Science.gov

Sample records for absorption peak position

  1. Automatic Locking of Laser Frequency to an Absorption Peak

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.

    2006-01-01

    An electronic system adjusts the frequency of a tunable laser, eventually locking the frequency to a peak in the optical absorption spectrum of a gas (or of a Fabry-Perot cavity that has an absorption peak like that of a gas). This system was developed to enable precise locking of the frequency of a laser used in differential absorption LIDAR measurements of trace atmospheric gases. This system also has great commercial potential as a prototype of means for precise control of frequencies of lasers in future dense wavelength-division-multiplexing optical communications systems. The operation of this system is completely automatic: Unlike in the operation of some prior laser-frequency-locking systems, there is ordinarily no need for a human operator to adjust the frequency manually to an initial value close enough to the peak to enable automatic locking to take over. Instead, this system also automatically performs the initial adjustment. The system (see Figure 1) is based on a concept of (1) initially modulating the laser frequency to sweep it through a spectral range that includes the desired absorption peak, (2) determining the derivative of the absorption peak with respect to the laser frequency for use as an error signal, (3) identifying the desired frequency [at the very top (which is also the middle) of the peak] as the frequency where the derivative goes to zero, and (4) thereafter keeping the frequency within a locking range and adjusting the frequency as needed to keep the derivative (the error signal) as close as possible to zero. More specifically, the system utilizes the fact that in addition to a zero crossing at the top of the absorption peak, the error signal also closely approximates a straight line in the vicinity of the zero crossing (see Figure 2). This vicinity is the locking range because the linearity of the error signal in this range makes it useful as a source of feedback for a proportional + integral + derivative control scheme that

  2. Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model

    SciTech Connect

    Kijak, J.; Basu, R.; Lewandowski, W.

    2017-05-10

    We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physicalmore » parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.« less

  3. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  4. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-01

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3

  5. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption.

    PubMed

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-21

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.

  6. Sharp Absorption Peaks in THz Spectra Valuable for Crystal Quality Evaluation of Middle Molecular Weight Pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Sasaki, Tetsuo; Sakamoto, Tomoaki; Otsuka, Makoto

    2018-05-01

    Middle molecular weight (MMW) pharmaceuticals (MW 400 4000) are attracting attention for their possible use in new medications. Sharp absorption peaks were observed in MMW pharmaceuticals at low temperatures by measuring with a high-resolution terahertz (THz) spectrometer. As examples, high-resolution THz spectra for amoxicillin trihydrate, atorvastatin calcium trihydrate, probucol, and α,β,γ,δ-tetrakis(1-methylpyridinium-4-yl)porphyrin p-toluenesulfonate (TMPyP) were obtained at 10 K. Typically observed as peaks with full width at half-height (FWHM) values as low as 5.639 GHz at 0.96492 THz in amoxicillin trihydrate and 8.857 GHz at 1.07974 THz for probucol, many sharp peaks of MMW pharmaceuticals could be observed. Such narrow absorption peaks enable evaluation of the crystal quality of MMW pharmaceuticals and afford sensitive detection of impurities.

  7. Temperature shift of intraband absorption peak in tunnel-coupled QW structure

    NASA Astrophysics Data System (ADS)

    Akimov, V.; Firsov, D. A.; Duque, C. A.; Tulupenko, V.; Balagula, R. M.; Vinnichenko, M. Ya.; Vorobjev, L. E.

    2017-04-01

    An experimental study of the intersubband light absorption by the 100-period GaAs/Al0.25Ga0.75As double quantum well heterostructure doped with silicon is reported and interpreted. Small temperature redshift of the 1-3 intersubband absorption peak is detected. Numerical calculations of the absorption coefficient including self-consistent Hartree calculations of the bottom of the conduction band show good agreement with the observed phenomena. The temperature dependence of energy gap of the material and the depolarization shift should be accounted for to explain the shift.

  8. The line-locking hypothesis, absorption by intervening galaxies, and the z = 1.95 peak in redshifts

    NASA Technical Reports Server (NTRS)

    Burbidge, G.

    1978-01-01

    The controversy over whether the absorption spectrum in QSOs is intrinsic or extrinsic is approached with attention to the peak of redshifts at z = 1.95. Also considered are the line-locking and the intervening galaxy hypotheses. The line locking hypothesis is based on observations that certain ratios found in absorption line QSOs are preferred, and leads inevitably to the conclusion that the absorption line systems are intrinsic. The intervening galaxy hypothesis is based on absorption redshifts resulting from given absorption cross-sections of galactic clusters and the intergalactic medium, and would lead to the theoretical conclusion that most QSOs show strong absorption, a conclusion which is not supported by empirical data. The 1.95 peak, on the other hand, is most probably an intrinsic property of QSOs. The peak is enhanced by redshift, and it is noted that both an emission and an absorption redshift peak are seen at 1.95.

  9. Phonons in Confinement and the Boson Peak Using Nuclear Inelastic Absorption

    NASA Astrophysics Data System (ADS)

    Asthalter, T.; Bauer, M.; van Bürck, U.; Sergueev, I.; Franz, H.; Chumakov, A. I.

    2002-12-01

    We have applied nuclear inelastic absorption (NIA) to the molecular glass former dibutylphthalate/ferrocene, both in bulk and in nanoporous matrices having pore sizes of 50 and 25 Å, respectively. The quantity g(E)/E 2, where g(E) is the vibrational phonon density of states (VDOS) of the resonant nuclei, exhibits a pronounced maximum at low energies. Confinement in pores leads to a suppression of the VDOS below 1.5 meV, independent of the pore size. Also in the scaled heat capacity C(T)/T 3, we observe a decrease of the peak maximum for low temperatures. Our observations are discussed in the light of experimental and theoretical results on nanocrystals and a recent theoretical model for the boson peak.

  10. THERMAL ABSORPTION AS THE CAUSE OF GIGAHERTZ-PEAKED SPECTRA IN PULSARS AND MAGNETARS

    SciTech Connect

    Lewandowski, Wojciech; Rożko, Karolina; Kijak, Jarosław

    2015-07-20

    We present a model that explains the observed deviation of the spectra of some pulsars and magnetars from the power-law spectra that are seen in the bulk of the pulsar population. Our model is based on the assumption that the observed variety of pulsar spectra can be naturally explained by the thermal free–free absorption that takes place in the surroundings of the pulsars. In this context, the variety of the pulsar spectra can be explained according to the shape, density, and temperature of the absorbing media and the optical path of the line of sight across it. We have putmore » specific emphasis on the case of the radio magnetar SGR J1745–2900 (also known as the Sgr A* magnetar), modeling the rapid variations of the pulsar spectrum after the outburst of 2013 April as due to the free–free absorption of the radio emission in the electron material ejected during the magnetar outburst. The ejecta expands with time and consequently the absorption rate decreases and the shape of the spectrum changes in such a way that the peak frequency shifts toward the lower radio frequencies. In the hypothesis of an absorbing medium, we also discuss the similarity between the spectral behavior of the binary pulsar B1259–63 and the spectral peculiarities of isolated pulsars.« less

  11. Peak Source Power Associated with Positive Narrow Bipolar Lightning Pulses

    NASA Astrophysics Data System (ADS)

    Bandara, S. A.; Marshall, T. C.; Karunarathne, S.; Karunarathne, N. D.; Siedlecki, R. D., II; Stolzenburg, M.

    2017-12-01

    During the summer of 2016, we deployed a lightning sensor array in and around Oxford Mississippi, USA. The array system comprised seven lightning sensing stations in a network approximately covering an area of 30 km × 30 km. Each station is equipped with four sensors: Fast antenna (10 ms decay time), Slow antenna (1.0 s decay time)), field derivative sensor (dE/dt) and Log-RF antenna (bandwidth 187-192 MHz). We have observed 319 Positive NBPs and herein we report on comparisons of the NBP properties measured from the Fast antenna data with the Log-RF antenna data. These properties include 10-90% rise time, full width at half maximum, zero cross time, and range-normalized amplitude at 100 km. NBPs were categorized according to the fine structure of the electric field wave shapes into Types A-D, as in Karunarathne et al. [2015]. The source powers of NBPs in each category were determined using single station Log-RF data. Furthermore, we also categorized the NBPs in three other groups: initial event of an IC flash, isolated, and not-isolated (according to their spatiotemporal relationship with other lightning activity). We compared the source powers within each category. Karunarathne, S., T. C. Marshall, M. Stolzenburg, and N. Karunarathna (2015), Observations of positive narrow bipolar pulses, J. Geophys. Res. Atmos., 120, doi:10.1002/2015JD023150.

  12. Absorption Peaks: α, β, γ and Their Covariance with Age and Hemoglobin in Human Blood Samples Using Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    González-Domínguez, J. L.; Hernández-Aguilar, C.; Domínguez-Pacheco, F. A.; Martínez-Ortiz, E.; Cruz-Orea, A.; Sánchez-Sinencio, F.

    2012-11-01

    This study reports the absorption peaks α, β, γ in the Soret band of photoacoustic (PA) signals and their covariance with age and hemoglobin in human blood samples through PA spectroscopy. Samples were taken randomly from a masculine population grouped in three categories according to age: infants, young adults, and senior adults. Samples were prepared with two drops of blood from a 0.5 mL insulin syringe with a needle gauge 31G over 5 mm circles of filter paper. It was observed that the PA signal, the amplitude as a function of the wavelength, has a behavior as that reported for human blood for the three absorption peaks α, β, γ. In particular, the ratio γ/ β is due to electronic transitions associated with charge-transfer interactions of iron orbitals with the ligand states. Through an evaluation of optical absorption peaks in blood samples and their covariance with age and hemoglobin concentration, a relationship was found for the ratio peaks γ/ β and γ/ α with such parameters. Specifically, a negative covariance in the Soret band of the ratio peaks γ/ β and γ/ α with respect to both age and hemoglobin was found. This showed a tendency in their behavior. Further experiments of different populations may corroborate these conclusions.

  13. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience.

    PubMed

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    "Pure shift" NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience

    NASA Astrophysics Data System (ADS)

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    ;Pure shift; NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording.

  15. Comment on "Hydrogen Balmer beta: The separation between line peaks for plasma electron density diagnostics and self-absorption test"

    NASA Astrophysics Data System (ADS)

    Gautam, Ghaneshwar; Surmick, David M.; Parigger, Christian G.

    2015-07-01

    In this letter, we present a brief comment regarding the recently published paper by Ivković et al., J Quant Spectrosc Radiat Transf 2015;154:1-8. Reference is made to previous experimental results to indicate that self absorption must have occurred; however, when carefully considering error propagation, both widths and peak-separation predict electron densities within the error margins. Yet the diagnosis method and the presented details on the use of the hydrogen beta peak separation are viewed as a welcomed contribution in studies of laser-induced plasma.

  16. Total absorption peak by use of a rigid frame porous layer backed by a rigid multi-irregularities grating.

    PubMed

    Groby, J-P; Lauriks, W; Vigran, T E

    2010-05-01

    The acoustic properties of a low resistivity porous layer backed by a rigid plate containing periodic rectangular irregularities, creating a multicomponent diffraction gratings, are investigated. Numerical and experimental results show that the structure possesses a total absorption peak at the frequency of the modified mode of the layer, when designed as proposed in the article. These results are explained by an analysis of the acoustic response of the whole structure and especially by the modal analysis of the configuration. When more than one irregularity per spatial period is considered, additional higher frequency peaks are observed.

  17. The effect of interstellar absorption on measurements of the baryon acoustic peak in the Lyman α forest

    SciTech Connect

    Vadai, Yishay; Poznanski, Dovi; Baron, Dalya

    In recent years, the autocorrelation of the hydrogen Lyman α forest has been used to observe the baryon acoustic peak at redshift 2 < z < 3.5 using tens of thousands of QSO spectra from the BOSS survey. However, the interstellar medium of the Milky Way introduces absorption lines into the spectrum of any extragalactic source. These lines, while weak and undetectable in a single BOSS spectrum, could potentially bias the cosmological signal. In order to examine this, we generate absorption line maps by stacking over a million spectra of galaxies and QSOs. Here, we find that the systematics introducedmore » are too small to affect the current accuracy of the baryon acoustic peak, but might be relevant to future surveys such as the Dark Energy Spectroscopic Instrument (DESI). We outline a method to account for this with future data sets.« less

  18. The effect of interstellar absorption on measurements of the baryon acoustic peak in the Lyman α forest

    DOE PAGES

    Vadai, Yishay; Poznanski, Dovi; Baron, Dalya; ...

    2017-08-14

    In recent years, the autocorrelation of the hydrogen Lyman α forest has been used to observe the baryon acoustic peak at redshift 2 < z < 3.5 using tens of thousands of QSO spectra from the BOSS survey. However, the interstellar medium of the Milky Way introduces absorption lines into the spectrum of any extragalactic source. These lines, while weak and undetectable in a single BOSS spectrum, could potentially bias the cosmological signal. In order to examine this, we generate absorption line maps by stacking over a million spectra of galaxies and QSOs. Here, we find that the systematics introducedmore » are too small to affect the current accuracy of the baryon acoustic peak, but might be relevant to future surveys such as the Dark Energy Spectroscopic Instrument (DESI). We outline a method to account for this with future data sets.« less

  19. Clustering of gold particles in Au implanted CrN thin films: The effect on the SPR peak position

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Popović, M.; Schmidt, E.; Mitrić, M.; Bibić, N.; Rakočević, Z.; Ronning, C.

    2017-12-01

    We report on the formation of gold particles in 280 nm thin polycrystalline CrN layers caused by Au+ ion implantation. The CrN layers were deposited at 150 °C by d.c. reactive sputtering on Si(100) wafers and then implanted at room temperature with 150 keV Au+ ions to fluences of 2 × 1016 cm-2 to 4.1 × 1016 cm-2. The implanted layers were analysed by the means of Rutherford backscattering spectrometry, X-ray diffraction, atomic force microscopy and spectroscopic ellipsometry measurements. The results revealed that the Au atoms are situated in the near-surface region of the implanted CrN layers. At the fluence of 2 × 1016 cm-2 the formation of Au particles of ∼200 nm in diameter has been observed. With increasing Au ion fluence the particles coalesce into clusters with dimensions of ∼1.7 μm. The synthesized particles show a strong absorption peak associated with the excitation of surface plasmon resonances (SPR). The position of the SPR peak shifted in the range of 426.8-690.5 nm when the Au+ ion fluence was varied from 2 × 1016 cm-2 to 4.1 × 1016 cm-2. A correlation of the shift in the peak wavelength caused by the change in the particles size and clustering has been revealed, suggesting that the interaction between Au particles dominate the surface plasmon resonance effect.

  20. Design of parallel transmission pulses for simultaneous multislice with explicit control for peak power and local specific absorption rate.

    PubMed

    Guérin, Bastien; Setsompop, Kawin; Ye, Huihui; Poser, Benedikt A; Stenger, Andrew V; Wald, Lawrence L

    2015-05-01

    To design parallel transmit (pTx) simultaneous multislice (SMS) spokes pulses with explicit control for peak power and local and global specific absorption rate (SAR). We design SMS pTx least-squares and magnitude least squares spokes pulses while constraining local SAR using the virtual observation points (VOPs) compression of SAR matrices. We evaluate our approach in simulations of a head (7T) and a body (3T) coil with eight channels arranged in two z-rows. For many of our simulations, control of average power by Tikhonov regularization of the SMS pTx spokes pulse design yielded pulses that violated hardware and SAR safety limits. On the other hand, control of peak power alone yielded pulses that violated local SAR limits. Pulses optimized with control of both local SAR and peak power satisfied all constraints and therefore had the best excitation performance under limited power and SAR constraints. These results extend our previous results for single slice pTx excitations but are more pronounced because of the large power demands and SAR of SMS pulses. Explicit control of local SAR and peak power is required to generate optimal SMS pTx excitations satisfying both the system's hardware limits and regulatory safety limits. © 2014 Wiley Periodicals, Inc.

  1. Two-dimensional velocity, optical risetime, and peak current estimates for natural positive lightning return strokes

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Rust, W. D.

    1993-01-01

    Velocities, optical risetimes, and transmission line model peak currents for seven natural positive return strokes are reported. The average 2D positive return stroke velocity for channel segments of less than 500 m in length starting near the base of the channel is 0.8 +/- 0.3 x 10 exp 8 m/s, which is slower than the present corresponding average velocity for natural negative first return strokes of 1.7 +/- 0.7 x 10 exp 8/s. It is inferred that positive stroke peak currents in the literature, which assume the same velocity as negative strokes, are low by a factor of 2. The average 2D positive return stroke velocity for channel segments of greater than 500 m starting near the base of the channel is 0.9 +/- 0.4 x 10 exp 8 m/s. The corresponding average velocity for the present natural negative first strokes is 1.2 +/- 0.6 x 10 exp 8 m/s. No significant velocity change with height is found for positive return strokes.

  2. The room temperature annealing peak in ionomers: Ionic crystallites or water absorption

    SciTech Connect

    Goddard, R.J.; Grady, B.P.; Cooper, S.L.

    1994-03-28

    A quaternized diol, 3-(trimethylammonio)-1,2-propanediol neutralized with either bromine or iodine, was used to produce a polyurethane cationomer with a poly(tetramethylene oxide) soft segment and a 4,4[prime]-diphenylmethane diisocyanate hard segment. If those cationomers were annealed at room temperature for a period of approximately 1 month in a desiccator filled with dry CaSO[sub 4], differential scanning calorimetry (DSC) studies showed an endotherm centered near 70 C which was not present in the unannealed polymer and did not reappear upon subsequent cooling and heating cycles in the DSC. Some authors have suggested that a very similar endotherm found in other ionomers, most notablymore » ethylene-methacrylic acid (E-MAA) copolymer ionomers, was due to an order-disorder transition within the ionic aggregates, i.e. ionic crystallite melting. In order to isolate the origin of this endotherm, the local environment around the anion in compression molded bromine neutralized samples was measured using the extended X-ray absorption fine-structure (EXAFS) technique. By measuring the change in the local environment over the temperature range corresponding to the DSC endotherm, it has been shown that this endotherm corresponds to water leaving the bromine coordination shell, rather than ionic crystallite melting. Other studies which include thoroughly drying the material in a vacuum oven below the transition temperature to remove the water suggest that the endotherm is due to the energetic change associated with water leaving the coordination environment of the anion in combination with water vaporization.« less

  3. Estimation of absorption rate constant (ka) following oral administration by Wagner-Nelson, Loo-Riegelman, and statistical moments in the presence of a secondary peak.

    PubMed

    Mahmood, Iftekhar

    2004-01-01

    The objective of this study was to evaluate the performance of Wagner-Nelson, Loo-Reigelman, and statistical moments methods in determining the absorption rate constant(s) in the presence of a secondary peak. These methods were also evaluated when there were two absorption rates without a secondary peak. Different sets of plasma concentration versus time data for a hypothetical drug following one or two compartment models were generated by simulation. The true ka was compared with the ka estimated by Wagner-Nelson, Loo-Riegelman and statistical moments methods. The results of this study indicate that Wagner-Nelson, Loo-Riegelman and statistical moments methods may not be used for the estimation of absorption rate constants in the presence of a secondary peak or when absorption takes place with two absorption rates.

  4. Detecting and accounting for multiple sources of positional variance in peak list registration analysis and spin system grouping.

