during night time using direct moon as a source of light in the 655 to 667 nm region. These measurements have been taken at low latitude station, Ahmedabad (23 deg N, 76 deg E), India for the past two years.

  2. Laser Absorption spectrometer instrument for tomographic 2D-measurement of climate gas emission from soils

    NASA Astrophysics Data System (ADS)

    Seidel, Anne; Wagner, Steven; Dreizler, Andreas; Ebert, Volker

    2014-05-01

    One of the most intricate effects in climate modelling is the role of permafrost thawing during the global warming process. Soil that has formerly never totally lost its ice cover now emits climate gases due to melting processes[1]. For a better prediction of climate development and possible feedback mechanisms, insights into physical procedures (like e.g. gas emission from underground reservoirs) are required[2]. Therefore, a long-term quantification of greenhouse gas concentrations (and further on fluxes) is necessary and the related structures that are responsible for emission need to be identified. In particular the spatial heterogeneity of soils caused by soil internal structures (e.g. soil composition changes or surface cracks) or by surface modifications (e.g. by plant growth) generate considerable complexities and difficulties for local measurements, for example with soil chambers. For such situations, which often cannot be avoided, a spatially resolved 2D-measurement to identify and quantify the gas emission from the structured soil would be needed, to better understand the influence of the soil sub-structures on the emission behavior. Thus we designed a spatially scanning laser absorption spectrometer setup to determine a 2D-gas concentration map in the soil-air boundary layer. The setup is designed to cover the surfaces in the range of square meters in a horizontal plane above the soil to be investigated. Existing field instruments for gas concentration or flux measurements are based on point-wise measurements, so structure identification is very tedious or even impossible. For this reason, we have developed a tomographic in-situ instrument based on TDLAS ('tunable diode laser absorption spectroscopy') that delivers absolute gas concentration distributions of areas with 0.8m × 0.8m size, without any need for reference measurements with a calibration gas. It is a simple and robust device based on a combination of scanning mirrors and reflecting foils, so

  3. Measurement of the absorption properties of acoustic materials used in the fabrication of cowlings

    NASA Astrophysics Data System (ADS)

    Corlay, B.; Delalot, G.

    1981-07-01

    A wide selection of sound absorbing materials was tested, using the stationary wave tube method, and absorption factors were determined. Results are used to compile a catalog of industrial acoustically absorbant materials which can be employed as interior linings on cowlings for mobile or fixed noisy equipment. Theory that explains the absorptivity of these materials when used alone or in combinations is also presented. Results for low and middle frequency absorption are stressed.

  4. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    SciTech Connect

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R.; Steenbergen, E. H.

    2015-02-09

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800 meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780 cm{sup −1} as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  5. Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO(2) column measurements.

    PubMed

    Lin, Bing; Ismail, Syed; Wallace Harrison, F; Browell, Edward V; Nehrir, Amin R; Dobler, Jeremy; Moore, Berrien; Refaat, Tamer; Kooi, Susan A

    2013-10-10

    The focus of this study is to model and validate the performance of intensity-modulated continuous-wave (IM-CW) CO(2) laser absorption spectrometer (LAS) systems and their CO(2) column measurements from airborne and satellite platforms. The model accounts for all fundamental physics of the instruments and their related CO(2) measurement environments, and the modeling results are presented statistically from simulation ensembles that include noise sources and uncertainties related to the LAS instruments and the measurement environments. The characteristics of simulated LAS systems are based on existing technologies and their implementation in existing systems. The modeled instruments are specifically assumed to be IM-CW LAS systems such as the Exelis' airborne multifunctional fiber laser lidar (MFLL) operating in the 1.57 μm CO(2) absorption band. Atmospheric effects due to variations in CO(2), solar radiation, and thin clouds, are also included in the model. Model results are shown to agree well with LAS atmospheric CO(2) measurement performance. For example, the relative bias errors of both MFLL simulated and measured CO(2) differential optical depths were found to agree to within a few tenths of a percent when compared to the in situ observations from the flight of 3 August 2011 over Railroad Valley (RRV), Nevada, during the summer 2011 flight campaign. In addition, the horizontal variations in the model CO(2) differential optical depths were also found to be consistent with those from MFLL measurements. In general, the modeled and measured signal-to-noise ratios (SNRs) of the CO(2) column differential optical depths (τd) agreed to within about 30%. Model simulations of a spaceborne IM-CW LAS system in a 390 km dawn/dusk orbit for CO(2) column measurements showed that with a total of 42 W of transmitted power for one offline and two different sideline channels (placed at different locations on the side of the CO(2) absorption line), the accuracy of the

  6. First measurements of a carbon dioxide plume from an industrial source using a ground based mobile differential absorption lidar.

    PubMed

    Robinson, R A; Gardiner, T D; Innocenti, F; Finlayson, A; Woods, P T; Few, J F M

    2014-08-01

    The emission of carbon dioxide (CO2) from industrial sources is one of the main anthropogenic contributors to the greenhouse effect. Direct remote sensing of CO2 emissions using optical methods offers the potential for the identification and quantification of CO2 emissions. We report the development and demonstration of a ground based mobile differential absorption lidar (DIAL) able to measure the mass emission rate of CO2 in the plume from a power station. To our knowledge DIAL has not previously been successfully applied to the measurement of emission plumes of CO2 from industrial sources. A significant challenge in observing industrial CO2 emission plumes is the ability to discriminate and observe localised concentrations of CO2 above the locally observed background level. The objectives of the study were to modify our existing mobile infrared DIAL system to enable CO2 measurements and to demonstrate the system at a power plant to assess the feasibility of the technique for the identification and quantification of CO2 emissions. The results of this preliminary study showed very good agreement with the expected emissions calculated by the site. The detection limit obtained from the measurements, however, requires further improvement to provide quantification of smaller emitters of CO2, for example for the detection of fugitive emissions. This study has shown that in principle, remote optical sensing technology will have the potential to provide useful direct data on CO2 mass emission rates.

  7. Wet/dry film thickness measurement of paint by absorption spectroscopy with acousto-optic tunable filter spectrometer

    NASA Astrophysics Data System (ADS)

    Sinha, Pranay G.; Xiong, Xiangchun; Jin, Feng; Trivedi, Sudhir; Prasad, Narashima S.

    2005-08-01

    Controlling/monitoring the thickness of applied paint in real time is important to many situations including painting ship and submarine hulls in dry docks for maintaining health of ships and submarines against the harshness of the sea, in automobile and aerospace industries, and in a variety of other industries as a control sensor that plays significant role in product quality, process control, and cost control. Insufficient thickness results to inadequate protection while overspray leads to waste and pollution of the environment. A rugged instrumentation for the real time non-contact accurate measurement of wet and dry paint film thickness measurement will be immensely valuable. As paint is applied with several layers of the same or different type, thickness of each newly sprayed wet layer is of most interest, but measurement on dry paint is also useful. In this study, we use acousto-optic tunable filter-based near infrared spectrometer to obtain the absorption spectrum of layers of paint sprayed on sand blasted steel surface and thus measure the thickness of coating under both wet and dry situations. NIR spectra are obtained from 1100 to 2300 nm on four sample of different thickness of paint up to 127 micron. Partial least squares model built with the spectra shows good correlation with standard error of prediction within ~ 0.7 micron. Results indicate that the spectra also respond to the amount of organic solvent in the wet paint and can be used to monitor the degree of dryness of the paint in real time.

  8. A critical review of measurements of water vapor absorption in the 840 to 1100 cm(-1) spectral region

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1987-01-01

    A set of eleven measurements of the water vapor continuum absorption in the 840 to 1100 sq cm spectral region is reviewed and compared with spectral models maintained by the Air Force Geophysics Laboratory. The measurements were made in four different ways: spectrometer with a White cell, CO2 laser with a White cell, CO2 laser with a spectrophone, and broadband radiation source over a long atmospheric path. Where possible, the data were selected at a water vapor partial pressure of ten torr buffered to 760 torr with N2 or synthetic air and a temperature of between 296 and 300 K. The intercomparison of the data leads to several observations and conclusions. First, there are four sets of laboratory data taken with nitrogen as the buffer gas which generally agree well mutually and with AFGL's HITRAN code. Second, there is one set of laboratory data that shows that using air as the buffer gas gives a few percent decrease in the water vapor continuum compared with using nitrogen as the buffer gas. Third, the atmospheric long-path measurements for water vapor partial pressure below about 12 torr are roughly grouped within 20 percent of the HITRAN values. Fourth, there are three sets of spectrophone data for water vapor in synthetic air which are significantly higher than any of the other measurements. This discrepancy is attributed to the effects of impurity gases in the cell.

  9. Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom.

    PubMed

    Ziegler, Ronny; Nielsen, Tim; Koehler, Thomas; Grosenick, Dirk; Steinkellner, Oliver; Hagen, Axel; Macdonald, Rainer; Rinneberg, Herbert

    2009-08-20

    We report on the nonlinear reconstruction of local absorption and fluorescence contrast in tissuelike scattering media from measured time-domain diffuse reflectance and transmittance of laser as well as laser-excited fluorescence radiation. Measurements were taken at selected source-detector offsets using slablike diffusely scattering and fluorescent phantoms containing fluorescent heterogeneities. Such measurements simulate in vivo data that would be obtained employing a scanning, time-domain fluorescence mammograph, where the breast is gently compressed between two parallel glass plates, and source and detector optical fibers scan synchronously at various source-detector offsets, allowing the recording of laser and fluorescence mammograms. The diffusion equations modeling the propagation of the laser and fluorescence radiation were solved in frequency domain by the finite element method simultaneously for several modulation frequencies using Fourier transformation and preprocessed experimental data. To reconstruct the concentration of the fluorescent contrast agent, the Born approximation including higher-order reconstructed photon densities at the excitation wavelength was used. Axial resolution was determined that can be achieved by various detection schemes. We show that remission measurements increase the depth resolution significantly.

