Time-dependent oral absorption models
NASA Technical Reports Server (NTRS)
Higaki, K.; Yamashita, S.; Amidon, G. L.
2001-01-01
The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.
Metal powder absorptivity: Modeling and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.
Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.
Metal powder absorptivity: Modeling and experiment
Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.; ...
2016-08-10
Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.
NASA Astrophysics Data System (ADS)
Prabhakaran, Sai Shri; Sahu, Sanjay Kumar; Dev, Pravin Jeba; Shanmugam, Palanisamy
2018-05-01
Spectral absorption coefficients of particulate (algal and non-algal components) and dissolved substances are modelled and combined with the pure seawater component to determine the total light absorption coefficients of seawater in the Bay of Bengal. Two parameters namely chlorophyll-a (Chl) concentration and turbidity were measured using commercially available instruments with high sampling rates. For modelling the light absorption coefficients of oceanic waters, the measured data are classified into two broad groups - algal dominant and non-algal particle (NAP) dominant. With these criteria the individual absorption coefficients of phytoplankton and NAP were established based on their concentrations using an iterative method. To account for the spectral dependence of absorption by phytoplankton, the wavelength-dependent coefficients were introduced into the model. The CDOM absorption was determined by subtracting the individual absorption coefficients of phytoplankton and NAP from the measured total absorption data and then related to the Chl concentration. Validity of the model is assessed based on independent in-situ data from certain discrete locations in the Bay of Bengal. The total absorption coefficients estimated using the new model by considering the contributions of algal, non-algal and CDOM have good agreement with the measured total absorption data with the error range of 6.9 to 28.3%. Results obtained by the present model are important for predicting the propagation of the radiant energy within the ocean and interpreting remote sensing observation data.
Food, gastrointestinal pH, and models of oral drug absorption.
Abuhelwa, Ahmad Y; Williams, Desmond B; Upton, Richard N; Foster, David J R
2017-03-01
This article reviews the major physiological and physicochemical principles of the effect of food and gastrointestinal (GI) pH on the absorption and bioavailability of oral drugs, and the various absorption models that are used to describe/predict oral drug absorption. The rate and extent of oral drug absorption is determined by a complex interaction between a drug's physicochemical properties, GI physiologic factors, and the nature of the formulation administered. GI pH is an important factor that can markedly affect oral drug absorption and bioavailability as it may have significant influence on drug dissolution & solubility, drug release, drug stability, and intestinal permeability. Different regions of the GI tract have different drug absorptive properties. Thus, the transit time in each GI region and its variability between subjects may contribute to the variability in the rate and/or extent of drug absorption. Food-drug interactions can result in delayed, decreased, increased, and sometimes un-altered drug absorption. Food effects on oral absorption can be achieved by direct and indirect mechanisms. Various models have been proposed to describe oral absorption ranging from empirical models to the more sophisticated "mechanism-based" models. Through understanding of the physicochemical and physiological rate-limiting factors affecting oral absorption, modellers can implement simplified population-based modelling approaches that are less complex than whole-body physiologically-based models but still capture the essential elements in a physiological way and hence will be more suited for population modelling of large clinical data sets. It will also help formulation scientists to better predict formulation performance and to develop formulations that maximize oral bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.
Models of filter-based particle light absorption measurements
NASA Astrophysics Data System (ADS)
Hamasha, Khadeejeh M.
Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model allows for studying very general cases of particles of various sizes embedded on arbitrary filter media. Application of this model to the Reno Aerosol Optics Study (Laboratory data) shows that the aerosol light absorption coefficients are about half of the Aethalometer attenuation coefficients, and there is a reasonable agreement between the model calculated absorption coefficients at 521 nm and the measured photoacoustic absorption coefficients at 532 nm. For ambient data obtained during the Las Vegas study, it shows that the model absorption coefficients at 521 nm are larger than the photoacoustic coefficients at 532 nm. Use of the 2-stream model shows that particle penetration depth into the filter has a strong influence on the interpretation of filter-based aerosol light absorption measurements. This is likely explanation for the difference found between model results for filter-based aerosol light absorption and those from photoacoustic measurements for ambient and laboratory aerosol.
Miller, Leland V.; Krebs, Nancy F.; Hambidge, K. Michael
2013-01-01
A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption. PMID:22617116
Miller, Leland V; Krebs, Nancy F; Hambidge, K Michael
2013-02-28
A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption.
Ding, Xuan; Day, Jeffrey S; Sperry, David C
2016-11-01
Absorption modeling has demonstrated its great value in modern drug product development due to its utility in understanding and predicting in vivo performance. In this case, we integrated physiologically based modeling in the development processes to effectively design extended-release (ER) clinical products for an ester prodrug LY545694. By simulating the trial results of immediate-release products, we delineated complex pharmacokinetics due to prodrug conversion and established an absorption model to describe the clinical observations. This model suggested the prodrug has optimal biopharmaceutical properties to warrant developing an ER product. Subsequently, we incorporated release profiles of prototype ER tablets into the absorption model to simulate the in vivo performance of these products observed in an exploratory trial. The models suggested that the absorption of these ER tablets was lower than the IR products because the extended release from the formulations prevented the drug from taking advantage of the optimal absorption window. Using these models, we formed a strategy to optimize the ER product to minimize the impact of the absorption window limitation. Accurate prediction of the performance of these optimized products by modeling was confirmed in a third clinical trial.
Crum, Matthew F; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Porter, Christopher J H
2016-04-01
In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption 'sink' into the experimental model. An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption. Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion - in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance. For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.
Promises of Machine Learning Approaches in Prediction of Absorption of Compounds.
Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar
2018-01-01
The Machine Learning (ML) is one of the fastest developing techniques in the prediction and evaluation of important pharmacokinetic properties such as absorption, distribution, metabolism and excretion. The availability of a large number of robust validation techniques for prediction models devoted to pharmacokinetics has significantly enhanced the trust and authenticity in ML approaches. There is a series of prediction models generated and used for rapid screening of compounds on the basis of absorption in last one decade. Prediction of absorption of compounds using ML models has great potential across the pharmaceutical industry as a non-animal alternative to predict absorption. However, these prediction models still have to go far ahead to develop the confidence similar to conventional experimental methods for estimation of drug absorption. Some of the general concerns are selection of appropriate ML methods and validation techniques in addition to selecting relevant descriptors and authentic data sets for the generation of prediction models. The current review explores published models of ML for the prediction of absorption using physicochemical properties as descriptors and their important conclusions. In addition, some critical challenges in acceptance of ML models for absorption are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The gas-phase absorption spectrum of a neutral GFP model chromophore.
Lammich, L; Petersen, M Axman; Nielsen, M Brøndsted; Andersen, L H
2007-01-01
We have studied the gas-phase absorption properties of the green fluorescent protein (GFP) chromophore in its neutral (protonated) charge state in a heavy-ion storage ring. To accomplish this we synthesized a new molecular chromophore with a charged NH(3) group attached to a neutral model chromophore of GFP. The gas-phase absorption cross section of this chromophore molecule as a function of the wavelength is compared to the well-known absorption profile of GFP. The chromophore has a maximum absorption at 415 +/- 5 nm. When corrected for the presence of the charged group attached to the GFP model chromophore, the unperturbed neutral chromophore is predicted to have an absorption maximum at 399 nm in vacuum. This is very close to the corresponding absorption peak of the protein at 397 nm. Together with previous data obtained with an anionic GFP model chromophore, the present data show that the absorption of GFP is primarily determined by intrinsic chromophore properties. In other words, there is strong experimental evidence that, in terms of absorption, the conditions in the hydrophobic interior of this protein are very close to those in vacuum.
Temperature dependence of the HNO3 UV absorption cross sections
NASA Technical Reports Server (NTRS)
Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan
1993-01-01
The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.
Enhanced light absorption by mixed source black and brown carbon particles in UK winter
Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.
2015-01-01
Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models. PMID:26419204
Enhanced light absorption by mixed source black and brown carbon particles in UK winter
Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; ...
2015-09-30
We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combinationmore » of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.« less
NASA Astrophysics Data System (ADS)
Cole, Ryan Kenneth; Schroeder, Paul James; Diego Draper, Anthony; Rieker, Gregory Brian
2018-06-01
Modelling absorption spectra in high pressure, high temperature environments is complicated by the increased relevance of higher order collisional phenomena (e.g. line mixing, collision-induced absorption, finite duration of collisions) that alter the spectral lineshape. Accurate reference spectroscopy in these conditions is of interest for mineralogy and radiative transfer studies of Venus as well as other dense planetary atmospheres. We present a new, high pressure, high temperature absorption spectroscopy facility at the University of Colorado Boulder. This facility employs a dual frequency comb absorption spectrometer to record broadband (500nm), high resolution (~0.002nm) spectra in conditions comparable to the Venus surface (730K, 90bar). Measurements of the near-infrared spectrum of carbon dioxide at high pressure and temperature will be compared to modeled spectra extrapolated from the HITRAN 2016 database as well as other published models that include additional collisional physics. This comparison gives insight into the effectiveness of existing absorption databases for modeling the lower Venus atmosphere as well as the need to expand absorption models to suit these conditions.
NASA Astrophysics Data System (ADS)
Wang, D.; Cui, Y.
2015-12-01
The objectives of this paper are to validate the applicability of a multi-band quasi-analytical algorithm (QAA) in retrieval absorption coefficients of optically active constituents in turbid coastal waters, and to further improve the model using a proposed semi-analytical model (SAA). The ap(531) and ag(531) semi-analytically derived using SAA model are quite different from the retrievals procedures of QAA model that ap(531) and ag(531) are semi-analytically derived from the empirical retrievals results of a(531) and a(551). The two models are calibrated and evaluated against datasets taken from 19 independent cruises in West Florida Shelf in 1999-2003, provided by SeaBASS. The results indicate that the SAA model produces a superior performance to QAA model in absorption retrieval. Using of the SAA model in retrieving absorption coefficients of optically active constituents from West Florida Shelf decreases the random uncertainty of estimation by >23.05% from the QAA model. This study demonstrates the potential of the SAA model in absorption coefficients of optically active constituents estimating even in turbid coastal waters. Keywords: Remote sensing; Coastal Water; Absorption Coefficient; Semi-analytical Model
Measurements of the Absorption by Auditorium SEATING—A Model Study
NASA Astrophysics Data System (ADS)
BARRON, M.; COLEMAN, S.
2001-01-01
One of several problems with seat absorption is that only small numbers of seats can be tested in standard reverberation chambers. One method proposed for reverberation chamber measurements involves extrapolation when the absorption coefficient results are applied to actual auditoria. Model seat measurements in an effectively large model reverberation chamber have allowed the validity of this extrapolation to be checked. The alternative barrier method for reverberation chamber measurements was also tested and the two methods were compared. The effect on the absorption of row-row spacing as well as absorption by small numbers of seating rows was also investigated with model seats.
David, Dahlgren; Carl, Roos; Pernilla, Johansson; Christer, Tannergren; Anders, Lundqvist; Peter, Langguth; Markus, Sjöblom; Erik, Sjögren; Hans, Lennernäs
2018-05-11
Pharmaceutical excipients that may affect gastrointestinal (GI) drug absorption are called critical pharmaceutical excipients (CPEs), or absorption-modifying excipients (AMEs) if they act by altering the integrity of the intestinal epithelial cell membrane. Some of these excipients increase intestinal permeability, and subsequently the absorption and bioavailability of the drug. This could have implications for both the assessment of bioequivalence and the efficacy of the absorption-enhancing drug delivery system. The absorption-enhancing effects of AMEs/CPEs with different mechanisms (chitosan, sodium caprate, sodium dodecyl sulfate (SDS)) have previously been evaluated in the rat single-pass intestinal perfusion (SPIP) model. However, it remains unclear whether these SPIP data are predictive in a more in vivo like model. The same excipients were in this study evaluated in rat and dog intraintestinal bolus models. SDS and chitosan did exert an absorption-enhancing effect in both bolus models, but the effect was substantially lower than those observed in the rat SPIP model. This illustrates the complexity of the AME/CPE effects, and indicates that additional GI physiological factors need to be considered in their evaluation. We therefore recommend that AME/CPE evaluations obtained in transit-independent, preclinical permeability models (e.g. Ussing, SPIP) should be verified in animal models better able to predict in vivo relevant GI effects, at multiple excipient concentrations. Copyright © 2018. Published by Elsevier B.V.
Absorption of Solar Radiation by Clouds: Observations Versus Models
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, M. H.; Minnis, P.; Corsetti, L.; Dutton, E. G.; Forgan, B. W.; Garber, D. P.; Gates, W. L.; Hack, J. J.; Harrison, E. F.;
1995-01-01
There has been a long history of unexplained anomalous absorption of solar radiation by clouds. Collocated satellite and surface measurements of solar radiation at five geographically diverse locations showed significant solar absorption by clouds, resulting in about 25 watts per square meter more global-mean absorption by the cloudy atmosphere than predicted by theoretical models. It has often been suggested that tropospheric aerosols could increase cloud absorption. But these aerosols are temporally and spatially heterogeneous, whereas the observed cloud absorption is remarkably invariant with respect to season and location. Although its physical cause is unknown, enhanced cloud absorption substantially alters our understanding of the atmosphere's energy budget.
Parrott, Neil J; Yu, Li J; Takano, Ryusuke; Nakamura, Mikiko; Morcos, Peter N
2016-11-01
Alectinib, a lipophilic, basic, anaplastic lymphoma kinase (ALK) inhibitor with very low aqueous solubility, has received Food and Drug Administration-accelerated approval for the treatment of patients with ALK+ non-small-cell lung cancer. This paper describes the application of physiologically based absorption modeling during clinical development to predict and understand the impact of food and gastric pH changes on alectinib absorption. The GastroPlus ™ software was used to develop an absorption model integrating in vitro and in silico data on drug substance properties. Oral pharmacokinetics was simulated by linking the absorption model to a disposition model fit to pharmacokinetic data obtained after an intravenous infusion. Simulations were compared to clinical data from a food effect study and a drug-drug interaction study with esomeprazole, a gastric acid-reducing agent. Prospective predictions of a positive food effect and negligible impact of gastric pH elevation were confirmed with clinical data, although the exact magnitude of the food effect could not be predicted with confidence. After optimization of the absorption model with clinical food effect data, a refined model was further applied to derive recommendations on the timing of dose administration with respect to a meal. The application of biopharmaceutical absorption modeling is an area with great potential to further streamline late stage drug development and with impact on regulatory questions.
Investigation into the absorptivity change in metals with increased laser power
NASA Astrophysics Data System (ADS)
Blidegn, M. Sc. K.; Olsen, Flemming O.
1997-04-01
At first glance the low absorptivity of metals in the infrared (IR) makes the use of YAG or carbon-dioxide lasers in metal processing very inefficient. However, it has been demonstrated that the absorptivity can reach significantly higher levels during the high power laser interaction. An increase which cannot be explained by the increase in temperature only. The interaction between laser light and metals is a major physical phenomena in laser material processing and when modeling processes the Drude free electron model or simplifications, such as the Hagen-Rubens relation, have often been used. This paper discusses the need to extend the Drude model taking into account interband transitions and anormal skin effect at low light intensities and a multiphoton absorption model in order to describe the increase in the absorptivity at high intensities. The model is compared with experimental results carried out at low power, and tested on experimental absorptivity measurements at high power YAG laser pulses, found in literature.
A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases
NASA Technical Reports Server (NTRS)
Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.
2012-01-01
A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.
NASA Technical Reports Server (NTRS)
Long, E. R., Jr.
1979-01-01
The Bethe-Bloch stopping power relations for inelastic collisions were used to determine the absorption of electron and proton energy in cured neat epoxy resin and the absorption of electron energy in a graphite/epoxy composite. Absorption of electron energy due to bremsstrahlung was determined. Electron energies from 0.2 to 4.0 MeV and proton energies from 0.3 to 1.75 MeV were used. Monoenergetic electron energy absorption profiles for models of pure graphite, cured neat epoxy resin, and graphite/epoxy composites are reported. A relation is determined for depth of uniform energy absorption in a composite as a function of fiber volume fraction and initial electron energy. Monoenergetic proton energy absorption profiles are reported for the neat resin model. A relation for total proton penetration in the epoxy resin as a function of initial proton energy is determined. Electron energy absorption in the composite due to bremsstrahlung is reported. Electron and proton energy absorption profiles in cured neat epoxy resin are reported for environments approximating geosynchronous earth orbit.
Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models
NASA Technical Reports Server (NTRS)
Rosenthal, C. S.
1992-01-01
Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.
A theoretical study of microwave beam absorption by a rectenna
NASA Technical Reports Server (NTRS)
Ott, J. H.; Rice, J. S.; Thorn, D. C.
1980-01-01
The rectenna's microwave power beam absorption limit was theoretically confirmed by two mathematical models descriptive of the microwave absorption process; first one model was based on the current sheet equivalency of a large planar array above a reflector and the second model, which was based on the properties of a waveguide with special imaging characteristics, quantified the electromagnetic modes (field configurations) in the immediate vicinity of a Rectenna element spacing which permit total power beam absorption by preventing unwanted modes from propagating (scattering) were derived using these models. Several factors causing unwanted scattering are discussed.
Duan, J; Kesisoglou, F; Novakovic, J; Amidon, GL; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R
2017-01-01
On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled “Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation.”1 The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole‐body framework.2 PMID:28571121
NASA Technical Reports Server (NTRS)
Alvarado, Matthew J.; Lonsdale, Chantelle R.; Macintyre, Helen L.; Bian, Huisheng; Chin, Mian; Ridley, David A.; Heald, Colette L.; Thornhill, Kenneth L.; Anderson, Bruce E.; Cubison, Michael J.;
2016-01-01
Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9- 02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10-23 percent, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GCRT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction throughout the aerosol size distribution. Using a core-shell mixing rule in ASP overestimates aerosol absorption, especially for the fresh biomass burning aerosol measured in ARCTAS-B, suggesting the need for modeling the time-varying mixing states of aerosols in future versions of ASP.
NASA Astrophysics Data System (ADS)
Alvarado, Matthew J.; Lonsdale, Chantelle R.; Macintyre, Helen L.; Bian, Huisheng; Chin, Mian; Ridley, David A.; Heald, Colette L.; Thornhill, Kenneth L.; Anderson, Bruce E.; Cubison, Michael J.; Jimenez, Jose L.; Kondo, Yutaka; Sahu, Lokesh K.; Dibb, Jack E.; Wang, Chien
2016-07-01
Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10-23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction throughout the aerosol size distribution. Using a core-shell mixing rule in ASP overestimates aerosol absorption, especially for the fresh biomass burning aerosol measured in ARCTAS-B, suggesting the need for modeling the time-varying mixing states of aerosols in future versions of ASP.
2015-01-01
analytical Beer - Lambert absorption profile to model laser heating of pure energetic crystals without considering any EM wave propagation effects...temperature. These aggregates were studied using both an analytical distribution for laser heating following Beer - Lambert absorption and the full EM finite...surface (ysurface - y) and material absorption coefficient, α, following a Beer - Lambert absorption relation given by , = !()
Song, Boqi; Peng, Limin; Fu, Feng; Liu, Meihong; Zhang, Houjiang
2016-11-22
Perforated wooden panels are typically utilized as a resonant sound absorbing material in indoor noise control. In this paper, the absorption properties of wooden panels perforated with tiny holes of 1-3 mm diameter were studied both experimentally and theoretically. The Maa-MPP (micro perforated panels) model and the Maa-Flex model were applied to predict the absorption regularities of finely perforated wooden panels. A relative impedance comparison and full-factorial experiments were carried out to verify the feasibility of the theoretical models. The results showed that the Maa-Flex model obtained good agreement with measured results. Control experiments and measurements of dynamic mechanical properties were carried out to investigate the influence of the wood characteristics. In this study, absorption properties were enhanced by sound-induced vibration. The relationship between the dynamic mechanical properties and the panel mass-spring vibration absorption was revealed. While the absorption effects of wood porous structure were not found, they were demonstrated theoretically by using acoustic wave propagation in a simplified circular pipe with a suddenly changed cross-section model. This work provides experimental and theoretical guidance for perforation parameter design.
A network model of successive partitioning-limited solute diffusion through the stratum corneum.
Schumm, Phillip; Scoglio, Caterina M; van der Merwe, Deon
2010-02-07
As the most exposed point of contact with the external environment, the skin is an important barrier to many chemical exposures, including medications, potentially toxic chemicals and cosmetics. Traditional dermal absorption models treat the stratum corneum lipids as a homogenous medium through which solutes diffuse according to Fick's first law of diffusion. This approach does not explain non-linear absorption and irregular distribution patterns within the stratum corneum lipids as observed in experimental data. A network model, based on successive partitioning-limited solute diffusion through the stratum corneum, where the lipid structure is represented by a large, sparse, and regular network where nodes have variable characteristics, offers an alternative, efficient, and flexible approach to dermal absorption modeling that simulates non-linear absorption data patterns. Four model versions are presented: two linear models, which have unlimited node capacities, and two non-linear models, which have limited node capacities. The non-linear model outputs produce absorption to dose relationships that can be best characterized quantitatively by using power equations, similar to the equations used to describe non-linear experimental data.
Fetih, Gihan; Lindberg, Sara; Itoh, Katsuhito; Okada, Naoki; Fujita, Takuya; Habib, Fawsia; Artersson, Per; Attia, Mohammed; Yamamoto, Akira
2005-04-11
In general, absorption enhancing effects of various absorption enhancers were greater in the large intestine than those in the small intestinal regions. Therefore, the effectiveness of absorption enhancers is expected to be remarkably observed, if these enhancers can be delivered to the large intestine with some poorly absorbable drugs after oral administration. In this study, therefore, we examined whether chitosan capsules were effective for the colon-specific delivery of a certain absorption enhancer and can improve the absorption enhancing action of the absorption enhancer after oral administration. 5(6)-Carboxyfluorescein (CF) was used as a model drug to investigate the site-dependent effectiveness of various absorption enhancers by an in situ closed loop method. Sodium glycocholate (NaGC), n-dodecyl-beta-d-maltopyranoside (LM), sodium salicylate (NaSal) and sodium caprate (NaCap) were used as models of absorption enhancers in this study. Overall, the absorption enhancing effects of these enhancers for intestinal absorption of CF were greater in the colon than those in the jejunum and the ileum. Especially, among these enhancers tested in this study, LM showed much greater absorption enhancing effect in the colon than in the jejunum and the ileum. Therefore, LM was selected as a model absorption enhancer to examine the effect of chitosan capsules on the absorption enhancing effect of LM. When CF and LM were orally administered to rats using chitosan capsules, the plasma concentration of CF was much higher than those in other dosage forms including solution and gelatin capsules. Therefore, chitosan capsules may be useful carriers for colon-specific delivery of LM, thereby increasing its absorption enhancing effect from the intestinal membranes.
Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, S.H.; Shyu, C.T.
1999-01-01
Carbon dioxide (CO[sub 2]) is widely recognized as a major greenhouse gas contributing to global warming. To mitigate the global warming problem, removal of CO[sub 2] from the industrial flue gases is necessary. Absorption of carbon dioxide by amines in a packed column was experimentally investigated. The amines employed in the present study were the primary mono-ethanolamine (MEA) and tertiary N-methyldiethanolamine (MDEA), two very popular amines widely used in the industries for gas purification. The CO[sub 2] absorption characteristics by these two amines were experimentally examined under various operating conditions. A theoretical model was developed for describing the CO[sub 2]more » absorption behavior. Test data have revealed that the model predictions and the observed CO[sub 2] absorption breakthrough curves agree very well, validating the proposed model. Preliminary regeneration tests of exhausted amine solution were also conducted. The results indicated that the tertiary amine is easier to regenerate with less loss of absorption capacity than the primary one.« less
NASA Astrophysics Data System (ADS)
Dauphin, Myriam; Cosson, Benoit
2016-10-01
The importance of the absorption phenomenon occurring into the semi-transparent substrate of reinforced fiber thermoplastic, during the Laser Transmission Welding process (LTW), was examined. A (3D) transient thermal model of LTW was developed. First, the energy distribution coming from the laser irradiation was assessed. Ray tracing techniques allowed us to deal with both absorption and a strong light-scattering caused by the heterogeneity of composite. Then, the energy balance equation was solved in order to study the heating stage. This paper proposes a comparison of the welding area obtained with a model for which absorption was neglected and a second model where absorption was considered. The interest to consider absorption was shown for process optimization purposes and for the use of reinforced composites colored or filled with additives.
Possible stretched exponential parametrization for humidity absorption in polymers.
Hacinliyan, A; Skarlatos, Y; Sahin, G; Atak, K; Aybar, O O
2009-04-01
Polymer thin films have irregular transient current characteristics under constant voltage. In hydrophilic and hydrophobic polymers, the irregularity is also known to depend on the humidity absorbed by the polymer sample. Different stretched exponential models are studied and it is shown that the absorption of humidity as a function of time can be adequately modelled by a class of these stretched exponential absorption models.
On the nature of absorption features toward nearby stars
NASA Astrophysics Data System (ADS)
Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.
2016-06-01
Context. Diffuse interstellar absorption bands (DIBs) of largely unknown chemical origin are regularly observed primarily in distant early-type stars. More recently, detections in nearby late-type stars have also been claimed. These stars' spectra are dominated by stellar absorption lines. Specifically, strong interstellar atomic and DIB absorption has been reported in τ Boo. Aims: We test these claims by studying the strength of interstellar absorption in high-resolution TIGRE spectra of the nearby stars τ Boo, HD 33608, and α CrB. Methods: We focus our analysis on a strong DIB located at 5780.61 Å and on the absorption of interstellar Na. First, we carry out a differential analysis by comparing the spectra of the highly similar F-stars, τ Boo and HD 33608, whose light, however, samples different lines of sight. To obtain absolute values for the DIB absorption, we compare the observed spectra of τ Boo, HD 33608, and α CrB to PHOENIX models and carry out basic spectral modeling based on Voigt line profiles. Results: The intercomparison between τ Boo and HD 33608 reveals that the difference in the line depth is 6.85 ± 1.48 mÅ at the DIB location which is, however, unlikely to be caused by DIB absorption. The comparison between PHOENIX models and observed spectra yields an upper limit of 34.0 ± 0.3 mÅ for any additional interstellar absorption in τ Boo; similar results are obtained for HD 33608 and α CrB. For all objects we derive unrealistically large values for the radial velocity of any presumed interstellar clouds. In τ Boo we find Na D absorption with an equivalent width of 0.65 ± 0.07 mÅ and 2.3 ± 0.1 mÅ in the D2 and D1 lines. For the other Na, absorption of the same magnitude could only be detected in the D2 line. Our comparisons between model and data show that the interstellar absorption toward τ Boo is not abnormally high. Conclusions: We find no significant DIB absorption in any of our target stars. Any differences between modeled and observed spectra are instead attributable to inaccuracies in the stellar atmospheric modeling than to DIB absorption. The spectra are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A20
Zhong, Min; Jang, Myoseon; Oliferenko, Alexander; Pillai, Girinath G; Katritzky, Alan R
2012-07-07
A new model for predicting the UV-visible absorption spectra of secondary organic aerosols (SOA) has been developed. The model consists of two primary parts: a SOA formation model and a semiempirical quantum chemistry method. The mass of SOA is predicted using the PHRCSOA (Partitioning Heterogeneous Reaction Consortium Secondary Organic Aerosol) model developed by Cao and Jang [Environ. Sci. Technol., 2010, 44, 727]. The chemical composition is estimated using a combination of the kinetic model (MCM) and the PHRCSOA model. The absorption spectrum is obtained by taking the sum of the spectrum of each SOA product calculated using a semiempirical NDDO (Neglect of Diatomic Differential Overlap)-based method. SOA was generated from the photochemical reaction of toluene or α-pinene at different NO(x) levels (low NO(x): 24-26 ppm, middle NO(x): 49 ppb, high NO(x): 104-105 ppb) using a 2 m(3) indoor Teflon film chamber. The model simulation reasonably agrees with the measured absorption spectra of α-pinene SOA but underestimates toluene SOA under high and middle NO(x) conditions. The absorption spectrum of toluene SOA is moderately enhanced with increasing NO(x) concentrations, while that of α-pinene SOA is not affected. Both measured and calculated UV-visible spectra show that the light absorption of toluene SOA is much stronger than that of α-pinene SOA.
Zhang, X; Duan, J; Kesisoglou, F; Novakovic, J; Amidon, G L; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R
2017-08-01
On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled "Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation." The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole-body framework. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Microwave absorption in substances that form hydration layers with water
NASA Astrophysics Data System (ADS)
Garner, H. R.; Ohkawa, T.; Tuason, O.; Lee, R. L.
1990-12-01
The microwave absorption of certain water soluble polymers (polyethylene glycol, polyvinyl pyrrolidone, proteins, and DNA) in solution is composed of three parts: absorption in the free water, absorption in the substance, and absorption in the hydration layer. Ethanol, sucrose, glycerol, and sodium acetate, which form weak hydrogen bonds or have an ionic nature in aqueous solutions, also have microwave absorption signatures similar to polymers that form hydration layers. The frequency-dependent absorption of the free water and of the hydration layer water is described by a simple Debye relaxation model. The absorption per unit sample volume attributable to the hydration layer is solute concentration dependent, and a simple model is used to describe the dependence. The hydration-layer relaxation time was found to vary from substance to substance and with solute concentration. The relaxation time was also found to be independent of solute length.
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Manian, S. V. S.
1976-01-01
Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.
Song, Boqi; Peng, Limin; Fu, Feng; Liu, Meihong; Zhang, Houjiang
2016-01-01
Perforated wooden panels are typically utilized as a resonant sound absorbing material in indoor noise control. In this paper, the absorption properties of wooden panels perforated with tiny holes of 1–3 mm diameter were studied both experimentally and theoretically. The Maa-MPP (micro perforated panels) model and the Maa-Flex model were applied to predict the absorption regularities of finely perforated wooden panels. A relative impedance comparison and full-factorial experiments were carried out to verify the feasibility of the theoretical models. The results showed that the Maa-Flex model obtained good agreement with measured results. Control experiments and measurements of dynamic mechanical properties were carried out to investigate the influence of the wood characteristics. In this study, absorption properties were enhanced by sound-induced vibration. The relationship between the dynamic mechanical properties and the panel mass-spring vibration absorption was revealed. While the absorption effects of wood porous structure were not found, they were demonstrated theoretically by using acoustic wave propagation in a simplified circular pipe with a suddenly changed cross-section model. This work provides experimental and theoretical guidance for perforation parameter design. PMID:28774063
The UV to Near-IR Optical Properties of PAHs: A Semi-Empirical Model
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Allamandola, L. J.; Hudgins, D. M.
2005-01-01
Interstellar Polycyclic Aromatic Hydrocarbon (PAH) infrared emission features represent an important and unique diagnostic tool of the chemical and physical conditions throughout the universe. However, one challenge facing the widely accepted PAH emission model has been the detection of infrared features in regions of low UV flux. Utilizing recently published laboratory Near Infrared VIR) PAH ion absorption data measured in our laboratory, we build upon previous models for PAH ion absorption in the UV-Vis to extrapolate a new model which incorporates PAH ion absorption in the NIR. This model provides a basis for comparing the relative energy absorption of PAH ions in the UV-Vis and NIR regions for a wide variety of stellar types. This model demonstrates that the radiation from late-type stars can pump the mid-IR PAH features.
NASA Technical Reports Server (NTRS)
Roesler, Collin S.; Pery, Mary Jane
1995-01-01
An inverse model was developed to extract the absortion and scattering (elastic and inelastic) properties of oceanic constituents from surface spectral reflectance measurements. In particular, phytoplankton spectral absorption coefficients, solar-stimulated chlorophyll a fluorescence spectra, and particle backscattering spectra were modeled. The model was tested on 35 reflectance spectra obtained from irradiance measurements in optically diverse ocean waters (0.07 to 25.35 mg/cu m range in surface chlorophyll a concentrations). The universality of the model was demonstrated by the accurate estimation of the spectral phytoplankton absorption coefficents over a range of 3 orders of magnitude (rho = 0.94 at 500 nm). Under most oceanic conditions (chlorophyll a less than 3 mg/cu m) the percent difference between measured and modeled phytoplankton absorption coefficents was less than 35%. Spectral variations in measured phytoplankton absorption spectra were well predicted by the inverse model. Modeled volume fluorescence was weakly correlated with measured chl a; fluorescence quantum yield varied from 0.008 to 0.09 as a function of environment and incident irradiance. Modeled particle backscattering coefficients were linearly related to total particle cross section over a twentyfold range in backscattering coefficents (rho = 0.996, n = 12).
Particle-in-a-box model of exciton absorption and electroabsorption in conjugated polymers
NASA Astrophysics Data System (ADS)
Pedersen, Thomas G.
2000-12-01
The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces a line shape characterized by a square-root singularity in agreement with experimental spectra near the absorption edge. The effects of finite conjugation length on both absorption and electroabsorption spectra are analyzed.
THE IMPACT OF ACCURATE EXTINCTION MEASUREMENTS FOR X-RAY SPECTRAL MODELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Randall K.; Valencic, Lynne A.; Corrales, Lia, E-mail: lynne.a.valencic@nasa.gov
Interstellar extinction includes both absorption and scattering of photons from interstellar gas and dust grains, and it has the effect of altering a source's spectrum and its total observed intensity. However, while multiple absorption models exist, there are no useful scattering models in standard X-ray spectrum fitting tools, such as XSPEC. Nonetheless, X-ray halos, created by scattering from dust grains, are detected around even moderately absorbed sources, and the impact on an observed source spectrum can be significant, if modest, compared to direct absorption. By convolving the scattering cross section with dust models, we have created a spectral model asmore » a function of energy, type of dust, and extraction region that can be used with models of direct absorption. This will ensure that the extinction model is consistent and enable direct connections to be made between a source's X-ray spectral fits and its UV/optical extinction.« less
Shi, Xiaocai; Passe, Dennis H
2010-10-01
The purpose of this study is to summarize water, carbohydrate (CHO), and electrolyte absorption from carbohydrate-electrolyte (CHO-E) solutions based on all of the triple-lumen-perfusion studies in humans since the early 1960s. The current statistical analysis included 30 reports from which were obtained information on water absorption, CHO absorption, total solute absorption, CHO concentration, CHO type, osmolality, sodium concentration, and sodium absorption in the different gut segments during exercise and at rest. Mean differences were assessed using independent-samples t tests. Exploratory multiple-regression analyses were conducted to create prediction models for intestinal water absorption. The factors influencing water and solute absorption are carefully evaluated and extensively discussed. The authors suggest that in the human proximal small intestine, water absorption is related to both total solute and CHO absorption; osmolality exerts various impacts on water absorption in the different segments; the multiple types of CHO in the ingested CHO-E solutions play a critical role in stimulating CHO, sodium, total solute, and water absorption; CHO concentration is negatively related to water absorption; and exercise may result in greater water absorption than rest. A potential regression model for predicting water absorption is also proposed for future research and practical application. In conclusion, water absorption in the human small intestine is influenced by osmolality, solute absorption, and the anatomical structures of gut segments. Multiple types of CHO in a CHO-E solution facilitate water absorption by stimulating CHO and solute absorption and lowering osmolality in the intestinal lumen.
Variance of transionospheric VLF wave power absorption
NASA Astrophysics Data System (ADS)
Tao, X.; Bortnik, J.; Friedrich, M.
2010-07-01
To investigate the effects of D-region electron-density variance on wave power absorption, we calculate the power reduction of very low frequency (VLF) waves propagating through the ionosphere with a full wave method using the standard ionospheric model IRI and in situ observational data. We first verify the classic absorption curves of Helliwell's using our full wave code. Then we show that the IRI model gives overall smaller wave absorption compared with Helliwell's. Using D-region electron densities measured by rockets during the past 60 years, we demonstrate that the power absorption of VLF waves is subject to large variance, even though Helliwell's absorption curves are within ±1 standard deviation of absorption values calculated from data. Finally, we use a subset of the rocket data that are more representative of the D region of middle- and low-latitude VLF wave transmitters and show that the average quiet time wave absorption is smaller than that of Helliwell's by up to 100 dB at 20 kHz and 60 dB at 2 kHz, which would make the model-observation discrepancy shown by previous work even larger. This result suggests that additional processes may be needed to explain the discrepancy.
Armah, Seth M
2016-06-01
The fractional zinc absorption values used in the current Dietary Reference Intakes (DRIs) for zinc were based on data from published studies. However, the inhibitory effect of phytate was underestimated because of the low phytate content of the diets in the studies used. The objective of this study was to estimate the fractional absorption of dietary zinc from the US diet by using 2 published algorithms. Nutrient intake data were obtained from the NHANES 2009-2010 and the corresponding Food Patterns Equivalents Database. Data were analyzed with the use of R software by taking into account the complex survey design. The International Zinc Nutrition Consultative Group (IZiNCG; Brown et al. Food Nutr Bull 2004;25:S99-203) and Miller et al. (Br J Nutr 2013;109:695-700) models were used to estimate zinc absorption. Geometric means (95% CIs) of zinc absorption for all subjects were 30.1% (29.9%, 30.2%) or 31.3% (30.9%, 31.6%) with the use of the IZiNCG model and Miller et al. model, respectively. For men, women, and adolescents, absorption values obtained in this study with the use of the 2 models were 27.2%, 31.4%, and 30.1%, respectively, for the IZiNCG model and 28.0%, 33.0%, and 31.6%, respectively, for the Miller et al. model, compared with the 41%, 48%, and 40%, respectively, used in the current DRIs. For preadolescents, estimated absorption values (31.1% and 32.8% for the IZiNCG model and Miller et al. model, respectively) compare well with the conservative estimate of 30% used in the DRIs. When the new estimates of zinc absorption were applied to the current DRI values for men and women, the results suggest that the Estimated Average Requirement (EAR) and RDA for these groups need to be increased by nearly one-half of the current values in order to meet their requirements for absorbed zinc. These data suggest that zinc absorption is overestimated for men, women, and adolescents in the current DRI. Upward adjustments of the DRI for these groups are recommended. © 2016 American Society for Nutrition.
NASA Astrophysics Data System (ADS)
Bouaziz, Nadia; Ben Manaa, Marwa; Ben Lamine, Abdelmottaleb
2017-11-01
The hydrogen absorption-desorption isotherms on LaNi3.8Al1.2-xMnx alloy at temperature T = 433 K is studied through various theoretical models. The analytical expressions of these models were deduced exploiting the grand canonical ensemble in statistical physics by taking some simplifying hypotheses. Among these models an adequate model which presents a good correlation with the experimental curves has been selected. The physicochemical parameters intervening in the absorption-desorption processes and involved in the model expressions could be directly deduced from the experimental isotherms by numerical simulation. Six parameters of the model are adjusted, namely the numbers of hydrogen atoms per site n1 and n2, the receptor site densities N1m and N2m, and the energetic parameters P1 and P2. The behaviors of these parameters are discussed in relation with absorption and desorption processes to better understand and compare these phenomena. Thanks to the energetic parameters, we calculated the sorption energies which are typically ranged between 266 and 269.4 KJ/mol for absorption process and between 267 and 269.5 KJ/mol for desorption process comparable to usual chemical bond energies. Using the adopted model expression, the thermodynamic potential functions which govern the absorption/desorption process such as internal energy Eint, free enthalpy of Gibbs G and entropy Sa are derived.
Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers
NASA Astrophysics Data System (ADS)
Hu, Jun; Xu, Hebing; Li, Chao
2018-03-01
Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.
Exploring the observational constraints on the simulation of brown carbon
NASA Astrophysics Data System (ADS)
Wang, Xuan; Heald, Colette L.; Liu, Jiumeng; Weber, Rodney J.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Schwarz, Joshua P.; Perring, Anne E.
2018-01-01
Organic aerosols (OA) that strongly absorb solar radiation in the near-UV are referred to as brown carbon (BrC). The sources, evolution, and optical properties of BrC remain highly uncertain and contribute significantly to uncertainty in the estimate of the global direct radiative effect (DRE) of aerosols. Previous modeling studies of BrC optical properties and DRE have been unable to fully evaluate model performance due to the lack of direct measurements of BrC absorption. In this study, we develop a global model simulation (GEOS-Chem) of BrC and test it against BrC absorption measurements from two aircraft campaigns in the continental US (SEAC4RS and DC3). To the best of our knowledge, this is the first study to compare simulated BrC absorption with direct aircraft measurements. We show that BrC absorption properties estimated based on previous laboratory measurements agree with the aircraft measurements of freshly emitted BrC absorption but overestimate aged BrC absorption. In addition, applying a photochemical scheme to simulate bleaching/degradation of BrC improves model skill. The airborne observations are therefore consistent with a mass absorption coefficient (MAC) of freshly emitted biomass burning OA of 1.33 m2 g-1 at 365 nm coupled with a 1-day whitening e-folding time. Using the GEOS-Chem chemical transport model integrated with the RRTMG radiative transfer model, we estimate that the top-of-the-atmosphere all-sky direct radiative effect (DRE) of OA is -0.344 Wm-2, 10 % higher than that without consideration of BrC absorption. Therefore, our best estimate of the absorption DRE of BrC is +0.048 Wm-2. We suggest that the DRE of BrC has been overestimated previously due to the lack of observational constraints from direct measurements and omission of the effects of photochemical whitening.
Correction to the Beer-Lambert-Bouguer law for optical absorption.
Abitan, Haim; Bohr, Henrik; Buchhave, Preben
2008-10-10
The Beer-Lambert-Bouguer absorption law, known as Beer's law for absorption in an optical medium, is precise only at power densities lower than a few kW. At higher power densities this law fails because it neglects the processes of stimulated emission and spontaneous emission. In previous models that considered those processes, an analytical expression for the absorption law could not be obtained. We show here that by utilizing the Lambert W-function, the two-level energy rate equation model is solved analytically, and this leads into a general absorption law that is exact because it accounts for absorption as well as stimulated and spontaneous emission. The general absorption law reduces to Beer's law at low power densities. A criterion for its application is given along with experimental examples. (c) 2008 Optical Society of America
A plant canopy light absorption model with application to wheat
NASA Technical Reports Server (NTRS)
Chance, J. E.; Lemaster, E. W.
1977-01-01
From the light absorption model the absorption of light in the photosynthetically active region of the spectrum was calculated for a Penjamo wheat crop for several situations including: (1) the percent absorption of the incident radiation by a canopy having a four layer structure; (2) the percent absorption of light by the individual layers within a four layer canopy and by the underlying soil; (3) the percent absorption of light by each vegetative canopy layer for variable sun angle; and (4) the cumulative solar energy absorbed by the developing wheat canopy as it progresses from a single layer through its growth stages to a three layer canopy. This calculation was also presented as a function of the leaf area index.
Theoretical model for optical properties of porphyrin
NASA Astrophysics Data System (ADS)
Phan, Anh D.; Nga, Do T.; Phan, The-Long; Thanh, Le T. M.; Anh, Chu T.; Bernad, Sophie; Viet, N. A.
2014-12-01
We propose a simple model to interpret the optical absorption spectra of porphyrin in different solvents. Our model successfully explains the decrease in the intensity of optical absorption at maxima of increased wavelengths. We also prove the dependence of the intensity and peak positions in the absorption spectra on the environment. The nature of the Soret band is supposed to derive from π plasmon. Our theoretical calculations are consistent with previous experimental studies.
2009-06-01
a physics-based model which calculates mid - latitude ionospheric electron and ion density profiles for prediction of HF propagation and absorption...greatest in the summer due to longer periods of daylight and ionization. For times not close to sunrise or sunset, mid - latitude ionospheric ...IMPROVED MODELING OF MIDLATITUDE D-REGION IONOSPHERIC ABSORPTION OF HIGH FREQUENCY RADIO SIGNALS DURING SOLAR X-RAY FLARES 1
Investigation and Development of Data-Driven D-Region Model for HF Systems Impacts
NASA Technical Reports Server (NTRS)
Eccles, J. V.; Rice, D.; Sojka, J. J.; Hunsucker, R. D.
2002-01-01
Space Environment Corporation (SEC) and RP Consultants (RPC) are to develop and validate a weather-capable D region model for making High Frequency (HF) absorption predictions in support of the HF communications and radar communities. The weather-capable model will assimilate solar and earth space observations from NASA satellites. The model will account for solar-induced impacts on HF absorption, including X-rays, Solar Proton Events (SPE's), and auroral precipitation. The work plan includes: I . Optimize D-region model to quickly obtain ion and electron densities for proper HF absorption calculations. 2. Develop indices-driven modules for D-region ionization sources for low, mid, & high latitudes including X-rays, cosmic rays, auroral precipitation, & solar protons. (Note: solar spectrum & auroral modules already exist). 3. Setup low-cost monitors of existing HF beacons and add one single-frequency beacon. 4. Use PENEX HF-link database with HF monitor data to validate D-region/HF absorption model using climatological ionization drivers. 5. Develop algorithms to assimilate NASA satellite data of solar, interplanetary, and auroral observations into ionization source modules. 6. Use PENEX HF-link & HF-beacon data for skill score comparison of assimilation versus climatological D-region/HF absorption model. Only some satellites are available for the PENEX time period, thus, HF-beacon data is necessary. 7. Use HF beacon monitors to develop HF-link data assimilation algorithms for regional improvement to the D-region/HF absorption model.
Semi-mechanistic modelling of ammonia absorption in an acid spray wet scrubber based on mass balance
USDA-ARS?s Scientific Manuscript database
A model to describe reactive absorption of ammonia (NH3) in an acid spray scrubber was developed as a function of the combined overall mass transfer coefficient K. An experimental study of NH3 absorption using 1% dilute sulphuric acid was carried out under different operating conditions. An empiric...
Vertical electro-absorption modulator design and its integration in a VCSEL
NASA Astrophysics Data System (ADS)
Marigo-Lombart, L.; Calvez, S.; Arnoult, A.; Thienpont, H.; Almuneau, G.; Panajotov, K.
2018-04-01
Electro-absorption modulators, either embedded in CMOS technology or integrated with a semiconductor laser, are of high interest for many applications such as optical communications, signal processing and 3D imaging. Recently, the integration of a surface-normal electro-absorption modulator into a vertical-cavity surface-emitting laser has been considered. In this paper we implement a simple quantum well electro-absorption model and design and optimize an asymmetric Fabry-Pérot semiconductor modulator while considering all physical properties within figures of merit. We also extend this model to account for the impact of temperature on the different parameters involved in the calculation of the absorption, such as refractive indices and exciton transition broadening. Two types of vertical modulator structures have been fabricated and experimentally characterized by reflectivity and photocurrent measurements demonstrating a very good agreement with our model. Finally, preliminary results of an electro-absorption modulator vertically integrated with a vertical-cavity surface-emitting laser device are presented, showing good modulation performances required for high speed communications.
High-Resolution X-Ray Spectroscopy and Modeling of the Absorbing and Emitting Outflow in NGC 3783
NASA Astrophysics Data System (ADS)
Kaspi, Shai; Brandt, W. N.; Netzer, Hagai; George, Ian M.; Chartas, George; Behar, Ehud; Sambruna, Rita M.; Garmire, Gordon P.; Nousek, John A.
2001-06-01
The high-resolution X-ray spectrum of NGC 3783 shows several dozen absorption lines and a few emission lines from the H-like and He-like ions of O, Ne, Mg, Si, and S, as well as from Fe XVII-Fe XXIII L-shell transitions. We have reanalyzed the Chandra HETGS spectrum using better flux and wavelength calibrations, along with more robust methods. Combining several lines from each element, we clearly demonstrate the existence of the absorption lines and determine that they are blueshifted relative to the systemic velocity by -610+/-130 km s-1. We find the Ne absorption lines in the High-Energy Grating spectrum to be resolved with FWHM=840+490-360 km s-1; no other lines are resolved. The emission lines are consistent with being at the systemic velocity. We have used regions in the spectrum where no lines are expected to determine the X-ray continuum, and we model the absorption and emission lines using photoionized-plasma calculations. The model consists of two absorption components, with different covering factors, which have an order-of-magnitude difference in their ionization parameters. The two components are spherically outflowing from the active galactic nucleus, and thus contribute to both the absorption and the emission via P Cygni profiles. The model also clearly requires O VII and O VIII absorption edges. The low-ionization component of our model can plausibly produce UV absorption lines with equivalent widths consistent with those observed from NGC 3783. However, we note that this result is highly sensitive to the unobservable UV to X-ray continuum, and the available UV and X-ray observations cannot firmly establish the relationship between the UV and X-ray absorbers. We find good agreement between the Chandra spectrum and simultaneous ASCA and RXTE observations. The 1 keV deficit previously found when modeling ASCA data probably arises from iron L-shell absorption lines not included in previous models. We also set an upper limit on the FWHM of the narrow Fe Kα emission line of 3250 km s-1. This is consistent with this line originating outside the broad-line region, possibly from a torus.
Keshvari, J; Lang, S
2005-09-21
The increasing use of mobile communication devices, especially mobile phones by children, has triggered discussions on whether there is a larger radio frequency (RF) energy absorption in the heads of children compared to that of adults. The objective of this study was to clarify possible differences in RF energy absorption in the head region of children and adults using computational techniques. Using the finite-difference time-domain (FDTD) computational method, a set of specific absorption rate (SAR) calculations were performed for anatomically correct adult and child head models. A half-wave dipole was used as an exposure source at 900, 1800 and 2450 MHz frequencies. The ear and eye regions were studied representing realistic exposure scenarios to current and upcoming mobile wireless communication devices. The differences in absorption were compared with the maximum energy absorption of the head model. Four magnetic resonance imaging (MRI) based head models, one female, one adult, two child head models, aged 3 and 7 years, were used. The head models greatly differ from each other in terms of size, external shape and the internal anatomy. The same tissue dielectric parameters were applied for all models. The analyses suggest that the SAR difference between adults and children is more likely caused by the general differences in the head anatomy and geometry of the individuals rather than age. It seems that the external shape of the head and the distribution of different tissues within the head play a significant role in the RF energy absorption.
Hou, Jipeng; He, Xin; Xu, Xuefang; Shi, Xiaoyan; Xu, Yanyan; Liu, Changxiao
2012-11-01
The aim of this study was to evaluate the oral absorption of two chemicals simultaneously using a drug dissolution/absorption simulating system (DDASS), and to establish a correlation between DDASS and in vivo absorption to clarify the prediction of this in vitro model. Ferulic acid (FA) and tetrahydropalmatine (THP), the components of Angelicae Sinensis Radix and Corydalis Yanhusuo Rhizoma, respectively, were chosen as model compounds. Three groups including FA, THP, and FA and THP together (FA + THP) were studied in DDASS. The corresponding in vivo pharmacokinetics study was performed in rats. Then the correlation was analysed between DDASS permeation in vitro and rat absorption data in vivo. A strong level A correlation (r > 0.84) was obtained after a correlation coefficient test (p < 0.05 or 0.01). Moreover, when FA and THP were used together in DDASS, the cumulative permeation of FA increased by 38.5%, while THP permeation decreased by 25.8%. In rats, the area under the concentration-time curve from time to infinity for FA increased 2.6-fold, while THP decreased 19.6%. The changes in rat intestinal permeation modeled by the DDASS were consistent with the absorption changes in rats. We conclude that DDASS is a valid in vitro model to evaluate oral absorption of two drug components simultaneously and reflect the in vivo characteristics of drug absorption accurately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silant’ev, A. V., E-mail: kvvant@rambler.ru
2015-10-15
Anticommutator Green’s functions and the energy spectrum of C{sub 60} fullerene are calculated in the approximation of static fluctuations within the Hubbard model. On the basis of this spectrum, an interpretation is proposed for the experimentally observed optical absorption bands of C{sub 60} fullerene. The parameters of C{sub 60} fullerene that characterize it within the Hubbard model are calculated by the optical absorption spectrum.
Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes
2015-01-01
We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588
Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.
Friese, Daniel H; Bast, Radovan; Ruud, Kenneth
2015-05-20
We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.
Luo, Wen; Medrek, Sarah; Misra, Jatin; Nohynek, Gerhard J
2007-02-01
The objective of this study was to construct and validate a quantitative structure-activity relationship model for skin absorption. Such models are valuable tools for screening and prioritization in safety and efficacy evaluation, and risk assessment of drugs and chemicals. A database of 340 chemicals with percutaneous absorption was assembled. Two models were derived from the training set consisting 306 chemicals (90/10 random split). In addition to the experimental K(ow) values, over 300 2D and 3D atomic and molecular descriptors were analyzed using MDL's QsarIS computer program. Subsequently, the models were validated using both internal (leave-one-out) and external validation (test set) procedures. Using the stepwise regression analysis, three molecular descriptors were determined to have significant statistical correlation with K(p) (R2 = 0.8225): logK(ow), X0 (quantification of both molecular size and the degree of skeletal branching), and SsssCH (count of aromatic carbon groups). In conclusion, two models to estimate skin absorption were developed. When compared to other skin absorption QSAR models in the literature, our model incorporated more chemicals and explored a large number of descriptors. Additionally, our models are reasonably predictive and have met both internal and external statistical validations.
Black carbon absorption at the global scale is affected by particle-scale diversity in composition.
Fierce, Laura; Bond, Tami C; Bauer, Susanne E; Mena, Francisco; Riemer, Nicole
2016-09-01
Atmospheric black carbon (BC) exerts a strong, but uncertain, warming effect on the climate. BC that is coated with non-absorbing material absorbs more strongly than the same amount of BC in an uncoated particle, but the magnitude of this absorption enhancement (Eabs) is not well constrained. Modelling studies and laboratory measurements have found stronger absorption enhancement than has been observed in the atmosphere. Here, using a particle-resolved aerosol model to simulate diverse BC populations, we show that absorption is overestimated by as much as a factor of two if diversity is neglected and population-averaged composition is assumed across all BC-containing particles. If, instead, composition diversity is resolved, we find Eabs=1-1.5 at low relative humidity, consistent with ambient observations. This study offers not only an explanation for the discrepancy between modelled and observed absorption enhancement, but also demonstrates how particle-scale simulations can be used to develop relationships for global-scale models.
NASA Technical Reports Server (NTRS)
Brodbeck, C.; Bouanich, J.-P.; Nguyen, Van Thanh; Borysow, Aleksandra
1999-01-01
Collision-induced absorption (CIA) is the major source of the infrared opacity of dense planetary atmospheres which are composed of nonpolar molecules. Knowledge of CIA absorption spectra of H2-H2 pairs is important for modelling the atmospheres of planets and cold stars that are mainly composed of hydrogen. The spectra of hydrogen in the region of the second overtone at 0.8 microns have been recorded at temperatures of 298 and 77.5 K for gas densities ranging from 100 to 800 amagats. By extrapolation to zero density of the absorption coefficient measured every 10 cm(exp -1) in the spectral range from 11100 to 13800 cm(exp -1), we have determined the binary absorption coefficient. These extrapolated measurements are compared with calculations based on a model that was obtained by using simple computer codes and lineshape profiles. In view of the very weak absorption of the second overtone band, we find the agreement between results of the model and experiment to be reasonable.
Black Carbon Absorption at the Global Scale Is Affected by Particle-Scale Diversity in Composition
NASA Technical Reports Server (NTRS)
Fierce, Laura; Bond, Tami C.; Bauer, Susanne E.; Mena, Francisco; Riemer, Nicole
2016-01-01
Atmospheric black carbon (BC) exerts a strong, but uncertain, warming effect on the climate. BC that is coated with non-absorbing material absorbs more strongly than the same amount of BC in an uncoated particle, but the magnitude of this absorption enhancement (E(sub abs)) is not well constrained. Modelling studies and laboratory measurements have found stronger absorption enhancement than has been observed in the atmosphere. Here, using a particle-resolved aerosol model to simulate diverse BC populations, we show that absorption is overestimated by as much as a factor of two if diversity is neglected and population-averaged composition is assumed across all BC-containing particles. If, instead, composition diversity is resolved, we find E(sub abs) = 1 - 1.5 at low relative humidity, consistent with ambient observations. This study offers not only an explanation for the discrepancy between modelled and observed absorption enhancement, but also demonstrates how particle-scale simulations can be used to develop relationships for global-scale models.
Dataset used to improve liquid water absorption models in the microwave
Turner, David
2015-12-14
Two datasets, one a compilation of laboratory data and one a compilation from three field sites, are provided here. These datasets provide measurements of the real and imaginary refractive indices and absorption as a function of cloud temperature. These datasets were used in the development of the new liquid water absorption model that was published in Turner et al. 2015.
Bolakis, C; Grbovic, D; Lavrik, N V; Karunasiri, G
2010-07-05
A terahertz-absorbing thin-film stack, containing a dielectric Bragg reflector and a thin chromium metal film, was fabricated on a silicon substrate for applications in bi-material terahertz (THz) sensors. The Bragg reflector is to be used for optical readout of sensor deformation under THz illumination. The THz absorption characteristics of the thin-film composite were measured using Fourier transform infrared spectroscopy. The absorption of the structure was calculated both analytically and by finite element modeling and the two approaches agreed well. Finite element modeling provides a convenient way to extract the amount of power dissipation in each layer and is used to quantify the THz absorption in the multi-layer stack. The calculation and the model were verified by experimentally characterizing the multi-layer stack in the 3-5 THz range. The measured and simulated absorption characteristics show a reasonably good agreement. It was found that the composite film absorbed about 20% of the incident THz power. The model was used to optimize the thickness of the chromium film for achieving high THz absorption and found that about 50% absorption can be achieved when film thickness is around 9 nm.
Zeković, Slobodan; Ivić, Zoran
2009-01-01
The applicability of small-polaron model for the interpretation of infrared absorption spectrum in acetanilide has been critically reexamined. It is shown that the energy difference between the normal and anomalous peak, calculated by means of small-polaron theory, displays pronounced temperature dependence which is in drastic contradiction with experiment. It is demonstrated that self-trapped states, which are recently suggested to explain theoretically the experimental absorption spectrum in protein, cannot cause the appearance of the peaks in absorption spectrum for acetanilide.
Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs
Liu, Wei; Pan, Hao; Zhang, Caiyun; Zhao, Liling; Zhao, Ruixia; Zhu, Yongtao; Pan, Weisan
2016-01-01
With the rapid development of nanotechnology, novel drug delivery systems comprising orally administered nanoparticles (NPs) have been paid increasing attention in recent years. The bioavailability of orally administered drugs has significant influence on drug efficacy and therapeutic dosage, and it is therefore imperative that the intestinal absorption of oral NPs be investigated. This review examines the various literature on the oral absorption of polymeric NPs, and provides an overview of the intestinal absorption models that have been developed for the study of oral nanoparticles. Three major categories of models including a total of eight measurement methods are described in detail (in vitro: dialysis bag, rat gut sac, Ussing chamber, cell culture model; in situ: intestinal perfusion, intestinal loops, intestinal vascular cannulation; in vivo: the blood/urine drug concentration method), and the advantages and disadvantages of each method are contrasted and elucidated. In general, in vitro and in situ methods are relatively convenient but lack accuracy, while the in vivo method is troublesome but can provide a true reflection of drug absorption in vivo. This review summarizes the development of intestinal absorption experiments in recent years and provides a reference for the systematic study of the intestinal absorption of nanoparticle-bound drugs. PMID:27455239
Measurements of ionization states in warm dense aluminum with betatron radiation
NASA Astrophysics Data System (ADS)
Mo, M. Z.; Chen, Z.; Fourmaux, S.; Saraf, A.; Kerr, S.; Otani, K.; Masoud, R.; Kieffer, J.-C.; Tsui, Y.; Ng, A.; Fedosejevs, R.
2017-05-01
Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ˜20 -25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al4 + and Al5 + ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyatt model and an alternative modified Ecker-Kröll model. The observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.