    PubMed

    Smelter, Andrey; Rouchka, Eric C; Moseley, Hunter N B

    2017-08-01

    Peak lists derived from nuclear magnetic resonance (NMR) spectra are commonly used as input data for a variety of computer assisted and automated analyses. These include automated protein resonance assignment and protein structure calculation software tools. Prior to these analyses, peak lists must be aligned to each other and sets of related peaks must be grouped based on common chemical shift dimensions. Even when programs can perform peak grouping, they require the user to provide uniform match tolerances or use default values. However, peak grouping is further complicated by multiple sources of variance in peak position limiting the effectiveness of grouping methods that utilize uniform match tolerances. In addition, no method currently exists for deriving peak positional variances from single peak lists for grouping peaks into spin systems, i.e. spin system grouping within a single peak list. Therefore, we developed a complementary pair of peak list registration analysis and spin system grouping algorithms designed to overcome these limitations. We have implemented these algorithms into an approach that can identify multiple dimension-specific positional variances that exist in a single peak list and group peaks from a single peak list into spin systems. The resulting software tools generate a variety of useful statistics on both a single peak list and pairwise peak list alignment, especially for quality assessment of peak list datasets. We used a range of low and high quality experimental solution NMR and solid-state NMR peak lists to assess performance of our registration analysis and grouping algorithms. Analyses show that an algorithm using a single iteration and uniform match tolerances approach is only able to recover from 50 to 80% of the spin systems due to the presence of multiple sources of variance. Our algorithm recovers additional spin systems by reevaluating match tolerances in multiple iterations. To facilitate evaluation of the

  5. Error probability for RFID SAW tags with pulse position coding and peak-pulse detection.

    PubMed

    Shmaliy, Yuriy S; Plessky, Victor; Cerda-Villafaña, Gustavo; Ibarra-Manzano, Oscar

    2012-11-01

    This paper addresses the code reading error probability (EP) in radio-frequency identification (RFID) SAW tags with pulse position coding (PPC) and peak-pulse detection. EP is found in a most general form, assuming M groups of codes with N slots each and allowing individual SNRs in each slot. The basic case of zero signal in all off-pulses and equal signals in all on-pulses is investigated in detail. We show that if a SAW-tag with PPC is designed such that the spurious responses are attenuated by more than 20 dB below on-pulses, then EP can be achieved at the level of 10(-8) (one false read per 108 readings) with SNR >17 dB for any reasonable M and N. The tag reader range is estimated as a function of the transmitted power and EP.

  6. A peak position comparison method for high-speed quantitative Laue microdiffraction data processing

    SciTech Connect

    Kou, Jiawei; Chen, Kai; Tamura, Nobumichi

    Indexing Laue patterns of a synchrotron microdiffraction scan can take as much as ten times longer than collecting the data, impeding efficient structural analysis using this technique. Here in this paper, a novel strategy is developed. By comparing the peak positions of adjacent Laue patterns and checking the intensity sequence, grain and phase boundaries are identified, requiring only a limited number of indexing steps for each individual grain. Using this protocol, the Laue patterns can be indexed on the fly as they are taken. The validation of this method is demonstrated by analyzing the microstructure of a laser 3D printedmore » multi-phase/multi-grain Ni-based superalloy.« less

  7. A peak position comparison method for high-speed quantitative Laue microdiffraction data processing

    DOE PAGES

    Kou, Jiawei; Chen, Kai; Tamura, Nobumichi

    2018-09-12

    Indexing Laue patterns of a synchrotron microdiffraction scan can take as much as ten times longer than collecting the data, impeding efficient structural analysis using this technique. Here in this paper, a novel strategy is developed. By comparing the peak positions of adjacent Laue patterns and checking the intensity sequence, grain and phase boundaries are identified, requiring only a limited number of indexing steps for each individual grain. Using this protocol, the Laue patterns can be indexed on the fly as they are taken. The validation of this method is demonstrated by analyzing the microstructure of a laser 3D printedmore » multi-phase/multi-grain Ni-based superalloy.« less

  8. Identification of B-K near edge x-ray absorption fine structure peaks of boron nitride thin films prepared by sputtering deposition

    SciTech Connect

    Niibe, Masahito; Miyamoto, Kazuyoshi; Mitamura, Tohru

    2010-09-15

    Four {pi}{sup *} resonance peaks were observed in the B-K near edge x-ray absorption fine structure spectra of boron nitride thin films prepared by magnetron sputtering. In the past, these peaks have been explained as the K-absorption of boron atoms, which are present in environment containing nitrogen vacancies, the number of which is 1-3 corresponding to the three peaks at higher photon energy. However, the authors found that there was a strong correlation between the intensities of these three peaks and that of O-K absorption after wide range scanning and simultaneous measurement of nitrogen and oxygen K-absorptions of the BNmore » films. Therefore, the authors conclude that these three peaks at the higher energy side correspond to boron atoms bound to one-to-three oxygen atoms instead of three nitrogen atoms surrounding the boron atom in the h-BN structure. The result of the first-principles calculation with a simple cluster model supported the validity of this explanation.« less

  9. The origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum.

    PubMed

    Löhner, Alexander; Carey, Anne-Marie; Hacking, Kirsty; Picken, Nichola; Kelly, Sharon; Cogdell, Richard; Köhler, Jürgen

    2015-01-01

    The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum, where high-resolution X-ray structures are available, similar bands have been observed and were assigned to two pigment pools of BChl a molecules that are arranged in two concentric rings (B800 and B850) with nine (acidophila) or eight (molischianum) repeat units, respectively. However, for the high-light peripheral LH complex from Alc. vinosum, the intruiging feature is that the B800 band is split into two components. We have studied this pigment-protein complex by ensemble CD spectroscopy and polarisation-resolved single-molecule spectroscopy. Assuming that the high-light peripheral LH complex in Alc. vinosum is constructed on the same modular principle as described for LH2 from Rps. acidophila and Rsp. molischianum, we used those repeat units as a starting point for simulating the spectra. We find the best agreement between simulation and experiment for a ring-like oligomer of 12 repeat units, where the mutual arrangement of the B800 and B850 rings resembles those from Rsp. molischianum. The splitting of the B800 band can be reproduced if both an excitonic coupling between dimers of B800 molecules and their interaction with the B850 manifold are taken into account. Such dimers predict an interesting apoprotein organisation as discussed below.

  10. [Determination of critical micelle concentration of alkyl polyglucoside (APG) nonionic surfactant aqueous system by multi-peaks Gaussian fitting of visible absorption spectra line shape].

    PubMed

    Zhang, Jian-Hua; Kong, Kai-Qing; He, Zheng-Ling; Liu, Zi-Li

    2007-07-01

    A multi-peaks Gaussian fitting on the line shape of visible spectra was used to determine the critical micelle concentration (CMC) of alkyl polyglucoside (APG) nonionic surfactant aqueous system such as octyl beta D mono-glucoside (C8 G1) and decyl beta D mono-glucoside (C10 G1). Visible electronic absorption spectra of a series of different concentration C8G1 or C10G1 with crystal violet (CV) used as a probe were measured respectively and characterized by the overlap of the principal peak with lambda(max) at 598-609 nm and a shoulder at 538-569 nm assigned to monomer and dimer CV respectively. A multi-peaks Gaussian fitting was used to interpret the spectra and give relative integrating absorbance (A2/A1) of two peaks, red-shift (deltalambda) and half-width. A sudden change occurred at CMC in the curves of the relative integrating absorbance (A2/A1), red-shift (deltalambda) and half-width (w1, w2) versus the C8G1 or C10G1 surfactant concentrations. Significantly the dependence of the CMC upon the half-width was ob-served for the first time and successfully used to determine CMC of nonionic surfactant such as APG.

  11. Increasing positive ion number densities below the peak of ion-electron pair production in Titan's ionosphere

    SciTech Connect

    Vigren, E.; Galand, M.; Shebanits, O.

    2014-05-01

    We combine derived ion-electron pair formation rates with Cassini Radio Plasma Wave Science Langmuir Probe measurements of electron and positive ion number densities in Titan's sunlit ionosphere. We show that positive ion number densities in Titan's sunlit ionosphere can increase toward significantly lower altitudes than the peak of ion-electron pair formation despite that the effective ion-electron recombination coefficient increases. This is explained by the increased mixing ratios of negative ions, which are formed by electron attachment to neutrals. While such a process acts as a sink for free electrons, the positive ions become longer-lived as the rate coefficients for ion-anionmore » neutralization reactions are smaller than those for ion-electron dissociative recombination reactions.« less

  12. A rapid and non-invasive method for measuring the peak positive pressure of HIFU fields by a laser beam.

    PubMed

    Wang, Hua; Zeng, Deping; Chen, Ziguang; Yang, Zengtao

    2017-04-12

    Based on the acousto-optic interaction, we propose a laser deflection method for rapidly, non-invasively and quantitatively measuring the peak positive pressure of HIFU fields. In the characterization of HIFU fields, the effect of nonlinear propagation is considered. The relation between the laser deflection length and the peak positive pressure is derived. Then the laser deflection method is assessed by comparing it with the hydrophone method. The experimental results show that the peak positive pressure measured by laser deflection method is little higher than that obtained by the hydrophone, confirming that they are in reasonable agreement. Considering that the peak pressure measured by hydrophones is always underestimated, the laser deflection method is assumed to be more accurate than the hydrophone method due to the absence of the errors in hydrophone spatial-averaging measurement and the influence of waveform distortion on hydrophone corrections. Moreover, noting that the Lorentz formula still remains applicable to high-pressure environments, the laser deflection method exhibits a great potential for measuring HIFU field under high-pressure amplitude. Additionally, the laser deflection method provides a rapid way for measuring the peak positive pressure, without the scan time, which is required by the hydrophones.

  13. Peak torque and muscle balance in the knees of young U-15 and U-17 soccer athletes playing various tactical positions.

    PubMed

    Chiamonti Bona, Cleiton; Tourinho Filho, Hugo; Izquierdo, Mikel; Pires Ferraz, Ricardo M; Marques, Mário C

    2017-01-01

    Soccer is a sport that is practiced worldwide and has been investigated in its various aspects, particularly muscle strength, which is an essential motor skill for sports performance. The objective of this study was to investigate the peak torque and muscle balance on the knee extensor and flexor of young soccer players in the tactical positions of goalkeeper, defender, full back, midfielder, defensive midfielder and striker, as well as to determine which field position has the highest peak torque. Forty-nine male players were recruited and divided into two categories during the preparatory period of the season: the Under-15 (U-15) group (N.=23, mean age 14.7±0.5 years, body mass 58.2±10.5 kg, body height 168.5±7.6 cm), and the Under-17 (U-17) group (N.=26, mean age 16.8±0.4 years, body mass 69.2±7.9 kg, body height 176.2±6.6 cm). The U-17 athletes presented a higher peak torque in all the movements of flexion and extension in the two angular velocities (i.e. 60°/s and 300°/s), but only the dominant knee extensor at 300°/s was significantly different between the two categories as well as the percentage change in peak torque compared between U-15 and U-17 was always above 20%. The peak torque variation in the U-17 category (i.e. mostly above 20%) highlights a higher peak torque compared to U-15 athletes. The muscular deficit of the two categories presented a low average of 10-15%, indicating a good muscle balance between knee extensors and flexors. Finally, goalkeepers and defenders achieved the highest peak torque amongst the field positions.

  14. Relationship between open-circuit voltage in Cu(In,Ga)Se2 solar cell and peak position of (220/204) preferred orientation near its absorber surface

    NASA Astrophysics Data System (ADS)

    Chantana, J.; Watanabe, T.; Teraji, S.; Kawamura, K.; Minemoto, T.

    2013-11-01

    Cu(In,Ga)Se2 (CIGS) absorbers with various Ga/III, Ga/(In+Ga), profiles are prepared by the so-called "multi-layer precursor method" using multi-layer co-evaporation of material sources. It is revealed that open-circuit voltage (VOC) of CIGS solar cell is primarily dependent on averaged Ga/III near the surface of its absorber. This averaged Ga/III is well predicted by peak position of (220/204) preferred orientation of CIGS film near its surface investigated by glancing-incidence X-ray diffraction with 0.1° incident angle. Finally, the peak position of (220/204) preferred orientation is proposed as a measure of VOC before solar cell fabrication.

  15. Resonance lamp absorption technique for simultaneous determination of the OH concentration and temperature at 10 spatial positions in combustion environments

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Gregory, Ray W.

    1994-01-01

    A rugged, easy to implement, line-of-sight absorption instrument which utilizes a low pressure water vapor microwave discharge cell as the light source, has been developed to make simultaneous measurements of the OH concentration and temperature at 10 spatial positions. The design, theory, and capability of the instrument are discussed. Results of the measurements obtained on a methane/air flat flame burner are compared with those obtained using a single-frequency, tunable dye laser system.

  16. Shallow-trap-induced positive absorptive two-beam coupling 'gain' and light-induced transparency in nominally undoped barium titanate

    NASA Technical Reports Server (NTRS)

    Garrett, M. H.; Tayebati, P.; Chang, J. Y.; Jenssen, H. P.; Warde, C.

    1992-01-01

    The asymmetry of beam coupling with respect to the orientation of the polar axis in a nominally undoped barium titanate crystal is used to determine the electro-optic and absorptive 'gain' in the usual beam-coupling geometry. For small grating wave vectors, the electrooptic coupling vanishes but the absorptive coupling remains finite and positive. Positive absorptive coupling at small grating wave vectors is correlated with the light-induced transparency of the crystal described herein. The intensity and grating wave vector dependence of the electrooptic and absorptive coupling, and the light-induced transparency are consistent with a model incorporating deep and shallow levels.

  17. Negligible shift of 3Ag- potential in longer-chain carotenoids as revealed by a single persistent peak of 3Ag-→1Ag- stimulated emission followed by 3Ag-←1Ag- transient-absorption

    NASA Astrophysics Data System (ADS)

    Li, Chunyong; Miki, Takeshi; Kakitani, Yoshinori; Koyama, Yasushi; Nagae, Hiroyoshi

    2007-12-01

    Upon excitation of lycopene, anhydrorhodovibrin or spirilloxanthin to the 1Bu+(0) state, stimulated emission followed by transient-absorption was observed as a single peak with the 3Ag-(0) energy that had been determined by measurement of resonance-Raman excitation profiles. This observation was explained in terms of negligible shift of the 3Ag- potential, in reference to the 1Ag- potential, where only the 3Ag-(υ)→1Ag-(υ) emission and the 3Ag-(υ)←1Ag-(υ) absorption become allowed during the vibrational relaxation of υ = 2 → 1 → 0, starting from the 3Ag-(2) level generated by diabatic internal conversion from the 1Bu+(0) level, in anhydrorhodovibrin, for example.

  18. Highly efficient near ultraviolet organic light-emitting diode based on a meta-linked donor–acceptor molecule† †Electronic supplementary information (ESI) available: The details of the synthesis; the ground state and excited state geometries in PPI, TPA–PPI and mTPA–PPI; absorption and emission properties of PPI, TPA–PPI and mTPA–PPI in the gas phase; detailed absorption peak positions, emission peak positions and ηPL values of PPI and mTPA–PPI in different solvents; HOMO and LUMO of mTPA–PPI at ground state; NTO for the S0 → S1 absorption transition in PPI, TPA–PPI and mTPA–PPI; NTO for S0 → Sn electronic transition character in mTPA–PPI; lifetime measurement, radiative transition rates and non-radiative transition rates of PPI and mTPA–PPI in hexane and THF solutions; low-temperature fluorescence and phosphorescence spectra of PPI and mTPA–PPI; CV curves of PPI and mTPA–PPI, and schematic diagram of design principle of mTPA–PPI; TGA and DSC graphs of PPI and mTPA–PPI; current efficiency–current density–power efficiency curves and EL spectra at different driving voltages of PPI and mTPA–PPI devices. See DOI: 10.1039/c5sc01131k

    PubMed Central

    Liu, Haichao; Bai, Qing; Yao, Liang; Zhang, Haiyan; Xu, Hai; Zhang, Shitong; Li, Weijun; Gao, Yu; Li, Jinyu; Lu, Ping; Wang, Hongyan; Ma, Yuguang

    2015-01-01

    A novel near ultraviolet (NUV) emitter with a meta-linked donor–acceptor (D–A) structure between triphenylamine (TPA) and phenanthroimidazole (PPI), mTPA–PPI, was designed and synthesized. This molecular design is expected to resolve the conflict between the non-red-shifted emission and the introduction of a charge-transfer (CT) state in the D–A system, aiming at NUV organic light-emitting diodes (OLEDs) with high-efficiency and colour-purity. Theoretical calculations and photophysical experiments were implemented to verify the unique excited state properties of mTPA–PPI. The mTPA–PPI device exhibited excellent NUV electroluminescence (EL) performance with an emission peak at 404 nm, a full width at half maximum (FWHM) of only 47 nm corresponding to a CIE coordinate of (0.161, 0.049), and a maximum external quantum efficiency (EQE) of 3.33%, which is among the best results for NUV OLEDs. This work not only demonstrates the promising potential of mTPA–PPI in NUV OLEDs, but also provides a valuable strategy for the rational design of NUV materials by using the meta-linked D–A architecture. PMID:29218149

  19. Difference in the relative biological effectiveness and DNA damage repair processes in response to proton beam therapy according to the positions of the spread out Bragg peak.

    PubMed

    Hojo, Hidehiro; Dohmae, Takeshi; Hotta, Kenji; Kohno, Ryosuke; Motegi, Atsushi; Yagishita, Atsushi; Makinoshima, Hideki; Tsuchihara, Katsuya; Akimoto, Tetsuo

    2017-07-03

    Cellular responses to proton beam irradiation are not yet clearly understood, especially differences in the relative biological effectiveness (RBE) of high-energy proton beams depending on the position on the Spread-Out Bragg Peak (SOBP). Towards this end, we investigated the differences in the biological effect of a high-energy proton beam on the target cells placed at different positions on the SOBP, using two human esophageal cancer cell lines with differing radiosensitivities. Two human esophageal cancer cell lines (OE21, KYSE450) with different radiosensitivities were irradiated with a 235-MeV proton beam at 4 different positions on the SOBP (position #1: At entry; position #2: At the proximal end of the SOBP; position #3: Center of the SOBP; position #4: At the distal end of the SOBP), and the cell survivals were assessed by the clonogenic assay. The RBE 10 for each position of the target cell lines on the SOBP was determined based on the results of the cell survival assay conducted after photon beam irradiation. In addition, the number of DNA double-strand breaks was estimated by quantitating the number of phospho-histone H2AX (γH2AX) foci formed in the nuclei by immunofluorescence analysis. In regard to differences in the RBE of a proton beam according to the position on the SOBP, the RBE value tended to increase as the position on the SOBP moved distally. Comparison of the residual number of γH2AX foci at the end 24 h after the irradiation revealed, for both cell lines, a higher number of foci in the cells irradiated at the distal end of the SOPB than in those irradiated at the proximal end or center of the SOBP. The results of this study demonstrate that the RBE of a high-energy proton beam and the cellular responses, including the DNA damage repair processes, to high-energy proton beam irradiation, differ according to the position on the SOBP, irrespective of the radiosensitivity levels of the cell lines.

  20. Parametric normalization for full-energy peak efficiency of HPGe γ-ray spectrometers at different counting positions for bulky sources.

    PubMed

    Peng, Nie; Bang-Fa, Ni; Wei-Zhi, Tian

    2013-02-01

    Application of effective interaction depth (EID) principle for parametric normalization of full energy peak efficiencies at different counting positions, originally for quasi-point sources, has been extended to bulky sources (within ∅30 mm×40 mm) with arbitrary matrices. It is also proved that the EID function for quasi-point source can be directly used for cylindrical bulky sources (within ∅30 mm×40 mm) with the geometric center as effective point source for low atomic number (Z) and low density (D) media and high energy γ-rays. It is also found that in general EID for bulky sources is dependent upon Z and D of the medium and the energy of the γ-rays in question. In addition, the EID principle was theoretically verified by MCNP calculations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Two-photon absorption laser-induced fluorescence of atomic oxygen in the afterglow of pulsed positive corona discharge

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Takezawa, Kei; Oda, Tetsuji

    2009-08-01

    Atomic oxygen is measured in the afterglow of pulsed positive corona discharge using time-resolved two-photon absorption laser-induced fluorescence. The discharge occurs in a 14 mm point-to-plane gap in dry air. After the discharge pulse, the atomic oxygen density decreases at a rate of 5×104 s-1. Simultaneously, ozone density increases at almost the same rate, where the ozone density is measured using laser absorption method. This agreement between the increasing rate of atomic oxygen and decreasing rate of ozone proves that ozone is mainly produced by the well-known three-body reaction, O+O2+M→O3+M. No other process for ozone production such as O2(v)+O2→O3+O is observed. The spatial distribution of atomic oxygen density is in agreement with that of the secondary streamer luminous intensity. This agreement indicates that atomic oxygen is mainly produced in the secondary streamer channels, not in the primary streamer channels.

  2. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  3. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    PubMed

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  4. First Ground-Based Infrared Solar Absorption Measurements of Free Tropospheric Methanol (CH3OH): Multidecade Infrared Time Series from Kitt Peak (31.9 deg N 111.6 deg W): Trend, Seasonal Cycle, and Comparison with Previous Measurements

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve

    2009-01-01

    Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong vs band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.

  5. First Ground-Based Infrared Solar Absorption Measurements of Free Tropospheric Methanol (CH3OH): Multidecade Infrared Time Series from Kitt Peak (31.9 deg N 111.6 deg W): Trend, Seasonal Cycle, and Comparison with Previous Measurements

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve

    2009-01-01

    Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong n8 band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.