  10. Optoelectronic set for measuring the absorption spectrum of the thin biological media

    NASA Astrophysics Data System (ADS)

    Gryko, Lukasz; Zajac, Andrzej; Gilewski, Marian

    2013-10-01

    In the paper the authors present the developed optoelectronic system for controlled, repetitive exposure by electromagnetic radiation of biological structures in the Low Level Laser (LED) Therapy procedures. The set allows for objective selection and control of the irradiation parameters by light from spectral range of the tissues transmission window. Measurements of optical parameters of thin biological medium - spectral absorption coefficient and the amount of absorbed energy - can be implemented in the measuring chamber during irradiation treatment. The radiation source is the broadband illuminator consists of set of selected high power LEDs. The maximum optical power of single source is from 80 mW to 800 mW. Illuminator is controlled and powered by the multi-channel prototype control system, which allows independently control a current of each emitter. This control allows shaping spectral emission characteristic of broadband source in range 600-1000 nm. Illuminator allows providing in the working area of 700 cm2 a uniform distribution of optical power density, of 10 mW/cm2 for maximum. Set ensure uniform distribution of the spectral power density of up to 40 mW/nm.

  11. Cavity-Enhanced Near-Infrared Laser Absorption Spectrometer for the Measurement of Acetonitrile in Breath.

    PubMed

    Gianella, Michele; Ritchie, Grant A D

    2015-07-07

    Elevated concentrations of acetonitrile have been found in the exhaled breath of patients with cystic fibrosis1 and may indicate the severity of their condition or the presence of an accompanying bacterial infection of the airways. There is therefore interest in detecting acetonitrile in exhaled breath. For this purpose, a cavity-enhanced laser absorption spectrometer (λ = 1.65 μm) with a preconcentration stage was built and is described here. The spectrometer has a limit of detection of 72 ppbv and 114 ppbv of acetonitrile in nitrogen and breath, respectively, with a measurement duration of just under 5 min. The preconcentration stage, which employs a carbon molecular sieve and an adsorption/thermal desorption cycle, can increase the acetonitrile concentration by up to a factor 93, thus, lowering the overall limit of detection to approximately 1 ppbv. The suitability of the system for acetonitrile measurements in breath is demonstrated with breath samples taken from the authors, which yielded acetonitrile concentrations of 23 ± 3 ppbv and 29 ± 3 ppbv, respectively.

  12. Infrared measurements of increased CF(2)Cl(2) (CFC- 12) absorption above the South Pole.

    PubMed

    Rinsland, C P; Goldman, A; Murcray, F J; Murcray, F H; Murcray, D G; Levine, J S

    1988-02-01

    High-resolution ground-based solar spectra recorded at the Amundsen-Scott South Pole station in Dec. 1980 and Nov. 1986 have been analyzed in the region of the CF(2)Cl(2) (chlorofluorocarbon 12) nu(8) band Q branches at 1161 cm(-1). An increase in the CF(2)Cl(2) total vertical column above the South Pole of 1.24 +/- 0.15 over the 6-yr period, corresponding to an average rate of increase of 3.6 +/- 2.1%, is derived. This rate of increase is lower than indicated by in situ measurements at the South Pole over the same time period, but there is agreement when the rather error bars of the spectral measurement results are considered. Spectroscopic parameters that can successfully model CF(2)C1(2) absorption at low temperatures are needed to improve retrieval accuracies and could be applied to a number of pre-1980 atmospheric spectral data sets in the literature to obtain an improved record of early CF(2)Cl(2) concentration trends for comparison with estimates of historical release rates.

  13. Shock-Tube Measurement of Acetone Dissociation Using Cavity-Enhanced Absorption Spectroscopy of CO.

    PubMed

    Wang, Shengkai; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2015-07-16

    A direct measurement for the rate constant of the acetone dissociation reaction (CH3COCH3 = CH3CO + CH3) was conducted behind reflected shock wave, utilizing a sub-ppm sensitivity CO diagnostic achieved by cavity-enhanced absorption spectroscopy (CEAS). The current experiment eliminated the influence from secondary reactions and temperature change by investigating the clean pyrolysis of <20 ppm acetone in argon. For the first time, the acetone dissociation rate constant (k1) was directly measured over 5.5 orders of magnitude with a high degree of accuracy: k1 (1004-1494 K, 1.6 atm) = 4.39 × 10(55) T(-11.394) exp(-52 140K/T) ± 24% s(-1). This result was seen to agree with most previous studies and has bridged the gap between their temperature and pressure conditions. The current work also served as an example demonstration of the potential of using the CEAS technique in shock-tube kinetics studies.

  14. Excitation ahead of shock fronts in krypton measured by single line laser absorption

    NASA Astrophysics Data System (ADS)

    Boetticher, W.; Kilpin, D.

    1984-12-01

    The absorption of single-mode radiation (from a dye laser tuned to 587.25 and 557.18 nm) by Kr in front of shock waves with Mach numbers 12-21 in a 50-mm-diameter 4.4-m-long free-position driver shock tube at preshock pressures 0.7-2.7 kPa is measured to determine the number densities of the metastable 5s(1 1/2)2 and 5s(1 1/2)1 precursor states (1s5 and 1s4 in Paschen notation, respectively). The measurement technique and calculations follow those of Ernst (1982). The results are presented in tables and graphs and characterized in comparison with previous findings. The time constant of the exponential rise of the precursor is found to be about 8 microsec, and the concentration of 1s5 + 1s4 for Mach 20 is calculated as about 10 ppm, in agreement (to within a factor of 5) with model predictions for Ar and Xe.

  15. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    NASA Astrophysics Data System (ADS)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsälä, M.; Hoekstra, S.; Halonen, L.

    2016-06-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν 1 + ν 2 + ν 3 + ν4 1 + ν5 - 1 in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm-1, the rotational parameter B was 1.162 222(37) cm-1, and the quartic centrifugal distortion parameter D was 3.998(62) × 10-6 cm-1, where the numbers in the parenthesis are one-standard errors in the least significant digits.

  16. Measurements of absolute absorption cross sections of ozone in the 185- to 254-nm wavelength region and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.

    1993-01-01

    Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.

  17. Solar-absorption measurements of ozone from two ground based FTIR sites

    NASA Astrophysics Data System (ADS)

    Plaza, Eddy; Stremme, Wolfgang; Bezanilla, Alejandro; Grutter, Michel; Blumenstock, Thomas; Hase, Frank; Gisi, Michael

    2013-04-01

    Ozone reduces the amount of ultraviolet light entering earths atmosphere and continuous monitoring of total ozone column especially in higher latitudes has been a major task since the discovery of the stratospheric ozone depletion. As tropospheric ozone is a main greenhouse gas, monitoring of ozone in the lower atmosphere and also in the tropics gains importance. Tropospheric ozone also plays an important role in air quality and high levels of ozone in the boundary layer affects the public health. Ozone is produced through a complicated path of photochemistry processes from volatile organic compounds and nitrogen oxides (NOx)[1]. In large cities, these ozone precursors are mainly emitted from anthropogenic activities and in Mexico City the ozone concentration frequently exceedes the local standard for air quality (e.g. on 80% of the days of the year 2002)[2]. Since May 2012 high resolution Fourier transform infrared solar absorption spectra have been used for determining the total column and profile of ozone at the high altitude remote site Altzomoni (19°.12`N, 98°.65`E) located 60 km southeast of Mexico City at 4000 m a.s.l. These measurements are complemented with solar absorption spectra recorded with a moderate resolution FTIR spectrometer at the UNAM campus in Mexcio City (19°25`N, 99°10`W, 2240 m a.s.l.). The vertical profiles and total columns of ozone are inferred from solar spectra by using the retrieval code PROFFIT. The results are compared with simulations of the Whole Atmosphere Community Climate Model (WACCM) and other correlative data. The ozone column amount in the polluted mixing layer of Mexico City is estimated from the intercomparison of measurements at the urban and remote sites and discussed. [1] Tie, X.; Brasseur, G.; Ying, Z. Impact of Model Resolution on Chemical Ozone Formation in Mexico City: Application of the Wrf-Chem Model. Atmospheric Chemistry and Physics. 2010, 10, 8983-8995. [2] McKinley, G.; Zuk, M.; Hojer, M.; Avalos, M

  18. Methods for the treatment of acoustic and absorptive/dispersive wave field measurements

    NASA Astrophysics Data System (ADS)

    Innanen, Kristopher Albert Holm

    Many recent methods of seismic wave field processing and inversion concern themselves with the fine detail of the amplitude and phase characteristics of measured events. Processes of absorption and dispersion have a strong impact on both; the impact is particularly deleterious to the effective resolution of images created from the data. There is a need to understand the dissipation of seismic wave energy as it affects such methods. I identify: algorithms based on the inverse scattering series, algorithms based on multiresolution analysis, and algorithms based on the estimation of the order of the singularities of seismic data, as requiring this kind of study. As it turns out, these approaches may be cast such that they deal directly with issues of attenuation, to the point where they can be seen as tools for viscoacoustic forward modelling, Q estimation; viscoacoustic inversion, and/or Q compensation. In this thesis I demonstrate these ideas in turn. The forward scattering series is formulated such that a viscoacoustic wave field is represented as an expansion about an acoustic reference; analysis of the convergence properties and scattering diagrams are carried out, and it is shown that (i) the attenuated wave field may be generated by the nonlinear interplay of acoustic reference fields, and (ii) the cumulative effect of certain scattering types is responsible for macroscopic wave field properties: also, the basic form of the absorptive/dispersive inversion problem is predicted. Following this, the impact of Q on measurements of the local regularity of a seismic trace, via Lipschitz exponents, is discussed, with the aim of using these exponents as a means to estimate local Q values. The problem of inverse scattering based imaging and inversion is treated next: I present a simple, computable form for the simultaneous imaging and wavespeed inversion of 1D acoustic wave field data. This method is applied to 1D, normal incidence synthetic data: its sensitivity with

  19. Rhenium(I) tricarbonyl polypyridine complexes showing strong absorption of visible light and long-lived triplet excited states as a triplet photosensitizer for triplet-triplet annihilation upconversion.