Effects of Combined Surface and In-Depth Absorption on Ignition of PMMA
Gong, Junhui; Chen, Yixuan; Li, Jing; Jiang, Juncheng; Wang, Zhirong; Wang, Jinghong
2016-01-01
A one-dimensional numerical model and theoretical analysis involving both surface and in-depth radiative heat flux absorption are utilized to investigate the influence of their combination on ignition of PMMA (Polymethyl Methacrylate). Ignition time, transient temperature in a solid and optimized combination of these two absorption modes of black and clear PMMA are examined to understand the ignition mechanism. Based on the comparison, it is found that the selection of constant or variable thermal parameters of PMMA barely affects the ignition time of simulation results. The linearity between tig−0.5 and heat flux does not exist anymore for high heat flux. Both analytical and numerical models underestimate the surface temperature and overestimate the temperature in a solid beneath the heat penetration layer for pure in-depth absorption. Unlike surface absorption circumstances, the peak value of temperature is in the vicinity of the surface but not on the surface for in-depth absorption. The numerical model predicts the ignition time better than the analytical model due to the more reasonable ignition criterion selected. The surface temperature increases with increasing incident heat flux. Furthermore, it also increases with the fraction of surface absorption and the radiative extinction coefficient for fixed heat flux. Finally, the combination is optimized by ignition time, temperature distribution in a solid and mass loss rate. PMID:28773940
Effects of Combined Surface and In-Depth Absorption on Ignition of PMMA.
Gong, Junhui; Chen, Yixuan; Li, Jing; Jiang, Juncheng; Wang, Zhirong; Wang, Jinghong
2016-10-05
A one-dimensional numerical model and theoretical analysis involving both surface and in-depth radiative heat flux absorption are utilized to investigate the influence of their combination on ignition of PMMA (Polymethyl Methacrylate). Ignition time, transient temperature in a solid and optimized combination of these two absorption modes of black and clear PMMA are examined to understand the ignition mechanism. Based on the comparison, it is found that the selection of constant or variable thermal parameters of PMMA barely affects the ignition time of simulation results. The linearity between t ig -0.5 and heat flux does not exist anymore for high heat flux. Both analytical and numerical models underestimate the surface temperature and overestimate the temperature in a solid beneath the heat penetration layer for pure in-depth absorption. Unlike surface absorption circumstances, the peak value of temperature is in the vicinity of the surface but not on the surface for in-depth absorption. The numerical model predicts the ignition time better than the analytical model due to the more reasonable ignition criterion selected. The surface temperature increases with increasing incident heat flux. Furthermore, it also increases with the fraction of surface absorption and the radiative extinction coefficient for fixed heat flux. Finally, the combination is optimized by ignition time, temperature distribution in a solid and mass loss rate.
Cawello, Willi; Braun, Marina; Andreas, Jens-Otto
2018-01-13
Pharmacokinetic studies using deconvolution methods and non-compartmental analysis to model clinical absorption of drugs are not well represented in the literature. The purpose of this research was (1) to define the system of equations for description of rotigotine (a dopamine receptor agonist delivered via a transdermal patch) absorption based on a pharmacokinetic model and (2) to describe the kinetics of rotigotine disposition after single and multiple dosing. The kinetics of drug disposition was evaluated based on rotigotine plasma concentration data from three phase 1 trials. In two trials, rotigotine was administered via a single patch over 24 h in healthy subjects. In a third trial, rotigotine was administered once daily over 1 month in subjects with early-stage Parkinson's disease (PD). A pharmacokinetic model utilizing deconvolution methods was developed to describe the relationship between drug release from the patch and plasma concentrations. Plasma-concentration over time profiles were modeled based on a one-compartment model with a time lag, a zero-order input (describing a constant absorption via skin into central circulation) and first-order elimination. Corresponding mathematical models for single- and multiple-dose administration were developed. After single-dose administration of rotigotine patches (using 2, 4 or 8 mg/day) in healthy subjects, a constant in vivo absorption was present after a minor time lag (2-3 h). On days 27 and 30 of the multiple-dose study in patients with PD, absorption was constant during patch-on periods and resembled zero-order kinetics. Deconvolution based on rotigotine pharmacokinetic profiles after single- or multiple-dose administration of the once-daily patch demonstrated that in vivo absorption of rotigotine showed constant input through the skin into the central circulation (resembling zero-order kinetics). Continuous absorption through the skin is a basis for stable drug exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keihm, S. J.; Bar-Server, Y.; Liljegren, J. C.
2002-06-01
Collocated measurements of opacity (from water vapor radiometer brightness temperatures) and wet path delay (from ground-based tracking of global positioning satellites) are used to constrain the model of atmospheric water vapor absorption in the 20-32 GHz band. A differential approach is presented in which the slope of opacity-versus-wet delay data is used as the absorption model constraint. This technique minimizes the effects of radiometric calibration errors and oxygen model uncertainties in the derivation of a best-fit vapor absorption model. A total of approximately five months of data was obtained from two experiment sites. At the Cloud and Radiation Testbed (CART)more » site near Lamont, Oklahoma, three independent water vapor radiometers (WVRs) provided near-continuous opacity measurements over the interval July-September 1998. At the NASA/Goldstone tracking station in the California desert two WVRs; obtained opacity data over the September-October 1997 interval. At both sites a Global Positioning Satellite (GPS) receiver and surface barometer obtained the data required for deriving the zenith wet delays over the same time frames. Measured values of the opacity-versus-wet delay slope parameter were obtained at four WVR frequencies (20.7, 22.2, 23.8, and 31.4 GHz) and compared with predictions of four candidate absorption models referenced in the literature. With one exception, all three models provide agreement within 5% of the opacity-versus-wet delay slope measurements at all WVR frequencies at both sites. One model provides agreement for all channels at both sites to the 2-3% level. This absorption model accuracy level represents a significant improvement over that attainable using radiosondes.« less
Light absorption and excitation energy transfer calculations in primitive photosynthetic bacteria
NASA Astrophysics Data System (ADS)
Komatsu, Yu; Kayanuma, Megumi; Shoji, Mitsuo; Yabana, Kazuhiro; Shiraishi, Kenji; Umemura, Masayuki
2015-06-01
In photosynthetic organisms, light energy is converted into chemical energy through the light absorption and excitation energy transfer (EET) processes. These processes start in light-harvesting complexes, which contain special photosynthetic pigments. The exploration of unique mechanisms in light-harvesting complexes is directly related to studies, such as artificial photosynthesis or biosignatures in astrobiology. We examined, through ab initio calculations, the light absorption and EET processes using cluster models of light-harvesting complexes in purple bacteria (LH2). We evaluated absorption spectra and energy transfer rates using the LH2 monomer and dimer models to reproduce experimental results. After the calibration tests, a LH2 aggregation model, composed of 7 or 19 LH2s aligned in triangle lattice, was examined. We found that the light absorption is red shifted and the energy transfer becomes faster as the system size increases. We also found that EET is accelerated by exchanging the central pigments to lower energy excited pigments. As an astrobiological application, we calculated light absorptions efficiencies of the LH2 in different photoenvironments.
NASA Astrophysics Data System (ADS)
Han, Xiaolei; Li, Yaokun; Ji, Jing; Ying, Junhao; Li, Weichen; Dai, Baicheng
2016-06-01
In order to quantitatively study the seismic absorption effect of the cushion on a superstructure, a numerical simulation and parametric study are carried out on the overall FEA model of a rigid-pile composite foundation in ABAQUS. A simulation of a shaking table test on a rigid mass block is first completed with ABAQUS and EERA, and the effectiveness of the Drucker-Prager constitutive model and the finite-infinite element coupling method is proved. Dynamic time-history analysis of the overall model under frequent and rare earthquakes is carried out using seismic waves from the El Centro, Kobe, and Bonds earthquakes. The different responses of rigid-pile composite foundations and pile-raft foundations are discussed. Furthermore, the influence of thickness and modulus of cushion, and ground acceleration on the seismic absorption effect of the cushion are analyzed. The results show that: 1) the seismic absorption effect of a cushion is good under rare earthquakes, with an absorption ratio of about 0.85; and 2) the seismic absorption effect is strongly affected by cushion thickness and ground acceleration.
Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound
Tang, Yufan; Ren, Shuwei; Meng, Han; Xin, Fengxian; Huang, Lixi; Chen, Tianning; Zhang, Chuanzeng; Lu, Tian Jain
2017-01-01
A hybrid acoustic metamaterial is proposed as a new class of sound absorber, which exhibits superior broadband low-frequency sound absorption as well as excellent mechanical stiffness/strength. Based on the honeycomb-corrugation hybrid core (H-C hybrid core), we introduce perforations on both top facesheet and corrugation, forming perforated honeycomb-corrugation hybrid (PHCH) to gain super broadband low-frequency sound absorption. Applying the theory of micro-perforated panel (MPP), we establish a theoretical method to calculate the sound absorption coefficient of this new kind of metamaterial. Perfect sound absorption is found at just a few hundreds hertz with two-octave 0.5 absorption bandwidth. To verify this model, a finite element model is developed to calculate the absorption coefficient and analyze the viscous-thermal energy dissipation. It is found that viscous energy dissipation at perforation regions dominates the total energy consumed. This new kind of acoustic metamaterials show promising engineering applications, which can serve as multiple functional materials with extraordinary low-frequency sound absorption, excellent stiffness/strength and impact energy absorption. PMID:28240239
Atmospheric absorption of terahertz radiation and water vapor continuum effects
NASA Astrophysics Data System (ADS)
Slocum, David M.; Slingerland, Elizabeth J.; Giles, Robert H.; Goyette, Thomas M.
2013-09-01
The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The transmission of broadband terahertz radiation from 0.300 to 1.500 THz was recorded for multiple path lengths and relative humidity levels. The absorption coefficient as a function of frequency was determined and compared with theoretical predictions and available water vapor absorption data. The prediction code is able to separately model the different parts of atmospheric absorption for a range of experimental conditions. A variety of conditions were accurately modeled using this code including both self and foreign gas broadening for low and high water vapor pressures for many different measurement techniques. The intensity and location of the observed absorption lines were also in good agreement with spectral databases. However, there was a discrepancy between the resonant line spectrum simulation and the observed absorption spectrum in the atmospheric transmission windows caused by the continuum absorption. A small discrepancy remained even after using the best available data from the literature to account for the continuum absorption. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.
NASA Astrophysics Data System (ADS)
Carlos, M.; Gruson, O.; Richard, C.; Boudon, V.; Rotger, M.; Thomas, X.; Maul, C.; Sydow, C.; Domanskaya, A.; Georges, R.; Soulard, P.; Pirali, O.; Goubet, M.; Asselin, P.; Huet, T. R.
2017-11-01
CF4, or tetrafluoromethane, is a chemically inert and strongly absorbing greenhouse gas, mainly of anthropogenic origin. In order to monitor and reduce its atmospheric emissions and concentration, it is thus necessary to obtain an accurate model of its infrared absorption. Such models allow opacity calculations for radiative transfer atmospheric models. In the present work, we perform a global analysis (divided into two distinct fitting schemes) of 17 rovibrational bands of CF4. This gives a reliable model of many of its lower rovibrational levels and allows the calculation of the infrared absorption in the strongly absorbing ν3 region (1283 cm-1 / 7.8 μm), including the main hot band, namely ν3 +ν2 -ν2 as well as ν3 +ν1 -ν1 ; we could also extrapolate the ν3 +ν4 -ν4 absorption. This represents almost 92% of the absorption at room temperature in this spectral region. A new accurate value of the C-F bond length is evaluated to re = 1.314860(21) Å. The present results have been used to update the HITRAN, GEISA and TFMeCaSDa (VAMDC) databases.
NASA Astrophysics Data System (ADS)
Mansouri, C.; L'Huillier, J. P.; Piron, V.
2007-07-01
This work presents results on the modeling of the photon diffusion in a three-layered model, (skin, fat and muscle). The Finite Element method was performed in order to calculate the temporal response of the above-mentioned structure. The thickness of the fat layer was varied from 1 to 15 mm to investigate the effects of increasing fat thickness on the muscle layer absorption coefficient measurements for a source-detector spacing of 30 mm. The simulated time-resolved reflectance data, at different wavelengths, were fitted to the diffusion model to yield the scattering and absorption coefficients of muscle. The errors in estimating muscle absorption coefficients μ α depend on the thickness of the fat layer and its optical properties. In addition, it was shown that it is possible to recover with a good precision (~2.6 % of error) the absorption coefficient of muscle and this up to a thickness of the fat layer not exceeding 4mm. Beyond this limit a correction is proposed in order to make measurements coherent. The muscle-corrected absorption coefficient can be then used to calculate hemoglobin oxygenation.
FDTD modeling of solar energy absorption in silicon branched nanowires.
Lundgren, Christin; Lopez, Rene; Redwing, Joan; Melde, Kathleen
2013-05-06
Thin film nanostructured photovoltaic cells are increasing in efficiency and decreasing the cost of solar energy. FDTD modeling of branched nanowire 'forests' are shown to have improved optical absorption in the visible and near-IR spectra over nanowire arrays alone, with a factor of 5 enhancement available at 1000 nm. Alternate BNW tree configurations are presented, achieving a maximum absorption of over 95% at 500 nm.
NASA Astrophysics Data System (ADS)
Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI
2018-06-01
A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.
DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
OGDEN DM; KIRCH NW
2007-10-31
This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.
Xu, Yuanlong; Wang, Yonglu; Li, Xue Ming; Huang, Qinqin; Chen, Wei; Liu, Ran; Chen, BaoAn; Wei, Ping
2014-07-01
As an oral delivery carrier for poorly water soluble drugs, the nanosuspension was prepared by melt emulsification method combined with high-pressure homogenization. The objective of this study was to clarify the absorption mechanism in rats of fenofibrate nanosuspension using the model of in situ gut perfusion. The release rate of drug from nanosuspension was fast which about 70% of the drug would be released within 5 minutes. The absorption of fenofibrate nanosuspension in the gastrointestinal (GI) tract was studied by the in situ closed loop method in rats. It was found that the absorption process in intestine was first-process with passive diffusion mechanism, and the whole intestine was the major segment for the drug absorption. Additionally, GI absorption in situ studies indicated that the fenofibrate nanosuspension had great success in regard to enhancement of intestinal absorption compared to the fenofibrate suspension of coarse powder. The pharmacokinetic characteristics were studied in rats after oral administration of fenofibrate nanosuspension or suspension at the dosage of 27 mg/kg. The plasma concentration-time curve was fitted to the one-compartment model. The correlation between in vitro dissolution (P), in situ intestinal absorption (F) and in vivo absorption (Fa) in rats was investigated with the results as follows: Fa = 6.2061P-456.38(r = 0.9559), F = 3.6911P-2.2169(r = 0.970), F = 0.5095P + 44.189(r = 0.9609). The highest level A could be obtained from the in vitro--in vivo correlation (IVIVC) between dissolution percentage and intestinal absorption of the fenofibrate nanosuspension in rats. Consequently, the in situ intestinal perfusion model could be used to predict the in vivo pharmacokinetic characteristics in rats.
Mandald, Bishnupada; Bandyopadhyay, Shyamalendu S
2006-10-01
Removal of CO2 from gaseous streams by absorption with chemical reaction in the liquid phase is usually employed in industry as a method to retain atmospheric CO2 to combat the greenhouse effect. A broad spectrum of alkanolamines and, more recently, their mixtures are being employed for the removal of acid gases such as CO2, H2S, and COS from natural and industrial gas streams. In this research, simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine is studied theoretically and experimentally. The effect of contact time, temperature, and amine concentration on the rate of absorption and the selectivity were studied by absorption experiments in a wetted wall column at atmospheric pressure and constant feed gas ratio. The diffusion-reaction processes for CO2 and H2S mass transfer in blended amines are modeled according to Higbie's penetration theory with the assumption that all reactions are reversible. A rigorous parametric sensitivity test is done to quantify the effects of possible errors in the pertinent model parameters on the prediction accuracy of the absorption rates and enhancement factors. Model results based on the kinetics-equilibrium-mass transfer coupled model developed in this work are found to be in good agreement with the experimental results of rates of absorption of CO2 and H2S into (MDEA + DEA + H2O).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, M.E.; Marshall, T.L.; Rowley, R.L.
1998-07-01
Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorptionmore » rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.« less
NASA Astrophysics Data System (ADS)
Yellowhair, Julius; Ho, Clifford K.; Ortega, Jesus D.; Christian, Joshua M.; Andraka, Charles E.
2015-09-01
Concentrating solar power receivers are comprised of panels of tubes arranged in a cylindrical or cubical shape on top of a tower. The tubes contain heat-transfer fluid that absorbs energy from the concentrated sunlight incident on the tubes. To increase the solar absorptance, black paint or a solar selective coating is applied to the surface of the tubes. However, these coatings degrade over time and must be reapplied, which reduces the system performance and increases costs. This paper presents an evaluation of novel receiver shapes and geometries that create a light-trapping effect, thereby increasing the effective solar absorptance and efficiency of the solar receiver. Several prototype shapes were fabricated from Inconel 718 and tested in Sandia's solar furnace at an irradiance of ~30 W/cm2. Photographic methods were used to capture the irradiance distribution on the receiver surfaces. The irradiance profiles were compared to results from raytracing models. The effective solar absorptance was also evaluated using the ray-tracing models. Results showed that relative to a flat plate, the new geometries could increase the effective solar absorptance from 86% to 92% for an intrinsic material absorptance of 86%, and from 60% to 73% for an intrinsic material absorptance of 60%.
Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.
Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar
2017-01-01
Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Sorption Isotherm Modelling Of Fermented Cassava Flour by Red Yeast Rice
NASA Astrophysics Data System (ADS)
Cahyanti, M. N.; Alfiah, M. N.; Hartini, S.
2018-04-01
The objective of the study is to determine the characteristic of moisture sorption isotherm from fermented cassava flour by red yeast rice using various modeling. This research used seven salt solutions and storage temperature of 298K, 303K, and 308K. The models used were Brunauer-Emmet-Teller (BET), Guggenheim-Anderson-de Boer (GAB) and Caurie model. The monolayer moisture content was around 4.51 – 5.99% db. Constant related to absorption heat in the multilayer area of [GAB model was around 0.86-0,91. Constant related to absorption heat in the monolayer area of GAB model was around 4.67-5.97. Constant related to absorption heat in the monolayer area of BET model was around 4.83-7.04. Caurie constant was around 1.25-1.59. The equilibrium and monolayer moisture content on fermented cassava flour by red yeast rice was decreasing as increasing temperature. GAB constant value indicated that the process of moisture absorption on the fermented cassava flour by red yeast rice categorized in type II.
Comparison of two gas chromatograph models and analysis of binary data
NASA Technical Reports Server (NTRS)
Keba, P. S.; Woodrow, P. T.
1972-01-01
The overall objective of the gas chromatograph system studies is to generate fundamental design criteria and techniques to be used in the optimum design of the system. The particular tasks currently being undertaken are the comparison of two mathematical models of the chromatograph and the analysis of binary system data. The predictions of two mathematical models, an equilibrium absorption model and a non-equilibrium absorption model exhibit the same weaknesses in their inability to predict chromatogram spreading for certain systems. The analysis of binary data using the equilibrium absorption model confirms that, for the systems considered, superposition of predicted single component behaviors is a first order representation of actual binary data. Composition effects produce non-idealities which limit the rigorous validity of superposition.
MATHEMATICAL MODELING OF OZONE ABSORPTION IN THE LOWER RESPIRATORY TRACT
A mathematical O3 dosimetry model has been developed for simulating the local absorption of O3 in the lower respiratory tract (LRT) of animals and man. The model takes into account LRT anatomy, transport in the lumen and air spaces, transport and chemical reactions in the liquid ...
Evaluation of the whole body physiologically based pharmacokinetic (WB-PBPK) modeling of drugs.
Munir, Anum; Azam, Shumaila; Fazal, Sahar; Bhatti, A I
2018-08-14
The Physiologically based pharmacokinetic (PBPK) modeling is a supporting tool in drug discovery and improvement. Simulations produced by these models help to save time and aids in examining the effects of different variables on the pharmacokinetics of drugs. For this purpose, Sheila and Peters suggested a PBPK model capable of performing simulations to study a given drug absorption. There is a need to extend this model to the whole body entailing all another process like distribution, metabolism, and elimination, besides absorption. The aim of this scientific study is to hypothesize a WB-PBPK model through integrating absorption, distribution, metabolism, and elimination processes with the existing PBPK model.Absorption, distribution, metabolism, and elimination models are designed, integrated with PBPK model and validated. For validation purposes, clinical records of few drugs are collected from the literature. The developed WB-PBPK model is affirmed by comparing the simulations produced by the model against the searched clinical data. . It is proposed that the WB-PBPK model may be used in pharmaceutical industries to create of the pharmacokinetic profiles of drug candidates for better outcomes, as it is advance PBPK model and creates comprehensive PK profiles for drug ADME in concentration-time plots. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Jun-jun; Liao, Xiao-huan; Ye, Min; Chen, Yong
2010-09-01
To study the effect of liquiritin (Liq) on the transport of strychnine (Str) in Caco-2 cell monolayer model, the transport parameters of Str, such as apparent permeability coefficient (P app (B-->A) and P app (A-->B)) and cumulative transport amount (TRcum), were determined and comparatively analyzed when Str was used solely and co-used with Liq. The effect of drug concentrations, conveying times, P-glycoprotein (P-gp) inhibitor verapamil and conveying liquor pH values on the transport of Str were also investigated. The results indicated that the absorption of Str in Caco-2 cell monolayer model was well and the passive transference was the main intestinal absorption mechanism of Str in the Caco-2 monolayer model, along with the excretion action mediated by P-gp. Liq enhanced the absorption of Str. Meanwhile, conveying liquor pH value had significant influence on the excretion transport of Str.
Pharmacokinetics of topically applied pilocarpine in the albino rabbit eye.
Makoid, M C; Robinson, J R
1979-04-01
The temporal and spatial pattern of [3H]-pilocarpine nitrate distribution in the albino rabbit eye following topical administration was determined. A four-compartment caternary chain model describing this disposition corresponds to the precorneal area, the cornea, the aqueous humor, and the lens and vitreous. Simultaneous computer fitting of data from tissue corresponding to some compartments in the model supported the proposed model. Additional support was provided by the excellent correlation between predicted and observed values in multiple-dosing studies. Several important aspects of ocular drug disposition are evident from the model. The extensive parallel elimination at the absorption site gives rise to an apparent absorption rate constant that is one to two orders of magnitude larger than the true absorption rate constant. In addition, aqueous flow accounts for most of the drug removal. Thus, major effects on absorption and elimination, independent of the drug structure, suggest the possibility of similar pharmacokinetics for vastly different drugs.
Robinson, Mark R.; Ward, Kenneth J.; Eaton, Robert P.; Haaland, David M.
1990-01-01
The characteristics of a biological fluid sample having an analyte are determined from a model constructed from plural known biological fluid samples. The model is a function of the concentration of materials in the known fluid samples as a function of absorption of wideband infrared energy. The wideband infrared energy is coupled to the analyte containing sample so there is differential absorption of the infrared energy as a function of the wavelength of the wideband infrared energy incident on the analyte containing sample. The differential absorption causes intensity variations of the infrared energy incident on the analyte containing sample as a function of sample wavelength of the energy, and concentration of the unknown analyte is determined from the thus-derived intensity variations of the infrared energy as a function of wavelength from the model absorption versus wavelength function.
Hydrodynamic modeling of laser interaction with micro-structured targets
Velechovsky, Jan; Limpouch, Jiri; Liska, Richard; ...
2016-08-03
A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. In conclusion, the numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.
Optical properties of soot particles: measurement - model comparison
NASA Astrophysics Data System (ADS)
Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.
2013-12-01
Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) < ~160 nm, but systematically predicts lower absorption cross-sections relative to observations for larger particles with VED > ~160 nm. The discrepancy is most pronounced for measurements made at shorter wavelengths. In contrast, Rayleigh-Debye-Gans theory, which does not assume spherical particle morphology, exhibited good agreement with the observations for all particle diameters and wavelengths. These results indicate that the use of Mie theory to describe the absorption behavior of particles >160 nm VED will underestimate the absorption by these particles. Concurrent measurements of the absorption Angstrom exponent and the single scattering albedo, and their dependence on particle size, will also be discussed.
Measurements of ionization states in warm dense aluminum with betatron radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, M. Z.; Chen, Z.; Fourmaux, S.
Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ~20–25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al 4+ and Al 5+ ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyattmore » model and an alternative modified Ecker-Kröll model. Furthermore, the observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.« less
Measurements of ionization states in warm dense aluminum with betatron radiation
Mo, M. Z.; Chen, Z.; Fourmaux, S.; ...
2017-05-19
Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ~20–25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al 4+ and Al 5+ ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyattmore » model and an alternative modified Ecker-Kröll model. Furthermore, the observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.« less
He, Rui; Xu, Yongsong; Peng, Jingjing; Ma, Tingting; Li, Jing; Gong, Muxin
2017-01-01
Paeoniflorin (PF), the main active component of Shaoyao-Gancao-tang, possesses significantly antinociceptive effects and many other pharmacological activities. However, its poor intestinal absorption results in low bioavailability. Therefore, enhancing PF absorption plays a vital role in exerting its therapeutic effect. Shaoyao combined with Gancao exhibited a synergistic effect. The enhancement of PF absorption through the interaction of its constituents in intestinal absorption would be greatly implicated. The present study aimed at investigating the effects of glycyrrhizin, the main constituent of Gancao, and its main metabolite, 18β-glycyrrhetinic acid (18β-GA), on the intestinal absorptive behavior of PF, and the role of P-glycoprotein (P-gp) in PF absorption using the in vitro everted rat gut sac model. The results demonstrated that 1 mM of 18β-GA significantly increased PF absorption in both the jejunum and the ileum, while 100 μM of 18β-GA only promoted the ileum absorption and had no obvious effect on the jejunum absorption. The effect of glycyrrhizin on intestinal PF absorption was related to concentrations. One mM of glycyrrhizin significantly increased PF absorption in the jejunum after 45 min and in the ileum after 90 min. But 100 μM of glycyrrhizin had an inhibitory effect in the jejunum and no effect in the ileum before 60 min. Moreover, verapamil, the well-known P-gp inhibitor, could significantly enhance the PF absorption. In conclusion, the influence of 18β-GA and glycyrrhizin on the PF absorption was related to concentrations and intestinal segments. This might be involved in the intervention of efflux transport of PF mediated by intestinal P-gp.
Marshall, Thomas; Challis, Richard E; Holmes, Andrew K; Tebbutt, John S
2002-11-01
Ultrasonic compression wave absorption is investigated as a means to monitor the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution, and the changing nature of the continuous phase. The Allegra-Hawley scattering formulation is used to simulate ultrasonic absorption as crystallization proceeds. Experiments confirm that simulated attenuation is in agreement with measured results.
The origin of blueshifted absorption features in the X-ray spectrum of PG 1211+143: outflow or disc
NASA Astrophysics Data System (ADS)
Gallo, L. C.; Fabian, A. C.
2013-07-01
In some radio-quiet active galactic nuclei (AGN), high-energy absorption features in the X-ray spectra have been interpreted as ultrafast outflows (UFOs) - highly ionized material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo and Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionized material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the absorption model can describe the ˜7.6 keV absorption feature (and possibly other features) in the quasar PG 1211+143, an AGN that is often described as a classic example of a UFO. In this model, the 2-10 keV spectrum would be largely reflection dominated (as opposed to power law dominated in the wind models) and the resonance absorption would be originating in a layer between about 6 and 60 gravitational radii. The studies of such features constitute a cornerstone for future X-ray observatories like Astro-H and Athena+. Should our model prove correct, or at least important in some cases, then absorption will provide another diagnostic tool with which to probe the inner accretion flow with future missions.
NASA Technical Reports Server (NTRS)
Chin, Mian; Dubovik, Oleg; Holben, Brent; Torres, Omar; Anderson, Tad; Quinn, Patricia; Ginoux, Paul
2004-01-01
Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET, satellite retrievals from the TOMS instrument, and field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption. and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.
NASA Technical Reports Server (NTRS)
Chin, Mian; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul
2003-01-01
Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine what are the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.
NASA Technical Reports Server (NTRS)
Chin, Main; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul
2004-01-01
Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.
Accurate universal parameterization of absorption cross sections III--light systems
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Cucinotta, F. A.; Wilson, J. W.
1999-01-01
Our prior nuclear absorption cross sections model [R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, Nucl. Instr. and Meth. B 117 (1996) 347; R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instr. and Meth. B 129 (1997) 11] is extended for light systems (A < or = 4) where either both projectile and target are light particles or one is light particle and the other is medium or heavy nucleus. The agreement with experiment is excellent for these cases as well. Present work in combination with our original model provides a comprehensive picture of absorption cross sections for light, medium and heavy systems. As a result the extended model can reliably be used in all studies where there is a need for absorption cross sections.
Einstein X-ray observations of QSO's with absorption-line systems
NASA Technical Reports Server (NTRS)
Junkkarinen, V. T.; Marscher, A. P.; Burbidge, E. M.
1982-01-01
The detection of X-ray emission from eight QSO's is reported, plus an upper limit to the X-ray flux from one QSO, using the Einstein X-ray Observatory (HEAO-2). Each object in the sample contains at least one absorption-line system that has been identified in its optical spectrum. The present results are combined with those of other investigators to form a sample of 44 absorption-line QSO's (with 2 sub e greater than 1.2) which have been observed in the X-ray. This sample cannot be distinguished, in terms of X-ray properties, from one which consists of QSO's in which no absorption systems have been identified. These results are consistent with extrinsic models for absorption-line clouds, as well as with current versions of intrinsic models.
Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin
2013-01-01
Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. PMID:24156077
Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin
2013-01-01
Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.
A study of sound absorption by street canyon boundaries and asphalt rubber concrete pavement
NASA Astrophysics Data System (ADS)
Drysdale, Graeme Robert
A sound field model, based on a classical diffusion equation, is extended to account for sound absorption in a diffusion parameter used to model sound energy in a narrow street canyon. The model accounts for a single sound absorption coefficient, separate accommodation coefficients and a combination of separate absorption and accommodation coefficients from parallel canyon walls. The new expressions are compared to the original formula through numerical simulations to reveal the effect of absorption on sound diffusion. The newly established analytical formulae demonstrate satisfactory agreement with their predecessor under perfect reflection. As well, the influence of the extended diffusion parameter on normalized sound pressure levels in a narrow street canyon is in agreement with experimental data. The diffusion parameters are used to model sound energy density in a street canyon as a function of the sound absorption coefficient of the street canyon walls. The acoustic and material properties of conventional and asphalt rubber concrete (ARC) pavement are also studied to assess how the crumb rubber content influences sound absorption in street canyons. The porosity and absolute permeability of compacted specimens of asphalt rubber concrete are measured and compared to their normal and random incidence sound absorption coefficients as a function of crumb rubber content in the modified binder. Nonlinear trends are found between the sound absorption coefficients, porosity and absolute permeability of the compacted specimens and the percentage of crumb rubber in the modified binders. The cross-sectional areas of the air voids on the surfaces of the compacted specimens are measured using digital image processing techniques and a linear relationship is obtained between the average void area and crumb rubber content. The measured material properties are used to construct an empirical formula relating the average porosity, normal incidence noise reduction coefficients and percentage of crumb rubber in the modified binder of the compacted specimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowley, R.L.; Adams, M.E.; Marshall, T.L.
1997-03-01
Natural gas processors use amine treating processes to remove the acid gases H{sub 2}S and CO{sub 2} from gas streams. Absorption rates of gaseous CO{sub 2} into aqueous N-methyldiethanolamine (MDEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate and protonated MDEA ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. A numerical model was developed on the basis of these observations. The modelmore » was used to regress diffusion coefficients of bicarbonate and protonated amine, which must be equivalent by electroneutrality arguments, from measured absorption rates. Complete modeling of the absorption process also required data for the diffusion coefficient of MDEA in water. These were measured using a Taylor dispersion apparatus. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate and protonated MDEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % MDEA in water.« less
Influence of hole shape on sound absorption of underwater anechoic layers
NASA Astrophysics Data System (ADS)
Ye, Changzheng; Liu, Xuewei; Xin, Fengxian; Lu, Tian Jian
2018-07-01
A theoretical model is established to evaluate the sound absorption performance of underwater anechoic layers containing periodically distributed axial holes. Based on the concept for homogenized equivalent layer and on the theory of wave propagation in viscoelastic cylindrical tubes, the transfer function method is used to obtain the absorption coefficient of the anechoic layer adhered on the rigid plate. Three different types of axial holes are considered, the cylindrical, the conical and the horn shaped one. Results obtained with full finite element simulations are used to validate the model predictions. For each hole type, the vibration characteristics of the anechoic layer as well as the propagation of longitudinal and transverse waves in the layer are analyzed in detail to explore the physical mechanisms underlying its absorption performance. Furthermore, a three-dimensional finite element model for oblique incidence is developed to study the effect of hole shape at different incidence angles. The results show that two new absorption peaks appear since the oblique incidence excites two horizontal modes. Among the three hole types, the horn one achieves the best absorption performance at relatively low frequencies both in normal incidence and in oblique incidence.
Influence of short-chain fatty acids on iron absorption by proximal colon.
Bouglé, D; Vaghefi-Vaezzadeh, N; Roland, N; Bouvard, G; Arhan, P; Bureau, F; Neuville, D; Maubois, J L
2002-09-01
Short-chain fatty acids produced by bacterial fermentation in the colon enhance the local absorption of cations, such as calcium, that could be used to improve the bioavailability of iron if a significant colonic absorption of iron were to occur. Iron (iron gluconate, 100 microM) absorption by the caecum of the rat was compared with that in proximal sites of the small bowel using the Ussing chamber model; the influence of probiotic bacteria (Propionibacterium freudenreichii) on iron absorption was assessed and compared with that of two of their fermentation products (acetic and propionic acids) using the Ussing chamber and the ligated colon with gamma emitting iron as experimental models. The caecum absorbed less iron than the duodenum, but significantly more than the jejunum and ileum. This occurred mainly through an enhanced mucosal transfer of iron uptake. Propionibacteria enhanced iron absorption from the proximal colon; the same effect was observed in the presence of viable bacteria, or the culture medium free of viable bacteria, or acetate and propionate or propionate alone. The proximal colon could be a significant site available for iron absorption; this absorption can be enhanced by local production of short-chain fatty acids such as propionate.
Constraining the Intergalactic and Circumgalactic Media with Lyman-Alpha Absorption
NASA Astrophysics Data System (ADS)
Sorini, Daniele; Onorbe, Jose; Hennawi, Joseph F.; Lukic, Zarija
2018-01-01
Lyman-alpha (Ly-a) absorption features detected in quasar spectra in the redshift range 0
NASA Technical Reports Server (NTRS)
Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.
2011-01-01
Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.
Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan M
2017-06-03
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
NASA Astrophysics Data System (ADS)
Bae, Gihyun; Huh, Hoon; Park, Sungho
This paper deals with a regression model for light weight and crashworthiness enhancement design of automotive parts in frontal car crash. The ULSAB-AVC model is employed for the crash analysis and effective parts are selected based on the amount of energy absorption during the crash behavior. Finite element analyses are carried out for designated design cases in order to investigate the crashworthiness and weight according to the material and thickness of main energy absorption parts. Based on simulations results, a regression analysis is performed to construct a regression model utilized for light weight and crashworthiness enhancement design of automotive parts. An example for weight reduction of main energy absorption parts demonstrates the validity of a regression model constructed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
[Research on Oil Sands Spectral Characteristics and Oil Content by Remote Sensing Estimation].
You, Jin-feng; Xing, Li-xin; Pan, Jun; Shan, Xuan-long; Liang, Li-heng; Fan, Rui-xue
2015-04-01
Visible and near infrared spectroscopy is a proven technology to be widely used in identification and exploration of hydrocarbon energy sources with high spectral resolution for detail diagnostic absorption characteristics of hydrocarbon groups. The most prominent regions for hydrocarbon absorption bands are 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm by the reflectance of oil sands samples. These spectral ranges are dominated by various C-H overlapping overtones and combination bands. Meanwhile, there is relatively weak even or no absorption characteristics in the region from 1,700 to 1,730 nm in the spectra of oil sands samples with low bitumen content. With the increase in oil content, in the spectral range of 1,700-1,730 nm the obvious hydrocarbon absorption begins to appear. The bitumen content is the critical parameter for oil sands reserves estimation. The absorption depth was used to depict the response intensity of the absorption bands controlled by first-order overtones and combinations of the various C-H stretching and bending fundamentals. According to the Pearson and partial correlation relationships of oil content and absorption depth dominated by hydrocarbon groups in 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm wavelength range, the scheme of association mode was established between the intensity of spectral response and bitumen content, and then unary linear regression(ULR) and partial least squares regression (PLSR) methods were employed to model the equation between absorption depth attributed to various C-H bond and bitumen content. There were two calibration equations in which ULR method was employed to model the relationship between absorption depth near 2,350 nm region and bitumen content and PLSR method was developed to model the relationship between absorption depth of 1,758, 2,310, 2,350 nm regions and oil content. It turned out that the calibration models had good predictive ability and high robustness and they could provide the scientific basis for rapid estimation of oil content in oil sands in future.
Zhai, Lixiang; Shi, Jun; Xu, Weitong; Heinrich, Michael; Wang, Jianying; Deng, Wenji
2015-12-01
This study aims to investigate the additive or synergistic effects and mechanism of intestinal absorption of extracts from two commonly used 'dispelling-wind' TCM botanical drugs [roots of Angelica dahurica (Hoffm.) Benth. & Hook. f. ex Franch. & Sav. (RAD) and Saposhnikovia divaricata (Turcz.) Schischk. (RSD)] using chlorogenic acid as a marker substance. Ex vivo everted intestinal sac and in situ single pass perfusion methods using rats were employed to investigate the effects of two TCM botanical drugs extracts on the intestinal absorption of chlorogenic acid. Both the extracts of RAD and RSD showed synergistic properties on the intestinal absorption of chlorogenic acid. The verapamil (a P-gp inhibitor) and intestinal dysbacteriosis model induced by norfloxacin increased the P(app) and K(a) of intestinal absorption of chlorogenic acid. These synergistic effects on intestinal absorption in a rat model can be correlated with the inhibition of P-gp and regulation of gut microbiota. This experimental approach has helped to better understand changes in the absorption of chlorogenic acid under different conditions. Copyright © 2015 John Wiley & Sons, Ltd.
Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)
2002-01-01
The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.
NASA Astrophysics Data System (ADS)
Shori, Ramesh K.
The interaction of high-intensity, short-pulsed radiation with liquid water results in dynamic changes in the optical absorption coefficient of water. These changes and their implications, as related to mid-infrared laser ablation of tissue, were not investigated until the late 1980's and early 1990's. Classical models of absorption and heating do not explain the dynamic, non-linear changes in water. The objective of the present work was to quantify the dynamic changes in the absorption coefficient of liquid water as a function of incident energy at three clinically relevant infrared wavelengths (λ = 2.94, 9.6, 10.6 μm). To investigate the changes in the absorption spectrum of water in the 3-μm band, a stable, high-energy Q- switched Er:YAG laser emitting 2.94-μm radiation in a near-perfect TEMoo spatial beam profile was developed. Key to the development of this laser was careful attention to the gain medium, optical pump system, system optics, and the thermal system. The final system design was capable of emitting 110 mJ/pulse at of 2-4 Hz with a lamp lifetime exceeding 12 million pulses The laser was used in two sets of experiments in order to quantify the above changes. First, the laser was used to measure the velocity of the shock front produced by vaporizing a gelatin-based tissue phantom. The measured shock velocity was related to the optical energy absorbed by the tissue phantom and the absorption coefficient, based on the pressure relationships derived using a 1-D piston model for an expanding plume. The shock front velocity measurements indicate that the absorption coefficient is constant for incident fluences less than 20 J/cm2, a result consistent with transmission data. For higher fluences, the data indicate a decrease in the absorption coefficient, which is again consistent with transmission data. Quantification of the absorption coefficient can, however, not be made without violating assumptions that form the basis for the 1-D piston model. Second, the laser was used to measure the optical transmission across water layers of known thicknesses. The data were used to develop a Dynamic Saturable Absorption (DSA) model to predict the dynamic changes in the absorption coefficient of water as a function of incident energy. The DSA model, based in part upon the homogeneous broadening of an atomic transition in a laser gain medium, accurately predicts the absorption coefficient of water over a wide range of incident fluences. One sees saturation of the absorption at both high and low fluence with a monotonic decrease in absorption with increasing fluence. Transmission measurements were also made at 9.6 and 10.6 μm using a TEA CO2 laser. The data show essentially no change in the absorption coefficient as the fluence is varied. The results from the experiments make a significant contribution towards an understanding of the relationship among the dynamic optical properties of water and clinically relevant properties such as ablation rate and residual thermal damage.
Absorption by H2O and H2O-N2 mixtures at 153 GHz
NASA Technical Reports Server (NTRS)
Bauer, A.; Godon, M.; Carlier, J.; Ma, Q.; Tippings, R. H.
1993-01-01
New experimental data on and a theoretical analysis of the absorption coefficient at 153 GHz are presented for pure water vapor and water vapor-nitrogen mixtures. This frequency is 30 GHz lower than the resonant frequency of the nearest strong water line (183 GHz) and complements our previous measurements at 213 GHz. The pressure dependence is observed to be quadratic in the case of pure water vapor, while in the case of mixtures there are both linear and quadratic density components. By fitting our experimental data taken at several temperatures we have obtained the temperature dependence of the absorption. Our experimental data are compared to several theoretical models with and without a continuum contribution, and we find that none of the models is in very good agreement with the data; in the case of pure water vapor, the continuum contribution calculated using the recent theoretical absorption gives the best results. In general, the agreement between the data and the various models is less satisfactory than found previously in the high-frequency wing. The anisotropy in the observed absorption differs from that currently used in atmospheric models.
Designing a Broadband Pump for High-Quality Micro-Lasers via Modified Net Radiation Method.
Nechayev, Sergey; Reusswig, Philip D; Baldo, Marc A; Rotschild, Carmel
2016-12-07
High-quality micro-lasers are key ingredients in non-linear optics, communication, sensing and low-threshold solar-pumped lasers. However, such micro-lasers exhibit negligible absorption of free-space broadband pump light. Recently, this limitation was lifted by cascade energy transfer, in which the absorption and quality factor are modulated with wavelength, enabling non-resonant pumping of high-quality micro-lasers and solar-pumped laser to operate at record low solar concentration. Here, we present a generic theoretical framework for modeling the absorption, emission and energy transfer of incoherent radiation between cascade sensitizer and laser gain media. Our model is based on linear equations of the modified net radiation method and is therefore robust, fast converging and has low complexity. We apply this formalism to compute the optimal parameters of low-threshold solar-pumped lasers. It is revealed that the interplay between the absorption and self-absorption of such lasers defines the optimal pump absorption below the maximal value, which is in contrast to conventional lasers for which full pump absorption is desired. Numerical results are compared to experimental data on a sensitized Nd 3+ :YAG cavity, and quantitative agreement with theoretical models is found. Our work modularizes the gain and sensitizing components and paves the way for the optimal design of broadband-pumped high-quality micro-lasers and efficient solar-pumped lasers.
Designing a Broadband Pump for High-Quality Micro-Lasers via Modified Net Radiation Method
Nechayev, Sergey; Reusswig, Philip D.; Baldo, Marc A.; Rotschild, Carmel
2016-01-01
High-quality micro-lasers are key ingredients in non-linear optics, communication, sensing and low-threshold solar-pumped lasers. However, such micro-lasers exhibit negligible absorption of free-space broadband pump light. Recently, this limitation was lifted by cascade energy transfer, in which the absorption and quality factor are modulated with wavelength, enabling non-resonant pumping of high-quality micro-lasers and solar-pumped laser to operate at record low solar concentration. Here, we present a generic theoretical framework for modeling the absorption, emission and energy transfer of incoherent radiation between cascade sensitizer and laser gain media. Our model is based on linear equations of the modified net radiation method and is therefore robust, fast converging and has low complexity. We apply this formalism to compute the optimal parameters of low-threshold solar-pumped lasers. It is revealed that the interplay between the absorption and self-absorption of such lasers defines the optimal pump absorption below the maximal value, which is in contrast to conventional lasers for which full pump absorption is desired. Numerical results are compared to experimental data on a sensitized Nd3+:YAG cavity, and quantitative agreement with theoretical models is found. Our work modularizes the gain and sensitizing components and paves the way for the optimal design of broadband-pumped high-quality micro-lasers and efficient solar-pumped lasers. PMID:27924844
On Local Ionization Equilibrium and Disk Winds in QSOs
NASA Astrophysics Data System (ADS)
Pereyra, Nicolas A.
2014-11-01
We present theoretical C IV λλ1548,1550 absorption line profiles for QSOs calculated assuming the accretion disk wind (ADW) scenario. The results suggest that the multiple absorption troughs seen in many QSOs may be due to the discontinuities in the ion balance of the wind (caused by X-rays), rather than discontinuities in the density/velocity structure. The profiles are calculated from a 2.5-dimensional time-dependent hydrodynamic simulation of a line-driven disk wind for a typical QSO black hole mass, a typical QSO luminosity, and for a standard Shakura-Sunyaev disk. We include the effects of ionizing X-rays originating from within the inner disk radius by assuming that the wind is shielded from the X-rays from a certain viewing angle up to 90° ("edge on"). In the shielded region, we assume constant ionization equilibrium, and thus constant line-force parameters. In the non-shielded region, we assume that both the line-force and the C IV populations are nonexistent. The model can account for P-Cygni absorption troughs (produced at edge on viewing angles), multiple absorption troughs (produced at viewing angles close to the angle that separates the shielded region and the non-shielded region), and for detached absorption troughs (produced at an angle in between the first two absorption line types); that is, the model can account for the general types of broad absorption lines seen in QSOs as a viewing angle effect. The steady nature of ADWs, in turn, may account for the steady nature of the absorption structure observed in multiple-trough broad absorption line QSOs. The model parameters are M bh = 109 M ⊙ and L disk = 1047 erg s-1.
NASA Astrophysics Data System (ADS)
Kitagawa, Yuta; Tanabe, Katsuaki
2018-05-01
Mg is promising as a new light-weight and low-cost hydrogen-storage material. We construct a numerical model to represent the hydrogen dynamics on Mg, comprising dissociative adsorption, desorption, bulk diffusion, and chemical reaction. Our calculation shows a good agreement with experimental data for hydrogen absorption and desorption on Mg. Our model clarifies the evolution of the rate-determining processes as absorption and desorption proceed. Furthermore, we investigate the optimal condition and materials design for efficient hydrogen storage in Mg. By properly understanding the rate-determining processes using our model, one can determine the design principle for high-performance hydrogen-storage systems.
A simulation study on the abatement of CO2 emissions by de-absorption with monoethanolamine.
Greer, T; Bedelbayev, A; Igreja, J M; Gomes, J F; Lie, B
2010-01-01
Because of the adverse effect of CO2 from fossil fuel combustion on the earth's ecosystems, the most cost-effective method for CO2 capture is an important area of research. The predominant process for CO2 capture currently employed by industry is chemical absorption in amine solutions. A dynamic model for the de-absorption process was developed with monoethanolamine (MEA) solution. Henry's law was used for modelling the vapour phase equilibrium of the CO2, and fugacity ratios calculated by the Peng-Robinson equation of state (EOS) were used for H2O, MEA, N2 and O2. Chemical reactions between CO2 and MEA were included in the model along with the enhancement factor for chemical absorption. Liquid and vapour energy balances were developed to calculate the liquid and vapour temperature, respectively.
Modeling of laser interactions with composite materials
Rubenchik, Alexander M.; Boley, Charles D.
2013-05-07
In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.
Universal Parameterization of Absorption Cross Sections
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.
1999-01-01
Our prior nuclear absorption cross sections model is extended for light systems (A less than or equal to 4) where either both projectile and target are light particles or one is a light particle and the other is a medium or heavy nucleus. The agreement with experiment is excellent for these cases as well. Present work in combination with our original model provides a comprehensive picture of absorption cross sections for light, medium, and heavy systems, a very valuable input for radiation protection studies.
2009-10-09
trains the coefficients c of a finite impulse response (FIR) filter by gradient descent. The coefficients at iteration k + 1 are computed with the update... absorption . Figure 9 shows the reflection loss as a function of grazing angle for this bottom model. Note that below 30◦ this bottom model predicts...less than 1 dB loss per ray bounce. 11 Figure 9: Jackson bottom reflection loss for sand at 15 kHz Absorption Loss The absorption loss in the medium was
Conversion of laser energy to gas kinetic energy
NASA Technical Reports Server (NTRS)
Caledonia, G. E.
1975-01-01
Techniques for the gas phase absorption of laser radiation for conversion to gas kinetic energy are discussed. Absorption by inverse Bremsstrahlung, in which laser energy is converted at a gas kinetic rate in a spectrally continuous process, is briefly described, and absorption by molecular vibrational rotation bands is discussed at length. High pressure absorption is proposed as a means of minimizing gas bleaching and dissociation, the major disadvantages of the molecular absorption process. A band model is presented for predicting the molecular absorption spectra in the high pressure absorption region and is applied to the CO molecule. Use of a rare gas seeded with Fe(CO)5 for converting vibrational modes to translation modes is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, J.K.; Bhatnagar, V.P.
1989-04-01
Relations for the average energetic particle heating and the typical Hall and Pedersen conductances, as functions of the ground-based Hf radio absorption, are determined. Collis and coworkers used the geosynchronous GEOS 2 particle data to relate or ''calibrate'' the auroral absorption on the same magnetic field lines with five levels of D region ionization. These ionospheric models are related to a Chapman layer that extends these models into the E region. The average energetic particle heating is calculated for each of these models using recent expressions for the effective recombination coefficient. The corresponding height-integrated heating rates are determined and relatedmore » to the absorption with a quadratic expression. The average Hall and Pedersen conductivities are calculated for each of the nominal absorption ionospheric models. The corresponding height-integrated conductances for nighttime conditions are determined and related to the absorption. Expressions for these conductances during disturbed sunlit conditions are also determined. These relations can be used in conjunction with simultaneous ground-based riometric and magnetic observations to determines the average Hall and Pedersen currents and the Joule heating. The typical daily rate of temperature increase in the mesosphere for storm conditions is several 10 K for both the energetic particle and the Joule heating. The increasing importance of these parameters of the upper and middle atmospheres is discussed. It is proposed that northern hemisphere ionospheric, current, and heating synoptic models and parameters be investigated for use on a regular basis. copyright American Geophysical Union 1989« less
The dependence of gamma-ray burst X-ray column densities on the model for Galactic hydrogen
NASA Astrophysics Data System (ADS)
Arcodia, R.; Campana, S.; Salvaterra, R.
2016-05-01
We study the X-ray absorption of a complete sample of 99 bright Swift gamma-ray bursts (GRBs). In recent years, a strong correlation has been found between the intrinsic X-ray absorbing column density (NH(z)) and the redshift. This absorption excess in high-z GRBs is now thought to be due to the overlooked contribution of the absorption along the intergalactic medium (IGM), by means of both intervening objects and the diffuse warm-hot intergalactic medium along the line of sight. In this work we neglect the absorption along the IGM, because our purpose is to study the eventual effect of a radical change in the Galactic absorption model on the NH(z) distribution. Therefore, we derive the intrinsic absorbing column densities using two different Galactic absorption models: the Leiden Argentine Bonn HI survey and the more recent model that includes molecular hydrogen. We find that if, on the one hand, the new Galactic model considerably affects the single column density values, on the other hand, there is no drastic change in the distribution as a whole. It becomes clear that the contribution of Galactic column densities alone, no matter how improved, is not sufficient to change the observed general trend and it has to be considered as a second order correction. The cosmological increase of NH(z) as a function of redshift persists and, to explain the observed distribution, it is necessary to include the contribution of both the diffuse intergalactic medium and the intervening systems along the line of sight of the GRBs.
Levitt, Michael D.; Levitt, David G.
1973-01-01
Measurement of the relative absorption rates of inert gases (H2, He, CH4, SF6, and 133Xe) was used to investigate the interaction between diffusion and blood flow during passive absorption from the stomach, small bowel, and colon of the rat. If uptake is blood flow limited, the gases should be absorbed in proportion to their solubilities in blood, but if diffusion limited, uptake should be proportional to the diffusion rate of the gases in mucosal tissues. The observed absorption data were fitted to a series of models of interaction between perfusion and diffusion. A simple model accurately predicted the absorption rates of the gases from all segments of bowel. In this model, gas is absorbed into two distinct blood flows: one which flows in proximity to the lumen and completely equilibrates with the lumen, and a second which is sufficiently rapid and distant from the lumen that its gas uptake is entirely diffusion limited. The fraction of the total absorption attributable to the equilibrating flow can be readily calculated and equalled 93%, 77%, and 33% for the small bowel, colon, and stomach, respectively. Thus the rate of passive absorption of gases from the small bowel is limited almost entirely by the blood flow to the mucosa, and absorption from the stomach is largely limited by the diffusion rate of the gases. The flow which equilibrates with the lumen can be quantitated, and this flow may provide a useful measure of “effective” mucosal blood flow. Images PMID:4719667
Intestinal absorption of hawthorn flavonoids--in vitro, in situ and in vivo correlations.
Zuo, Zhong; Zhang, Li; Zhou, Limin; Chang, Qi; Chow, Moses
2006-11-25
Our previous studies identified hyperoside (HP), isoquercitrin (IQ) and epicatechin (EC) to be the major active flavonoid components of the hawthorn phenolic extract from hawthorn fruits demonstrating inhibitory effect on in vitro Cu(+2)-mediated low density lipoproteins oxidation. Among these three hawthorn flavonoids, EC was the only one detectable in plasma after the oral administration of hawthorn phenolic extract to rats. The present study aims to investigate the intestinal absorption mechanisms of these three hawthorn flavonoids by in vitro Caco-2 monolayer model, rat in situ intestinal perfusion model and in vivo pharmacokinetics studies in rats. In addition, in order to investigate the effect of the co-occurring components in hawthorn phenolic extract on the intestinal absorption of these three major hawthorn flavonoids, intestinal absorption transport profiles of HP, IQ and EC in forms of individual pure compound, mixture of pure compounds and hawthorn phenolic extract were studied and compared. The observations from in vitro Caco-2 monolayer model and in situ intestinal perfusion model indicated that all three studied hawthorn flavonoids have quite limited permeabilities. EC and IQ demonstrated more extensive metabolism in the rat in situ intestinal perfusion model and in vivo study than in Caco-2 monolayer model. Moreover, results from the Caco-2 monolayer model, rat in situ intestinal perfusion model as well as the in vivo pharmacokinetics studies in rats consistently showed that the co-occurring components in hawthorn phenolic extract might not have significant effect on the intestinal absorption of the three major hawthorn flavonoids studied.
Two-photon absorption of [2.2]paracyclophane derivatives in solution: A theoretical investigation
NASA Astrophysics Data System (ADS)
Ferrighi, Lara; Frediani, Luca; Fossgaard, Eirik; Ruud, Kenneth
2007-12-01
The two-photon absorption of a class of [2.2]paracyclophane derivatives has been studied using quadratic response and density functional theories. For the molecules investigated, several effects influencing the two-photon absorption spectra have been investigated, such as side-chain elongation, hydrogen bonding, the use of ionic species, and solvent effects, the latter described by the polarizable continuum model. The calculations have been carried out using a recent parallel implementation of the polarizable continuum model in the DALTON code. Special attention is given to those aspects that could explain the large solvent effect on the two-photon absorption cross sections observed experimentally for this class of compounds.
Light absorption by coated nano-sized carbonaceous particles
NASA Astrophysics Data System (ADS)
Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth
The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honda, M.; Kudo, T.; Terada, H.
We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H{sub 2}O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without themore » photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models.« less
Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katahara, John K.; Hillhouse, Hugh W., E-mail: h2@uw.edu
A unified model for the direct gap absorption coefficient (band-edge and sub-bandgap) is developed that encompasses the functional forms of the Urbach, Thomas-Fermi, screened Thomas-Fermi, and Franz-Keldysh models of sub-bandgap absorption as specific cases. We combine this model of absorption with an occupation-corrected non-equilibrium Planck law for the spontaneous emission of photons to yield a model of photoluminescence (PL) with broad applicability to band-band photoluminescence from intrinsic, heavily doped, and strongly compensated semiconductors. The utility of the model is that it is amenable to full-spectrum fitting of absolute intensity PL data and yields: (1) the quasi-Fermi level splitting, (2) themore » local lattice temperature, (3) the direct bandgap, (4) the functional form of the sub-bandgap absorption, and (5) the energy broadening parameter (Urbach energy, magnitude of potential fluctuations, etc.). The accuracy of the model is demonstrated by fitting the room temperature PL spectrum of GaAs. It is then applied to Cu(In,Ga)(S,Se){sub 2} (CIGSSe) and Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) to reveal the nature of their tail states. For GaAs, the model fit is excellent, and fitted parameters match literature values for the bandgap (1.42 eV), functional form of the sub-bandgap states (purely Urbach in nature), and energy broadening parameter (Urbach energy of 9.4 meV). For CIGSSe and CZTSSe, the model fits yield quasi-Fermi leveling splittings that match well with the open circuit voltages measured on devices made from the same materials and bandgaps that match well with those extracted from EQE measurements on the devices. The power of the exponential decay of the absorption coefficient into the bandgap is found to be in the range of 1.2 to 1.6, suggesting that tunneling in the presence of local electrostatic potential fluctuations is a dominant factor contributing to the sub-bandgap absorption by either purely electrostatic (screened Thomas-Fermi) or a photon-assisted tunneling mechanism (Franz-Keldysh). A Gaussian distribution of bandgaps (local E{sub g} fluctuation) is found to be inconsistent with the data. The sub-bandgap absorption of the CZTSSe absorber is found to be larger than that for CIGSSe for materials that yield roughly equivalent photovoltaic devices (8% efficient). Further, it is shown that fitting only portions of the PL spectrum (e.g., low energy for energy broadening parameter and high energy for quasi-Fermi level splitting) may lead to significant errors for materials with substantial sub-bandgap absorption and emission.« less
The Zone of Inertia: Absorptive Capacity and Organizational Change
ERIC Educational Resources Information Center
Godkin, Lynn
2010-01-01
Purpose: The purpose of this paper is to describe how interruptions in organizational learning effect institutional absorptive capacity and contribute to organizational inertia. Design/methodology/approach: An exploratory model is presented as a heuristic to describe how interruptions in organizational learning affect absorptive capacity.…
NASA Astrophysics Data System (ADS)
Puķīte, Jānis; Wagner, Thomas
2016-05-01
We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on temperature and scattering processes.
Vehicle effects on human stratum corneum absorption and skin penetration.
Zhang, Alissa; Jung, Eui-Chang; Zhu, Hanjiang; Zou, Ying; Hui, Xiaoying; Maibach, Howard
2017-05-01
This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [ 14 C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.
NASA Astrophysics Data System (ADS)
Fomin, Boris; Falaleeva, Victoria
2016-07-01
A polarized high-resolution 1-D model has been presented for TIR (Thermal Infrared) remote sensing application. It is based on the original versions of MC (Monte Carlo) and LbL (Line-by-Line) algorithms, which have shown their effectiveness when modelling the thermal radiation atmospheric transfer, taking into account, the semi-transparent Ci-type and polar clouds scattering, as well as the direct consideration of the spectra of molecular absorption. This model may be useful in the planning of satellite experiments and in the validation of similar models, which use the "k-distribution" or other approximations, to account for gaseous absorption. The example simulations demonstrate that, the selective gas absorption does not only significantly affect the absorption and emission of radiation, but also, its polarization in the Ci-type clouds. As a result, the spectra of polarized radiation contain important information about the clouds, and а high-resolution polarized limb sounding in the TIR, seems to be a useful tool in obtaining information on cloud types and their vertical structures.
Acoustic scaling: A re-evaluation of the acoustic model of Manchester Studio 7
NASA Astrophysics Data System (ADS)
Walker, R.