  6. Variations in the Peak Position of the 6.2 micron Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W.; Allamandola, L. J.

    2005-01-01

    This paper presents the results of an investigation of the molecular characteristics that underlie the observed peak position and profile of the nominal 6.2 micron interstellar emission band generally attributed to the CC stretching vibrations of polycyclic aromatic hydrocarbons (PAHs). It begins with a summary of recent experimental and theoretical studies ofthe spectroscopic properties of large (>30 carbon atoms) PAH cations as they relate to this aspect of the astrophysical problem. It then continues with an examination of the spectroscopic properties of a number of PAH variants within the context of the interstellar 6.2 micron emission, beginning with a class of compounds known as polycyclic aromatic nitrogen heterocycles (PANHs; PAHs with one or more nitrogen atoms substituted into their carbon skeleton). In this regard, we summarize the results of recent relevant experimental studies involving a limited set of small PANHs and their cations and then report the results of a comprehensive computational study that extends that work to larger PANH cations including many nitrogen-substituted variants of coronene(+) (C24H12(+)), ovalene(+) (C32H14(+)), circumcoronene(+) (C54H18(+)), and circum-circumcoronene(+) (C96H24(+)). Finally, we report the results of more focused computational studies of selected representatives from a number of other classes of PAH variants that share one or more of the key attributes of the PANH species studied. These alternative classes of PAH variants include (1) oxygen- and silicon-substituted PAH cations; (2) PAH-metal ion complexes (metallocenes) involving the cosmically abundant elements magnesium and iron; and (3) large, asymmetric PAH cations. Overall, the studies reported here demonstrate that increasing PAH size alone is insuEcient to account for the position of the shortest wavelength interstellar 6.2 micron emission bands, as had been suggested by earlier studies. On the other hand, this work reveals that substitution of one or

  7. Mountain Peaks

    NASA Image and Video Library

    2014-11-10

    Mountain peaks through the ice cover on Thurston Island off of western Antarctica as seen on the IceBridge flight on Nov. 5, 2014. Image Credit: NASA/Jim Yungel NASA’s Operation IceBridge collected some rare images on a flight out of Punta Arenas, Chile on Nov. 5, 2014, on a science flight over western Antarctica dubbed Ferrigno-Alison-Abbott 01. The crew snapped a few shots of a calving front of the Antarctic ice sheet. This particular flight plan was designed to collect data on changes in ice elevation along the coast near the Ferrigno and Alison ice streams, on the Abbot Ice Shelf, and grounded ice along the Eights Coast.

  8. Central Peak

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 8 September 2003

    The degraded remains of this crater central peak have a surface cover that is characteristic of high latitudes. This type of surface material is thought to be a mixture of dust and ice. The nameless crater that this central peak is found in is approximately 150 km in diameter and is located in the southern highlands.

    Image information: VIS instrument. Latitude -51.6, Longitude 231.4 East (128.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Automated asteroseismic peak detections

    NASA Astrophysics Data System (ADS)

    García Saravia Ortiz de Montellano, Andrés; Hekker, S.; Themeßl, N.

    2018-05-01

    Space observatories such as Kepler have provided data that can potentially revolutionize our understanding of stars. Through detailed asteroseismic analyses we are capable of determining fundamental stellar parameters and reveal the stellar internal structure with unprecedented accuracy. However, such detailed analyses, known as peak bagging, have so far been obtained for only a small percentage of the observed stars while most of the scientific potential of the available data remains unexplored. One of the major challenges in peak bagging is identifying how many solar-like oscillation modes are visible in a power density spectrum. Identification of oscillation modes is usually done by visual inspection that is time-consuming and has a degree of subjectivity. Here, we present a peak-detection algorithm especially suited for the detection of solar-like oscillations. It reliably characterizes the solar-like oscillations in a power density spectrum and estimates their parameters without human intervention. Furthermore, we provide a metric to characterize the false positive and false negative rates to provide further information about the reliability of a detected oscillation mode or the significance of a lack of detected oscillation modes. The algorithm presented here opens the possibility for detailed and automated peak bagging of the thousands of solar-like oscillators observed by Kepler.

  10. Relative Position of the Third Characteristic Peak of the Intracranial Pressure Pulse Waveform Morphology Differentiates Normal-Pressure Hydrocephalus Shunt Responders and Nonresponders.

    PubMed

    Hamilton, Robert; Fuller, Jennifer; Baldwin, Kevin; Vespa, Paul; Hu, Xiao; Bergsneider, Marvin

    2016-01-01

    The diversion of cerebrospinal fluid (CSF) remains the principal treatment option for patients with normal-pressure hydrocephalus (NPH). External lumbar drain (ELD) and overnight intracranial pressure (ICP) monitoring are popular prognostic tests for differentiating which patients will benefit from shunting. Using the morphological clustering and analysis of continuous intracranial pulse (MOCAIP) algorithm to extract morphological metrics from the overnight ICP signal, we hypothesize that changes in the third peak of the ICP pulse pressure waveform can be used to differentiate ELD responders and nonresponders. Our study involved 66 patients (72.2 ± 9.8 years) undergoing evaluation for possible NPH, which included overnight ICP monitoring and ELD. ELD outcome was based on clinical notes and divided into nonresponders and responders. MOCAIP was used to extract mean ICP, ICP wave amplitude (waveAmp), and a metric derived to study P3 elevation (P3ratio). Of the 66 patients, 7 were classified as nonresponders and 25 as significant responders. The mean ICP and waveAmp did not vary significantly (p = 0.19 and p = 0.41) between the outcome groups; however, the P3ratio did show a significant difference (p = 0.04). Initial results suggest that the P3ratio might be used as a prognostic indicator for ELD outcome.

  11. Relationship between open-circuit voltage in Cu(In,Ga)Se{sub 2} solar cell and peak position of (220/204) preferred orientation near its absorber surface

    SciTech Connect

    Chantana, J., E-mail: jakapan@fc.ritsumei.ac.jp; Minemoto, T.; Watanabe, T.

    2013-11-25

    Cu(In,Ga)Se{sub 2} (CIGS) absorbers with various Ga/III, Ga/(In+Ga), profiles are prepared by the so-called “multi-layer precursor method” using multi-layer co-evaporation of material sources. It is revealed that open-circuit voltage (V{sub OC}) of CIGS solar cell is primarily dependent on averaged Ga/III near the surface of its absorber. This averaged Ga/III is well predicted by peak position of (220/204) preferred orientation of CIGS film near its surface investigated by glancing-incidence X-ray diffraction with 0.1° incident angle. Finally, the peak position of (220/204) preferred orientation is proposed as a measure of V{sub OC} before solar cell fabrication.

  12. The Far-ultraviolet "Continuum" in Protoplanetary Disk Systems. II. Carbon Monoxide Fourth Positive Emission and Absorption

    NASA Astrophysics Data System (ADS)

    France, Kevin; Schindhelm, Eric; Burgh, Eric B.; Herczeg, Gregory J.; Harper, Graham M.; Brown, Alexander; Green, James C.; Linsky, Jeffrey L.; Yang, Hao; Abgrall, Hervé; Ardila, David R.; Bergin, Edwin; Bethell, Thomas; Brown, Joanna M.; Calvet, Nuria; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne A.; Hussain, Gaitee; Ingleby, Laura; Johns-Krull, Christopher M.; Roueff, Evelyne; Valenti, Jeff A.; Walter, Frederick M.

    2011-06-01

    We exploit the high sensitivity and moderate spectral resolution of the Hubble Space Telescope Cosmic Origins Spectrograph to detect far-ultraviolet (UV) spectral features of carbon monoxide (CO) present in the inner regions of protoplanetary disks for the first time. We present spectra of the classical T Tauri stars HN Tau, RECX-11, and V4046 Sgr, representative of a range of CO radiative processes. HN Tau shows CO bands in absorption against the accretion continuum. The CO absorption most likely arises in warm inner disk gas. We measure a CO column density and rotational excitation temperature of N(CO) = (2 ± 1) × 1017 cm-2 and T rot(CO) 500 ± 200 K for the absorbing gas. We also detect CO A-X band emission in RECX-11 and V4046 Sgr, excited by UV line photons, predominantly H I Lyα. All three objects show emission from CO bands at λ > 1560 Å, which may be excited by a combination of UV photons and collisions with non-thermal electrons. In previous observations these emission processes were not accounted for due to blending with emission from the accretion shock, collisionally excited H2, and photo-excited H2, all of which appeared as a "continuum" whose components could not be separated. The CO emission spectrum is strongly dependent upon the shape of the incident stellar Lyα emission profile. We find CO parameters in the range: N(CO) ~ 1018-1019 cm-2, T rot(CO) >~ 300 K for the Lyα-pumped emission. We combine these results with recent work on photo-excited and collisionally excited H2 emission, concluding that the observations of UV-emitting CO and H2 are consistent with a common spatial origin. We suggest that the CO/H2 ratio (≡ N(CO)/N(H2)) in the inner disk is ~1, a transition between the much lower interstellar value and the higher value observed in solar system comets today, a result that will require future observational and theoretical study to confirm. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data

  13. Experimental verification of position-dependent angular-momentum selection rules for absorption of twisted light by a bound electron

    NASA Astrophysics Data System (ADS)

    Afanasev, Andrei; Carlson, Carl E.; Schmiegelow, Christian T.; Schulz, Jonas; Schmidt-Kaler, Ferdinand; Solyanik, Maria

    2018-02-01

    We analyze the multipole excitation of atoms with twisted light, i.e, by a vortex light field that carries orbital angular momentum. A single trapped 40Ca+ ion serves as a localized and positioned probe of the exciting field. We drive the {S}1/2\\to {D}5/2 transition and observe the relative strengths of different transitions, depending on the ion's transversal position with respect to the center of the vortex light field. On the other hand, transition amplitudes are calculated for a twisted light field in form of a Bessel beam, a Bessel-Gauss and a Laguerre-Gauss mode. Analyzing experimental obtained transition amplitudes we find agreement with the theoretical predictions at a level of better than 3%. Finally, we propose measurement schemes with two-ion crystals to enhance the sensing accuracy of vortex modes in future experiments.

  14. Whole-body and local RF absorption in human models as a function of anatomy and position within 1.5T MR body coil.

    PubMed

    Murbach, Manuel; Neufeld, Esra; Kainz, Wolfgang; Pruessmann, Klaas P; Kuster, Niels

    2014-02-01

    Radiofrequency energy deposition in magnetic resonance imaging must be limited to prevent excessive heating of the patient. Correlations of radiofrequency absorption with large-scale anatomical features (e.g., height) are investigated in this article. The specific absorption rate (SAR), as the pivotal parameter for quantifying absorbed radiofrequency, increases with the radial dimension of the patient and therefore with the large-scale anatomical properties. The absorbed energy in six human models has been modeled in different Z-positions (head to knees) within a 1.5T bodycoil. For a fixed B1+ incident field, the whole-body SAR can be up to 2.5 times higher (local SAR up to seven times) in obese adult models compared to children. If the exposure is normalized to 4 W/kg whole-body SAR, the local SAR can well-exceed the limits for local transmit coils and shows intersubject variations of up to a factor of three. The correlations between anatomy and induced local SAR are weak for normalized exposure, but strong for a fixed B1+ field, suggesting that anatomical properties could be used for fast SAR predictions. This study demonstrates that a representative virtual human population is indispensable for the investigation of local SAR levels. Copyright © 2013 Wiley Periodicals, Inc.

  15. Ablation in teeth with the free-electron laser around the absorption peak of hydroxyapatite (9.5 μm) and between 6.0 and 7.5 μm

    NASA Astrophysics Data System (ADS)

    Ostertag, Manfred; Walker, Rudolf; Weber, Heiner; van der Meer, Lex; McKinley, Jim T.; Tolk, Norman H.; Jean, Benedikt J.

    1996-04-01

    Pulsed IR laser ablation on dental hard substances was studied in the wavelength range between 9.5 and 11.5 micrometers with the Free-Electron Laser (FEL) in Nieuwegein/NL and between 6.0 and 7.5 micrometers with the FEL at Vanderbilt University in Nashville/TN. Depth, diameter and volume of the ablation crater were determined with a special silicon replica method and subsequent confocal laser topometry. The irradiated surfaces and the ejected debris were examined with an SEM 9.5 - 11.5 micrometers : depth, diameter and volume of the ablation crater are greater and the ablation threshold is lower for ablation with a wavelength corresponding to the absorption max. of hydroxyapatite (9.5 micrometers ), compared to ablation at wavelengths with lower absorption (10.5 - 11.5 micrometers ). For all wavelengths, no thermal cracking can be observed after ablation in dentine, however a small amount of thermal cracking can be observed after ablation in enamel. After ablation at 9.5 micrometers , a few droplets of solidified melt were seen on the irradiated areas, whereas the debris consisted only of solidified melt. In contrast, the surface and the debris obtained from ablation using the other wavelengths showed the natural structure of dentine 6.0 - 7.5 micrometers : the depth of the ablation crater increases and the ablation threshold decreases for an increasing absorption coefficient of the target material. Different tissue components absorbed the laser radiation of different wavelengths (around 6.0 micrometers water and collagen, 6.5 micrometers collagen and water, 7.0 micrometers carbonated hydroxyapatite). Nevertheless the results have shown no major influence on the primary tissue absorber.

  16. PeakWorks

    SciTech Connect

    2016-11-30

    The PeakWorks software is designed to assist in the quantitative analysis of atom probe tomography (APT) generated mass spectra. Specifically, through an interactive user interface, mass peaks can be identified automatically (defined by a threshold) and/or identified manually. The software then provides a means to assign specific elemental isotopes (including more than one) to each peak. The software also provides a means for the user to choose background subtraction of each peak based on background fitting functions, the choice of which is left to the users discretion. Peak ranging (the mass range over which peaks are integrated) is also automatedmore » allowing the user to chose a quantitative range (e.g. full-widthhalf- maximum). The software then integrates all identified peaks, providing a background-subtracted composition, which also includes the deconvolution of peaks (i.e. those peaks that happen to have overlapping isotopic masses). The software is also able to output a 'range file' that can be used in other software packages, such as within IVAS. A range file lists the peak identities, the mass range of each identified peak, and a color code for the peak. The software is also able to generate 'dummy' peak ranges within an outputted range file that can be used within IVAS to provide a means for background subtracted proximity histogram analysis.« less

  17. Infrared absorption spectra of molecular crystals: Possible evidence for small-polaron formation?

    NASA Astrophysics Data System (ADS)

    Pržulj, Željko; Čevizović, Dalibor; Zeković, Slobodan; Ivić, Zoran

    2008-09-01

    The temperature dependence of the position of the so-called anomalous band peaked at 1650cm in the IR-absorption spectrum of crystalline acetanilide (ACN) is theoretically investigated within the small-polaron theory. Its pronounced shift towards the position of the normal band is predicted with the rise of temperature. Interpretation of the IR-absorption spectra in terms of small-polaron model has been critically assessed on the basis of these results.

  18. Effects of nanomaterial saturable absorption on gain-guide soliton in a positive group-dispersion fiber laser: Simulations and experiments

    NASA Astrophysics Data System (ADS)

    Du, Tuanjie; Wan, Xiaojiao; Yang, Runhua; Li, Weiwei; Ruan, Qiujun; Chen, Nan; Luo, Zhengqian

    2018-01-01

    In recent years, several kinds of nanomaterials have been discovered, and successfully used as saturable absorbers (SAs) for passively mode-locked fiber lasers. However, it is found that most of nanomaterials-based SAs cannot stably generate gain-guide solitons in positive group-dispersion fiber lasers, which is urgently expected to fully understand the inherent reasons. In this paper, we numerically and experimentally investigate the effects of nanomaterial saturable absorption (e.g. modulation depth and saturation optical power) on gain-guide soliton in positive group-dispersion Er3+-doped fiber laser (PGD-EDFL). By numerically solving the Ginzburg-Landau equation, the evolutions of both the mode-locked optical spectrum and pulse duration as a function of modulation depth and saturation optical power are analyzed, respectively. In experiment, we firstly prepare five nanomaterial SAs with the similar insertion loss, which have the different modulation depth from 1.80% to 23.36%, and the different saturation optical power from 8.8 to 536 W. We then perform the experimental comparison by incorporating the five SAs in a same PGD-EDFL cavity, respectively. The experimental results are in good agreement with the numerical ones. Our result reveals that: (1) a low modulation depth cannot support the formation of gain-guide soliton, (2) as the modulation depth increases, the spectral bandwidth of gain-guide soliton increases, the pulse duration decreases and the pulse chirp becomes large, (3) the saturation optical power has the weak influences on the gain-guide soliton performances.

  19. Peak Experience Project

    ERIC Educational Resources Information Center

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  20. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  1. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  2. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  3. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  4. Pikes Peak, Colorado

    USGS Publications Warehouse

    Brunstein, Craig; Quesenberry, Carol; Davis, John; Jackson, Gene; Scott, Glenn R.; D'Erchia, Terry D.; Swibas, Ed; Carter, Lorna; McKinney, Kevin; Cole, Jim

    2006-01-01

    For 200 years, Pikes Peak has been a symbol of America's Western Frontier--a beacon that drew prospectors during the great 1859-60 Gold Rush to the 'Pikes Peak country,' the scenic destination for hundreds of thousands of visitors each year, and an enduring source of pride for cities in the region, the State of Colorado, and the Nation. November 2006 marks the 200th anniversary of the Zebulon M. Pike expedition's first sighting of what has become one of the world's most famous mountains--Pikes Peak. In the decades following that sighting, Pikes Peak became symbolic of America's Western Frontier, embodying the spirit of Native Americans, early explorers, trappers, and traders who traversed the vast uncharted wilderness of the Western Great Plains and the Southern Rocky Mountains. High-quality printed paper copies of this poster are available at no cost from Information Services, U.S. Geological Survey (1-888-ASK-USGS).

  5. Peak Oil, Peak Coal and Climate Change

    NASA Astrophysics Data System (ADS)

    Murray, J. W.

    2009-05-01

    Research on future climate change is driven by the family of scenarios developed for the IPCC assessment reports. These scenarios create projections of future energy demand using different story lines consisting of government policies, population projections, and economic models. None of these scenarios consider resources to be limiting. In many of these scenarios oil production is still increasing to 2100. Resource limitation (in a geological sense) is a real possibility that needs more serious consideration. The concept of 'Peak Oil' has been discussed since M. King Hubbert proposed in 1956 that US oil production would peak in 1970. His prediction was accurate. This concept is about production rate not reserves. For many oil producing countries (and all OPEC countries) reserves are closely guarded state secrets and appear to be overstated. Claims that the reserves are 'proven' cannot be independently verified. Hubbert's Linearization Model can be used to predict when half the ultimate oil will be produced and what the ultimate total cumulative production (Qt) will be. US oil production can be used as an example. This conceptual model shows that 90% of the ultimate US oil production (Qt = 225 billion barrels) will have occurred by 2011. This approach can then be used to suggest that total global production will be about 2200 billion barrels and that the half way point will be reached by about 2010. This amount is about 5 to 7 times less than assumed by the IPCC scenarios. The decline of Non-OPEC oil production appears to have started in 2004. Of the OPEC countries, only Saudi Arabia may have spare capacity, but even that is uncertain, because of lack of data transparency. The concept of 'Peak Coal' is more controversial, but even the US National Academy Report in 2007 concluded only a small fraction of previously estimated reserves in the US are actually minable reserves and that US reserves should be reassessed using modern methods. British coal production can be

  6. Peak broadening and peak shift pole figures investigations by STRESS-SPEC diffractometer at FRM II

    NASA Astrophysics Data System (ADS)

    Gan, W. M.; Randau, C.; Hofmann, M.; Brokmeier, H. G.; Mueller, M.; Schreyer, A.

    2012-02-01

    This paper studied for the first time peak intensity, peak position and FHWM pole figures with one time measurement at the neutron diffractometer STRESS-SPEC via in-situ tensile deformation on austenitic steel. Fibre distribution with its evolution from central tensile direction to normal direction of these three kinds of pole figures was obtained. Variation of peak position and FWHM can be correlated to the reorientation of the texture component.

  7. Impact Crater with Peak

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one

  8. INDIAN PEAKS WILDERNESS, COLORADO.

    USGS Publications Warehouse

    Pearson, Robert C.; Speltz, Charles N.