    PubMed

    Yi, Xiuyu; Zhao, Jianzhang; Wu, Wanhua; Huang, Dandan; Ji, Shaomin; Sun, Jifu

    2012-08-07

    The preparation of rhenium(I) tricarbonyl polypyridine complexes that show a strong absorption of visible light and long-lived triplet excited state and the application of these complexes as triplet photosensitizers for triplet-triplet annihilation (TTA) based upconversion are reported. Imidazole-fused phenanthroline was used as the N^N coordination ligand, on which different aryl groups were attached (Phenyl, Re-0; Coumarin, Re-1 and naphthyl, Re-2). Re-1 shows strong absorption of visible light (ε = 60,800 M(-1) cm(-1) at 473 nm). Both Re-1 and Re-2 show long-lived T(1) states (lifetime, τ(T), is up to 86.0 μs and 64.0 μs, respectively). These properties are in contrast to the weak absorption of visible light and short-lived triplet excited states of the normal rhenium(I) tricarbonyl polypyridine complexes, such as Re-0 (ε = 5100 M(-1) cm(-1) at 439 nm, τ(T) = 2.2 μs). The photophysical properties of the complexes were fully studied with steady state and time-resolved absorption and emission spectroscopes, as well as DFT calculations. The intra-ligand triplet excited state is proposed to be responsible for the exceptionally long-lived T(1) states of Re-1 and Re-2. The Re(I) complexes were used as triplet photosensitizers for TTA based upconversion and an upconversion quantum yield up to 17.0% was observed.

  20. Differential absorption lidar measurements of H2O and O2 using a coherent white light continuum

    NASA Astrophysics Data System (ADS)

    Somekawa, T.; Manago, N.; Kuze, H.; Fujita, M.

    2016-10-01

    We applied a broadband and coherent white light continuum to differential absorption lidar (DIAL) detection of H2O and O2 profiles in the troposphere. The white light continuum can be generated by focusing high intensity femtosecond laser pulses at 800 nm into a Kr gas cell covering a broad spectral range from UV to mid-IR. Thus, the use of white light continuum potentially enables the DIAL measurement of several greenhouse and/or pollutant gases simultaneously while minimizing the lead time for developing a tunable light source. In order to demonstrate such capability, here we report the lidar measurements of H2O and O2. These molecular species exhibit absorption lines in the near IR region where relatively high intensity of the white light continuum is available. The white light continuum was transmitted through the atmosphere collinearly to the axis of a receiver telescope. Backscattered light was passed through bandpass filters (H2O On: 725 and 730 nm, H2O Off: 750 nm, O2 On: 760 nm, O2 Off: 780 nm), and was detected by a photomultiplier tube. The detection wavelengths were selected consecutively by rotating the filter wheels that contain five bandpass filters with an interval of 1 minute. In addition, we propose a method for retrieving vertical profiles of H2O by considering wavelength dependence of the aerosol extinction coefficient α and backscatter coefficient β. These results show that for achieving precise retrieval of H2O distribution, one needs to reduce the effect of aerosol temporal variations by means of long-time accumulation or simultaneous detection of the On- and Off-wavelength signals.

  1. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Liu Hao; Lau, Lok Yin; Ren, Wei

    2017-03-01

    We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.

  2. Validation of measured microwave absorption and temperature change for development of a single-mode-type microwave heating thermogravimetry apparatus

    NASA Astrophysics Data System (ADS)

    Karisma, Achmad Dwitama; Hamaba, Taishu; Fukasawa, Tomonori; Huang, An-Ni; Segawa, Tomoomi; Fukui, Kunihiro

    2017-02-01

    The temperature distribution, microwave absorption efficiency, and dielectric properties of a copper (ii) oxide (CuO) pellet heated by microwave irradiation were investigated for use in developing a single-mode-type microwave heating thermogravimetry apparatus. The validity of the apparatus was confirmed by comparing the measured data with the results of numerical simulations. The dielectric properties and error margins of other parameters estimated using the apparatus were also examined. The temperature distribution of the CuO pellet was observed to decrease monotonously on moving from the outlet to the inlet side of the apparatus. A three-dimensional numerical simulation of the electromagnetic field accurately reproduced this temperature distribution, suggesting the one-way movement of microwaves in the single-mode-type microwave apparatus. The numerically determined dependency of the CuO absorption efficiency was also found to be in very good agreement with published data. The same was the case with the permittivity loss of the CuO at various temperatures, as estimated from the measured microwave absorption efficiency. However, a larger error was observed in the estimation of the permittivity loss of a material with a lower microwave absorption efficiency, which was apparently due to the measurement error of the absorption efficiency of such a material.

  3. A combination spectrophotometer for measuring electronic absorption, natural circular dichroism, and magnetic circular dichroism spectra

    NASA Astrophysics Data System (ADS)

    Policke, Timothy A.; Schreiner, Anton F.; Trexler, Jack W.; Knopp, James A.

    1990-08-01

    The design, construction, and evaluation of a combination spectrometer for measuring electronic absorption (EA), natural circular dichroism (CD), and magnetic circular dichroism (MCD) are described. Around the optical components of a JASCO ORD/UV-5 spectropolarimeter, a new EA/CD/MCD instrument was built with the realized intentions of increasing sensitivity and upgrading the analog tube type circuitry to a solid-state digitally, computer-controlled spectrophotometer. It is a flexible, dynamic, and user-controllable system, interfaced to an Apple II Plus computer, for studying instrument and signal parameters. The monochromator (M), photoelastic modulator (PEM), photomultiplier tube applied voltage (PMHV), and photomultiplier tube dc output current (PMdc) are under complete and independent software control. Our system has two unique aspects for obtaining the circular dichroism. First, the ac signal is measured with a voltage-to-frequency (V/f) converter; and, second, both the ac and the dc are independently recorded and their ratio is digitally calculated. This design has several advantages which include the elimination of voltage divider integrated circuits or division electronics, a wide dynamic range, a greater precision of ac values at low percentages of full scale, and the capability of continuous integration over long time periods. Also, both types of spectra, EA and CD or MCD, are obtained from the current output of the PM. This paper not only describes the design of the instrument for obtaining the two types of spectra but also compares four methods of obtaining the circular dichroism. Sensitivities of ˜1×10-7ΔA units are achievable as determined by measuring CD spectra of the well-known enantiomer (+)-[Co(en)3]3+.

  4. Absorption edge subtraction imaging for volumetric measurement in an animal model of malignant brain tumor

    NASA Astrophysics Data System (ADS)

    Rigley, S.; Rigon, L.; Ataelmannan, K.; Chapman, D.; Doucette, R.; Griebel, R.; Juurlink, B.; Arfelli, F.; Menk, R.-H.; Tromba, G.; Barroso, R. C.; Beveridge, T.; Lewis, R.; Pavlov, K.; Siu, K.; Hall, C.; Schültke, E.

    2005-08-01

    The goal of this project is to determine the feasibility of utilizing colloidal gold as a marker for C6 glioblastoma cells implanted into rat brain as an appropriate model for volumetric measurements of tumors using absorption edge subtraction (AES). Phase sensitive X-ray imaging is combined with KES to give good soft tissue contrast. Current methods for volumetric measurements of implanted C6 glioblastoma tumors in rat brains using MRI technology are inadequate due to the small size of the tumor (2.5-4 mm in diameter) and the thickness of the MRI slice (1-1.5 mm). Previously, our group has shown that AES detection of colloidal gold labeled C6 glioblastoma cells implanted into a rat brains may be feasible. The long-term goal for this project is to establish a method, which would allow the researcher to monitor the development of a tumor over time. Most importantly, this technique should allow researchers to accurately determine the potency of a treatment on the size and growth rate for a C6 implanted tumors. In addition, we plan to challenge the hypothesis that tumors of the glioma type do not metastasize outside of the brain. A sensitive technique for the detection of C6 cells, such as that using colloidal gold and AES/DEI, should enable researchers to detect C6 cells, which have metastasized and migrated to different areas of the body. The ability to detect implanted C6 cells followed by the development of the tumor, the possible migration of the cells and the ability to accurately measure the effects of treatments on the volume of the tumor would be of the utmost importance to brain tumor research.

  5. Development of a cavity-enhanced absorption spectrometer for airborne measurements of CH4 and CO2

    NASA Astrophysics Data System (ADS)

    O'Shea, S. J.; Bauguitte, S. J.-B.; Gallagher, M. W.; Lowry, D.; Percival, C. J.

    2013-05-01

    High-resolution CH4 and CO2 measurements were made on board the FAAM BAe-146 UK (Facility for Airborne Atmospheric Measurements, British Aerospace-146) atmospheric research aircraft during a number of field campaigns. The system was based on an infrared spectrometer using the cavity-enhanced absorption spectroscopy technique. Correction functions to convert the mole fractions retrieved from the spectroscopy to dry-air mole fractions were derived using laboratory experiments and over a 3 month period showed good stability. Long-term performance of the system was monitored using WMO (World Meteorological Office) traceable calibration gases. During the first year of operation (29 flights) analysis of the system's in-flight calibrations suggest that its measurements are accurate to 1.28 ppb (1σ repeatability at 1 Hz = 2.48 ppb) for CH4 and 0.17 ppm (1σ repeatability at 1 Hz = 0.66 ppm) for CO2. The system was found to be robust, no major motion or altitude dependency could be detected in the measurements. An inter-comparison between whole-air samples that were analysed post-flight for CH4 and CO2 by cavity ring-down spectroscopy showed a mean difference between the two techniques of -2.4 ppb (1σ = 2.3 ppb) for CH4 and -0.22 ppm (1σ = 0.45 ppm) for CO2. In September 2012, the system was used to sample biomass-burning plumes in Brazil as part of the SAMBBA project (South AMerican Biomass Burning Analysis). From these and simultaneous CO measurements, emission factors for savannah fires were calculated. These were found to be 2.2 ± 0.2 g (kg dry matter)-1 for CH4 and 1710 ± 171 g (kg dry matter)-1 for CO2, which are in excellent agreement with previous estimates in the literature.

  6. L-asparagine crystals with wide gap semiconductor features: Optical absorption measurements and density functional theory computations

    SciTech Connect

    Zanatta, G.; Gottfried, C.; Silva, A. M.; Caetano, E. W. S.; Sales, F. A. M.; Freire, V. N.