1984-12-01
The reasons for the reconstruction and re-evaluation of the acoustic scale mode of a large music studio are discussed. The design and construction of the model using mechanical and structural considerations rather than purely acoustic absorption criteria is described and the results obtained are given. The results confirm that structural elements within the studio gave rise to unexpected and unwanted low-frequency acoustic absorption. The results also show that at least for the relatively well understood mechanisms of sound energy absorption physical modelling of the structural and internal components gives an acoustically accurate scale model, within the usual tolerances of acoustic design. The poor reliability of measurements of acoustic absorption coefficients, is well illustrated. The conclusion is reached that such acoustic scale modelling is a valid and, for large scale projects, financially justifiable technique for predicting fundamental acoustic effects. It is not appropriate for the prediction of fine details because such small details are unlikely to be reproduced exactly at a different size without extensive measurements of the material's performance at both scales.
Transmission line model and fields analysis of metamaterial absorber in the terahertz band.
Wen, Qi-Ye; Xie, Yun-Song; Zhang, Huai-Wu; Yang, Qing-Hui; Li, Yuan-Xun; Liu, Ying-Li
2009-10-26
Metamaterial (MM) absorber is a novel device to provide near-unity absorption to electromagnetic wave, which is especially important in the terahertz (THz) band. However, the principal physics of MM absorber is still far from being understood. In this work, a transmission line (TL) model for MM absorber was proposed, and with this model the S-parameters, energy consumption, and the power loss density of the absorber were calculated. By this TL model, the asymmetric phenomenon of THz absorption in MM absorber is unambiguously demonstrated, and it clarifies that strong absorption of this absorber under studied is mainly related to the LC resonance of the split-ring-resonator structure. The distribution of power loss density in the absorber indicates that the electromagnetic wave is firstly concentrated into some specific locations of the absorber and then be strongly consumed. This feature as electromagnetic wave trapper renders MM absorber a potential energy converter. Based on TL model, some design strategies to widen the absorption band were also proposed for the purposes to extend its application areas.
NASA Astrophysics Data System (ADS)
Koška, Pavel; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Kasik, Ivan; Podrazký, Ondřej
2017-05-01
High-power operation of fiber lasers was enabled by the invention of cladding-pumping in a double-clad fiber structure. Because of existence of so called skew rays in the inner clad of the fiber, pump absorption saturates along the fiber and pumping becomes inefficient. First studies of pump absorption efficiency enhancement were focused on fibers with broken circular symmetry of inner cladding eliminating skew rays [1,2]. Later, techniques of unconventional fiber coiling were proposed [3]. However, theoretical studies were limited to the assumption of a straight fiber. Even recently, the rigorous model accounting for fiber bending and twisting was described [4-6]. It was found that bending of the fiber influences modal spectra of the pump radiation and twisting provides quite efficient mode-scrambling. These effects in a synergic manner significantly enhances pump absorption rate in double clad fibers and improves laser system efficiency. In our contribution we review results of numerical modelling of pump absorption in various types of double-clad fibers, e.g., with cross section shape of hexagon, stadium, and circle; two-fiber bundle (so-called GTWave fiber structure) a panda fibers are also analyzed. We investigate pump field modal spectra evolution in hexagonally shaped fiber in straight, bended, and simultaneously bended and twisted fiber which brings new quality to understanding of the mode-scrambling and pump absorption enhancement. Finally, we evaluate the impact of enhanced pump absorption on signal gain in the fiber. These results can have practical impact in construction of fiber lasers: with pump absorption efficiency optimized by our new model (the other models did not take into account fiber twist), the double-clad fiber of shorter length can be used in the fiber lasers and amplifiers. In such a way the harmful influence of background losses and nonlinear effects can be minimized. [1] Doya, V., Legrand, O., Mortessagne, F., "Optimized absorption in a chaotic double-clad fiber amplifier," Opt. Lett., vol. 26, no. 12, pp. 872-874, (2001). [2] Kouznetsov, D., Moloney, J. V., "Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry," J. Opt. Soc. Am. B, vol. 19, no. 6, pp. 1259-1263, June 2002. [3] Li, Y., Jackson, S. D., Fleming, S., "High absorption and low splice loss properties of hexagonal double-clad fiber," IEEE Photonics Technol. Lett., vol 16, no. 11, pp. 2502-2504, Nov. 2004. [4] Ko\\vska, P. and Peterka, P., "Numerical analysis of pump propagation and absorption in specially tailored double-clad rare-earth doped fiber," Optical and Quantum Electronics, vol. 47, no. 9, pp. 3181-3191 (2015). [5] Ko\\vska, P., Peterka, P., and Doya, V., "Numerical modeling of pump absorption in coiled and twisted double-clad fibers," IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 2 (2016). [6] Ko\\vska, P., Peterka, P., Aubrecht, J., Podrazký, O., Todorov, F., Becker, M., Baravets, Y., Honzátko, P., and Kašík, I., "Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers," Opt. Express, vol. 24, no. 1, pp. 102-107 (2016).
Resonance properties of the biological objects in the RF field
NASA Astrophysics Data System (ADS)
Cocherova, E.; Kupec, P.; Stofanik, V.
2011-12-01
Irradiation of people with electromagnetic fields emitted from miscellaneous devices working in the radio-frequency (RF) range may have influence, for example may affect brain processes. The question of health impact of RF electromagnetic fields on population is still not closed. This article is devoted to an investigation of resonance phenomena of RF field absorption in the models of whole human body and body parts (a head) of different size and shape. The values of specific absorption rate (SAR) are evaluated for models of the different shapes: spherical, cylindrical, realistic shape and for different size of the model, that represents the case of new-born, child and adult person. In the RF frequency region, absorption depends nonlinearly on frequency. Under certain conditions (E-polarization), absorption reaches maximum at frequency, that is called "resonance frequency". The whole body absorption and the resonance frequency depends on many further parameters, that are not comprehensively clarified. The simulation results showed the dependence of the whole-body average SAR and resonance frequency on the body dimensions, as well as the influence of the body shape.
NASA Astrophysics Data System (ADS)
Misenheimer, Corey Thomas
The intermittency of wind and solar power puts strain on electric grids, often forcing carbonbased and nuclear sources of energy to operate in a load-follow mode. Operating nuclear reactors in a load-follow fashion is undesirable due to the associated thermal and mechanical stresses placed on the fuel and other reactor components. Various Thermal Energy Storage (TES) elements and ancillary energy applications can be coupled to nuclear (or renewable) power sources to help absorb grid instabilities caused by daily electric demand changes and renewable intermittency, thereby forming the basis of a candidate Nuclear Hybrid Energy System (NHES). During the warmer months of the year in many parts of the country, facility air-conditioning loads are significant contributors to the increase in the daily peak electric demand. Previous research demonstrated that a stratified chilled-water storage tank can displace peak cooling loads to off-peak hours. Based on these findings, the objective of this work is to evaluate the prospect of using a stratified chilled-water storage tank as a potential TES reservoir for a nuclear reactor in a NHES. This is accomplished by developing time-dependent models of chilled-water system components, including absorption chillers, cooling towers, a storage tank, and facility cooling loads appropriate for a large office space or college campus, as a callable FORTRAN subroutine. The resulting TES model is coupled to a high-fidelity mPower-sized Small Modular Reactor (SMR) Simulator, with the goal of utilizing excess reactor capacity to operate several sizable chillers in order to keep reactor power constant. Chilled-water production via single effect, lithium bromide (LiBr) absorption chillers is primarily examined in this study, although the use of electric chillers is briefly explored. Absorption chillers use hot water or low-pressure steam to drive an absorption-refrigeration cycle. The mathematical framework for a high-fidelity dynamic absorption chiller model is presented. The transient FORTRAN model is grounded on time-dependent mass, species, and energy conservation equations. Due to the vast computational costs of the high-fidelity model, a low-fidelity absorption chiller model is formulated and calibrated to mimic the behavior of the high-fidelity model. Stratified chilled-water storage tank performance is characterized using Computational Fluid Dynamics (CFD). The geometry employed in the CFD model represents a 5-million-gallon storage tank currently in use at a North Carolina college campus. Simulation results reveal the laminar numerical model most closely aligns with actual tank charging and discharging data. A subsequent parametric study corroborates storage tank behavior documented throughout literature and industry. Two absorption chiller configurations are considered. The first involves bypassing lowpressure steam from the low-pressure turbine to absorption chillers during periods of excess reactor capacity in order to keep reactor power constant. Simulation results show steam conditions downstream of the turbine control valves are a strong function of turbine load, and absorption chiller performance is hindered by reduced turbine impulse pressures at reduced turbine demands. A more suitable configuration entails integrating the absorption chillers into a flash vessel system that is thermally coupled to a sensible heat storage system. The sensible heat storage system is able to maintain reactor thermal output constant at 100% and match turbine output with several different electric demand profiles. High-pressure condensate in the sensible heat storage system is dropped across a let-down orifice and flashed in an ideal separator. Generated steam is sent to a bank of absorption chillers. Simulation results show enough steam is available during periods of reduced turbine demand to power four large absorption chillers to charge a 5-million-gallon stratified chilled-water storage tank, which is used to offset cooling loads in an adjacent facility. The coupled TES systems operating in conjunction with an SMR comprise the foundation of a tightly coupled NHES.
Absorption models for low-frequency variability in compact radio sources
NASA Technical Reports Server (NTRS)
Marscher, A. P.
1979-01-01
The consequences of the most plausible version of the absorption model for low-frequency variability in compact extragalactic radio sources are considered. The general restrictions placed on such a model are determined, and observational tests are suggested that can be used either to support the model or to discriminate among its various versions. It is shown that low-frequency variability in compact radio sources can be successfully explained by a class of models in which the flux is modulated by changes in free-free optical depth within an intervening ionized medium. Two versions of such a model are distinguished, one involving large changes in optical depth and the other, small changes. It is noted that while absorption effects are capable of causing rapid flux and structural variations at centimetric wavelengths, the models predict detailed behavior that is in direct conflict with observational data.
Coupling between absorption and scattering in disordered colloids
NASA Astrophysics Data System (ADS)
Stephenson, Anna; Hwang, Victoria; Park, Jin-Gyu; Manoharan, Vinothan N.
We aim to understand how scattering and absorption are coupled in disordered colloidal suspensions containing absorbing molecules (dyes). When the absorption length is shorter than the transport length, absorption dominates, and absorption and scattering can be seen as two additive effects. However, when the transport length is shorter than the absorption length, the scattering and absorption become coupled, as multiple scattering increases the path length of the light in the sample, leading to a higher probability of absorption. To quantify this synergistic effect, we measure the diffuse reflectance spectra of colloidal samples of varying dye concentrations, thicknesses, and particle concentrations, and we calculate the transport length and absorption length from our measurements, using a radiative transfer model. At particle concentrations so high that the particles form disordered packings, we find a minimum in the transport length. We show that selecting a dye where the absorption peak matches the location of the minimum in the transport length allows for enhanced absorption. Kraft-Heinz Corporation, NSF GRFP 2015200426.
Dissociative absorption: An empirically unique, clinically relevant, dissociative factor.
Soffer-Dudek, Nirit; Lassri, Dana; Soffer-Dudek, Nir; Shahar, Golan
2015-11-01
Research of dissociative absorption has raised two questions: (a) Is absorption a unique dissociative factor within a three-factor structure, or a part of one general dissociative factor? Even when three factors are found, the specificity of the absorption factor is questionable. (b) Is absorption implicated in psychopathology? Although commonly viewed as "non-clinical" dissociation, absorption was recently hypothesized to be specifically associated with obsessive-compulsive symptoms. To address these questions, we conducted exploratory and confirmatory factor analyses on 679 undergraduates. Analyses supported the three-factor model, and a "purified" absorption scale was extracted from the original inclusive absorption factor. The purified scale predicted several psychopathology scales. As hypothesized, absorption was a stronger predictor of obsessive-compulsive symptoms than of general psychopathology. In addition, absorption was the only dissociative scale that longitudinally predicted obsessive-compulsive symptoms. We conclude that absorption is a unique and clinically relevant dissociative tendency that is particularly meaningful to obsessive-compulsive symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.
In vivo spatial frequency domain spectroscopy of two layer media
NASA Astrophysics Data System (ADS)
Yudovsky, Dmitry; Nguyen, John Quan M.; Durkin, Anthony J.
2012-10-01
Monitoring of tissue blood volume and local oxygen saturation can inform the assessment of tissue health, healing, and dysfunction. These quantities can be estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in skin can be confounded by the strong absorption of melanin in the epidermis and epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. Therefore, a method is desired that decouples the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. A previously developed inverse method based on a neural network forward model was applied to simulated spatial frequency domain reflectance of skin for multiple wavelengths in the near infrared. It is demonstrated that the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis can be determined independently and with minimal coupling. Then, the same inverse method was applied to reflectance measurements from a tissue simulating phantom and in vivo human skin. Oxygen saturation and total hemoglobin concentrations were estimated from the volar forearms of weakly and strongly pigmented subjects using a standard homogeneous model and the present two layer model.
Ridgway, Cathy J.; Schoelkopf, Joachim; Matthews, G. Peter; Gane, Patrick A. C.; James, Philip W.
2001-07-15
The absorption (permeation) of alcohols into porous blocks of calcium carbonate has been studied experimentally and with a computer model. The experimental measurement was of change in apparent weight of a block with time after contact with liquid. The modeling used the previously developed 'Pore-Cor' model, based on unit cells of 1000 cubic pores connected by cylindrical throats. To gain some insight into absorption into voids of complex geometry, and to provide a representation of heterogeneities in surface interaction energy, the cylindrical throats were converted to double cones. Relative to cylinders, such geometries caused hold-ups of the percolation of nonwetting fluids with respect to increasing applied pressure, and a change in the rate of absorption of wetting fluids. Both the measured absorption of the alcohols and the simulated absorption of the alcohols and of water showed significant deviations from that predicted by an effective hydraulic radius approximation. The simulation demonstrated the development of a highly heterogeneous wetting front, and of preferred wetting pathways that were perturbed by inertial retardation. The findings are useful in the design of high-performance, low-waste pigments for paper coatings, and environmentally friendly printing inks, as well as in wider industrial, environmental, and geological contexts. Copyright 2001 Academic Press.
Choquette, Amélie; Troncy, Eric; Guillot, Martin; Varin, France; Del Castillo, Jérôme R E
2017-01-01
Adrenaline is known to prolong the duration of local anesthesia but its effects on the pharmacokinetic processes of local anesthetic drugs are not fully understood. Our objective was to develop a compartmental model for quantification of adrenaline's impact on the pharmacokinetics of perineurally-injected lidocaine in the dog. Dogs were subjected to paravertebral brachial plexus block using lidocaine alone or adrenalinated lidocaine. Data was collected through a prospective, randomised, blinded crossover protocol performed over three periods. Blood samples were collected during 180 minutes following block execution. Compartmental pharmacokinetic models were developed and their goodness-of-fit were compared. The lowering effects of adrenaline on the absorption of lidocaine were statistically determined with one-sided tests. A one-compartment disposition model with two successive zero-order absorption processes best fitted our experimental data. Adrenaline decreased the peak plasma lidocaine concentration by approximately 60% (P < 0.001), decreased this local anesthetic's fast and slow zero-order absorption rates respectively by 50% and 90% (P = 0.046, and P < 0.001), which respective durations were prolonged by 90% and 1300% (P < 0.020 and P < 0.001). Lidocaine demonstrated a previously unreported atypical absorption profile following its paravertebral injection in dogs. Adrenaline decreased the absorption rate of lidocaine and prolonged the duration of its absorption.
Hydration shell parameters of aqueous alcohols: THz excess absorption and packing density.
Matvejev, V; Zizi, M; Stiens, J
2012-12-06
Solvation in water requires minimizing the perturbations in its hydrogen bonded network. Hence solutes distort water molecular motions in a surrounding domain, forming a molecule-specific hydration shell. The properties of those hydration shells impact the structure and function of the solubilized molecules, both at the single molecule and at higher order levels. The size of the hydration shell and the picoseconds time-scale water dynamics retardation are revealed by terahertz (THz) absorption coefficient measurements. Room-temperature absorption coefficient at f = 0.28 [THz] is measured as a function of alcohol concentration in aqueous methanol, ethanol, 1,2-propanol, and 1-butanol solutions. Highly diluted alcohol measurements and enhanced overall measurement accuracy are achieved with a THz absorption measurement technique of nL-volume liquids in a capillary tube. In the absorption analysis, bulk and interfacial molecular domains of water and alcohol are considered. THz ideal and excess absorption coefficients are defined in accordance with thermodynamics mixing formulations. The parameter extraction method is developed based on a THz excess absorption model and hydrated solute molecule packing density representation. First, the hydration shell size is deduced from the hydrated solute packing densities at two specific THz excess absorption nonlinearity points: at infinite alcohol dilution (IAD) and at the THz excess absorption extremum (EAE). Consequently, interfacial water and alcohol molecular domain absorptions are deduced from the THz excess absorption model. The hydration shell sizes obtained at the THz excess absorption extremum are in excellent agreement with other reports. The hydration shells of methanol, ethanol, 1- and 2-propanol consist of 13.97, 22.94, 22.99, and 31.10 water molecules, respectively. The hydration shell water absorption is on average 0.774 ± 0.028 times the bulk water absorption. The hydration shell parameters might shed light on hydration dynamics of biomolecules.
NASA Astrophysics Data System (ADS)
Robinson, C. M.; Cherukuru, N.; Hardman-Mountford, N. J.; Everett, J. D.; McLaughlin, M. J.; Davies, K. P.; Van Dongen-Vogels, V.; Ralph, P. J.; Doblin, M. A.
2017-06-01
The phytoplankton absorption coefficient (aPHY) has been suggested as a suitable alternate first order predictor of net primary productivity (NPP). We compiled a dataset of surface bio-optical properties and phytoplankton NPP measurements in coastal waters around Australia to examine the utility of an in-situ absorption model to estimate NPP. The magnitude of surface NPP (0.20-19.3 mmol C m-3 d-1) across sites was largely driven by phytoplankton biomass, with higher rates being attributed to the microplankton (>20 μm) size class. The phytoplankton absorption coefficient aPHY for PAR (photosynthetically active radiation; āPHY)) ranged from 0.003 to 0.073 m-1, influenced by changes in phytoplankton community composition, physiology and environmental conditions. The aPHY coefficient also reflected changes in NPP and the absorption model-derived NPP could explain 73% of the variability in measured surface NPP (n = 41; RMSE = 2.49). The absorption model was applied to two contrasting coastal locations to examine NPP dynamics: a high chlorophyll-high variation (HCHV; Port Hacking National Reference Station) and moderate chlorophyll-low variation (MCLV; Yongala National Reference Station) location in eastern Australia using the GIOP-DC satellite aPHY product. Mean daily NPP rates between 2003 and 2015 were higher at the HCHV site (1.71 ± 0.03 mmol C m-3 d-1) with the annual maximum NPP occurring during the austral winter. In contrast, the MCLV site annual NPP peak occurred during the austral wet season and had lower mean daily NPP (1.43 ± 0.03 mmol C m-3 d-1) across the time-series. An absorption-based model to estimate NPP is a promising approach for exploring the spatio-temporal dynamics in phytoplankton NPP around the Australian continental shelf.
Naftalin, Richard J.
2016-01-01
A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD), non-alcoholic steatohepatitis, (NASH) and type 2 diabetes mellitus, (T2DM) demonstrates how when glucagon-like peptide-1, (GLP-1) is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA) blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU). When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption. Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism. This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic implications on GLP-1 agonist or glucagon antagonist usage. PMID:27347379
NASA Technical Reports Server (NTRS)
Poe, C. H.; Owocki, S. P.; Castor, J. I.
1990-01-01
The steady state solution topology for absorption line-driven flows is investigated for the condition that the Sobolev approximation is not used to compute the line force. The solution topology near the sonic point is of the nodal type with two positive slope solutions. The shallower of these slopes applies to reasonable lower boundary conditions and realistic ion thermal speed v(th) and to the Sobolev limit of zero of the usual Castor, Abbott, and Klein model. At finite v(th), this solution consists of a family of very similar solutions converging on the sonic point. It is concluded that a non-Sobolev, absorption line-driven flow with a realistic values of v(th) has no uniquely defined steady state. To the extent that a pure absorption model of the outflow of stellar winds is applicable, radiatively driven winds should be intrinsically variable.
Experimental Evaluation of Tuned Chamber Core Panels for Payload Fairing Noise Control
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Allen, Albert R.; Herlan, Jonathan W.; Rosenthal, Bruce N.
2015-01-01
Analytical models have been developed to predict the sound absorption and sound transmission loss of tuned chamber core panels. The panels are constructed of two facesheets sandwiching a corrugated core. When ports are introduced through one facesheet, the long chambers within the core can be used as an array of low-frequency acoustic resonators. To evaluate the accuracy of the analytical models, absorption and sound transmission loss tests were performed on flat panels. Measurements show that the acoustic resonators embedded in the panels improve both the absorption and transmission loss of the sandwich structure at frequencies near the natural frequency of the resonators. Analytical predictions for absorption closely match measured data. However, transmission loss predictions miss important features observed in the measurements. This suggests that higher-fidelity analytical or numerical models will be needed to supplement transmission loss predictions in the future.
NASA Astrophysics Data System (ADS)
Abdelhamid, Mostafa R.; El-Batawy, Yasser M.; Deen, M. Jamal
2018-02-01
In Resonant Cavity Enhanced Photodetectors (RCE-PDs), the trade-off between the bandwidth and the quantum efficiency in the conventional photodetectors is overcome. In RCE-PDs, large bandwidth can be achieved using a thin absorption layer while the use of a resonant cavity allows for multiple passes of light in the absorption which boosts the quantum efficiency. In this paper, a complete bias-dependent model for the Resonant Cavity Enhanced-Separated Absorption Graded Charge Multiplication-Avalanche Photodetector (RCE-SAGCM-APD) is presented. The proposed model takes into account the case of drift velocities other than the saturation velocity, thus modeling this effect on the photodetector different design parameters such as Gain, Bandwidth and Gain-Bandwidth product.
Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P
2010-06-01
The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it was possible to interchange certain descriptors (i.e. molecular weight and melting point) without incurring a loss of model quality. Such synergy suggested that a model constructed from discrete terms in an equation may not be the most appropriate way of representing mechanistic understandings of skin absorption.
Host Model Uncertainty in Aerosol Radiative Forcing Estimates - The AeroCom Prescribed Experiment
NASA Astrophysics Data System (ADS)
Stier, P.; Kinne, S.; Bellouin, N.; Myhre, G.; Takemura, T.; Yu, H.; Randles, C.; Chung, C. E.
2012-04-01
Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. However, even for the case of identical aerosol emissions, the simulated direct aerosol radiative forcings show significant diversity among the AeroCom models (Schulz et al., 2006). Our analysis of aerosol absorption in the AeroCom models indicates a larger diversity in the translation from given aerosol radiative properties (absorption optical depth) to actual atmospheric absorption than in the translation of a given atmospheric burden of black carbon to the radiative properties (absorption optical depth). The large diversity is caused by differences in the simulated cloud fields, radiative transfer, the relative vertical distribution of aerosols and clouds, and the effective surface albedo. This indicates that differences in host model (GCM or CTM hosting the aerosol module) parameterizations contribute significantly to the simulated diversity of aerosol radiative forcing. The magnitude of these host model effects in global aerosol model and satellites retrieved aerosol radiative forcing estimates cannot be estimated from the diagnostics of the "standard" AeroCom forcing experiments. To quantify the contribution of differences in the host models to the simulated aerosol radiative forcing and absorption we conduct the AeroCom Prescribed experiment, a simple aerosol model and satellite retrieval intercomparison with prescribed highly idealised aerosol fields. Quality checks, such as diagnostic output of the 3D aerosol fields as implemented in each model, ensure the comparability of the aerosol implementation in the participating models. The simulated forcing variability among the models and retrievals is a direct measure of the contribution of host model assumptions to the uncertainty in the assessment of the aerosol radiative effects. We will present the results from the AeroCom prescribed experiment with focus on the attribution to the simulated variability to parametric and structural model uncertainties. This work will help to prioritise areas for future model improvements and ultimately lead to uncertainty reduction.
Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T
NASA Astrophysics Data System (ADS)
Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.
2017-02-01
The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.
Solar flare induced cosmic noise absorption
NASA Astrophysics Data System (ADS)
Ogunmodimu, Olugbenga; Honary, Farideh; Rogers, Neil; Falayi, E. O.; Bolaji, O. S.
2018-06-01
Solar flare events are a major observing emphasis for space weather because they affect the ionosphere and can eject high-energy particles that can adversely affect Earth's technologies. In this study we model 38.2 MHz cosmic noise absorption (CNA) by utilising measurements from the Imaging Riometer for Ionospheric Studies (IRIS) at Kilpisjärvi, Finland obtained during solar cycle 23 (1996-2009). We utilised X-ray archive for the same period from the Geostationary Operational Environmental Satellite (GOES) to study solar flare induced cosmic noise absorption. We identified the threshold of flare (M4 class) that could bear significant influence on CNA. Through epoch analysis, we show the magnitude of absorption that each class of flare could produce. Using the parameters of flare and absorption we present a model that could provide the basis for nowcast of CNA induced by M and X-class solar flares.
Interpretation of the prominence differential emissions measure for 3 geometries
NASA Technical Reports Server (NTRS)
Schmahl, E. J.; Orrall, F. Q.
1986-01-01
Researchers have used prominence extreme ultraviolet line intensities observed from Skylab to derive the differential emission measure Q(T) in the prominence-corona (PC) interface from 3 x 10,000 to 3 times 1 million K, including the effects of Lyman Continuum absorption. Using lines both shortward and longward of the Lyman limit, researchers have estimated the importance of absorption as function of temperature. The magnitude of the absorption, as well as its rate of increase as a function of temperature, place limits on the thread scales and the character of the interfilar medium. Researchers have calculated models based on three assumed geometries: (1) threads with hot sheaths and cool cores; (2) isothermal threads; and (3) threads with longitudinal temperature gradients along the magnetic field. Comparison of the absorption computed from these models with the observed absorption in prominences shows that none of the geometries is totally satisfactory.
Force-detected nanoscale absorption spectroscopy in water at room temperature using an optical trap
NASA Astrophysics Data System (ADS)
Parobek, Alexander; Black, Jacob W.; Kamenetska, Maria; Ganim, Ziad
2018-04-01
Measuring absorption spectra of single molecules presents a fundamental challenge for standard transmission-based instruments because of the inherently low signal relative to the large background of the excitation source. Here we demonstrate a new approach for performing absorption spectroscopy in solution using a force measurement to read out optical excitation at the nanoscale. The photoinduced force between model chromophores and an optically trapped gold nanoshell has been measured in water at room temperature. This photoinduced force is characterized as a function of wavelength to yield the force spectrum, which is shown to be correlated to the absorption spectrum for four model systems. The instrument constructed for these measurements combines an optical tweezer with frequency domain absorption spectroscopy over the 400-800 nm range. These measurements provide proof-of-principle experiments for force-detected nanoscale spectroscopies that operate under ambient chemical conditions.
Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season
NASA Astrophysics Data System (ADS)
Wang, Qiaoqiao; Saturno, Jorge; Chi, Xuguang; Walter, David; Lavric, Jost; Moran-Zuloaga, Daniel; Ditas, Florian; Pöhlker, Christopher; Brito, Joel; Carbone, Samara; Artaxo, Paulo; Andreae, Meinrat
2017-04-01
We use a global chemical transport model (GEOS-Chem) to interpret observed light-absorbing aerosols in Amazonia during the wet season. Observed aerosol properties, including black carbon (BC) concentration and light absorption, at the Amazon Tall Tower Observatory (ATTO) site in the central Amazon have relatively low background levels but frequently show high peaks during the study period of January-April 2014. With daily temporal resolution for open fire emissions and modified aerosol optical properties, our model successfully captures the observed variation in fine/coarse aerosol and BC concentrations as well as aerosol light absorption and its wavelength dependence over the Amazon Basin. The source attribution in the model indicates the important influence of open fire on the observed variances of aerosol concentrations and absorption, mainly from regional sources (northern South America) and from northern Africa. The contribution of open fires from these two regions is comparable, with the latter becoming more important in the late wet season. The analysis of correlation and enhancement ratios of BC versus CO suggests transport times of < 3 days for regional fires and 11 days for African plumes arriving at ATTO during the wet season. The model performance of long-range transport of African plumes is also evaluated with observations from AERONET, MODIS, and CALIOP. Simulated absorption aerosol optical depth (AAOD) averaged over the wet season is lower than 0.0015 over the central Amazon, including the ATTO site. We find that more than 50% of total absorption at 550 nm is from BC, except for the northeastern Amazon and the Guianas, where the influence of dust becomes significant (up to 35 %). The brown carbon contribution is generally between 20 and 30 %. The distribution of absorption Ångström exponents (AAE) suggests more influence from fossil fuel combustion in the southern part of the basin (AAE 1) but more open fire and dust influence in the northern part (AAE > 1.8). Uncertainty analysis shows that accounting for absorption due to secondary organic aerosol (SOA) and primary biogenic aerosol (PBA) particles could result in differences of < 8 and 5-40% in total absorption, respectively.
Absorptive capacity, technological innovation, and product life cycle: a system dynamics model.
Zou, Bo; Guo, Feng; Guo, Jinyu
2016-01-01
While past research has recognized the importance of the dynamic nature of absorptive capacity, there is limited knowledge on how to generate a fair and comprehensive analytical framework. Based on interviews with 24 Chinese firms, this study develops a system-dynamics model that incorporates an important feedback loop among absorptive capacity, technological innovation, and product life cycle (PLC). The simulation results reveal that (1) PLC affects the dynamic process of absorptive capacity; (2) the absorptive capacity of a firm peaks in the growth stage of PLC, and (3) the market demand at different PLC stages is the main driving force in firms' technological innovations. This study also explores a sensitivity simulation using the variables of (1) time spent in founding an external knowledge network, (2) research and development period, and (3) knowledge diversity. The sensitivity simulation results show that the changes of these three variables have a greater impact on absorptive capacity and technological innovation during growth and maturity stages than in the introduction and declining stages of PLC. We provide suggestions on how firms can adjust management policies to improve their absorptive capacity and technological innovation performance during different PLC stages.
Fu, Guang; Zhang, David Z; He, Allen N; Mao, Zhongfa; Zhang, Kaifei
2018-05-10
A deep understanding of the laser-material interaction mechanism, characterized by laser absorption, is very important in simulating the laser metal powder bed fusion (PBF) process. This is because the laser absorption of material affects the temperature distribution, which influences the thermal stress development and the final quality of parts. In this paper, a three-dimensional finite element analysis model of heat transfer taking into account the effect of material state and phase changes on laser absorption is presented to gain insight into the absorption mechanism, and the evolution of instantaneous absorptance in the laser metal PBF process. The results showed that the instantaneous absorptance was significantly affected by the time of laser radiation, as well as process parameters, such as hatch space, scanning velocity, and laser power, which were consistent with the experiment-based findings. The applicability of this model to temperature simulation was demonstrated by a comparative study, wherein the peak temperature in fusion process was simulated in two scenarios, with and without considering the effect of material state and phase changes on laser absorption, and the simulated results in the two scenarios were then compared with experimental data respectively.
Bhattachar, Shobha N; Perkins, Everett J; Tan, Jeffrey S; Burns, Lee J
2011-11-01
Dogs are one of the most commonly used non-rodent species in toxicology studies and are known to have basal stomach pH ranging from 2 to 7 in the fasted state. Thus absorption and resulting plasma exposure of weakly basic compounds administered as crystalline suspensions to dogs are often variable. LY2157299 is a potent and selective transforming growth factor (TGF)-beta receptor type 1 kinase (TGF-βRI) inhibitor that displayed variable absorption in early dog studies. This molecule is a weakly basic Biopharmaceutics Classification System (BCS)Class II compound, and depends on the rate and extent of dissolution to drive oral absorption. An artificial stomach and duodenum (ASD) dissolution model was utilized to evaluate potential effect of gastric pH on the absorption of suspension and buffered solution formulations. GastroPlus™ was also employed to predict the magnitude of gastric pH changes on LY2157299 absorption. The ASD experiments demonstrated that administration of a buffered acidic solution could improve the potential for absorption by normalizing gastric pH and enabling supersaturation in the duodenum. GastroPlus™ modeling suggested that direct modulation of gastric pH could lead to marked changes in bioavailability. Pharmacokinetic experiments were conducted in dogs to evaluate the effect of gastric pH modification on plasma exposure. The data were qualitatively consistent with the predictions. Copyright © 2011 Wiley-Liss, Inc.
Kim, Tae Hwan; Shin, Soyoung; Bulitta, Jürgen B; Youn, Yu Seok; Yoo, Sun Dong; Shin, Beom Soo
2017-01-03
Establishing a level A in vitro-in vivo correlation (IVIVC) for a drug with complex absorption kinetics is challenging. The objective of the present study was to develop an IVIVC approach based on population pharmacokinetic (POP-PK) modeling that incorporated physiologically relevant absorption kinetics. To prepare three extended release (ER) tablets of loxoprofen, three types of hydroxypropyl methylcellulose (HPMC 100, 4000, and 15000 cps) were used as drug release modifiers, while lactose and magnesium stearate were used as the diluent and lubricant, respectively. An in vitro dissolution test in various pH conditions showed that loxoprofen dissolution was faster at higher pH. The in vivo pharmacokinetics of loxoprofen was assessed following oral administration of the different loxoprofen formulations to Beagle dogs (n = 22 in total). Secondary peaks or shoulders were observed in many of the individual plasma concentration vs time profiles after ER tablet administration, which may result from secondary absorption in the intestine due to a dissolution rate increase under intestinal pH compared to that observed at stomach pH. In addition, in vivo oral bioavailability was found to decrease with prolonged drug dissolution, indicating site-specific absorption. Based on the in vitro dissolution and in vivo absorption data, a POP-PK IVIVC model was developed using S-ADAPT software. pH-dependent biphasic dissolution kinetics, described using modified Michaelis-Menten kinetics with varying V max , and site-specific absorption, modeled using a changeable absorbed fraction parameter, were applied to the POP-PK IVIVC model. To experimentally determine the biphasic dissolution profiles of the ER tablets, another in vitro dissolution test was conducted by switching dissolution medium pH based on an in vivo estimate of gastric emptying time. The model estimated, using linear regression, that in vivo initial maximum dissolution rate (V max (0) in vivo ) was highly correlated (r 2 > 0.998) with in vitro (V max (0) in vitro ), indicating that in vivo dissolution profiles obtained from POP-PK modeling could be converted to in vitro dissolution profiles and vice versa. Monte Carlo simulations were performed for model validation, and prediction errors for C max and AUC were all within the acceptable range (90 to 110%) according to the FDA guidelines. The developed model was successfully applied for the prediction of in vivo pharmacokinetics of a loxoprofen double-layered tablet using the in vitro dissolution profile. In conclusion, a level A IVIVC approach was developed and validated using population modeling that accounted for pH-dependent dissolution and site-specific absorption. Excellent correlations were observed between in vitro and in vivo dissolution profiles. This new approach holds great promise for the establishment of IVIVCs for drug and formulation development where absorption kinetics strongly depend on complex physiologically absorption processes.
Qumar, Muhammad; Khiaosa-Ard, Ratchaneewan; Pourazad, Poulad; Wetzels, Stefanie U; Klevenhusen, Fenja; Kandler, Wolfgang; Aschenbach, Jörg R; Zebeli, Qendrim
2016-01-01
Short-chain fatty acids (SCFAs) and lactate are endproducts of rumen fermentation and important energy sources for the host ruminant. Because their rapid accumulation results in ruminal acidosis, enhancement of the absorption of SCFA and lactate across reticuloruminal wall is instrumental in increasing energy supply and preventing ruminal acidosis in cattle. This study investigated whether the reticuloruminal absorption of SCFAs and lactate was altered by different strategies of high concentrate feeding. Eight rumen-cannulated, non-lactating Holstein cows were fed a forage-only diet (baseline) and then gradually adapted over 6 d to a 60% concentrate level. Thereafter, this concentrate-rich diet was fed for 4 wk either continuously (Con; n = 8) or interruptedly (Int; n = 8). Absorption of SCFAs and lactate was determined in vivo from the experimental buffer introduced into the washed reticulorumen. The buffer contained acetate, propionate, butyrate and lactate at a concentration of 60, 30, 10 and 5 mmol/L, respectively and Cr-EDTA as a marker for correcting ruminal water fluxes. The reticuloruminal absorption after 35 and 65 min of buffer incubation was measured at the baseline, after 1 wk of 60% concentrate feeding in the interrupted model (Int-1) and after 4 wk of concentrate feeding in both feeding models (Int-4 and Con-4). Data showed that the absorption rates of individual and total SCFAs during the first 35 min of incubation of Con-4 were highest (~1.7 times compared to baseline), while Int-1 and Int-4 were similar to respective baseline. Lactate was not absorbed during forage-only baseline and 1-wk concentrate feeding, but after 4-wk feeding of concentrates in both models. In conclusion, SCFAs absorption across the reticulorumen of non-lactating cattle was enhanced by the 4-wk continuous concentrate feeding, which seems to be more advantageous in terms of rumen acidosis prevention compared to the interrupted feeding model. The study provides evidence of lactate absorption across the reticulorumen of non-lactating cattle after both continuous and interrupted 4-wk concentrate feeding.
Qumar, Muhammad; Khiaosa-ard, Ratchaneewan; Pourazad, Poulad; Wetzels, Stefanie U.; Klevenhusen, Fenja; Kandler, Wolfgang; Aschenbach, Jörg R.; Zebeli, Qendrim
2016-01-01
Short-chain fatty acids (SCFAs) and lactate are endproducts of rumen fermentation and important energy sources for the host ruminant. Because their rapid accumulation results in ruminal acidosis, enhancement of the absorption of SCFA and lactate across reticuloruminal wall is instrumental in increasing energy supply and preventing ruminal acidosis in cattle. This study investigated whether the reticuloruminal absorption of SCFAs and lactate was altered by different strategies of high concentrate feeding. Eight rumen-cannulated, non-lactating Holstein cows were fed a forage-only diet (baseline) and then gradually adapted over 6 d to a 60% concentrate level. Thereafter, this concentrate-rich diet was fed for 4 wk either continuously (Con; n = 8) or interruptedly (Int; n = 8). Absorption of SCFAs and lactate was determined in vivo from the experimental buffer introduced into the washed reticulorumen. The buffer contained acetate, propionate, butyrate and lactate at a concentration of 60, 30, 10 and 5 mmol/L, respectively and Cr-EDTA as a marker for correcting ruminal water fluxes. The reticuloruminal absorption after 35 and 65 min of buffer incubation was measured at the baseline, after 1 wk of 60% concentrate feeding in the interrupted model (Int-1) and after 4 wk of concentrate feeding in both feeding models (Int-4 and Con-4). Data showed that the absorption rates of individual and total SCFAs during the first 35 min of incubation of Con-4 were highest (~1.7 times compared to baseline), while Int-1 and Int-4 were similar to respective baseline. Lactate was not absorbed during forage-only baseline and 1-wk concentrate feeding, but after 4-wk feeding of concentrates in both models. In conclusion, SCFAs absorption across the reticulorumen of non-lactating cattle was enhanced by the 4-wk continuous concentrate feeding, which seems to be more advantageous in terms of rumen acidosis prevention compared to the interrupted feeding model. The study provides evidence of lactate absorption across the reticulorumen of non-lactating cattle after both continuous and interrupted 4-wk concentrate feeding. PMID:27716806
NASA Astrophysics Data System (ADS)
Smith, D. C.
2012-12-01
Compter modeling of global climate change require an input (asssumption) of the forcing function for CO2 absorption. All codes use a long term forcing function of ~ 4 W/M2. (IPCC 2007 Summary for Policymakers. In:Climate Change 2007. The Physical Sciences Basis.Contributions of Working Group 1 to the Fourth Assessment Report of the IPCC, Cambridge U. Press N.Y.)..This is based on a band model of the CO2 rotational/vibrational absorption where a band of absorption averages over all the rotational levels of the vibration transition. (Ramananathan,V.,et al, J. of Geophysical Research,Vol 84 C8,p4949,Aug.1979).. The model takes into account the line width,the spacing between lines and identifies 10 CO2 bands.. This approach neglects the possibility that the peak absorption transitions in a band can "use up" all of the earths IR radiation at that wavelength and does not contribute to global warming no matter how much the CO2 is increased. The lines in the wings of a band increase their absorption as the CO2 is increased. However, the lines that are lost are the strong absorbers and those that are added are the weaker absorption lines. When a band begins to use up the IR then the net result of increasing the atmospheric CO2 is a decrease in the absorption change. This presentation calculates the absorption of each line individualy using the Behr's Law Approach. The dependence of the absorption and line width of each transition as a function of altitude is accounted for. The temperature dependence of the absorption with altitude is not and an evaluation of this error is given. For doubling CO2 from 320ppm to 640 ppm, the calculation gives a forcing function of 1.1 W/M2. The results show the importance of using individual lines to calculate the CO2 contribution to global warming, We can speculate on the imact and anticipate a computer code calculation of a factor of 4 less global warming than the published results.
NASA Astrophysics Data System (ADS)
Siskind, David E.; Zawdie, K. A.; Sassi, F.; Drob, D.; Friedrich, M.
2017-01-01
We compare D and lower E region ionospheric model calculations driven by the Whole Atmosphere Community Climate Model (WACCM) with a selection of electron density profiles made by sounding rockets over the past 50 years. The WACCM model, in turn, is nudged by winds and temperatures from the Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA). This nudging has been shown to greatly improve the representation of key neutral constituents, such as nitric oxide (NO), that are used as inputs to the ionospheric model. We show that with this improved representation, we greatly improve the comparison between calculated and observed electron densities relative to older studies. At midlatitudes, for both winter and equinoctal conditions, the model agrees well with the data. At tropical latitudes, our results confirm a previous suggestion that there is a model deficit in the calculated electron density in the lowermost D region. We then apply the calculated electron densities to examine the variation of HF absorption with altitude, latitude, and season and from 2008 to 2009. For low latitudes, our results agree with recent studies showing a primary peak absorption in the lower E region with a secondary peak below 75 km. For midlatitude to high latitude, the absorption contains a significant contribution from the middle D region where ionization of NO drives the ion chemistry. The difference in middle- to high-latitude absorption from 2008 to 2009 is due to changes in the NO abundance near 80 km from changes in the wintertime mesospheric residual circulation.
NASA Astrophysics Data System (ADS)
Singh, Mamta; Gupta, D. N.
2018-01-01
The inclusion of laser absorption in plasmas plays an important role in laser-plasma interactions. In this work, the laser pulse compression in weakly relativistic plasmas has been revisited by incorporating the collision-based laser absorption effects. By considering the role of laser absorption in plasmas, a set of coupled nonlinear equations is derived to describe the evolution of pulse compression. The laser pulse compression is reduced due to the collisional absorption in the plasmas. Fast dispersion is also observed with increasing the absorption coefficient, which is obviously due to the strong energy attenuation in plasmas. Using our theoretical model, the involvement and importance of a particular absorption mechanism for pulse compression in plasmas is analyzed.
López-Haro, S A; Gutiérrez, M I; Vera, A; Leija, L
2015-10-01
To evaluate the effects of thermal dependence of speed of sound (SOS) and acoustic absorption of biological tissues during noninvasive focused ultrasound (US) hyperthermia therapy. A finite element (FE) model was used to simulate hyperthermia therapy in the liver by noninvasive focused US. The model consisted of an ultrasonic focused transducer radiating a four-layer biological medium composed of skin, fat, muscle, and liver. The acoustic field and temperature distribution along the layers were obtained after 15 s of hyperthermia therapy using the bio-heat equation. The model solution was found with and without the thermal dependence of SOS and acoustic absorption of biological tissues. The inclusion of the thermal dependence of the SOS generated an increment of 0.4 mm in the longitudinal focus axis of the acoustic field. Moreover, results indicate an increment of the hyperthermia area (zone with temperature above 43 °C), and a maximum temperature difference of almost 3.5 °C when the thermal dependence of absorption was taken into account. The increment of the achieved temperatures at the treatment zone indicated that the effects produced by the thermal dependence of SOS and absorption must be accounted for when planning hyperthermia treatment in order to avoid overheating undesired regions.
Chantler, C T; Bourke, J D
2014-04-09
X-ray absorption fine structure (XAFS) spectroscopy is one of the most robust, adaptable, and widely used structural analysis tools available for a range of material classes from bulk solids to aqueous solutions and active catalytic structures. Recent developments in XAFS theory have enabled high-accuracy calculations of spectra over an extended energy range using full-potential cluster modelling, and have demonstrated particular sensitivity in XAFS to a fundamental electron transport property-the electron inelastic mean free path (IMFP). We develop electron IMFP theory using a unique hybrid model that simultaneously incorporates second-order excitation losses, while precisely accounting for optical transitions dictated by the complex band structure of the solid. These advances are coupled with improved XAFS modelling to determine wide energy-range absorption spectra for molybdenum. This represents a critical test case of the theory, as measurements of molybdenum K-edge XAFS represent the most accurate determinations of XAFS spectra for any material. We find that we are able to reproduce an extended range of oscillatory structure in the absorption spectrum, and demonstrate a first-time theoretical determination of the absorption coefficient of molybdenum over the entire extended XAFS range utilizing a full-potential cluster model.
Li, Qingguo; Huang, Wenhai; Yang, Juan; Wang, Jianfeng; Hu, Min; Mo, Jianmei; Cheng, Yuzhu; Ou, Zhanlun; Zhang, Zhenyu Jason; Guan, Shixia
2018-07-01
Absorption mechanism of edaravone (EDR) was studied to inform the preparation of gastric retention pellets with the aim to enhance its oral bioavailability. Three different models, namely, Caco-2 cells model, in situ single-pass intestinal perfusion model, and everted gut sac model in rats, were employed to characterize the gastrointestinal absorption kinetics of EDR. And it was found that passive transfer plays a vital role for the transport of EDR, and acidic condition is preferable for EDR absorption. Further, it is likely that EDR acts as a substrate for P-glycoprotein and multidrug-resistance protein. And hence, an orally available gastric retention pellets were developed accordingly. Pharmacokinetic experiments performed with rats and beagles showed that the absolute bioavailability of EDR solution and enteric-coated pellets following oral administration were 33.85% ± 2.45% and 7.64% ± 1.03%, indicating that stomach absorption is better than intestinal adsorption for EDR. However, the gastric retention pellets resulted in 68.96% absolute bioavailability and about 200% relative bioavailability in comparison to EDR solution, which was 9 times that of enteric-coated pellets. The present work demonstrates that gastric retention pellets has excellent potential as oral administration route for EDR. Copyright © 2018 Elsevier B.V. All rights reserved.
OCEAN BOTTOM, ULTRASONIC PROPERTIES), (*UNDERWATER SOUND, SOUND TRANSMISSION), KAOLINITE , ABSORPTION, COMPRESSIVE PROPERTIES, POROSITY, VELOCITY, VISCOELASTICITY, MATHEMATICAL MODELS, THESES, SEDIMENTATION
NASA Astrophysics Data System (ADS)
Behroozian, B.; Askari, H. R.
2018-07-01
The Kerr nonlinearity and the nonlinear absorption coefficient in a four-level M-model of a GaAs cylindrical quantum dot (QD) with parabolic potential under electromagnetically induced transparency are investigated. By solving the density matrix equations in the steady-state, the third order susceptibility is obtained. Then, by using the real and imaginary parts of third order susceptibility, the Kerr nonlinearity and the nonlinear absorption coefficient, respectively, for this system are computed. The effects of the radius and height of the cylindrical QD are then investigated. In addition, the effects of the control laser fields on the Kerr nonlinearity and the nonlinear absorption coefficient are investigated.
Exploring the observational constraints on the simulation of brown carbon
NASA Astrophysics Data System (ADS)
Wang, X.; Heald, C. L.; Liu, J.; Weber, R. J.; Campuzano-Jost, P.; Jimenez, J. L.; Schwarz, J. P.; Perring, A. E.
2017-12-01
Brown carbon (BrC) is the component of organic aerosols (OA) which strongly absorbs solar radiation in the near-UV range of the spectrum. However the sources, evolution, and optical properties of BrC remain highly uncertain, and therefore constitute a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. Previous modeling studies of BrC optical properties and DRE have been unable to fully evaluate the skill of their simulations, given the lack of direct measurements of organic aerosol absorption. In this study, we develop a global model simulation (GEOS-Chem) of BrC and test it against BrC absorption measurements from two aircraft campaigns in the U.S. (SEAC4RS and DC3). To our knowledge, this is the first study to compare simulated BrC absorption with direct, continuous ambient measurements. We show that the laboratory-based BrC absorption properties from biomass burning overestimate the aircraft measurements of ambient BrC. In addition, applying a photochemical whitening scheme to simulated BrC is better able to represent the observed BrC absorption. These observations are consistent with a mass absorption coefficient (MAC) of freshly emitted biomass burning OA of 0.57m2g-1. Using the RRTMG model integrated with GEOS-Chem, we estimate that the all-sky top-of-atmosphere direct radiative effect (DRE) of OA is -0.350 Wm-2, 10% higher than that without consideration of BrC absorption. Therefore, our best estimate of the absorption DRE of BrC is +0.042 Wm-2. We suggest that the DRE of BrC has been overestimated previously due to the lack of observational constraints from direct measurements as well as neglect of the effects of photochemical whitening.
Li, Lu-lu; Jiang, Tao; Lu, Song; Yan, Jin-long; Gao, Jie; Wei, Shi-qiang; Wang, Ding-yong; Guo, Nian; Zhao, Zhena
2014-09-01
Dissolved organic matter (DOM) is a very important component in terrestrial ecosystem. Chromophoric dissolved organic matter (CDOM) is a significant constituent of DOM, which can be measured by ultraviolet-visible (UV-Vis) absorption spectrum. Thus the relationship between CDOM and DOM was investigated and established by several types of models including single-wavelength model, double-wavelength model, absorption spectrum slope (S value) model and three-wavelength model, based on the UV-Vis absorption coefficients of soil and sediment samples (sampled in July of 2012) and water samples (sampled in November of 2012) respectively. The results suggested that the three-wavelength model was the best for fitting, and the determination coefficients of water, soil and sediment data were 0. 788, 0. 933 and 0. 856, respectively. Meanwhile, the nominal best model was validated with the UV-Vis data of 32 soil samples and 36 water samples randomly collected in 2013, showing the RRMSE and MRE were 16. 5% and 16. 9% respectively for soil DOM samples, 10. 32% and 9. 06% respectively for water DOM samples, which further suggested the prediction accuracy was higher in water DOM samples as compared with that in soil DOM samples.
Improved passive microwave sounding of the atmosphere
NASA Technical Reports Server (NTRS)
Staelin, D. H.; Rosenkranz, P. W.; Schwartz, M. J.
1996-01-01
The effort this year focused primarily on 118-GHz transmittance experiments. The data analyzed here was collected with the Microwave Temperature Sounder (MTS) radiometer package during the CAMEX deployment of 1993 with the aim of validating current models of atmospheric microwave absorption in the O2 bands near 54 and 118 GHz. Particular attention has been paid to data collected during four flights when the MTS scanned zenith while profiles of downwelling radiances were collected through ascents and descents. These radiances, in conjunction with radiosonde temperature data, permit the retrieval of band-averaged absorption profiles for each channel. The Millimeter-wave Propagation Model (MPM92) provides theoretical expressions for the absorption of microwaves by oxygen and water vapor and accounts for the interference of pressure-broadened spectral lines'. This model is a good fit to laboratory measurements at temperatures ranging from 279-327 K, but it has been suggested that extrapolation to the conditions of the atmospheric tropopause may result in underestimation of absorption by as much as 15 percent. Preliminary results of the analysis of MTS data appear to be in general agreement with the predictions of the MPM model to within the accuracy of the measurements, which through the coldest parts of the atmosphere ranges from less than plus or minus 5 percent in the most opaque channels to greater than plus or minus 10 percent in the most transparent channels. At those altitudes where each channel is most sensitive to changes in absorption, there is some indication that the modeled absorption may be biased low relative to the observations. Accurate instrument calibration provided challenges, particularly when observed radiances were as much as 260 K below the temperatures of the cold calibration load.
NASA Astrophysics Data System (ADS)
Sorini, Daniele; Oñorbe, José; Hennawi, Joseph F.; Lukić, Zarija
2018-06-01
Galaxy formation depends critically on the physical state of gas in the circumgalactic medium (CGM) and its interface with the intergalactic medium (IGM), determined by the complex interplay between inflow from the IGM and outflows from supernovae and/or AGN feedback. The average Lyα absorption profile around galactic halos represents a powerful tool to probe their gaseous environments. We compare predictions from Illustris and Nyx hydrodynamical simulations with the observed absorption around foreground quasars, damped Lyα systems, and Lyman-break galaxies. We show how large-scale BOSS and small-scale quasar pair measurements can be combined to precisely constrain the absorption profile over three decades in transverse distance 20 {kpc}≲ b≲ 20 {Mpc}. Far from galaxies, ≳ 2 {Mpc}, the simulations converge to the same profile and provide a reasonable match to the observations. This asymptotic agreement arises because the ΛCDM model successfully describes the ambient IGM and represents a critical advantage of studying the mean absorption profile. However, significant differences between the simulations, and between simulations and observations, are present on scales 20 {kpc}≲ b≲ 2 {Mpc}, illustrating the challenges of accurately modeling and resolving galaxy formation physics. It is noteworthy that these differences are observed as far out as ∼ 2 {Mpc}, indicating that the “sphere of influence” of galaxies could extend to approximately ∼7 times the halo virial radius. Current observations are very precise on these scales and can thus strongly discriminate between different galaxy formation models. We demonstrate that the Lyα absorption profile is primarily sensitive to the underlying temperature–density relationship of diffuse gas around galaxies, and argue that it thus provides a fundamental test of galaxy formation models.
Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials
NASA Astrophysics Data System (ADS)
von Blanckenhagen, Bernhard; Tonova, Diana; Ullmann, Jens
2002-06-01
Recent progress in ellipsometry instrumentation permits precise measurement and characterization of optical coating materials in the deep-UV wavelength range. Dielectric coating materials exhibit their first electronic interband transition in this spectral range. The Tauc-Lorentz model is a powerful tool with which to parameterize interband absorption above the band edge. The application of this model for the parameterization of the optical absorption of TiO2, Ta2O5, HfO2, Al2O3, and LaF3 thin-film materials is described.
Numerical modeling and analytical evaluation of light absorption by gold nanostars
NASA Astrophysics Data System (ADS)
Zarkov, Sergey; Akchurin, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Akchurin, Garif; Tuchin, Valery
2018-04-01
In this paper, the regularity of local light absorption by gold nanostars (AuNSts) model is studied by method of numerical simulation. The mutual diffraction influence of individual geometric fragments of AuNSts is analyzed. A comparison is made with an approximate analytical approach for estimating the average bulk density of absorbed power and total absorbed power by individual geometric fragments of AuNSts. It is shown that the results of the approximate analytical estimate are in qualitative agreement with the numerical calculations of the light absorption by AuNSts.
In vitro cell culture models to study the corneal drug absorption.
Reichl, Stephan; Kölln, Christian; Hahne, Matthias; Verstraelen, Jessica
2011-05-01
Many diseases of the anterior eye segment are treated using topically applied ophthalmic drugs. For these drugs, the cornea is the main barrier to reaching the interior of the eye. In vitro studies regarding transcorneal drug absorption are commonly performed using excised corneas from experimental animals. Due to several disadvantages and limitations of these animal experiments, establishing corneal cell culture models has been attempted as an alternative. This review summarizes the development of in vitro models based on corneal cell cultures for permeation studies during the last 20 years, starting with simple epithelial models and moving toward complex organotypical 3D corneal equivalents. Current human 3D corneal cell culture models have the potential to replace excised animal corneas in drug absorption studies. However, for widespread use, the contemporary validation of existent systems is required.
Kim, Hyun Keol; Montejo, Ludguier D; Jia, Jingfei; Hielscher, Andreas H
2017-06-01
We introduce here the finite volume formulation of the frequency-domain simplified spherical harmonics model with n -th order absorption coefficients (FD-SP N ) that approximates the frequency-domain equation of radiative transfer (FD-ERT). We then present the FD-SP N based reconstruction algorithm that recovers absorption and scattering coefficients in biological tissue. The FD-SP N model with 3 rd order absorption coefficient (i.e., FD-SP 3 ) is used as a forward model to solve the inverse problem. The FD-SP 3 is discretized with a node-centered finite volume scheme and solved with a restarted generalized minimum residual (GMRES) algorithm. The absorption and scattering coefficients are retrieved using a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. Finally, the forward and inverse algorithms are evaluated using numerical phantoms with optical properties and size that mimic small-volume tissue such as finger joints and small animals. The forward results show that the FD-SP 3 model approximates the FD-ERT (S 12 ) solution within relatively high accuracy; the average error in the phase (<3.7%) and the amplitude (<7.1%) of the partial current at the boundary are reported. From the inverse results we find that the absorption and scattering coefficient maps are more accurately reconstructed with the SP 3 model than those with the SP 1 model. Therefore, this work shows that the FD-SP 3 is an efficient model for optical tomographic imaging of small-volume media with non-diffuse properties both in terms of computational time and accuracy as it requires significantly lower CPU time than the FD-ERT (S 12 ) and also it is more accurate than the FD-SP 1 .
A theoretical study of microwave beam absorption by a Rectenna
NASA Technical Reports Server (NTRS)
Ott, J. H.; Rice, J. S.; Thorn, D. C.
1980-01-01
The results of a theoretical study of microwave beam absorption by a rectenna is given. Total absorption of power beam is shown to be theoretically possible. Several improvements in the rectenna design are indicated as a result of analytic modeling. The nature of rectenna scattering and atmospheric effects is discussed.
A theoretical study of microwave beam absorption by a rectenna
NASA Technical Reports Server (NTRS)
Ott, J. H.; Rice, J. S.; Thorn, D. C.
1981-01-01
The results of a theoretical study of microwave beam absorption by a Rectenna are given. Total absorption of the power beam is shown to be theoretically possible. Several improvements in the Rectenna design are indicated as a result of analytic modeling. The nature of Rectenna scattering and atmospheric effects are discussed.
Shamjad, P M; Tripathi, S N; Aggarwal, S G; Mishra, S K; Joshi, Manish; Khan, Arshad; Sapra, B K; Ram, Kirpa
2012-08-07
The quantification of the radiative impacts of light absorbing ambient black carbon (BC) particles strongly depends on accurate measurements of BC mass concentration and absorption coefficient (β(abs)). In this study, an experiment has been conducted to quantify the influence of hygroscopic growth of ambient particles on light absorption. Using the hygroscopic growth factor (i.e., Zdanovskii-Stokes-Robinson (ZSR) approach), a model has been developed to predict the chemical composition of particles based on measurements, and the absorption and scattering coefficients are derived using a core-shell assumption with light extinction estimates based on Mie theory. The estimated optical properties agree within 7% for absorption coefficient and 30% for scattering coefficient with that of measured values. The enhancement of absorption is found to vary according to the thickness of the shell and BC mass, with a maximum of 2.3 for a shell thickness of 18 nm for the particles. The findings of this study underline the importance of considering aerosol-mixing states while calculating their radiative forcing.
NASA Technical Reports Server (NTRS)
Fahr, A.; Braun, W.; Kurylo, M. J.
1993-01-01
Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.
Training and business performance: the mediating role of absorptive capacities.