    1984-01-01

    The Indian Peaks Wilderness northwest of Denver is partly within the Colorado Mineral Belt, and the southeast part of it contains all the geologic characteristics associated with the several nearby mining districts. Two deposits have demonstrated mineral resources, one of copper and the other of uranium; both are surrounded by areas with probable potential. Two other areas have probable resource potential for copper, gold, and possibly molydenum. Detailed gravity and magnetic studies in the southeast part of the Indian Peaks Wilderness might detect in the subsurface igneous bodies that may be mineralized. Physical exploration such as drilling would be necessary to determine more precisely the copper resources at the Roaring Fork locality and uranium resources at Wheeler Basin.

  9. PEAK LIMITING AMPLIFIER

    DOEpatents

    Goldsworthy, W.W.; Robinson, J.B.

    1959-03-31

    A peak voltage amplitude limiting system adapted for use with a cascade type amplifier is described. In its detailed aspects, the invention includes an amplifier having at least a first triode tube and a second triode tube, the cathode of the second tube being connected to the anode of the first tube. A peak limiter triode tube has its control grid coupled to thc anode of the second tube and its anode connected to the cathode of the second tube. The operation of the limiter is controlled by a bias voltage source connected to the control grid of the limiter tube and the output of the system is taken from the anode of the second tube.

  10. PEAK READING VOLTMETER

    DOEpatents

    Dyer, A.L.

    1958-07-29

    An improvement in peak reading voltmeters is described, which provides for storing an electrical charge representative of the magnitude of a transient voltage pulse and thereafter measuring the stored charge, drawing oniy negligible energy from the storage element. The incoming voltage is rectified and stored in a condenser. The voltage of the capacitor is applied across a piezoelectric crystal between two parallel plates. Amy change in the voltage of the capacitor is reflected in a change in the dielectric constant of the crystal and the capacitance between a second pair of plates affixed to the crystal is altered. The latter capacitor forms part of the frequency determlning circuit of an oscillator and means is provided for indicating the frequency deviation which is a measure of the peak voltage applied to the voltmeter.

  11. Measuring Your Peak Flow Rate

    MedlinePlus

    ... Living with Asthma > Managing Asthma Measuring Your Peak Flow Rate Download Instructions A peak flow meter is ... to use. Who Benefits from Using a Peak Flow Meter? Many healthcare providers believe that people who ...

  12. Peaking Into the Dark

    NASA Image and Video Library

    2017-12-08

    In this dramatic scene, an unnamed crater in Mercury's northern volcanic plains is bathed in darkness as the sun sits low on the horizon. Rising from the floor of the crater is its central peak, a small mountain resulting from the crater's formation. A central peak is a type of crater morphology that lies between "simple" and "peak ring" in the range of crater morphology on Mercury. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. During the first two years of orbital operations, MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Kitt Peak speckle camera

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Mcalister, H. A.; Robinson, W. G.

    1979-01-01

    The speckle camera in regular use at Kitt Peak National Observatory since 1974 is described in detail. The design of the atmospheric dispersion compensation prisms, the use of film as a recording medium, the accuracy of double star measurements, and the next generation speckle camera are discussed. Photographs of double star speckle patterns with separations from 1.4 sec of arc to 4.7 sec of arc are shown to illustrate the quality of image formation with this camera, the effects of seeing on the patterns, and to illustrate the isoplanatic patch of the atmosphere.

  14. Sunset over "Twin Peaks"

    NASA Image and Video Library

    1997-08-06

    This image was taken by the Imager for Mars Pathfinder (IMP) about one minute after sunset on Mars on Sol 21. The prominent hills dubbed "Twin Peaks" form a dark silhouette at the horizon, while the setting sun casts a pink glow over the darkening sky. The image was taken as part of a twilight study which indicates how the brightness of the sky fades with time after sunset. Scientists found that the sky stays bright for up to two hours after sunset, indicating that Martian dust extends very high into the atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA00783

  15. Tycho Crater's Peak

    NASA Image and Video Library

    2011-06-29

    NASA image release June 30, 2011 On June 10, 2011, NASA's Lunar Reconnaissance Orbiter captured a dramatic sunrise view of Tycho crater. A very popular target with amateur astronomers, Tycho is located at 43.37°S, 348.68°E, and is about 51 miles (82 km) in diameter. The summit of the central peak is 1.24 miles (2 km) above the crater floor. The distance from Tycho's floor to its rim is about 2.92 miles (4.7 km). Tycho crater's central peak complex, shown here, is about 9.3 miles (15 km) wide, left to right (southeast to northwest in this view). › More information and related images › NASA's LRO website Credit: NASA Goddard/Arizona State University NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. The fraction of α-linolenic acid present in the sn-2 position of structured triacylglycerols decreases in lymph chylomicrons and plasma triacylglycerols during the course of lipid absorption in rats.

    PubMed

    Couëdelo, Leslie; Vaysse, Carole; Vaique, Emilie; Guy, Alexandre; Gosse, Isabelle; Durand, Thierry; Pinet, Sandra; Cansell, Maud; Combe, Nicole

    2012-01-01

    Little is known about the ability of α-linolenic acid (Ln) to remain in the sn-2 position of TG during the absorption process. The goal of this study was to determine the Ln distribution in the lymph (Study 1) and plasma (Study 2) TG of rats fed a single i.g. load of structured TG [300 mg/rat of either oleic acid (O)/Ln/O TG (OLnO) or Ln/O/O TG (LnOO), n = 7 rats]. In an early fraction (3-4 h) of lymph (OLnO group; 100% Ln in the sn-2 position), 46 ± 2% Ln was maintained in this position in lymph TG. There was even less (29 ± 6%) in the last fraction (7-24 h) (P < 0.05). Ln was also found (9 ± 3%) in the sn-2 position of lymph TG in the LnOO group. The Ln content in lymph phospholipids was twice as high in rats when they were fed LnOO (4.2 ± 0.1%) than OLnO (2.3 ± 0.2%) (P < 0.005). Six hours postprandially (Study 2), 21 ± 3% of the Ln incorporated into plasma TG was located in the sn-2 position in the OLnO group compared to 13 ± 2% in the LnOO group (P < 0.001). Overall, these results indicate that the amount of Ln that moved from the sn-2 position of structured TG to the sn-1(3) position of lymph TG increased during absorption. This may account for a substantial hydrolysis of the 2-monolinolenylglycerols in enterocytes, leading to the intramolecular redistribution of Ln in lymph TG and, consequently, in plasma TG.

  17. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  18. Optical absorption of zigzag single walled boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Chegel, Raad; Behzad, Somayeh

    2010-11-01

    In a realistic three-dimensional model, optical matrix element and linear optical absorption of zigzag single walled boron nitride nanotubes (BNNTs) in the tight binding approximation are studied. In terms of absolute value of dipole matrix elements of the first three direct transitions at kz=0, we divided the zigzag BNNTs into three groups and investigated their optical absorption spectrum in energy ranges E<5, 77.5 eV. We found that in lower energies, E<5 eV, all groups show different behaviors while in the higher energies, 77.5 eV, their behaviors depend on their even or odd nanotube index. We also found that in the energy range 7peaks denoted by ‘A’ and ‘B’ where the ‘B’ peak energy position is approximately constant and is independent of the nanotube diameter. We also found that increasing the tubes diameter leads to red shift for all peaks except ‘A’ peak where this peak moves to higher energies. Our results are in good agreement with the experimental results.

  19. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    PubMed Central

    2012-01-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the ‘core/shell’ interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon. PMID:22548846

  20. Absorption spectrum of a two-level system subjected to a periodic pulse sequence

    SciTech Connect

    Fotso, H. F.; Dobrovitski, V. V.

    We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less

  1. Absorption spectrum of a two-level system subjected to a periodic pulse sequence

    DOE PAGES

    Fotso, H. F.; Dobrovitski, V. V.

    2017-06-01

    We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less

  2. Energetics of photosynthetic glow peaks

    PubMed Central

    DeVault, Don; Govindjee; Arnold, William

    1983-01-01

    By postulating temperature-dependent equilibria between two or more electron carriers acting as traps for electrons or holes, it is possible to modify the Randall-Wilkins theory of thermoluminescence so as to explain the abnormally large apparent activation energies and apparent frequency factors observed in photosynthetic glow curves when fitted by unmodified Randall-Wilkins theory. The equilibria serve to inhibit the formation of the light-emitting excited state by withholding the needed precursor state. When the inhibition is released at higher temperature by shift of equilibrium with temperature, the rise of the glow peak can be much faster than would result from Arrhenius behavior based on the true activation energy and so appears to correspond to a higher activation energy accompanied by a larger frequency factor. From another viewpoint, the enthalpy changes, ΔH, of the equilibria tend to add to the activation energy. Similarly the entropy changes, ΔS, of the equilibria tend to add to the entropy of activation, giving the large apparent frequency factors. The positive values of ΔS needed would correspond to entropy decreases in the forward early electron transport. A comparison of the glow peaks obtained by different workers is also presented. PMID:16593283

  3. Sunset over Twin Peaks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image was taken by the Imager for Mars Pathfinder (IMP) about one minute after sunset on Mars on Sol 21. The prominent hills dubbed 'Twin Peaks' form a dark silhouette at the horizon, while the setting sun casts a pink glow over the darkening sky. The image was taken as part of a twilight study which indicates how the brightness of the sky fades with time after sunset. Scientists found that the sky stays bright for up to two hours after sunset, indicating that Martian dust extends very high into the atmosphere.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  4. Frozen lattice and absorptive model for high angle annular dark field scanning transmission electron microscopy: A comparison study in terms of integrated intensity and atomic column position measurement.

    PubMed

    Alania, M; Lobato, I; Van Aert, S

    2018-01-01

    In this paper, both the frozen lattice (FL) and the absorptive potential (AP) approximation models are compared in terms of the integrated intensity and the precision with which atomic columns can be located from an image acquired using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). The comparison is made for atoms of Cu, Ag, and Au. The integrated intensity is computed for both an isolated atomic column and an atomic column inside an FCC structure. The precision has been computed using the so-called Cramér-Rao Lower Bound (CRLB), which provides a theoretical lower bound on the variance with which parameters can be estimated. It is shown that the AP model results into accurate measurements for the integrated intensity only for small detector ranges under relatively low angles and for small thicknesses. In terms of the attainable precision, both methods show similar results indicating picometer range precision under realistic experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Optical absorption of zigzag single walled boron nitride nanotubes in axial magnetic field

    NASA Astrophysics Data System (ADS)

    Chegel, Raad; Behzad, Somayeh

    2013-11-01

    We have investigated the effect of axial magnetic field on the band structure, dipole matrix elements and absorption spectrum in different energy ranges, using tight binding approximation. It is found that magnetic field breaks the degeneracy in the band structure and creates new allowed transitions in the dipole matrix which leads to creation of new peaks in the absorption spectrum. It is found that, unlike to CNTs which show metallic-semiconductor transition, the BNNTs remain semiconductor in any magnetic field strength. By calculation the diameter dependence of peak positions, we found that the positions of three first peaks in the lower energy region (E <5.3 eV) are proportional to n-2. In the middle energy region (7 < E < 7.5 eV) all (n, 0) zigzag BNNTs, with even and odd nanotube index, have two distinct peaks in the absence of magnetic field which these peaks may be used to identify zigzag BNNTs from other tube chiralities. For odd (even) tubes, in the middle energy region, applying the magnetic field leads to splitting of these two peaks into three (five) distinct peaks.

  6. Peak distortion effects in analytical ion chromatography.

    PubMed

    Wahab, M Farooq; Anderson, Jordan K; Abdelrady, Mohamed; Lucy, Charles A

    2014-01-07

    The elution profile of chromatographic peaks provides fundamental understanding of the processes that occur in the mobile phase and the stationary phase. Major advances have been made in the column chemistry and suppressor technology in ion chromatography (IC) to handle a variety of sample matrices and ions. However, if the samples contain high concentrations of matrix ions, the overloaded peak elution profile is distorted. Consequently, the trace peaks shift their positions in the chromatogram in a manner that depends on the peak shape of the overloading analyte. In this work, the peak shapes in IC are examined from a fundamental perspective. Three commercial IC columns AS16, AS18, and AS23 were studied with borate, hydroxide and carbonate as suppressible eluents. Monovalent ions (chloride, bromide, and nitrate) are used as model analytes under analytical (0.1 mM) to overload conditions (10-500 mM). Both peak fronting and tailing are observed. On the basis of competitive Langmuir isotherms, if the eluent anion is more strongly retained than the analyte ion on an ion exchanger, the analyte peak is fronting. If the eluent is more weakly retained on the stationary phase, the analyte peak always tails under overload conditions regardless of the stationary phase capacity. If the charge of the analyte and eluent anions are different (e.g., Br(-) vs CO3(2-)), the analyte peak shapes depend on the eluent concentration in a more complex pattern. It was shown that there are interesting similarities with peak distortions due to strongly retained mobile phase components in other modes of liquid chromatography.

  7. Tunneling induced absorption with competing Nonlinearities

    PubMed Central

    Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi

    2016-01-01

    We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility. PMID:27958303

  8. Tunneling induced absorption with competing Nonlinearities.

    PubMed

    Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi

    2016-12-13

    We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility.

  9. Improvement of depth resolution on photoacoustic imaging using multiphoton absorption

    NASA Astrophysics Data System (ADS)

    Yamaoka, Yoshihisa; Fujiwara, Katsuji; Takamatsu, Tetsuro

    2007-07-01

    Commercial imaging systems, such as computed tomography and magnetic resonance imaging, are frequently used powerful tools for observing structures deep within the human body. However, they cannot precisely visualized several-tens micrometer-sized structures for lack of spatial resolution. In this presentation, we propose photoacoustic imaging using multiphoton absorption technique to generate ultrasonic waves as a means of improving depth resolution. Since the multiphoton absorption occurs at only the focus point and the employed infrared pulses deeply penetrate living tissues, it enables us to extract characteristic features of structures embedded in the living tissue. When nanosecond pulses from a 1064-nm Nd:YAG laser were focused on Rhodamine B/chloroform solution (absorption peak: 540 nm), the peak intensity of the generated photoacoustic signal was proportional to the square of the input pulse energy. This result shows that the photoacoustic signals can be induced by the two-photon absorption of infrared nanosecond pulse laser and also can be detected by a commercial low-frequency MHz transducer. Furthermore, in order to evaluate the depth resolution of multiphoton-photoacoustic imaging, we investigated the dependence of photoacoustic signal on depth position using a 1-mm-thick phantom in a water bath. We found that the depth resolution of two-photon photoacoustic imaging (1064 nm) is greater than that of one-photon photoacoustic imaging (532 nm). We conclude that evolving multiphoton-photoacoustic imaging technology renders feasible the investigation of biomedical phenomena at the deep layer in living tissue.

  10. Percutaneous absorption

    PubMed Central

    Brisson, Paul

    1974-01-01

    Clinical effectiveness of topically applied medications depends on the ability of the active ingredient to leave its vehicle and penetrate into the epidermis. The stratum corneum is that layer of the epidermis which functionally is the most important in limiting percutaneous absorption, showing the characteristics of a composite semipermeable membrane. A mathematical expression of transepidermal diffusion may be derived from Fick's Law of mass transport; factors altering the rate of diffusion are discussed. PMID:4597976

  11. Can You Hear That Peak? Utilization of Auditory and Visual Feedback at Peak Limb Velocity.

    PubMed

    Loria, Tristan; de Grosbois, John; Tremblay, Luc

    2016-09-01

    At rest, the central nervous system combines and integrates multisensory cues to yield an optimal percept. When engaging in action, the relative weighing of sensory modalities has been shown to be altered. Because the timing of peak velocity is the critical moment in some goal-directed movements (e.g., overarm throwing), the current study sought to test whether visual and auditory cues are optimally integrated at that specific kinematic marker when it is the critical part of the trajectory. Participants performed an upper-limb movement in which they were required to reach their peak limb velocity when the right index finger intersected a virtual target (i.e., a flinging movement). Brief auditory, visual, or audiovisual feedback (i.e., 20 ms in duration) was provided to participants at peak limb velocity. Performance was assessed primarily through the resultant position of peak limb velocity and the variability of that position. Relative to when no feedback was provided, auditory feedback significantly reduced the resultant endpoint variability of the finger position at peak limb velocity. However, no such reductions were found for the visual or audiovisual feedback conditions. Further, providing both auditory and visual cues concurrently also failed to yield the theoretically predicted improvements in endpoint variability. Overall, the central nervous system can make significant use of an auditory cue but may not optimally integrate a visual and auditory cue at peak limb velocity, when peak velocity is the critical part of the trajectory.

  12. Magneto-optical absorption and cyclotron-phonon resonance in graphene monolayer

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Phuong, Le Thi Thu; Phong, Tran Cong

    2018-03-01

    The optical absorption power by Dirac fermions in a graphene monolayer subjected to a perpendicular magnetic field is calculated using a projection operator technique. The electron-optical phonon interaction with optical deformation potential is taken into account. By varying the photon frequency (energy), we observe in the absorption power a series of cyclotron-phonon resonance (CPR) peaks (i.e., the phonon-assisted cyclotron resonance). It is seen that the resonant photon energy is linearly proportional to the square root of the magnetic field. Also, the half width at half maximum (HWHM) of CPR peaks depends on the magnetic field by the law HWHM = 7.42 √{B } but does not depend on the temperature. In particular, the magnetic field and temperature dependences of the position and HWHM of CPR peaks are in good agreement with those obtained recently by the perturbation theory and an experiment in graphene.

  13. Rich magneto-absorption spectra of AAB-stacked trilayer graphene.

    PubMed

    Do, Thi-Nga; Shih, Po-Hsin; Chang, Cheng-Peng; Lin, Chiun-Yan; Lin, Ming-Fa

    2016-06-29

    A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit single- or twin-peak structures which are determined by quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anti-crossings. AAB, AAA, ABA, and ABC stackings considerably differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configuration-enriched magneto-optical spectra.

  14. Gastrointestinal citrate absorption in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  15. The effect of a trunk release maneuver on Peak Pressure Index, trunk displacement and perceived discomfort in older adults seated in a High Fowler's position: a randomized controlled trial.

    PubMed

    Best, Krista L; Desharnais, Guylaine; Boily, Jeanette; Miller, William C; Camp, Pat G

    2012-11-16

    Pressure ulcers pose significant negative individual consequences and financial burden on the healthcare system. Prolonged sitting in High Fowler's position (HF) is common clinical practice for older adults who spend extended periods of time in bed. While HF aids in digestion and respiration, being placed in a HF may increase perceived discomfort and risk of pressure ulcers due to increased pressure magnitude at the sacral and gluteal regions. It is likely that shearing forces could also contribute to risk of pressure ulcers in HF. The purpose of this study was to evaluate the effect of a low-tech and time-efficient Trunk Release Manuever (TRM) on sacral and gluteal pressure, trunk displacement and perceived discomfort in ambulatory older adults. A randomized controlled trial was used. We recruited community-living adults who were 60 years of age and older using posters, newspaper advertisements and word-of-mouth. Participants were randomly allocated to either the intervention or control group. The intervention group (n = 59) received the TRM, while the control group (n = 58) maintained the standard HF position. The TRM group had significantly lower mean (SD) PPI values post-intervention compared to the control group, 59.6 (30.7) mmHg and 79.9 (36.5) mmHg respectively (p = 0.002). There was also a significant difference in trunk displacement between the TRM and control groups, +3.2 mm and -5.8 mm respectively (p = 0.005). There were no significant differences in perceived discomfort between the groups. The TRM was effective for reducing pressure in the sacral and gluteal regions and for releasing the trunk at the point of contact between the skin and the support surface, but did not have an effect on perceived discomfort. The TRM is a simple method of repositioning which may have important clinical application for the prevention of pressure ulcers that may occur as a result of HF.

  16. Resonant absorption of electromagnetic waves in transition anisotropic media.

    PubMed

    Kim, Kihong

    2017-11-27

    We study the mode conversion and resonant absorption phenomena occurring in a slab of a stratified anisotropic medium, optical axes of which are tilted with respect to the direction of inhomogeneity, using the invariant imbedding theory of wave propagation. When the tilt angle is zero, mode conversion occurs if the longitudinal component of the permittivity tensor, which is the one in the direction of inhomogeneity in the non-tilted case, varies from positive to negative values within the medium, while the transverse component plays no role. When the tilt angle is nonzero, the wave transmission and absorption show an asymmetry under the sign change of the incident angle in a range of the tilt angle, while the reflection is always symmetric. We calculate the reflectance, the transmittance and the absorptance for several configurations of the permittivity tensor and find that resonant absorption is greatly enhanced when the medium from the incident surface to the resonance region is hyperbolic than when it is elliptic. For certain configurations, the transmittance and absorptance curves display sharp peaks at some incident angles determined by the tilt angle.