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p–carboxyl, C 2p–side chain, and C 2p–carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical

  7. L-Asparagine crystals with wide gap semiconductor features: optical absorption measurements and density functional theory computations.

    PubMed

    Zanatta, G; Gottfried, C; Silva, A M; Caetano, E W S; Sales, F A M; Freire, V N

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p-carboxyl, C 2p-side chain, and C 2p-carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical

  8. Specific absorption rate and electric field measurements in the near field of six mobile phone base station antennas.

    PubMed

    Toivonen, Tommi; Toivo, Tim; Puranen, Lauri; Jokela, Kari

    2009-05-01

    In this article, the exposure to radio frequency electromagnetic fields was studied in close proximity (distances of 10, 100, 300, and 600 mm) to six base station antennas. The specific absorption rate (SAR) in 800 mm x 500 mm x 200 mm box phantom as well as unperturbed electric field (E) in air was measured. The results were used to determine whether the measurement of local maximum of unperturbed electric field can be used as a compliance check for local exposure. Also, the conservativeness of this assessment method compared to the ICNIRP basic restriction was studied. Moreover, the assessment of whole-body exposure was discussed and the distance ranges presented in which the ICNIRP limit for local exposure could be exceeded before the limit for whole-body SAR. These results show that the electric field measurement alone can be used for easy compliance check for the local exposure at all distances and for all antenna types studied. However, in some cases when the local peak value of E was compared directly to the ICNIRP reference level for unperturbed E, the exposure was overestimated only very slightly (by factor 1.1) compared to the basic restriction for localized SAR in a human, and hence these results can not be generalized to all antenna types. Moreover, it was shown that the limit for localized exposure could be exceeded before the limit for the whole-body average SAR, if the distance to the antenna was less than 240 mm.

  9. Ultra Narrowband Optical Filters for Water Vapor Differential Absorption Lidar (DIAL) Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Stenholm, Ingrid; DeYoung, Russell J.

    2001-01-01

    Differential absorption lidar (DIAL) systems are being deployed to make vertical profile measurements of atmospheric water vapor from ground and airborne platforms. One goal of this work is to improve the technology of such DIAL systems that they could be deployed on space-based platforms. Since background radiation reduces system performance, it is important to reduce it. One way to reduce it is to narrow the bandwidth of the optical receiver system. However, since the DIAL technique uses two or more wavelengths, in this case separated by 0.1 nm, a fixed-wavelength narrowband filter that would encompass both wavelengths would be broader than required for each line, approximately 0.02 nm. The approach employed in this project is to use a pair of tunable narrowband reflective fiber Bragg gratings. The Bragg gratings are germanium-doped silica core fiber that is exposed to ultraviolet radiation to produce index-of-refraction changes along the length of the fiber. The gratings can be tuned by stretching. The backscattered laser radiation is transmitted through an optical circulator to the gratings, reflected back to the optical circulator by one of the gratings, and then sent to a photodiode. The filter reflectivities were >90 percent, and the overall system efficiency was 30 percent.

  10. Heavy Metals Effect on Cyanobacteria Synechocystis aquatilis Study Using Absorption, Fluorescence, Flow Cytometry, and Photothermal Measurements

    NASA Astrophysics Data System (ADS)

    Dudkowiak, A.; Olejarz, B.; Łukasiewicz, J.; Banaszek, J.; Sikora, J.; Wiktorowicz, K.

    2011-04-01

    The toxic effect of six heavy metals on cyanobacteria Synechocystis aquatilis was studied by absorption, fluorescence, flow cytometry, and photothermal measurements. This study indicates that at the concentration used, the cyanobacteria are more sensitive to silver, copper, and mercury than to cadmium, lead, and zinc metals. Disregarding the decrease in the yields of the related radiative processes caused by photochemical processes and/or damage to phycobilisomes, no changes were detected in the efficiency of thermal deactivation processes within a few microseconds, which can indicate the lack of disturbances in the photosynthetic light reaction and the lack of damage to the photosystem caused by the heavy metal ions in the concentrations used. The results demonstrate that the relative values of fluorescence yield as well as promptly generated heat calculated for the metal-affected and unaffected (reference) bacteria are sensitive indicators of environmental pollution with heavy metal ions, whereas the complementary methods proposed could be used as a noninvasive and fast procedure for in vivo assessment of their toxicity.

  11. Measurements of Water Absorption in the Warm Exo-Uranus GJ 3470b

    NASA Astrophysics Data System (ADS)

    Benneke, Björn; Crossfield, Ian; Knutson, Heather; McCullough, Peter; Lothringer, Joshua; Howard, Andrew; Morley, Caroline; Fortney, Jonathan; Dragomir, Diana; Gilliland, Ron

    2015-12-01

    The discovery of short-period planets with masses and radii intermediate between Earth and Neptune was one of the biggest surprises in the brief history of exoplanet science. These “super-Earths” and “sub-Neptunes” are an order of magnitude more abundant than close-in giant planets. Despite this ubiquity, we know little about their typical compositions and formation histories. Spectroscopic transit observations can shed new light on these mysterious worlds by probing their atmospheric compositions. In this talk, we will give an overview of our ongoing 124-orbit (200-hour) Hubble Space Telescope program to reveal the chemical diversity and formation histories of super-Earths. This unprecedented survey will provide the first comprehensive look at this intriguing new class of planets ranging from 1 Neptune mass and temperatures close to 2000K to a 1 Earth mass planet near the habitable zone of its host star. In this talk, I will discuss the scope of the program and present early science results including measurements of water absorption in the atmosphere of the warm exo-Uranus GJ3470b.

  12. Shock tube/laser absorption measurements of the reaction rates of OH with ethylene and propene.

    PubMed

    Vasu, Subith S; Hong, Zekai; Davidson, David F; Hanson, Ronald K; Golden, David M

    2010-11-04

    Reaction rates of hydroxyl (OH) radicals with ethylene (C₂H₄) and propene (C₃H₆) were studied behind reflected shock waves. OH + ethylene → products (rxn 1) rate measurements were conducted in the temperature range 973-1438 K, for pressures from 2 to 10 atm, and for initial concentrations of ethylene of 500, 751, and 1000 ppm. OH + propene → products (rxn 2) rate measurements spanned temperatures of 890-1366 K, pressures near 2.3 atm, and initial propene concentrations near 300 ppm. OH radicals were produced by shock-heating tert-butyl hydroperoxide, (CH₃)₃-CO-OH, and monitored by laser absorption near 306.7 nm. Rate constants for the reactions of OH with ethylene and propene were extracted by matching modeled and measured OH concentration time-histories in the reflected shock region. Current data are in excellent agreement with previous studies and extend the temperature range of OH + propene data. Transition state theory calculations using recent ab initio results give excellent agreement with our measurements and other data outside our temperature range. Fits (in units of cm³/mol/s) to the abstraction channels of OH + ethylene and OH + propene are k₁ = 2.23 × 10⁴ (T)(2.745) exp(-1115 K/T) for 600-2000 K and k₂ = 1.94 × 10⁶ (T)(2.229) exp(-540 K/T) for 700-1500 K, respectively. A rate constant determination for the reaction TBHP → products (rxn 3) was also obtained in the range 745-1014 K using OH data from behind both incident and reflected shock waves. These high-temperature measurements were fit with previous low-temperature data, and the following rate expression (0.6-2.6 atm), applicable over the temperature range 400-1050 K, was obtained: k₃ (1/s) = 8.13 × 10⁻¹² (T)(7.83) exp(-14598 K/T).

  13. Gas Phase Absorption Spectroscopy of C+60 and C+70 in a Cryogenic Ion Trap: Comparison with Astronomical Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.; Gerlich, D.; Walker, G. A. H.; Bohlender, D.

    2016-05-01

    Recent low-temperature laboratory measurements and astronomical observations have proved that the fullerene cation {{{C}}}60+ is responsible for four diffuse interstellar bands (DIBs). These absorptions correspond to the strongest bands of the lowest electronic transition. The gas phase spectrum below 10 {{K}} is reported here for the full wavelength range encompassed by the electronic transition. The absorption spectrum of {{{C}}}70+, with its origin band at 7959.2 {{\\mathringA }}, has been obtained under similar laboratory conditions. Observations made toward the reddened star {HD} 183143 were used in a specific search for the absorption of these fullerene cations in diffuse clouds. In the case of {{{C}}}60+, one further band in the astronomical spectrum at 9348.5 \\mathringA is identified, increasing the total number of assigned DIBs to five. Numerous other {{{C}}}60+ absorptions in the laboratory spectrum are found to lie below the astronomical detection limit. Special emphasis is placed on the laboratory determination of absolute absorption cross-sections. For {{{C}}}60+ this directly yields a column density, N({{{C}}}60+), of 2× {10}13 {{{cm}}}-2 in diffuse clouds, without the need to rely on theoretical oscillator strengths. The intensity of the {{{C}}}70+ electronic transition in the range 7000-8000 Å is spread over many features of similar strength. Absorption cross-section measurements indicate that even for a similar column density, the individual absorption bands of {{{C}}}70+ will be too weak to be detected in the astronomical spectra, which is confirmed giving an upper limit of 2 {{m\\mathringA }} to the equivalent width. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  14. Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combusion Exhaust Streams

    SciTech Connect

    Jerald A. Caton; Kalyan Annamalai

    2003-09-24

    An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. The nitric oxide sensor has been used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based sensor measurements showed good agreement with the results from physical probe sampling of the combustion exhaust. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. Future planned modifications will lead to even faster response times at sensitivity levels at or below 1 ppm.

  15. Tunable diode laser absorption sensor for temperature and velocity measurements of O2 in air flows

    NASA Technical Reports Server (NTRS)

    Philippe, L. C.; Hanson, R. K.

    1991-01-01

    A fast and nonintrusive velocity and temperature diagnostic based on oxygen absorption is presented. The system uses a GaAlAs tunable diode laser, ramped and modulated in wavelength at high frequency. Detection is performed at twice the modulating frequency, leading to second harmonic absorption lineshapes. Velocity is inferred from the wavelength shift of the absorption line center due to the Doppler effect. Temperature is determined by comparing experimental and calculated lineshapes. Capabilities of the technique for studies of transient high-speed flows are demonstrated in shock tube experiments. Good agreement is obtained with predicted temperatures and velocities when pressure-induced shifts are accounted for.