Hernández-Perlines, Felipe; Moreno-García, Juan; Yáñez-Araque, Benito
2016-01-01
Training has been the focus of considerable conceptual and empirical attention but is considered a relevant factor for competitive edge in companies because it has a positive impact on business performance. This study is justified by the need for deeper analysis of the process involving the transfer of training into performance. This paper's originality lies in the implementation of the absorptive capacities approach as an appropriate conceptual framework for designing a model that reflects the connection between training and business performance through absorptive capacities. Based on the above conceptual framework and using the dual methodological implementation, a new method of analyzing the relationship between training and performance was obtained: efforts in training will not lead to performance without the mediation of absorptive. Training turns into performance if absorptive capacities are involved in this process. The suggested model becomes an appropriate framework for explaining the process of transformation of training into organizational performance, in which absorptive capacities play a key role. The findings obtained can go further owing to fs/QCA: of the different absorptive capacities, that of exploitation is a necessary condition to achieve better organizational performance. Therefore, training based on absorptive capacity will guide and facilitate the design of appropriate human resource strategies so that training results in improved performance. This conclusion is relevant for the development of a new facet of absorptive capacities by relating it to training and resulting in first-level implications for human resource management.
NASA Technical Reports Server (NTRS)
Redemann, Jens; Russell, Philip B.; Hamill, Patrick
2001-01-01
Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can introduce absolute errors in estimates of the midvisible single-scattering albedo of up to 0.05 for realistic dry particle size distributions. Our study also indicates that this error increases with increasing wavelength. The potential errors in aerosol single-scattering albedo derived here are comparable in magnitude and in addition to uncertainties in single-scattering albedo estimates that are based on measurements of aerosol light absorption and scattering.
Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.
Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue
2014-12-15
We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.
Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory.
Pogue, B W; Patterson, M S
1994-07-01
The goal of frequency-domain optical absorption spectroscopy is the non-invasive determination of the absorption coefficient of a specific tissue volume. Since this allows the concentration of endogenous and exogenous chromophores to be calculated, there is considerable potential for clinical application. The technique relies on the measurement of the phase and modulation of light, which is diffusely reflected or transmitted by the tissue when it is illuminated by an intensity-modulated source. A model of light propagation must then be used to deduce the absorption coefficient. For simplicity, it is usual to assume the tissue is either infinite in extent (for transmission measurements) or semi-infinite (for reflectance measurements). The goal of this paper is to examine the errors introduced by these assumptions when measurements are actually performed on finite volumes. Diffusion-theory calculations and experimental measurements were performed for slabs, cylinders and spheres with optical properties characteristic of soft tissues in the near infrared. The error in absorption coefficient is presented as a function of object size as a guideline to when the simple models may be used. For transmission measurements, the error is almost independent of the true absorption coefficient, which allows absolute changes in absorption to be measured accurately. The implications of these errors in absorption coefficient for two clinical problems--quantitation of an exogenous photosensitizer and measurement of haemoglobin oxygenation--are presented and discussed.
NASA Astrophysics Data System (ADS)
Cucinotta, Francis A.; Yan, Congchong; Saganti, Premkumar B.
2018-01-01
Heavy ion absorption cross sections play an important role in radiation transport codes used in risk assessment and for shielding studies of galactic cosmic ray (GCR) exposures. Due to the GCR primary nuclei composition and nuclear fragmentation leading to secondary nuclei heavy ions of charge number, Z with 3 ≤ Z ≥ 28 and mass numbers, A with 6 ≤ A ≥ 60 representing about 190 isotopes occur in GCR transport calculations. In this report we describe methods for developing a data-base of isotopic dependent heavy ion absorption cross sections for interactions. Calculations of a 2nd-order optical model solution to coupled-channel solutions to the Eikonal form of the nucleus-nucleus scattering amplitude are compared to 1st-order optical model solutions. The 2nd-order model takes into account two-body correlations in the projectile and target ground-states, which are ignored in the 1st-order optical model. Parameter free predictions are described using one-body and two-body ground state form factors for the isotopes considered and the free nucleon-nucleon scattering amplitude. Root mean square (RMS) matter radii for protons and neutrons are taken from electron and muon scattering data and nuclear structure models. We report on extensive comparisons to experimental data for energy-dependent absorption cross sections for over 100 isotopes of elements from Li to Fe interacting with carbon and aluminum targets. Agreement between model and experiments are generally within 10% for the 1st-order optical model and improved to less than 5% in the 2nd-order optical model in the majority of comparisons. Overall the 2nd-order optical model leads to a reduction in absorption compared to the 1st-order optical model for heavy ion interactions, which influences estimates of nuclear matter radii.
NASA Astrophysics Data System (ADS)
Venot, O.; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Lefèvre, F.; Es-sebbar, Et.; Hébrard, E.; Schwell, M.; Bahrini, C.; Montmessin, F.; Lefèvre, M.; Waldmann, I. P.
2018-01-01
Context. Most exoplanets detected so far have atmospheric temperatures significantly higher than 300 K. Often close to their star, they receive an intense UV photons flux that triggers important photodissociation processes. The temperature dependency of vacuum ultraviolet (VUV) absorption cross sections are poorly known, leading to an undefined uncertainty in atmospheric models. Similarly, data measured at low temperatures similar to those of the high atmosphere of Mars, Venus, and Titan are often lacking. Aims: Our aim is to quantify the temperature dependency of the VUV absorption cross sections of important molecules in planetary atmospheres. We want to provide high-resolution data at temperatures prevailing in these media, and a simple parameterisation of the absorption in order to simplify its use in photochemical models. This study focuses on carbon dioxide (CO2). Methods: We performed experimental measurements of CO2 absorption cross sections with synchrotron radiation for the wavelength range (115-200 nm). For longer wavelengths (195-230 nm), we used a deuterium lamp and a 1.5 m Jobin-Yvon spectrometer. We used these data in our one-dimensional (1D) thermo-photochemical model in order to study their impact on the predicted atmospheric compositions. Results: The VUV absorption cross section of CO2 increases with the temperature. The absorption we measured at 150 K seems to be close to the absorption of CO2 in the fundamental ground state. The absorption cross section can be separated into two parts: a continuum and a fine structure superimposed on the continuum. The variation in the continuum of absorption can be represented by the sum of three Gaussian functions. Using data at high temperature in thermo-photochemical models significantly modifies the abundance and the photodissociation rates of many species in addition to CO2, such as methane and ammonia. These deviations have an impact on synthetic transmission spectra, leading to variations of up to 5 ppm. Conclusions: We present a full set of high-resolution (Δλ = 0.03 nm) absorption cross sections of CO2 from 115 to 230 nm for temperatures ranging from 150 to 800 K. A parameterisation allows us to calculate the continuum of absorption in this wavelength range. Extrapolation at higher temperature has not been validated experimentally and therefore should be used with caution. Similar studies on other major species are necessary to improve our understanding of planetary atmospheres. The data presented in Fig. 1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A34
Sound absorption of a new oblique-section acoustic metamaterial with nested resonator
NASA Astrophysics Data System (ADS)
Gao, Nansha; Hou, Hong; Zhang, Yanni; Wu, Jiu Hui
2018-02-01
This study designs and investigates high-efficiency sound absorption of new oblique-section nested resonators. Impedance tube experiment results show that different combinations of oblique-section nest resonators have tunable low-frequency bandwidth characteristics. The sound absorption mechanism is due to air friction losses in the slotted region and the sample structure resonance. The acousto-electric analogy model demonstrates that the sound absorption peak and bandwidth can be modulated over an even wider frequency range by changing the geometric size and combinations of structures. The proposed structure can be easily fabricated and used in low-frequency sound absorption applications.
The relative importance of aerosol scattering and absorption in remote sensing
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Kaufman, Y. J.
1985-01-01
Previous attempts to explain the effect of aerosols on satellite measurements of surface properties for the visible and near-infrared spectrum have emphasized the amount of aerosols without consideration of their absorption properties. In order to estimate the importance of absorption, the radiances of the sunlight scattered from models of the earth-atmosphere system are computed as functions of the aerosol optical thickness and absorption. The absorption effect is small where the surface reflectance is weak, but is important for strong reflectance. These effects on classification of surface features, measuring vegetation index, and measuring surface reflectance are presented.
The Effect of Absorptive Capacity Perceptions on the Context Aware Ubiquitous Learning Acceptance
ERIC Educational Resources Information Center
Lin, Hsiu-Fen
2013-01-01
Purpose: The purpose of this study is to examine the impact of absorptive capacity (understanding, assimilating and applying u-learning) perceptions on behavioral intention to use u-learning through path analysis and applies the technology acceptance model (TAM) as a theoretical foundation, simultaneously improving the model by adopting prior…
Antecedents of Absorptive Capacity: A New Model for Developing Learning Processes
ERIC Educational Resources Information Center
Rezaei-Zadeh, Mohammad; Darwish, Tamer K.
2016-01-01
Purpose: The purpose of this paper is to provide an integrated framework to indicate which antecedents of absorptive capacity (AC) influence its learning processes, and to propose testing of this model in future work. Design/methodology/approach Relevant literature into the antecedents of AC was critically reviewed and analysed with the objective…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerde, P.; Muggenburg, B.A.; Thornton-Manning, J.R.
1995-12-01
Most chemically induced lung cancer originates in the epithelial cells in the airways. Common conceptions are that chemicals deposited on the airway surface are rapidly absorbed through mucous membranes, limited primarily by the rate of blood perfusion in the mucosa. It is also commonly thought that for chemicals to induce toxicity at the site of entry, they must be either rapidly reactive, readily metabolizable, or especially toxic to the tissues at the site of entry. For highly lipophilic toxicants, there is a third option. Our mathematical model predicts that as lipophilicity increases, chemicals partition more readily into the cellular lipidmore » membranes and diffuse more slowly through the tissues. Therefore, absorption of very lipophilic compounds will be almost entirely limited by the rate of diffusion through the epithelium rather than by perfusion of the capillary bed in the subepithelium. We have reported on a preliminary model for absorption through mucous membranes of any substance with a lipid/aqueous partition coefficient larger than one. The purpose of this work was to experimentally validate the model in Beagle dogs. This validated model on toxicant absorption in the airway mucosa will improve risk assessment of inhaled« less
Characterization and Measurements from the Infrared Grazing Angle Reflectometer
2012-06-14
18 3. List of sample scatter pattern fitting values. All values were taken from Ngan’s paper ”Experimental Analysis of BRDF Models - Supplemental” [1...using a BRDF model , and the absorptance can be modeled using a Fresnel absorptance. After defining both of these values, we can calculate the power seen... BRDF model of the face of the detector. This paper will examine the case of a flat detector with some index of refraction n. This air-detector
NASA Astrophysics Data System (ADS)
Bouaziz, Nadia; Ben Manaa, Marwa; Ben Lamine, Abdelmottaleb
2018-06-01
In the present work, experimental absorption and desorption isotherms of hydrogen in LaNi3.8Al1.0Mn0.2 metal at two temperatures (T = 433 K, 453 K) have been fitted using a monolayer model with two energies treated by statistical physics formalism by means of the grand canonical ensemble. Six parameters of the model are adjusted, namely the numbers of hydrogen atoms per site nα and nβ, the receptor site densities Nmα and Nmβ, and the energetic parameters Pα and Pβ. The behaviors of these parameters are discussed in relationship with temperature of absorption/desorption process. Then, a dynamic investigation of the simultaneous evolution with pressure of the two α and β phases in the absorption and desorption phenomena using the adjustment parameters. Thanks to the energetic parameters, we calculated the sorption energies which are typically ranged between 276.107 and 310.711 kJ/mol for absorption process and between 277.01 and 310.9 kJ/mol for desorption process comparable to usual chemical bond energies. The calculated thermodynamic parameters such as entropy, Gibbs free energy and internal energy from experimental data showed that the absorption/desorption of hydrogen in LaNi3.8Al1.0Mn0.2 alloy was feasible, spontaneous and exothermic in nature.
NASA Technical Reports Server (NTRS)
Hansen, Gary B.; Martin, Terry Z.
1993-01-01
New measurements of the absorption coefficients of CO2 ice, in most of the spectral range 0.2 to 3.9 microns where absorption coefficients are below 1.5 per cm, have recently been made. Although these measurements are preliminary, they contain spectral detail not seen previously in the literature. Therefore, it is useful to combine these new data with older data from spectral regions of stronger absorption and reformulate models of the albedo or reflectance of CO2 frost. These models can then be adjusted in an attempt to match measurements of Martian polar deposits, such as the set of spectra returned by the IRS instrument on Mariner 7 (1969). The new absorption coefficients of CO2 ice were measured on several samples of 41-mm thickness at 150-155 K. A portion of the spectrum from 1.9 to 3.9 microns wavelength is shown in the form of imaginary coefficient of refraction ( = linear absorption x wavelength / 4 pi). The data above 3x10(exp -5) are obtained from, except for the absorption line at 3.32 micrometers, which is extrapolated in a way that is consistent with laboratory frost measurements, but the peak level is still highly uncertain. This new imagary coefficient, combined with the real coefficient, can be immediately applied to the models for hemispherical albedo, resulting in markedly different results from those in that study. The results for an infinite optical depth layer and solar incidence of 60 degrees are plotted for a range of mean particle radii from 0.03 to 3 mm.
Modeling the Oxygen K Absorption in the Interstellar Medium: An XMM-Newton View of Sco X-1
NASA Technical Reports Server (NTRS)
Garcia, J.; Ramirez, J. M.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.
2011-01-01
We investigate the absorption structure of the oxygen in the interstellar medium by analyzing XMM-Newton observations of the low mass X-ray binary Sco X-1. We use simple models based on the O I atomic cross section from different sources to fit the data and evaluate the impact of the atomic data in the interpretation of astrophysical observations. We show that relatively small differences in the atomic calculations can yield spurious results. We also show that the most complete and accurate set of atomic cross sections successfully reproduce the observed data in the 21 - 24.5 Angstrom wavelength region of the spectrum. Our fits indicate that the absorption is mainly due to neutral gas with an ionization parameter of Epsilon = 10(exp -4) erg/sq cm, and an oxygen column density of N(sub O) approx. = 8-10 x 10(exp 17)/sq cm. Our models are able to reproduce both the K edge and the K(alpha) absorption line from O I, which are the two main features in this region. We find no conclusive evidence for absorption by other than atomic oxygen.
Order and disorder and their influences on optical absorption of glasses in the gap region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baník, Ivan, E-mail: ivan.banik@stuba.sk; Kubliha, Marian, E-mail: marian.kubliha@stuba.sk; Lukovičová, Jozefa, E-mail: jozefa.lukovicova@stuba.sk
2016-07-07
The exponential increase of the absorption coefficient near the absorption edge is usually explained by existence of the density-of-states tails. Among the quoted theoretical models which are widely used to explain the manifestations of the Urbach rule in semiconductors, are the Sumi–Toyozava and the Dow–Redfield models and ab initio (from beginning) theory. Our barrier-cluster-heating model assumes the different creating mechanism of exponential tails. The energy by optical transition is provided to electrons except from photons also from vibration of microregion. It deals about the replenishment of absented photons energy, which is smaller as gap width. Absented energy needed for themore » transition by light absorption is accumulated in certain microregions of material in the form of vibrational energy. At absorption sufficiently big package of accumulated energy can be used. Energy of emptied microarea is filled by phonons from surrounding of microarea (as result of temperature status of surrounding), resp. phonons of optical background which are created in given microarea at non radiative recombination of carriers. In this work simplified process at derivating of Urbach rule is listed.« less
Porogranular materials composed of elastic Helmholtz resonators for acoustic wave absorption.
Griffiths, Stéphane; Nennig, Benoit; Job, Stéphane
2017-01-01
A theoretical and experimental study of the acoustic absorption of granular porous media made of non-cohesive piles of spherical shells is presented. These shells are either rigid or elastic, possibly drilled with a neck (Helmholtz resonators), and either porous or impervious. A description is given of acoustic propagation through these media using the effective medium models proposed by Johnson (rigid particles) and Boutin (rigid Helmholtz resonators), which are extended to the configurations studied in this work. A solution is given for the local equation of elasticity of a shell coupled to the viscous flow of air through the neck and the micropores. The models and the simulations are compared to absorption spectra measured in reflection in an impedance tube. The effective medium models and the measurements show excellent agreement for configurations made of rigid particles and rigid Helmholtz resonators that induce an additional peak of absorption at low frequency. A shift of the Helmholtz resonance toward low frequencies, due to the softness of the shells is revealed by the experiments for elastic shells made of soft elastomer and is well reproduced by the simulations. It is shown that microporous shells enhance and broaden acoustic absorption compared to stiff or elastic resonators.
Lehmann, Eldon D.; Tarín, Cristina; Bondia, Jorge; Teufel, Edgar; Deutsch, Tibor
2007-01-01
Introduction AIDA v4 is an interactive educational diabetes simulator that has been made available, for over a decade, without charge via the Internet. The software is currently freely accessible at http://www.2aida.org. This report sets out a collaborative development plan to enhance the program with a new model of subcutaneous insulin absorption, which permits the simulation of rapidly acting and very long-acting insulin analogues, as well as insulin injection doses larger than 40 units. Methods A novel, generic, physiological subcutaneous insulin absorption model is overviewed and a methodology is proposed by which this can be substituted in place of the previously adopted insulin absorption model utilized within AIDA v4.3a. Apart from this substitution it is proposed to retain the existing model of the glucoregulatory system currently used in AIDA v4.3a. Results Initial simulation results based on bench testing of this approach using MATLAB are presented for the exogenous insulin flow profile (Iex) following subcutaneous injections of a rapidly acting insulin analogue, a short-acting (regular) insulin preparation, intermediate-acting insulins (both Semilente and neutral protamine Hagedorn types), and a very long-acting insulin analogue. Discussion It is proposed to implement this collaborative development plan—first by bench testing the approach in MATLAB and then by integrating the generic subcutaneous insulin absorption Iex model into the AIDA simulator in Pascal. The aim is to provide enhanced functionality and educational simulations of regimens utilizing novel insulin analogues, as well as injections larger than 40 units of insulin. PMID:19885100
Collision and radiative processes in emission of atmospheric carbon dioxide
NASA Astrophysics Data System (ADS)
Smirnov, B. M.
2018-05-01
The peculiarities of the spectroscopic properties of CO2 molecules in air due to vibration-rotation radiative transitions are analyzed. The absorption coefficient due to atmospheric carbon dioxide and other atmospheric components is constructed within the framework of the standard atmosphere model, on the basis of classical molecular spectroscopy and the regular model for the spectroscopy absorption band. The radiative flux from the atmosphere toward the Earth is represented as that of a blackbody, and the radiative temperature for emission at a given frequency is determined with accounting for the local thermodynamic equilibrium, a small gradient of the tropospheric temperature and a high optical thickness of the troposphere for infrared radiation. The absorption band model with an absorption coefficient averaged over the frequency and line-by-line model are used for evaluating the radiative flux from the atmosphere to the Earth which values are nearby for these models and are equal W m‑2 for the contemporary concentration of atmospheric CO2 molecules and W m‑2 at its doubled value. The absorption band model is not suitable to calculate the radiative flux change at doubling of carbon dioxide concentration because averaging over oscillations decreases the range where the atmospheric optical thickness is of the order of one, and just this range determines this change. The line-by-line method gives the change of the global temperature K as a result of doubling the carbon dioxide concentration. The contribution to the global temperature change due to anthropogenic injection of carbon dioxide in the atmosphere, i.e. resulted from combustion of fossil fuels, is approximately 0.02 K now.
An Accurate Absorption-Based Net Primary Production Model for the Global Ocean
NASA Astrophysics Data System (ADS)
Silsbe, G.; Westberry, T. K.; Behrenfeld, M. J.; Halsey, K.; Milligan, A.
2016-02-01
As a vital living link in the global carbon cycle, understanding how net primary production (NPP) varies through space, time, and across climatic oscillations (e.g. ENSO) is a key objective in oceanographic research. The continual improvement of ocean observing satellites and data analytics now present greater opportunities for advanced understanding and characterization of the factors regulating NPP. In particular, the emergence of spectral inversion algorithms now permits accurate retrievals of the phytoplankton absorption coefficient (aΦ) from space. As NPP is the efficiency in which absorbed energy is converted into carbon biomass, aΦ measurements circumvents chlorophyll-based empirical approaches by permitting direct and accurate measurements of phytoplankton energy absorption. It has long been recognized, and perhaps underappreciated, that NPP and phytoplankton growth rates display muted variability when normalized to aΦ rather than chlorophyll. Here we present a novel absorption-based NPP model that parameterizes the underlying physiological mechanisms behind this muted variability, and apply this physiological model to the global ocean. Through a comparison against field data from the Hawaii and Bermuda Ocean Time Series, we demonstrate how this approach yields more accurate NPP measurements than other published NPP models. By normalizing NPP to satellite estimates of phytoplankton carbon biomass, this presentation also explores the seasonality of phytoplankton growth rates across several oceanic regions. Finally, we discuss how future advances in remote-sensing (e.g. hyperspectral satellites, LIDAR, autonomous profilers) can be exploited to further improve absorption-based NPP models.
Solar absorption by elemental and brown carbon determined from spectral observations.
Bahadur, Ranjit; Praveen, Puppala S; Xu, Yangyang; Ramanathan, V
2012-10-23
Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols (TC) and is typically dominated by soot-like elemental carbon (EC). However, organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC), which is typically not represented in climate models. We propose an observationally based analytical method for rigorously partitioning measured absorption aerosol optical depths (AAOD) and single scattering albedo (SSA) among EC and BrC, using multiwavelength measurements of total (EC, OC, and dust) absorption. EC is found to be strongly absorbing (SSA of 0.38) whereas the BrC SSA varies globally between 0.77 and 0.85. The method is applied to the California region. We find TC (EC + BrC) contributes 81% of the total absorption at 675 nm and 84% at 440 nm. The BrC absorption at 440 nm is about 40% of the EC, whereas at 675 nm it is less than 10% of EC. We find an enhanced absorption due to OC in the summer months and in southern California (related to forest fires and secondary OC). The fractions and trends are broadly consistent with aerosol chemical-transport models as well as with regional emission inventories, implying that we have obtained a representative estimate for BrC absorption. The results demonstrate that current climate models that treat OC as nonabsorbing are underestimating the total warming effect of carbonaceous aerosols by neglecting part of the atmospheric heating, particularly over biomass-burning regions that emit BrC.
Population Pharmacokinetic Model of Doxycycline Plasma Concentrations Using Pooled Study Data
Wojciechowski, Jessica; Mudge, Stuart; Upton, Richard N.; Foster, David J. R.
2017-01-01
ABSTRACT The literature presently lacks a population pharmacokinetic analysis of doxycycline. This study aimed to develop a population pharmacokinetic model of doxycycline plasma concentrations that could be used to assess the power of bioequivalence between Doryx delayed-release tablets and Doryx MPC. Doxycycline pharmacokinetic data were available from eight phase 1 clinical trials following single/multiple doses of conventional-release doxycycline capsules, Doryx delayed-release tablets, and Doryx MPC under fed and fasted conditions. A population pharmacokinetic model was developed in a stepwise manner using NONMEM, version 7.3. The final covariate model was developed according to a forward inclusion (P < 0.01) and then backward deletion (P < 0.001) procedure. The final model was a two-compartment model with two-transit absorption compartments. Structural covariates in the base model included formulation effects on relative bioavailability (F), absorption lag (ALAG), and the transit absorption rate (KTR) under the fed status. An absorption delay (lag) for the fed status (FTLAG2 = 0.203 h) was also included in the model as a structural covariate. The fed status was observed to decrease F by 10.5%, and the effect of female sex was a 14.4% increase in clearance. The manuscript presents the first population pharmacokinetic model of doxycycline plasma concentrations following oral doxycycline administration. The model was used to assess the power of bioequivalence between Doryx delayed-release tablets and Doryx MPC, and it could potentially be used to critically examine and optimize doxycycline dose regimens. PMID:28052851
Population Pharmacokinetic Model of Doxycycline Plasma Concentrations Using Pooled Study Data.
Hopkins, Ashley M; Wojciechowski, Jessica; Abuhelwa, Ahmad Y; Mudge, Stuart; Upton, Richard N; Foster, David J R
2017-03-01
The literature presently lacks a population pharmacokinetic analysis of doxycycline. This study aimed to develop a population pharmacokinetic model of doxycycline plasma concentrations that could be used to assess the power of bioequivalence between Doryx delayed-release tablets and Doryx MPC. Doxycycline pharmacokinetic data were available from eight phase 1 clinical trials following single/multiple doses of conventional-release doxycycline capsules, Doryx delayed-release tablets, and Doryx MPC under fed and fasted conditions. A population pharmacokinetic model was developed in a stepwise manner using NONMEM, version 7.3. The final covariate model was developed according to a forward inclusion ( P < 0.01) and then backward deletion ( P < 0.001) procedure. The final model was a two-compartment model with two-transit absorption compartments. Structural covariates in the base model included formulation effects on relative bioavailability ( F ), absorption lag (ALAG), and the transit absorption rate (KTR) under the fed status. An absorption delay (lag) for the fed status (FTLAG2 = 0.203 h) was also included in the model as a structural covariate. The fed status was observed to decrease F by 10.5%, and the effect of female sex was a 14.4% increase in clearance. The manuscript presents the first population pharmacokinetic model of doxycycline plasma concentrations following oral doxycycline administration. The model was used to assess the power of bioequivalence between Doryx delayed-release tablets and Doryx MPC, and it could potentially be used to critically examine and optimize doxycycline dose regimens. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Fast, J. D.; Berg, L. K.; Chand, D.; Ferrare, R. A.; Flynn, C. J.; Hostetler, C. A.; Redemann, J.; Sedlacek, A. J., III; Shilling, J.; Shinozuka, Y.; Tomlinson, J. M.; Zelenyuk, A.
2015-12-01
Relatively large uncertainties remain in climate model predictions of absorption resulting from black carbon (BC) and brown carbon (BrC). In this study, we focus on comparing simulated profiles of BC, biomass burning aerosols, absorption, and other aerosol optical properties obtained from the regional WRF-Chem model with in situ and remote sensing measurements made during the Department of Energy's Two-Column Aerosol Project (TCAP). TCAP was designed to investigate changes in aerosol mixing state, aerosol radiative forcing, CCN concentration, and cloud-aerosol interactions in two atmospheric columns: one over Cape Cod, Massachusetts and another located approximately 200 km to the east over the ocean. Measurements from the NASA second-generation airborne High Resolution Spectral Lidar reveal the presence distinct aerosol layers associated with the marine boundary layer, residual layer transported over the ocean and in the free troposphere. Analyses of SP2 and aerosol optical measurements indicate that particles in the free troposphere were more 'aged' and had a lower single scattering albebo than for aerosol layers at lower altitudes; however, BC concentrations aloft were lower in the free troposphere. Instead, particle classes derived from the miniSPLAT single particle measurements suggest that the increased absorption aloft may be due biomass burning aerosols. The model suggests that ambient winds likely transported smoke from large wildfires in central Canada as well as smoke from other fires into the sampling domain. The simulated percentage of biomass burning aerosols was consistent with the miniSPLAT data, but the model currently treats all organic matter as non-absorbing. Therefore, we perform sensitivity simulations to examine how the model's absorption and AOD responds to assumptions used for BrC associated with biomass burning and whether the predicted profiles agree with absorption data and wavelength dependent AOD data from 4STAR.
Towards toxicokinetic modelling of aluminium exposure from adjuvants in medicinal products.
Weisser, Karin; Stübler, Sabine; Matheis, Walter; Huisinga, Wilhelm
2017-08-01
As a potentially toxic agent on nervous system and bone, the safety of aluminium exposure from adjuvants in vaccines and subcutaneous immune therapy (SCIT) products has to be continuously re-evaluated, especially regarding concomitant administrations. For this purpose, knowledge on absorption and disposition of aluminium in plasma and tissues is essential. Pharmacokinetic data after vaccination in humans, however, are not available, and for methodological and ethical reasons difficult to obtain. To overcome these limitations, we discuss the possibility of an in vitro-in silico approach combining a toxicokinetic model for aluminium disposition with biorelevant kinetic absorption parameters from adjuvants. We critically review available kinetic aluminium-26 data for model building and, on the basis of a reparameterized toxicokinetic model (Nolte et al., 2001), we identify main modelling gaps. The potential of in vitro dissolution experiments for the prediction of intramuscular absorption kinetics of aluminium after vaccination is explored. It becomes apparent that there is need for detailed in vitro dissolution and in vivo absorption data to establish an in vitro-in vivo correlation (IVIVC) for aluminium adjuvants. We conclude that a combination of new experimental data and further refinement of the Nolte model has the potential to fill a gap in aluminium risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.
Macheras, Panos; Iliadis, Athanassios; Melagraki, Georgia
2018-05-30
The aim of this work is to develop a gastrointestinal (GI) drug absorption model based on a reaction limited model of dissolution and consider its impact on the biopharmaceutic classification of drugs. Estimates for the fraction of dose absorbed as a function of dose, solubility, reaction/dissolution rate constant and the stoichiometry of drug-GI fluids reaction/dissolution were derived by numerical solution of the model equations. The undissolved drug dose and the reaction/dissolution rate constant drive the dissolution rate and determine the extent of absorption when high-constant drug permeability throughout the gastrointestinal tract is assumed. Dose is an important element of drug-GI fluids reaction/dissolution while solubility exclusively acts as an upper limit for drug concentrations in the lumen. The 3D plots of fraction of dose absorbed as a function of dose and reaction/dissolution rate constant for highly soluble and low soluble drugs for different "stoichiometries" (0.7, 1.0, 2.0) of the drug-reaction/dissolution with the GI fluids revealed that high extent of absorption was found assuming high drug- reaction/dissolution rate constant and high drug solubility. The model equations were used to simulate in vivo supersaturation and precipitation phenomena. The model developed provides the theoretical basis for the interpretation of the extent of drug's absorption on the basis of the parameters associated with the drug-GI fluids reaction/dissolution. A new paradigm emerges for the biopharmaceutic classification of drugs, namely, a model independent biopharmaceutic classification scheme of four drug categories based on either the fulfillment or not of the current dissolution criteria and the high or low % drug metabolism. Copyright © 2018. Published by Elsevier B.V.
SIPS, A. J. A. M.; van der VIJGH, W. J. F.; BARTO, R.; NETELENBOS, J. C.
1996-01-01
1The absorption kinetics of orally administered strontium chloride and its reproducibility were investigated in healthy volunteers after administering strontium either under fasting conditions (study I, n=8) or in combination with a standardized meal (study II, n=8). Each subject received strontium orally at day 0, 14, and 28 and intravenously at day 42. The study was performed as part of a project in which a simple clinical test for measuring intestinal calcium absorption is being developed, based on the use of stable strontium as a marker. 2Plasma strontium concentration–time curves were analysed by noncompartment analysis and a four compartment disposition model. Within a volunteer each oral curve was fitted simultaneously with the intravenous curve, by which means a two segment model for absorption was revealed. 3Mean absolute bioavailability of strontium was 25% without a meal and 19% with a meal, whereas the intraindividual variation was 24% and 20%, respectively. 4Various limited sampling absorption parameters were determined in order to select a potential test parameter for measuring intestinal calcium absorption using strontium as a marker. Fractional absorption at 4 h (Fc240), obtained after co-ingestion of strontium with a meal, appeared to be the best test parameter, because it represented bioavailability well (r=0.90). PMID:8799520
High temperature measurement of water vapor absorption
NASA Technical Reports Server (NTRS)
Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard
1985-01-01
An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.
NASA Astrophysics Data System (ADS)
Kempema, Nathan J.; Ma, Bin; Long, Marshall B.
2016-09-01
Soot optical properties are essential to the noninvasive study of the in-flame evolution of soot particles since they allow quantitative interpretation of optical diagnostics. Such experimental data are critical for comparison to results from computational models and soot sub-models. In this study, the thermophoretic sampling particle diagnostic (TSPD) technique is applied along with data from a previous spectrally resolved line-of-sight light attenuation experiment to determine the soot volume fraction and absorption function. The TSPD technique is applied in a flame stabilized on the Yale burner, and the soot scattering-to-absorption ratio is calculated using the Rayleigh-Debye-Gans theory for fractal aggregates and morphology information from a previous sampling experiment. The soot absorption function is determined as a function of wavelength and found to be in excellent agreement with previous in-flame measurements of the soot absorption function in coflow laminar diffusion flames. Two-dimensional maps of the soot dispersion exponent are calculated and show that the soot absorption function may have a positive or negative exponential wavelength dependence depending on the in-flame location. Finally, the wavelength dependence of the soot absorption function is related to the ratio of soot absorption functions, as would be found using two-excitation-wavelength laser-induced incandescence.
Narang, Ajit S; Badawy, Sherif; Ye, Qingmei; Patel, Dhaval; Vincent, Maria; Raghavan, Krishnaswamy; Huang, Yande; Yamniuk, Aaron; Vig, Balvinder; Crison, John; Derbin, George; Xu, Yan; Ramirez, Antonio; Galella, Michael; Rinaldi, Frank A
2015-08-01
Precipitation of weakly basic drugs in intestinal fluids can affect oral drug absorption. In this study, the implications of self-association of brivanib alaninate in acidic aqueous solution, leading to supersaturation at basic pH condition, on its solubility and oral absorption were investigated. Self-association of brivanib alaninate was investigated by proton NMR spectroscopy, surface tension measurement, dynamic light scattering, isothermal titration calorimetry, and molecular modeling. Drug solubility was determined in various pH media, and its tendency to supersaturate upon pH shift was investigated in buffered and biorelevant aqueous solutions. Pharmacokinetic modeling of human oral drug absorption was utilized for parameter sensitivity analyses of input variables. Brivanib alaninate exhibited continuous, and pH- and concentration-dependent self-association. This phenomenon resulted in positive deviation of drug solubility at acidic pH and the formation of a stable supersaturated drug solution in pH-shift assays. Consistent with the supersaturation phenomenon observed in vitro, oral absorption simulations necessitated invoking long precipitation time in the intestine to successfully predict in vivo data. Self-association of a weakly basic drug in acidic aqueous solution can increase its oral absorption by supersaturation and precipitation resistance at the intestinal pH. This consideration is important to the selection of parameters for oral absorption simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, H.R.; Gonzalez, J.E.; Khan, A.Y.
1996-11-01
This study is concerned with the feasibility of different arrangements of solar-assisted air conditioning systems for applications in Puerto Rico. The thermodynamic performance of an absorption system alone and coupled to a liquid or a solid desiccant dehumidification system was investigated under variable cooling load conditions. The dynamic modeling was based on heat and mass balances for the systems components. Simulations for climatic conditions in Puerto Rico show that average solar fractions of more than 85% can be achieved with both the absorption system and the hybrid systems for medium size cooling loads. Results indicate that higher coefficients of performancemore » are obtained when the solar assisted absorption system is not coupled to a desiccant dehumidification system.« less
Advancement of Double Effect Absorption Cycle by Input of Low Temperature Waste Heat
NASA Astrophysics Data System (ADS)
Kojima, Hiroshi; Edera, Masaru; Nakamura, Makoto; Oka, Masahiro; Akisawa, Atsushi; Kashiwagi, Takao
Energy conservation is becoming important for global environmental protection. New simple techniques of more efficient1y using the waste heat of gas co-generation systems for refrigerationare required. In first report, a new method of using the low temperature waste heat for refrigeration was proposed, and the basic characteristics of the promising methods of recovering waste heat were c1arified. In this report, the more detailed simulation model of the series flow type double effect absorption refrigerator with auxiliary heat exchanger was constructed and the static characteristics were investigated. Then experiments on this advanced absorption refrigerator were carried out, and the results of the calculation and experiments were compared and discussed. Moreover, the betterment of the simulation model of this advanced absorption refrigerator was carried out.
Lehmann, Eldon D.; Tarín, Cristina; Bondia, Jorge; Teufel, Edgar; Deutsch, Tibor
2009-01-01
Introduction AIDA is an interactive educational diabetes simulator that has been available without charge via the Internet for over 12 years. Recent articles have described the incorporation of a novel generic model of insulin absorption into AIDA as a way of enhancing its capabilities. The basic model components to be integrated have been overviewed, with the aim being to provide simulations of regimens utilizing insulin analogues, as well as insulin doses greater than 40 IU (the current upper limit within the latest release of AIDA [v4.3a]). Some preliminary calculated insulin absorption results have also recently been described. Methods This article presents the first simulated plasma insulin profiles from the integration of the generic subcutaneous insulin absorption model, and the currently implemented model in AIDA for insulin disposition. Insulin absorption has been described by the physiologically based model of Tarín and colleagues. A single compartment modeling approach has been used to specify how absorbed insulin is distributed in, and eliminated from, the human body. To enable a numerical solution of the absorption model, a spherical subcutaneous depot for the injected insulin dose has been assumed and spatially discretized into shell compartments with homogeneous concentrations, having as its center the injection site. The number of these compartments will depend on the dose and type of insulin. Insulin inflow arises as the sum of contributions to the different shells. For this report the first bench testing of plasma insulin determinations has been done. Results Simulated plasma insulin profiles are provided for currently available insulin preparations, including a rapidly acting insulin analogue (e.g., lispro/Humalog or aspart/Novolog), a short-acting (regular) insulin preparation (e.g., Actrapid), intermediate-acting insulins (both Semilente and neutral protamine Hagedorn types), and a very long-acting insulin analogue (e.g., glargine/Lantus), as well as for insulin doses up to 50 IU. Discussion The methodology to be adopted for implementing the generic absorption model within AIDA has been overviewed, and the first plasma insulin profiles based on this approach have been demonstrated. Ideas for future work and development are discussed. It is expected that an updated release of AIDA (v4.5), based on this collaborative approach, will become available for free—in due course—via the www.2aida.org Web site. Readers who wish to be informed when the new software is launched can join the very low volume AIDA announcement list by sending a blank email note to subscribe@2aida.org. PMID:20046665
NASA Astrophysics Data System (ADS)
Tsekeri, Alexandra; Amiridis, Vassilis; Lopatin, Anton; Marinou, Eleni; Giannakaki, Eleni; Pikridas, Michael; Sciare, Jean; Liakakou, Eleni; Gerasopoulos, Evangelos; Duesing, Sebastian; Corbin, Joel C.; Gysel, Martin; Bukowiecki, Nicolas; Baars, Holger; Engelmann, Ronny; Wehner, Birgit; Kottas, Michael; Mamali, Dimitra; Kokkalis, Panagiotis; Raptis, Panagiotis I.; Stavroulas, Iasonas; Keleshis, Christos; Müller, Detlef; Solomos, Stavros; Binietoglou, Ioannis; Mihalopoulos, Nikolaos; Papayannis, Alexandros; Stachlewska, Iwona S.; Igloffstein, Julia; Wandinger, Ulla; Ansmann, Albert; Dubovik, Oleg; Goloub, Philippe
2018-04-01
Aerosol absorption profiling is crucial for radiative transfer calculations and climate modelling. Here, we utilize the synergy of lidar with sun-photometer measurements to derive the absorption coefficient and single scattering albedo profiles during the ACTRIS-2 campaigns held in Germany, Greece and Cyprus. The remote sensing techniques are compared with in situ measurements in order to harmonize and validate the different methodologies and reduce the absorption profiling uncertainties.
Dalton, Christopher H; Hattersley, Ian J; Rutter, Stephen J; Chilcott, Robert P
2006-12-01
The physico-chemical properties of VX make the skin the most likely route of absorption into the human body. The development of effective medical countermeasures against such percutaneous threat agents relies on the use of appropriate animal models, as the inherent toxicity of nerve agents precludes the use of human volunteers. Previous studies have characterised the mechanism of nerve agent toxicity in rodent models, however, it is generally accepted that one of the most appropriate animal models for human skin absorption is the domestic pig. The purpose of the present study was to measure and compare the skin absorption kinetics of VX in vitro using pig, human and guinea pig skin to highlight any potential species differences in skin permeability. When undiluted VX was applied directly to the skin, the permeability of guinea pig skin was approximately 7-fold greater than human skin. There was no significant difference in the permeability of pig and human skin. When VX diluted with isopropyl alcohol was applied to the skin, the permeability of guinea pig skin was approximately 4-fold greater than human skin. There was no significant difference in the permeability of pig and human skin. From this data it may be inferred that dermatomed, abdominal pig skin is an appropriate model for the human skin absorption of VX.
Physiologically Based Pharmacokinetic and Absorption Modeling for Osmotic Pump Products.
Ni, Zhanglin; Talattof, Arjang; Fan, Jianghong; Tsakalozou, Eleftheria; Sharan, Satish; Sun, Dajun; Wen, Hong; Zhao, Liang; Zhang, Xinyuan
2017-07-01
Physiologically based pharmacokinetic (PBPK) and absorption modeling approaches were employed for oral extended-release (ER) drug products based on an osmotic drug delivery system (osmotic pumps). The purpose was to systemically evaluate the in vivo relevance of in vitro dissolution for this type of formulation. As expected, in vitro dissolution appeared to be generally predictive of in vivo PK profiles, because of the unique feature of this delivery system that the in vitro and in vivo release of osmotic pump drug products is less susceptible to surrounding environment in the gastrointestinal (GI) tract such as pH, hydrodynamic, and food effects. The present study considered BCS (Biopharmaceutics Classification System) class 1, 2, and 3 drug products with half-lives ranging from 2 to greater than 24 h. In some cases, the colonic absorption models needed to be adjusted to account for absorption in the colon. C max (maximum plasma concentration) and AUCt (area under the concentration curve) of the studied drug products were sensitive to changes in colon permeability and segmental GI transit times in a drug product-dependent manner. While improvement of the methodology is still warranted for more precise prediction (e.g., colonic absorption and dynamic movement in the GI tract), the results from the present study further emphasized the advantage of using PBPK modeling in addressing product-specific questions arising from regulatory review and drug development.
Optimized retrievals of precipitable water from the VAS 'split window'
NASA Technical Reports Server (NTRS)
Chesters, Dennis; Robinson, Wayne D.; Uccellini, Louis W.
1987-01-01
Precipitable water fields have been retrieved from the VISSR Atmospheric Sounder (VAS) using a radiation transfer model for the differential water vapor absorption between the 11- and 12-micron 'split window' channels. Previous moisture retrievals using only the split window channels provided very good space-time continuity but poor absolute accuracy. This note describes how retrieval errors can be significantly reduced from plus or minus 0.9 to plus or minus 0.6 gm/sq cm by empirically optimizing the effective air temperature and absorption coefficients used in the two-channel model. The differential absorption between the VAS 11- and 12-micron channels, empirically estimated from 135 colocated VAS-RAOB observations, is found to be approximately 50 percent smaller than the theoretical estimates. Similar discrepancies have been noted previously between theoretical and empirical absorption coefficients applied to the retrieval of sea surface temperatures using radiances observed by VAS and polar-orbiting satellites. These discrepancies indicate that radiation transfer models for the 11-micron window appear to be less accurate than the satellite observations.
High Amplitude Acoustic Behavior of a Slit-Orifice Backed by a Cavity
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.; Jones, Mike (Technical Monitor)
2000-01-01
The objective of the study reported here was to acquire detailed acoustic data and limited and flow visualization data for numerical validation a new model of sound absorption by a very narrow rectangular slit backed by a cavity. The sound absorption model is being developed by Dr. C. K. W. Tam of Florida State University. This report documents normal incidence impedance measurements of a singular rectangular slit orifice with no mean flow. All impedance measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube using the two-microphone method for several frequencies in the range 1000-6000Hz and incident sound pressure levels in the range 130 - 150 dB. In the interest of leaving the analysis of the data to the developers of more advanced analytical and computational models of sound absorption by narrow slits, we have refrained from giving our own explanations of the observed results, although many of the observed results can be explained using the classical explanations of sound absorption by orifices.
High Amplitude Acoustic Behavior of a Slit-Orifice Backed by a Cavity
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.
2000-01-01
The objective of this study was to acquire detailed acoustic data and limited flow visualization data for numerical validation of a new model of sound absorption by a very narrow rectangular slit backed by a cavity. The sound absorption model is that being developed by Dr. C. K. W. Tam of Florida State University. This report documents normal incidence impedance measurements of a singular rectangular slit orifice with no mean flow. All impedance measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube using the two-microphone method for several frequencies in the range 1000 - 6000Hz and incident sound pressure levels in the range 130 - 150 dB. In the interest of leaving the analysis of the data to the developers of more advanced Analytical and computational models of sound absorption by narrow slits, we authors have refrained from giving our own explanations of the observed results, although many of the observed results can be explained using the classical understanding of sound absorption by orifices.
NASA Technical Reports Server (NTRS)
Borysow, Aleksandra
1998-01-01
Accurate knowledge of certain collision-induced absorption continua of molecular pairs such as H2-H2, H2-He, H2-CH4, CO2-CO2, etc., is a prerequisite for most spectral analyses and modelling attempts of atmospheres of planets and cold stars. We collect and regularly update simple, state of the art computer programs for the calculation of the absorption coefficient of such molecular pairs over a broad range of temperatures and frequencies, for the various rotovibrational bands. The computational results are in agreement with the existing laboratory measurements of such absorption continua, recorded with a spectral resolution of a few wavenumbers, but reliable computational results may be expected even in the far wings, and at temperatures for which laboratory measurements do not exist. Detailed information is given concerning the systems thus studied, the temperature and frequency ranges considered, the rotovibrational bands thus modelled, and how one may obtain copies of the FORTRAN77 computer programs by e-mail.
NASA Astrophysics Data System (ADS)
El-Kader, M. S. A.; Godet, J.-L.; El-Sadek, A. A.; Maroulis, G.
2017-10-01
Quantum mechanical line shapes of collision-induced light scattering at room temperature (295 K) and collision-induced absorption at T = 195 K are computed for gaseous mixtures of molecular hydrogen and argon using theoretical values for pair-polarisability trace and anisotropy and induced dipole moments as input. Comparison with other theoretical spectra of isotropic and anisotropic light scattering and measured spectra of absorption shows satisfactory agreement, for which the uncertainty in measurement of its spectral moments is seen to be large. Ab initio models of the trace and anisotropy polarisability which reproduce the recent spectra of scattering are given. Empirical model of the dipole moment which reproduce the experimental spectra and the first three spectral moments more closely than the fundamental theory are also given. Good agreement between computed and/or experimental line shapes of both absorption and scattering is obtained when the potential model which is constructed from the transport and thermo-physical properties is used.
NASA Astrophysics Data System (ADS)
Bagratashvili, Viktor N.; Brodskaya, E. A.; Vereshchagina, Lyudmila N.; Kuz'min, M. V.; Osmanov, R. R.; Putilin, F. N.; Stuchebryukhov, A. A.
1984-11-01
An experimental investigation was made of variation of the characteristics of infrared multiphoton absorption in a homologous series of CnH2n+1OH alcohols (n = 1-5) excited with CO2 laser pulses. The dependences of the energy absorbed by the molecules on the frequency and energy density of laser radiation were determined by the optoacoustic method. It was found that the multiphoton absorption cross section decreases on increase in the radiation energy density at a rate which becomes slower on increase in the molecular size. A model is proposed for multiphoton excitation of molecules in a homologous series. This model is based on an analysis of a resonant mode interacting with the infrared radiation field and coupled to a reservoir of modes that do not interact with the field. The model predicts correctly the change in the multiphoton absorption cross section on increase in the number of the degrees of freedom of a molecule.
Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kijak, J.; Basu, R.; Lewandowski, W.
2017-05-10
We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physicalmore » parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.« less
Ostrowski, Michalł; Wilkowska, Ewa; Baczek, Tomasz
2010-12-01
In vivo-in vitro correlation (IVIVC) is an effective tool to predict absorption behavior of active substances from pharmaceutical dosage forms. The model for immediate release dosage form containing amoxicillin was used in the presented study to check if the calculation method of absorption profiles can influence final results achieved. The comparison showed that an averaging of individual absorption profiles performed by Wagner-Nelson (WN) conversion method can lead to lose the discrimination properties of the model. The approach considering individual plasma concentration versus time profiles enabled to average absorption profiles prior WN conversion. In turn, that enabled to find differences between dispersible tablets and capsules. It was concluded that in the case of immediate release dosage form, the decision to use averaging method should be based on an individual situation; however, it seems that the influence of such a procedure on the discrimination properties of the model is then more significant. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Kim, Richard S; Zhu, Jinfeng; Park, Jeung Hun; Li, Lu; Yu, Zhibin; Shen, Huajun; Xue, Mei; Wang, Kang L; Park, Gyechoon; Anderson, Timothy J; Pei, Qibing
2012-06-04
We report the plasmon-assisted photocurrent enhancement in Ag-nanoparticles (Ag-NPs) embedded PEDOT:PSS/P3HT:PCBM organic solar cells, and systematically investigate the causes of the improved optical absorption based on a cylindrical Ag-NPs optical model which is simulated with a 3-Dimensional finite difference time domain (FDTD) method. The proposed cylindrical Ag-NPs optical model is able to explain the optical absorption enhancement by the localized surface plasmon resonance (LSPR) modes, and to provide a further understanding of Ag-NPs shape parameters which play an important role to determine the broadband absorption phenomena in plasmonic organic solar cells. A significant increase in the power conversion efficiency (PCE) of the plasmonic solar cell was experimentally observed and compared with that of the solar cells without Ag-NPs. Finally, our conclusion was made after briefly discussing the electrical effects of the fabricated plasmonic organic solar cells.
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Tanre, D.; Dubovik, O.; Karnieli, A.; Remer, L. A.; Einaudi, Franco (Technical Monitor)
2000-01-01
The ability of dust to absorb solar radiation and heat the atmosphere is one of the main uncertainties in climate modeling and the prediction of climate change. Dust absorption is not well known due to limitations of in situ measurements. New techniques to measure dust absorption are needed in order to assess the impact of dust on climate. Here we report two new independent remote sensing techniques that provide sensitive measurements of dust absorption. Both are based on remote sensing. One uses satellite spectral measurements, the second uses ground based sky measurements from the AERONET network. Both techniques demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. Dust cooling of the earth system in the solar spectrum is therefore significantly stronger than recent calculations indicate. We shall also address the issue of the effects of dust non-sphericity on the aerosol optical properties.
Broad Absorption Lines in Qsos: Observations and Implications for Models.
NASA Astrophysics Data System (ADS)
Turnshek, David Alvin
Spectroscopic observations of fourteen broad absorption line (BAL) QSOs are presented and analyzed. Other observations are summarized. The following major conclusions are reached. Broad absorption lines (BALs) are probably present in 3 to 10 percent of the spectra of moderate to high redshift QSOs. The BALs exhibit a variety of velocity structures, from seemingly smooth, continuous absorption to complexes of individual absorption lines. Outflow velocities up to 40,000 km s(' -1) are observed. The level of ionization is high. The minimum total absorption column densities are 10('20) to 10('22) cm('-2). The emission line properties of BAL QSOs appear to be different from those of non-BAL QSOs. For example, N V emission is generally stronger in BAL QSOs and the emission near C III} (lamda)1909 is generally broader in BAL QSOs. The distribution of multiplicities for isolated absorption troughs suggests that the large -scale spatial distribution of BAL clouds is non-random, possibly described by a disk geometry. The BAL clouds are incapable of accounting for all of the observed broad emission lines, particularly C III} (lamda)1909 and Mg II (lamda)2798. Therefore, if the BAL clouds give rise to observable emission, the generally adopted (optically thick, single component) model for the emission line region must be incorrect. Also, photoionization models, which utilize solar abundances and take the ionizing continuum to be a simple power law, are incapable of explaining the level of ionization in the BAL clouds. By considering the observed percentage of QSOs with BALs and resonance line scattering models, it is found that the absorption covering factor in BAL QSOs is between 3 and 20 percent. This suggests that possibly all, but not less than 15 percent, of the QSOs have BAL clouds associated with them. The amount of observable emission and polarization expected to be produced by the BAL clouds from resonance line scattering and collisional excitation is considered in detail. It seems likely that the BAL clouds contribute to the observed high ionization emission. A model worth exploring is one in which an inner, optically thick component gives rise to the low ionization emission, whereas an outer BAL cloud region gives rise to much of the high ionization emission.
Modelling thermal radiation from one-meter diameter methane pool fires
NASA Astrophysics Data System (ADS)
Consalvi, J. L.; Demarco, R.
2012-06-01
The first objective of this article is to implement a comprehensive radiation model in order to predict the radiant fractions and radiative fluxes on remote surfaces in large-scale methane pool fires. The second aim is to quantify the importance of Turbulence-Radiation Interactions (TRIs) in such buoyant flames. The fire-induced flow is modelled by using a buoyancy-modified k-ɛ model and the Steady Laminar Flamelet (SLF) model coupled with a presumed probability density function (pdf) approach. Spectral radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. TRIs are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA). The emission term and the mean absorption coefficient are closed by using a presumed pdf of the mixture fraction, scalar dissipation rate and enthalpy defect. Two 1m-diameter fires with Heat Release Rates (HRR) of 49 kW and 162 kW were simulated. Predicted radiant fractions and radiative heat fluxes are found in reasonable agreement with experimental data. The importance of TRIs is evidenced, computed radiant fractions and radiative heat fluxes being considerably higher than those obtained from calculations based on mean properties. Finally, model results show that the complete absorption coefficient-Planck function correlation should be considered in order to properly take into account the influence of TRIs on the emission term, whereas the absorption coefficient self-correlation in the absorption term reduces significantly the radiant fractions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Clifford Kuofei
Chemical transport through human skin can play a significant role in human exposure to toxic chemicals in the workplace, as well as to chemical/biological warfare agents in the battlefield. The viability of transdermal drug delivery also relies on chemical transport processes through the skin. Models of percutaneous absorption are needed for risk-based exposure assessments and drug-delivery analyses, but previous mechanistic models have been largely deterministic. A probabilistic, transient, three-phase model of percutaneous absorption of chemicals has been developed to assess the relative importance of uncertain parameters and processes that may be important to risk-based assessments. Penetration routes through the skinmore » that were modeled include the following: (1) intercellular diffusion through the multiphase stratum corneum; (2) aqueous-phase diffusion through sweat ducts; and (3) oil-phase diffusion through hair follicles. Uncertainty distributions were developed for the model parameters, and a Monte Carlo analysis was performed to simulate probability distributions of mass fluxes through each of the routes. Sensitivity analyses using stepwise linear regression were also performed to identify model parameters that were most important to the simulated mass fluxes at different times. This probabilistic analysis of percutaneous absorption (PAPA) method has been developed to improve risk-based exposure assessments and transdermal drug-delivery analyses, where parameters and processes can be highly uncertain.« less
Du, Yanjun; Ding, Yanjun; Liu, Yufeng; Lan, Lijuan; Peng, Zhimin
2014-08-01
The effect of self-absorption on emission intensity distributions can be used for species concentration measurements. A calculation model is developed based on the Beer-Lambert law to quantify this effect. And then, a calibration-free measurement method is proposed on the basis of this model by establishing the relationship between gas concentration and absorption strength. The effect of collision parameters and rotational temperature on the method is also discussed. The proposed method is verified by investigating the nitric oxide emission bands (A²Σ⁺→X²∏) that are generated by a pulsed corona discharge at various gas concentrations. Experiment results coincide well with the expectations, thus confirming the precision and accuracy of the proposed measurement method.
NASA Technical Reports Server (NTRS)
Hoepffner, Nicolas; Sathyendranath, Shubha
1993-01-01
The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.
NASA Astrophysics Data System (ADS)
Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.
2012-06-01
The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of various types of planets and cool stars, such as late stars, low-mass stars, brown dwarfs, cool white dwarf stars, the ambers of the smaller, burnt out main sequence stars, exoplanets, etc., and therefore of special astronomical interest The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. First results for H_2-He complexes have already been applied to astrophysical models have shown great improvements in these models. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 X. Li, K. L. C. Hunt, F. Wang, M. Abel, and L. Frommhold, Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin, Int. J. of Spect., vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin, J. Phys. Chem. A, 115, 6805-6812, 2011} L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Infrared absorption by collisional H_2-He complexes at temperatures up to 9000 K and frequencies from 0 to 20000 cm-1, J. Chem. Phys., 136, 044319, 2012 D. Saumon, M. S. Marley, M. Abel, L. Frommhold, and R. S. Freedman, New H_2 collision-induced absorption and NH_3 opacity and the spectra of the coolest brown dwarfs, Astrophysical Journal, 2012
Mobile phone types and SAR characteristics of the human brain.
Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth
2017-04-07
Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.
Mobile phone types and SAR characteristics of the human brain
NASA Astrophysics Data System (ADS)
Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth
2017-04-01
Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.
Development of an analytical-numerical model to predict radiant emission or absorption
NASA Technical Reports Server (NTRS)
Wallace, Tim L.
1994-01-01
The development of an analytical-numerical model to predict radiant emission or absorption is discussed. A voigt profile is assumed to predict the spectral qualities of a singlet atomic transition line for atomic species of interest to the OPAD program. The present state of this model is described in each progress report required under contract. Model and code development is guided by experimental data where available. When completed, the model will be used to provide estimates of specie erosion rates from spectral data collected from rocket exhaust plumes or other sources.
NASA Astrophysics Data System (ADS)
Clark, R. N.; Perlman, Z. S.; Pearson, N.; Hendrix, A. R.; Cuzzi, J. N.; Cruikshank, D. P.; Bradley, E. T.; Filacchione, G.; Nicholson, P. D.; Hedman, M. M.; Brown, R. H.; Buratti, B. J.; Baines, K. H.; Sotin, C.; Nelson, R. M.
2014-12-01
Many outer Solar System satellites have surfaces dominated by water ice and a mysterious material(s) causing strong visible to ultraviolet absorption along with trace other compounds with infrared absorptions, including CO2 and organics. Various mechanisms have been proposed for the UV absorber, including tholins, iron oxides, and nano-sized metallic iron particles (e.g. see Clark et al., 2012, Icarus v218 p831, and references therein). We have constructed extensive laboratory analog measurements and radiative transfer modeling of the materials and scattering conditions that can contribute to the optical properties seen on outer Solar System satellites. We have successfully modeled Rayleigh absorption and Rayleigh scattering to produce spectral shapes typical of those seen in spectra of icy Solar System satellites, including those in the Saturn system observed with the Cassini UVIS and VIMS instruments. While it is easy to create these absorptions with radiative transfer modeling, it has been more difficult to do with laboratory analogs. We are finding that laboratory analogs refine and restricts the possible mixing states of the UV absorber in icy satellite surfaces. We have found that just because a particle is highly absorbing, as in metallic iron, if the particle is not embedded in another matrix, scattering will dominate over absorption and Rayleigh absorption will not be observed. Further, the closer the indices of refraction match between the absorbing particle and the matrix, there will be less scattering and more absorption will occur. But we have also found this to be true with other absorbing material, like Tholins. It is very difficult to obtain the very low reflectances observed in the UV in icy satellite spectra using traditional intimate mixtures, as scattering and first surface reflections contribute significantly to the reflectance. The solution, both from radiative transfer modeling and laboratory analogs point to embedded absorbing materials. For example, nano-phase metallic iron embedded in a less absorbing silicate matrix as meteoritic dust infall onto satellitesurfaces is one explanation. An alternative would be tholins embedded in the ice. Spectral features should be able to distinguish between these and other possibilities and will be explored.
Study of the Radiative Properties of Inhomogeneous Stratocumulus Clouds
NASA Technical Reports Server (NTRS)
Batey, Michael
1996-01-01
Clouds play an important role in the radiation budget of the atmosphere. A good understanding of how clouds interact with solar radiation is necessary when considering their effects in both general circulation models and climate models. This study examined the radiative properties of clouds in both an inhomogeneous cloud system, and a simplified cloud system through the use of a Monte Carlo model. The purpose was to become more familiar with the radiative properties of clouds, especially absorption, and to investigate the excess absorption of solar radiation from observations over that calculated from theory. The first cloud system indicated that the absorptance actually decreased as the cloud's inhomogeneity increased, and that cloud forcing does not indicate any changes. The simplified cloud system looked at two different cases of absorption of solar radiation in the cloud. The absorptances calculated from the Monte Carlo is compared to a correction method for calculating absorptances and found that the method can over or underestimate absorptances at cloud edges. Also the cloud edge effects due to solar radiation points to a possibility of overestimating the retrieved optical depth at the edge, and indicates a possible way to correct for it. The effective cloud fraction (Ne) for a long time has been calculated from a cloud's reflectance. From the reflectance it has been observed that the N, for most cloud geometries is greater than the actual cloud fraction (Nc) making a cloud appear wider than it is optically. Recent studies we have performed used a Monte Carlo model to calculate the N, of a cloud using not only the reflectance but also the absorptance. The derived Ne's from the absorptance in some of the Monte Carlo runs did not give the same results as derived from the reflectance. This study also examined the inhomogeneity of clouds to find a relationship between larger and smaller scales, or wavelengths, of the cloud. Both Fourier transforms and wavelet transforms were used to analyze the liquid water content of marine stratocumulus clouds taken during the ASTEX project. From the analysis it was found that the energy in the cloud is not uniformly distributed but is greater at the larger scales than at the smaller scales. This was determined by examining the slope of the power spectrum, and by comparing the variability at two scales from a wavelet analysis.