  17. Two density peaks in low magnetic field helicon plasma

    SciTech Connect

    Wang, Y.; Zhao, G.; Ouyang, J. T., E-mail: jtouyang@bit.edu.cn, E-mail: lppmchenqiang@hotmail.com

    2015-09-15

    In this paper, we report two density peaks in argon helicon plasma under an axial magnetic field from 0 G to 250 G with Boswell-type antenna driven by radio frequency (RF) power of 13.56 MHz. The first peak locates at 40–55 G and the second one at 110–165 G, as the RF power is sustainably increased from 100 W to 250 W at Ar pressure of 0.35 Pa. The absorbed power of two peaks shows a linear relationship with the magnetic field. End views of the discharge taken by intensified charge coupled device reveal that, when the first peak appeared, the discharge luminance moves to the edge ofmore » the tube as the magnetic field increases. For the second peak, the strong discharge area is centered at the two antenna legs after the magnetic field reaches a threshold value. Comparing with the simulation, we suggest that the efficient power absorption of two peaks at which the efficient power absorption mainly appears in the near-antenna region is due to the mode conversion in bounded non-uniform helicon plasma. The two low-field peaks are caused, to some extent, by the excitation of Trivelpiece-Gould wave through non-resonance conversion.« less

  18. Broadband and wide angle near-unity absorption in graphene-insulator-metal thin film stacks

    NASA Astrophysics Data System (ADS)

    Zhang, H. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.

    2018-05-01

    Broadband unity absorption in graphene-insulator-metal (GIM) structures is demonstrated in the visible (VIS) and near-infrared (NIR) spectra. The spectral characteristics possess broadband absorption peaks, by simply choosing a stack of GIM, while no nanofabrication steps and patterning are required, and thus can be easily fabricated to cover a large area. The electromagnetic (EM) waves can be entirely trapped and the absorption can be greatly enhanced are verified with the finite-difference time-domain (FDTD) and rigorous coupled wave analysis (RCWA) methods. The position and the number of the absorption peak can be totally controlled by adjusting the thickness of the insulator layer. The proposed absorber maintains high absorption (above 90%) for both transverse electric (TE) and transverse magnetic (TM) polarizations, and for angles of incidence up to 80°. This work opens up a promising approach to realize perfect absorption (PA) with ultra-thin film, which could implicate many potential applications in optical detection and optoelectronic devices.

  19. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  20. Peak Experiences: Some Empirical Tests.

    ERIC Educational Resources Information Center

    Wuthnow, Robert

    1978-01-01

    This article presents findings regarding peak experiences from a systematic random sample of 1,000 persons in the San Francisco-Oakland area. Evidence is presented on the incidence of peak experiences, on the kinds of life styles which tend to be associated with these experiences, and on some of the social implications that these experiences have.…

  1. How to use your peak flow meter

    MedlinePlus

    Peak flow meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak flow meter ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  2. On the role of spatial position of bridged oxygen atoms as surface passivants on the ground-state gap and photo-absorption spectrum of silicon nano-crystals

    SciTech Connect

    Nazemi, Sanaz; Soleimani, Ebrahim Asl; Pourfath, Mahdi, E-mail: pourfath@ut.ac.ir, E-mail: pourfath@iue.tuwien.ac.at

    2015-11-28

    Silicon nano-crystals (NCs) are potential candidates for enhancing and tuning optical properties of silicon for optoelectronic and photo-voltaic applications. Due to the high surface-to-volume ratio, however, optical properties of NC result from the interplay of quantum confinement and surface effects. In this work, we show that both the spatial position of surface terminants and their relative positions have strong effects on NC properties as well. This is accomplished by investigating the ground-state HOMO-LUMO band-gap, the photo-absorption spectra, and the localization and overlap of HOMO and LUMO orbital densities for prototype ∼1.2 nm Si{sub 32–x}H{sub 42–2x}O{sub x} hydrogenated silicon NC with bridgedmore » oxygen atoms as surface terminations. It is demonstrated that the surface passivation geometry significantly alters the localization center and thus the overlap of frontier molecular orbitals, which correspondingly modifies the electronic and optical properties of NC.« less

  3. Terahertz absorption in graphite nanoplatelets/polylactic acid composites

    NASA Astrophysics Data System (ADS)

    Bychanok, D.; Angelova, P.; Paddubskaya, A.; Meisak, D.; Shashkova, L.; Demidenko, M.; Plyushch, A.; Ivanov, E.; Krastev, R.; Kotsilkova, R.; Ogrin, F. Y.; Kuzhir, P.

    2018-04-01

    The electromagnetic properties of composite materials based on poly(lactic) acid (PLA) filled with graphite nanoplatelets (GNP) were investigated in the microwave (26–37 GHz) and terahertz (0.2–1 THz) frequency ranges. The maximum of the imaginary part of the dielectric permittivity was observed close to 0.6 THz for composites with 1.5 and 3 wt.% of GNP. The experimental data of complex dielectric permittivity of GNP/PLA composites was modelled using the Maxwell-Garnett theory. The effects of fine dispersion, agglomeration, and percolation in GNP-based composites on its electromagnetic constitutive parameters, presence, and position of THz absorption peak are discussed on the basis of the modeling results and experimental data. The unique combination of conductive and geometrical parameters of GNP embedded into the PLA matrix below the percolation threshold allow us to obtain the THz-absorptive material, which may be effectively used as a 3D-printing filament.

  4. Extragalactic Peaked-spectrum Radio Sources at Low Frequencies

    SciTech Connect

    Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.

    We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak.more » We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.« less

  5. Hubbert's Peak: A Physicist's View

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2011-11-01

    Oil and its by-products, as used in manufacturing, agriculture, and transportation, are the lifeblood of today's 7 billion-person population and our 65T world economy. Despite this importance, estimates of future oil production seem dominated by wishful thinking rather than quantitative analysis. Better studies are needed. In 1956, Dr. M.King Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Thus, the peak of oil production is referred to as ``Hubbert's Peak.'' Prof. Al Bartlett extended this work in publications and lectures on population and oil. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. This paper extends this line of work to include analyses of individual countries, inclusion of multiple Gaussian peaks, and analysis of reserves data. While this is not strictly a predictive theory, we will demonstrate a ``closed'' story connecting production, oil-in-place, and reserves. This gives us the ``most likely'' estimate of future oil availability. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  6. Osteoporosis: Peak Bone Mass in Women

    MedlinePlus

    ... Osteoporosis: Peak Bone Mass in Women Osteoporosis: Peak Bone Mass in Women Bones are the framework for ... that affect peak bone mass. Factors Affecting Peak Bone Mass A variety of genetic and environmental factors ...

  7. QRS peak detection for heart rate monitoring on Android smartphone

    NASA Astrophysics Data System (ADS)

    Pambudi Utomo, Trio; Nuryani, Nuryani; Darmanto

    2017-11-01

    In this study, Android smartphone is used for heart rate monitoring and displaying electrocardiogram (ECG) graph. Heart rate determination is based on QRS peak detection. Two methods are studied to detect the QRS complex peak; they are Peak Threshold and Peak Filter. The acquisition of ECG data is utilized by AD8232 module from Analog Devices, three electrodes, and Microcontroller Arduino UNO R3. To record the ECG data from a patient, three electrodes are attached to particular body’s surface of a patient. Patient’s heart activity which is recorded by AD8232 module is decoded by Arduino UNO R3 into analog data. Then, the analog data is converted into a voltage value (mV) and is processed to get the QRS complex peak. Heart rate value is calculated by Microcontroller Arduino UNO R3 uses the QRS complex peak. Voltage, heart rate, and the QRS complex peak are sent to Android smartphone by Bluetooth HC-05. ECG data is displayed as the graph by Android smartphone. To evaluate the performance of QRS complex peak detection method, three parameters are used; they are positive predictive, accuracy and sensitivity. Positive predictive, accuracy, and sensitivity of Peak Threshold method is 92.39%, 70.30%, 74.62% and for Peak Filter method are 98.38%, 82.47%, 83.61%, respectively.

  8. Peak finding using biorthogonal wavelets

    SciTech Connect

    Tan, C.Y.

    2000-02-01

    The authors show in this paper how they can find the peaks in the input data if the underlying signal is a sum of Lorentzians. In order to project the data into a space of Lorentzian like functions, they show explicitly the construction of scaling functions which look like Lorentzians. From this construction, they can calculate the biorthogonal filter coefficients for both the analysis and synthesis functions. They then compare their biorthogonal wavelets to the FBI (Federal Bureau of Investigations) wavelets when used for peak finding in noisy data. They will show that in this instance, their filters perform muchmore » better than the FBI wavelets.« less

  9. Hubbert's Peak -- A Physicist's View

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2011-04-01

    Oil, as used in agriculture and transportation, is the lifeblood of modern society. It is finite in quantity and will someday be exhausted. In 1956, Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Bartlett extended this work in publications and lectures on the finite nature of oil and its production peak and depletion. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. Central to these analyses are estimates of total ``oil in place'' obtained from engineering studies of oil reservoirs as this quantity determines the area under the Hubbert's Peak. Knowing the production history and the total oil in place allows us to make estimates of reserves, and therefore future oil availability. We will then examine reserves data for various countries, in particular OPEC countries, and see if these data tell us anything about the future availability of oil. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  10. Peake works on the WPA

    NASA Image and Video Library

    2016-03-22

    ISS047e013845 (03/22/2016) --- ESA (European Space Agency) astronaut Tim Peake works on the Water Processor Assembly (WPA) aboard the International Space Station. The WPA is is responsible for treating waste water aboard the station for recycling back into potable water.

  11. Peak Stress Testing Protocol Framework

    EPA Science Inventory

    Treatment of peak flows during wet weather is a common challenge across the country for municipal wastewater utilities with separate and/or combined sewer systems. Increases in wastewater flow resulting from infiltration and inflow (I/I) during wet weather events can result in op...

  12. METHOD OF PEAK CURRENT MEASUREMENT

    DOEpatents

    Baker, G.E.

    1959-01-20

    The measurement and recording of peak electrical currents are described, and a method for utilizing the magnetic field of the current to erase a portion of an alternating constant frequency and amplitude signal from a magnetic mediums such as a magnetic tapes is presented. A portion of the flux from the current carrying conductor is concentrated into a magnetic path of defined area on the tape. After the current has been recorded, the tape is played back. The amplitude of the signal from the portion of the tape immediately adjacent the defined flux area and the amplitude of the signal from the portion of the tape within the area are compared with the amplitude of the signal from an unerased portion of the tape to determine the percentage of signal erasure, and thereby obtain the peak value of currents flowing in the conductor.

  13. SPANISH PEAKS PRIMITIVE AREA, MONTANA.

    USGS Publications Warehouse

    Calkins, James A.; Pattee, Eldon C.

    1984-01-01

    A mineral survey of the Spanish Peaks Primitive Area, Montana, disclosed a small low-grade deposit of demonstrated chromite and asbestos resources. The chances for discovery of additional chrome resources are uncertain and the area has little promise for the occurrence of other mineral or energy resources. A reevaluation, sampling at depth, and testing for possible extensions of the Table Mountain asbestos and chromium deposit should be undertaken in the light of recent interpretations regarding its geologic setting.

  14. Peake in Columbus with sensor

    NASA Image and Video Library

    2016-01-26

    ISS046e024411 (01/26/2016) --- European Space Agency (ESA) astronaut Timothy Peake prepares to install a space acceleration measurement system sensor inside the European Columbus module aboard the International Space Station. The device is used in an ongoing study of the small forces (vibrations and accelerations) on the International Space Station resulting from the operation of hardware, crew activities, dockings and maneuvering. Results generalize the types of vibrations affecting vibration-sensitive experiments.

  15. Twin Peaks (B/W)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Twin Peaks are modest-size hills to the southwest of the Mars Pathfinder landing site. They were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. The peaks are approximately 30-35 meters (-100 feet) tall. North Twin is approximately 860 meters (2800 feet) from the lander, and South Twin is about a kilometer away (3300 feet). The scene includes bouldery ridges and swales or 'hummocks' of flood debris that range from a few tens of meters away from the lander to the distance of the South Twin Peak. The large rock at the right edge of the scene is nicknamed 'Hippo'. This rock is about a meter (3 feet) across and 25 meters (80 feet) distant.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  16. Relationships between Electroencephalographic Spectral Peaks Across Frequency Bands

    PubMed Central

    van Albada, S. J.; Robinson, P. A.

    2013-01-01

    The degree to which electroencephalographic spectral peaks are independent, and the relationships between their frequencies have been debated. A novel fitting method was used to determine peak parameters in the range 2–35 Hz from a large sample of eyes-closed spectra, and their interrelationships were investigated. Findings were compared with a mean-field model of thalamocortical activity, which predicts near-harmonic relationships between peaks. The subject set consisted of 1424 healthy subjects from the Brain Resource International Database. Peaks in the theta range occurred on average near half the alpha peak frequency, while peaks in the beta range tended to occur near twice and three times the alpha peak frequency on an individual-subject basis. Moreover, for the majority of subjects, alpha peak frequencies were significantly positively correlated with frequencies of peaks in the theta and low and high beta ranges. Such a harmonic progression agrees semiquantitatively with theoretical predictions from the mean-field model. These findings indicate a common or analogous source for different rhythms, and help to define appropriate individual frequency bands for peak identification. PMID:23483663

  17. Absorption and emission spectra of Li atoms trapped in rare gas matrices

    NASA Astrophysics Data System (ADS)

    Wright, J. J.; Balling, L. C.

    1980-10-01

    Pulsed-dye-laser excitation has been used to investigate the optical absorption and emission spectra of Li atoms trapped in Ar, Kr, and Xe matrices at 10 °K. Attempts to stabilize Li atoms in a Ne matrix at 2 °K were unsuccessful. Results for all three rare gases were qualitatively the same. White light absorption scans showed a single absorption with three peaks centered near the free-atom 2s→2p transition wavelength. The intensity of fluorescence produced by dye-laser excitation within this absorption band was measured as a function of emission wavelength. Excitation of the longest- and shortest-wavelength absorption peaks produced identical emission profiles, but no distinct fluorescence signal was detected when the laser was tuned to the central absorption peaks, indicating that the apparent absorption triplet is actually the superposition of a singlet and a doublet absorption originating from two different trapping sites. No additional absorption bands were detected.

  18. The P K-near edge absorption spectra of phosphates

    NASA Astrophysics Data System (ADS)

    Franke, R.; Hormes, J.

    1995-12-01

    The X-ray absorption near edge structure (XANES) at the P K-edge in several orthophosphates with various cations, in condensed, and in substituted sodium phosphates have been measured using synchrotron radiation from the ELSA storage ring at the University of Bonn. The measured spectra demonstrate that chemical changes beyond the PO 4- tetrahedra are reflected by energy shifts of the pre-edge and continuum resonances, by the presence of characteristic shoulders and new peaks and by differences in the intensity of the white line. We discuss the energy differences between the white line positions and the corresponding P ls binding energies as a measure of half of the energy gap. The corresponding values correlate with the valence of the cations and the intensity of the white lines. The energy positions of the continuum resonances are discussed on the basis of an empirical bond-length correlation supporting a 1/ r2 - dependence.

  19. D-peaks: a visual tool to display ChIP-seq peaks along the genome.

    PubMed

    Brohée, Sylvain; Bontempi, Gianluca

    2012-01-01

    ChIP-sequencing is a method of choice to localize the positions of protein binding sites on DNA on a whole genomic scale. The deciphering of the sequencing data produced by this novel technique is challenging and it is achieved by their rigorous interpretation using dedicated tools and adapted visualization programs. Here, we present a bioinformatics tool (D-peaks) that adds several possibilities (including, user-friendliness, high-quality, relative position with respect to the genomic features) to the well-known visualization browsers or databases already existing. D-peaks is directly available through its web interface http://rsat.ulb.ac.be/dpeaks/ as well as a command line tool.

  20. GRANITE PEAK ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Huber, Donald F.; Thurber, Horace K.

    1984-01-01

    The Granite Peak Roadless Area occupies an area of about 5 sq mi in the southern part of the Trinity Alps of the Klamath Mountains, about 12 mi north-northeast of Weaverville, California. Rock and stream-sediment samples were analyzed. All streams draining the roadless area were sampled and representative samples of the rock types in the area were collected. Background values were established for each element and anomalous values were examined within their geologic settings and evaluated for their significance. On the basis of mineral surveys there seems little likelihood for the occurrence of mineral or energy resources.

  1. Peakompactons: Peaked compact nonlinear waves

    DOE PAGES

    Christov, Ivan C.; Kress, Tyler; Saxena, Avadh

    2017-04-20

    This paper is meant as an accessible introduction to/tutorial on the analytical construction and numerical simulation of a class of nonstandard solitary waves termed peakompactons. We present that these peaked compactly supported waves arise as solutions to nonlinear evolution equations from a hierarchy of nonlinearly dispersive Korteweg–de Vries-type models. Peakompactons, like the now-well-known compactons and unlike the soliton solutions of the Korteweg–de Vries equation, have finite support, i.e., they are of finite wavelength. However, unlike compactons, peakompactons are also peaked, i.e., a higher spatial derivative suffers a jump discontinuity at the wave’s crest. Here, we construct such solutions exactly bymore » reducing the governing partial differential equation to a nonlinear ordinary differential equation and employing a phase-plane analysis. Lastly, a simple, but reliable, finite-difference scheme is also designed and tested for the simulation of collisions of peakompactons. In addition to the peakompacton class of solutions, the general physical features of the so-called K #(n,m) hierarchy of nonlinearly dispersive Korteweg–de Vries-type models are discussed as well.« less

  2. Terahertz response of dipolar impurities in polar liquids: On anomalous dielectric absorption of protein solutions

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.

    2010-02-01

    A theory of radiation absorption by dielectric mixtures is presented. The coarse-grained formulation is based on the wave-vector-dependent correlation functions of molecular dipoles of the host polar liquid and a density structure factor of the solutes. A nonlinear dependence of the dielectric absorption coefficient on the solute concentration is predicted and originates from the mutual polarization of the liquid surrounding the solutes by the collective field of the solute dipoles aligned along the radiation field. The theory is applied to terahertz absorption of hydrated saccharides and proteins. While the theory gives an excellent account of the observations for saccharides, without additional assumptions and fitting parameters, experimental absorption coefficient of protein solutions significantly exceeds theoretical calculations with dipole moment of the bare protein assigned to the solute and shows a peak against the protein concentration. A substantial polarization of protein’s hydration shell, resulting in a net dipole moment, is required to explain the disagreement between theory and experiment. When the correlation function of the total dipole moment of the protein with its hydration shell from numerical simulations is used in the analytical model, an absorption peak, qualitatively similar to that seen in experiment, is obtained. The existence and position of the peak are sensitive to the specifics of the protein-protein interactions. Numerical testing of the theory requires the combination of dielectric and small-angle scattering measurements. The calculations confirm that “elastic ferroelectric bag” of water shells observed in previous numerical simulations is required to explain terahertz dielectric measurements.

  3. Femtosecond stimulated Raman evidence for charge-transfer character in pentacene singlet fission† †Electronic supplementary information (ESI) available: Actinic pump spectrum, discussion on ground state addition process, peak fitting procedure, transient absorption data, power dependence measurements, etalon pulse shaping, TIPS-pentacene FSRS data, and optimized geometry and frequency calculation results. See DOI: 10.1039/c7sc03496b

    PubMed Central

    Hart, Stephanie M.; Silva, W. Ruchira

    2017-01-01

    Singlet fission is a spin-allowed process in which an excited singlet state evolves into two triplet states. We use femtosecond stimulated Raman spectroscopy, an ultrafast vibrational technique, to follow the molecular structural evolution during singlet fission in order to determine the mechanism of this process. In crystalline pentacene, we observe the formation of an intermediate characterized by pairs of excited state peaks that are red- and blue-shifted relative to the ground state features. We hypothesize that these features arise from the formation of cationic and anionic species due to partial transfer of electron density from one pentacene molecule to a neighboring molecule. These observations provide experimental evidence for the role of states with significant charge-transfer character which facilitate the singlet fission process in pentacene. Our work both provides new insight into the singlet fission mechanism in pentacene and demonstrates the utility of structurally-sensitive time-resolved spectroscopic techniques in monitoring ultrafast processes. PMID:29675170

  4. Optical absorption of carbon-gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping

    2018-01-01

    In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.