  16. Using 21 cm absorption surveys to measure the average H I spin temperature in distant galaxies

    NASA Astrophysics Data System (ADS)

    Allison, J. R.; Zwaan, M. A.; Duchesne, S. W.; Curran, S. J.

    2016-10-01

    We present a statistical method for measuring the average H I spin temperature in distant galaxies using the expected detection yields from future wide-field 21 cm absorption surveys. As a demonstrative case study, we consider an all-southern-sky simulated survey of 2-h per pointing with the Australian Square Kilometre Array Pathfinder for intervening H I absorbers at intermediate cosmological redshifts between z = 0.4 and 1. For example, if such a survey yielded 1000 absorbers, we would infer a harmonic-mean spin temperature of overline{T}_spin ˜ 100 K for the population of damped Lyman α absorbers (DLAs) at these redshifts, indicating that more than 50 per cent of the neutral gas in these systems is in a cold neutral medium (CNM). Conversely, a lower yield of only 100 detections would imply overline{T}_spin ˜ 1000 K and a CNM fraction less than 10 per cent. We propose that this method can be used to provide independent verification of the spin temperature evolution reported in recent 21 cm surveys of known DLAs at high redshift and for measuring the spin temperature at intermediate redshifts below z ≈ 1.7, where the Lyman α line is inaccessible using ground-based observatories. Increasingly more sensitive and larger surveys with the Square Kilometre Array should provide stronger statistical constraints on the average spin temperature. However, these will ultimately be limited by the accuracy to which we can determine the H I column density frequency distribution, the covering factor and the redshift distribution of the background radio source population.

  17. Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy.

    PubMed

    N'Diaye, Mambaye; Pascaretti-Grizon, Florence; Massin, Philippe; Baslé, Michel Felix; Chappard, Daniel

    2012-08-07

    PMMA (poly(methyl methacrylate)) is widely used to prepare orthopedic cements. They are in direct contact with cells and body fluids. PMMA, despite its hydrophobic nature, can absorb ~2% w/w water. We have evaluated by vertical interference microscopy if water absorption can produce a significant swelling in different types of PMMA blocks: pure, with a plasticizer, with a cross-linker, and in two types of commercial bone cements. Graphite rods which do not swell in water were used as internal standard. Hardness, indentation modulus, plastic, and elastic works were determined by nanoindentation under a 25mN fixed force. Vertical interference microscopy was used to image the polymer in the dry state and hydrated states (after 24 h in distilled water). On the surface of the polished polymers (before and after hydration), we measured roughness by the fractal dimension, the swelling in the vertical and the lateral directions. For each polymer block, four images were obtained and values were averaged. Comparison and standardization of the images in the dry and hydrated states were done with Matlab software. The average value measured on the graphite rod between the two images (dried and hydrated) was used for standardization of the images which were visualized in 3D. After grinding, a small retraction was noticeable between the surface of the rod and the polymers. A retraction ring was also visible around the graphite rod. After hydration, only the pure PMMA and bone cements had a significant swelling in the vertical direction. The presence of polymer beads in the cements limited the swelling in the lateral direction. Swelling parameters correlated with the nanoindentation data. PMMA can swell by absorbing a small amount of water and this induces a swelling that varies with the polymer composition and particle inclusions.

  18. A reduced-scale railway noise barrier's insertion loss and absorption coefficients: comparison of field measurements and predictions

    NASA Astrophysics Data System (ADS)

    Busch, T. A.; Nugent, R. E.

    2003-10-01

    In situ testing determined the insertion loss ( IL) and absorption coefficients of a candidate absorptive noise barrier (soundwall) to abate railway noise for residents of Anaheim, CA. A 4000 m barrier is proposed south of the tracks, but residential areas to the north have expressed concerns that barrier reflections will increase their noise exposure. To address these concerns, a 3.66 m high by 14.6 m long demonstration barrier was built in the parking lot of Edison Field, Anaheim, as part of a public open house, thereby allowing for acoustical measurements. Insertion loss ( IL) was measured in third-octave bands assuming 1/2-scale construction. The IL for three, scaled railway noise sub-sources (rail/wheel interface, locomotive, and train horn) was measured at six, scaled distances. The highest total, A-weighted IL, after corrections for finite-barrier and point-source speaker effects was 22 dB(A) for rail/wheel noise, 18 dB(A) for locomotive noise, and 20 dB(A) for train horn noise. These results can be compared favourably to IL predictions made using algorithms from the US Federal Rail Administration (FRA) noise assessment guidelines. For the actual barrier installation, shielded residential receivers located south of the project are expected to see their future noise exposures reduced from an unmitigated 78 CNEL to 65 CNEL. Absorption coefficients were measured using time delay spectrometry. At lower frequencies, measured absorption coefficients were notably less than the reverberation room results advertised in the manufacturer's literature, but generally conformed with impedance tube results. At higher frequencies the correspondence between measured absorption coefficients and reverberation room results was much improved. For the actual barrier installation, unshielded residential receivers to the north are expected to experience noise exposure increases of less than 1 dB(A). This factor of increase is consistent with a finding of no impact when assessed

  19. Low-energy neutron flux measurement using a resonance absorption filter surrounding a lithium glass scintillator

    NASA Astrophysics Data System (ADS)

    Ghal-Eh, N.; Koohi-Fayegh, R.; Hamidi, S.

    2007-06-01

    The resonance absorption filter technique has been used to determine the thermal/epithermal neutron flux. The main idea in this technique is to use an element with a high and essentially singular resonance in the neutron absorption cross section as a filter surrounding a miniature-type lithium glass scintillator. The count with and without the filter surrounding the detector gives the number of resonance-energy neutrons. Some preliminary results and a comparison with the MCNP code are shown.

  20. Human Vitamin B12 Absorption and Metabolism are Measured by Accelerator Mass Spectrometry Using Specifically Labeled 14C-Cobalamin

    SciTech Connect

    Carkeet, C; Dueker, S R; Lango, J; Buchholz, B A; Miller, J W; Green, R; Hammock, B D; Roth, J R; Anderson, P J

    2006-01-26

    There is need for an improved test of human ability to assimilate dietary vitamin B{sub 12}. Assaying and understanding absorption and uptake of B{sub 12} is important because defects can lead to hematological and neurological complications. Accelerator mass spectrometry (AMS) is uniquely suited for assessing absorption and kinetics of {sup 14}C-labeled substances after oral ingestion because it is more sensitive than decay counting and can measure levels of carbon-14 ({sup 14}C) in microliter volumes of biological samples, with negligible exposure of subjects to radioactivity. The test we describe employs amounts of B{sub 12} in the range of normal dietary intake. The B{sub 12} used was quantitatively labeled with {sup 14}C at one particular atom of the DMB moiety by exploiting idiosyncrasies of Salmonellametabolism. In order to grow aerobically on ethanolamine, S. entericamust be provided with either pre-formed B{sub 12} or two of its precursors: cobinamide and dimethylbenzimidazole (DMB). When provided with {sup 14}C-DMB specifically labeled in the C2 position, cells produced {sup 14}C-B{sub 12} of high specific activity (2.1 GBq/mmol, 58 mCi/mmol) and no detectable dilution of label from endogenous DMB synthesis. In a human kinetic study, a physiological dose (1.5 mg, 2.2 KBq/59 nCi) of purified {sup 14}C-B{sub 12} was administered and showed plasma appearance and clearance curves consistent with the predicted behavior of the pure vitamin. This method opens new avenues for study of B{sub 12} assimilation.

  1. Algorithm development for intensity modulated continuous wave laser absorption spectrometry in atmospheric CO2 measurements

    NASA Astrophysics Data System (ADS)

    Lin, B.; Harrison, F. W.; Browell, E. V.; Dobler, J. T.; Bryant, R. B.

    2011-12-01

    Currently, NASA Langley Research Center (LaRC) and ITT are jointly developing algorithms for demonstration of range discrimination using ITT's laser absorption spectrometer (LAS), which is being evaluated for the future NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. The objective of this Decadal Survey mission is to measure atmospheric column CO2 mixing ratios (XCO2) for improved determination of atmospheric carbon sources and sinks. Intensity Modulated Continuous Wave (IM-CW) techniques are used in this LAS approach. The LAS is designed to simultaneously measure CO2 and O2 columns, and these measurements are used to determine the required XCO2 column. The LAS measurements are enabled by the multi-channel operation of the instrument at 1.57 and 1.26-um for CO2 and O2, respectively. The algorithm development for the IM-CW techniques of the multi-channel LAS is focused on addressing key retrieval issues such as surface signal detection, thin cloud and/or aerosol layer rejection, vertical atmospheric range resolution, and optimizing the size of the measurement footprint. With these considerations, the modulation algorithm needs to maintain high enough signal-to-noise ratio (SNR) so that the mission scientific goals can be reached. A basic selection of the modulation algorithms that make XCO2 measurement and thin cloud rejection possible is the stepped frequency modulation scheme and a similar scheme of swept sine modulation. The differences between these two schemes for thin cloud rejection are small, assuming the proper selection of parameters is made. The stepped frequency approach is only a quantified version of swept sine method for the frequencies used. Swept sine scheme is a very common modulation technique for range discrimination, while the consideration of the stepped frequency scheme is based on the history of the rolling-tone modulation used in the instrument in previous successful column CO2 measurements. The

  2. Infrared Pulse-laser Long-path Absorption Measurement of Carbon Dioxide Using a Raman-shifted Dye Laser

    NASA Technical Reports Server (NTRS)

    Minato, Atsushi; Sugimoto, Nobuo; Sasano, Yasuhiro

    1992-01-01

    A pulsed laser source is effective in infrared laser long-path absorption measurements when the optical path length is very long or the reflection from a hard target is utilized, because higher signal-to-noise ratio is obtained in the detection of weak return signals. We have investigated the performance of a pulse-laser long-path absorption system using a hydrogen Raman shifter and a tunable dye laser pumped by a Nd:YAG laser, which generates second Stokes radiation in the 2-micron region.