A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra
Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole
2010-01-01
A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455
Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements.
Ptashnik, Igor V; McPheat, Robert A; Shine, Keith P; Smith, Kevin M; Williams, R Gary
2012-06-13
For a long time, it has been believed that atmospheric absorption of radiation within wavelength regions of relatively high infrared transmittance (so-called 'windows') was dominated by the water vapour self-continuum, that is, spectrally smooth absorption caused by H(2)O--H(2)O pair interaction. Absorption due to the foreign continuum (i.e. caused mostly by H(2)O--N(2) bimolecular absorption in the Earth's atmosphere) was considered to be negligible in the windows. We report new retrievals of the water vapour foreign continuum from high-resolution laboratory measurements at temperatures between 350 and 430 K in four near-infrared windows between 1.1 and 5 μm (9000-2000 cm(-1)). Our results indicate that the foreign continuum in these windows has a very weak temperature dependence and is typically between one and two orders of magnitude stronger than that given in representations of the continuum currently used in many climate and weather prediction models. This indicates that absorption owing to the foreign continuum may be comparable to the self-continuum under atmospheric conditions in the investigated windows. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by approximately 0.46 W m(-2) (or 0.6% of the total clear-sky absorption) by using these new measurements when compared with calculations applying the widely used MTCKD (Mlawer-Tobin-Clough-Kneizys-Davies) foreign-continuum model.
Light Absorption Enhancement of Black Carbon Aerosol Constrained by Particle Morphology.
Wu, Yu; Cheng, Tianhai; Liu, Dantong; Allan, James D; Zheng, Lijuan; Chen, Hao
2018-06-19
The radiative forcing of black carbon aerosol (BC) is one of the largest sources of uncertainty in climate change assessments. Contrasting results of BC absorption enhancement ( E abs ) after aging are estimated by field measurements and modeling studies, causing ambiguous parametrizations of BC solar absorption in climate models. Here we quantify E abs using a theoretical model parametrized by the complex particle morphology of BC in different aging scales. We show that E abs continuously increases with aging and stabilizes with a maximum of ∼3.5, suggesting that previous seemingly contrast results of E abs can be explicitly described by BC aging with corresponding particle morphology. We also report that current climate models using Mie Core-Shell model may overestimate E abs at a certain aging stage with a rapid rise of E abs , which is commonly observed in the ambient. A correction coefficient for this overestimation is suggested to improve model predictions of BC climate impact.
Hulin, Anne; Blanchet, Benoît; Audard, Vincent; Barau, Caroline; Furlan, Valérie; Durrbach, Antoine; Taïeb, Fabrice; Lang, Philippe; Grimbert, Philippe; Tod, Michel
2009-04-01
A significant relationship between mycophenolic acid (MPA) area under the plasma concentration-time curve (AUC) and the risk for rejection has been reported. Based on 3 concentration measurements, 3 approaches have been proposed for the estimation of MPA AUC, involving either a multilinear regression approach model (MLRA) or a Bayesian estimation using either gamma absorption or zero-order absorption population models. The aim of the study was to compare the 3 approaches for the estimation of MPA AUC in 150 renal transplant patients treated with mycophenolate mofetil and tacrolimus. The population parameters were determined in 77 patients (learning study). The AUC estimation methods were compared in the learning population and in 73 patients from another center (validation study). In the latter study, the reference AUCs were estimated by the trapezoidal rule on 8 measurements. MPA concentrations were measured by liquid chromatography. The gamma absorption model gave the best fit. In the learning study, the AUCs estimated by both Bayesian methods were very similar, whereas the multilinear approach was highly correlated but yielded estimates about 20% lower than Bayesian methods. This resulted in dosing recommendations differing by 250 mg/12 h or more in 27% of cases. In the validation study, AUC estimates based on the Bayesian method with gamma absorption model and multilinear regression approach model were, respectively, 12% higher and 7% lower than the reference values. To conclude, the bicompartmental model with gamma absorption rate gave the best fit. The 3 AUC estimation methods are highly correlated but not concordant. For a given patient, the same estimation method should always be used.
Hybrid modelling of a high-power X-ray attenuator plasma.
Martín Ortega, Álvaro; Lacoste, Ana; Minea, Tiberiu
2018-05-01
X-ray gas attenuators act as stress-free high-pass filters for synchrotron and free-electron laser beamlines to reduce the heat load in downstream optical elements without affecting other properties of the X-ray beam. The absorption of the X-ray beam triggers a cascade of processes that ionize and heat up the gas locally, changing its density and therefore the X-ray absorption. Aiming to understand and predict the behaviour of the gas attenuator in terms of efficiency versus gas pressure, a hybrid model has been developed, combining three approaches: an analytical description of the X-ray absorption; Monte Carlo for the electron thermalization; and a fluid treatment for the electron diffusion, recombination and excited-states relaxation. The model was applied to an argon-filled attenuator prototype built and tested at the European Synchrotron Radiation Facility, at a pressure of 200 mbar and assuming stationary conditions. The results of the model showed that the electron population thermalizes within a few nanoseconds after the X-ray pulse arrival and it occurs just around the X-ray beam path, recombining in the bulk of the gas rather than diffusing to the attenuator walls. The gas temperature along the beam path reached 850 K for 770 W of incident power and 182 W m -1 of absorbed power. Around 70% of the absorbed power is released as visible and UV radiation rather than as heat to the gas. Comparison of the power absorption with the experiment showed an overall agreement both with the plasma radial profile and power absorption trend, the latter within an error smaller than 20%. This model can be used for the design and operation of synchrotron gas attenuators and as a base for a time-dependent model for free-electron laser attenuators.
Comparison of excitation wavelengths for in vivo deep imaging of mouse brain
NASA Astrophysics Data System (ADS)
Wang, Mengran; Wu, Chunyan; Li, Bo; Xia, Fei; Sinefeld, David; Xu, Chris
2018-02-01
The attenuation of excitation power reaching the focus is the main issue that limits the depth penetration of highresolution imaging of biological tissue. The attenuation is caused by a combination of tissue scattering and absorption. Theoretical model of the effective attenuation length for in vivo mouse brain imaging has been built based on the data of the absorption of water and blood and the Mie scattering of a tissue-like phantom. Such a theoretical model has been corroborated at a number of excitation wavelengths, such as 800 nm, 1300 nm , and 1700 nm ; however, the attenuation caused by absorption is negligible when compared to tissue scattering at all these wavelength windows. Here we performed in vivo three-photon imaging of Texas Red-stained vasculature in the same mouse brain with different excitation wavelengths, 1700 nm, 1550 nm, 1500 nm and 1450 nm. In particular, our studies include the wavelength regime where strong water absorption is present (i.e., 1450 nm), and the attenuation by water absorption is predicted to be the dominant contribution in the excitation attenuation. Based on the experimental results, we found that the effective attenuation length at 1450 nm is significantly shorter than those at 1700 nm and 1300 nm. Our results confirm that the theoretical model based on tissue scattering and water absorption is accurate in predicting the effective attenuation lengths for in vivo imaging. The optimum excitation wavelength windows for in vivo mouse brain imaging are at 1300 nm and 1700 nm.
NASA Astrophysics Data System (ADS)
Liou, K. N.; Takano, Y.; He, C.; Yang, P.; Leung, L. R.; Gu, Y.; Lee, W. L.
2014-06-01
A stochastic approach has been developed to model the positions of BC (black carbon)/dust internally mixed with two snow grain types: hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine BC/dust single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), the action of internal mixing absorbs substantially more light than external mixing. The snow grain shape effect on absorption is relatively small, but its effect on asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions of BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2-5 µm) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 µm, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo substantially more than external mixing and that the snow grain shape plays a critical role in snow albedo calculations through its forward scattering strength. Also, multiple inclusion of BC/dust significantly reduces snow albedo as compared to an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization involving contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountain/snow topography.
Ling, Xiao; Xiang, Yuqiang; Chen, Feilong; Tang, Qingfa; Zhang, Wei; Tan, Xiaomei
2018-04-15
Intestinal condition plays an important role in drug absorption and metabolism, thus the effects of varied gastrointestinal diseases such as infectious diarrhea on the intestinal function are crucial for drug absorption. However, due to the lack of suitable models, the differences of absorption and metabolism of drugs between the diarrheal and normal intestines are rarely reported. Thus, in this study, Escherichia coli diarrhea model was induced in mini-pigs and single-pass intestinal perfusion and intestinal mucosal enzyme metabolism experiments were conducted. A simple and rapid ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed to determine the concentrations of 9 major components in Gegen Qinlian decoction (GQD). Samples were pretreated by protein precipitation with methanol and naringin and prednisolone were used as internal standards. The validated method demonstrated adequate sensitivity, selectivity, and process efficiency for the bioanalysis of 9 compounds. Results of intestinal perfusion showed that puerarin, daidzein, daidzin and baicalin and berberine were absorbed faster in diarrheal jejunum than in normal intestines (p < 0.05). However, puerarin, daidzin and liquiritin were metabolized more slowly in diarrheal intestine after incubation compared with the normal group (p < 0.05). The concentrations of daidzein in both perfusion and metabolism and wogonin in metabolism were significantly increased (p < 0.05). In conclusion, absorption and metabolism of GQD were significantly different between the diarrheal and normal intestines, which suggest that bacterial diarrheal mini-pigs model can be used in the intestinal absorption study and is worthy to be applied in the other intestinal absorption study of anti- diarrheal drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liou, K. N.; Takano, Y.; He, Cenlin
2014-06-27
A stochastic approach to model the positions of BC/dust internally mixed with two snow-grain types has been developed, including hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine their single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), internal mixing absorbs more light than external mixing. The snow-grain shape effect on absorption is relatively small, but its effect on the asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions ofmore » BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2 – 5 um) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 um, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo more than external mixing and that the snow-grain shape plays a critical role in snow albedo calculations through the asymmetry factor. Also, snow albedo reduces more in the case of multiple inclusion of BC/dust compared to that of an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization containing contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountains/snow topography.« less
NASA Astrophysics Data System (ADS)
Jacobson, Mark Z.
2012-03-01
This study examines modeled properties of black carbon (BC), tar ball (TB), and soil dust (SD) absorption within clouds and aerosols to understand better Cloud Absorption Effects I and II, which are defined as the effects on cloud heating of absorbing inclusions in hydrometeor particles and of absorbing aerosol particles interstitially between hydrometeor particles at their actual relative humidity (RH), respectively. The globally and annually averaged modeled 550 nm aerosol mass absorption coefficient (AMAC) of externally mixed BC was 6.72 (6.3-7.3) m2/g, within the laboratory range (6.3-8.7 m2/g). The global AMAC of internally mixed (IM) BC was 16.2 (13.9-18.2) m2/g, less than the measured maximum at 100% RH (23 m2/g). The resulting AMAC amplification factor due to internal mixing was 2.41 (2-2.9), with highest values in high RH regions. The global 650 nm hydrometeor mass absorption coefficient (HMAC) due to BC inclusions was 17.7 (10.6-19) m2/g, ˜9.3% higher than that of the IM-AMAC. The 650 nm HMACs of TBs and SD were half and 1/190th, respectively, that of BC. Modeled aerosol absorption optical depths were consistent with data. In column tests, BC inclusions in low and mid clouds (CAE I) gave column-integrated BC heating rates ˜200% and 235%, respectively, those of interstitial BC at the actual cloud RH (CAE II), which itself gave heating rates ˜120% and ˜130%, respectively, those of interstitial BC at the clear-sky RH. Globally, cloud optical depth increased then decreased with increasing aerosol optical depth, consistent with boomerang curves from satellite studies. Thus, CAEs, which are largely ignored, heat clouds significantly.
NASA Astrophysics Data System (ADS)
Krumer, Zachar; van Sark, Wilfried G. J. H. M.; de Mello Donegá, Celso; Schropp, Ruud E. I.
2013-09-01
Luminescent solar concentrators (LSCs) are low cost photovoltaic devices, which reduce the amount of necessary semiconductor material per unit area of a photovoltaic solar energy converter by means of concentration. The device is comprised of a thin plastic plate in which luminescent species (fluorophores) have been incorporated.The fluorophores absorb the solar light and radiatively re-emit a part of the energy. Total internal reflection traps most of the emitted light inside the plate and wave-guides it to a narrow side facet with a solar cell attached, where conversion into electricity occurs. The eciency of such devices is as yet rather low, due to several loss mechanisms, of which self-absorption is of high importance. Combined ray-tracing and Monte-Carlosimulations is a widely used tool for efficiency estimations of LSC-devices prior to manufacturing. We have applied this method to a model experiment, in which we analysed the impact of self-absorption onto LSC-efficiency of fluorophores with different absorption/emission-spectral overlap (Stokes-shift): several organic dyes and semiconductor quantum dots (single compound and core/shell of type-II). These results are compared with the ones obtained experimentally demonstrating a good agreement. The validated model is used to investigate systematically the influence of spectral separation and luminescence quantum efficiency on the intensity loss inconsequence of increased self-absorption. The results are used to adopt a quantity called the self-absorption cross-section and establish it as reliable criterion for self-absorption properties of materials that can be obtained from fundamental data and has a more universal scope of application, than the currently used Stokes-shift.
Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission.
Delahaye, T; Maxwell, S E; Reed, Z D; Lin, H; Hodges, J T; Sung, K; Devi, V M; Warneke, T; Spietz, P; Tran, H
2016-06-27
In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2 ν 3 band of 12 CH 4 . Accurate physical models of this absorption spectrum will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa - 1013 hPa with methane molar fractions between 1 μmol mol -1 and 12 μmol mol -1 . All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least-squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room-temperature, methane absorption coefficient to better than 0.1% at the on-line position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations.
Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission
Delahaye, T.; Maxwell, S.E.; Reed, Z.D.; Lin, H.; Hodges, J.T.; Sung, K.; Devi, V.M.; Warneke, T.; Spietz, P.; Tran, H.
2016-01-01
In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2ν3 band of 12CH4. Accurate physical models of this absorption spectrum will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa – 1013 hPa with methane molar fractions between 1 μmol mol−1 and 12 μmol mol−1. All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least-squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room-temperature, methane absorption coefficient to better than 0.1% at the on-line position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations. PMID:27551656
Jongen, H A; Thijssen, J M; van den Aarssen, M; Verhoef, W A
1986-02-01
In this paper, a closed-form expression is derived for the absorption of ultrasound by biological tissues. In this expression, the viscothermal and viscoelastic theories of relaxation processes are combined. Three relaxation time distribution functions are introduced, and it is assumed that each of these distributions can be described by an identical and simple hyperbolic function. Several simplifying assumptions had to be made to enable the experimental verification of the derived closed-form expression of the absorption coefficient. The simplified expression leaves two degrees of freedom and it was fitted to the experimental data obtained from homogenized beef liver. The model produced a considerably better fit to the data than other, more pragmatic models for the absorption coefficient as a function of frequency that could be found in the literature. Scattering in beef liver was estimated indirectly from the difference between attenuation in in vitro liver tissue as compared to absorption in a homogenate. The frequency dependence of the scattering coefficient could be described by a power law with a power of the order of 2. A comparable figure was found in direct backscattering measurements, performed at our laboratory with the same liver samples [Van den Aarssen et al., J. Acoust. Soc. Am. (to be published)]. A model for scattering recently proposed by Sehgal and Greenleaf [Ultrason. Imag. 6, 60-80 (1984)] was fitted to the scattering data as well. This latter model enabled the estimation of a maximum scatterer distance, which appeared to be of the order of 25 micron.
Energy absorption capabilities of composite sandwich panels under blast loads
NASA Astrophysics Data System (ADS)
Sankar Ray, Tirtha
As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy, ET) was suggested to compare energy absorption capabilities of the structures under blast loading. In addition, AEweb/ET (where AEweb is the energy absorbed by the middle core) was also employed to evaluate the energy absorption contribution from the web. Taking advantage of FEA and the simplified analytical model, the influences of material properties as well as core architectures and geometries on energy absorption capabilities (quantified by AET/ ET and AEweb/E T) were investigated through parametric studies. Results from the material property investigation indicated that density of the front face sheet and strength were most influential on the energy absorption capability of the composite sandwich panels under blast loading. The study to investigate the potential effectiveness of energy absorbed via inelastic deformation compared to energy absorbed via progressive failure indicated that for practical applications (where the position of bomb is usually unknown and the panel is designed to be the same anywhere), the energy absorption via inelastic deformation is the more efficient approach. Regarding the geometric optimization, it was found that a core architecture consisting of vertically-oriented webs was ideal. The optimum values for these parameters can be generally described as those which cause the most inelasticity, but not failure, of the face sheets and webs.
Measurements and Modeling of Aerosol Absorption and Single Scattering Albedo at Ambient Relative Hum
NASA Technical Reports Server (NTRS)
Redemann, J.; Russell, P. B.; Hamill, P.
2000-01-01
Uncertainties in the aerosol single scattering albedo have been identified to be an important source of errors in current large-scale model estimates of the direct aerosol radiative forcing of climate. A number of investigators have obtained estimates of the single scattering albedo from a variety of remote sensing and in situ measurements during aerosol field experiments. During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, 1996) for example, estimates of the aerosol single scattering albedo were obtained (1) as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from independently measured aerosol properties; (2) from estimates of the aerosol complex index of refraction derived using a combination of airborne sunphotometer, lidar backscatter and in situ size distribution measurements; and (3) from airborne measurements of aerosol scattering and absorption using nephelometers and absorption photometers. In this paper, we briefly compare the results of the latter two methods for two TARFOX case studies, since those techniques provide height-resolved information about the aerosol single scattering albedo. Estimates of the aerosol single scattering albedo from nephelometer and absorption photometer measurements require knowledge of the scattering and absorption humidification (i.e., the increase in these properties in response to an increase in ambient relative humidity), since both measurements are usually carried out at a relative humidity different from the ambient atmosphere. In principle, the scattering humidification factor can be measured, but there is currently no technique widely available to measure the absorption of an aerosol sample as a function of relative humidity. Frequently, for lack of better knowledge, the absorption humidification is assumed to be unity (meaning that there is no change in aerosol absorption due to an increase in ambient relative humidity). This assumption then enters the estimate of the single scattering albedo at ambient relative humidity. To investigate the validity of this assumption we have carried out modeling studies of the absorption humidification factor, assuming that the aerosols contain an insoluble soot core and a coating which determines its hygroscopic growth behavior. The aerosol optical properties are then computed on the basis of the shell/core particle morphology using a Mie-code for concentric shells. From basic physical principles, it is conceivable that aerosol absorption increases when an atmospheric aerosol particle collects a non-absorbing shell, since the soot core is then exposed to an increased (focused) electric field strength. Indeed, our preliminary modeling studies show that the absorption of an atmospheric aerosol particle composed of a soot core and an aqueous sulfuric acid shell may increase by a factor of 50% due to a change in ambient relative humidity from 30 to 95%. We will show how this increased absorption is a function of the initial particle size and soot mass fraction.
Farrell, Tracy L; Poquet, Laure; Dew, Tristan P; Barber, Stuart; Williamson, Gary
2012-02-01
There is a considerable need to rationalize the membrane permeability and mechanism of transport for potential nutraceuticals. The aim of this investigation was to develop a theoretical permeability equation, based on a reported descriptive absorption model, enabling calculation of the transcellular component of absorption across Caco-2 monolayers. Published data for Caco-2 permeability of 30 drugs transported by the transcellular route were correlated with the descriptors 1-octanol/water distribution coefficient (log D, pH 7.4) and size, based on molecular mass. Nonlinear regression analysis was used to derive a set of model parameters a', β', and b' with an integrated molecular mass function. The new theoretical transcellular permeability (TTP) model obtained a good fit of the published data (R² = 0.93) and predicted reasonably well (R² = 0.86) the experimental apparent permeability coefficient (P(app)) for nine non-training set compounds reportedly transported by the transcellular route. For the first time, the TTP model was used to predict the absorption characteristics of six phenolic acids, and this original investigation was supported by in vitro Caco-2 cell mechanistic studies, which suggested that deviation of the P(app) value from the predicted transcellular permeability (P(app)(trans)) may be attributed to involvement of active uptake, efflux transporters, or paracellular flux.
NASA Astrophysics Data System (ADS)
Sima, Wenxia; Jiang, Xiongwei; Peng, Qingjun; Sun, Potao
2018-05-01
Electrical breakdown is an important physical phenomenon in electrical equipment and electronic devices. Many related models and theories of electrical breakdown have been proposed. However, a widely recognized understanding on the following phenomenon is still lacking: impulse breakdown strength which varies with waveform parameters, decrease in the breakdown strength of AC voltage with increasing frequency, and higher impulse breakdown strength than that of AC. In this work, an improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers is proposed based on the Harmonic oscillator model. Simulation and experimental results show that, the energy of trapped charges obtained from AC stress is higher than that of impulse voltage, and the absorbed activation energy increases with the increase in the electric field frequency. Meanwhile, the frequency-dependent relative dielectric constant ε r and dielectric loss tanδ also affect the absorption of activation energy. The absorbed activation energy and modified trap level synergistically determine the breakdown strength. The mechanism analysis of breakdown strength under various voltage waveforms is consistent with the experimental results. Therefore, the proposed model of activation energy absorption in the present work may provide a new possible method for analyzing and explaining the breakdown phenomenon in semi-crystalline insulating polymers.
Testoni, Guilherme Apolinario; Kim, Sihwan; Pisupati, Anurag; Park, Chung Hae
2018-09-01
We propose a new model for the capillary rise of liquid in flax fibers whose diameter is changed by liquid absorption. Liquid absorption into the flax fibers is taken into account in a new modified Washburn equation by considering the mass of the liquid absorbed inside the fibers as well as that imbibed between the fibers. The change of permeability and hydraulic radius of pores in a fibrous medium due to the fiber swelling is modeled by a statistical approach considering a non-uniform distribution of flax fiber diameter. By comparisons between capillary rise test results and modeling results, we prove the validity of the proposed modified Washburn model to take into account the effects from fiber swelling and liquid absorption on the decrease of capillary rise velocity. The experimental observation of long-term capillary rise tests show that the swelling behavior of the fibers highly packed in a closed volume and its influence on the capillary wicking are different from those of an individual single fiber in a free space. The current approach was useful to characterize the swelling of fibers highly packed in a closed volume and its influence of the long-term behavior of capillary wicking. Copyright © 2018 Elsevier Inc. All rights reserved.
An observational radiative constraint on hydrologic cycle intensification.
DeAngelis, Anthony M; Qu, Xin; Zelinka, Mark D; Hall, Alex
2015-12-10
Intensification of the hydrologic cycle is a key dimension of climate change, with substantial impacts on human and natural systems. A basic measure of hydrologic cycle intensification is the increase in global-mean precipitation per unit surface warming, which varies by a factor of three in current-generation climate models (about 1-3 per cent per kelvin). Part of the uncertainty may originate from atmosphere-radiation interactions. As the climate warms, increases in shortwave absorption from atmospheric moistening will suppress the precipitation increase. This occurs through a reduction of the latent heating increase required to maintain a balanced atmospheric energy budget. Using an ensemble of climate models, here we show that such models tend to underestimate the sensitivity of solar absorption to variations in atmospheric water vapour, leading to an underestimation in the shortwave absorption increase and an overestimation in the precipitation increase. This sensitivity also varies considerably among models due to differences in radiative transfer parameterizations, explaining a substantial portion of model spread in the precipitation response. Consequently, attaining accurate shortwave absorption responses through improvements to the radiative transfer schemes could reduce the spread in the predicted global precipitation increase per degree warming for the end of the twenty-first century by about 35 per cent, and reduce the estimated ensemble-mean increase in this quantity by almost 40 per cent.
Ionized absorbers, ionized emitters, and the X-ray spectrum of active galactic nuclei
NASA Technical Reports Server (NTRS)
Netzer, Hagai
1993-01-01
Broad absorption features are common in the X-ray spectrum of low-luminosity AGNs. The features have been modeled by leaky neutral absorbers or by highly ionized gas that completely occult the continuum source. Such models are incomplete since they do not take into account all the physical processes in the gas. In particular, no previous model included the X-ray emission by the ionized absorbing gas and the reflection of the continuum source radiation. The present work discusses the emission, absorption, and reflection properties of photoionized gases with emphasis on conditions thought to prevail in AGNs. It shows that such gas is likely to produce intense X-ray line and continuum radiation and to reflect a sizable fraction of the nonstellar continuum at all energies. If such gas is indeed responsible for the observed X-ray absorption, then absorption edges are much weaker than commonly assumed, and some residual X-ray continuum is likely to be observed even if the line of sight is completely blocked. Moreover, X-ray emission features may show up in sources not showing X-ray absorption. This has immense consequences for medium-resolution X-ray missions, such as BBXRT and Astro-D, and for the planned high-resolution experiments on board XMM and AXAF.
Rygg, Alex; Hindle, Michael; Longest, P Worth
2016-04-01
The objective of this study was to use a recently developed nasal dissolution, absorption, and clearance (DAC) model to evaluate the extent to which suspended drug particle size influences nasal epithelial drug absorption for a spray product. Computational fluid dynamics (CFD) simulations of mucociliary clearance and drug dissolution were used to calculate total and microscale epithelial absorption of drug delivered with a nasal spray pump. Ranges of suspended particle sizes, drug solubilities, and partition coefficients were evaluated. Considering mometasone furoate as an example, suspended drug particle sizes in the range of 1-5 μm did not affect the total nasal epithelial uptake. However, the microscale absorption of suspended drug particles with low solubilities was affected by particle size and this controlled the extent to which the drug penetrated into the distal nasal regions. The nasal-DAC model was demonstrated to be a useful tool in determining the nasal exposure of spray formulations with different drug particle sizes and solubilities. Furthermore, the model illustrated a new strategy for topical nasal drug delivery in which drug particle size is selected to increase the region of epithelial surface exposure using mucociliary clearance while minimizing the drug dose exiting the nasopharynx.
Ding, Xuan; He, Minxia; Kulkarni, Rajesh; Patel, Nita; Zhang, Xiaoyu
2013-08-01
Identifying the source of inter- and/or intrasubject variability in pharmacokinetics (PK) provides fundamental information in understanding the pharmacokinetics-pharmacodynamics relationship of a drug and project its efficacy and safety in clinical populations. This identification process can be challenging given that a large number of potential causes could lead to PK variability. Here we present an integrated approach of physiologically based absorption modeling to investigate the root cause of unexpectedly high PK variability of a Phase I clinical trial drug. LY2196044 exhibited high intersubject variability in the absorption phase of plasma concentration-time profiles in humans. This could not be explained by in vitro measurements of drug properties and excellent bioavailability with low variability observed in preclinical species. GastroPlus™ modeling suggested that the compound's optimal solubility and permeability characteristics would enable rapid and complete absorption in preclinical species and in humans. However, simulations of human plasma concentration-time profiles indicated that despite sufficient solubility and rapid dissolution of LY2196044 in humans, permeability and/or transit in the gastrointestinal (GI) tract may have been negatively affected. It was concluded that clinical PK variability was potentially due to the drug's antagonism on opioid receptors that affected its transit and absorption in the GI tract. Copyright © 2013 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Caco-2 cell metallothionein (MT) formation was studied to determine if MT could be used as a proxy for zinc (Zn) absorption in a cell culture model. MT intracellular concentration was determined by using a cadmium/hemoglobin affinity assay. Cellular Zn uptake was determined in acid digests (5% HNO3)...
Head and neck resonance in a rhesus monkey - a comparison with results from a human model
NASA Astrophysics Data System (ADS)
Tinniswood, Adam; Gandhi, Om P.
1999-03-01
The use of primates for examining the effects of electromagnetic radiation on behavioural patterns is well established. Rats have also been used for this purpose. However, the monkey is of greater interest as its physiological make-up is somewhat closer to that of the human. Since the behavioural effects are likely to occur at lower field strengths for resonant absorption conditions for the head and neck, the need for determination of resonance frequencies for this region is obvious. Numerical techniques are ideal for the prediction of coupling to each of the organs, and accurate anatomically based models can be used to pinpoint the conditions for maximum absorption in the head in order to focus the experiments. In this paper we use two models, one of a human male and the other of a rhesus monkey, and find the mass-averaged power absorption spectra for both. The frequencies at which highest absorption (i.e. resonance) occurs in both the whole body and the head and neck region are determined. The results from these two models are compared for both E-polarization and k-polarization, and are shown to obey basic electromagnetic scaling principles.
Dipole saturated absorption modeling in gas phase: Dealing with a Gaussian beam
NASA Astrophysics Data System (ADS)
Dupré, Patrick
2018-01-01
With the advent of new accurate and sensitive spectrometers, cf. combining optical cavities (for absorption enhancement), the requirement for reliable molecular transition modeling is becoming more pressing. Unfortunately, there is no trivial approach which can provide a definitive formalism allowing us to solve the coupled systems of equations associated with nonlinear absorption. Here, we propose a general approach to deal with any spectral shape of the electromagnetic field interacting with a molecular species under saturation conditions. The development is specifically applied to Gaussian-shaped beams. To make the analytical expressions tractable, approximations are proposed. Finally, two or three numerical integrations are required for describing the Lamb-dip profile. The implemented model allows us to describe the saturated absorption under low pressure conditions where the broadening by the transit-time may dominate the collision rates. The model is applied to two specific overtone transitions of the molecular acetylene. The simulated line shapes are discussed versus the collision and the transit-time rates. The specific collisional and collision-free regimes are illustrated, while the Rabi frequency controls the intermediate regime. We illustrate how to recover the input parameters by fitting the simulated profiles.
NASA Astrophysics Data System (ADS)
Penilla, E. H.; Hardin, C. L.; Kodera, Y.; Basun, S. A.; Evans, D. R.; Garay, J. E.
2016-01-01
Light scattering due to birefringence has prevented the use of polycrystalline ceramics with anisotropic optical properties in applications such as laser gain media. However, continued development of processing technology has allowed for very low porosity and fine grains, significantly improving transparency and is paving the way for polycrystalline ceramics to be used in demanding optical applications. We present a method for producing highly transparent Cr3+ doped Al2O3 (ruby) using current activated pressure assisted densification. The one-step doping/densification process produces fine grained ceramics with well integrated (doped) Cr, resulting in good absorption and emission. In order to explain the light transmission properties, we extend the analytical model based on the Rayleigh-Gans-Debye approximation that has been previously used for undoped alumina to include absorption. The model presented captures reflection, scattering, and absorption phenomena in the ceramics. Comparison with measured transmission confirms that the model adequately describes the properties of polycrystalline ruby. In addition the measured emission spectra and emission lifetime are found to be similar to single crystals, confirming the high optical quality of the ceramics.
Light transfer in agar immobilized microalgae cell cultures
NASA Astrophysics Data System (ADS)
Kandilian, Razmig; Jesus, Bruno; Legrand, Jack; Pilon, Laurent; Pruvost, Jérémy
2017-09-01
This paper experimentally and theoretically investigates light transfer in agar-immobilized cell cultures. Certain biotechnological applications such as production of metabolites secreted by photosynthetic microorganisms require cells to be immobilized in biopolymers to minimize contamination and to facilitate metabolite recovery. In such applications, light absorption by cells is one of the most important parameters affecting cell growth or metabolite productivity. Modeling light transfer therein can aid design and optimize immobilized-cell reactors. In this study, Parachlorella kessleri cells with areal biomass concentrations ranging from 0.36 to 16.9 g/m2 were immobilized in 2.6 mm thick agar gels. The average absorption and scattering cross-sections as well as the scattering phase function of P. kessleri cells were measured. Then, the absorption and transport scattering coefficients of the agar gel were determined using an inverse method based on the modified two-flux approximation. The forward model was used to predict the normal-hemispherical transmittance and reflectance of the immobilized-cell films accounting for absorption and scattering by both microalgae and the agar gel. Good agreement was found between the measured and predicted normal-hemispherical transmittance and reflectance provided absorption and scattering by agar were taken into account. Moreover, good agreement was found between experimentally measured and predicted mean rate of photon absorption. Finally, optimal areal biomass concentration was determined to achieve complete absorption of the incident radiation.
NASA Astrophysics Data System (ADS)
Coe, H.; Allan, J. D.; Whitehead, J.; Alfarra, M. R. R.; Villegas, E.; Kong, S.; Williams, P. I.; Ting, Y. C.; Haslett, S.; Taylor, J.; Morgan, W.; McFiggans, G.; Spracklen, D. V.; Reddington, C.
2015-12-01
The mixing state of black carbon is uncertain yet has a significant influence on the efficiency with which a particle absorbs light. In turn, this may make a significant contribution to the uncertainty in global model predictions of the black carbon radiative budget. Previous modelling studies that have represented this mixing state using a core-shell approach have shown that aged black carbon particles may be considerably enhanced compared to freshly emitted black carbon due to the addition of co-emitted, weakly absorbing species. However, recent field results have demonstrated that any enhancement of absorption is minor in the ambient atmosphere. Resolving these differences in absorption efficiency is important as they will have a major impact on the extent to which black carbon heats the atmospheric column. We have made morphology-independent measurements of refractory black carbon mass and associated weakly absorbing material in single particles from laboratory-generated diesel soot and black carbon particles in ambient air influenced by traffic and wood burning sources and related these to the optical properties of the particles. We compared our calculated optical properties with optical models that use varying mixing state assumptions and by characterising the behaviour in terms of the relative amounts of weakly absorbing material and black carbon in a particle we show a sharp transition in mixing occurs. We show that the majority of black carbon particles from traffic-dominated sources can be treated as externally mixed and show no absorption enhancement, whereas models assuming internal mixing tend to give the best estimate of the absorption enhancement of thickly coated black carbon particles from biofuel or biomass burning. This approach reconciles the differences in absorption enhancement previously observed and offers a systematic way of treating the differences in behaviour observed.
NASA Technical Reports Server (NTRS)
1974-01-01
The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.
2015-10-01
reported to be on Zenpep for gastro intestinal absorption issues and there are no data on the absorption of Leucine in this setting) . There was one...gastrointestinal absorption issues. As there are no data on the absorption of Leucine in this setting , the subject was withdrawn. 19DEC2014 Subject 12-002... Leucine is one of the branched chain amino acids and has been shown to upregulate protein translation . This is a pilot study to test the feasibility of
Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.
2004-01-01
We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well
High sensitivity of Indian summer monsoon to Middle East dust absorptive properties.
Jin, Qinjian; Yang, Zong-Liang; Wei, Jiangfeng
2016-07-28
The absorptive properties of dust aerosols largely determine the magnitude of their radiative impacts on the climate system. Currently, climate models use globally constant values of dust imaginary refractive index (IRI), a parameter describing the dust absorption efficiency of solar radiation, although it is highly variable. Here we show with model experiments that the dust-induced Indian summer monsoon (ISM) rainfall differences (with dust minus without dust) change from -9% to 23% of long-term climatology as the dust IRI is changed from zero to the highest values used in the current literature. A comparison of the model results with surface observations, satellite retrievals, and reanalysis data sets indicates that the dust IRI values used in most current climate models are too low, tending to significantly underestimate dust radiative impacts on the ISM system. This study highlights the necessity for developing a parameterization of dust IRI for climate studies.
Reverse-Engineering Laboratory Astrophysics: Oxygen Inner-shell Absorption in the ISM
NASA Technical Reports Server (NTRS)
Garcia, J.; Gatuzz, E.; Kallman, T. R.; Mendoza, C.; Gorczyca, T. W.
2017-01-01
The modeling of X-ray spectra from photoionized astrophysical plasmas has been significantly improved due to recent advancements in the theoretical and numerical frameworks, as well as a consolidated and reliable atomic database of inner-shell transitions for all the relevant ions. We discuss these developments and the current state of X-ray spectral modeling in the context of oxygen cold absorption in the interstellar medium (ISM). Unconventionally, we use high-resolution astrophysical observations to accurately determine line positions, and adjust the theoretical models for a comprehensive interpretation of the observed X-ray spectra. This approach has brought to light standing discrepancies in the neutral oxygen absorption-line positions determined from observations and laboratory measurements. We give an overview of our current efforts to devise a definitive model of oxygen photoabsorption that can help to resolve the existing controversy regarding ISM atomic and molecular fractions.
Kwon, Jung-Hwan; Katz, Lynn E; Liljestrand, Howard M
2006-12-01
A parallel artificial lipid membrane system was developed to mimic passive mass transfer of hydrophobic organic chemicals in fish. In this physical model system, a membrane filter-supported lipid bilayer separates two aqueous phases that represent the external and internal aqueous environments of fish. To predict bioconcentration kinetics in small fish with this system, literature absorption and elimination rates were analyzed with an allometric diffusion model to quantify the mass transfer resistances in the aqueous and lipid phases of fish. The effect of the aqueous phase mass transfer resistance was controlled by adjusting stirring intensity to mimic bioconcentration rates in small fish. Twenty-three simple aromatic hydrocarbons were chosen as model compounds for purposes of evaluation. For most of the selected chemicals, literature absorption/elimination rates fall into the range predicted from measured membrane permeabilities and elimination rates of the selected chemicals determined by the diffusion model system.
NASA Astrophysics Data System (ADS)
Puri, Sanjiv
2015-08-01
The X-ray production (XRP) cross sections, σLk (k = l, η, α, β6, β1, β3, β4, β9,10, γ1,5, γ2,3) have been evaluated at incident photon energies across the Li(i=1-3) absorption edge energies of 35Br using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.
Reverse-engineering laboratory astrophysics: Oxygen inner-shell absorption in the ISM
NASA Astrophysics Data System (ADS)
García, J.; Gatuzz, E.; Kallman, T. R.; Mendoza, C.; Gorczyca, T. W.
2017-03-01
The modeling of X-ray spectra from photoionized astrophysical plasmas has been significantly improved due to recent advancements in the theoretical and numerical frameworks, as well as a consolidated and reliable atomic database of inner-shell transitions for all the relevant ions. We discuss these developments and the current state of X-ray spectral modeling in the context of oxygen cold absorption in the interstellar medium (ISM). Unconventionally, we use high-resolution astrophysical observations to accurately determine line positions, and adjust the theoretical models for a comprehensive interpretation of the observed X-ray spectra. This approach has brought to light standing discrepancies in the neutral oxygen absorption-line positions determined from observations and laboratory measurements. We give an overview of our current efforts to devise a definitive model of oxygen photoabsorption that can help to resolve the existing controversy regarding ISM atomic and molecular fractions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharopoulou, O.; Aharonian, F. A.; Khangulyan, D.
2011-09-10
We study the applicability of the idea of internal absorption of {gamma}-rays produced through synchrotron radiation of ultrarelativistic protons in highly magnetized blobs to 1ES 0229+200 and 3C 66A, the two TeV blazars which show unusually hard intrinsic {gamma}-ray spectra after being corrected for the intergalactic absorption. We show that for certain combinations of reasonable model parameters, even with quite modest energy requirements, the scenario allows a self-consistent explanation of the non-thermal emission of these objects in the keV, GeV, and TeV energy bands.
Modeling of a Von Platen-Munters diffusion absorption refrigeration cycle
NASA Astrophysics Data System (ADS)
Agostini, Bruno; Agostini, Francesco; Habert, Mathieu
2016-09-01
This article presents a thermodynamical model of a Von-Platen diffusion absorption refrigeration cycle for power electronics applications. It is first validated by comparison with data available in the literature for the classical water-ammonia-helium cycle for commercial absorption fridges. Then new operating conditions corresponding to specific ABB applications, namely high ambient temperature and new organic fluids combinations compatible with aluminium are simulated and discussed. The target application is to cool power electronics converters in harsh environments with high ambient temperature by providing refrigeration without compressor, for passive components losses of about 500 W, with a compact and low cost solution.
Theoretical modeling of the absorption spectrum of aqueous riboflavin
NASA Astrophysics Data System (ADS)
Zanetti-Polzi, Laura; Aschi, Massimiliano; Daidone, Isabella; Amadei, Andrea
2017-02-01
In this study we report the modeling of the absorption spectrum of riboflavin in water using a hybrid quantum/classical mechanical approach, the MD-PMM methodology. By means of MD-PMM calculations, with which the effect of riboflavin internal motions and of solvent interactions on the spectroscopic properties can be explicitly taken into account, we obtain an absorption spectrum in very good agreement with the experimental spectrum. In particular, the calculated peak maxima show a consistent improvement with respect to previous computational approaches. Moreover, the calculations show that the interaction with the environment may cause a relevant recombination of the gas-phase electronic states.
van Heek, Margaret; Farley, Constance; Compton, Douglas S; Hoos, Lizbeth; Davis, Harry R
2001-01-01
Ezetimibe potently inhibits the transport of cholesterol across the intestinal wall, thereby reducing plasma cholesterol in preclinical animal models of hypercholesterolemia. The effect of ezetimibe on known absorptive processes was determined in the present studies.Experiments were conducted in the hamster and/or rat to determine whether ezetimibe would affect the absorption of molecules other than free cholesterol, namely cholesteryl ester, triglyceride, ethinylestradiol, progesterone, vitamins A and D, and taurocholic acid. In addition, to determine whether exocrine pancreatic function is involved in the mechanism of action of ezetimibe, a biliary anastomosis model, which eliminates exocrine pancreatic function from the intestine while maintaining bile flow, was established in the rat.Ezetimibe reduced plasma cholesterol and hepatic cholesterol accumulation in cholesterol-fed hamsters with an ED50 of 0.04 mg kg−1. Utilizing cholesteryl esters labelled on either the cholesterol or the fatty acid moiety, we demonstrated that ezetimibe did not affect cholesteryl ester hydrolysis and the absorption of fatty acid thus generated in both hamsters and rats. The free cholesterol from this hydrolysis, however, was not absorbed (92 – 96% inhibition) in the presence of ezetimibe. Eliminating pancreatic function in rats abolished hydrolysis of cholesteryl esters, but did not affect the ability of ezetimibe to block absorption of free cholesterol (−94%). Ezetimibe did not affect the absorption of triglyceride, ethinylestradiol, progesterone, vitamins A and D, and taurocholic acid in rats.Ezetimibe is a potent inhibitor of intestinal free cholesterol absorption that does not require exocrine pancreatic function for activity. Ezetimibe does not affect the absorption of triglyceride as a pancreatic lipase inhibitor (Orlistat) would, nor does it affect the absorption of vitamin A, D or taurocholate, as a bile acid sequestrant (cholestyramine) would. PMID:11564660
NASA Technical Reports Server (NTRS)
Appleby, J. F.; Van Blerkom, D. J.
1975-01-01
The article details an inhomogeneous reflecting layer (IRFL) model designed to survey absorption line behavior from a Squires-like cloud cover (which is characterized by convection cell structure). Computational problems and procedures are discussed in detail. The results show trends usually opposite to those predicted by a simple reflecting layer model. Per cent equivalent width variations for the tower model are usually somewhat greater for weak than for relatively strong absorption lines, with differences of a factor of about two or three. IRFL equivalent width variations do not differ drastically as a function of geometry when the total volume of absorbing gas is held constant. The IRFL results are in many instances consistent with observed equivalent width variations of Jupiter, Saturn, and Venus.
A fluctuating quantum model of the CO vibration in carboxyhemoglobin.
Falvo, Cyril; Meier, Christoph
2011-06-07
In this paper, we present a theoretical approach to construct a fluctuating quantum model of the CO vibration in heme-CO proteins and its interaction with external laser fields. The methodology consists of mixed quantum-classical calculations for a restricted number of snapshots, which are then used to construct a parametrized quantum model. As an example, we calculate the infrared absorption spectrum of carboxy-hemoglobin, based on a simplified protein model, and found the absorption linewidth in good agreement with the experimental results. © 2011 American Institute of Physics
On the magnetic circular dichroism of benzene. A density-functional study
NASA Astrophysics Data System (ADS)
Kaminský, Jakub; Kříž, Jan; Bouř, Petr
2017-04-01
Spectroscopy of magnetic circular dichroism (MCD) provides enhanced information on molecular structure and a more reliable assignment of spectral bands than absorption alone. Theoretical modeling can significantly enhance the information obtained from experimental spectra. In the present study, the time dependent density functional theory is employed to model the lowest-energy benzene transitions, in particular to investigate the role of the Rydberg states and vibrational interference in spectral intensities. The effect of solvent is explored on model benzene-methane clusters. For the lowest-energy excitation, the vibrational sub-structure of absorption and MCD spectra is modeled within the harmonic approximation, providing a very good agreement with the experiment. The simulations demonstrate that the Rydberg states have a much stronger effect on the MCD intensities than on the absorption, and a very diffuse basis set must be used to obtain reliable results. The modeling also indicates that the Rydberg-like states and associated transitions may persist in solutions. Continuum-like solvent models are thus not suitable for their modeling; solvent-solute clusters appear to be more appropriate, providing they are large enough.
NASA Technical Reports Server (NTRS)
Garrett, M. H.; Tayebati, P.; Chang, J. Y.; Jenssen, H. P.; Warde, C.
1992-01-01
The asymmetry of beam coupling with respect to the orientation of the polar axis in a nominally undoped barium titanate crystal is used to determine the electro-optic and absorptive 'gain' in the usual beam-coupling geometry. For small grating wave vectors, the electrooptic coupling vanishes but the absorptive coupling remains finite and positive. Positive absorptive coupling at small grating wave vectors is correlated with the light-induced transparency of the crystal described herein. The intensity and grating wave vector dependence of the electrooptic and absorptive coupling, and the light-induced transparency are consistent with a model incorporating deep and shallow levels.
Two-photon absorption in oxazole derivatives: An experimental and quantum chemical study
NASA Astrophysics Data System (ADS)
Silva, D. L.; De Boni, L.; Correa, D. S.; Costa, S. C. S.; Hidalgo, A. A.; Zilio, S. C.; Canuto, S.; Mendonca, C. R.
2012-05-01
Experimental and theoretical studies on the two-photon absorption properties of two oxazole derivatives: 2,5-diphenyloxazole (PPO) and 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole (PBD) are presented. The two-photon absorption cross-section spectra were determined by means of the Z-scan technique, from 460 up to 650 nm, and reached peak values of 84 GM for PBD and 27 GM for PPO. Density Functional Theory and response function formalism are used to determine the molecular structures and the one- and two-photon absorption properties and to assist in the interpretation of the experimental results. The Polarizable Continuum Model in one-photon absorption calculations is used to estimate solvent effects.
Study of absorption and re-emission processes in a ternary liquid scintillation system
NASA Astrophysics Data System (ADS)
Xiao, Hua-Lin; Li, Xiao-Bo; Zheng, Dong; Cao, Jun; Wen, Liang-Jian; Wang, Nai-Yan
2010-11-01
Liquid scintillators are widely used as the neutrino target in neutrino experiments. The absorption and emission of different components of a ternary liquid scintillator (Linear Alkyl Benzene (LAB) as the solvent, 2,5-diphenyloxazole (PPO) as the fluor and p-bis-(o-methylstyryl)-benzene (bis-MSB) as wavelength shifter) are studied. It is shown that the absorption of this liquid scintillator is dominant by LAB and PPO at wavelengths less than 349 nm, and the absorption by bis-MSB becomes prevalent at the wavelength larger than 349 nm. The fluorescence quantum yields, which are the key parameters to model the absorption and re-emission processes in large liquid scintillation detectors, are measured.
Esteves, Freddy; Moutinho, Carla; Matos, Carla
2013-06-01
Absorption and consequent therapeutic action are key issues in the development of new drugs by the pharmaceutical industry. In this sense, different models can be used to simulate biological membranes to predict the absorption of a drug. This work compared the octanol/water and the liposome/water models. The parameters used to relate the two models were the distribution coefficients between liposomes and water and octanol and water and the fraction of drug orally absorbed. For this study, 66 drugs were collected from literature sources and divided into four groups according to charge and ionization degree: neutral; positively charged; negatively charged; and partially ionized/zwitterionic. The results show a satisfactory linear correlation between the octanol and liposome systems for the neutral (R²= 0.9324) and partially ionized compounds (R²= 0.9367), contrary to the positive (R²= 0.4684) and negatively charged compounds (R²= 0.1487). In the case of neutral drugs, results were similar in both models because of the high fraction orally absorbed. However, for the charged drugs (positively, negatively, and partially ionized/zwitterionic), the liposomal model has a more-appropriate correlation with absorption than the octanol model. These results show that the neutral compounds only interact with membranes through hydrophobic bonds, whereas charged drugs favor electrostatic interactions established with the liposomes. With this work, we concluded that liposomes may be a more-appropriate biomembrane model than octanol for charged compounds.
Sjögren, Erik; Westergren, Jan; Grant, Iain; Hanisch, Gunilla; Lindfors, Lennart; Lennernäs, Hans; Abrahamsson, Bertil; Tannergren, Christer
2013-07-16
Oral drug delivery is the predominant administration route for a major part of the pharmaceutical products used worldwide. Further understanding and improvement of gastrointestinal drug absorption predictions is currently a highly prioritized area of research within the pharmaceutical industry. The fraction absorbed (fabs) of an oral dose after administration of a solid dosage form is a key parameter in the estimation of the in vivo performance of an orally administrated drug formulation. This study discloses an evaluation of the predictive performance of the mechanistic physiologically based absorption model GI-Sim. GI-Sim deploys a compartmental gastrointestinal absorption and transit model as well as algorithms describing permeability, dissolution rate, salt effects, partitioning into micelles, particle and micelle drifting in the aqueous boundary layer, particle growth and amorphous or crystalline precipitation. Twelve APIs with reported or expected absorption limitations in humans, due to permeability, dissolution and/or solubility, were investigated. Predictions of the intestinal absorption for different doses and formulations were performed based on physicochemical and biopharmaceutical properties, such as solubility in buffer and simulated intestinal fluid, molecular weight, pK(a), diffusivity and molecule density, measured or estimated human effective permeability and particle size distribution. The performance of GI-Sim was evaluated by comparing predicted plasma concentration-time profiles along with oral pharmacokinetic parameters originating from clinical studies in healthy individuals. The capability of GI-Sim to correctly predict impact of dose and particle size as well as the in vivo performance of nanoformulations was also investigated. The overall predictive performance of GI-Sim was good as >95% of the predicted pharmacokinetic parameters (C(max) and AUC) were within a 2-fold deviation from the clinical observations and the predicted plasma AUC was within one standard deviation of the observed mean plasma AUC in 74% of the simulations. GI-Sim was also able to correctly capture the trends in dose- and particle size dependent absorption for the study drugs with solubility and dissolution limited absorption, respectively. In addition, GI-Sim was also shown to be able to predict the increase in absorption and plasma exposure achieved with nanoformulations. Based on the results, the performance of GI-Sim was shown to be suitable for early risk assessment as well as to guide decision making in pharmaceutical formulation development. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nandy, Sreyankar; Mostafa, Atahar; Kumavor, Patrick D.; Sanders, Melinda; Brewer, Molly; Zhu, Quing
2016-10-01
A spatial frequency domain imaging (SFDI) system was developed for characterizing ex vivo human ovarian tissue using wide-field absorption and scattering properties and their spatial heterogeneities. Based on the observed differences between absorption and scattering images of different ovarian tissue groups, six parameters were quantitatively extracted. These are the mean absorption and scattering, spatial heterogeneities of both absorption and scattering maps measured by a standard deviation, and a fitting error of a Gaussian model fitted to normalized mean Radon transform of the absorption and scattering maps. A logistic regression model was used for classification of malignant and normal ovarian tissues. A sensitivity of 95%, specificity of 100%, and area under the curve of 0.98 were obtained using six parameters extracted from the SFDI images. The preliminary results demonstrate the diagnostic potential of the SFDI method for quantitative characterization of wide-field optical properties and the spatial distribution heterogeneity of human ovarian tissue. SFDI could be an extremely robust and valuable tool for evaluation of the ovary and detection of neoplastic changes of ovarian cancer.
An XMM Investigation of Non-Thermal Phenomena in the Winds of Early-Type Stars
NASA Technical Reports Server (NTRS)
Waldron, Wayne L.; Mushotzky, Richard (Technical Monitor)
2002-01-01
The X-ray emission from early-type stars is believed to arise from a stellar wind distribution of shocks. Hence, X-ray analyses of these stars must include the effects of stellar wind X-ray absorption, which, in general dominates the ISM absorption. Although the absorption cross sections for the wind and ISM are essentially identical above 1 keV, there is substantial differences below 1 keV. Typically, if one only uses ISM cross sections to obtain fits to X-ray spectra, the fits usually indicate a model deficiency at energies below 1 keV which is attributed to the large increase in ISM cross sections at these energies. This deficiency can be eliminated by using stellar wind absorption models with a fixed ISM component. Since all early-type stars have substantial X-ray emission below 1 keV, than inclusion of wind absorption has proven to be a critical component in fitting X-ray spectra at low energies, verifying that these X-rays are indeed arising from within the stellar wind.
Becker, Tim M; Wang, Meng; Kabra, Abhishek; Jamali, Seyed Hossein; Ramdin, Mahinder; Dubbeldam, David; Infante Ferreira, Carlos A; Vlugt, Thijs J H
2018-04-18
For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf 2 N], and [emim][SCN]. As refrigerant NH 3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance.
Global patterns of changes in underwater sound transmission caused by ocean acidification
NASA Astrophysics Data System (ADS)
Ilyina, T.; Zeebe, R. E.; Brewer, P. G.
2009-04-01
Oceanic uptake of man-made CO2 leads to a decrease in the ocean pH and carbonate saturation state. This processes, known as ocean acidification is expected to have adverse effects on a variety of marine organisms. A surprising consequence of ocean acidification, which has gone widely unrecognized, is its effect on underwater sound transmission. Low-frequency sound absorption in the ocean occurs due to chemical relaxation of the pH-dependent boric acid-borate ion reaction. As ocean pH drops, sound absorption in the audible range decreases. The decreased sound absorption will amplify ambient noise levels, and enhance long distance sound transmission, although its exact environmental impact is uncertain. Changes in the underwater sound absorption will affect the operation of scientific, commercial, and naval applications that are based on ocean acoustics, with yet unknown consequences for marine life. We project these changes using a global biogeochemical model (HAMOCC), which is forced by the anthropogenic CO2 emissions during the years 1800-2300. Based on model projections, we quantify when and where in the ocean these ocean chemistry induced perturbations in sound absorption will occur.
2018-01-01
For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf2N], and [emim][SCN]. As refrigerant NH3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance. PMID:29749996
Chen, Jiu-ying; Liu, Jian-guo; He, Jun-feng; He, Ya-bai; Zhang, Guang-le; Xu, Zhen-yu; Gang, Qiang; Wang, Liao; Yao, Lu; Yuan, Song; Ruan, Jun; Dai, Yun-hai; Kan, Rui-feng
2014-12-01
Tunable diode laser absorption spectroscopy (TDLAS) has been developed to realize the real-time and dynamic measurement of the combustion temperature, gas component concentration, velocity and other flow parameters, owing to its high sensitivity, fast time response, non-invasive character and robust nature. In order to obtain accurate water vapor concentration at high temperature, several absorption spectra of water vapor near 1.39 μm from 773 to 1273 K under ordinary pressure were recorded in a high temperature experiment setup using a narrow band diode laser. The absorbance of high temperature absorption spectra was calculated by combined multi-line nonlinear least squares fitting method. Two water vapor absorption lines near 7154.35 and 7157.73 cm(-1) were selected for measurement of water vapor at high temperature. A model method for high temperature water vapor concentration was first proposed. Water vapor concentration from the model method at high temperature is in accordance with theoretical reasoning, concentration measurement standard error is less than 0.2%, and the relative error is less than 6%. The feasibility of this measuring method is verified by experiment.
Savić, Jelena; Dobričić, Vladimir; Nikolic, Katarina; Vladimirov, Sote; Dilber, Sanda; Brborić, Jasmina
2017-03-30
Prediction of gastrointestinal absorption of thirteen newly synthesized β-hydroxy-β-arylalkanoic acids (HAA) and ibuprofen was performed using PAMPA test. The highest values of PAMPA parameters (%T and P app ) were calculated for 1C, 1B and 2C and these parameters were significantly lower in comparison to ibuprofen. QSPR analysis was performed in order to identify molecular descriptors with the highest influence on %T and -logP app and to create models which could be used for the design of novel HAA with improved gastrointestinal absorption. Obtained results indicate that introduction of branched side chain, as well as introduction of substituents on one phenyl ring (which disturb symmetry of the molecule) could have positive impact on gastrointestinal absorption. On the basis of these results, six novel HAA were designed and PAMPA parameters %T and -logP app were predicted by use of selected QSPR models. Designed derivatives should have better gastrointestinal absorption than HAA tested in this study. Copyright © 2017 Elsevier B.V. All rights reserved.
Nonlinear absorption of Sb-based phase change materials due to the weakening of the resonant bond
NASA Astrophysics Data System (ADS)
Liu, Shuang; Wei, Jingsong; Gan, Fuxi
2012-03-01
The current study proposes a model based on the weakening of the resonant bond to explore the giant optical nonlinear saturable absorption of Sb-based phase change materials. In order to analyze the weakening of resonant bond effectively, we take the Sb2Te3 as an example. First-principle calculations show that both the Born effective charge and optical dielectric constant of crystalline Sb2Te3 in the 300 K to 500 K temperature range monotonically decrease with the temperature, indicating a weakening of the resonant bond. This weakening induces a decline in the absorption coefficient at a rate of 103 m-1 K-1, which results in a nonlinear saturable absorption coefficient in the order of 10-2 m/W. The nonlinear absorption characteristics of the crystalline Sb, Sb7Te3, and Sb2Te3 thin films at 405 nm laser wavelength are measured via z-scan technique using nanosecond laser pulses to validate the above-proposed model. The experimental results are in good agreement with theoretical prediction.
SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra
NASA Astrophysics Data System (ADS)
Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.
2017-01-01
Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the intergalactic medium, and they may inject kinetic energy to the host galaxy, influencing its evolution. The traditional method of analyzing BALQSO spectra involves measuring myriad absorption lines, computing the inferred ionic column densities in each feature, and comparing with the output of photonionization models. This method is inefficient and does not handle line blending well. We introduce SimBAL, a spectral synthesis fitting method for BALQSOs, which compares synthetic spectra created from photoionization model results with continuum-normalized observed spectra using Bayesian model calibration. We find that we can obtain an excellent fit to the UV to near-IR spectrum of the low-redshift BALQSO SDSS J0850+4451, including lines from diverse ionization states such as PV, CIII*, SIII, Lyalpha, NV, SiIV, CIV, MgII, and HeI*.
NASA Astrophysics Data System (ADS)
Behafarid, Farhad; Brasseur, James G.
2017-11-01
Following tablet disintegration, clouds of drug particles 5-200 μm in diameter pass through the intestines where drug molecules are absorbed into the blood. Release rate depends on particle size, drug solubility, local drug concentration and the hydrodynamic environment driven by patterned gut contractions. To analyze the dynamics underlying drug release and absorption, we use a 3D lattice Boltzmann model of the velocity and concentration fields driven by peristaltic contractions in vivo, combined with a mathematical model of dissolution-rate from each drug particle transported through the grid. The model is empirically extended for hydrodynamic enhancements to release rate by local convection and shear-rate, and incorporates heterogeneity in bulk concentration. Drug dosage and solubility are systematically varied along with peristaltic wave speed and volume. We predict large hydrodynamic enhancements (35-65%) from local shear-rate with minimal enhancement from convection. With high permeability boundary conditions, a quasi-equilibrium balance between release and absorption is established with volume and wave-speed dependent transport time scale, after an initial transient and before a final period of dissolution/absorption. Supported by FDA.