  5. Reduction in peak oxygen uptake after prolonged bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Kozlowski, S.

    1982-01-01

    The hypothesis that the magnitude of the reduction in peak oxygen uptake (VO2) after bed rest is directly proportional to the level of pre-bed rest peak VO2 is tested. Complete pre and post-bed rest working capacity and body weight data were obtained from studies involving 24 men (19-24 years old) and 8 women (23-34 years old) who underwent bed rest for 14-20 days with no remedial treatments. Results of regression analyses of the present change in post-bed rest peak VO2 on pre-bed rest peak VO2 with 32 subjects show correlation coefficients of -0.03 (NS) for data expressed in 1/min and -0.17 for data expressed in ml/min-kg. In addition, significant correlations are found that support the hypothesis only when peak VO2 data are analyzed separately from studies that utilized the cycle ergometer, particularly with subjects in the supine position, as opposed to data obtained from treadmill peak VO2 tests. It is concluded that orthostatic factors, associated with the upright body position and relatively high levels of physical fitness from endurance training, appear to increase the variability of pre and particularly post-bed rest peak VO2 data, which would lead to rejection of the hypothesis.

  6. Peak Oil, Urban Form, and Public Health: Exploring the Connections

    PubMed Central

    Kaza, Nikhil; Knaap, Gerrit-Jan; Knaap, Isolde

    2011-01-01

    We assessed the relationships between peak oil and urban form, travel behavior, and public health. Peak oil will affect the general economy, travel behavior, and urban form through income and substitution effects; however, because of the wide range of substitution possibilities, the impacts are likely to be gradual and relatively small. Furthermore, we suggest that changes in travel behavior and increases in urban density will have both favorable and unfavorable effects on public health. To mitigate the adverse impacts and to maximize the positive effects of peak oil, we recommend that careful attention should be paid to urban design and public health responses for a range of urbanization patterns. PMID:21778494

  7. [The photoluminescence and absorption properties of Co/AAO nano-array composites].

    PubMed

    Li, Shou-Yi; Wang, Cheng-Wei; Li, Yan; Wang, Jian; Ma, Bao-Hong

    2008-03-01

    Ordered Co/AAO nano-array structures were fabricated by alternating current (AC) electrodeposition method within the cylindrical pores of anodic aluminum oxide (AAO) template prepared in oxalic acid electrolyte. The photoluminescence (PL) emission and photoabsorption of AAO templates and Co/AAO nano-array structures were investigated respectively. The results show that a marked photoluminescence band of AAO membranes occurs in the wavelength range of 350-550 nm and their PL peak position is at 395 nm. And with the increase in the deposition amount of Co nanoparticles, the PL intensity of Co/AAO nano-array structures decreases gradually, and their peak positions of the PL are invariable (395 nm). Meanwhile the absorption edges of Co/AAO show a larger redshift, and the largest shift from the near ultraviolet to the infrared exceeds 380 nm. The above phenomena caused by Co nano-particles in Co/AAO composite were analyzed.

  8. Establishment of peak bone mass.

    PubMed

    Mora, Stefano; Gilsanz, Vicente

    2003-03-01

    Among the main areas of progress in osteoporosis research during the last decade or so are the general recognition that this condition, which is the cause of so much pain in the elderly population, has its antecedents in childhood and the identification of the structural basis accounting for much of the differences in bone strength among humans. Nevertheless, current understanding of the bone mineral accrual process is far from complete. The search for genes that regulate bone mass acquisition is ongoing, and current results are not sufficient to identify subjects at risk. However, there is solid evidence that BMD measurements can be helpful for the selection of subjects that presumably would benefit from preventive interventions. The questions regarding the type of preventive interventions, their magnitude, and duration remain unanswered. Carefully designed controlled trials are needed. Nevertheless, previous experience indicates that weight-bearing activity and possibly calcium supplements are beneficial if they are begun during childhood and preferably before the onset of puberty. Modification of unhealthy lifestyles and increments in exercise or calcium assumption are logical interventions that should be implemented to improve bone mass gains in all children and adolescents who are at risk of failing to achieve an optimal peak bone mass.

  9. Neurofeedback training for peak performance.

    PubMed

    Graczyk, Marek; Pąchalska, Maria; Ziółkowski, Artur; Mańko, Grzegorz; Łukaszewska, Beata; Kochanowicz, Kazimierz; Mirski, Andrzej; Kropotov, Iurii D

    2014-01-01

    One of the applications of the Neurofeedback methodology is peak performance in sport. The protocols of the neurofeedback are usually based on an assessment of the spectral parameters of spontaneous EEG in resting state conditions. The aim of the paper was to study whether the intensive neurofeedback training of a well-functioning Olympic athlete who has lost his performance confidence after injury in sport, could change the brain functioning reflected in changes in spontaneous EEG and event related potentials (ERPs). The case is presented of an Olympic athlete who has lost his performance confidence after injury in sport. He wanted to resume his activities by means of neurofeedback training. His QEEG/ERP parameters were assessed before and after 4 intensive sessions of neurotherapy. Dramatic and statistically significant changes that could not be explained by error measurement were observed in the patient. Neurofeedback training in the subject under study increased the amplitude of the monitoring component of ERPs generated in the anterior cingulate cortex, accompanied by an increase in beta activity over the medial prefrontal cortex. Taking these changes together, it can be concluded that that even a few sessions of neurofeedback in a high performance brain can significantly activate the prefrontal cortical areas associated with increasing confidence in sport performance.

  10. Sound absorption by clamped poroelastic plates.

    PubMed

    Aygun, H; Attenborough, K

    2008-09-01

    Measurements and predictions have been made of the absorption coefficient and the surface acoustic impedance of poroelastic plates clamped in a large impedance tube and separated from the rigid termination by an air gap. The measured and predicted absorption coefficient and surface impedance spectra exhibit low frequency peaks. The peak frequencies observed in the absorption coefficient are close to those predicted and measured in the deflection spectra of the clamped poroelastic plates. The influences of the rigidity of the clamping conditions and the width of the air gap have been investigated. Both influences are found to be important. Increasing the rigidity of clamping reduces the low frequency absorption peaks compared with those measured for simply supported plates or plates in an intermediate clamping condition. Results for a closed cell foam plate and for two open cell foam plates made from recycled materials are presented. For identical clamping conditions and width of air gap, the results for the different materials differ as a consequence mainly of their different elasticity, thickness, and cell structure.

  11. Gas-absorption process

    DOEpatents

    Stephenson, Michael J.; Eby, Robert S.

    1978-01-01

    This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.

  12. [An automatic peak detection method for LIBS spectrum based on continuous wavelet transform].

    PubMed

    Chen, Peng-Fei; Tian, Di; Qiao, Shu-Jun; Yang, Guang

    2014-07-01

    Spectrum peak detection in the laser-induced breakdown spectroscopy (LIBS) is an essential step, but the presence of background and noise seriously disturb the accuracy of peak position. The present paper proposed a method applied to automatic peak detection for LIBS spectrum in order to enhance the ability of overlapping peaks searching and adaptivity. We introduced the ridge peak detection method based on continuous wavelet transform to LIBS, and discussed the choice of the mother wavelet and optimized the scale factor and the shift factor. This method also improved the ridge peak detection method with a correcting ridge method. The experimental results show that compared with other peak detection methods (the direct comparison method, derivative method and ridge peak search method), our method had a significant advantage on the ability to distinguish overlapping peaks and the precision of peak detection, and could be be applied to data processing in LIBS.

  13. Determination of optical absorption coefficient with focusing photoacoustic imaging.

    PubMed

    Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R

    2012-06-01

    Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.

  14. Corona discharge ionization of paracetamol molecule: peak assignment.

    PubMed

    Bahrami, H; Farrokhpour, H

    2015-01-25

    Ionization of paracetamol was investigated using ion mobility spectrometry equipped with a corona discharge ionization source. The measurements were performed in the positive ion mode and three peaks were observed in the ion mobility spectrum. Experimental evidence and theoretical calculations were used to correlate the peaks to related ionic species of paracetamol. Two peaks were attributed to protonated isomers of paracetamol and the other peak was attributed to paracetamol fragment ions formed by dissociation of the N-C bond after protonation of the nitrogen atom. It was observed that three sites of paracetamol compete for protonation and their relative intensities, depending on the sample concentration. The ratio of ion products could be predicted from the internal proton affinity of the protonation sites at each concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Corona discharge ionization of paracetamol molecule: Peak assignment

    NASA Astrophysics Data System (ADS)

    Bahrami, H.; Farrokhpour, H.

    2015-01-01

    Ionization of paracetamol was investigated using ion mobility spectrometry equipped with a corona discharge ionization source. The measurements were performed in the positive ion mode and three peaks were observed in the ion mobility spectrum. Experimental evidence and theoretical calculations were used to correlate the peaks to related ionic species of paracetamol. Two peaks were attributed to protonated isomers of paracetamol and the other peak was attributed to paracetamol fragment ions formed by dissociation of the N-C bond after protonation of the nitrogen atom. It was observed that three sites of paracetamol compete for protonation and their relative intensities, depending on the sample concentration. The ratio of ion products could be predicted from the internal proton affinity of the protonation sites at each concentration.

  16. Time-dependent low field microwave absorption in the high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Owens, F. J.; Iqbal, Z.

    1990-11-01

    It is observed that the hysteresis in the applied magnetic field position and the intensity at the peak of the low field non-resonant microwave absorption (recorded in an EPR experiment with a modulation amplitude of ∼ 10 G) in the superconducting state of the cuprate superconductors, is time-dependent after the removal of a DC magnetic field sizably greater than the lower critical field. This intrinsic time-dependence, which we attribute to flux creep, is reported here for two copper oxide-based high temperature superconductors.

  17. A model to forecast peak spreading.

    DOT National Transportation Integrated Search

    2012-04-01

    As traffic congestion increases, the K-factor, defined as the proportion of the 24-hour traffic volume that occurs during the peak hour, may decrease. This behavioral response is known as peak spreading: as congestion grows during the peak travel tim...

  18. 27 CFR 9.140 - Atlas Peak.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Atlas Peak. 9.140 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.140 Atlas Peak. (a) Name. The name of the viticultural area described in this section is “Atlas Peak.” (b...

  19. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  20. The 5-day wave and ionospheric absorption

    NASA Technical Reports Server (NTRS)

    Fraser, G. J.

    1977-01-01

    In a previous paper, Fraser and Thorpe (1976) indicated that the average partial-coherence spectra for three summers and the average for three winters at a southern mid-latitude site had a dominant peak at a period of about six days. This peak in coherence between absorption and temperature is anomalous, and the present paper explains how some of the unexpected coherence features can be explained by the five-day wave described by Geisler and Dickinson (1976) and whose existence in the upper stratosphere was discussed by Rodgers (1976).

  1. Enhanced vegetation growth peak and its key mechanisms

    NASA Astrophysics Data System (ADS)

    Huang, K.; Xia, J.; Wang, Y.; Ahlström, A.; Schwalm, C.; Huntzinger, D. N.; Chen, J.; Cook, R. B.; Fang, Y.; Fisher, J. B.; Jacobson, A. R.; Michalak, A.; Schaefer, K. M.; Wei, Y.; Yan, L.; Luo, Y.

    2017-12-01

    It remains unclear that whether and how the vegetation growth peak has been shifted globally during the past three decades. Here we used two global datasets of gross primary productivity (GPP) and a satellite-derived Normalized Difference Vegetation Index (NDVI) to characterize recent changes in seasonal peak vegetation growth. The attribution of changes in peak growth to their driving factors was examined with several datasets. We demonstrated that the growth peak of global vegetation has been linearly increasing during the past three decades. About 65% of this trend is evenly explained by the expanding croplands (21%), rising atmospheric [CO2] (22%), and intensifying nitrogen deposition (22%). The contribution of expanding croplands to the peak growth trend was substantiated by measurements from eddy-flux towers, sun-induced chlorophyll fluorescence and a global database of plant traits, all of which demonstrated that croplands have a higher photosynthetic capacity than other vegetation types. The contribution of rising atmospheric [CO2] and nitrogen deposition are consistent with the positive response of leaf growth to elevated [CO2] (25%) and nitrogen addition (8%) from 346 manipulated experiments. The positive effect of rising atmospheric [CO2] was also well captured by 15 terrestrial biosphere models. However, most models underestimated the contributions of land-cover change and nitrogen deposition, but overestimated the positive effect of climate change.

  2. Electronic Absorption Spectra of Neutral Perylene (C20H12), Terrylene (C30H16), and Quaterrylene (C40H20) and their Positive and Negative Ions: Ne Matrix-Isolation Spectroscopy and Time Dependent Density Functional Theory Calculations

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Head-Gordon, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We present a full experimental and theoretical study of an interesting series of polycyclic aromatic hydrocarbons, the oligorylenes. The absorption spectra of perylene, terrylene and quaterrylene in neutral, cationic and anionic charge states are obtained by matrix-isolation spectroscopy in Ne. The experimental spectra are dominated by a bright state that red shifts with growing molecular size. Excitation energies and state symmetry assignments are supported by calculations using time dependent density functional theory methods. These calculations also provide new insight into the observed trends in oscillator strength and excitation energy for the bright states: the oscillator strength per unit mass of carbon increases along the series.

  3. Anomalous absorption of isolated silver nanoparticulate films in visible region of electromagnetic field.

    PubMed

    Kim, Sang Woo; Hui, Bang Jae; Bae, Dong-Sik

    2008-02-01

    Anomalous absorption of isolated silver nanoparticulate films with different morphological patterns prepared by the wet colloidal route and followed by thermal treatment were investigated. A polymer embedded silver nanoparticulate film thermally treated at 200 degrees C showed maximum absorbance at approximately 412 nm. The peak position of the surface plasmon band was slightly different but still consistent with theoretical prediction derived by the Mie theory. An isolated nanopariculate film thermally treated at 300 degrees C showed anomalous absorption. Its maximum absorption band was shifted to green regime of 506.9 nm and the bandwidth at half-maximum absorbance of the surface plasmon band was greatly broadened. The plasmon band and its bandwidth were much deviated compared to the theoretical prediction calculated for the silver nanoparticles in the surrounding medium of air and poly(vinyl pyrrolidone) or soda-lime-silica glass. Even though there was no significant growth of silver nanoparticles during thermal treatment at 300 degrees C, the anomalous absorption was observed. The anomalous absorption was not attributed to effects of particle shape and size but to effects of pores induced by development of a great number of pores in the nanoparticulate film. The anomalous absorption greatly decreased with increase in heating temperature from 400 degrees C to 500 degrees C. The extraordinary plasmon damping of the isolated film decreased and the plasmon absorption band was re-shifted to violet regime of 416 nm because of large decrease in size of particles with dramatic change of pore morphology from circular pores with rim to small continuous pores induced by spontaneous formation of new silver nanoparticles.

  4. Broadband ultrafast transient absorption of multiple exciton dynamics in lead sulfide nanocrystals

    NASA Astrophysics Data System (ADS)

    Gesuele, Felice; Wong, Chee Wei; Sfeir, Matthew; Misewich, James; Koh, Weonkyu; Murray, Christopher

    2011-03-01

    Multiple exciton generation (MEG) is under intense investigation as potential third-generation solar photovoltaics with efficiencies beyond the Shockley-Queisser limit. We examine PbS nanocrystals, dispersed and vigorously stirred in TCE solution, by means of supercontinuum femtosecond transient absorption (TA). TA spectra show the presence of first and second order bleaches for the 1Sh-Se and 1Ph-Pe excitonic transition while photoinduced absorption for the 1Sh,e-Ph,e transitions. We found evidence of carrier multiplication (MEG for single absorbed photon) from the analysis of the first and second order bleaches, in the limit of low number of absorbed photons (Nabs ~ 0.01), for energy three times and four times the Energy gap. The MEG efficiency, derived from the ratio between early-time to long-time TA signal, presents a strongly dispersive behavior with maximum red shifted respect the first absorption peak. Analysis of population dynamics shows that in presence of biexciton, the 1Sh-Se bleach peak is red-shifted indicating a positive binding energy. MEG efficiency estimation will be discussed with regards to spectral integration, correlated higher-order and first excitonic transitions, as well as the nanocrystal morphologies.

  5. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  6. Psychological absorption. Affect investment in marijuana intoxication.

    PubMed

    Fabian, W D; Fishkin, S M

    1991-01-01

    Absorption (a trait capacity for total attentional involvement) was reported to increase during episodes of marijuana intoxication. Several subsets of the absorption scale items specifically characterized marijuana intoxication, and groups of users and nonusers showed differential affective involvement with these experiences. Additionally, within the drug-using group, a positive correlation between frequency of marijuana use and affective ratings of these experiences was found. The findings support the hypothesis that a specific type of alteration in consciousness that enhances capacity for total attentional involvement (absorption) characterizes marijuana intoxication, and that this enhancement may act as a reinforcer, possibly influencing future use.

  7. Sound absorption by a Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Komkin, A. I.; Mironov, M. A.; Bykov, A. I.

    2017-07-01

    Absorption characteristics of a Helmholtz resonator positioned at the end wall of a circular duct are considered. The absorption coefficient of the resonator is experimentally investigated as a function of the diameter and length of the resonator neck and the depth of the resonator cavity. Based on experimental data, the linear analytic model of a Helmholtz resonator is verified, and the results of verification are used to determine the dissipative attached length of the resonator neck so as to provide the agreement between experimental and calculated data. Dependences of sound absorption by a Helmholtz resonator on its geometric parameters are obtained.

  8. Tunable electromagnetically induced absorption based on graphene

    NASA Astrophysics Data System (ADS)

    Cao, Maoyong; Wang, Tongling; Zhang, Huiyun; Zhang, Yuping

    2018-04-01

    In this paper, an electronically induced absorption (EIA) structure based on graphene at the infrared frequency is proposed. A pair of nanorods is coupled to a ring resonator, resulting in electronically induced transparency (EIT), and then, Babinet's principle is applied to transform the EIT structure into an EIA structure. Based on the bright and dark modes of the coupling schemes, the adjustment of the coupling strength between the dark and bright modes can be achieved by changing the asymmetry degree. In addition, the transparency window and the absorption peak can be tuned by changing the Fermi energy of graphene. This graphene-based EIA structure can develop the path in narrow-band filtering and, absorptive switching in the future.

  9. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  10. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0

  11. Absorption enhancement in non-coplanar silver nanowire networks

    NASA Astrophysics Data System (ADS)

    He, Zhihui; Zhou, Zhiping; Ren, Xincheng; Bai, Shaomin; Li, Hongjian; Cao, Dongmei; Li, Gang; Cao, Guangtao

    2018-07-01

    We propose non-coplanar silver nanowire (AgNW) networks placed on a SiO2 layer. A notable absorption peak is observed in our proposed structure, and compared with the absorption of coplanar periodic AgNW networks and periodic AgNW gratings, the absorption performance of the non-coplanar AgNW networks demonstrates obvious advantages. It could be determined that the absorption ratio in this non-coplanar AgNW networks can reach 95%. In addition, several parameters that have important effects on the absorption of the non-coplanar AgNW networks are discussed in detail. Our research may provide guidance for the fundamental exploration of plasmonic absorption device applications.

  12. Triple-band metamaterial absorption utilizing single rectangular hole

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  13. Vibrational dynamics and boson peak in a supercooled polydisperse liquid.

    PubMed

    Abraham, Sneha Elizabeth; Bagchi, Biman

    2010-03-01

    Vibrational density of states (VDOS) in a supercooled polydisperse liquid is computed by diagonalizing the Hessian matrix evaluated at the potential energy minima for systems with different values of polydispersity. An increase in polydispersity leads to an increase in the relative population of localized high-frequency modes. At low frequencies, the density of states shows an excess compared to the Debye squared-frequency law, which has been identified with the boson peak. The height of the boson peak increases with polydispersity and shows a rather narrow sensitivity to changes in temperature. While the modes comprising the boson peak appear to be largely delocalized, there is a sharp drop in the participation ratio of the modes that exist just below the boson peak indicative of the quasilocalized nature of the low-frequency vibrations. Study of the difference spectrum at two different polydispersity reveals that the increase in the height of boson peak is due to a population shift from modes with frequencies above the maximum in the VDOS to that below the maximum, indicating an increase in the fraction of the unstable modes in the system. The latter is further supported by the facilitation of the observed dynamics by polydispersity. Since the strength of the liquid increases with polydispersity, the present result provides an evidence that the intensity of boson peak correlates positively with the strength of the liquid, as observed earlier in many experimental systems.