  3. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption at Three Location in and Around Mexico City

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2006-12-01

    As a result of population growth and increasing industrialization, air pollution in heavily populated urban areas is one of the central environmental problems of the century. As a part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals at three location in Mexico during March, 2006. Sampling stations were located at the Instituto Mexicano del Petroleo (T0), at the Rancho La Bisnago in the State of Hidalgo (T2) and along the Gulf Coast in Tampico (Tam). Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations at T0 ranged from 47 to 179 μg/m3 for PM10 with an average concentration of 96 μg/m3, and from 20 to 93 μg/m3 for PM2.5 with an average concentration of 41 μg/m3. Mass concentrations at T2 ranged from 12 to 154 μg/m3 for PM10 with an average concentration of 51 μg/m3, and from 7 to 50 μg/m3 for PM2.5 with an average concentration of 25 μg/m3. Mass concentrations at Tam ranged from 34 to 80 μg/m3 for PM10 with an average concentration of 52 μg/m3, and from 8 to 23 μg/m3 for PM2.5 with an average concentration of 13 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Each of the sampling stations experienced a unique atmospheric condition. The site at T0 was influenced by urban air pollution and dust storms, the site at T2 was significantly less affected by air pollution but more affected by regional dust storms and local dust devils while Tam was influenced by air pollution, dust storms and the natural marine environment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in

  4. Unimolecular Decomposition Rate of the Criegee Intermediate (CH3)2COO Measured Directly with UV Absorption Spectroscopy.

    PubMed

    Smith, Mica C; Chao, Wen; Takahashi, Kaito; Boering, Kristie A; Lin, Jim Jr-Min

    2016-07-14

    The unimolecular decomposition of (CH3)2COO and (CD3)2COO was measured by direct detection of the Criegee intermediate at temperatures from 283 to 323 K using time-resolved UV absorption spectroscopy. The unimolecular rate coefficient kd for (CH3)2COO shows a strong temperature dependence, increasing from 269 ± 82 s(-1) at 283 K to 916 ± 56 s(-1) at 323 K with an Arrhenius activation energy of ∼6 kcal mol(-1). The bimolecular rate coefficient for the reaction of (CH3)2COO with SO2, kSO2, was also determined in the temperature range 283 to 303 K. Our temperature-dependent values for kd and kSO2 are consistent with previously reported relative rate coefficients kd/kSO2 of (CH3)2COO formed from ozonolysis of tetramethyl ethylene. Quantum chemical calculations of kd for (CH3)2COO are consistent with the experiment, and the combination of experiment and theory for (CD3)2COO indicates that tunneling plays a significant role in (CH3)2COO unimolecular decomposition. The fast rates of unimolecular decomposition for (CH3)2COO measured here, in light of the relatively slow rate for the reaction of (CH3)2COO with water previously reported, suggest that thermal decomposition may compete with the reactions with water and with SO2 for atmospheric removal of the dimethyl-substituted Criegee intermediate.

  5. Dielectronic recombination measurements of iron M-shell ions motivated by active galactic nuclei X-ray absorption features

    NASA Astrophysics Data System (ADS)

    Lukic, V. D.; Schnell, M.; Savin, D. W.; Brandau, C.; Schmidt, E. W.; Bohm, S.; Muller, A.; Schippers, S.; Lestinsky, M.; Sprenger, F.; Wolf, A.; Altun, Z.; Badnell, N. R.

    2008-07-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between 15-17 A. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. At temperatures where these ions are predicted to form in photoionized gas, we find a significant discrepancy between our experimental results and previously recommended DR rate coefficients. Here we report our recent experimental results for DR of Mg-like Fe XV forming Al-like Fe XIV.

  6. Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption

    NASA Technical Reports Server (NTRS)

    Barnes, James C.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1989-01-01

    Amplified spontaneous emission, ASE, generated by a Ti:Al2O3 laser amplifier has been measured as a function of pump energy, and thus gain, using the atomic absorption of rubidium, Rb, gas at 0.780 micron. By tuning the Ti:Al2O3 laser, the Rb cell could selectively absorb the narrow spectral bandwidth laser radiation while transmitting the wide spectral bandwidth ASE. Transmission of laser amplifier pulses through a Rb absorption cell, measured at various temperatures, thus allows the measurement of the weak ASE in the vicinity of the strong laser pulse. A model for the transmission of Rb as a function of temperature and wavelength has been developed. The measured transmissions are in good agreement with the transmission model predictions.

  7. Black carbon and wavelength-dependent aerosol absorption in the North China Plain based on two-year aethalometer measurements

    NASA Astrophysics Data System (ADS)

    Ran, L.; Deng, Z. Z.; Wang, P. C.; Xia, X. A.

    2016-10-01

    Light-absorbing components of atmospheric aerosols have gained particular attention in recent years due to their climatic and environmental effects. Based on two-year measurements of aerosol absorption at seven wavelengths, aerosol absorption properties and black carbon (BC) were investigated in the North China Plain (NCP), one of the most densely populated and polluted regions in the world. Aerosol absorption was stronger in fall and the heating season (from November to March) than in spring and summer at all seven wavelengths. Similar spectral dependence of aerosol absorption was observed in non-heating seasons despite substantially strong absorption in fall. With an average absorption Angström exponent (α) of 1.36 in non-heating seasons, freshly emitted BC from local fossil fuel burning was thought to be the major component of light-absorbing aerosols. In the heating season, strong ultraviolet absorption led to an average α of 1.81, clearly indicating the importance of non-BC light-absorbing components, which were possibly from coal burning for domestic heating and aging processes on a regional scale. Diurnally, the variation of BC mass concentrations experienced a double-peak pattern with a higher level at night throughout the year. However, the diurnal cycle of α in the heating season was distinctly different from that in non-heating seasons. α peaked in the late afternoon in non-heating seasons with concomitantly observed low valley in BC mass concentrations. In contrast, α peaked around the midnight in the heating season and lowered down during the daytime. The relationship of aerosol absorption and winds in non-heating seasons also differed from that in the heating season. BC mass concentrations declined while α increased with increasing wind speed in non-heating seasons, which suggested elevated non-BC light absorbers in transported aged aerosols. No apparent dependence of α on wind speed was found in the heating season, probably due to well mixed

  8. Maps and tables showing data and analyses of semiquantitative emmission spectrometry and atomic-absorption spectrophotometry of rock samples, Ugashik, Bristol Bay, and part of Karluk quadrangles, Alaska

    USGS Publications Warehouse

    Wilson, F.H.; O'Leary, R. M.

    1986-01-01

    The accompanying maps and tables show analytical data and data analyses from rock samples collected in conjunction with geologic mapping in the Ugashik, Bristol Bay and western Karluck quadrangles from 1979 through 1981. This work was conducted under the auspices of the Alaska Mineral Resource Assessment Program (AMRAP). A total of 337 samples were collected for analysis, primarily in areas of surficial alteration. The sample locations are shown on sheet 1: they are concentrated along the Pacific Ocean side of the area because the Bristol Bay lowlands part of the map is predominantly unconsolidated Quaternary deposits. Sample collection was by the following people, with their respective two letter identifying code shown in parentheses: W.H. Allaway (AY), J.E. Case (CE), D.P. Cox (CX), R.L. Detterman, (DT), T.G. Theodore (MK), F.H. Wilson (WS), and M.E. Yount (YB).

  9. Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering.

    PubMed

    Hernández, Sergio E; Rodríguez, Vicente D; Pérez, Justo; Martín, Felipe A; Castellano, Miguel A; Gonzalez-Mora, Jose Luis

    2009-01-01

    Absorption and scattering processes in biological tissues are studied through reflectance spectroscopy in tissue-like phantoms. For this aim, an experimental setup is designed to independently control both processes in hemoglobin and intralipid solutions. From the analysis of the obtained spectra, a simple empirical power law equation is found that relates absorbance with scattering and absorption coefficients. This relationship includes three wavelength independent parameters, which can be determined geometry from in vitro measurements for each particular optical optode. The dependence of the optical path length on the absorption and scattering coefficients is also analyzed, and estimations of this parameter for physiological conditions are presented. This study is useful to better understand the scattering phenomena in biological tissue, and to obtain absolute concentration of absorber particles when a homogeneous medium can be assumed.

  10. Iris as a reflector for differential absorption low-coherence interferometry to measure glucose level in the anterior chamber

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zeng, Nan; Ji, Yanhong; Li, Yao; Dai, Xiangsong; Li, Peng; Duan, Lian; Ma, Hui; He, Yonghong

    2011-01-01

    We present a method of glucose concentration detection in the anterior chamber with a differential absorption optical low-coherent interferometry (LCI) technique. Back-reflected light from the iris, passing through the anterior chamber twice, was selectively obtained with the LCI technique. Two light sources, one centered within (1625 nm) and the other centered outside (1310 nm) of a glucose absorption band were used for differential absorption measurement. In the eye model and pig eye experiments, we obtained a resolution glucose level of 26.8 mg/dL and 69.6 mg/dL, respectively. This method has a potential application for noninvasive detection of glucose concentration in aqueous humor, which is related to the glucose concentration in blood.

  11. Simple system for measuring tritium Ad/absorption using a 2. pi. counter and thermal desorption spectrometer

    SciTech Connect

    Miyake, H.; Matsuyama, M.; Watanabe, K. ); Cowgill, D.F. )

    1992-03-01

    In this paper, the authors develop a simple system using tritium tracer and thermal desorption techniques to measure the tritium adsorption and/or absorption on/in a material having typical surface conditions: namely, not cleaned surface. The tritium counting devices used were a 2{pi} counter and conventional proportional counter. With this system, the amounts of ad/absorption could be measured without exposing the samples to air after exposing them to tritium gas. The overall efficiency (F) of the 2{pi} counter was described at F = exp({minus}2.64h), where h is the distance from the sample to the detector. Ad/absorption measurements were carried out for several materials used for fabricating conventional vacuum systems. The results were, in the order of decreasing amounts of ad/absorption, as (fiber reinforced plastics(FRP)) {gt} (nickel(Ni), molybdenum disulfide(MoS{sub 2})) {gt} (stainless steel (SS304), iron(Fe), aluminum alloy(A2219)) {gt} (boron nitride(h-BN), silicon carbide (SiC), SS304 passivated by anodic oxidation layers(ASS) and that by boron nitride segregation layers (BSS)). The relative amounts were abut 100 for Ni and 0.1 for ASS and BSS, being normalized to Fe = 1.