Tankasala, Archana; Hsueh, Yuling; Charles, James; Fonseca, Jim; Povolotskyi, Michael; Kim, Jun Oh; Krishna, Sanjay; Allen, Monica S; Allen, Jeffery W; Rahman, Rajib; Klimeck, Gerhard
2018-01-01
A detailed theoretical study of the optical absorption in doped self-assembled quantum dots is presented. A rigorous atomistic strain model as well as a sophisticated 20-band tight-binding model are used to ensure accurate prediction of the single particle states in these devices. We also show that for doped quantum dots, many-particle configuration interaction is also critical to accurately capture the optical transitions of the system. The sophisticated models presented in this work reproduce the experimental results for both undoped and doped quantum dot systems. The effects of alloy mole fraction of the strain controlling layer and quantum dot dimensions are discussed. Increasing the mole fraction of the strain controlling layer leads to a lower energy gap and a larger absorption wavelength. Surprisingly, the absorption wavelength is highly sensitive to the changes in the diameter, but almost insensitive to the changes in dot height. This behavior is explained by a detailed sensitivity analysis of different factors affecting the optical transition energy. PMID:29719758
FREQUENCY-DEPENDENT ABSORPTION OF ELECTROMAGNETIC ENERGY IN BIOLOGICAL TISSUE
The frequency-dependent absorption of electromagnetic energy in biological tissue is illustrated by use of the Debye equations, model calculations for different irradiation conditions, and measured electrical properties (conductivity and permittivity) of different tissues. Four s...
Improvements to Shortwave Absorption in the GFDL General Circulation Model Radiation Code
NASA Astrophysics Data System (ADS)
Freidenreich, S.
2015-12-01
The multiple-band shortwave radiation parameterization used in the GFDL general circulation models is being revised to better simulate the disposition of the solar flux in comparison with line-by-line+doubling-adding reference calculations based on the HITRAN 2012 catalog. For clear skies, a notable deficiency in the older formulation is an underestimate of atmospheric absorption. The two main reasons for this is the neglecting of both H2O absorption for wavenumbers < 2500 cm-1 and the O2 continuum. Further contributions to this underestimate are due to neglecting the effects of CH4, N2O and stratospheric H2O absorption. These issues are addressed in the revised formulation and result in globally average shortwave absorption increasing from 74 to 78 Wm-2. The number of spectral bands considered remains the same (18), but the number of pseudomonochromatic intervals (based mainly on the exponential-sum-fit technique) for the determination of H2O absorption is increased from 38 to 74, allowing for more accuracy in its simulation. Also, CO2 absorption is now determined by the exponential-sum-fit technique, replacing an algebraic absorptivity expression in the older parameterization; this improves the simulation of the heating in the stratosphere. Improvements to the treatment of multiple scattering are currently being tested. This involves replacing the current algorithm, which consists of the two stream delta-Eddington, with a four stream algorithm. Initial results show that in most, but not all cases these produce better agreement with the reference doubling-adding results.
NASA Astrophysics Data System (ADS)
Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.
2016-02-01
This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly
Understanding the features in the ultrafast transient absorption spectra of CdSe quantum dots
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Do, Thanh Nhut; Ong, Xuanwei; Chan, Yinthai; Tan, Howe-Siang
2016-12-01
We describe a model to explain the features of the ultrafast transient absorption (TA) spectra of CdSe core type quantum dots (QDs). The measured TA spectrum consists of contributions by the ground state bleach (GSB), stimulated emission (SE) and excited state absorption (ESA) processes associated with the three lowest energy transition of the QDs. We model the shapes of the GSB, SE and ESA spectral components after fits to the linear absorption. The spectral positions of the ESA components take into account the biexcitonic binding energy. In order to obtain the correct weightage of the GSB, SE and ESA components to the TA spectrum, we enumerate the set of coherence transfer pathways associated with these processes. From our fits of the experimental TA spectra of 65 Å diameter QDs, biexcitonic binding energies for the three lowest energy transitions are obtained.
A nonstationary Markov transition model for computing the relative risk of dementia before death
Yu, Lei; Griffith, William S.; Tyas, Suzanne L.; Snowdon, David A.; Kryscio, Richard J.
2010-01-01
This paper investigates the long-term behavior of the k-step transition probability matrix for a nonstationary discrete time Markov chain in the context of modeling transitions from intact cognition to dementia with mild cognitive impairment (MCI) and global impairment (GI) as intervening cognitive states. The authors derive formulas for the following absorption statistics: (1) the relative risk of absorption between competing absorbing states, and (2) the mean and variance of the number of visits among the transient states before absorption. Since absorption is not guaranteed, sufficient conditions are discussed to ensure that the substochastic matrix associated with transitions among transient states converges to zero in limit. Results are illustrated with an application to the Nun Study, a cohort of 678 participants, 75 to 107 years of age, followed longitudinally with up to ten cognitive assessments over a fifteen-year period. PMID:20087848
Abdollahi, Siamak; Moravvej-Farshi, Mohammad Kazem
2009-05-01
We propose a new numerical model to analyze heat induced by two-photon absorption and free-carrier absorption, while high intensity optical pulses propagate along silicon-on-insulator (SOI) nanowaveguides (NWGs). Using this model, we demonstrate that such induced heat causes a shift in the amount of wavelength conversion and hence deteriorates the converter output characteristics for pulses in the picosecond regime. The wavelength shift induced by a pulse with maximum input intensity and full width at half-maximum of I(max)=1.5x10(10) W x cm(-2) and T(FWHM)=30 ps, propagating along a SOI NWG with an effective cross-sectional area of a(eff)=0.15 microm(2), is shown to be Delta lambda(s) approximately 8 pm. We also demonstrate that such a shift can be compensated by tuning the pump intensity down by approximately 6.33%.
The effect of Cd substitution doping on the bandgap and absorption spectrum of ZnO
NASA Astrophysics Data System (ADS)
Hou, Qingyu; Li, Yong; Qu, Lingfeng; Zhao, Chunwang
2016-08-01
Many research papers have reported that in the ultraviolet area of 290-360 nm wavelength range, blueshift and redshift in the absorption spectrum occurred in ZnO with Cd doping; however, there is no reasonable theoretical explanation to this so far. To solve this problem, this study investigates the differences of blueshift and redshift in doping system by adopting plane-wave ultrasoft pseudopotential technology based on the density functional theory and applying LDA + U method to calculate band structures, density of states and absorption spectrum distribution of the models, which is on the basis of model geometry optimization. By increasing the Cd doping concentration, the following results are obtained: increased volume of the mixed system, raised total energy, a decrease in stability, narrowed bandgaps and a significant redshift in the absorption spectrum in the ultraviolet or visible light area.
Resonant indirect optical absorption in germanium
NASA Astrophysics Data System (ADS)
Menéndez, José; Noël, Mario; Zwinkels, Joanne C.; Lockwood, David J.
2017-09-01
The optical absorption coefficient of pure Ge has been determined from high-accuracy, high-precision optical measurements at photon energies covering the spectral range between the indirect and direct gaps. The results are compared with a theoretical model that fully accounts for the resonant nature of the energy denominators that appear in perturbation-theory expansions of the absorption coefficient. The model generalizes the classic Elliott approach to indirect excitons, and leads to a predicted optical absorption that is in excellent agreement with the experimental values using just a single adjustable parameter: the average deformation potential DΓ L coupling electrons at the bottom of the direct and indirect valleys in the conduction band. Remarkably, the fitted value, DΓ L=4.3 ×108eV /cm , is in nearly perfect agreement with independent measurements and ab initio predictions of this parameter, confirming the validity of the proposed theory, which has general applicability.
ERIC Educational Resources Information Center
Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín
2016-01-01
Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…
The zig-zag walk with scattering and absorption on the real half line and in a lattice model
NASA Astrophysics Data System (ADS)
Wuttke, Joachim
2014-05-01
The Darwin-Hamilton equations, describing one-dimensional transport with scattering and absorption, are expanded into a recursion. The solution involves ballot numbers. The recurrence probability as function of scattering order is given by Catalan numbers. To reproduce this analytical result in a lattice model, a novel relation between Narayana and Catalan numbers is derived.
Absorption line indices in the UV. I. Empirical and theoretical stellar population models
NASA Astrophysics Data System (ADS)
Maraston, C.; Nieves Colmenárez, L.; Bender, R.; Thomas, D.
2009-01-01
Aims: Stellar absorption lines in the optical (e.g. the Lick system) have been extensively studied and constitute an important stellar population diagnostic for galaxies in the local universe and up to moderate redshifts. Proceeding towards higher look-back times, galaxies are younger and the ultraviolet becomes the relevant spectral region where the dominant stellar populations shine. A comprehensive study of ultraviolet absorption lines of stellar population models is however still lacking. With this in mind, we study absorption line indices in the far and mid-ultraviolet in order to determine age and metallicity indicators for UV-bright stellar populations in the local universe as well as at high redshift. Methods: We explore empirical and theoretical spectral libraries and use evolutionary population synthesis to compute synthetic line indices of stellar population models. From the empirical side, we exploit the IUE-low resolution library of stellar spectra and system of absorption lines, from which we derive analytical functions (fitting functions) describing the strength of stellar line indices as a function of gravity, temperature and metallicity. The fitting functions are entered into an evolutionary population synthesis code in order to compute the integrated line indices of stellar populations models. The same line indices are also directly evaluated on theoretical spectral energy distributions of stellar population models based on Kurucz high-resolution synthetic spectra, In order to select indices that can be used as age and/or metallicity indicators for distant galaxies and globular clusters, we compare the models to data of template globular clusters from the Magellanic Clouds with independently known ages and metallicities. Results: We provide synthetic line indices in the wavelength range ~1200 Å to ~3000 Å for stellar populations of various ages and metallicities.This adds several new indices to the already well-studied CIV and SiIV absorptions. Based on the comparison with globular cluster data, we select a set of 11 indices blueward of the 2000 Å rest-frame that allows us to recover well the ages and the metallicities of the clusters. These indices are ideal to study ages and metallicities of young galaxies at high redshift. We also provide the synthetic high-resolution stellar population SEDs.
Simulation model of a single-stage lithium bromide-water absorption cooling unit
NASA Technical Reports Server (NTRS)
Miao, D.
1978-01-01
A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.
NASA Astrophysics Data System (ADS)
Murzashev, A. I.; Rumyantsev, I. A.
2018-05-01
Energy spectrum of isomer No. 11 of C84 fullerene of C2 symmetry is calculated within the Hubbard model. Based on the obtained energy spectrum, the optical absorption spectrum is modeled taking into account not only allowed, but also forbidden symmetry transitions. Good qualitative agreement with the experimental data is obtained. This suggests that when studying fullerenes, the intra-site Coulomb interaction of electrons must be taken into account.
Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET
NASA Technical Reports Server (NTRS)
Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.;
2010-01-01
Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed improved definition in the 870nm wavelength absorption weighting due to the increased absorption in the near-infrared wavelengths, while the 440nm wavelength provided better definition when black carbon mixed with dust. Utilization of this particle type scheme provides necessary information for remote sensing applications, which needs a priori knowledge of aerosol type to model the retrieved properties especially over semi-bright surfaces. In fact, this analysis reveals that the aerosol types occurred in mixtures with varying magnitudes of absorption and requires the use of more than one assumed aerosol mixture model. Furthermore, this technique will provide the aerosol transport model community a data set for validating aerosol type.
2017-03-06
design of antenna and radar systems, energy absorption and scattering by rough-surfaces. This work has lead to significant new methodologies , including...problems in the field of electromagnetic propagation and scattering, with applicability to design of antenna and radar systems, energy absorption...and scattering by rough-surfaces. This work has lead to significant new methodologies , including introduction of a certain Windowed Green Function
Absorption and Transport of Sea Cucumber Saponins from Apostichopus japonicus.
Li, Shuai; Wang, Yuanhong; Jiang, Tingfu; Wang, Han; Yang, Shuang; Lv, Zhihua
2016-06-17
The present study is focused on the intestinal absorption of sea cucumber saponins. We determined the pharmacokinetic characteristics and bioavailability of Echinoside A and Holotoxin A₁; the findings indicated that the bioavailability of Holotoxin A₁ was lower than Echinoside A. We inferred that the differences in chemical structure between compounds was a factor that explained their different characteristics of transport across the intestine. In order to confirm the absorption characteristics of Echinoside A and Holotoxin A₁, we examined their transport across Caco-2 cell monolayer and effective permeability by single-pass intestinal perfusion. The results of Caco-2 cell model indicate that Echinoside A is transported by passive diffusion, and not influenced by the exocytosis of P-glycoprotein (P-gp, expressed in the apical side of Caco-2 monolayers as the classic inhibitor). The intestinal perfusion also demonstrated well the absorption of Echinoside A and poor absorption of Holotoxin A₁, which matched up with the result of the Caco-2 cell model. The results demonstrated our conjecture and provides fundamental information on the relationship between the chemical structure of these sea cucumber saponins and their absorption characteristics, and we believe that our findings build a foundation for the further metabolism study of sea cucumber saponins and contribute to the further clinical research of saponins.
EDGES result versus CMB and low-redshift constraints on ionization histories
NASA Astrophysics Data System (ADS)
Witte, Samuel; Villanueva-Domingo, Pablo; Gariazzo, Stefano; Mena, Olga; Palomares-Ruiz, Sergio
2018-05-01
We examine the results from the Experiment to Detect the Global Epoch of Reionization Signature (EDGES), which has recently claimed the detection of a strong absorption in the 21 cm hyperfine transition line of neutral hydrogen, at redshifts demarcating the early stages of star formation. More concretely, we study the compatibility of the shape of the EDGES absorption profile, centered at a redshift of z ˜17.2 , with measurements of the reionization optical depth, the Gunn-Peterson optical depth, and Lyman-α emission from star-forming galaxies, for a variety of possible reionization models within the standard Λ CDM framework (that is, a Universe with a cosmological constant Λ and cold dark matter CDM). When, conservatively, we only try to accommodate the location of the absorption dip, we identify a region in the parameter space of the astrophysical parameters that successfully explains all of the aforementioned observations. However, one of the most abnormal features of the EDGES measurement is the absorption amplitude, which is roughly a factor of 2 larger than the maximum allowed value in the Λ CDM framework. We point out that the simple considered astrophysical models that produce the largest absorption amplitudes are unable to explain the depth of the dip and of reproducing the observed shape of the absorption profile.
Choi, Young-Ji; Bradley, John S; Jeong, Dae-Up
2015-01-01
This paper examines how the individual variations of chair type, row spacing, as well as the presence of occupants and carpet, combine to influence the absorption characteristics of theater chairs as a function of sample perimeter-to-area (P/A) ratios. Scale models were used to measure the interactive effects of the four test variables on the chair absorption characteristics, avoiding the practical difficulties of full scale measurements. All of the test variables led to effects that could lead to important changes to auditorium acoustics conditions. At mid and higher frequencies, the various effects can usually be explained as due to, more or less, porous absorbing material. In the 125 and 250 Hz octave bands, the major changes were attributed to resonant absorbing mechanisms. The results indicate that for accurate predictions of the effective absorption of the chairs in an auditorium, one should use the P/A method and reverberation chamber tests of the chair absorption coefficients to predict the absorption coefficients of each block of chairs and use these results as input in a room acoustics computer model of the auditorium. The application of these results to auditorium acoustics design is described, more approximate approaches are considered, and relations to existing methods are discussed.
Simulation of phenomena occurring during digestion of foods
NASA Astrophysics Data System (ADS)
Bakalis, Serafim; Jaime-Fonseca, Monica R.; Fryer, Peter
2015-01-01
The increasing incidence of dietary related diseases, such as obesity and diabetes, emphasize the importance to understand digestion and absorption of nutrients and to develop models that could be able to predict the food behavior through the gastrointestinal tract. In order to achieve this, an in vitro Small Intestine Model (SIM) was used to build starch digestion and glucose absorption as function of food viscosity. The effect of mixing and food formulation was evaluated and correlated to changes on glucose absorption. Significant differences on glucose delivery rates were found between the control and fluids containing viscous biopolymers. Results showed that the segmentation motion significantly increases (up to 30%) glucose rate of absorption across the membrane and that the influence of segmentation decreases as viscosity increases. Furthermore, it has been demonstrated that addition of about 0.5 % (w/v) guar gum can result in a threefold decrease of absorption rate and mass transfer. Velocity fields obtained using Computational Fluid Dynamics (CFD) showed the effect of segmentation on nutrients absorption. Velocities profiles indicated that concentric contractions results in an increasing of micromixing and thus enhances mass transfer. This in vitro behaviour could be correlated within blood glucose levels in humans to understand the mechanisms by which biopolymers improves glucose tolerance.
Directional Canopy Emissivity Estimation Based on Spectral Invariants
NASA Astrophysics Data System (ADS)
Guo, M.; Cao, B.; Ren, H.; Yongming, D.; Peng, J.; Fan, W.
2017-12-01
Land surface emissivity is a crucial parameter for estimating land surface temperature from remote sensing data and also plays an important role in the physical process of surface energy and water balance from local to global scales. To our knowledge, the emissivity varies with surface type and cover. As for the vegetation, its canopy emissivity is dependent on vegetation types, viewing zenith angle and structure that changes in different growing stages. Lots of previous studies have focused on the emissivity model, but few of them are analytic and suited to different canopy structures. In this paper, a new physical analytic model is proposed to estimate the directional emissivity of homogenous vegetation canopy based on spectral invariants. The initial model counts the directional absorption in six parts: the direct absorption of the canopy and the soil, the absorption of the canopy and soil after a single scattering and after multiple scattering within the canopy-soil system. In order to analytically estimate the emissivity, the pathways of photons absorbed in the canopy-soil system are traced using the re-collision probability in Fig.1. After sensitive analysis on the above six absorptions, the initial complicated model was further simplified as a fixed mathematic expression to estimate the directional emissivity for vegetation canopy. The model was compared with the 4SAIL model, FRA97 model, FRA02 model and DART model in Fig.2, and the results showed that the FRA02 model is significantly underestimated while the FRA97 model is a little underestimated, on basis of the new model. On the contrary, the emissivity difference between the new model with the 4SAIL model and DART model was found to be less than 0.002. In general, since the new model has the advantages of mathematic expression with accurate results and clear physical meaning, the model is promising to be extended to simulate the directional emissivity for the discrete canopy in further study.
NASA Astrophysics Data System (ADS)
Anderson, Benjamin R.
Reversible photodegradation is a relatively new phenomenon which is not well understood. Previous research into the phenomenon has focused primarily on non-linear measurements such as amplified spontaneous emission(ASE) and two-photon fluorescence(TPF). We expand on this research by considering linear optical mea- surements, such as transmittance imaging and absorption spectroscopy, of disperse orange 11(DO11) dye-doped (poly)methyl-methacralate(PMMA) thin films and find photodegradation to contain both a reversible component and irreversible component, with the irreversible component having a small nonlinear susceptibility. From absorption measurements, and the small nonlinear susceptibility of the irreversible component, we hypothesize that the reversible component corresponds to damage to the dye, and the irreversible component is due to damage to the polymer host. Also, we develop models of depth dependent photodegradation taking pump beam absorption and propagation into account. We find that pump absorption must be taken into account, and that ignoring the effect leads to an underestimation of the true decay rate and degree of damage. In addition, we find pump propagation effects occur on large length scales, such that they are negligible when compared to absorption and typical sample thicknesses. Finally, we perform electric field dependent reversible photodegradation measurements and find that the underlying mechanism of reversible photodegradation is sensitive to the dye-doped polymer's electrical properties. We develop an extension to the correlated chromophore domain model to include the effect of an applied field, and find the model to fit experimental data for varying intensity, temperature, and applied electric field with only one set of model parameters.
NASA Technical Reports Server (NTRS)
Mitchell, David L.; Arnott, W. Patrick
1994-01-01
This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the geometrical properties of ice crystals before the influence of ice crystal shape on cirrus radiative properties can be adequately understood. This study provides a way of coupling the radiative properties of absorption, extinction, and single scatter albedo to the microphysical properties of cirrus clouds. The dependence of extinction and absorption on ice crystal shape was not just due to geometrical differences between crystal types, but was also due to the effect these differences had on the evolution of ice particle size spectra. The ice particle growth model in Part 1 and the radiative properties treated here are based on analytical formulations, and thus represent a computationally efficient means of modeling the microphysical and radiative properties of cirrus clouds.
Sensitivity analysis of a sound absorption model with correlated inputs
NASA Astrophysics Data System (ADS)
Chai, W.; Christen, J.-L.; Zine, A.-M.; Ichchou, M.
2017-04-01
Sound absorption in porous media is a complex phenomenon, which is usually addressed with homogenized models, depending on macroscopic parameters. Since these parameters emerge from the structure at microscopic scale, they may be correlated. This paper deals with sensitivity analysis methods of a sound absorption model with correlated inputs. Specifically, the Johnson-Champoux-Allard model (JCA) is chosen as the objective model with correlation effects generated by a secondary micro-macro semi-empirical model. To deal with this case, a relatively new sensitivity analysis method Fourier Amplitude Sensitivity Test with Correlation design (FASTC), based on Iman's transform, is taken into application. This method requires a priori information such as variables' marginal distribution functions and their correlation matrix. The results are compared to the Correlation Ratio Method (CRM) for reference and validation. The distribution of the macroscopic variables arising from the microstructure, as well as their correlation matrix are studied. Finally the results of tests shows that the correlation has a very important impact on the results of sensitivity analysis. Assessment of correlation strength among input variables on the sensitivity analysis is also achieved.
Khokhryakov, V F; Suslova, K G; Vostrotin, V V; Romanov, S A; Eckerman, K F; Krahenbuhl, M P; Miller, S C
2005-02-01
The biokinetics of inhaled plutonium were analyzed using compartment models representing their behavior within the respiratory tract, the gastrointestinal tract, and in systemic tissues. The processes of aerosol deposition, particle transport, absorption, and formation of a fixed deposit in the respiratory tract were formulated in the framework of the Human Respiratory Tract Model described in ICRP Publication 66. The values of parameters governing absorption and formation of the fixed deposit were established by fitting the model to the observations in 530 autopsy cases. The influence of smoking on mechanical clearance of deposited plutonium activity was considered. The dependence of absorption on the aerosol transportability, as estimated by in vitro methods (dialysis), was demonstrated. The results of this study were compared to those obtained from an earlier model of plutonium behavior in the respiratory tract, which was based on the same set of autopsy data. That model did not address the early phases of respiratory clearance and hence underestimated the committed lung dose by about 25% for plutonium oxides. Little difference in lung dose was found for nitrate forms.
Sound absorption by a Helmholtz resonator
NASA Astrophysics Data System (ADS)
Komkin, A. I.; Mironov, M. A.; Bykov, A. I.
2017-07-01
Absorption characteristics of a Helmholtz resonator positioned at the end wall of a circular duct are considered. The absorption coefficient of the resonator is experimentally investigated as a function of the diameter and length of the resonator neck and the depth of the resonator cavity. Based on experimental data, the linear analytic model of a Helmholtz resonator is verified, and the results of verification are used to determine the dissipative attached length of the resonator neck so as to provide the agreement between experimental and calculated data. Dependences of sound absorption by a Helmholtz resonator on its geometric parameters are obtained.
Cheung, Chau-Kiu; Yue, Xiao Dong
2018-01-01
This study seeks to contrast absorption-addiction idolatry and identification-emulation idolatry. Whereas absorption-addiction idolatry progresses from entertainment/socializing to personalizing and obsession about the idol, identification-emulation idolatry unfolds in terms of identification, attachment, romantization, idealization, and consumption about the idol or his or her derivatives. Based on a sample of 1310 secondary school and university students in Hong Kong, the study verified the original factor model composed of five first-order identification-emulation idolatry and three first-order absorption-addiction idolatry factors, with the latter more predictable by fans' club membership.
NASA Astrophysics Data System (ADS)
Voitsekhovskaya, O. K.; Egorov, O. V.; Kashirskii, D. E.; Shefer, O. V.
2015-11-01
Calculated absorption spectra of the mixture of gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3), contained in the exhausts of aircraft and rocket engines are demonstrated. Based on the model of gas-aerosol medium, a numerical study of the spectral dependence of the absorptance for different ratios of gas and aerosol components was carried out. The influence of microphysical and optical properties of the components of the mixture on the spectral features of absorption of gas-aerosol medium was established.
Thelen, Kirstin; Coboeken, Katrin; Willmann, Stefan; Dressman, Jennifer B; Lippert, Jörg
2012-03-01
The physiological absorption model presented in part I of this work is now extended to account for dosage-form-dependent gastrointestinal (GI) transit as well as disintegration and dissolution processes of various immediate-release and modified-release dosage forms. Empirical functions of the Weibull type were fitted to experimental in vitro dissolution profiles of solid dosage forms for eight test compounds (aciclovir, caffeine, cimetidine, diclofenac, furosemide, paracetamol, phenobarbital, and theophylline). The Weibull functions were then implemented into the model to predict mean plasma concentration-time profiles of the various dosage forms. On the basis of these dissolution functions, pharmacokinetics (PK) of six model drugs was predicted well. In the case of diclofenac, deviations between predicted and observed plasma concentrations were attributable to the large variability in gastric emptying time of the enteric-coated tablets. Likewise, oral PK of furosemide was found to be predominantly governed by the gastric emptying patterns. It is concluded that the revised model for GI transit and absorption was successfully integrated with dissolution functions of the Weibull type, enabling prediction of in vivo PK profiles from in vitro dissolution data. It facilitates a comparative analysis of the parameters contributing to oral drug absorption and is thus a powerful tool for formulation design. Copyright © 2011 Wiley Periodicals, Inc.
An observational radiative constraint on hydrologic cycle intensification
DeAngelis, Anthony M.; Qu, Xin; Zelinka, Mark D.; ...
2015-12-09
We report that intensification of the hydrologic cycle is a key dimension of climate change, with substantial impacts on human and natural systems. A basic measure of hydrologic cycle intensification is the increase in global-mean precipitation per unit surface warming, which varies by a factor of three in current-generation climate models (about 1–3 per cent per kelvin). Part of the uncertainty may originate from atmosphere–radiation interactions. As the climate warms, increases in shortwave absorption from atmospheric moistening will suppress the precipitation increase. This occurs through a reduction of the latent heating increase required to maintain a balanced atmospheric energy budget.more » Using an ensemble of climate models, here we show that such models tend to underestimate the sensitivity of solar absorption to variations in atmospheric water vapour, leading to an underestimation in the shortwave absorption increase and an overestimation in the precipitation increase. This sensitivity also varies considerably among models due to differences in radiative transfer parameterizations, explaining a substantial portion of model spread in the precipitation response. Consequently, attaining accurate shortwave absorption responses through improvements to the radiative transfer schemes could reduce the spread in the predicted global precipitation increase per degree warming for the end of the twenty-first century by about 35 per cent, and reduce the estimated ensemble-mean increase in this quantity by almost 40 per cent.« less
Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states
NASA Astrophysics Data System (ADS)
Hsieh, Chi-Ti; Lin, Shih-Yen; Chang, Shu-Wei
2018-02-01
The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially separated electrons and holes. We model the bound-to-continuum absorption of type-II quantum rings (QRs) using a multiband source-radiation approach using the retarded Green function in the cylindrical coordinate system. The selection rules due to the circular symmetry for allowed transitions of absorption are utilized. The bound-tocontinuum absorptions of type-II GaSb coupled and uncoupled QRs embedded in GaAs matrix are compared here. The GaSb QRs act as energy barriers for electrons but potential wells for holes. For the coupled QR structure, the region sandwiched between two QRs forms a potential reservoir of quasi-bound electrons. Electrons in these states, though look like bound ones, would ultimately tunnel out of the reservoir through barriers. Multiband perfectly-matched layers are introduced to model the tunneling of quasi-bound states into open space. Resonance peaks are observed on the absorption spectra of type-II coupled QRs due to the formation of quasi-bound states in conduction bands, but no resonance exist in the uncoupled QR. The tunneling time of these metastable states can be extracted from the resonance and is in the order of ten femtoseconds. Absorption of coupled QRs is significantly enhanced as compared to that of uncoupled ones in certain spectral windows of interest. These features may improve the performance of photon detectors and photovoltaic devices based on type-II semiconductor nanostructures.
NASA Astrophysics Data System (ADS)
Ishii, Masashi; Crowe, Iain F.; Halsall, Matthew P.; Hamilton, Bruce; Hu, Yongfeng; Sham, Tsun-Kong; Harako, Susumu; Zhao, Xin-Wei; Komuro, Shuji
2013-10-01
The local structure of luminescent Sm dopants was investigated using an X-ray absorption fine-structure technique with X-ray-excited optical luminescence. Because this technique evaluates X-ray absorption from luminescence, only optically active sites are analyzed. The Sm L3 near-edge spectrum contains split 5d states and a shake-up transition that are specific to luminescent Sm. Theoretical calculations using cluster models identified an atomic-scale distortion that can reproduce the split 5d states. The model with C4v local symmetry and compressive bond length of Sm-O of a six-fold oxygen (SmO6) cluster is most consistent with the experimental results.
NASA Astrophysics Data System (ADS)
Aissat, A.; Bestam, R.; Alshehri, B.; Vilcot, J. P.
2015-06-01
This work reports on theoretical studies on the GaInNAs material properties (bandgap, lattice mismatch, absorption coefficient) as grown on GaAs substrate. The Band Anti-Crossing (BAC) kṡp 8 × 8 model has been used to determine the influence of indium and nitrogen concentrations on the position of conduction and valence bands. The incorporation of nitrogen at a level lower than 5% causes the split of the conduction band. For indium and nitrogen concentrations of 38% and 3.5%, respectively, the strained bandgap energy is 0.70 eV and the absorption coefficient of indium and nitrogen-rich compounds increases significantly.
NASA Astrophysics Data System (ADS)
Espinosa, Christine; Lachaud, Frédéric; Limido, Jérome; Lacome, Jean-Luc; Bisson, Antoine; Charlotte, Miguel
2015-05-01
Energy absorption during crushing is evaluated using a thermodynamic based continuum damage model inspired from the Matzenmiller-Lubliner-Taylors model. It was found that for crash-worthiness applications, it is necessary to couple the progressive ruin of the material to a representation of the matter openings and debris generation. Element kill technique (erosion) and/or cohesive elements are efficient but not predictive. A technique switching finite elements into discrete particles at rupture is used to create debris and accumulated mater during the crushing of the structure. Switching criteria are evaluated using the contribution of the different ruin modes in the damage evolution, energy absorption, and reaction force generation.
Exposure limits: the underestimation of absorbed cell phone radiation, especially in children.
Gandhi, Om P; Morgan, L Lloyd; de Salles, Alvaro Augusto; Han, Yueh-Ying; Herberman, Ronald B; Davis, Devra Lee
2012-03-01
The existing cell phone certification process uses a plastic model of the head called the Specific Anthropomorphic Mannequin (SAM), representing the top 10% of U.S. military recruits in 1989 and greatly underestimating the Specific Absorption Rate (SAR) for typical mobile phone users, especially children. A superior computer simulation certification process has been approved by the Federal Communications Commission (FCC) but is not employed to certify cell phones. In the United States, the FCC determines maximum allowed exposures. Many countries, especially European Union members, use the "guidelines" of International Commission on Non-Ionizing Radiation Protection (ICNIRP), a non governmental agency. Radiofrequency (RF) exposure to a head smaller than SAM will absorb a relatively higher SAR. Also, SAM uses a fluid having the average electrical properties of the head that cannot indicate differential absorption of specific brain tissue, nor absorption in children or smaller adults. The SAR for a 10-year old is up to 153% higher than the SAR for the SAM model. When electrical properties are considered, a child's head's absorption can be over two times greater, and absorption of the skull's bone marrow can be ten times greater than adults. Therefore, a new certification process is needed that incorporates different modes of use, head sizes, and tissue properties. Anatomically based models should be employed in revising safety standards for these ubiquitous modern devices and standards should be set by accountable, independent groups.
Mascarenhas, Maria R.; Mondick, John; Barrett, Jeffrey S.; Wilson, Martha; Stallings, Virginia A.; Schall, Joan I.
2015-01-01
The Malabsorption Blood Test (MBT), consisting of pentadecanoic acid (PA), a free fatty acid and triheptadecanoic acid (THA), a triglyceride that requires pancreatic lipase for absorption of the heptadecanoic acid (HA), was developed to assess fat malabsorption in patients with cystic fibrosis (CF) and pancreatic insufficiency (PI). The objective was to construct a population pharmacokinetic (PK) model to describe PA and HA disposition in healthy subjects and CF subjects. A model was simultaneously fit to PA and HA concentrations, consisting of one compartment disposition and a transit model to describe absorption. PA bioavailability estimates for CF subjects without pancreatic enzyme administration [1.07 (0.827,1.42)] and with enzymes [0.88 (0.72,1.09)] indicated PA absorption comparable to healthy subjects. HA bioavailability in CF without enzyme administration was 0.0292 (0.0192,0.0459), and with enzymes increased to 0.606 (0.482,0.823). In CF, compared to taking enzymes with the MBT, HA bioavailability was further decreased by factors of 0.829 (0.664,0.979) and 0.78 (0.491,1.13) with enzymes taken 30 and 60 minutes after MBT, respectively. The MBT detected differences in fat absorption in subjects with CF with and without enzyme administration and with changes in enzyme timing. Future studies will address application of the MBT in CF and other malabsorption diagnoses. PMID:25689042
Tunable absorption resonances in the ultraviolet for InP nanowire arrays.
Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik
2014-11-17
The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < λ < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors.
Three-wave mixing in conjugated polymer solutions: Two-photon absorption in polydiacetylenes
NASA Astrophysics Data System (ADS)
Chance, R. R.; Shand, M. L.; Hogg, C.; Silbey, R.
1980-10-01
Three-wave-mixing spectroscopy is used to determine the dispersive and absorptive parts of a strongly allowed two-photon transition in a series of polydiacetylene solutions. The data analysis yields the energy, width, symmetry assignment, and oscillator strength for the two-photon transition. The data conclusively demonstrate that strong two-photon absorption is a fundamental property of the polydiacetylene backbone. The remarkably large two-photon absorption coefficients are explained by large oscillator strengths for both transitions involved in the two-photon absorption combined with strong one-photon resonance effects. The experimental results are shown to be consistent with a simple theoretical model for the energies and oscillator strengths of the one- and two-photon-allowed transitions.
Phonon-Assisted Optical Absorption in Silicon from First Principles
NASA Astrophysics Data System (ADS)
Noffsinger, Jesse; Kioupakis, Emmanouil; Van de Walle, Chris G.; Louie, Steven G.; Cohen, Marvin L.
2012-04-01
The phonon-assisted interband optical absorption spectrum of silicon is calculated at the quasiparticle level entirely from first principles. We make use of the Wannier interpolation formalism to determine the quasiparticle energies, as well as the optical transition and electron-phonon coupling matrix elements, on fine grids in the Brillouin zone. The calculated spectrum near the onset of indirect absorption is in very good agreement with experimental measurements for a range of temperatures. Moreover, our method can accurately determine the optical absorption spectrum of silicon in the visible range, an important process for optoelectronic and photovoltaic applications that cannot be addressed with simple models. The computational formalism is quite general and can be used to understand the phonon-assisted absorption processes in general.
NASA Astrophysics Data System (ADS)
Jin, Zhongkun; Yin, Yao; Liu, Bilong
2016-03-01
The finite element method is often used to investigate the sound absorption of anechoic coating backed with orthogonally rib-stiffened plate. Since the anechoic coating contains cavities, the number of grid nodes of a periodic unit cell is usually large. An equivalent modulus method is proposed to reduce the large amount of nodes by calculating an equivalent homogeneous layer. Applications of this method in several models show that the method can well predict the sound absorption coefficient of such structure in a wide frequency range. Based on the simulation results, the sound absorption performance of such structure and the influences of different backings on the first absorption peak are also discussed.
Effect of marine derived deoxyribonucleic acid on nonlinear optical properties of PicoGreen dye
NASA Astrophysics Data System (ADS)
Pradeep, C.; Mathew, S.; Nithyaja, B.; Radhakrishnan, P.; Nampoori, V. P. N.
2013-06-01
We have investigated the effect of DNA on nonlinear absorption of PicoGreen dye using single beam open aperture Z-scan technique in nanosecond regime. We observed reverse saturable absorption at 532 nm for PicoGreen without DNA. In the presence of DNA, the sample begins to behave like saturable absorbers and this effect increased as the concentration of DNA was increased. The dye-intercalated DNA showed SA characteristics near the focus but exhibited RSA characteristics at the focus. Theoretical analysis has been performed using a two-photon absorption model based on nonlinear absorption coefficient and saturation intensity. Such tailoring of optical nonlinear absorption in PicoGreen makes it a potential candidate for photonic application.
Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K
NASA Astrophysics Data System (ADS)
Schulz, C.; Koch, J. D.; Davidson, D. F.; Jeffries, J. B.; Hanson, R. K.
2002-03-01
Spectrally resolved UV absorption cross-sections between 190 and 320 nm were measured in shock-heated CO 2 between 880 and 3050 K and H 2O between 1230 and 2860 K. Absorption spectra were acquired with 10 μs time resolution using a unique kinetic spectrograph, thereby enabling comparisons with time-dependent chemical kinetic modeling of post-shock thermal decomposition and chemical reactions. Although room temperature CO 2 is transparent (σ<10 -22 cm2) at wavelengths longer than 200 nm, hot CO 2 has significant absorption (σ>10 -20 cm2) extending to wavelengths longer than 300 nm. The temperature dependence of CO 2 absorption strongly suggests sharply increased transition probabilities from excited vibrational levels.
The Formation and Physical Origin of Highly Ionized Cooling Gas
NASA Astrophysics Data System (ADS)
Bordoloi, Rongmon; Wagner, Alexander Y.; Heckman, Timothy M.; Norman, Colin A.
2017-10-01
We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O VI, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explained by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O VI is regularly observed around star-forming low-z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O VI absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.
The Formation and Physical Origin of Highly Ionized Cooling Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordoloi, Rongmon; Wagner, Alexander Y.; Heckman, Timothy M.
We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O vi, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explainedmore » by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O vi is regularly observed around star-forming low- z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O vi absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.« less
Deng, Shao-Dong; Zhang, Peng; Lin, Li; Xiao, Feng-Xia; Lin, Jing-Ran
2015-01-01
To study the in situ intestinal absorption of five oligosaccharides contained in Morinda officinalis How. (sucrose, kestose, nystose, 1F-Fructofuranosyinystose and Bajijiasu). The absorption of the five oligosaccharides in small intestine (duodenum, jejunum and ileum) and colon of rats and their contents were investigated by using in situ single-pass perfusion model and HPLC-ELSD. The effects of drug concentration, pH in perfusate and P-glycoprotein inhibitor on the intestinal absorption were investigated to define the intestinal absorption mechanism of the five oligosaccharides in rats. According to the results, all of the five oligosaccharides were absorbed in the whole intestine, and their absorption rates were affected by the pH of the perfusion solution, drug concentration and intestinal segments. Verapamil Hydrochloride could significantly increase the absorptive amount of sucrose and Bajijiasu, suggesting sucrose and Bajijiasu are P-gp's substrate. The five oligosaccharides are absorbed mainly through passive diffusion in the intestinal segments, without saturated absorption. They are absorbed well in all intestines and mainly in duodenum and jejunum.
USDA-ARS?s Scientific Manuscript database
Infants with short bowel syndrome (SBS) are at high risk for malabsorption, malnutrition, and failure to thrive. The objective of this study was to evaluate in a porcine model of SBS, the systemic absorption of a novel enteral Docosahexaenoic acid (DHA) formulation that forms micelles independent of...
ERIC Educational Resources Information Center
Patalinghug, Wyona C.; Chang, Maharlika; Solis, Joanne
2007-01-01
The deep blue color of azulene is drastically changed by the addition of substituents such as CH[subscript 3], F, or CHO. Computational semiempirical methods using ZINDO CI are used to model azulene and azulene derivatives and to calculate their UV-vis spectra. The calculated spectra are used to show the trends in absorption band shifts upon…
The absorption and transport of magnolol in Caco-2 cell model.
Wu, An-Guo; Zeng, Bao; Huang, Meng-Qiu; Li, Sheng-Mei; Chen, Jian-Nan; Lai, Xiao-Ping
2013-03-01
To investigate the absorption and transport mechanism of magnolol in Caco-2 cell model. A human intestinal epithelial cell model Caco-2 cell in vitro cultured was applied to study the absorption and transport of magnolol, the effects of time, donor concentration, P-gp inhibitor verapamil, pH and temperature on the absorption and transport of magnolol were investigated. The determination of magnolol was performed by high performance liquid chromatography, then the values of apparent permeability coefficient (P app ) and P ratio Basolateral-to-Apical (BL-to-AP)/Apical-to-Basolateral (AP-to-BL) were calculated. In Caco-2 cell model, comparing the amounts of transport of AP-to-BL and BL-to-AP, the latter was larger. At the same donor concentration, either the amounts of transport of AP-to-BL or BL-to-AP increased with increase in donor concentration and incubation time. Verapamil could significantly improve the amounts of transport of AP-to-BL. The transport of AP-to-BL and BL-to-AP depended on temperature, and there was no significant effect of pH on the transport of AP-to-BL. Magnolol could be transported through the intestinal mucosa via a passive diffusion mechanism primarily, coexisting with a carrier-mediated transport, at the same time, the efflux mechanism could be involved.
Doutres, Olivier; Atalla, Noureddine; Osman, Haisam
2015-06-01
Porous materials are widely used for improving sound absorption and sound transmission loss of vibrating structures. However, their efficiency is limited to medium and high frequencies of sound. A solution for improving their low frequency behavior while keeping an acceptable thickness is to embed resonant structures such as Helmholtz resonators (HRs). This work investigates the absorption and transmission acoustic performances of a cellular porous material with a two-dimensional periodic arrangement of HR inclusions. A low frequency model of a resonant periodic unit cell based on the parallel transfer matrix method is presented. The model is validated by comparison with impedance tube measurements and simulations based on both the finite element method and a homogenization based model. At the HR resonance frequency (i) the transmission loss is greatly improved and (ii) the sound absorption of the foam can be either decreased or improved depending on the HR tuning frequency and on the thickness and properties of the host foam. Finally, the diffuse field sound absorption and diffuse field sound transmission loss performance of a 2.6 m(2) resonant cellular material are measured. It is shown that the improvements observed at the Helmholtz resonant frequency on a single cell are confirmed at a larger scale.
Matsumoto, Yuka; Mochizuki, Wakana; Akiyama, Shintaro; Matsumoto, Taichi; Nozaki, Kengo; Watanabe, Mamoru; Nakamura, Tetsuya
2017-09-15
Ileocecal resection (ICR), one of several types of intestinal resection that results in short bowel syndrome (SBS), causes severe clinical disease in humans. We here describe a mouse model of massive ICR in which 75% of the distal small intestine is removed. We demonstrate that mice underwent 75% ICR show severe clinical signs and high mortality, which may recapitulate severe forms of human SBS, despite an adaptive response throughout the remnant intestine. By using this model, we also investigated whether the epithelium of the remnant intestine shows enhanced expression of factors involved in region-specific functions of the ileum. Cubn mRNA and its protein product, which play an essential role in vitamin B12 absorption in the ileum, are not compensatory up-regulated in any part of the remnant intestine, demonstrating a clear contrast with post-operative up-regulation of genes involved in bile acid absorption. Our study suggests that functional adaptation by phenotypical changes in the intestinal epithelium is not a general feature for nutrient absorption systems that are confined to the ileum. We also propose that the mouse model developed in this study will become a unique system to facilitate studies on SBS with ICR in humans. © 2017. Published by The Company of Biologists Ltd.
Scale Closure in Upper Ocean Optical Properties: From Single Particles to Ocean Color
NASA Technical Reports Server (NTRS)
Green, Rebecca E.
2002-01-01
Predictions of chlorophyll concentration from satellite ocean color are an indicator of primary productivity, with implications for foodwebs, fisheries, and the global carbon cycle. Models describing the relationship between optical properties and chlorophyll do not account for much of the optical variability observed in natural waters, because of the presence of seawater constituents that do not covary with phytoplankton pigments. in order to understand variability in these models, the optical contributions of seawater constituents were investigated. A combination of Mie theory and flow cytometry was used to determine the diameter, complex refractive index, and optical cross-sections of individual particles. In New England continental shelf waters, eukaryotic phytoplankton were the main particle contributors to absorption and scaftering. Minerals were the main contributor to backscattering (bb) in the spring, whereas in the summer both minerals and detritus contributed to bb. Synechococcus and heterotrophic bacteria were relatively unimportant optically. Seasonal differences in the spectral shape of remote sensing reflectance, Rrs, were contributed to approximately equally by eukaryotic phytoplankton absorption, dissolved absorption, and non-phytoplankton bb. Differences between measurements of bb and Prs and modeled values based on chlorophyll concentration were caused by higher dissolved absorption and non-phytoplankton bb than were assumed by the model.
[Study on intestinal absorption of formononetin in Millettia nitita var. hirsutissima in rats].
Liu, Ya-Li; Xiong, Xian-Bing; Su, Dan; Song, Yong-Gui; Zhang, Ling; Yang, Shi-Lin
2013-10-01
To use the single-pass intestine perfusion (SPIP) model and HPLC to determine the concentration of formononetin, the effect of quality concentrations of formononetin, different intestinal segments and P-glycoprotein inhibitor on intestinal absorption of formononetin, in order to observe the intestinal absorption mechanism of formononetin from Millettia nitita var. hirsutissima in rats. The experimental results showed that the qulaity concentration of formononetin in the perfusate had no significant effect on the absorption rate constant (K(a)) and the apparent absorption coefficient (P(app)); K(a) and P(app) of formononetin in duodenum, jejunum and ileum showed no significant difference. However, K(a) was significantly higher than that in colon (P < 0.05), with significant difference between that in intestinum tenue and colon. P-glycoprotein inhibitor verapamil showed significant difference in K(a) and P(app) in intestinal segments (P < 0.05). This indicated that the absorption mechanism of formononein in rat intestinal tracts passive diffusion, without any saturated absorption. Formononein is absorbed well in all intestines. Their absorption windows were mainly concentrated in the intestinum tenue, without specific absorption sites. Formononein may be the substrate of P-glycoprotein.
Spectral Absorption Properties of Atmospheric Aerosols
NASA Technical Reports Server (NTRS)
Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.; Redemann, J.; Bond, T. C.; Quinn, P. K.; Sierau, B.
2007-01-01
We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.
Improving an Empirical Formula for the Absorption of Sound in the Sea
2008-05-01
Onderwater propagatie Advanced acoustic modelling Auteur (s) ir. C.A.M van Moll Programmanummer Projectnummer dr. M.A. Ainslie V512 032.11648 ing. J...versus calculated absorption .................................................................... 9 3 Inverse theory ...45 7.1 Statistical theory
Narrow Quasar Absorption Lines and the History of the Universe
NASA Astrophysics Data System (ADS)
Liebscher, Dierck-Ekkehard
In order to get an estimation of the parameters of the cosmological model the statistics of narrow absorption lines in quasar spectra is evaluated. To this end a phenomenological model of the evolution of the corresponding absorbers in density, size, number and dimension is presented and compared with the observed evolution in the spectral density of the lines and their column density seen in the equivalent width. In spite of the wide range of possible models, the Einstein-deSitter model is shown to be unlikely because of the implied fast evolution in mass.
NASA Astrophysics Data System (ADS)
Tian, Zhen; Huo, Linsheng; Gao, Weihang; Li, Hongnan; Song, Gangbing
2017-10-01
Wave-based concrete structural health monitoring has attracted much attention. A stress wave experiences significant attenuation in concrete, however there is a lack of a unified method for predicting the attenuation coefficient of the stress wave. In this paper, a simple and effective absorption attenuation model of stress waves in concrete is developed based on the Rayleigh damping model, which indicates that the absorption attenuation coefficient of stress waves in concrete is directly proportional to the square of the stress wave frequency when the damping ratio is small. In order to verify the theoretical model, related experiments were carried out. During the experiments, a concrete beam was designed in which the d33-model piezoelectric smart aggregates were embedded to detect the propagation of stress waves. It is difficult to distinguish direct stress waves due to the complex propagation paths and the reflection and scattering of stress waves in concrete. Hence, as another innovation of this paper, a new method for computing the absorption attenuation coefficient based on the time-reversal method is developed. Due to the self-adaptive focusing properties of the time-reversal method, the time-reversed stress wave focuses and generates a peak value. The time-reversal method eliminates the adverse effects of multipaths, reflection, and scattering. The absorption attenuation coefficient is computed by analyzing the peak value changes of the time-reversal focused signal. Finally, the experimental results are found to be in good agreement with the theoretical model.
Yokooji, Tomoharu; Matsuo, Hiroaki
2015-01-01
Aspirin (ASP)-facilitated absorption of ingested allergens is considered an exacerbating factor in the development of food allergy. Sodium cromoglycate (SCG) is used for the treatment of atopic dermatitis with food allergy, but the efficacy of SCG in ASP-exacerbated food-allergy reactions is unclear. In this study, we evaluated the effect of SCG on ASP-exacerbated food-allergic reactions, as well as allergen absorption, in egg-allergic model rats. Plasma concentrations of ovalbumin (OVA) and fluorescein isothiocyanate-labeled dextran (FD-40), a marker for nonspecific-absorption pathways, were measured after oral administration of mixtures of OVA and FD-40 in OVA-unsensitized and OVA-sensitized rats. IgE-mediated allergic reactions were evaluated by measuring changes in rectal temperature and Evans blue dye (EBD) extravasation in the intestine and liver after oral challenge with OVA. The effects of ASP and SCG on such absorption and allergic reactions were also evaluated kinetically. In OVA-sensitized rats, plasma concentrations of OVA and FD-40 were significantly higher than those in unsensitized rats after oral administration. ASP increased the intestinal absorption of OVA and FD-40 via the paracellular pathway, and a lower rectal temperature and higher EBD extravasation were detected in the intestine and liver of OVA-sensitized rats. SCG ameliorated these ASP-facilitated absorptions and allergic reactions in a dose-dependent manner. In particular, high-dose SCG (195.2 μmol/kg) completely inhibited these absorptions and reactions. SCG can prevent ASP-exacerbated allergic reactions in patients with food allergy resulting from inhibition of increases in allergen absorption. © 2015 S. Karger AG, Basel.
2013-01-01
The dynamic impact response of giant buckyball C720 is investigated by using molecular dynamics simulations. The non-recoverable deformation of C720 makes it an ideal candidate for high-performance energy absorption. Firstly, mechanical behaviors under dynamic impact and low-speed crushing are simulated and modeled, which clarifies the buckling-related energy absorption mechanism. One-dimensional C720 arrays (both vertical and horizontal alignments) are studied at various impact speeds, which show that the energy absorption ability is dominated by the impact energy per buckyball and less sensitive to the number and arrangement direction of buckyballs. Three-dimensional stacking of buckyballs in simple cubic, body-centered cubic, hexagonal, and face-centered cubic forms are investigated. Stacking form with higher occupation density yields higher energy absorption. The present study may shed lights on employing C720 assembly as an advanced energy absorption system against low-speed impacts. PMID:23360618
Exercise, Insulin Absorption Rates, and Artificial Pancreas Control
NASA Astrophysics Data System (ADS)
Frank, Spencer; Hinshaw, Ling; Basu, Rita; Basu, Ananda; Szeri, Andrew J.
2016-11-01
Type 1 Diabetes is characterized by an inability of a person to endogenously produce the hormone insulin. Because of this, insulin must be injected - usually subcutaneously. The size of the injected dose and the rate at which the dose reaches the circulatory system have a profound effect on the ability to control glucose excursions, and therefore control of diabetes. However, insulin absorption rates via subcutaneous injection are variable and depend on a number of factors including tissue perfusion, physical activity (vasodilation, increased capillary throughput), and other tissue geometric and physical properties. Exercise may also have a sizeable effect on the rate of insulin absorption, which can potentially lead to dangerous glucose levels. Insulin-dosing algorithms, as implemented in an artificial pancreas controller, should account accurately for absorption rate variability and exercise effects on insulin absorption. The aforementioned factors affecting insulin absorption will be discussed within the context of both fluid mechanics and data driven modeling approaches.
Aerosol Absorption Measurements from LANDSAT and CIMEL
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Tanre, D.; Karnieli, A.; Remer, L.; Holben, B.
1999-01-01
Spectral remote observations of dust properties from space and from the ground create a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat space-borne measurements at 0.47 to 2.2 micrometer over Senegal with ground-based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater than 0.6 micrometer. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large-scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.
Mahmood, Iftekhar
2004-01-01
The objective of this study was to evaluate the performance of Wagner-Nelson, Loo-Reigelman, and statistical moments methods in determining the absorption rate constant(s) in the presence of a secondary peak. These methods were also evaluated when there were two absorption rates without a secondary peak. Different sets of plasma concentration versus time data for a hypothetical drug following one or two compartment models were generated by simulation. The true ka was compared with the ka estimated by Wagner-Nelson, Loo-Riegelman and statistical moments methods. The results of this study indicate that Wagner-Nelson, Loo-Riegelman and statistical moments methods may not be used for the estimation of absorption rate constants in the presence of a secondary peak or when absorption takes place with two absorption rates.
PBPK models for the prediction of in vivo performance of oral dosage forms.
Kostewicz, Edmund S; Aarons, Leon; Bergstrand, Martin; Bolger, Michael B; Galetin, Aleksandra; Hatley, Oliver; Jamei, Masoud; Lloyd, Richard; Pepin, Xavier; Rostami-Hodjegan, Amin; Sjögren, Erik; Tannergren, Christer; Turner, David B; Wagner, Christian; Weitschies, Werner; Dressman, Jennifer
2014-06-16
Drug absorption from the gastrointestinal (GI) tract is a highly complex process dependent upon numerous factors including the physicochemical properties of the drug, characteristics of the formulation and interplay with the underlying physiological properties of the GI tract. The ability to accurately predict oral drug absorption during drug product development is becoming more relevant given the current challenges facing the pharmaceutical industry. Physiologically-based pharmacokinetic (PBPK) modeling provides an approach that enables the plasma concentration-time profiles to be predicted from preclinical in vitro and in vivo data and can thus provide a valuable resource to support decisions at various stages of the drug development process. Whilst there have been quite a few successes with PBPK models identifying key issues in the development of new drugs in vivo, there are still many aspects that need to be addressed in order to maximize the utility of the PBPK models to predict drug absorption, including improving our understanding of conditions in the lower small intestine and colon, taking the influence of disease on GI physiology into account and further exploring the reasons behind population variability. Importantly, there is also a need to create more appropriate in vitro models for testing dosage form performance and to streamline data input from these into the PBPK models. As part of the Oral Biopharmaceutical Tools (OrBiTo) project, this review provides a summary of the current status of PBPK models available. The current challenges in PBPK set-ups for oral drug absorption including the composition of GI luminal contents, transit and hydrodynamics, permeability and intestinal wall metabolism are discussed in detail. Further, the challenges regarding the appropriate integration of results from in vitro models, such as consideration of appropriate integration/estimation of solubility and the complexity of the in vitro release and precipitation data, are also highlighted as important steps to advancing the application of PBPK models in drug development. It is expected that the "innovative" integration of in vitro data from more appropriate in vitro models and the enhancement of the GI physiology component of PBPK models, arising from the OrBiTo project, will lead to a significant enhancement in the ability of PBPK models to successfully predict oral drug absorption and advance their role in preclinical and clinical development, as well as for regulatory applications. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schulze, J.; Donkó, Z.; Lafleur, T.; Wilczek, S.; Brinkmann, R. P.
2018-05-01
Power absorption by electrons from the space- and time-dependent electric field represents the basic sustaining mechanism of all radio-frequency driven plasmas. This complex phenomenon has attracted significant attention. However, most theories and models are, so far, only able to account for part of the relevant mechanisms. The aim of this work is to present an in-depth analysis of the power absorption by electrons, via the use of a moment analysis of the Boltzmann equation without any ad-hoc assumptions. This analysis, for which the input quantities are taken from kinetic, particle based simulations, allows the identification of all physical mechanisms involved and an accurate quantification of their contributions. The perfect agreement between the sum of these contributions and the simulation results verifies the completeness of the model. We study the relative importance of these mechanisms as a function of pressure, with high spatial and temporal resolution, in an electropositive argon discharge. In contrast to some widely accepted previous models we find that high space- and time-dependent ambipolar electric fields outside the sheaths play a key role for electron power absorption. This ambipolar field is time-dependent within the RF period and temporally asymmetric, i.e., the sheath expansion is not a ‘mirror image’ of the sheath collapse. We demonstrate that this time-dependence is mainly caused by a time modulation of the electron temperature resulting from the energy transfer to electrons by the ambipolar field itself during sheath expansion. We provide a theoretical proof that this ambipolar electron power absorption would vanish completely, if the electron temperature was constant in time. This mechanism of electron power absorption is based on a time modulated electron temperature, markedly different from the Hard Wall Model, of key importance for energy transfer to electrons on time average and, thus, essential for the generation of capacitively coupled plasmas.
NASA Astrophysics Data System (ADS)
Solovjov, Vladimir P.; Andre, Frederic; Lemonnier, Denis; Webb, Brent W.
2018-02-01
The Scaled SLW model for prediction of radiation transfer in non-uniform gaseous media is presented. The paper considers a new approach for construction of a Scaled SLW model. In order to maintain the SLW method as a simple and computationally efficient engineering method special attention is paid to explicit non-iterative methods of calculation of the scaling coefficient. The moments of gas absorption cross-section weighted by the Planck blackbody emissive power (in particular, the first moment - Planck mean, and first inverse moment - Rosseland mean) are used as the total characteristics of the absorption spectrum to be preserved by scaling. Generalized SLW modelling using these moments including both discrete gray gases and the continuous formulation is presented. Application of line-by-line look-up table for corresponding ALBDF and inverse ALBDF distribution functions (such that no solution of implicit equations is needed) ensures that the method is flexible and efficient. Predictions for radiative transfer using the Scaled SLW model are compared to line-by-line benchmark solutions, and predictions using the Rank Correlated SLW model and SLW Reference Approach. Conclusions and recommendations regarding application of the Scaled SLW model are made.
NASA Astrophysics Data System (ADS)
Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz
2016-03-01
Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (μ), was shown to increase with the increased void fraction.
A Semi-analytical Line Transfer (SALT) Model. II: The Effects of a Bi-conical Geometry
NASA Astrophysics Data System (ADS)
Carr, Cody; Scarlata, Claudia; Panagia, Nino; Henry, Alaina
2018-06-01
We generalize the semi-analytical line transfer model recently introduced by Scarlata & Panagia for modeling galactic outflows, to account for bi-conical geometries of various opening angles and orientations with respect to the line of sight to the observer, as well as generalized velocity fields. We model the absorption and emission component of the line profile resulting from resonant absorption in the bi-conical outflow. We show how the outflow geometry impacts the resulting line profile. We use simulated spectra with different geometries and velocity fields to study how well the outflow parameters can be recovered. We find that geometrical parameters (including the opening angle and the orientation) are always well recovered. The density and velocity field parameters are reliably recovered when both an absorption and an emission component are visible in the spectra. This condition implies that the velocity and density fields for narrow cones oriented perpendicular to the line of sight will remain unconstrained.