  14. Gigahertz-peaked spectra pulsars in Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Basu, R.; RoŻko, K.; Kijak, J.; Lewandowski, W.

    2018-04-01

    We have carried out a detailed study of the spectral nature of six pulsars surrounded by pulsar wind nebulae (PWNe). The pulsar flux density was estimated using the interferometric imaging technique of the Giant Metrewave Radio Telescope at three frequencies 325, 610, and 1280 MHz. The spectra showed a turnover around gigahertz frequency in four out of six pulsars. It has been suggested that the gigahertz-peaked spectrum (GPS) in pulsars arises due to thermal absorption of the pulsar emission in surrounding medium like PWNe, H II regions, supernova remnants, etc. The relatively high incidence of GPS behaviour in pulsars surrounded by PWNe imparts further credence to this view. The pulsar J1747-2958 associated with the well-known Mouse nebula was also observed in our sample and exhibited GPS behaviour. The pulsar was detected as a point source in the high-resolution images. However, the pulsed emission was not seen in the phased-array mode. It is possible that the pulsed emission was affected by extreme scattering causing considerable smearing of the emission at low radio frequencies. The GPS spectra were modelled using the thermal free-free absorption and the estimated absorber properties were largely consistent with PWNe. The spatial resolution of the images made it unlikely that the point source associated with J1747-2958 was the compact head of the PWNe, but the synchrotron self-absorption seen in such sources was a better fit to the estimated spectral shape.

  15. Soft X-Ray Absorption Spectroscopy of High-Abrasion-Furnace Carbon Black

    SciTech Connect

    Muramatsu, Yasuji; Harada, Ryusuke; Gullikson, Eric M.

    2007-02-02

    The soft x-ray absorption spectra of high-abrasion-furnace carbon black were measured to obtain local-structure/chemical-states information of the primary particles and/or crystallites. The soft x-ray absorption spectral features of carbon black represent broader {pi}* and {sigma}* peak structures compared to highly oriented pyrolytic graphite (HOPG). The subtracted spectra between the carbon black and HOPG, (carbon black) - (HOPG), show double-peak structures on both sides of the {pi}* peak. The lower-energy peak, denoted as the 'pre-peak', in the subtracted spectra and the {pi}*/{sigma}* peak intensity ratio in the absorption spectra clearly depend on the specific surface area by nitrogen adsorption (NSA). Therefore,more » it is concluded that the pre-peak intensity and the {pi}*/{sigma}* ratio reflect the local graphitic structure of carbon black.« less

  16. Passive radio frequency peak power multiplier

    DOEpatents

    Farkas, Zoltan D.; Wilson, Perry B.

    1977-01-01

    Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.

  17. Excitonic Effects and Optical Absorption Spectrum of Doped Graphene

    NASA Astrophysics Data System (ADS)

    Jornada, Felipe; Deslippe, Jack; Louie, Steven

    2012-02-01

    First-principles calculations based on the GW-Bethe-Salpeter Equation (GW-BSE) approach and subsequent experiments have shown large excitonic effects in the optical absorbance of graphene. Here we employ the GW-BSE formalism to probe the effects of charge carrier doping and of having an external electric field on the absorption spectrum of graphene. We show that the absorbance peak due to the resonant exciton exhibits systematic changes in both its position and profile when graphene is gate doped by carriers, in excellent agreement to very recent measurementsootnotetextTony F. Heinz, private communications.. We analyze the various contributions to these changes in the absorption spectrum, such as the effects of screening by carriers to the quasiparticle energies and electron-hole interactions. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the U.S. DOD - Office of Naval Research under RTC Grant No. N00014-09-1-1066. Computer time was provided by NERSC.

  18. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  19. Origin of weak lensing convergence peaks

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Haiman, Zoltán

    2016-08-01

    Weak lensing convergence peaks are a promising tool to probe nonlinear structure evolution at late times, providing additional cosmological information beyond second-order statistics. Previous theoretical and observational studies have shown that the cosmological constraints on Ωm and σ8 are improved by a factor of up to ≈2 when peak counts and second-order statistics are combined, compared to using the latter alone. We study the origin of lensing peaks using observational data from the 154 deg2 Canada-France-Hawaii Telescope Lensing Survey. We found that while high peaks (with height κ >3.5 σκ , where σκ is the rms of the convergence κ ) are typically due to one single massive halo of ≈1 015M⊙ , low peaks (κ ≲σκ ) are associated with constellations of 2-8 smaller halos (≲1 013M⊙ ). In addition, halos responsible for forming low peaks are found to be significantly offset from the line of sight towards the peak center (impact parameter ≳ their virial radii), compared with ≈0.25 virial radii for halos linked with high peaks, hinting that low peaks are more immune to baryonic processes whose impact is confined to the inner regions of the dark matter halos. Our findings are in good agreement with results from the simulation work by Yang et al. [Phys. Rev. D 84, 043529 (2011)].

  20. [A peak recognition algorithm designed for chromatographic peaks of transformer oil].

    PubMed

    Ou, Linjun; Cao, Jian

    2014-09-01

    In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.

  1. Fine-scale structure in the -185 kilometers per second absorption by HCO(+) in the Galactic center

    NASA Technical Reports Server (NTRS)

    Marr, Jonathan M.; Rudolph, Alexander L.; Pauls, Thomas A.; Wright, Melvyn C. H.; Backer, Donald C.

    1992-01-01

    We present a high-resolution study of the HCO(+) (J = 1-0) absorption by the 'high-velocity gas' at velocities between -170 and -200 km/s in Sgr A West. The absorption against the continuum radiation from the ionized gas features in Sgr A West (in particular the 'bar') is stronger than it is against Sgr A which is separated from the ionized gas by a few arcseconds. The positions of peak HCO(+) opacity coincide with the positions of Ne II emission at these velocities. These observations suggest that, even though emission is detected from gas at these high velocities over several arcminutes, some of the absorbing molecular gas may be mixed in with the ionized gas close to Sgr A. Simple calculations show that sufficient shielding can exist in the ionized features to allow molecules to survive very close to the ionizing source.

  2. Twisted bilayer graphene photoluminescence emission peaks at van Hove singularities.

    PubMed

    Alencar, Thonimar V; von Dreifus, Driele; Gabriela Cota Moreira, Maria; Eliel, Gomes S N; Yeh, Chao-Hui; Chiu, Po-Wen; Pimenta, Marcos A; Malard, Leandro M; Maria de Paula, Ana

    2018-05-02

    We report on photoluminescence emission imaging by femtosecond laser excitation on twisted bilayer graphene samples. The emission images are obtained by tuning the excitation laser energies in the near infrared region. We demonstrate an increase of the photoluminescence emission at excitation energies that depends on the bilayer twist angle. The results show a peak for the light emission when the excitation is in resonance with transitions at the van Hove singularities in the electronic density of states. We measured the photoluminescence excitation peak position and width for samples with various twist angles showing resonances in the energy range of 1.2 to 1.7 eV.

  3. New explanation of Raman peak redshift in nanoparticles

    NASA Astrophysics Data System (ADS)

    Meilakhs, A. P.; Koniakhin, S. V.

    2017-10-01

    In this letter, we propose a new model that explains the Raman peak downshift observed in nanoparticles with respect to bulk materials. The proposed model takes into account discreteness of the vibrational spectra of nanoparticles. For crystals with a cubic lattice (Diamond, Silicon, Germanium) we give a relation between the displacement of Raman peak position and the size of nanoparticles. The proposed model does not include any uncertain parameters, unlike the conventionally used phonon confinement model (PCM), and can be employed for unambiguous nanoparticles size estimation.

  4. Twisted bilayer graphene photoluminescence emission peaks at van Hove singularities

    NASA Astrophysics Data System (ADS)

    Alencar, Thonimar V.; von Dreifus, Driele; Cota Moreira, Maria Gabriela; Eliel, Gomes S. N.; Yeh, Chao-Hui; Chiu, Po-Wen; Pimenta, Marcos A.; Malard, Leandro M.; de Paula, Ana Maria

    2018-05-01

    We report on photoluminescence emission imaging by femtosecond laser excitation on twisted bilayer graphene samples. The emission images are obtained by tuning the excitation laser energies in the near infrared region. We demonstrate an increase of the photoluminescence emission at excitation energies that depends on the bilayer twist angle. The results show a peak for the light emission when the excitation is in resonance with transitions at the van Hove singularities in the electronic density of states. We measured the photoluminescence excitation peak position and width for samples with various twist angles showing resonances in the energy range of 1.2 to 1.7 eV.

  5. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching.

    PubMed

    Du, Pan; Kibbe, Warren A; Lin, Simon M

    2006-09-01

    A major problem for current peak detection algorithms is that noise in mass spectrometry (MS) spectra gives rise to a high rate of false positives. The false positive rate is especially problematic in detecting peaks with low amplitudes. Usually, various baseline correction algorithms and smoothing methods are applied before attempting peak detection. This approach is very sensitive to the amount of smoothing and aggressiveness of the baseline correction, which contribute to making peak detection results inconsistent between runs, instrumentation and analysis methods. Most peak detection algorithms simply identify peaks based on amplitude, ignoring the additional information present in the shape of the peaks in a spectrum. In our experience, 'true' peaks have characteristic shapes, and providing a shape-matching function that provides a 'goodness of fit' coefficient should provide a more robust peak identification method. Based on these observations, a continuous wavelet transform (CWT)-based peak detection algorithm has been devised that identifies peaks with different scales and amplitudes. By transforming the spectrum into wavelet space, the pattern-matching problem is simplified and in addition provides a powerful technique for identifying and separating the signal from the spike noise and colored noise. This transformation, with the additional information provided by the 2D CWT coefficients can greatly enhance the effective signal-to-noise ratio. Furthermore, with this technique no baseline removal or peak smoothing preprocessing steps are required before peak detection, and this improves the robustness of peak detection under a variety of conditions. The algorithm was evaluated with SELDI-TOF spectra with known polypeptide positions. Comparisons with two other popular algorithms were performed. The results show the CWT-based algorithm can identify both strong and weak peaks while keeping false positive rate low. The algorithm is implemented in R and will be

  6. Dust-on-snow and the timing of peak streamflow in the upper Rio Grande

    USDA-ARS?s Scientific Manuscript database

    Dust radiative forcing on high elevation snowpack is well-documented in the southern Rockies. Various field studies show that dust deposits decrease snow albedo and increase absorption of solar radiation, leading to earlier snowmelt and peak stream flows. These findings have implications for the use...

  7. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  8. Ab initio calculation of the electronic absorption spectrum of liquid water

    SciTech Connect

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are inmore » good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.« less

  9. Ab initio calculation of the electronic absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  10. Peak Running Intensity of International Rugby: Implications for Training Prescription.

    PubMed

    Delaney, Jace A; Thornton, Heidi R; Pryor, John F; Stewart, Andrew M; Dascombe, Ben J; Duthie, Grant M

    2017-09-01

    To quantify the duration and position-specific peak running intensities of international rugby union for the prescription and monitoring of specific training methodologies. Global positioning systems (GPS) were used to assess the activity profile of 67 elite-level rugby union players from 2 nations across 33 international matches. A moving-average approach was used to identify the peak relative distance (m/min), average acceleration/deceleration (AveAcc; m/s 2 ), and average metabolic power (P met ) for a range of durations (1-10 min). Differences between positions and durations were described using a magnitude-based network. Peak running intensity increased as the length of the moving average decreased. There were likely small to moderate increases in relative distance and AveAcc for outside backs, halfbacks, and loose forwards compared with the tight 5 group across all moving-average durations (effect size [ES] = 0.27-1.00). P met demands were at least likely greater for outside backs and halfbacks than for the tight 5 (ES = 0.86-0.99). Halfbacks demonstrated the greatest relative distance and P met outputs but were similar to outside backs and loose forwards in AveAcc demands. The current study has presented a framework to describe the peak running intensities achieved during international rugby competition by position, which are considerably higher than previously reported whole-period averages. These data provide further knowledge of the peak activity profiles of international rugby competition, and this information can be used to assist coaches and practitioners in adequately preparing athletes for the most demanding periods of play.

  11. Weak lensing mass map and peak statistics in Canada-France-Hawaii Telescope Stripe 82 survey

    NASA Astrophysics Data System (ADS)

    Shan, Huan Yuan; Kneib, Jean-Paul; Comparat, Johan; Jullo, Eric; Charbonnier, Aldée; Erben, Thomas; Makler, Martin; Moraes, Bruno; Van Waerbeke, Ludovic; Courbin, Frédéric; Meylan, Georges; Tao, Charling; Taylor, James E.

    2014-08-01

    We present a weak lensing mass map covering ˜124 deg2 of the Canada-France-Hawaii Telescope Stripe 82 Survey (CS82). We study the statistics of rare peaks in the map, including peak abundance, the peak-peak correlation functions and the tangential-shear profiles around peaks. We find that the abundance of peaks detected in CS82 is consistent with predictions from a Λ cold dark matter cosmological model, once noise effects are properly included. The correlation functions of peaks with different signal-to-noise ratio (SNR) are well described by power laws, and there is a clear cross-correlation between the Sloan Digital Sky Survey III/Constant Mass galaxies and high SNR peaks. The tangential-shear profiles around peaks increase with peak SNR. We fit analytical models to the tangential-shear profiles, including a projected singular isothermal sphere (SIS) model and a projected Navarro, Frenk & White (NFW) model, plus a two-halo term. For the high SNR peaks, the SIS model is rejected at ˜3σ. The NFW model plus a two-halo term gives more acceptable fits to the data. Some peaks match the positions of optically detected clusters, while others are relatively dark. Comparing dark and matched peaks, we find a difference in lensing signal of a factor of 2, suggesting that about half of the dark peaks are false detections.

  12. Controlling enhanced absorption in graphene metamaterial

    NASA Astrophysics Data System (ADS)

    Zhou, Qihui; Liu, Peiguo; Bian, Li-an; Liu, Hanqing; Liu, Chenxi; Chen, Genghui

    2018-04-01

    In this paper, a controllable terahertz (THz) metamaterial absorber (MA) is designed with the circuit analog method. Taking advantage of the patterned graphene on SiO2/doped Si/polyimide substrates with a gold reflector, the controllable MA achieves perfect absorption at 0.75 THz. The chemical potential of graphene is regulated by controlling the voltage between graphene and doped Si layers. As the chemical potential varies from 0 eV to 0.5 eV, the MA is changed from reflection (<0.37) to absorption (>0.99). The distributions of surface current and electric field are illustrated to analyze the resonant characteristic of patterned graphene. According to the resonant characteristic, we introduce patterned graphene elements with different dimension in a unit cell, which effectively extends the effective absorption bandwidth (absorption > 0 . 9) from 0.67-0.93 THz to 0.52-0.95 THz. Moreover, replacing part of the graphene structure with gold, the switchable MA is turned into a frequency tunable MA. The absorption peak moves from 0.62 THz to 0.92 THz as the chemical potential increases from 0.1 eV to 0.5 eV. These designs overcome limitation of traditional absorbers and exhibit great potentials in many practical applications.

  13. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Koo, Sung I. (Inventor); Noh, Sang K. (Inventor); Hua, Duy H. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  14. Coupling between absorption and scattering in disordered colloids

    NASA Astrophysics Data System (ADS)

    Stephenson, Anna; Hwang, Victoria; Park, Jin-Gyu; Manoharan, Vinothan N.

    We aim to understand how scattering and absorption are coupled in disordered colloidal suspensions containing absorbing molecules (dyes). When the absorption length is shorter than the transport length, absorption dominates, and absorption and scattering can be seen as two additive effects. However, when the transport length is shorter than the absorption length, the scattering and absorption become coupled, as multiple scattering increases the path length of the light in the sample, leading to a higher probability of absorption. To quantify this synergistic effect, we measure the diffuse reflectance spectra of colloidal samples of varying dye concentrations, thicknesses, and particle concentrations, and we calculate the transport length and absorption length from our measurements, using a radiative transfer model. At particle concentrations so high that the particles form disordered packings, we find a minimum in the transport length. We show that selecting a dye where the absorption peak matches the location of the minimum in the transport length allows for enhanced absorption. Kraft-Heinz Corporation, NSF GRFP 2015200426.

  15. 27 CFR 9.140 - Atlas Peak.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... straight line approximately one mile to an unnamed pass with an elevation of 1485 feet, located on Soda Canyon Road; (3) Then easterly in a straight line approximately 0.5 miles to an unnamed peak of 2135 feet... miles to the highest point of an unnamed peak of 1268 feet elevation in section 12, T. 6 N., R. 4 W. on...

  16. 27 CFR 9.140 - Atlas Peak.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... straight line approximately one mile to an unnamed pass with an elevation of 1485 feet, located on Soda Canyon Road; (3) Then easterly in a straight line approximately 0.5 miles to an unnamed peak of 2135 feet... miles to the highest point of an unnamed peak of 1268 feet elevation in section 12, T. 6 N., R. 4 W. on...

  17. 27 CFR 9.140 - Atlas Peak.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... straight line approximately one mile to an unnamed pass with an elevation of 1485 feet, located on Soda Canyon Road; (3) Then easterly in a straight line approximately 0.5 miles to an unnamed peak of 2135 feet... miles to the highest point of an unnamed peak of 1268 feet elevation in section 12, T. 6 N., R. 4 W. on...

  18. 27 CFR 9.140 - Atlas Peak.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... straight line approximately one mile to an unnamed pass with an elevation of 1485 feet, located on Soda Canyon Road; (3) Then easterly in a straight line approximately 0.5 miles to an unnamed peak of 2135 feet... miles to the highest point of an unnamed peak of 1268 feet elevation in section 12, T. 6 N., R. 4 W. on...

  19. Laser Atmospheric Absorption Studies.

    DTIC Science & Technology

    1977-05-01

    A. Modification of Commercial C09 Laser 50 B. CW HF/DF Laser System * 53 C. Microcomputer Data Link 55 D . Fourier Transform...improved accuracy are used [5]. c. The absorption coefficient is listed for each absorbing species separately which some codes require. d . A super...series of water vapor absorption measurements was planned. The results of the first four lines studied are presented here in Figures 33a- d . Figure

  20. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  1. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  2. The Boson peak in supercooled water.

    PubMed

    Kumar, Pradeep; Wikfeldt, K Thor; Schlesinger, Daniel; Pettersson, Lars G M; Stanley, H Eugene

    2013-01-01

    We perform extensive molecular dynamics simulations of the TIP4P/2005 model of water to investigate the origin of the Boson peak reported in experiments on supercooled water in nanoconfined pores, and in hydration water around proteins. We find that the onset of the Boson peak in supercooled bulk water coincides with the crossover to a predominantly low-density-like liquid below the Widom line TW. The frequency and onset temperature of the Boson peak in our simulations of bulk water agree well with the results from experiments on nanoconfined water. Our results suggest that the Boson peak in water is not an exclusive effect of confinement. We further find that, similar to other glass-forming liquids, the vibrational modes corresponding to the Boson peak are spatially extended and are related to transverse phonons found in the parent crystal, here ice Ih.

  3. Absorption fluids data survey

    NASA Astrophysics Data System (ADS)

    Macriss, R. A.; Zawacki, T. S.

    Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.

  4. Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY.

    PubMed

    Koradi, R; Billeter, M; Engeli, M; Güntert, P; Wüthrich, K

    1998-12-01

    A new approach for automated peak picking of multidimensional protein NMR spectra with strong overlap is introduced, which makes use of the program AUTOPSY (automated peak picking for NMR spectroscopy). The main elements of this program are a novel function for local noise level calculation, the use of symmetry considerations, and the use of lineshapes extracted from well-separated peaks for resolving groups of strongly overlapping peaks. The algorithm generates peak lists with precise chemical shift and integral intensities, and a reliability measure for the recognition of each peak. The results of automated peak picking of NOESY spectra with AUTOPSY were tested in combination with the combined automated NOESY cross peak assignment and structure calculation routine NOAH implemented in the program DYANA. The quality of the resulting structures was found to be comparable with those from corresponding data obtained with manual peak picking. Copyright 1998 Academic Press.

  5. Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data.

    PubMed

    Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo

    2011-01-01

    Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.