  12. REAL TIME CONTINUOUS MEASUREMENTS OF [CO2] AND δ13C AT MULTIPLE LOCATIONS USING CAVITY ENHANCED LASER ABSORPTION

    NASA Astrophysics Data System (ADS)

    McAlexander, W. I.; Rau, G. H.; Dobeck, L.; Spangler, L.

    2009-12-01

    A commercial instrument (Los Gatos Research, model 908-0003) utilizing Cavity Enhanced Laser Absorption Spectroscopy was deployed in 2009 at the ZERT carbon release site (Bozeman, MT) for real time measurement of above-ground CO2 concentration and isotope ratio (δ13C). An automated switching system sampled 13 different locations in the field, as well as two known references, over an 8 day period. Real-time Keeling plots were constructed showing distinct signatures of soil (-27.0 ‰) and fossil (-56.0 ‰) sources compared to background air (-8.2 ‰). Instrument performance gave 0.2 ‰ precision with only 100 seconds of averaging per inlet. Sequential sampling of the various inlets gave a temporal and physical mapping of the CO2 release plume that is difficult to obtain using more conventional techniques. The figures show the nature and quality of the data from one of the locations. Details concerning instrument performance, systematics, calibration, and data processing will be discussed. Fig1: Time chart of CO2 concentration and isotope ratio δ13C from one of 13 sample inlet locations at ZERT release field, July, 2009. Fig2: Keeling plot of data from Fig1 illustrating the two source mixing of soil (-27 ‰) and fossil (-56 ‰) CO2 with background air.

  13. Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection.

    PubMed

    Spiers, Gary D; Menzies, Robert T; Jacob, Joseph; Christensen, Lance E; Phillips, Mark W; Choi, Yonghoon; Browell, Edward V

    2011-05-10

    We report airborne measurements of CO(2) column abundance conducted during two 2009 campaigns using a 2.05 μm laser absorption spectrometer. The two flight campaigns took place in the California Mojave desert and in Oklahoma. The integrated path differential absorption (IPDA) method is used for the CO(2) column mixing ratio retrievals. This instrument and the data analysis methodology provide insight into the capabilities of the IPDA method for both airborne measurements and future global-scale CO(2) measurements from low Earth orbit pertinent to the NASA Active Sensing of CO(2) Emissions over Nights, Days, and Seasons mission. The use of a favorable absorption line in the CO(2) 2 μm band allows the on-line frequency to be displaced two (surface pressure) half-widths from line center, providing high sensitivity to the lower tropospheric CO(2). The measurement repeatability and measurement precision are in good agreement with predicted estimates. We also report comparisons with airborne in situ measurements conducted during the Oklahoma campaign.

  14. Glass Composition-Dependent Silicate Absorption Peaks in FTIR Spectroscopy: Implications for Measuring Sample Thickness and Molecular H2O

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Nichols, A. R.; Schipper, C. I.; Stewart, R. B.

    2015-12-01

    Fourier-transform infrared spectroscopy (FTIR) is often used to measure the H2O and CO2 contents of volcanic glasses. A key advantage of FTIR over other analytical techniques is that it can reveal not only total H2O concentration but also H2O speciation, i.e. how much H2O is present as molecular H2O (H2Om) and how much as hydroxyl groups (OH) bound to the silicate network. This H2O speciation data can be used to investigate cooling rate and glass transition temperature of volcanic glasses, and to interpret H2O contents of pyroclasts affected by partial bubble resorption during cooling or secondary hydration after deposition. FTIR in transmitted light requires sample wafers polished on both sides of known thickness. Thickness is commonly measured using a micrometer but this may damage fragile samples and in samples with non-uniform thickness, e.g. vesicular samples, it is difficult to position at the exact location of FTIR analysis. Furthermore, in FTIR images or maps of such samples it is impractical to determine the thickness across the whole of the analysed area, resulting either in only a selection of the collected data being processed quantitatively and the rest being unused, or results being presented in terms of absorbance, which does not account for variations in thickness.It is known that FTIR spectra contain absorption peaks related to the glass aluminosilicate network at wavenumbers of ~2000, ~1830 and ~1600 cm-1 [1]. These have been shown to be proportional to sample thickness at the analysis location for one obsidian composition with up to 0.66 wt% H2O [2]. We test whether this calibration can be applied more widely by analysing a range of synthetic and natural glasses (andesitic to rhyolitic) to examine how the position and relative intensities of the different silicate absorption peaks vary with composition and H2O content. Our data show that even minor differences in composition necessitate a unique calibration. Furthermore, importantly we show how

  15. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements

    USGS Publications Warehouse

    Vita, Fabio; Kern, Christoph; Inguaggiato, Salvatore

    2014-01-01

    Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and power-inefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, portable, low-power LP-DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. The LP-DOAS was used to measure sulfur dioxide (SO2) emissions from La Fossa crater, Vulcano, Italy, where column densities of up to 1.2 × 1018 molec cm−2 (~ 500 ppmm) were detected along open paths of up to 400 m in total length. The instrument's SO2 detection limit was determined to be 2 × 1016 molec cm−2 (~ 8 ppmm), thereby making quantitative detection of even trace amounts of SO2 possible. The instrument is capable of measuring other volcanic volatile species as well. Though the spectral evaluation of the recorded data showed that chlorine monoxide (ClO) and carbon disulfide (CS2) were both below the instrument's detection limits during the experiment, the upper limits for the X / SO2 ratio (X = ClO, CS2) could be derived, and yielded 2 × 10−3 and 0.1, respectively. The robust design and versatility of the instrument make it a promising tool for monitoring of volcanic degassing and understanding processes in a range of volcanic systems.

  16. Ammonia concentration distribution measurements in the exhaust of a heavy duty diesel engine based on limited data absorption tomography.

    PubMed

    Stritzke, Felix; van der Kley, Sani; Feiling, Alexander; Dreizler, Andreas; Wagner, Steven

    2017-04-03

    A multichannel tunable diode laser absorption spectrometer is used to measure absolute ammonia concentrations and their distributions in exhaust gas applications with intense CO2 and H2O background. Designed for in situ diagnostics in SCR after treatment systems with temperatures up to 800 K, the system employs a fiber coupled near-infrared distributed feedback diode laser. With the laser split into eight coplanar beams crossing the exhaust pipe, the sensor provides eight concentration measurements simultaneously. Three ammonia ro-vibrational transitions coinciding near 2200.5 nm with rather weak temperature dependency and negligible CO2/H2O interference were probed during the measurements. The line-of-sight averaged channel concentrations are transformed into 2-D ammonia distributions using limited data IR species tomography based on Tikhonov regularization. This spectrometer was successfully applied in the exhaust system of a 340 kW heavy duty diesel engine operated without oxidation catalyst or particulate filter. In this harsh environment the multi-channel sensor achieved single path ammonia detection limits of 25 to 80 ppmV with a temporal resolution of 1 Hz whereas, while operated as a single-channel sensor, these characteristics improved to 10 ppmV and 100 Hz. Spatial averaging of the reconstructed 2-D ammonia distributions shows good agreement to cross-sectional extractive measurements. In contrast to extractive methods more information about spatial inhomogeneities and transient operating conditions can be derived from the new spectrometer.

  17. WVR-GPS comparison measurements and calibration of the 20-32 GHz tropospheric water vapor absorption model.

    SciTech Connect

    Keihm, S. J.; Bar-Server, Y.; Liljegren, J. C.; Environmental Research; NASA

    2002-06-01

    Collocated measurements of opacity (from water vapor radiometer brightness temperatures) and wet path delay (from ground-based tracking of global positioning satellites) are used to constrain the model of atmospheric water vapor absorption in the 20-32 GHz band. A differential approach is presented in which the slope of opacity-versus-wet delay data is used as the absorption model constraint. This technique minimizes the effects of radiometric calibration errors and oxygen model uncertainties in the derivation of a best-fit vapor absorption model. A total of approximately five months of data was obtained from two experiment sites. At the Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma, three independent water vapor radiometers (WVRs) provided near-continuous opacity measurements over the interval July-September 1998. At the NASA/Goldstone tracking station in the California desert two WVRs; obtained opacity data over the September-October 1997 interval. At both sites a Global Positioning Satellite (GPS) receiver and surface barometer obtained the data required for deriving the zenith wet delays over the same time frames. Measured values of the opacity-versus-wet delay slope parameter were obtained at four WVR frequencies (20.7, 22.2, 23.8, and 31.4 GHz) and compared with predictions of four candidate absorption models referenced in the literature. With one exception, all three models provide agreement within 5% of the opacity-versus-wet delay slope measurements at all WVR frequencies at both sites. One model provides agreement for all channels at both sites to the 2-3% level. This absorption model accuracy level represents a significant improvement over that attainable using radiosondes.

  18. Calibration-free self-absorption model for measuring nitric oxide concentration in a pulsed corona discharge.

    PubMed

    Du, Yanjun; Ding, Yanjun; Liu, Yufeng; Lan, Lijuan; Peng, Zhimin

    2014-08-01

    The effect of self-absorption on emission intensity distributions can be used for species concentration measurements. A calculation model is developed based on the Beer-Lambert law to quantify this effect. And then, a calibration-free measurement method is proposed on the basis of this model by establishing the relationship between gas concentration and absorption strength. The effect of collision parameters and rotational temperature on the method is also discussed. The proposed method is verified by investigating the nitric oxide emission bands (A²Σ⁺→X²∏) that are generated by a pulsed corona discharge at various gas concentrations. Experiment results coincide well with the expectations, thus confirming the precision and accuracy of the proposed measurement method.