Electromagnetic Wave Transmittance Control using Anisotropic Plasma Lattice
NASA Astrophysics Data System (ADS)
Matlis, Eric; Corke, Thomas; Hoffman, Anthony
2017-11-01
Experiments of transmission through a lattice array of plasma columns have shown an absorption band close to the plasma frequency at 14 GHz. The beam was oriented at a 35° incident angle to the planar plasma cell. These experiments were designed to determine if the observed absorption was the result of the isotropic plasma medium or that of an anisotropic metamaterial. Transmission of the microwave energy was not consistent with an isotropic material in which absorption would monotonically increase below the plasma frequency. The experimental results are supported by an anisotropic model which was developed for the plasma permittivity using an effective medium approximation. The plasma columns were modeled as uniform rods with permittivity described by a Drude model while the components of the permittivity tensor was calculated using the Maxwell-Garnett effective medium theory. Electron densities of n = 4 x1012 cm-3 were assumed which is consistent with prior experimental measurements. This model confirms the existence of non-zero imaginary wave vector k in a narrow region centered about 14 GHz.
NASA Astrophysics Data System (ADS)
Zamorano, M.; Torres-Silva, H.
2006-04-01
A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.
Corneal cell culture models: a tool to study corneal drug absorption.
Dey, Surajit
2011-05-01
In recent times, there has been an ever increasing demand for ocular drugs to treat sight threatening diseases such as glaucoma, age-related macular degeneration and diabetic retinopathy. As more drugs are developed, there is a great need to test in vitro permeability of these drugs to predict their efficacy and bioavailability in vivo. Corneal cell culture models are the only tool that can predict drug absorption across ocular layers accurately and rapidly. Cell culture studies are also valuable in reducing the number of animals needed for in vivo studies which can increase the cost of the drug developmental process. Currently, rabbit corneal cell culture models are used to predict human corneal absorption due to the difficulty in human corneal studies. More recently, a three dimensional human corneal equivalent has been developed using three different cell types to mimic the human cornea. In the future, human corneal cell culture systems need to be developed to be used as a standardized model for drug permeation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puri, Sanjiv
The X-ray production (XRP) cross sections, σ{sub Lk} (k = l, η, α, β{sub 6}, β{sub 1}, β{sub 3}, β{sub 4}, β{sub 9,10}, γ{sub 1,5}, γ{sub 2,3}) have been evaluated at incident photon energies across the L{sub i}(i=1-3) absorption edge energies of {sub 35}Br using theoretical data sets of different physical parameters, namely, the L{sub i}(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, inmore » order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.« less
Hu, Pei; Chen, Jia; Liu, Dongyang; Zheng, Xin; Zhao, Qian; Jiang, Ji
2015-07-01
Icotinib is a potent and selective inhibitor of epidermal growth factor receptors (EGFR) approved to treat non-small cell lung cancer (NSCLC). However, its high variability may impede its application. The objectives of this analysis were to assess plasma pharmacokinetics and identify covariates that may explain variability in icotinib absorption and/or disposition following single dose of icotinib in healthy volunteers. Data from two clinical studies (n = 22) were analyzed. One study was designed as three-period and Latin-squared (six sequence) trial to evaluate dose proportionality, and the other one was designed as two-way crossover trial to evaluate food effect on pharmacokinetics (PK) characters. Icotinib concentrations in plasma were analyzed using non-linear mixed-effects model (NONMEM) method. The model was used to assess influence of food, demographic characteristics, measurements of blood biochemistry, and CYP2C19 genotype on PK characters of icotinib in humans. The final model was diagnosed by goodness-of-fit plots and evaluated by visual predictive check (VPC) and bootstrap methods. A two-compartment model with saturated absorption character was developed to capture icotinib pharmacokinetics. Typical value of clearance, distribution clearance, central volume of distribution, maximum absorption rate were 29.5 L/h, 24.9 L/h, 18.5 L, 122.2 L and 204,245 μg/h, respectively. When icotinib was administrated with food, bioavailability was estimated to be increased by 48%. Inter-occasion variability was identified to affect on maximum absorption rate constant in food-effect study. CL was identified to be significantly influenced by age, albumin concentration (ALB), and CYP2C19 genotype. No obvious bias was found by VPC and bootstrap methods. The developed model can capture icotinib pharmacokinetics well in healthy volunteers. Food intake can increase icotinib exposure. Three covariates, age, albumin concentration, and CYP2C19 genotype, were identified to significantly affect icotinib PK profiles in healthy subjects.
Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter
NASA Astrophysics Data System (ADS)
Irwin, Patrick G. J.; Bowles, Neil; Braude, Ashwin S.; Garland, Ryan; Calcutt, Simon
2018-03-01
Observations of the visible/near-infrared reflectance spectrum of Jupiter have been made with the Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) instrument in the spectral range 0.48-0.93 μm in support of the NASA/Juno mission. These spectra contain spectral signatures of gaseous ammonia (NH3), whose abundance above the cloud tops can be determined if we have reliable information on its absorption spectrum. While there are a number of sources of NH3 absorption data in this spectral range, they cover small sub-ranges, which do not necessarily overlap and have been determined from a variety of sources. There is thus considerable uncertainty regarding the consistency of these different sources when modelling the reflectance of the entire visible/near-IR range. In this paper we analyse the VLT/MUSE observations of Jupiter to determine which sources of ammonia absorption data are most reliable. We find that the band model coefficients of Bowles et al. (2008) provide, in general, the best combination of reliability and wavelength coverage over the MUSE range. These band data appear consistent with ExoMOL ammonia line data of Yurchenko et al. (2011), at wavelengths where they overlap, but these latter data do not cover the ammonia absorption bands at 0.79 and 0.765 μm, which are prominent in our MUSE observations. However, we find the band data of Bowles et al. (2008) are not reliable at wavelengths less than 0.758 μm. At shorter wavelengths we find the laboratory observations of Lutz and Owen (1980) provide a good indication of the position and shape of the ammonia absorptions near 0.552 μm and 0.648 μm, but their absorption strengths appear inconsistent with the band data of Bowles et al. (2008) at longer wavelengths. Finally, we find that the line data of the 0.648 μm absorption band of Giver et al. (1975) are not suitable for modelling these data as they account for only 17% of the band absorption and cannot be extended reliably to the cold temperatures and H2/He-broadening conditions found in Jupiter's atmosphere. This work is of significance not only for solar system planetary physics, but also for future proposed observations of Jupiter-like planets orbiting other stars, such as with NASA's planned Wide-Field Infrared Survey Telescope (WFIRST).
Water vapor absorption in the atmospheric window at 239 GHz
NASA Technical Reports Server (NTRS)
Bauer, A.; Godon, M.; Carlier, J.; Ma, Q.
1995-01-01
Absolute absorption rates of pure water vapor and mixtures of water vapor and nitrogen have been measured in the atmospheric window at 239 GHz. The dependence on pressure as well as temperature has been obtained. The experimental data are compared with several theoretical or empirical models, and satisfactory agreement is obtained with the models involving a continuum; in the case of pure water vapor, the continuum contribution based upon recent theoretical developments gives good results. The temperature dependence is stronger than that proposed in a commonly used atmospheric transmission model.
Constraining Carbonaceous Aerosol Climate Forcing by Bridging Laboratory, Field and Modeling Studies
NASA Astrophysics Data System (ADS)
Dubey, M. K.; Aiken, A. C.; Liu, S.; Saleh, R.; Cappa, C. D.; Williams, L. R.; Donahue, N. M.; Gorkowski, K.; Ng, N. L.; Mazzoleni, C.; China, S.; Sharma, N.; Yokelson, R. J.; Allan, J. D.; Liu, D.
2014-12-01
Biomass and fossil fuel combustion emits black (BC) and brown carbon (BrC) aerosols that absorb sunlight to warm climate and organic carbon (OC) aerosols that scatter sunlight to cool climate. The net forcing depends strongly on the composition, mixing state and transformations of these carbonaceous aerosols. Complexities from large variability of fuel types, combustion conditions and aging processes have confounded their treatment in models. We analyse recent laboratory and field measurements to uncover fundamental mechanism that control the chemical, optical and microphysical properties of carbonaceous aerosols that are elaborated below: Wavelength dependence of absorption and the single scattering albedo (ω) of fresh biomass burning aerosols produced from many fuels during FLAME-4 was analysed to determine the factors that control the variability in ω. Results show that ω varies strongly with fire-integrated modified combustion efficiency (MCEFI)—higher MCEFI results in lower ω values and greater spectral dependence of ω (Liu et al GRL 2014). A parameterization of ω as a function of MCEFI for fresh BB aerosols is derived from the laboratory data and is evaluated by field data, including BBOP. Our laboratory studies also demonstrate that BrC production correlates with BC indicating that that they are produced by a common mechanism that is driven by MCEFI (Saleh et al NGeo 2014). We show that BrC absorption is concentrated in the extremely low volatility component that favours long-range transport. We observe substantial absorption enhancement for internally mixed BC from diesel and wood combustion near London during ClearFlo. While the absorption enhancement is due to BC particles coated by co-emitted OC in urban regions, it increases with photochemical age in rural areas and is simulated by core-shell models. We measure BrC absorption that is concentrated in the extremely low volatility components and attribute it to wood burning. Our results support enhanced light absorption by internally mixed BC parameterizations in models and identify mixed biomass and fossil combustion regions where this effect is large. We unify the treatment of carbonaceous aerosol components and their interactions to simplify and verify their representation in climate models, and re-evaluate their direct radiative forcing.
[Effect of absorption enhancers on nasal ginsenoside Rg1 delivery and its nasal ciliotoxicity].
Chen, Xin-mei; Zhu, Jia-bi; Sun, Wei-dong; Zhang, Li-jian
2006-02-01
The enhancing activity and safety of several absorption enhancers were evaluated as potential nasal absorption enhancers to increase intranasal absorption of ginsenoside Rg1. Nasal circulatory perfusion test in vivo had been employed to investigate the effect of absorption enhancers for nasal mucosa absorption of ginsenoside Rgl in rats. The safety of the absorption enhancers were evaluated by testing cilia movement of the in situ toad palate model, the hemolysis of erythrocyte membrane of the rabbit, leaching of protein and LDH from the mice nasal mucosa and the effect on cilia structural and specific cellular changes of nasal mucosa. Absorption enhancers were necessary to facilitate ginsenoside Rg1 absorption by nasal mucosa. Among the absorption enhancers 1% sodium deoxycholate had great effect to facilite ginsenoside Rgl absorption by nasal mucosa; 1% dipotassium glycyrrhizinate and 1% azone had moderate effect to facilitate ginsenoside Rg1 absorption by nasal mucosa; 1% Tween-80, 2% beta-cyclodextrin, 0.5% borneol (dissolved in paraffin liquid), 0.5% chitosan, 5% hydroxypropyl-beta-cyclodextrin and 0.1% EDTA had low effect to facilitate ginsenoside Rgl absorption by nasal mucosa. 1% sodium deoxycholate, 1% azone and 1% dipotassium glycyrrhizinate had serious nasal toxicity; 1% Tween-80, 2% beta-cyclodextrin, 5% hydroxypropyl-beta-cyclodextrin had moderate nasal toxicity; 0.5% borneol (dissolved in paraffin liquid), 0.5% chitosan and 0.1% EDTA have little nasal toxicity. 0.5% borneol and 0.5% chitosan were the promising candidates having a good balance between enhancing activity and safety for nasal ginsenoside Rg1 delivery.
NASA Astrophysics Data System (ADS)
Zhang, J.; Xia, T.; Chen, Q.; Sun, Q.; Deng, Y.; Wang, C.
2018-03-01
The characteristic absorption spectra of paraformaldehyde and metaldehyde in the terahertz frequency region are obtained by terahertz time-domain spectroscopy (THz-TDS). In order to reduce the absorption of terahertz (THz) wave by water vapor in the air and the background noise, the measurement system was filled with dry air and the measurements were conducted at the temperature of 24°C. Meanwhile, the humidity was controlled within 10% RH. The THz frequency domain spectra of samples and their references from 0 to 2.5 THz were analyzed via Fourier transform. The refractive index and absorption coefficients of the two aldehydes were calculated by the model formulas. From 0.1 to 2.5 THz, there appear two weak absorption peaks at 1.20 and 1.66 THz in the absorption spectra of paraformaldehyde. Only one distinct absorption peak emerges at 1.83 THz for metaldehyde. There are significant differences between the terahertz absorption coefficients of paraformaldehyde and metaldehyde, which can be used as "fingerprints" to identify these substances. Furthermore, the relationship between the average absorption coefficients and mass concentrations was investigated and the average absorption coefficient-mass concentration diagrams of paraformaldehyde and metaldehyde were shown. For paraformaldehyde, there is a linear relationship between the average absorption coefficient and the natural logarithm of mass concentration. For metaldehyde, there exists a simpler linear relationship between the average absorption coefficient and the mass concentration. Because of the characteristics of THz absorption of paraformaldehyde and metaldehyde, the THz-TDS can be applied to the qualitative and quantitative detection of the two aldehydes to reduce the unpredictable hazards due to these substances.
Magnetized Disk Winds in NGC 3783
NASA Technical Reports Server (NTRS)
Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis
2018-01-01
We analyze a 900 kilosecond stacked Chandra/HETG (High-Energy Transmission Grating) spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2-dimension (2-D) magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination theta (sub obs) and wind density normalization n (sub o). Considering the most significant absorption features in the approximately 1.8-20 angstrom range, we show that the MHD wind is best described by n(r) approximately equal to 6.9 times 10 (sup 11) (r/r (sub o)) (sup - 1.15) cubic centimeters and theta (sub obs). We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.
Magnetized Disk Winds in NGC 3783
NASA Astrophysics Data System (ADS)
Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis
2018-01-01
We analyze a 900 ks stacked Chandra/HETG spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2D magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination {θ }{obs} and wind density normalization n o . Considering the most significant absorption features in the ∼1.8–20 Å range, we show that the MHD wind is best described by n{(r)∼ 6.9× {10}11(r/{r}o)}-1.15 cm‑3 and {θ }{obs}=44^\\circ . We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.
Influence of Chronic Social Defeat Stress on Digestive System Functioning in Rats.
Toyoda, Atsushi; Iio, Wataru; Matsukawa, Noriko; Tsukahara, Takamitsu
2015-01-01
Mental disorders are caused by chronic psychosocial stress, and can cause various symptoms related to the digestive system. We focused on the conjugation of intestinal absorptive and enzymatic mechanisms between chronic social defeat stress (CSDS) model rats and healthy controls to obtain general biochemical data about the intestine of the model in this study. The small intestine was divided into three regions: proximal (PI), middle (MI), and distal (DI); mRNA expression associated with a nutrient absorption, glucose absorption activity, and activities of the digestive enzymes such as maltase, sucrase and lactase was measured. Expression of both sodium-dependent glucose transporter 1 (Sglt1) and glucose transporter 2 gene tended to be higher in the stress group compared to the control group in PI. Glucose absorption was also higher in PI of the CSDS group. Sglt1 and peptide transporter 1 gene expressions in the CSDS group were significantly higher than those in the control group in DI. Furthermore, in PI, expression of the aquaporin 1 gene was significantly higher in the CSDS group compared to the control group. Thus, absorption of some nutrients might be higher in the small intestine of the CSDS rat.
Dermal uptake of petroleum substances.
Jakasa, Ivone; Kezic, Sanja; Boogaard, Peter J
2015-06-01
Petroleum products are complex substances comprising varying amounts of linear and branched alkanes, alkenes, cycloalkanes, and aromatics which may penetrate the skin at different rates. For proper interpretation of toxic hazard data, understanding their percutaneous absorption is of paramount importance. The extent and significance of dermal absorption of eight petroleum substances, representing different classes of hydrocarbons, was evaluated. Literature data on the steady-state flux and permeability coefficient of these substances were evaluated and compared to those predicted by mathematical models. Reported results spanned over 5-6 orders of magnitude and were largely dependent on experimental conditions in particular on the type of the vehicle used. In general, aromatic hydrocarbons showed higher dermal absorption than more lipophilic aliphatics with similar molecular weight. The results showed high variation and were largely influenced by experimental conditions emphasizing the need of performing the experiments under "in use" scenario. The predictive models overestimated experimental absorption. The overall conclusion is that, based on the observed percutaneous penetration data, dermal exposure to petroleum hydrocarbons, even of aromatics with highest dermal absorption is limited and highly unlikely to be associated with health risks under real use scenarios. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Judycka-Proma, U; Bober, L; Gajewicz, A; Puzyn, T; Błażejowski, J
2015-03-05
Forty ampholytic compounds of biological and pharmaceutical relevance were subjected to chemometric analysis based on unsupervised and supervised learning algorithms. This enabled relations to be found between empirical spectral characteristics derived from electronic absorption data and structural and physicochemical parameters predicted by quantum chemistry methods or phenomenological relationships based on additivity rules. It was found that the energies of long wavelength absorption bands are correlated through multiparametric linear relationships with parameters reflecting the bulkiness features of the absorbing molecules as well as their nucleophilicity and electrophilicity. These dependences enable the quantitative analysis of spectral features of the compounds, as well as a comparison of their similarities and certain pharmaceutical and biological features. Three QSPR models to predict the energies of long-wavelength absorption in buffers with pH=2.5 and pH=7.0, as well as in methanol, were developed and validated in this study. These models can be further used to predict the long-wavelength absorption energies of untested substances (if they are structurally similar to the training compounds). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rieker, G. B.; Jeffries, J. B.; Hanson, R. K.
2009-01-01
A tunable diode laser (TDL) is used to measure the absorption spectra of the R46 through R54 transitions of the 20012 ←00001 band of CO2 near 2.0 μm (5000 cm-1) at room temperature and pressures to 10 atm (densities to 9.2 amagat). Spectra are recorded using direct absorption spectroscopy and wavelength modulation spectroscopy with second-harmonic detection (WMS-2f) in a mixture containing 11% CO2 in air. The direct absorption spectra are influenced by non-Lorentzian effects including finite-duration collisions which perturb far-wing absorption, and an empirical χ-function correction to the Voigt line shape is shown to greatly reduce error in the spectral model. WMS-2f spectra are shown to be at least a factor of four less-influenced by non-Lorentzian effects in this region, making this approach more resistant to errors in the far-wing line shape model and allowing a comparison between the spectral parameters of HITRAN and a new database which includes pressure-induced shift coefficients. The implications of these measurements on practical, high-pressure CO2 sensor design are discussed.
Epithelial toxicity of alkylglycoside surfactants.
Vllasaliu, Driton; Shubber, Saif; Fowler, Robyn; Garnett, Martin; Alexander, Cameron; Stolnik, Snow
2013-01-01
Alkylglycoside surfactants have been proposed as drug delivery excipients with the potential to enhance mucosal drug absorption of therapeutic macromolecules. Previous work reported their drug absorption-promoting potential by demonstrating that several compounds within this class of surfactants improve mucosal absorption of peptides, proteins and other macromolecules. However, detailed investigation of their toxicity has not been conducted. Using Calu-3 epithelial cell layers as a model of the airway mucosa, and liposomes as models of cell membranes, this work investigates the cytotoxicity of dodecylmaltoside, tridecylmaltoside and tetradecylmaltoside, as representative alkylglycosides. A combination of different toxicity assays and other tests indicating cell membrane disruption were used to assess cytotoxicity. The alkylglycosides tested induced a dramatic reduction in cell viability, cell membrane and liposome-disruptive effects, as well as abrogation of transepithelial electrical resistance that did not recover completely. Importantly, these phenomena were noted at concentrations markedly lower than those typically used in the literature studies demonstrating the absorption-enhancing properties of alkylglycosides. This work therefore demonstrates that alkylglycosides exhibit significant toxicity towards airway epithelial cells, most likely resulting from a membrane-damaging effect, highlighting a need for further evaluation of their safety as absorption-enhancing excipients. Copyright © 2012 Wiley Periodicals, Inc.
Quasar Absorption in the UV: Probing the Intergalactic Medium
NASA Technical Reports Server (NTRS)
Weinberg, David; Katz, Neal
1998-01-01
The purpose of this project is to model the low-redshift Lyman-alpha forest and exploration of the relation between Lyman-alpha absorbers and galaxies. This paper shows that the simulation models that are so successful at explaining properties of the high-redshift forest also account for the most important results of observational studies of the low-redshift forest, from HST (especially the Quasar Absorption Line Key Project) and ground-based follow-up.
What Quasars Really Look Like: Unification of the Emission and Absorption Line Regions
NASA Technical Reports Server (NTRS)
Elvis, Martin
2000-01-01
We propose a simple unifying structure for the inner regions of quasars and AGN. This empirically derived model links together the broad absorption line (BALS), the narrow UV/X-ray ionized absorbers, the BELR, and the 5 Compton scattering/fluorescing regions into a single structure. The model also suggests an alternative origin for the large-scale bi-conical outflows. Some other potential implications of this structure are discussed.
Modeling of particle radiative properties in coal combustion depending on burnout
NASA Astrophysics Data System (ADS)
Gronarz, Tim; Habermehl, Martin; Kneer, Reinhold
2017-04-01
In the present study, absorption and scattering efficiencies as well as the scattering phase function of a cloud of coal particles are described as function of the particle combustion progress. Mie theory for coated particles is applied as mathematical model. The scattering and absorption properties are determined by several parameters: size distribution, spectral distribution of incident radiation and spectral index of refraction of the particles. A study to determine the influence of each parameter is performed, finding that the largest effect is due to the refractive index, followed by the effect of size distribution. The influence of the incident radiation profile is negligible. As a part of this study, the possibility of applying a constant index of refraction is investigated. Finally, scattering and absorption efficiencies as well as the phase function are presented as a function of burnout with the presented model and the results are discussed.
Three-dimensional radiation transfer modeling in a dicotyledon leaf
NASA Astrophysics Data System (ADS)
Govaerts, Yves M.; Jacquemoud, Stéphane; Verstraete, Michel M.; Ustin, Susan L.
1996-11-01
The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.
Self-consistent continuum solvation for optical absorption of complex molecular systems in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timrov, Iurii; Biancardi, Alessandro; Andreussi, Oliviero
2015-01-21
We introduce a new method to compute the optical absorption spectra of complex molecular systems in solution, based on the Liouville approach to time-dependent density-functional perturbation theory and the revised self-consistent continuum solvation model. The former allows one to obtain the absorption spectrum over a whole wide frequency range, using a recently proposed Lanczos-based technique, or selected excitation energies, using the Casida equation, without having to ever compute any unoccupied molecular orbitals. The latter is conceptually similar to the polarizable continuum model and offers the further advantages of allowing an easy computation of atomic forces via the Hellmann-Feynman theorem andmore » a ready implementation in periodic-boundary conditions. The new method has been implemented using pseudopotentials and plane-wave basis sets, benchmarked against polarizable continuum model calculations on 4-aminophthalimide, alizarin, and cyanin and made available through the QUANTUM ESPRESSO distribution of open-source codes.« less
High energy helion scattering: A ``model-independent'' analysis
NASA Astrophysics Data System (ADS)
Djaloeis, A.; Gopal, S.
1981-03-01
Angular distributions of helions elastically scattered from 24Mg, 58Ni, 90Zr and 120Sn at Eτ = 130 MeV have been subjected to a "model-independent" analysis in the framework of the optical model. The real part of the optical potential was represented by a spline-function; volume and surface absorptions were considered. Both the shallow and the deep families of the helion optical potential were investigated. The spline potentials are found to deviate from the Woods-Saxon shape. The experimental data are well described by optical potentials with either a volume or a surface absorption. However, the volume absorption consistently gives better fits. For 24Mg, 90Zr and 120Sn both shallow and deep potential families result in comparable fit qualities. For 58Ni the discrete ambiguity is resolved in favour of the shallow family. From the analysis the values of the rms radius of matter distribution have been extracted.
Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker.
Tao, Jiancheng; Jing, Ruixiang; Qiu, Xiaojun
2014-01-01
Deep back cavities are usually required for micro-perforated panel (MPP) constructions to achieve good low frequency absorption. To overcome the problem, a close-box loudspeaker with a shunted circuit is proposed to substitute the back wall of the cavity of the MPP constructions to constitute a composite absorber. Based on the equivalent circuit model, the acoustic impedance of the shunted loudspeaker is formulated first, then a prediction model of the sound absorption of the MPP backed by shunted loudspeaker is developed by employing the mode solution of a finite size MPP coupled by an air cavity with an impendence back wall. The MPP absorbs mid to high frequency sound, and with properly adjusted electrical parameters of its shunted circuit, the shunted loudspeaker absorbs low frequency sound, so the composite absorber provides a compact solution to broadband sound control. Numerical simulations and experiments are carried out to validate the model.
Oxygen, Neon, and Iron X-Ray Absorption in the Local Interstellar Medium
NASA Technical Reports Server (NTRS)
Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.; Mendoza, Claudio
2016-01-01
We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods. By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results. We have determined the absorbing material distribution as a function of source distance and galactic latitude longitude. Conclusions. Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.
Microwave propagation and absorption and its thermo-mechanical consequences in heterogeneous rocks.
Meisels, R; Toifl, M; Hartlieb, P; Kuchar, F; Antretter, T
2015-02-10
A numerical analysis in a two-component model rock is presented including the propagation and absorption of a microwave beam as well as the microwave-induced temperature and stress distributions in a consistent way. The analyses are two-dimensional and consider absorbing inclusions (discs) in a non-absorbing matrix representing the model of a heterogeneous rock. The microwave analysis (finite difference time domain - FDTD) is performed with values of the dielectric permittivity typical for hard rocks. Reflections at the discs/matrix interfaces and absorption in the discs lead to diffuse scattering with up to 20% changes of the intensity in the main beam compared to a homogeneous model rock. The subsequent thermo-mechanical finite element (FE) analysis indicates that the stresses become large enough to initiate damage. The results are supported by preliminary experiments on hard rock performed at 2.45 GHz.
Nitric oxide concentration near the mesopause as deduced from ionospheric absorption measurements
NASA Astrophysics Data System (ADS)
Lastovicka, J.
The upper-D-region NO concentration is calculated on the basis of published 2775-kHz-absorption, Lyman-alpha (OSO-5), and X-ray (Solrad-9) data obtained over Central Europe in June-August 1969, 1970, and 1972. Ionization-rate and radio-wave-absorption profiles for solar zenith angles of 60, 70 and 40 deg are computed, presented graphically, and compared with model calculations to derive the NO-concentration correction coefficients necessary to make the Lyman-alpha/X-ray flux ratios of the models of Meira (1971), Baker et al. (1977), Tohmatsu and Iwagami (1976), and Tisone (1973) agree with the observed ratios. Values of the corrected NO concentration include 6.5 and 8.5 x 10 to the 13th/cu m at 78 and 90 km, respectively. The values are shown to be higher than those of standard models but within the range of observed concentrations.
Oral exposure to polystyrene nanoparticles affects iron absorption
NASA Astrophysics Data System (ADS)
Mahler, Gretchen J.; Esch, Mandy B.; Tako, Elad; Southard, Teresa L.; Archer, Shivaun D.; Glahn, Raymond P.; Shuler, Michael L.
2012-04-01
The use of engineered nanoparticles in food and pharmaceuticals is expected to increase, but the impact of chronic oral exposure to nanoparticles on human health remains unknown. Here, we show that chronic and acute oral exposure to polystyrene nanoparticles can influence iron uptake and iron transport in an in vitro model of the intestinal epithelium and an in vivo chicken intestinal loop model. Intestinal cells that are exposed to high doses of nanoparticles showed increased iron transport due to nanoparticle disruption of the cell membrane. Chickens acutely exposed to carboxylated particles (50 nm in diameter) had a lower iron absorption than unexposed or chronically exposed birds. Chronic exposure caused remodelling of the intestinal villi, which increased the surface area available for iron absorption. The agreement between the in vitro and in vivo results suggests that our in vitro intestinal epithelium model is potentially useful for toxicology studies.
Absorption and Clearance of Pharmaceutical Aerosols in the Human Nose: Development of a CFD Model.
Rygg, Alex; Longest, P Worth
2016-10-01
The objective of this study was to develop a computational fluid dynamics (CFD) model to predict the deposition, dissolution, clearance, and absorption of pharmaceutical particles in the human nasal cavity. A three-dimensional nasal cavity geometry was converted to a surface-based model, providing an anatomically-accurate domain for the simulations. Particle deposition data from a commercial nasal spray product was mapped onto the surface model, and a mucus velocity field was calculated and validated with in vivo nasal clearance rates. A submodel for the dissolution of deposited particles was developed and validated based on comparisons to existing in vitro data for multiple pharmaceutical products. A parametric study was then performed to assess sensitivity of epithelial drug uptake to model conditions and assumptions. The particle displacement distance (depth) in the mucus layer had a modest effect on overall drug absorption, while the mucociliary clearance rate was found to be primarily responsible for drug uptake over the timescale of nasal clearance for the corticosteroid mometasone furoate (MF). The model revealed that drug deposition in the nasal vestibule (NV) could slowly be transported into the main passage (MP) and then absorbed through connection of the liquid layer in the NV and MP regions. As a result, high intersubject variability in cumulative uptake was predicted, depending on the length of time the NV dose was left undisturbed without blowing or wiping the nose. This study has developed, for the first time, a complete CFD model of nasal aerosol delivery from the point of spray formation through absorption at the respiratory epithelial surface. For the development and assessment of nasal aerosol products, this CFD-based in silico model provides a new option to complement existing in vitro nasal cast studies of deposition and in vivo imaging experiments of clearance.
Priestley, Tony; Chappa, Arvind K; Mould, Diane R; Upton, Richard N; Shusterman, Neil; Passik, Steven; Tormo, Vicente J; Camper, Stephen
2017-09-29
To develop a model to predict buprenorphine plasma concentrations during transition from transdermal to buccal administration. Population pharmacokinetic model-based meta-analysis of published data. A model-based meta-analysis of available buprenorphine pharmacokinetic data in healthy adults, extracted as aggregate (mean) data from published literature, was performed to explore potential conversion from transdermal to buccal buprenorphine. The time course of mean buprenorphine plasma concentrations following application of transdermal patch or buccal film was digitized from available literature, and a meta-model was developed using specific pharmacokinetic parameters (e.g., absorption rate, apparent clearance, and volumes of distribution) derived from analysis of pharmacokinetic data for intravenously, transdermally, and buccally administered buprenorphine. Data from six studies were included in this analysis. The final transdermal absorption model employed a zero-order input rate that was scaled to reflect a nominal patch delivery rate and time after patch application (with decline in rate over time). The transdermal absorption rate constant became zero following patch removal. Buccal absorption was a first-order process with a time lag and bioavailability term. Simulations of conversion from transdermal 20 mcg/h and 10 mcg/h to buccal administration suggest that transition can be made rapidly (beginning 12 hours after patch removal) using the recommended buccal formulation titration increments (75-150 mcg) and schedule (every four days) described in the product labeling. Computer modeling and simulations using a meta-model built from data extracted from publications suggest that rapid and straightforward conversion from transdermal to buccal buprenorphine is feasible. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Absorber Model: the Halo-like model for the Lyman-α forest
NASA Astrophysics Data System (ADS)
Iršič, Vid; McQuinn, Matthew
2018-04-01
We present a semi-analytic model for the Lyman-α forest that is inspired by the Halo Model. This model is built on the absorption line decomposition of the forest. Flux correlations are decomposed into those within each absorption line (the 1-absorber term) and those between separate lines (the 2-absorber term), treating the lines as biased tracers of the underlying matter fluctuations. While the nonlinear exponential mapping between optical depth and flux requires an infinite series of moments to calculate any statistic, we show that this series can be re-summed (truncating at the desired order in the linear matter overdensity). We focus on the z=2–3 line-of-sight power spectrum. Our model finds that 1-absorber term dominates the power on all scales, with most of its contribution coming from H I columns of 1014–1015 cm‑2, while the smaller 2-absorber contribution comes from lower columns that trace overdensities of a few. The prominence of the 1-absorber correlations indicates that the line-of-sight power spectrum is shaped principally by the lines' number densities and their absorption profiles, with correlations between lines contributing to a lesser extent. We present intuitive formulae for the effective optical depth as well as the large-scale limits of 1-absorber and 2-absorber terms, which simplify to integrals over the H I column density distribution with different equivalent-width weightings. With minimalist models for the bias of absorption systems and their peculiar velocity broadening, our model predicts values for the density bias and velocity gradient bias that are consistent with those found in simulations.
An investigation of the sound field above the audience in large lecture halls with a scale model.
Kahn, D W; Tichy, J
1986-09-01
Measurements of steady-state sound pressure levels above the audience in large lecture halls show that the classical equation for predicting the sound pressure level is not accurate. The direct field above the seats was measured on a 1:10 scale model and was found to be dependent on the incidence angle and direction of sound propagation across the audience. The reverberant field above the seats in the model was calculated by subtracting the direct field from the measured total field and was found to be dependent on the magnitude and particularly on the placement of absorption. The decrease of sound pressure level versus distance in the total field depends on the angle (controlled by absorption placement) at which the strong reflections are incident upon the audience area. Sound pressure level decreases at a fairly constant rate with distance from the sound source in both the direct and reverberant field, and the decrease rate depends strongly on the absorption placement. The lowest rate of decay occurs when the side walls are absorptive, and both the ceiling and rear wall are reflective. These consequences are discussed with respect to prediction of speech intelligibility.
Combination strategies for enhancing transdermal absorption of sumatriptan through skin.
Femenía-Font, A; Balaguer-Fernández, C; Merino, V; López-Castellano, A
2006-10-12
The aim of the present work was to characterize in vitro sumatriptan transdermal absorption through human skin and to investigate the effect of chemical enhancers and iontophoresis applied both individually and in combination. A secondary objective was to compare the results obtained with those in porcine skin under the same conditions, in order to characterize the relationship between the two skin models and validate the porcine model for further research use. Transdermal flux of sumatriptan was determined in different situations: (a) after pre-treatment of human skin with ethanol, Azone (1-dodecyl-azacycloheptan-2-one), polyethylene glycol 600 and R-(+)-limonene, (b) under iontophoresis application (0.25 and 0.50 mA/cm(2)) and (c) combining chemical pre-treatment and iontophoresis at 0.50 mA/cm(2) current density. All the strategies applied enhance sumatriptan transdermal absorption. A linear relationship between the fluxes in the two skin models in the different conditions assayed can be established. The combination of both strategies, Azone and iontophoresis, proved to be the most effective of the techniques for enhancing the transdermal absorption of sumatriptan. The flux obtained with porcine skin in vitro is approximately double that obtained in human skin.
NASA Astrophysics Data System (ADS)
Shakeri, Alireza; Ghasemian, Ali
2010-04-01
This study aims to investigate the moisture absorption of recycled newspaper fiber and recycled newspaper-glass fiber hybrid reinforced polypropylene composites to study their suitability in outdoor applications. In this work composite materials were made from E-glass fiber (G), recycled newspaper (NP) and polypropylene (PP), by using internal mixing and hot-pressing molding. Long-term water absorption (WA) and thickness swelling (TS) kinetics of the composites was investigated with water immersion. It was found that the WA and TS increase with NP content in composite and water immersion time before an equilibrium condition was reached. Composites made from the NP show comparable results as those made of the hybrid fiber. The results suggest that the water absorption and thickness swelling composite decrease with increasing glass fiber contents in hybrid fiber composite. It is interesting to find that the WA and TS can be reduced significantly with incorporation of a coupling agent (maleated polypropylene) in the composite formulation. Further studies were conducted to model the water diffusion and thickness swelling of the composites. Diffusion coefficients and swelling rate parameters in the models were obtained by fitting the model predictions with the experimental data.
Modeling Ka-band low elevation angle propagation statistics
NASA Technical Reports Server (NTRS)
Russell, Thomas A.; Weinfield, John; Pearson, Chris; Ippolito, Louis J.
1995-01-01
The statistical variability of the secondary atmospheric propagation effects on satellite communications cannot be ignored at frequencies of 20 GHz or higher, particularly if the propagation margin allocation is such that link availability falls below 99 percent. The secondary effects considered in this paper are gaseous absorption, cloud absorption, and tropospheric scintillation; rain attenuation is the primary effect. Techniques and example results are presented for estimation of the overall combined impact of the atmosphere on satellite communications reliability. Statistical methods are employed throughout and the most widely accepted models for the individual effects are used wherever possible. The degree of correlation between the effects is addressed and some bounds on the expected variability in the combined effects statistics are derived from the expected variability in correlation. Example estimates are presented of combined effects statistics in the Washington D.C. area of 20 GHz and 5 deg elevation angle. The statistics of water vapor are shown to be sufficient for estimation of the statistics of gaseous absorption at 20 GHz. A computer model based on monthly surface weather is described and tested. Significant improvement in prediction of absorption extremes is demonstrated with the use of path weather data instead of surface data.
Infrared absorption spectra of molecular crystals: Possible evidence for small-polaron formation?
NASA Astrophysics Data System (ADS)
Pržulj, Željko; Čevizović, Dalibor; Zeković, Slobodan; Ivić, Zoran
2008-09-01
The temperature dependence of the position of the so-called anomalous band peaked at 1650cm in the IR-absorption spectrum of crystalline acetanilide (ACN) is theoretically investigated within the small-polaron theory. Its pronounced shift towards the position of the normal band is predicted with the rise of temperature. Interpretation of the IR-absorption spectra in terms of small-polaron model has been critically assessed on the basis of these results.
Seasonal Solar Thermal Absorption Energy Storage Development.
Daguenet-Frick, Xavier; Gantenbein, Paul; Rommel, Mathias; Fumey, Benjamin; Weber, Robert; Gooneseker, Kanishka; Williamson, Tommy
2015-01-01
This article describes a thermochemical seasonal storage with emphasis on the development of a reaction zone for an absorption/desorption unit. The heat and mass exchanges are modelled and the design of a suitable reaction zone is explained. A tube bundle concept is retained for the heat and mass exchangers and the units are manufactured and commissioned. Furthermore, experimental results of both absorption and desorption processes are presented and the exchanged power is compared to the results of the simulations.
Crashworthiness analysis on alternative square honeycomb structure under axial loading
NASA Astrophysics Data System (ADS)
Li, Meng; Deng, Zongquan; Guo, Hongwei; Liu, Rongqiang; Ding, Beichen
2013-07-01
Hexagonal metal honeycomb is widely used in energy absorption field for its special construction. However, many other metal honeycomb structures also show good energy absorption characteristics. Currently, most of the researches focus on hexagonal honeycomb, while few are performed into different honeycomb structures. Therefore, a new alternative square honeycomb is developed to expand the non-hexagonal metal honeycomb applications in the energy absorption fields with the aim of designing low mass and low volume energy absorbers. The finite element model of alternative square honeycomb is built to analyze its specific energy absorption property. As the diversity of honeycomb structure, the parameterized metal honeycomb finite element analysis program is conducted based on PCL language. That program can automatically create finite element model. Numerical results show that with the same foil thickness and cell length of metal honeycomb, the alternative square has better specific energy absorption than hexagonal honeycomb. Using response surface method, the mathematical formulas of honeycomb crashworthiness properties are obtained and optimization is done to get the maximum specific energy absorption property honeycomb. Optimal results demonstrate that to absorb same energy, alternative square honeycomb can save 10% volume of buffer structure than hexagonal honeycomb can do. This research is significant in providing technical support in the extended application of different honeycomb used as crashworthiness structures, and is absolutely essential in low volume and low mass energy absorber design.
Drug gastrointestinal absorption in rat: Strain and gender differences.
Oltra-Noguera, Davinia; Mangas-Sanjuan, Victor; González-Álvarez, Isabel; Colon-Useche, Sarin; González-Álvarez, Marta; Bermejo, Marival
2015-10-12
Predictive animal models of intestinal drug absorption are essential tools in drug development to identify compounds with promising biopharmaceutical properties. In situ perfusion absorption studies are routinely used in the preclinical setting to screen drug candidates. The objective of this work is to explore the differences in magnitude and variability on intestinal absorption associated with rat strain and gender. Metoprolol and Verapamil absorption rate coefficients were determined using the in situ closed loop perfusion model in four strains of rats and in both genders. Strains used were Sprague-Dawley, Wistar-Han, Wistar-Unilever, Long-Evans and CD∗IGS. In the case of Metoprolol only CD∗IGS and Wistar Unilever showed differences between males and females. For Verapamil, Wistar Han and Sprague-Dawley strains do not show differences between male and female rats. That means that in these strains permeability data from male and female could be combined. In male rats, which are commonly used for permeability estimation, there were differences for Metoprolol permeability between Sprague-Dawley (with lower permeability values) and the other strains, while for Verapamil Sprague-Dawley and Wistar-Han showed the lower permeability values. In conclusion, the selection of rat's strain and gender for intestinal absorption experiments is a relevant element during study design and data from different strains may not be always comparable. Copyright © 2015 Elsevier B.V. All rights reserved.
Light absorption properties and radiative effects of primary organic aerosol emissions
Lu, Zifeng; Streets, David G.; Winijkul, Ekbordin; ...
2015-03-26
Organic aerosols (OAs) in the atmosphere affect Earth’s energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called “brown carbon” (BrC) component. However, the absorptivities of OAs are not represented or are poorly represented in current climate and chemical transport models. In this study, we provide a method to constrain the BrC absorptivity at the emission inventory level using recent laboratory and field observations. We review available measurements of the light-absorbing primary OA (POA), and quantify the wavelength-dependent imaginary refractive indices (k OA, the fundamental optical parameter determining the particle’s absorptivity) andmore » their uncertainties for the bulk POA emitted from biomass/biofuel, lignite, propane, and oil combustion sources. In particular, we parametrize the k OA of biomass/biofuel combustion sources as a function of the black carbon (BC)-to-OA ratio, indicating that the absorptive properties of POA depend strongly on burning conditions. The derived fuel-type-based k OA profiles are incorporated into a global carbonaceous aerosol emission inventory, and the integrated k OA values of sectoral and total POA emissions are presented. The results of a simple radiative transfer model show that the POA absorptivity warms the atmosphere significantly and leads to ~27% reduction in the amount of the net global average POA cooling compared to results from the nonabsorbing assumption.« less
Spectroscopy as a tool for geochemical modeling
NASA Astrophysics Data System (ADS)
Kopacková, Veronika; Chevrel, Stephane; Bourguignon, Anna
2011-11-01
This study focused on testing the feasibility of up-scaling ground-spectra-derived parameters to HyMap spectral and spatial resolution and whether they could be further used for a quantitative determination of the following geochemical parameters: As, pH and Clignite content. The study was carried on the Sokolov lignite mine as it represents a site with extreme material heterogeneity and high heavy-metal gradients. A new segmentation method based on the unique spectral properties of acid materials was developed and applied to the multi-line HyMap image data corrected for BRDF and atmospheric effects. The quantitative parameters were calculated for multiple absorption features identified within the VIS/VNIR/SWIR regions (simple band ratios, absorption band depth and quantitative spectral feature parameters calculated dynamically for each spectral measurement (centre of the absorption band (λ), depth of the absorption band (D), width of the absorption band (Width), and asymmetry of the absorption band (S)). The degree of spectral similarity between the ground and image spectra was assessed. The linear models for pH, As and the Clignite content of the whole and segmented images were cross-validated on the selected homogenous areas defined in the HS images using ground truth. For the segmented images, reliable results were achieved as follows: As: R2=0.84, Clignite: R2=0.88 and R2 pH: R2= 0.57.
Modeling Broadband X-Ray Absorption of Massive Star Winds
NASA Technical Reports Server (NTRS)
Leutenegger, Maurice A.; Cohen,David H.; Zsargo, Janos; Martell, Erin M.; MacArthur, James P.; Owocki, Stanley P.; Gagne, Marc; Hillier, D. John
2010-01-01
We present a method for computing the net transition of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral ISM tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype cars largely be understood as a wind absorption effect.
Kaya, Mine; Hajimirza, Shima
2018-05-25
This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.
Modeling the absorption spectrum of the permanganate ion in vacuum and in aqueous solution
NASA Astrophysics Data System (ADS)
Olsen, Jógvan Magnus Haugaard; Hedegård, Erik Donovan
The absorption spectrum of the MnO$_{4}$$^{-}$ ion has been a test-bed for quantum-chemical methods over the last decades. Its correct description requires highly-correlated multiconfigurational methods, which are incompatible with the inclusion of finite-temperature and solvent effects due to their high computational demands. Therefore, implicit solvent models are usually employed. Here we show that implicit solvent models are not sufficiently accurate to model the solvent shift of MnO$_{4}$$^{-}$, and we analyze the origins of their failure. We obtain the correct solvent shift for MnO$_{4}$$^{-}$ in aqueous solution by employing the polarizable embedding (PE) model combined with a range-separated complete active space short-range density functional theory method (CAS-srDFT). Finite-temperature effects are taken into account by averaging over structures obtained from ab initio molecular dynamics simulations. The explicit treatment of finite-temperature and solvent effects facilitates the interpretation of the bands in the low-energy region of the MnO$_{4}$$^{-}$ absorption spectrum, whose assignment has been elusive.
Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong
2018-04-10
X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.
Chatterjee, I; Hagmann, M J; Gandhi, O P
1980-01-01
The electromagnetic energy deposited in a semi-infinite slab model consisting of skin, fat, and muscle layers is calculated for both plane-wave and near-field exposures. The plane-wave spectrum (PWS) approach is used to calculate the energy deposited in the model by fields present due to leakage from equipment using electromagnetic energy. This analysis applies to near-field exposures where coupling of the target to the leakage source can be neglected. Calculations were made for 2,450 MHz, at which frequency the layered slab adequately models flat regions of the human body. Resonant absorption due to layering is examined as a function of the skin and fat thicknesses for plane-wave exposure and as a function of the physical extent of the near-field distribution. Calculations show that for fields that are nearly constant over at least a free-space wavelength, the energy deposition (for skin, fat, and muscle combination that gives resonant absorption) is equal to or less than that resulting from plane-wave exposure, but is appreciably greater than that obtained for a homogeneous muscle slab model.
NASA Astrophysics Data System (ADS)
Clark, Roger Nelson; Cruikshank, D. P.; Jaumann, R.; Brown, R. H.; Dalle Ore, C.; Stephan, K.; Hoefen, T. M.; Curchin, J. M.; Buratti, B. J.; Filacchione, G.; Baines, K. H.; Nicholson, P. D.
2010-10-01
The Visual and Infrared Mapping Spectrometer (VIMS) on Cassini has obtained spatially resolved spectra on satellites of Saturn. The Cassini Rev 49 Iapetus fly-by on September 10, 2007, provided data on both the dark material and the transition zone between the dark material and the visually bright ice. The dark material has low albedo with a linear increase in reflectance with wavelength, 3-micron water, and CO2 absorptions. The transition between bright and dark regions shows mixing with unusual optical properties including increased blue scattering and increasing strength of a UV absorber in areas with stronger ice absorptions. Similar spectral effects are observed on other Saturnian satellites and in the rings. We have been unable to match these spectral properties and trends using tholins and carbon compounds. However, the dark material is spectrally matched by fine-grained metallic iron plus nano-phase hematite and adsorbed water which contribute UV and 3-micron absorption, respectively. The blue scattering peak and UV absorption can be explained by Rayleigh scattering from sub-micron particles with a UV absorption, or a combination of Rayleigh scattering and Rayleigh absorption as has been attributed to spectral properties of the Moon. A new radiative transfer model that includes Rayleigh scattering and Rayleigh absorption has been constructed. Models of ice, sub-micron metallic iron, hydrated iron oxide, and trace CO2 explain the observed spectra. Rayleigh absorption requires high absorption coefficient nano-sized particles, which is also consistent with metallic iron. The UV absorber appears to have increased strength on satellite surfaces close to Saturn, with a corresponding decrease in metallic iron signature. A possible explanation is that the iron is oxidized closer to Saturn by oxygen in the extended atmosphere of Saturn's rings, or the dark material is simply covered by clean fine-grained ice particles, for example, from the E-ring.
Characterization of Sheep Wool as a Sustainable Material for Acoustic Applications
Uris, Antonio; Candelas, Pilar
2017-01-01
In recent years, natural materials are becoming a valid alternative to traditional sound absorbers due to reduced production costs and environmental protection. This paper reports the acoustical characterization of sheep wool. Measurements on normal incidence and diffuse-incidence sound absorption coefficients of different samples are reported. The airflow resistance has also been measured. The results prove that sheep wool has a comparable sound absorption performance to that of mineral wool or recycled polyurethane foam. An empirical model is used to calculate the sound absorption of sheep wool samples. A reasonable agreement on the acoustic absorption of all sheep wool samples is obtained. PMID:29112133
Characterization of Sheep Wool as a Sustainable Material for Acoustic Applications.
Del Rey, Romina; Uris, Antonio; Alba, Jesús; Candelas, Pilar
2017-11-07
In recent years, natural materials are becoming a valid alternative to traditional sound absorbers due to reduced production costs and environmental protection. This paper reports the acoustical characterization of sheep wool. Measurements on normal incidence and diffuse-incidence sound absorption coefficients of different samples are reported. The airflow resistance has also been measured. The results prove that sheep wool has a comparable sound absorption performance to that of mineral wool or recycled polyurethane foam. An empirical model is used to calculate the sound absorption of sheep wool samples. A reasonable agreement on the acoustic absorption of all sheep wool samples is obtained.
Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Weiwei; Kaminski, Clemens F., E-mail: cfk23@cam.ac.uk
2014-04-14
We propose a multiplexed absorption tomography technique, which uses calibration-free wavelength modulation spectroscopy with tunable semiconductor lasers for the simultaneous imaging of temperature and species concentration in harsh combustion environments. Compared with the commonly used direct absorption spectroscopy (DAS) counterpart, the present variant enjoys better signal-to-noise ratios and requires no baseline fitting, a particularly desirable feature for high-pressure applications, where adjacent absorption features overlap and interfere severely. We present proof-of-concept numerical demonstrations of the technique using realistic phantom models of harsh combustion environments and prove that the proposed techniques outperform currently available tomography techniques based on DAS.
NASA Astrophysics Data System (ADS)
Shimamura, Kohei
2016-09-01
To reduce the computational cost in the particle method for the numerical simulation of the laser plasma, we examined the simplification of the laser absorption process. Because the laser frequency is sufficiently larger than the collision frequency between the electron and heavy particles, we assumed that the electron obtained the constant value from the laser irradiation. First of all, the simplification of the laser absorption process was verified by the comparison of the EEDF and the laser-absorptivity with PIC-FDTD method. Secondary, the laser plasma induced by TEA CO2 laser in Argon atmosphere was modeled using the 1D3V DSMC method with the simplification of the laser-absorption. As a result, the LSDW was observed with the typical electron and neutral density distribution.
NASA Astrophysics Data System (ADS)
HuaZhi, Zhou; ZhiJin, Wang
2017-11-01
The intersection element is an important part of the helicopter subfloor structure. In order to improve the crashworthiness properties, the floor and the skin of the intersection element are replaced with foldcore sandwich structures. Foldcore is a kind of high-energy absorption structure. Compared with original structure, the new intersection element shows better buffering capacity and energy-absorption capacity. To reduce structure’s mass while maintaining the crashworthiness requirements satisfied, optimization of the intersection element geometric parameters is conducted. An optimization method using NSGA-II and Anisotropic Kriging is used. A significant CPU time saving can be obtained by replacing numerical model with Anisotropic Kriging surrogate model. The operation allows 17.15% reduce of the intersection element mass.
Dual-energy x-ray image decomposition by independent component analysis
NASA Astrophysics Data System (ADS)
Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang
2001-09-01
The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.
Novoderezhkin, Vladimir I.; Doust, Alexander B.; Curutchet, Carles; Scholes, Gregory D.; van Grondelle, Rienk
2010-01-01
Abstract We model the spectra and excitation dynamics in the phycobiliprotein antenna complex PE545 isolated from the unicellular photosynthetic cryptophyte algae Rhodomonas CS24. The excitonic couplings between the eight bilins are calculated using the CIS/6-31G method. The site energies are extracted from a simultaneous fit of the absorption, circular dichroism, fluorescence, and excitation anisotropy spectra together with the transient absorption kinetics using the modified Redfield approach. Quantitative fit of the data enables us to assign the eight exciton components of the spectra and build up the energy transfer picture including pathways and timescales of energy relaxation, thus allowing a visualization of excitation dynamics within the complex. PMID:20643051
Grazing incidence modeling of a metamaterial-inspired dual-resonance acoustic liner
NASA Astrophysics Data System (ADS)
Beck, Benjamin S.
2014-03-01
To reduce the noise emitted by commercial aircraft turbofan engines, the inlet and aft nacelle ducts are lined with acoustic absorbing structures called acoustic liners. Traditionally, these structures consist of a perforated facesheet bonded on top of a honeycomb core. These traditional perforate over honeycomb core (POHC) liners create an absorption spectra where the maximum absorption occurs at a frequency that is dictated by the depth of the honeycomb core; which acts as a quarter-wave resonator. Recent advances in turbofan engine design have increased the need for thin acoustic liners that are effective at low frequencies. One design that has been developed uses an acoustic metamaterial architecture to improve the low frequency absorption. Specifically, the liner consists of an array of Helmholtz resonators separated by quarter-wave volumes to create a dual-resonance acoustic liner. While previous work investigated the acoustic behavior under normal incidence, this paper outlines the modeling and predicted transmission loss and absorption of a dual-resonance acoustic metamaterial when subjected to grazing incidence sound.
Moghimipour, Eskandar; Tabassi, Sayyed Abolghassem Sajadi; Ramezani, Mohammad; Handali, Somayeh; Löbenberg, Raimar
2016-01-01
The aim of this study was to investigate the influence of absorption enhancers in the uptake of hydrophilic compounds. The permeation of the two hydrophilic drug models gentamicin and 5 (6)-carboxyfluorescein (CF) across the brush border membrane vesicles and Caco-2 cell lines were evaluated using total saponins of Acanthophyllum squarrosum, Quillaja saponaria, sodium lauryl sulfate, sodium glycocholate, sodium taurodeoxycholate, and Tween 20 as absorption enhancers. Transepithelial electrical resistance (TEER) measurement was utilized to assess the paracellular permeability of cell lines. Confocal laser scanning microscopy (CLSM) was performed to obtain images of the distribution of CF in Caco-2 cells. These compounds were able to loosen tight junctions, thus increasing paracellular permeability. CLSM confirmed the effect of these absorption enhancers on CF transport across Caco-2 lines and increased the Caco-2 permeability via transcellular route. It was also confirmed that the decrease in TEER was transient and reversible after removal of permeation enhancers. PMID:27429925
Unified analysis of optical absorption spectra of carotenoids based on a stochastic model.
Uragami, Chiasa; Saito, Keisuke; Yoshizawa, Masayuki; Molnár, Péter; Hashimoto, Hideki
2018-05-03
The chemical structures of the carotenoid molecules are very simple and one might think that the electronic feature of it is easily predicted. However, it still has so much unknown information except the correlation between the electronic energy state and the length of effective conjugation chain of carotenoids. To investigate the electronic feature of the carotenoids, the most essential method is measuring the optical absorption spectra, but simulating it from the resonance Raman spectra is also the effective way. From this reason, we studied the optical absorption spectra as well as resonance Raman spectra of 15 different kinds of cyclic carotenoid molecules, recorded in tetrahydrofuran (THF) solutions at room temperature. The whole band shapes of the absorption spectra of all these carotenoid molecules were successfully simulated based on a stochastic model using Brownian oscillators. The parameters obtained from the simulation made it possible to discuss the intermolecular interaction between carotenoids and solvent THF molecules quantitatively. Copyright © 2018. Published by Elsevier Inc.
The origin of absorptive features in the two-dimensional electronic spectra of rhodopsin.
Farag, Marwa H; Jansen, Thomas L C; Knoester, Jasper
2018-05-09
In rhodopsin, the absorption of a photon causes the isomerization of the 11-cis isomer of the retinal chromophore to its all-trans isomer. This isomerization is known to occur through a conical intersection (CI) and the internal conversion through the CI is known to be vibrationally coherent. Recently measured two-dimensional electronic spectra (2DES) showed dramatic absorptive spectral features at early waiting times associated with the transition through the CI. The common two-state two-mode model Hamiltonian was unable to elucidate the origin of these features. To rationalize the source of these features, we employ a three-state three-mode model Hamiltonian where the hydrogen out-of plane (HOOP) mode and a higher-lying electronic state are included. The 2DES of the retinal chromophore in rhodopsin are calculated and compared with the experiment. Our analysis shows that the source of the observed features in the measured 2DES is the excited state absorption to a higher-lying electronic state and not the HOOP mode.
NASA Astrophysics Data System (ADS)
Arsawan, I. W. E.; Sanjaya, I. B.; Putra, I. K. M.; Sukarta, I. W.
2018-01-01
This study aims to examine the relationship between motivation and knowledge transfer to the subsidiaries performance and test the role of absorptive capacity as a moderating variable. The research uses quantitative design through questionnaires distribution with 5 Likert scales. The population frame is five-star hotel in Bali province, Indonesia which amounted to 63 units, the sample of research using proportional random sampling is 54 units and determined the distribution of questionnaires to 162 subsidiaries as the unit of analysis. The research model was built using the structural equation model and analyzed with smart pls- 3 software. The findings of the study revealed that subsidiaries motivation a significant effect on knowledge transfer, knowledge transfer a significant effect on subsidiaries performance, motivation a significant effect on subsidiaries performance and absorptive capacity moderated the relationship between knowledge transfer and subsidiaries performance. These findings suggest that subsidiaries and process of knowledge transfer through absorptive capacity play an important role, and that they have some impact on the subsidiaries performance.
NASA Astrophysics Data System (ADS)
Ahn, Yong Nam; Mohan, Gunjan; Kopelevich, Dmitry I.
2012-10-01
Dynamics of absorption and desorption of a surfactant monomer into and out of a spherical non-ionic micelle is investigated by coarse-grained molecular dynamics (MD) simulations. It is shown that these processes involve a complex interplay between the micellar structure and the monomer configuration. A quantitative model for collective dynamics of these degrees of freedom is developed. This is accomplished by reconstructing a multi-dimensional free energy landscape of the surfactant-micelle system using constrained MD simulations in which the distance between the micellar and monomer centers of mass is held constant. Results of this analysis are verified by direct (unconstrained) MD simulations of surfactant absorption in the micelle. It is demonstrated that the system dynamics is likely to deviate from the minimum energy path on the energy landscape. These deviations create an energy barrier for the monomer absorption and increase an existing barrier for the monomer desorption. A reduced Fokker-Planck equation is proposed to model these effects.
Synthetic Absorption Lines for a Clumpy Medium: A Spectral Signature for Cloud Acceleration in AGN?
NASA Technical Reports Server (NTRS)
Waters, Tim; Proga, Daniel; Dannen, Randall; Kallman, Timothy R.
2017-01-01
There is increasing evidence that the highly ionized multiphase components of AGN disc winds may be due to thermal instability. The ions responsible for forming the observed X-ray absorption lines may only exist in relatively cool clumps that can be identified with the so-called warm absorbers. Here we calculate synthetic absorption lines for such warm absorbers from first principles by combining 2D hydrodynamic solutions of a two-phase medium with a dense grid of photoionization models to determine the detailed ionization structure of the gas. Our calculations reveal that cloud disruption, which leads to a highly complicated velocity field (i.e. a clumpy flow), will only mildly affect line shapes and strengths when the warm gas becomes highly mixed but not depleted. Prior to complete disruption, clouds that are optically thin to the driving UV resonance lines will cause absorption at an increasingly blueshifted line-of-sight velocity as they are accelerated. This behavior will imprint an identifiable signature on the line profile if warm absorbers are enshrouded in an even broader absorption line produced by a high column of intercloud gas. Interestingly, we show that it is possible to develop a spectral diagnostic for cloud acceleration by differencing the absorption components of a doublet line, a result that can be qualitatively understood using a simple partial covering model. Our calculations also permit us to comment on the spectral differences between cloud disruption and ionization changes driven by flux variability. Notably, cloud disruption offers another possibility for explaining absorption line variability.