  19. Optical properties of Mg-doped VO{sub 2}: Absorption measurements and hybrid functional calculations

    SciTech Connect

    Hu Shuanglin; Li, S.-Y.; Granqvist, C. G.; Niklasson, G. A.; Ahuja, R.; Scheicher, R. H.; Hermansson, K.

    2012-11-12

    Mg-doped VO{sub 2} thin films with thermochromic properties were made by reactive DC magnetron co-sputtering onto heated substrates, and spectral absorption was recorded at room temperature in the 0.5 < h{omega} < 3.5 eV energy range. Clear evidence was found for a widening of the main band gap from 1.67 to 2.32 eV as the Mg/(V + Mg) atomic ratio went from zero to 0.19, thereby significantly lowering the luminous absorption. This technologically important effect could be reconciled with spin-polarized density functional theory calculations using the Heyd-Scuseria-Ernzerhof [Heyd et al., J. Chem. Phys. 118, 8207 (2003); ibid. 124, 219906 (2006)] hybrid functional. Specifically, the calculated luminous absorptance decreased when the Mg/(V + Mg) ratio was increased from 0.125 to 0.250.

  20. Determination of scattering coefficient considering wavelength and absorption dependence of anisotropy factor measured by polarized beam for biological tissues

    NASA Astrophysics Data System (ADS)

    Fukutomi, D.; Ishii, K.; Awazu, K.

    2015-12-01

    Anisotropy factor g, one of the optical properties of biological tissues, is the most important parameter to accurately determine scattering coefficient μs in the inverse Monte Carlo (iMC) simulation. It has been reported that g has wavelength and absorption dependence, however, there are few attempts in order to calculate μs of biological tissue considering the wavelength and absorption dependence of g. In this study, the scattering angular distributions of biological tissue phantoms were measured in order to determine g by using goniometric measurements with three polarization conditions at strongly and weakly absorbing wavelengths of hemoglobin. Then, optical properties, especially, μs were measured by integrating sphere measurements and iMC simulation in order to confirm the influence of measured g on optical properties in comparison of with general value of g (0.9) for soft biological tissue. Consequently, it was found that μs was overestimated at strongly absorbing wavelength, however, μs was underestimated at weakly absorbing wavelength if the g was not considered its wavelength and absorption dependence.

  1. Effect of radiometric errors on accuracy of temperature-profile measurement by spectral scanning using absorption-emission pyrometry

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1972-01-01

    The spectral-scanning method may be used to determine the temperature profile of a jet- or rocket-engine exhaust stream by measurements of gas radiation and transmittance, at two or more wavelengths. A single, fixed line of sight is used, using immobile radiators outside of the gas stream, and there is no interference with the flow. At least two sets of measurements are made, each set consisting of the conventional three radiometric measurements of absorption-emission pyrometry, but each set is taken over a different spectral interval that gives different weight to the radiation from a different portion of the optical path. Thereby, discrimination is obtained with respect to location along the path. A given radiometric error causes an error in computed temperatures. The ratio between temperature error and radiometric error depends on profile shape, path length, temperature level, and strength of line absorption, and the absorption coefficient and its temperature dependency. These influence the choice of wavelengths, for any given gas. Conditions for minimum temperature error are derived. Numerical results are presented for a two-wavelength measurement on a family of profiles that may be expected in a practical case of hydrogen-oxygen combustion. Under favorable conditions, the fractional error in temperature approximates the fractional error in radiant-flux measurement.

  2. H2O and O2 Absorption-Line Abundances in the Coma of Comet 67P/Churyumov-Gerasimenko Measured by the R-Alice Ultraviolet Spectrograph

    NASA Astrophysics Data System (ADS)

    Keeney, Brian A.; Stern, S. Alan; Schindhelm, Eric; A'Hearn, Michael F.; Bertaux, Jean-Loup; Bieler, Andre; Feaga, Lori M.; Feldman, Paul D.; Parker, Joel Wm; Steffl, Andrew Joseph; Weaver, Harold A.

    2016-10-01

    The Alice far-UV spectrograph, aboard the ESA Rosetta spacecraft, has observed emissions in the wavelength range 800-2000 Å from the coma of Comet 67P/Churyumov-Gerasimenko since before orbital insertion in September 2014. We present novel observations of the cometary coma in absorption against the stellar continuum of UV-bright stars that were targeted or serendipitously observed near the comet's nucleus between April 2015 and February 2016 at heliocentric radii ranging from 1.2 to 2.4 AU. These spectra show clear signatures of absorption from gaseous H2O and O2. The observed H2O column densities agree well with values found by Rosetta's VIRTIS instrument (Bockelée-Morvan et al. 2015, A&A, 583, A6) and can be reasonably described by a simple Haser model. However, the absorption-derived O2/H2O ratio is somewhat larger than the 1-10% range reported by Rosetta's ROSINA mass spectrometer (Bieler et al. 2015, Nature, 526, 678) from September 2014 through March 2015 at heliocentric radii of 2.1-3.2 AU. We explore potential causes for this discrepancy, including systematic biases in the absorption-line measurements and seasonal variations in O2/H2O as the comet approaches perihelion.

  3. Pulsed HF radiowave absorption measurements at 2.1 MHZ. over Delhi under quiet and solar flare conditions and related electron density height profiles

    NASA Astrophysics Data System (ADS)

    Balachandra Swamy, A. C.

    of the radio signal, the responsible ionization can be placed in the D-region. The radiowave absorption in the ionosphere at a single frequency of 2.1 MHz. has been measured at the Ionosphere Research Center, University of Delhi by the pulsed A1 Technique. The entire equipment used for this experiment has been designed and fabricated at the IRC, Delhi using the most recent electronic instrumentioation techniques. The systems have been digitised and automated. Ionospheric absorption data have been taken during the years 1981 through 19883 have been analysed for normal, durnal. Seasonal and sunspot cycle variations. The radiowave absorption both under quiet and solar flare conditions has been computed by making use of the generalised sen and wyler3 (1960) magnetoionic theory using the computed electron density profiles. The computed values of radiowave absorption are compared with those of the observed values. Under normal conditions , H-Lyman-α radiation 1215.6 A.U, ionizing nitric oxide is the main source of ionization in the D-region. Under solar flare conditions, the intensity of X-rays below 10 A.U, increases by several orders of magnitude, while the intensity of H-Lyman-α radiation increases only by small factors. In order to show the relative importance of solar X-rays below 10A.U increases by several orders of magnitude, while the intensity of H-Lyman- α radiation increases only by small factors. Inorder to show the relative importance of solar X-rays below 10A.U under solar flare conditions, photoionisation rates have been computed in discrete wavelength bands of the solare spectrum of 10 to 1027 A.U and H-Lyman- α under quiet moderate flare, strong flare and outstanding flare conditions by making use of the latest available input parameters. Electron density profiles have been derived by making use of the ion composition model of Balachndra Swamy (1991) both under quiet and solar flare conditions for Delhi. Using these electron density profiles, the

  4. Measurements of the absorption cross section of (13)CHO(13)CHO at visible wavelengths and application to DOAS retrievals.

    PubMed

    Goss, Natasha R; Waxman, Eleanor M; Coburn, Sean C; Koenig, Theodore K; Thalman, Ryan; Dommen, Josef; Hannigan, James W; Tyndall, Geoffrey S; Volkamer, Rainer

    2015-05-14

    The trace gas glyoxal (CHOCHO) forms from the atmospheric oxidation of hydrocarbons and is a precursor to secondary organic aerosol. We have measured the absorption cross section of disubstituted (13)CHO(13)CHO ((13)C glyoxal) at moderately high (1 cm(-1)) optical resolution between 21 280 and 23 260 cm(-1) (430-470 nm). The isotopic shifts in the position of absorption features were found to be largest near 455 nm (Δν = 14 cm(-1); Δλ = 0.29 nm), whereas no significant shifts were observed near 440 nm (Δν < 0.5 cm(-1); Δλ < 0.01 nm). These shifts are used to investigate the selective detection of (12)C glyoxal (natural isotope abundance) and (13)C glyoxal by in situ cavity enhanced differential optical absorption spectroscopy (CE-DOAS) in a series of sensitivity tests using synthetic spectra, and laboratory measurements of mixtures containing (12)C and (13)C glyoxal, nitrogen dioxide, and other interfering absorbers. We find the changes in apparent spectral band shapes remain significant at the moderately high optical resolution typical of CE-DOAS (0.55 nm fwhm). CE-DOAS allows for the selective online detection of both isotopes with detection limits of ∼200 pptv (1 pptv = 10(-12) volume mixing ratio), and sensitivity toward total glyoxal of few pptv. The (13)C absorption cross section is available for download from the Supporting Information.

  5. Measurements of the infrared absorption cross-sections of HCFC-141b (CH3CFCl2)

    NASA Astrophysics Data System (ADS)

    Le Bris, Karine; McDowell, James; Strong, Kimberly

    2012-10-01

    Detection of atmospheric trace gases by optical remote sensing techniques relies on the availability of molecular absorption spectra over a range of relevant temperatures. Absorption cross-sections of a pure vapour of the hydrochlorofluorocarbon HCFC-141b are reported at a resolution of 0.02 cm-1 for a range of temperatures between 223 and 283 K and a spectral range of 570-3100 cm-1. The integrated intensities of the nine main harmonic bands compare well with the data available from previous experimental studies and with theoretical calculations by ab initio and density functional theories.

  6. Measurements of trace constituents from atmospheric infrared emission and absorption spectra, a feasibility study

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Williams, W. J.; Murcray, D. G.

    1974-01-01

    The feasibility of detecting eight trace constituents (CH4, HCl, HF, HNO3, NH3, NO, NO2 and SO2) against the rest of the atmospheric background at various altitudes from infrared emission and absorption atmospheric spectra was studied. Line-by-line calculations and observational data were used to establish features that can be observed in the atmospheric spectrum due to each trace constituent. Model calculations were made for experimental conditions which approximately represent state of the art emission and absorption spectrometers.

  7. Measurement of the two-photon absorption cross section by means of femtosecond thermal lensing.

    PubMed

    Rodriguez, Luis; Chiesa, Matteo

    2011-07-01

    We present a va