Liebert, Adam; Wabnitz, Heidrun; Elster, Clemens
2012-05-01
Time-resolved near-infrared spectroscopy allows for depth-selective determination of absorption changes in the adult human head that facilitates separation between cerebral and extra-cerebral responses to brain activation. The aim of the present work is to analyze which combinations of moments of measured distributions of times of flight (DTOF) of photons and source-detector separations are optimal for the reconstruction of absorption changes in a two-layered tissue model corresponding to extra- and intra-cerebral compartments. To this end we calculated the standard deviations of the derived absorption changes in both layers by considering photon noise and a linear relation between the absorption changes and the DTOF moments. The results show that the standard deviation of the absorption change in the deeper (superficial) layer increases (decreases) with the thickness of the superficial layer. It is confirmed that for the deeper layer the use of higher moments, in particular the variance of the DTOF, leads to an improvement. For example, when measurements at four different source-detector separations between 8 and 35 mm are available and a realistic thickness of the upper layer of 12 mm is assumed, the inclusion of the change in mean time of flight, in addition to the change in attenuation, leads to a reduction of the standard deviation of the absorption change in the deeper tissue layer by a factor of 2.5. A reduction by another 4% can be achieved by additionally including the change in variance.
Absorption of current use pesticides by snapping turtle (Chelydra serpentina) eggs in treated soil.
Solla, Shane Raymond de; Martin, Pamela Anne
2011-10-01
Reptiles often breed within agricultural and urban environments that receive frequent pesticide use. Consequently, their eggs and thus developing embryos may be exposed to pesticides. Our objectives were to determine (i) if turtle eggs are capable of absorbing pesticides from treated soil, and (ii) if pesticide absorption rates can be predicted by their chemical and physical properties. Snapping turtle (Chelydra serpentina) eggs were incubated in soil that was treated with 10 pesticides (atrazine, simazine, metolachlor, azinphos-methyl, dimethoate, chlorpyrifos, carbaryl, endosulfan (I and II), captan, and chlorothalonil). There were two treatments, consisting of pesticides applied at application rate equivalents of 1.92 or 19.2 kg a.i/ha. Eggs were removed after one and eight days of exposure and analyzed for pesticides using gas chromatography coupled with a mass selective detector (GC-MSD) or high performance liquid chromatography (HPLC). Absorption of pesticides in eggs from soil increased with both magnitude and duration of exposure. Of the 10 pesticides, atrazine and metolachlor generally had the greatest absorption, while azinphos-methyl had the lowest. Chlorothalonil was below detection limits at both exposure rates. Our preliminary model suggests that pesticides having the highest absorption into eggs tended to have both low sorption to organic carbon or lipids, and high water solubility. For pesticides with high water solubility, high vapor pressure may also increase absorption. As our model is preliminary, confirmatory studies are needed to elucidate pesticide absorption in turtle eggs and the potential risk they may pose to embryonic development. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.
Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang
2008-01-01
Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.
Optical Hydrogen Absorption Consistent with a Thin Bow Shock Leading the Hot Jupiter HD 189733b
NASA Astrophysics Data System (ADS)
Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G.; Barman, Travis; Endl, Michael; Cochran, William D.
2015-09-01
Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter (HJ) exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit absorption signature around the HJ exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the timeseries absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric Hα detection, although the absorption depth measured here is ∼50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the planet to the stellar disk of 7.2 Rp. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. We model this signal as the early ingress of a planetary bow shock. If the bow shock is mediated by a planetary magnetosphere, the large standoff distance derived from the model suggests a large planetary magnetic field strength of Beq = 28 G. Better knowledge of exoplanet magnetic field strengths is crucial to understanding the role these fields play in planetary evolution and the potential development of life on planets in the habitable zone.
Sarmah, Nabajit; Bhattacharyya, Pradip Kr; Bania, Kusum K
2014-05-29
Time-dependent density functional theory (TDDFT) has been used to predict the absorption spectra of cation-π complexes of benzene and borazine. Both polarized continuum model (PCM) and discrete solvation model (DSM) and a combined effect of PCM and DSM on the absorption spectra have been elucidated. With decrease in size of the cation, the π → π* transitions of benzene and borazine are found to undergo blue and red shift, respectively. A number of different substituents (both electron-withdrawing and electron-donating) and a range of solvents (nonpolar to polar) have been considered to understand the effect of substituent and solvents on the absorption spectra of the cation-π complexes of benzene and borazine. Red shift in the absorption spectra of benzene cation-π complexes are observed with both electron-donating groups (EDGs) and electron-withdrawing groups (EWGs). The same trend has not been observed in the case of substituted borazine cation-π complexes. The wavelength of the electronic transitions corresponding to cation-π complexes correlates well with the Hammet constants (σ p and σ m ). This correlation indicates that the shifting of spectral lines of the cation-π complexes on substitution is due to both resonance and inductive effect. On incorporation of solvent phases, significant red or blue shifting in the absorption spectra of the complexes has been observed. Kamlet-Taft multiparametric equation has been used to explain the effect of solvent on the absorption spectra of complexes. Polarity and polarizability are observed to play an important role in the solvatochromism of the cation-π complexes.
Development of novel two-photon absorbing chromophores
NASA Astrophysics Data System (ADS)
Rogers, Joy E.; Slagle, Jonathan E.; McLean, Daniel G.; Sutherland, Richard L.; Krein, Douglas M.; Cooper, Thomas M.; Brant, Mark; Heinrichs, James; Kannan, Ramamurthi; Tan, Loon-Seng; Urbas, Augustine M.; Fleitz, Paul A.
2006-08-01
There has been much interest in the development of two-photon absorbing materials and many efforts to understand the nonlinear absorption properties of these dyes but this area is still not well understood. A computational model has been developed in our lab to understand the nanosecond nonlinear absorption properties that incorporate all of the measured one-photon photophysical parameters of a class of materials called AFX. We have investigated the nonlinear and photophysical properties of the AFX chromophores including the two-photon absorption cross-section, the excited state cross-section, the intersystem crossing quantum yield, and the singlet and triplet excited state lifetimes using a variety of experimental techniques that include UV-visible, fluorescence and phosphorescence spectroscopy, time correlated single photon counting, ultrafast transient absorption, and nanosecond laser flash photolysis. The model accurately predicts the nanosecond nonlinear transmittance data using experimentally measured parameters. Much of the strong nonlinear absorption has been shown to be due to excited state absorption from both the singlet and triplet excited states. Based on this understanding of the nonlinear absorption and the importance of singlet and triplet excited states we have begun to develop new two-photon absorbing molecules within the AFX class as well as linked to other classes of nonlinear absorbing molecules. This opens up the possibilities of new materials with unique and interesting properties. Specifically we have been working on a new class of two-photon absorbing molecules linked to platinum poly-ynes. In the platinum poly-yne chromophores the photophysics are more complicated and we have just started to understand what drives both the linear and non-linear photophysical properties.
NASA Astrophysics Data System (ADS)
Baniya, Sangita; Vardeny, Shai R.; Lafalce, Evan; Peygambarian, Nasser; Vardeny, Z. Valy
2017-06-01
We measure the spectra of resonant Raman scattering and doping-induced absorption of pristine films of the π -conjugated donor-acceptor (D -A ) copolymer, namely, thieno[3,4 b]thiophene-alt-benzodithiophene (PTB7), as well as photoinduced absorption spectrum in a blend of PTB7 with fullerene phenyl-C61-butyric acid methyl ester molecules used for organic photovoltaic (OPV) applications. We find that the D -A copolymer contains six strongly coupled vibrational modes having relatively strong Raman-scattering intensity, which are renormalized upon adding charge polarons onto the copolymer chains either by doping or photogeneration. Since the lower-energy charge-polaron absorption band overlaps with the renormalized vibrational modes, they appear as antiresonance lines superposed onto the induced polaron absorption band in the photoinduced absorption spectrum but less so in the doping-induced absorption spectrum. We show that the Raman-scattering, doping-, and photoinduced absorption spectra of PTB7 are well explained by the amplitude mode model, where a single vibrational propagator describes the renormalized modes and their related intensities in detail. From the relative strengths of the induced infrared activity of the polaron-related vibrations and electronic transitions, we obtain the polaron effective kinetic mass in PTB7 using the amplitude mode model to be approximately 3.8 m* , where m* is the electron effective mass. The enhanced polaronic mass in PTB7 may limit the charge mobility, which, in turn, reduces the OPV solar-cell efficiency based on the PTB7-fullerene blend.
NASA Astrophysics Data System (ADS)
Ding, Fei; Liu, Wei; Sun, Ye; Yang, Xin-Ling; Sun, Ying; Zhang, Li
2012-01-01
Chloramphenicol is a low cost, broad spectrum, highly active antibiotic, and widely used in the treatment of serious infections, including typhoid fever and other life-threatening infections of the central nervous system and respiratory tract. The purpose of the present study was to examine the conjugation of chloramphenicol with hemoglobin (Hb) and compared with albumin at molecular level, utilizing fluorescence, UV/vis absorption, circular dichroism (CD) as well as molecular modeling. Fluorescence data indicate that drug bind Hb generate quenching via static mechanism, this corroborates UV/vis absorption measurements that the ground state complex formation with an affinity of 10 4 M -1, and the driving forces in the Hb-drug complex are hydrophilic interactions and hydrogen bonds, as derived from computational model. The accurate binding site of drug has been identified from the analysis of fluorescence and molecular modeling, α1β2 interface of Hb was assigned to possess high-affinity for drug, which located at the β-37 Trp nearby. The structural investigation of the complexed Hb by synchronous fluorescence, UV/vis absorption, and CD observations revealed some degree of Hb structure unfolding upon complexation. Based on molecular modeling, we can draw the conclusion that the binding affinity of drug with albumin is superior, compared with Hb. These phenomena can provide salient information on the absorption, distribution, pharmacology, and toxicity of chloramphenicol and other drugs which have analogous configuration with chloramphenicol.
NASA Astrophysics Data System (ADS)
Cho, C.; Kim, S. W.; Lee, M.; Gustafsson, O.; Fang, W.
2017-12-01
Black carbon (BC) is a major contributor to the atmospheric heating by absorbing the solar radiation. According to recent studies, the solar absorption of brown carbon (BrC) is not negligible and even comparable to that of BC at visible to UV wavelengths, but most optical instruments that quantify light absorption are unable to distinguish each other. Thus, light absorption properties of BC or BrC usually have been studied through modeling researches by using mass absorption cross-section (MAC). Although MAC has a large spatial and temporal variability, most modeling studies have used a specific value of BC MAC and even the absorption by BrC is seldom considered in most chemical and climate models. The generalization of modeling research can lead to serious errors of radiative forcing by BC and BrC. In this study, MAC of BC and BrC are separately determined and the contribution of BC and BrC on aerosol light absorption are estimated from co-located simultaneous in-situ measurements, COSMOS, CLAP and Sunset EC/OC analyzer, at Gosan climate observatory, Korea during Gosan Pollution Experiment in January 2014 (GoPoEx 2014). At 565 nm, MAC of BC is found to be about 6.4±1.5 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements. This value is similar to those from previous studies in China (Cui et al., STE, 2016), but lower than those observed to be ranged 10-18 m2 g-1 in America or Europe (Lack et al., PNAS, 2012). Aerosol absorption coefficient (AAC) and BC mass concentration from COSMOS, meanwhile, are approximately 15-20% lower than those of CLAP. This difference can be attributable to the contribution of BrC. The MAC of BrC was calculated using the absorption coefficient of BrC and by the following three methods: (1) the difference of mass concentration from Aethalometer and COSMOS applied new BC MAC of this study, (2) The mass concentration of water-soluble organic carbon, (3) a method using the mass concentration of organic carbon suggested by Chung et al. (ACP, 2012). The MAC of BrC values obtained from the three methods ranged from 1.0 m2 g-1 to 1.5 m2 g-1 at 565 nm which is slightly higher than those from previous studies (Srinivas et al., AE, 2016). The contribution of BC to AAC is estimated to be about 85-90%, while BrC accounts for about 10-15% of total AAC, having increases about 1% of BrC contribution when the BrC MAC value increases 10%.
NASA Technical Reports Server (NTRS)
Crisp, D.
1997-01-01
The atmospheric radiative transfer algorithms used in most global general circulation models underestimate the globally-averaged solar energy absorbed by cloudy atmospheres by up to 25 W/sq m. The origin of this anomalous absorption is not yet known, but it has been attributed to a variety of sources including oversimplified or missing physical processes in these models, uncertainties in the input data, and even measurement errors. Here, a sophisticated atmospheric radiative transfer model was used to provide a more comprehensive description of the physical processes that contribute to the absorption of solar radiation by the Earth's atmosphere. We found that the amount of sunlight absorbed by a cloudy atmosphere is inversely proportional to the solar zenith angle and the cloud top height, and directly proportional to the cloud optical depth and the water vapor concentration within the clouds. Atmospheres with saturated, optically-thick, low clouds absorbed about 12 W/sq m more than clear atmospheres. This accounts for about 1/2 to 1/3 of the anomalous ab- sorption. Atmospheres with optically thick middle and high clouds usually absorb less than clear atmospheres. Because water vapor is concentrated within and below the cloud tops, this absorber is most effective at small solar zenith angles. An additional absorber that is distributed at or above the cloud tops is needed to produce the amplitude and zenith angle dependence of the observed anomalous absorption.
Exocomet Orbit Fitting: Accelerating Coma Absorption During Transits of β Pictoris
NASA Astrophysics Data System (ADS)
Kennedy, Grant M.
2018-06-01
Comets are a remarkable feature in our night sky, visible on their passage through the inner Solar system as the Sun's energy sublimates ices and liberates surface material, generating beautiful comae, dust, and ion tails. Comets are also thought to orbit other stars, and are the most promising interpretation of sporadic absorption features (i.e. transits) seen in spectra of stars such as β Pictoris and 49 Ceti. These "exocomets" are thought to form and evolve in the same way as in the Solar system, and as in the Solar system we may gain insight into their origins by deriving their orbits. In the case of β Pictoris, orbits have been estimated indirectly, using the radial velocity of the absorption features coupled with a physical evaporation model to estimate the stellocentric distance at transit dtr. Here, we note that the inferred dtr imply that some absorption signatures should accelerate over several hours, and show that this acceleration is indeed seen in HARPS spectra. This new constraint means that orbital characteristics can be obtained directly, and the pericentre distance and longitude constrained when parabolic orbits are assumed. The results from fitting orbits to 12 accelerating features, and a handful of non-accelerating ones, are in broad agreement with previous estimates based on an evaporation model, thereby providing some validation of the exocomet hypothesis. A prediction of the evaporation model, that coma absorption is deeper for more distant transits, is also seen here.
Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria.
Reichardt, Thomas A; Collins, Aaron M; McBride, Robert C; Behnke, Craig A; Timlin, Jerilyn A
2014-08-20
We assess the measurement of hyperspectral reflectance for outdoor monitoring of green algae and cyanobacteria cultures with a multichannel, fiber-coupled spectroradiometer. Reflectance data acquired over a 4-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, which is dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water-surface reflection of sunlight and skylight. For the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a nonsampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared with auxiliary measurements and physics-based calculations. The model-derived magnitudes of sunlight and skylight water-surface reflections compare favorably with Fresnel reflectance calculations, while the model-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. Finally, the water temperatures derived from the reflectance model exhibit excellent agreement with thermocouple measurements during the morning hours but correspond to significantly elevated temperatures in the afternoon hours.
NASA Astrophysics Data System (ADS)
Colarco, P. R.; Rocha Lima, A.; Darmenov, A.; Bloecker, C.
2017-12-01
Mineral dust aerosols scatter and absorb solar and infrared radiation, impacting the energy budget of the Earth system which in turns feeds back on the dynamical processes responsible for mobilization of dust in the first place. In previous work with radiatively interactive aerosols in the NASA Goddard Earth Observing System global model (GEOS-5) we found a positive feedback between dust absorption and emissions. Emissions were the largest for the highest shortwave absorption considered, which additionally produced simulated dust transport in the best agreement with observations. The positive feedback found was in contrast to other modeling studies which instead found a negative feedback, where the impact of dust absorption was to stabilize the surface levels of the atmosphere and so reduce wind speeds. A key difference between our model and other models was that in GEOS-5 we simulated generally larger dust particles, with correspondingly larger infrared absorption that led to a pronounced difference in the diurnal cycle of dust emissions versus simulations where these long wave effects were not considered. In this paper we seek to resolve discrepancies between our previous simulations and those of other modeling groups. We revisit the question of dust radiative feedback on emissions with a recent version of the GEOS-5 system running at a higher spatial resolution and including updates to the parameterizations for dust mobilization, initial dust particle size distribution, loss processes, and radiative transfer, and identify key uncertainties that remain based on dust optical property assumptions.
Canopy structural complexity predicts forest canopy light absorption at continental scales
NASA Astrophysics Data System (ADS)
Atkins, J. W.; Fahey, R. T.; Hardiman, B. S.; Gough, C. M.
2017-12-01
Understanding how the physical structure of forest canopies influence light acquisition is a long-standing area of inquiry fundamental to advancing understanding of many areas of the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure employed in earth system models are often limited to leaf area index (LAI)—a measure of the quantity of leaves in the canopy. However, more novel multi-dimensional measures of canopy structural complexity (CSC) that describe the arrangement of vegetation are now possible because of technological advances, and may improve modeled estimates of canopy light absorption. During 2016 and 2017, we surveyed forests at sites from across the eastern, southern, and midwestern United States using portable canopy LiDAR (PCL). This survey included 14 National Ecological Observation Network (NEON), Long-Term Ecological Research Network (LTER,) Ameriflux, and University affiliated sites. Our findings show that a composite model including CSC parameters and LAI explains 96.8% of the variance in light acquisition, measured as the fraction of photosynthetically absorbed radiation (fPAR) at the continental scale, and improvement of 12% over an LAI only model. Under high light sky conditions, measures of CSC are more strongly coupled with light acquisition than under low light, possibly because light scattering partially decouples CSC from canopy light absorption under low, predominately diffuse light conditions. We conclude that scalable estimates of CSC metrics may improve continent-wide estimates of canopy light absorption and, therefore, carbon uptake, with implications for remote sensing and earth system modeling.
Detectability of cold streams into high-redshift galaxies by absorption lines
NASA Astrophysics Data System (ADS)
Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel
2012-08-01
Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.
Performance Modeling of an Airborne Raman Water Vapor Lidar
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Schwemmer, G.; Berkoff, T.; Plotkin, H.; Ramos-Izquierdo, L.; Pappalardo, G.
2000-01-01
A sophisticated Raman lidar numerical model had been developed. The model has been used to simulate the performance of two ground-based Raman water vapor lidar systems. After tuning the model using these ground-based measurements, the model is used to simulate the water vapor measurement capability of an airborne Raman lidar under both day-and night-time conditions for a wide range of water vapor conditions. The results indicate that, under many circumstances, the daytime measurements possess comparable resolution to an existing airborne differential absorption water vapor lidar while the nighttime measurement have higher resolution. In addition, a Raman lidar is capable of measurements not possible using a differential absorption system.
Phototransduction early steps model based on Beer-Lambert optical law.
Salido, Ezequiel M; Servalli, Leonardo N; Gomez, Juan Carlos; Verrastro, Claudio
2017-02-01
The amount of available rhodopsin on the photoreceptor outer segment and its change over time is not considered in classic models of phototransduction. Thus, those models do not take into account the absorptance variation of the outer segment under different brightness conditions. The relationship between the light absorbed by a medium and its absorptance is well described by the Beer-Lambert law. This newly proposed model implements the absorptance variation phenomenon in a set of equations that admit photons per second as input and results in active rhodopsins per second as output. This study compares the classic model of phototransduction developed by Forti et al. (1989) to this new model by using different light stimuli to measure active rhodopsin and photocurrent. The results show a linear relationship between light stimulus and active rhodopsin in the Forti model and an exponential saturation in the new model. Further, photocurrent values have shown that the new model behaves equivalently to the experimental and theoretical data as published by Forti in dark-adapted rods, but fits significantly better under light-adapted conditions. The new model successfully introduced a physics optical law to the standard model of phototransduction adding a new processing layer that had not been mathematically implemented before. In addition, it describes the physiological concept of saturation and delivers outputs in concordance to input magnitudes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Timoshenko, J.; Shivhare, A.; Scott, R. W.; ...
2016-06-30
We adopted ab-initio X-ray Absorption Near Edge Structure (XANES) modelling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modelling, where the candidate structures are known, and the inverse modelling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by following the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.
Deconstructing the Spectrum of the Soft X-ray Background
NASA Technical Reports Server (NTRS)
Kuntz, K. D.; Snowden, S. L.
2000-01-01
The soft X-ray background in the 0.1-1.0 keV band is known to be produced by at least three sources; the Local Hot Bubble (LHB), the extragalactic power law (EPL), and a seemingly galactic component that lies outside the bulk of the absorption that is due to the ISM of the galactic disk. This last component, which we call the Trans-Absorption Emission (TAE), has been modeled by a number of groups who have derived disparate measures of its temperature. The differences have arisen from differing assumptions about the structure of the emitting gas and unrecognized methodological difficulties. In particular, spectral fitting methods do not uniquely separate the TAE from the foreground emission that is due the LHB. This "degeneracy" can be resolved using the angular variation of the absorption of the TAE. We show that the TAE cannot be characterized by a single thermal component; no single-component model can be consistent with both the spectral energy distribution of the TAE emission and the angular variation due to absorption by the galactic disk. We use the angular anticorrelation of the ROSAT All-Sky Survey with the galactic absorption to separate local from distant emission components, and to fit the spectral energy distribution of the resulting distant emission. We find that the emission is best described by a two-thermal-component model with logT(sub S) = 6.06(sup +0.14, sub -0.12) and log T(sub H) = 6.42(sup +0.14, sub -0.12). This two-thermal-component TAE fits the ROSAT spectral energy distribution significantly better than single-component models, and is consistent with both angular variation and spectral constraints.
Illuminating the Potential of Thin-Film Photovoltaics
NASA Astrophysics Data System (ADS)
Katahara, John K.
Widespread adoption of photovoltaics (PV) as an alternative electricity source will be predicated upon improvements in price performance compared to traditional power sources. Solution processing of thin-film PV is one promising way to reduce the capital expenditure (CAPEX) of manufacturing solar cells. However, it is imperative that a shift to solution processing does not come at the expense of device performance. One particularly problematic parameter for thin-film PV has historically been the open-circuit voltage (VOC ). As such, there is a pressing need for characterization tools that allow us to quickly and accurately evaluate the potential performance of solution-processed PV absorber layers. This work describes recent progress in developing photoluminescence (PL) techniques for probing optoelectronic quality in semiconductors. We present a generalized model of absorption that encompasses ideal direct-gap semiconductor absorption and various band tail models. This powerful absorption model is used to fit absolute intensity PL data and extract quasi-Fermi level splitting (maximum attainable VOC) for a variety of PV absorber technologies. This technique obviates the need for full device fabrication to get feedback on optoelectronic quality of PV absorber layers and has expedited materials exploration. We then use this absorption model to evaluate the thermodynamic losses due to different band tail cases and estimate tail losses in Cu 2ZnSn(S,Se)4 (CZTSSe). The effect of sub-bandgap absorption on PL quantum yield (PLQY) and voltage is elucidated, and new analysis techniques for extracting VOC from PLQY are validated that reduce computation time and provide us even faster feedback on material quality. We then use PL imaging to develop a mechanism describing the degradation of solution-processed CH3NH3PbI3 films under applied bias and illumination.
Modeling the intracellular pathogen-immune interaction with cure rate
NASA Astrophysics Data System (ADS)
Dubey, Balram; Dubey, Preeti; Dubey, Uma S.
2016-09-01
Many common and emergent infectious diseases like Influenza, SARS, Hepatitis, Ebola etc. are caused by viral pathogens. These infections can be controlled or prevented by understanding the dynamics of pathogen-immune interaction in vivo. In this paper, interaction of pathogens with uninfected and infected cells in presence or absence of immune response are considered in four different cases. In the first case, the model considers the saturated nonlinear infection rate and linear cure rate without absorption of pathogens into uninfected cells and without immune response. The next model considers the effect of absorption of pathogens into uninfected cells while all other terms are same as in the first case. The third model incorporates innate immune response, humoral immune response and Cytotoxic T lymphocytes (CTL) mediated immune response with cure rate and without absorption of pathogens into uninfected cells. The last model is an extension of the third model in which the effect of absorption of pathogens into uninfected cells has been considered. Positivity and boundedness of solutions are established to ensure the well-posedness of the problem. It has been found that all the four models have two equilibria, namely, pathogen-free equilibrium point and pathogen-present equilibrium point. In each case, stability analysis of each equilibrium point is investigated. Pathogen-free equilibrium is globally asymptotically stable when basic reproduction number is less or equal to unity. This implies that control or prevention of infection is independent of initial concentration of uninfected cells, infected cells, pathogens and immune responses in the body. The proposed models show that introduction of immune response and cure rate strongly affects the stability behavior of the system. Further, on computing basic reproduction number, it has been found to be minimum for the fourth model vis-a-vis other models. The analytical findings of each model have been exemplified by numerical simulations.
Role of Social Presence and Cognitive Absorption in Online Learning Environments
ERIC Educational Resources Information Center
Leong, Peter
2011-01-01
This article investigates the relationships between social presence, cognitive absorption, interest, and student satisfaction in online learning. A hypothesized structural equation model was developed to study these critical variables that may influence interaction in online learning environments. Contrary to expectations, the study determined…
NASA Astrophysics Data System (ADS)
Kasi Viswanath, A.; Smith, Wayne L.; Patterson, H.
1982-04-01
Crystals of K 2Pt(CN) 6 doped with Pt(CN) 2-4 show an absorption band at 337 nm which is assigned as a mixed-valence (MV) transition from Pt (II) to Pt(IV). From a Hush model analysis, the absorption band is interpreted to be class II in the Day—Robin scheme. When the MV band is laser excited at 337 nm, emmision is observed from Pt(CN) 2-4 clusters.
A Comparison of High-Latitude Ionosphere Propagation Predictions from AMBCOM with Measured Data
1991-03-01
absorption, i.e. auroral absorption and polar cap absorption (PCA), as well as visual displays of aurora borealis . Energetic electrons are the major cause of...Nikhil Dave of the Naval Ocean Systems Center (NOSC), San Diego , California, conducted a comparison of the data produced by two models (RADAR C and AMBCOM...92 vii LIST OF FIGURES Figure 1. The earth’s magnetic field showing the effects of the solar wind ........ 2 Figure 2. The aurora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thappily, Praveen, E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com; Shiju, K., E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com
Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software.
Design and manufacture of high absorption metal dielectric coatings for the reduction of straylight
NASA Astrophysics Data System (ADS)
Cathelinaud, Michel; Lemarquis, Frédéric; Torchio, Philippe; Amra, Claude
2017-11-01
This paper describes the design and manufacture of broadband metal dielectric absorbers. First, we give some design principles to obtain achromatic absorption properties. Then, we describe a new method to determine the complex refractive index of metallic layers. A graded index model is developed to take account of the evolution of the film packing density. Manufacturing is detailed in the last section. Absorption levels higher than 99.9% have been measured over the visible range.
Remote Sensing of Aerosol and Non-Aerosol Absorption
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Dubovik, O.; Holben, B. N.; Remer, L. A.; Tanre, D.; Lau, William K. M. (Technical Monitor)
2001-01-01
Remote sensing of aerosol from the new satellite instruments (e.g. MODIS from Terra) and ground based radiometers (e.g. the AERONET) provides the opportunity to measure the absorption characteristics of the ambient undisturbed aerosol in the entire atmospheric column. For example Landsat and AERONET data are used to measure spectral absorption of sunlight by dust from West Africa. Both Application of the Landsat and AERONET data demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. This is due to difficulties of measuring dust absorption in situ, and due to the often contamination of dust properties by the presence of air pollution or smoke. We use the remotely sensed aerosol absorption properties described by the spectral sin le scattering albedo, together with statistics of the monthly optical thickness for the fine and coarse aerosol derived from the MODIS data. The result is an estimate of the flux of solar radiation absorbed by the aerosol layer in different regions around the globe where aerosol is prevalent. If this aerosol forcing through absorption is not included in global circulation models, it may be interpreted as anomalous absorption in these regions. In a preliminary exercise we also use the absorption measurements by AERONET, to derive the non-aerosol absorption of the atmosphere in cloud free conditions. The results are obtained for the atmospheric windows: 0.44 microns, 0.66 microns, 0.86 microns and 1.05 microns. In all the locations over the land and ocean that were tested no anomalous absorption in these wavelengths, was found within absorption optical thickness of +/- 0.005.
A resonant absorption line in the ASCA spectrum of NGC 985?
NASA Astrophysics Data System (ADS)
Nicastro, F.; Fiore, F.; Brandt, N.; Reynolds, C. S.
1999-01-01
We present timing and spectral analyses of the ASCA observation of the Seyfert 1 galaxy NGC 985. The 0.6-10keV spectrum of this source is complex: large residuals are evident below 1keV when fitting the spectrum with a power-law model. Fitting a warm absorber model to the 0.6-2.5keV spectrum gives α=1.12+/-0.04, LogNWAH=21.97+/-0.08 and LogU=0.06+/-0.09, but the residuals continue to show a deficit of counts between 0.9 and 1keV. Adding an absorption line improves the fit, and the energy of the line is consistent with that of Kα NeIX-X resonant absorption lines. Hence, we confirm the presence of an ionized absorber along the line of sight to this source and interpret the further 1keV spectral feature as the first detection of a strong resonant absorption line associated with this system. The extrapolation of this model above 2.5keV produces large positive residuals above 3-4keV. Fitting the data with a broken power law plus warm absorber model gives an acceptable χ2 and Δα~0.5. A narrow iron line at 6.4keV (quasar frame) of equivalent width 138+64-110eV is also present in the ASCA data.
A contribution of black and brown carbon to the aerosol light absorption
NASA Astrophysics Data System (ADS)
Kim, Sang-Woo; Cho, Chaeyoon; Jo, Duseong; Park, Rokjin
2017-04-01
Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols and is typically dominated by soot-like elemental carbon (EC). Organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC; Alexander et al., 2008). These two aerosols contribute to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer, but most optical instruments that quantify light absorption are unable to distinguish one type of absorbing aerosol from another (Moosmüller et al. 2009). In this study, we separate total aerosol absorption from these two different light absorbers from co-located simultaneous in-situ measurements, such as Continuous Soot Monitoring System (COSMOS), Continuous Light Absorption Photometer (CLAP) and Sunset EC/OC analyzer, at Gosan climate observatory, Korea. We determine the mass absorption cross-section (MAC) of BC, and then estimate the contribution of BC and BrC on aerosol light absorption, together with a global 3-D chemical transport model (GEOS-Chem) simulation. At 565 nm wavelength, BC MAC is found to be about 5.4±2.8 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements during January-May 2012. This value is similar to those from Alexander et al. (2008; 4.3 ˜ 4.8 m2 g-1 at 550 nm) and Chung et al. (2012; 5.1 m2 g-1 at 520 nm), but slightly lower than Bond and Bergstrom (2006; 7.5±1.2 m2 g-1 at 550 nm). The COMOS BC mass concentration calculated with 5.4 m2 g-1 of BC MAC shows a good agreement with thermal EC concentration, with a good slope (1.1). Aerosol absorption coefficient and BC mass concentration from COSMOS, meanwhile, are approximately 25 ˜ 30 % lower than those of CLAP. This difference can be attributable to the contribution of volatile light-absorbing aerosols (i.e., BrC). The absorption coefficient of BrC, which is determined by the difference of absorption coefficients from CLAP and COSMOS measurements, increases with increasing thermal OC mass concentration. Monthly variation of BC and BrC absorption coefficients estimated from in-situ measurements and GEOS-Chem model simulation are generally well agreed, even though GEOS-Chem simulation overestimates BC absorption coefficient while underestimates BrC absorption coefficient. Here, we note that MAC of 5.4 m2 g-1 and3.8 m2 g-1 (taken from Alexander et al., 2008) are used to calculate aerosol absorption coefficient of BC and BrC, respectively. The contribution of BC to aerosol light absorption is estimated to be about 70˜75%, while BrC accounts for about 25˜30% of total aerosol light absorption, having a significant climatic implication in East Asia.
Sorption Modeling and Verification for Off-Gas Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavlarides, Lawrence; Yiacoumi, Sotira; Tsouris, Costas
2016-12-20
This project was successfully executed to provide valuable adsorption data and improve a comprehensive model developed in previous work by the authors. Data obtained were used in an integrated computer program to predict the behavior of adsorption columns. The model is supported by experimental data and has been shown to predict capture of off gas similar to that evolving during the reprocessing of nuclear waste. The computer program structure contains (a) equilibrium models of off-gases with the adsorbate; (b) mass-transfer models to describe off-gas mass transfer to a particle, diffusion through the pores of the particle, and adsorption on themore » active sites of the particle; and (c) incorporation of these models into fixed bed adsorption modeling, which includes advection through the bed. These models are being connected with the MOOSE (Multiphysics Object-Oriented Simulation Environment) software developed at the Idaho National Laboratory through DGOSPREY (Discontinuous Galerkin Off-gas SeParation and REcoverY) computer codes developed in this project. Experiments for iodine and water adsorption have been conducted on reduced silver mordenite (Ag0Z) for single layered particles. Adsorption apparatuses have been constructed to execute these experiments over a useful range of conditions for temperatures ranging from ambient to 250°C and water dew points ranging from -69 to 19°C. Experimental results were analyzed to determine mass transfer and diffusion of these gases into the particles and to determine which models best describe the single and binary component mass transfer and diffusion processes. The experimental results were also used to demonstrate the capabilities of the comprehensive models developed to predict single-particle adsorption and transients of the adsorption-desorption processes in fixed beds. Models for adsorption and mass transfer have been developed to mathematically describe adsorption kinetics and transport via diffusion and advection processes. These models were built on a numerical framework for solving conservation law problems in one-dimensional geometries such as spheres, cylinders, and lines. Coupled with the framework are specific models for adsorption in commercial adsorbents, such as zeolites and mordenites. Utilizing this modeling approach, the authors were able to accurately describe and predict adsorption kinetic data obtained from experiments at a variety of different temperatures and gas phase concentrations. A demonstration of how these models, and framework, can be used to simulate adsorption in fixed- bed columns is provided. The CO 2 absorption work involved modeling with supportive experimental information. A dynamic model was developed to simulate CO 2 absorption using high alkaline content water solutions. The model is based upon transient mass and energy balances for chemical species commonly present in CO 2 absorption. A computer code was developed to implement CO 2 absorption with a chemical reaction model. Experiments were conducted in a laboratory scale column to determine the model parameters. The influence of geometric parameters and operating variables on CO 2 absorption was studied over a wide range of conditions. Continuing work could employ the model to control column operation and predict the absorption behavior under various input conditions and other prescribed experimental perturbations. The value of the validated models and numerical frameworks developed in this project is that they can be used to predict the sorption behavior of off-gas evolved during the reprocessing of nuclear waste and thus reduce the cost of the experiments. They can also be used to design sorption processes based on concentration limits and flow-rates determined at the plant level.« less
Modeling methylene blue aggregation in acidic solution to the limits of factor analysis.
Golz, Emily K; Vander Griend, Douglas A
2013-01-15
Methylene blue (MB(+)), a common cationic thiazine dye, aggregates in acidic solutions. Absorbance data for equilibrated solutions of the chloride salt were analyzed over a concentration range of 1.0 × 10(-3) to 2.6 × 10(-5) M, in both 0.1 M HCl and 0.1 M HNO(3). Factor analyses of the raw absorbance data sets (categorically a better choice than effective absorbance) definitively show there are at least three distinct molecular absorbers regardless of acid type. A model with monomer, dimer, and trimer works well, but extensive testing has resulted in several other good models, some with higher order aggregates and some with chloride anions. Good models were frequently indistinguishable from each other by quality of fit or reasonability of molar absorptivity curves. The modeling of simulated data sets demonstrates the cases and degrees to which signal noise in the original data obscure the true model. In particular, the more mathematically similar (less orthogonal) the molar absorptivity curves of the chemical species in a model are, the less signal noise it takes to obscure the true model from other potentially good models. Unfortunately, the molar absorptivity curves in dye aggregation systems like that of methylene blue tend to be sufficiently similar so as to lead to the obscuration of models even at the noise levels (0.0001 ABS) of typical benchtop spectrophotometers.
Brvar, Nina; Mateović-Rojnik, Tatjana; Grabnar, Iztok
2014-10-01
This study aimed to develop a population pharmacokinetic model for tramadol that combines different input rates with disposition characteristics. Data used for the analysis were pooled from two phase I bioavailability studies with immediate (IR) and prolonged release (PR) formulations in healthy volunteers. Tramadol plasma concentration-time data were described by an inverse Gaussian function to model the complete input process linked to a two-compartment disposition model with first-order elimination. Although polymorphic CYP2D6 appears to be a major enzyme involved in the metabolism of tramadol, application of a mixture model to test the assumption of two and three subpopulations did not reveal any improvement of the model. The final model estimated parameters with reasonable precision and was able to estimate the interindividual variability of all parameters except for the relative bioavailability of PR vs. IR formulation. Validity of the model was further tested using the nonparametric bootstrap approach. Finally, the model was applied to assess absorption kinetics of tramadol and predict steady-state pharmacokinetics following administration of both types of formulations. For both formulations, the final model yielded a stable estimate of the absorption time profiles. Steady-state simulation supports switching of patients from IR to PR formulation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Valero, Francisco P. J.; Cess, Robert D.; Zhang, Minghua; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Vitko, John, Jr.
1997-01-01
As part of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), we have obtained and analyzed measurements made from collocated aircraft of the absorption of solar radiation within the atmospheric column between the two aircraft. The measurements were taken during October 1995 at the ARM site in Oklahoma. Relative to a theoretical radiative transfer model, we find no evidence for excess solar absorption in the clear atmosphere and significant evidence for its existence in the cloudy atmosphere. This excess cloud solar absorption appears to occur in both visible (0.224-0.68 microns) and near-infrared (0.68-3.30 microns) spectral regions, although not at 0.5 microns for the visible contribution, and it is shown to be true absorption rather than an artifact of sampling errors caused by measuring three-dimensional clouds.
Duan, Yuetao; Luo, Jie; Wang, Guanghao; Hang, Zhi Hong; Hou, Bo; Li, Jensen; Sheng, Ping; Lai, Yun
2015-01-01
We derive and numerically demonstrate that perfect absorption of elastic waves can be achieved in two types of ultra-thin elastic meta-films: one requires a large value of almost pure imaginary effective mass density and a free space boundary, while the other requires a small value of almost pure imaginary effective modulus and a hard wall boundary. When the pure imaginary density or modulus exhibits certain frequency dispersions, the perfect absorption effect becomes broadband, even in the low frequency regime. Through a model analysis, we find that such almost pure imaginary effective mass density with required dispersion for perfect absorption can be achieved by elastic metamaterials with large damping. Our work provides a feasible approach to realize broadband perfect absorption of elastic waves in ultra-thin films. PMID:26184117
Stinchcomb, A L
2013-01-01
Annette Bunge and her research group have had the central theme of mathematically modeling the dermal absorption process. Most of the research focus has been on estimating dermal absorption for the purpose of risk assessment, for exposure scenarios in the environment and in the occupational setting. Her work is the basis for the United States Environmental Protection Agency's estimations for dermal absorption from contaminated water. It is also the basis of the dermal absorption estimates used in determining if chemicals should be assigned a 'skin notation' for potential systemic toxicity following occupational skin exposure. The work is truly translational in that it started with mathematical theory, is validated with preclinical and human experiments, and then is used in guidelines to protect human health. Her valued research has also extended into the topical drug bioavailability and bioequivalence assessment field.
NASA Astrophysics Data System (ADS)
Shakespeare, Tarja Tuulikki
Traditionally, single constant Kubelka-Munk type colorant formulation algorithms have been used for color control in the paper industry. Tuning data is derived from colored handsheets representing dyeing of a particular color grade, applicable to a substrate of similar properties. Due to furnish variation and changes in the chemical environment, such tuning data is of limited accuracy in practice. Kubelka-Munk approaches have numerous other limitations, in part due to their physically unrealistic assumptions. In particular, they neglect fluorescence phenomena, the interdependence of absorption and scattering, and nonlinearities due to colorant interactions. This thesis addresses those problems. A set of colored handsheets was made, employing several anionic direct dyes and fluorescent colorants, individually and in various combinations. Both a spectrophotometer and a spectrofluorimeter were used for measuring color properties. An extended Langmuir adsorption isotherm was used in modelling the dye-on- fiber in each dyeing. Kubelka-Munk absorption and scattering coefficients were then modelled based on dye- on-fiber, and a number of the limitations of the Kubelka- Munk approach were clearly demonstrated. An extended phenomenological model was derived, incorporating fluorescence and interdependence of absorption and scattering. This model predicts illuminator-independent radiance transfer factors based on dye-on-fiber, from which total radiance factor responses under arbitrary illumination can be computed. It requires spectrofluorometric measurements to characterize the coloring process. A new reflectance factor model, based on the same adsorption isotherm approach, was derived for non- fluorescent colorants. A corresponding total radiance factor model, which is illuminator-dependent, was derived for fluorescent colorants. These models have provision for phenomena such as broadening of absorption and scattering bands, which are encountered in practice. Being based on spectrophotometric measurements, they are directly applicable in industrial settings, and predict colorant responses reliably under wider ranges of conditions than the Kubelka-Munk approach.
NASA Astrophysics Data System (ADS)
Hodgson, M. R.; Orlowski, R. J.
1987-03-01
In this second part of a report on factory scale modelling use of a 1:50 scale variable model as a research tool is described. Details of the model are presented. The results of measurements of reverberation time and sound propagation, made in various model configurations, are used to investigate the main factors influencing factory sound fields, and the applicability of the Sabine theory to factories. The parameters investigated are the enclosure geometry (aspect ratio, volume and roof pitch), surface absorption and fittings (density, size, surface area, vertical distribution and specific types). Despite certain limitations and uncertainties resulting, for example, from surprising results associated with surface absorption, models are shown to be effective research tools. The inapplicability of the Sabine theory is confirmed and elucidated.
Understanding the factors that affect the gastrointestinal absorption of chemicals is important to predicting the delivered systemic dose of chemicals following exposure in food, water, and other media. Two factors of particular interest are the effects of a matrix to which th...
Shocks in Dense Clouds in the Vela Supernova Remnant: FUSE
NASA Technical Reports Server (NTRS)
Nichols, Joy; Sonneborn, George (Technical Monitor)
2002-01-01
We have obtained 8 LWRS FUSE spectra to study a recently identified interaction of the Vela supernova remnant with a dense cloud region along its western edge. The goal is to quantify the temperature, ionization, density, and abundance characteristics associated with this shock/dense cloud interface by means of UV absorption line studies. Our detection of high-velocity absorption line C I at +90 to +130 km/s with IUE toward a narrow region interior to the Vela SNR strongly suggests the Vela supernova remnant is interacting with a dense ISM or molecular cloud. The shock/dense cloud interface is suggested by (1) the rarity of detection of high-velocity C I seen in IUE spectra, (2) its very limited spatial distribution in the remnant, and (3) a marked decrease in X-ray emission in the region immediately west of the position of these stars where one also finds a 100 micron emission ridge in IRAS images. We have investigated the shock physics and general properties of this interaction region through a focussed UV absorption line study using FUSE spectra. We have FUSE data on OVI absorption lines observed toward 8 stars behind the Vela supernova remnant (SNR). We compare the OVI observations with IUE observations of CIV absorption toward the same stars. Most of the stars, which are all B stars, have complex continua making the extraction of absorption lines difficult. Three of the stars, HD 72088, HD 72089 and HD 72350, however, are rapid rotators (v sin i less than 100 km/s) making the derivation of absorption column densities much easier. We have measured OVI and CIV column densities for the "main component" (i.e. the low velocity component) for these stars. In addition, by removing the H2 line at 1032.35A (121.6 km/s relative to OVI), we find high velocity components of OVI at approximately 150 km/s that we attribute to the shock in the Vela SNR. The column density ratios and magnitudes are compared to both steady shock models and results of hydrodynamical SNR modeling. We find that the models require the shock to be relatively slow (approximately 100 - 170 km/s) to match the FUSE data. We discuss the implications of our results for models of the evolution of the Vela SNR.
Suys, Estelle J A; Chalmers, David K; Pouton, Colin W; Porter, Christopher J H
2018-06-04
The ability of lipid-based formulations (LBFs) to increase the solubilization, and prolong the supersaturation, of poorly water-soluble drugs (PWSDs) in the gastrointestinal (GI) fluids has generated significant interest in the past decade. One mechanism to enhance the utility of LBFs is to prolong supersaturation via the addition of polymers that inhibit drug precipitation (polymeric precipitation inhibitors or PPIs) to the formulation. In this work, we have evaluated the performance of a range of PPIs and have identified PPIs that are sufficiently soluble in LBF to allow the construction of single phase formulations. An in vitro model was first employed to assess drug (fenofibrate) solubilization and supersaturation on LBF dispersion and digestion. An in vitro-in situ model was subsequently employed to simultaneously evaluate the impact of PPI enhanced drug supersaturation on drug absorption in rats. The stabilizing effect of the polymers was polymer specific and most pronounced at higher drug loads. Polymers that were soluble in LBF allowed simple processing as single phase formulations, while formulations containing more hydrophilic polymers required polymer suspension in the formulation. The lipid-soluble polymers Eudragit (EU) RL100 and poly(propylene glycol) bis(2-aminopropyl ether) (PPGAE) and the water-soluble polymer hydroxypropylmethyl cellulose (HPMC) E4M were identified as the most effective PPIs in delaying fenofibrate precipitation in vitro. An in vitro model of lipid digestion was subsequently coupled directly to an in situ single pass intestinal perfusion assay to evaluate the influence of PPIs on fenofibrate absorption from LBFs in vivo. This coupled model allowed for real-time evaluation of the impact of supersaturation stabilization on absorptive drug flux and provided better discrimination between the different PPIs and formulations. In the presence of the in situ absorption sink, increased fenofibrate supersaturation resulted in increased drug exposure, and a good correlation was found between the degree of in vitro supersaturation and in vivo drug exposure. An improved in vitro-in vivo correlation was apparent when comparing the same formulation under different supersaturation conditions. These observations directly exemplify the potential utility of PPIs in promoting drug absorption from LBF, via stabilization of supersaturation, and further confirm that relatively brief periods of supersaturation may be sufficient to promote drug absorption, at least for highly permeable drugs such as fenofibrate.
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Spuckler, Charles M.
2008-01-01
The lattice and radiation conductivity of thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the apparent thermal conductivity of the coating to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature and the scattering and absorption properties of the coating material. High temperature scattering and absorption of the coating systems can also be derived based on the testing results using the modeling approach. The model prediction is found to have good agreement with experimental observations.
Two-photon absorption resonance in 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP)
NASA Astrophysics Data System (ADS)
Miniewicz, Andrzej; Delysse, Stéphane; Nunzi, Jean-Michel; Kajzar, François
1998-04-01
A two-photon absorption spectrum of 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP) in tetrahydrofuran solution has been studied by the Kerr ellipsometry technique. The spectral shape and amplitude of the imaginary part of the dominant molecular hyperpolarizability term Im( γXXXX) is compared with the relevant linear absorption spectrum within a simple two-level model. Agreement between the measured γXXXX=2.0×10 -48 m 5 V -2 and calculated γXXXX=(1.2-1.5)×10 -48 m 5 V -2 two-photon absorption molecular hyperpolarizabilties in the vicinity of the two-photon resonance transition is satisfactory.
The opacity of the universe and the strong equivalence principle
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Goldman, I.
1983-01-01
A possible explanation of why the advanced solutions of Maxwell's equations are not observed in nature is by way of absorption by an opaque universe. As Davies has shown, the ever expanding, general relativistic cosmological models fail to provide the needed absorption. The absorption mechanism calling for an interplay between local physics and cosmology, is usually developed adopting the strong equivalence principle, SEP, which precludes such interplay. It is shown that complete absorption of electromagnetic radiation by ionized intergalactic plasma is obtained provided a violation of the SEP, of the order of the Hubble's constant, is allowed to occur. The same degree of violation was previously found to be compatible with a large body of observational data.
O2-O2 and O2-N2 collision-induced absorption mechanisms unravelled
NASA Astrophysics Data System (ADS)
Karman, Tijs; Koenis, Mark A. J.; Banerjee, Agniva; Parker, David H.; Gordon, Iouli E.; van der Avoird, Ad; van der Zande, Wim J.; Groenenboom, Gerrit C.
2018-05-01
Collision-induced absorption is the phenomenon in which interactions between colliding molecules lead to absorption of light, even for transitions that are forbidden for the isolated molecules. Collision-induced absorption contributes to the atmospheric heat balance and is important for the electronic excitations of O2 that are used for remote sensing. Here, we present a theoretical study of five vibronic transitions in O2-O2 and O2-N2, using analytical models and numerical quantum scattering calculations. We unambiguously identify the underlying absorption mechanism, which is shown to depend explicitly on the collision partner—contrary to textbook knowledge. This explains experimentally observed qualitative differences between O2-O2 and O2-N2 collisions in the overall intensity, line shape and vibrational dependence of the absorption spectrum. It is shown that these results can be used to discriminate between conflicting experimental data and even to identify unphysical results, thus impacting future experimental studies and atmospheric applications.
Absorption of Solar Radiation by Clouds: An Overview
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Einaudi, Franco (Technical Monitor)
2000-01-01
This talk provides an overview of the subject of absorption of solar radiation by clouds in the earth's atmosphere. The paper summarizes the available evidence which points to disagreements between theoretical and observed values of cloud absorption (and reflections). The importance of these discrepancies, particularly to remote sensing of clouds as well as to studies of cloud physics and earth radiation budgets, is emphasized. Existing cloud absorption and reflection measurements are reviewed and the persistent differences that exist between calculated and measured near-infrared cloud albedos are highlighted. Various explanations for these reflection and absorption discrepancies are discussed under two separate paths: a theoretician's approach and an experimentalist's approach. Examples for the former approach include model accuracy tests, large-droplet hypothesis, excess absorbing aerosol, enhanced water vapor continuum absorption, and effects of cloud inhomogeneity. The latter approach focuses on discussions of instrumental device, calibration, operational strategy, and signal/noise separation. A recommendation for future activities on this subject will be given.
Bravo, Teresa; Maury, Cédric; Pinhède, Cédric
2013-11-01
Theoretical and experimental results are presented into the sound absorption and transmission properties of multi-layer structures made up of thin micro-perforated panels (ML-MPPs). The objective is to improve both the absorption and insulation performances of ML-MPPs through impedance boundary optimization. A fully coupled modal formulation is introduced that predicts the effect of the structural resonances onto the normal incidence absorption coefficient and transmission loss of ML-MPPs. This model is assessed against standing wave tube measurements and simulations based on impedance translation method for two double-layer MPP configurations of relevance in building acoustics and aeronautics. Optimal impedance relationships are proposed that ensure simultaneous maximization of both the absorption and the transmission loss under normal incidence. Exhaustive optimization of the double-layer MPPs is performed to assess the absorption and/or transmission performances with respect to the impedance criterion. It is investigated how the panel volumetric resonances modify the excess dissipation that can be achieved from non-modal optimization of ML-MPPs.
Re-Evaluation of Dust Radiative Forcing Using Remote Measurements of Dust Absorption
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Tanre, Didier; Karnieli, Arnon; Remer, Lorraine A.
1998-01-01
Spectral remote observations of dust properties from space and from the ground creates a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat spaceborne measurements at 0.47 to 2.2 microns over Senegal with ground based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater 0.6 microns. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.
Chung, Min-Yu; Woo, Hyunjoon; Kim, Juyeon; Kong, Daecheol; Choi, Hee-Don; Choi, In-Wook; Kim, In-Hwan; Noh, Sang K; Kim, Byung Hee
2017-03-01
The positional distribution pattern of fatty acids (FAs) in the triacylglycerols (TAGs) affects intestinal absorption of these FAs. The aim of this study was to compare lymphatic absorption of pinolenic acid (PLA) present in structured pinolenic TAG (SPT) where PLA was evenly distributed on the glycerol backbone, with absorption of pine nut oil (PNO) where PLA was predominantly positioned at the sn-3 position. SPT was prepared via the nonspecific lipase-catalyzed esterification of glycerol with free FA obtained from PNO. Lymphatic absorption of PLA from PNO and from SPT was compared in a rat model of lymphatic cannulation. Significantly (P < 0.05) greater amounts of PLA were detected in lymph collected for 8 h from an emulsion containing SPT (28.5 ± 0.7% dose) than from an emulsion containing PNO (26.2 ± 0.6% dose), thereby indicating that PLA present in SPT has a greater capacity for lymphatic absorption than PLA from PNO.
Pan, Wenxiao; Galvin, Janine; Huang, Wei Ling; ...
2018-03-25
In this paper we aim to develop a validated device-scale CFD model that can predict quantitatively both hydrodynamics and CO 2 capture efficiency for an amine-based solvent absorber column with random Pall ring packing. A Eulerian porous-media approach and a two-fluid model were employed, in which the momentum and mass transfer equations were closed by literature-based empirical closure models. We proposed a hierarchical approach for calibrating the parameters in the closure models to make them accurate for the packed column. Specifically, a parameter for momentum transfer in the closure was first calibrated based on data from a single experiment. Withmore » this calibrated parameter, a parameter in the closure for mass transfer was next calibrated under a single operating condition. Last, the closure of the wetting area was calibrated for each gas velocity at three different liquid flow rates. For each calibration, cross validations were pursued using the experimental data under operating conditions different from those used for calibrations. This hierarchical approach can be generally applied to develop validated device-scale CFD models for different absorption columns.« less
Including scattering within the room acoustics diffusion model: An analytical approach.
Foy, Cédric; Picaut, Judicaël; Valeau, Vincent
2016-10-01
Over the last 20 years, a statistical acoustic model has been developed to predict the reverberant sound field in buildings. This model is based on the assumption that the propagation of the reverberant sound field follows a transport process and, as an approximation, a diffusion process that can be easily solved numerically. This model, initially designed and validated for rooms with purely diffuse reflections, is extended in the present study to mixed reflections, with a proportion of specular and diffuse reflections defined by a scattering coefficient. The proposed mathematical developments lead to an analytical expression of the diffusion constant that is a function of the scattering coefficient, but also on the absorption coefficient of the walls. The results obtained with this extended diffusion model are then compared with the classical diffusion model, as well as with a sound particles tracing approach considering mixed wall reflections. The comparison shows a good agreement for long rooms with uniform low absorption (α = 0.01) and uniform scattering. For a larger absorption (α = 0.1), the agreement is moderate, due to the fact that the proposed expression of the diffusion coefficient does not vary spatially. In addition, the proposed model is for now limited to uniform diffusion and should be extended in the future to more general cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenxiao; Galvin, Janine; Huang, Wei Ling
In this paper we aim to develop a validated device-scale CFD model that can predict quantitatively both hydrodynamics and CO 2 capture efficiency for an amine-based solvent absorber column with random Pall ring packing. A Eulerian porous-media approach and a two-fluid model were employed, in which the momentum and mass transfer equations were closed by literature-based empirical closure models. We proposed a hierarchical approach for calibrating the parameters in the closure models to make them accurate for the packed column. Specifically, a parameter for momentum transfer in the closure was first calibrated based on data from a single experiment. Withmore » this calibrated parameter, a parameter in the closure for mass transfer was next calibrated under a single operating condition. Last, the closure of the wetting area was calibrated for each gas velocity at three different liquid flow rates. For each calibration, cross validations were pursued using the experimental data under operating conditions different from those used for calibrations. This hierarchical approach can be generally applied to develop validated device-scale CFD models for different absorption columns.« less
NASA Technical Reports Server (NTRS)
Eparvier, F. G.; Barth, C. A.
1992-01-01
Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Boughner, R. E.; Larsen, J. C.; Goldman, A.; Murcray, F. J.; Murcray, D. G.
1984-01-01
Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported.
Near infrared spectrum simulation applied to human skin for diagnosis
NASA Astrophysics Data System (ADS)
Tsai, Chen-Mu; Fang, Yi-Chin; Wang, Chih-Yu; Chiu, Pin-Chun; Wu, Guo-Ying; Zheng, Wei-Chi; Chemg, Shih-Hao
2007-11-01
This research proposes a new method for skin diagnose using near infrared as the light source (750nm~1300nm). Compared to UV and visible light, near infrared might penetrate relatively deep into biological soft tissue in some cases although NIR absorption property of tissue is not a constant for water, fat, and collagen etc. In the research, NIR absorption and scattering properties for skin are discussed firstly using the theory of molecule vibration from Quantum physics and Solid State Physics; secondly the practical model for various NIR absorption spectrum to skin tissue are done by optical simulation for human skin. Finally, experiments are done for further identification of proposed model for human skin and its reaction to near infrared. Results show success with identification from both theory and experiments.
Sound propagation and absorption in foam - A distributed parameter model.
NASA Technical Reports Server (NTRS)
Manson, L.; Lieberman, S.
1971-01-01
Liquid-base foams are highly effective sound absorbers. A better understanding of the mechanisms of sound absorption in foams was sought by exploration of a mathematical model of bubble pulsation and coupling and the development of a distributed-parameter mechanical analog. A solution by electric-circuit analogy was thus obtained and transmission-line theory was used to relate the physical properties of the foams to the characteristic impedance and propagation constants of the analog transmission line. Comparison of measured physical properties of the foam with values obtained from measured acoustic impedance and propagation constants and the transmission-line theory showed good agreement. We may therefore conclude that the sound propagation and absorption mechanisms in foam are accurately described by the resonant response of individual bubbles coupled to neighboring bubbles.
Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease
NASA Astrophysics Data System (ADS)
Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert
2016-01-01
The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.
Sensitivity of light interaction computer model to the absorption properties of skin
NASA Astrophysics Data System (ADS)
Karsten, A. E.; Singh, A.
2011-06-01
Light based treatments offer major benefits to patients. Many of the light based treatments or diagnostic techniques need to penetrate the skin to reach the site of interest. Human skin is a highly scattering medium and the melanin in the epidermal layer of the skin is a major absorber of light in the visible and near infrared wavelength bands. The effect of increasing absorption in the epidermis is tested on skin simulating phantoms as well as on a computer model. Changing the absorption coefficient between 0.1 mm-1 and 1.0 mm-1 resulted in a decrease of light reaching 1 mm into the sample. Transmission through a 1 mm thick sample decreased from 48% to 13% and from 31% to 2% for the different scattering coefficients.
NASA Astrophysics Data System (ADS)
Bravo, Teresa; Maury, Cédric
2018-07-01
Enhancing the attenuation or the absorption of low-frequency noise using lightweight bulk-reacting liners is still a demanding task in surface and air transport systems. The aim of this study is to understand the physical mechanisms involved in the attenuation and absorption properties of partitions made up of a thin micro-perforated panel (MPP) rigidly backed by a cavity filled with anisotropic fibrous material. Such a layout is denoted as a MPPF partition. Analytical models are formulated in the flow and no-flow cases to predict the axial damping of the least attenuated wave in a MPPF partition as well as the plane wave absorption coefficient. They account for a rigid or an elastic MPP facing a bulk-reacting fully-anisotropic material. A cost-efficient solution of the propagation constant for the least attenuated mode is obtained using a simulated annealing search method as well as a low-frequency approximation to the axial attenuation. The normal incidence absorption model is assessed in the no-flow case against pressure-velocity measurements of the surface impedance over a MPPF partition filled with fibreglass material. A parametric study is conducted to evaluate the MPP and the cavity constitutive parameters that mostly enhance the axial attenuation and sound absorption properties, with special interest on the MPP airframe relative velocity. This sensitivity study provides guidelines that could be used to further reduce the search space in parametric or impedance optimization studies.
Ultra-violet and visible absorption characterization of explosives by differential reflectometry.
Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E
2013-03-15
This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.