  6. Multiscale peak detection in wavelet space.

    PubMed

    Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-12-07

    Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

  7. Modelling knee flexion effects on joint power absorption and adduction moment.

    PubMed

    Nagano, Hanatsu; Tatsumi, Ichiroh; Sarashina, Eri; Sparrow, W A; Begg, Rezaul K

    2015-12-01

    Knee osteoarthritis is commonly associated with ageing and long-term walking. In this study the effects of flexing motions on knee kinetics during stance were simulated. Extended knees do not facilitate efficient loading. It was therefore, hypothesised that knee flexion would promote power absorption and negative work, while possibly reducing knee adduction moment. Three-dimensional (3D) position and ground reaction forces were collected from the right lower limb stance phase of one healthy young male subject. 3D position was sampled at 100 Hz using three Optotrak Certus (Northern Digital Inc.) motion analysis camera units, set up around an eight metre walkway. Force plates (AMTI) recorded ground reaction forces for inverse dynamics calculations. The Visual 3D (C-motion) 'Landmark' function was used to change knee joint positions to simulate three knee flexion angles during static standing. Effects of the flexion angles on joint kinetics during the stance phase were then modelled. The static modelling showed that each 2.7° increment in knee flexion angle produced 2.74°-2.76° increments in knee flexion during stance. Increased peak extension moment was 6.61 Nm per 2.7° of increased knee flexion. Knee flexion enhanced peak power absorption and negative work, while decreasing adduction moment. Excessive knee extension impairs quadriceps' power absorption and reduces eccentric muscle activity, potentially leading to knee osteoarthritis. A more flexed knee is accompanied by reduced adduction moment. Research is required to determine the optimum knee flexion to prevent further damage to knee-joint structures affected by osteoarthritis. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. PeakRanger: A cloud-enabled peak caller for ChIP-seq data

    PubMed Central

    2011-01-01

    Background Chromatin immunoprecipitation (ChIP), coupled with massively parallel short-read sequencing (seq) is used to probe chromatin dynamics. Although there are many algorithms to call peaks from ChIP-seq datasets, most are tuned either to handle punctate sites, such as transcriptional factor binding sites, or broad regions, such as histone modification marks; few can do both. Other algorithms are limited in their configurability, performance on large data sets, and ability to distinguish closely-spaced peaks. Results In this paper, we introduce PeakRanger, a peak caller software package that works equally well on punctate and broad sites, can resolve closely-spaced peaks, has excellent performance, and is easily customized. In addition, PeakRanger can be run in a parallel cloud computing environment to obtain extremely high performance on very large data sets. We present a series of benchmarks to evaluate PeakRanger against 10 other peak callers, and demonstrate the performance of PeakRanger on both real and synthetic data sets. We also present real world usages of PeakRanger, including peak-calling in the modENCODE project. Conclusions Compared to other peak callers tested, PeakRanger offers improved resolution in distinguishing extremely closely-spaced peaks. PeakRanger has above-average spatial accuracy in terms of identifying the precise location of binding events. PeakRanger also has excellent sensitivity and specificity in all benchmarks evaluated. In addition, PeakRanger offers significant improvements in run time when running on a single processor system, and very marked improvements when allowed to take advantage of the MapReduce parallel environment offered by a cloud computing resource. PeakRanger can be downloaded at the official site of modENCODE project: http://www.modencode.org/software/ranger/ PMID:21554709

  9. Detection of bacterial growth by gas absorption.

    PubMed

    Waters, J R

    1992-05-01

    When 24 different aerobic organisms were grown in a shaken culture, all were found to first absorb gas from the headspace. In a rudimentary medium, such as tryptic soy broth, 16 of the 24 organisms did not produce gas following the initial gas absorption. We have developed a simple, noninvasive method for detecting both gas absorption and production in multiple culture vials. The time to positivity was compared with that obtained by the BACTEC 460 blood culture system. For nearly all of these organisms, there was no difference. For some of those organisms that did not produce gas, e.g. Staphylococcus epidermidis, Moraxella osloensis, and Neisseria meningitidis, detection by gas absorption was a few hours faster. Gas absorption appears to be a promising technique for a new automated blood culture system because of its simplicity and because medium without special additives can be used to detect organisms that do not produce gas.

  10. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  11. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  12. [A new peak detection algorithm of Raman spectra].

    PubMed

    Jiang, Cheng-Zhi; Sun, Qiang; Liu, Ying; Liang, Jing-Qiu; An, Yan; Liu, Bing

    2014-01-01

    The authors proposed a new Raman peak recognition method named bi-scale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identification. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identifying a Raman spectrum is 0.51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal-to-noise ratio of Raman peak is greater than or equal to 6 (modern Raman spectrometers feature an excellent signal-to-noise ratio), the recognition accuracy with the algorithm is higher than 99%, while it is less than 84% with the continuous wavelet transform method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.

  13. SU-F-J-46: Feasibility of Cerenkov Emission for Absorption Spectroscopy

    SciTech Connect

    Oraiqat, I; Rehemtulla, A; Lam, K

    2016-06-15

    Purpose: Cerenkov emission (CE) is a promising tool for online tumor microenvironment interrogation and targeting during radiotherapy. In this work, we utilize CE generated during radiotherapy as a broadband excitation source for real-time absorption spectroscopy. We demonstrate the feasibility of CE spectroscopy using a controlled experiment of materials with known emission/absorption properties. Methods: A water tank is irradiated with 20 MeV electron beam to induce Cerenkov emission. Food coloring dyes (Yellow #5, Red #40, and Blue #1), which have known emission/absorption properties were added to the water tank with increasing concentration (1 drop (0.05 mL), 2 drops, and 4 dropsmore » from a dispenser bottle). The signal is collected using a condensing lens which is coupled into a 20m optical fiber that is fed into a spectrometer that measures the emitted spectra. The resulting spectra from water/food coloring dye solutions were normalized by the reference spectrum, which is the Cerenkov spectrum of pure water, correcting for both the nonlinearity of the broadband Cerenkov emission spectrum as well as the non-uniform spectral response of the spectrometer. The emitted spectra were then converted into absorbance and their characteristics were analyzed. Results: The food coloring dye had a drastic change on the Cerenkov emission, shifting its wavelength according to its visible color. The collected spectra showed various absorbance peaks which agrees with tabulated peak positions of the dyes added within 0.3% for yellow, 1.7% for red, and 0.16% for blue. The CE peak heights proportionally increased as the dye concentration is increased. Conclusion: This work shows the potential for real-time functional spectroscopy using Cerenkov emission during radiotherapy. It was demonstrated that molecule identification as well as relative concentration can be extracted from the Cerenkov emission color shift.« less

  14. Colorful Central Peak in an Unnamed Crater

    NASA Image and Video Library

    2011-10-05

    The colorful rocks exposed in the central peak visible in this image from NASA Mars Reconnaissance Orbiter probably reflect variations in mineral content that were caused by water activity early in Mars history.

  15. Amplification of postwildfire peak flow by debris

    NASA Astrophysics Data System (ADS)

    Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.

    2016-08-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  16. Bayesian Peak Picking for NMR Spectra

    PubMed Central

    Cheng, Yichen; Gao, Xin; Liang, Faming

    2013-01-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method. PMID:24184964

  17. Managing Student Traffic during Peak Periods.

    ERIC Educational Resources Information Center

    Raphael, Carol; Milks, Linda

    1980-01-01

    Some suggestions to help financial aid offices develop a rational system for coping with high traffic periods are offered. Creating a system to handle peak traffic periods involves three related components: planning, resource management, and evaluation. (MLW)

  18. Amplification of postwildfire peak flow by debris

    USGS Publications Warehouse

    Kean, Jason W.; McGuire, Luke; Rengers, Francis K.; Smith, Joel B.; Staley, Dennis M.

    2016-01-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  19. Helping System Engineers Bridge the Peaks

    NASA Technical Reports Server (NTRS)

    Rungta, Neha; Tkachuk, Oksana; Person, Suzette; Biatek, Jason; Whalen, Michael W.; Castle, Joseph; Castle, JosephGundy-Burlet, Karen

    2014-01-01

    In our experience at NASA, system engineers generally follow the Twin Peaks approach when developing safety-critical systems. However, iterations between the peaks require considerable manual, and in some cases duplicate, effort. A significant part of the manual effort stems from the fact that requirements are written in English natural language rather than a formal notation. In this work, we propose an approach that enables system engineers to leverage formal requirements and automated test generation to streamline iterations, effectively "bridging the peaks". The key to the approach is a formal language notation that a) system engineers are comfortable with, b) is supported by a family of automated V&V tools, and c) is semantically rich enough to describe the requirements of interest. We believe the combination of formalizing requirements and providing tool support to automate the iterations will lead to a more efficient Twin Peaks implementation at NASA.

  20. Temperature-Induced Large Broadening and Blue Shift in the Electronic Band Structure and Optical Absorption of Methylammonium Lead Iodide Perovskite.

    PubMed

    Yang, Jia-Yue; Hu, Ming

    2017-08-17

    The power conversion efficiency of hybrid halide perovskite solar cells is profoundly influenced by the operating temperature. Here we investigate the temperature influence on the electronic band structure and optical absorption of cubic CH 3 NH 3 PbI 3 from first-principles by accounting for both the electron-phonon interaction and thermal expansion. Within the framework of density functional perturbation theory, the electron-phonon coupling induces slightly enlarged band gap and strongly broadened electronic relaxation time as temperature increases. The large broadening effect is mainly due to the presence of cation organic atoms. Consequently, the temperature-dependent absorption peak exhibits blue-shift position, decreased amplitude, and broadened width. This work uncovers the atomistic origin of temperature influence on the optical absorption of cubic CH 3 NH 3 PbI 3 and can provide guidance to design high-performance hybrid halide perovskite solar cells at different operating temperatures.

  1. Training Lessons Learned from Peak Performance Episodes

    DTIC Science & Technology

    1986-06-01

    PEAK PERFORMAN4CE Fina Report- EPSOESOctober 1984-December 1985 % 6. PERFORMING ORG. REPORT NUMBER * 7. AUTHOR(@) 6. CONTRACT OR GRANT NUMBER(s) James...L. Fobes - 9. PERFORMING ORGANIZATION NAME AND) ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK U.S. Army Research Institute Field UnitAEA OKUINMER...peak performance indicates that three cogni- . tive components enable these episodes: psychological readiness (activating . optimal arousal and emotion

  2. Enhanced Microwave Absorption Properties of Carbon Black/Silicone Rubber Coating by Frequency-Selective Surface

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoning; Luo, Fa; Gao, Lu; Qing, Yuchang; Zhou, Wancheng; Zhu, Dongmei

    2016-10-01

    A square frequency-selective surface (FSS) design has been employed to improve the microwave absorption properties of carbon black/silicone rubber (CBSR) composite coating. The FSS is placed on the surface of the CBSR coating. The effects of FSS design parameters on the microwave absorption properties of the CBSR coating have been investigated, including the size and period of the FSS design, and the thickness and permittivity of the coating. Simulation results indicate that the absorption peak for the CBSR coating alone is related to its thickness and electromagnetic parameters, while the combination of the CBSR coating with a FSS can exhibit a new absorption peak in the reflection curve; the frequency of the new absorption peak is determined by the resonance of the square FSS design and tightly depends on the size of the squares, with larger squares in the FSS design leading to a lower frequency of the new absorption peak. The enhancement of the absorption performance depends on achievement of a new absorption peak using a suitable size and period of the FSS design. In addition, the FSS design has a stable frequency response for both transverse electromagnetic (TE) and transverse magnetic (TM) polarizations as the incident angle varies from 0° to 40°. The optimized results indicate that the bandwidth with reflection loss below -5 dB can encompass the whole frequency range from 8 GHz to 18 GHz for thickness of the CBSR coating of only 1.8 mm. The simulation results are confirmed by experiments.

  3. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  4. Absorption Heat Pump Cycles

    NASA Astrophysics Data System (ADS)

    Kunugi, Yoshifumi; Kashiwagi, Takao

    Various advanced absorption cycles are studied, developed and invented. In this paper, their cycles are classified and arranged using the three categories: effect, stage and loop, then an outline of the cycles are explained on the Duehring diagram. Their cycles include high COP cycles for refrigerations and heat pumps, high temperature lift cycles for heat transformer, absorption-compression hybrid cycles and heat pump transformer cycle. The highest COPi is attained by the seven effect cycle. In addition, the cycles for low temperature are invented and explained. Furthermore the power generation • refrigeration cycles are illustrated.

  5. A simple multi-scale Gaussian smoothing-based strategy for automatic chromatographic peak extraction.

    PubMed

    Fu, Hai-Yan; Guo, Jun-Wei; Yu, Yong-Jie; Li, He-Dong; Cui, Hua-Peng; Liu, Ping-Ping; Wang, Bing; Wang, Sheng; Lu, Peng

    2016-06-24

    Peak detection is a critical step in chromatographic data analysis. In the present work, we developed a multi-scale Gaussian smoothing-based strategy for accurate peak extraction. The strategy consisted of three stages: background drift correction, peak detection, and peak filtration. Background drift correction was implemented using a moving window strategy. The new peak detection method is a variant of the system used by the well-known MassSpecWavelet, i.e., chromatographic peaks are found at local maximum values under various smoothing window scales. Therefore, peaks can be detected through the ridge lines of maximum values under these window scales, and signals that are monotonously increased/decreased around the peak position could be treated as part of the peak. Instrumental noise was estimated after peak elimination, and a peak filtration strategy was performed to remove peaks with signal-to-noise ratios smaller than 3. The performance of our method was evaluated using two complex datasets. These datasets include essential oil samples for quality control obtained from gas chromatography and tobacco plant samples for metabolic profiling analysis obtained from gas chromatography coupled with mass spectrometry. Results confirmed the reasonability of the developed method. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Predicting Peak Flows following Forest Fires

    NASA Astrophysics Data System (ADS)

    Elliot, William J.; Miller, Mary Ellen; Dobre, Mariana

    2016-04-01

    Following forest fires, peak flows in perennial and ephemeral streams often increase by a factor of 10 or more. This increase in peak flow rate may overwhelm existing downstream structures, such as road culverts, causing serious damage to road fills at stream crossings. In order to predict peak flow rates following wildfires, we have applied two different tools. One is based on the U.S.D.A Natural Resource Conservation Service Curve Number Method (CN), and the other is by applying the Water Erosion Prediction Project (WEPP) to the watershed. In our presentation, we will describe the science behind the two methods, and present the main variables for each model. We will then provide an example of a comparison of the two methods to a fire-prone watershed upstream of the City of Flagstaff, Arizona, USA, where a fire spread model was applied for current fuel loads, and for likely fuel loads following a fuel reduction treatment. When applying the curve number method, determining the time to peak flow can be problematic for low severity fires because the runoff flow paths are both surface and through shallow lateral flow. The WEPP watershed version incorporates shallow lateral flow into stream channels. However, the version of the WEPP model that was used for this study did not have channel routing capabilities, but rather relied on regression relationships to estimate peak flows from individual hillslope polygon peak runoff rates. We found that the two methods gave similar results if applied correctly, with the WEPP predictions somewhat greater than the CN predictions. Later releases of the WEPP model have incorporated alternative methods for routing peak flows that need to be evaluated.

  7. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.

    PubMed

    Sun, Jin; Li, Guang; Liang, WanZhen

    2015-07-14

    A real-time time-dependent density functional theory coupled with the classical electrodynamics finite difference time domain technique is employed to systematically investigate the optical properties of hybrid systems composed of silver nanoparticles (NPs) and organic adsorbates. The results demonstrate that the molecular absorption spectra throughout the whole energy range can be enhanced by the surface plasmon resonance of Ag NPs; however, the absorption enhancement ratio (AER) for each absorption band differs significantly from the others, leading to the quite different spectral profiles of the hybrid complexes in contrast to those of isolated molecules or sole NPs. Detailed investigations reveal that the AER is sensitive to the energy gap between the molecular excitation and plasmon modes. As anticipated, two separate absorption bands, corresponding to the isolated molecules and sole NPs, have been observed at a large energy gap. When the energy gap approaches zero, the molecular excitation strongly couples with the plasmon mode to form the hybrid exciton band, which possesses the significantly enhanced absorption intensity, a red-shifted peak position, a surprising strongly asymmetric shape of the absorption band, and the nonlinear Fano effect. Furthermore, the dependence of surface localized fields and the scattering response functions (SRFs) on the geometrical parameters of NPs, the NP-molecule separation distance, and the external-field polarizations has also been depicted.

  8. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  9. The accuracy of portable peak flow meters.

    PubMed

    Miller, M R; Dickinson, S A; Hitchings, D J

    1992-11-01

    The variability of peak expiratory flow (PEF) is now commonly used in the diagnosis and management of asthma. It is essential for PEF meters to have a linear response in order to obtain an unbiased measurement of PEF variability. As the accuracy and linearity of portable PEF meters have not been rigorously tested in recent years this aspect of their performance has been investigated. The response of several portable PEF meters was tested with absolute standards of flow generated by a computer driven, servo controlled pump and their response was compared with that of a pneumotachograph. For each device tested the readings were highly repeatable to within the limits of accuracy with which the pointer position can be assessed by eye. The between instrument variation in reading for six identical devices expressed as a 95% confidence limit was, on average across the range of flows, +/- 8.5 l/min for the Mini-Wright, +/- 7.9 l/min for the Vitalograph, and +/- 6.4 l/min for the Ferraris. PEF meters based on the Wright meter all had similar error profiles with overreading of up to 80 l/min in the mid flow range from 300 to 500 l/min. This overreading was greatest for the Mini-Wright and Ferraris devices, and less so for the original Wright and Vitalograph meters. A Micro-Medical Turbine meter was accurate up to 400 l/min and then began to underread by up to 60 l/min at 720 l/min. For the low range devices the Vitalograph device was accurate to within 10 l/min up to 200 l/min, with the Mini-Wright overreading by up to 30 l/min above 150 l/min. Although the Mini-Wright, Ferraris, and Vitalograph meters gave remarkably repeatable results their error profiles for the full range meters will lead to important errors in recording PEF variability. This may lead to incorrect diagnosis and bias in implementing strategies of asthma treatment based on PEF measurement.

  10. The accuracy of portable peak flow meters.

    PubMed Central

    Miller, M R; Dickinson, S A; Hitchings, D J

    1992-01-01

    BACKGROUND: The variability of peak expiratory flow (PEF) is now commonly used in the diagnosis and management of asthma. It is essential for PEF meters to have a linear response in order to obtain an unbiased measurement of PEF variability. As the accuracy and linearity of portable PEF meters have not been rigorously tested in recent years this aspect of their performance has been investigated. METHODS: The response of several portable PEF meters was tested with absolute standards of flow generated by a computer driven, servo controlled pump and their response was compared with that of a pneumotachograph. RESULTS: For each device tested the readings were highly repeatable to within the limits of accuracy with which the pointer position can be assessed by eye. The between instrument variation in reading for six identical devices expressed as a 95% confidence limit was, on average across the range of flows, +/- 8.5 l/min for the Mini-Wright, +/- 7.9 l/min for the Vitalograph, and +/- 6.4 l/min for the Ferraris. PEF meters based on the Wright meter all had similar error profiles with overreading of up to 80 l/min in the mid flow range from 300 to 500 l/min. This overreading was greatest for the Mini-Wright and Ferraris devices, and less so for the original Wright and Vitalograph meters. A Micro-Medical Turbine meter was accurate up to 400 l/min and then began to underread by up to 60 l/min at 720 l/min. For the low range devices the Vitalograph device was accurate to within 10 l/min up to 200 l/min, with the Mini-Wright overreading by up to 30 l/min above 150 l/min. CONCLUSION: Although the Mini-Wright, Ferraris, and Vitalograph meters gave remarkably repeatable results their error profiles for the full range meters will lead to important errors in recording PEF variability. This may lead to incorrect diagnosis and bias in implementing strategies of asthma treatment based on PEF measurement. PMID:1465746

  11. Peak-flow characteristics of Wyoming streams

    USGS Publications Warehouse

    Miller, Kirk A.

    2003-01-01

    Peak-flow characteristics for unregulated streams in Wyoming are described in this report. Frequency relations for annual peak flows through water year 2000 at 364 streamflow-gaging stations in and near Wyoming were evaluated and revised or updated as needed. Analyses of historical floods, temporal trends, and generalized skew were included in the evaluation. Physical and climatic basin characteristics were determined for each gaging station using a geographic information system. Gaging stations with similar peak-flow and basin characteristics were grouped into six hydrologic regions. Regional statistical relations between peak-flow and basin characteristics were explored using multiple-regression techniques. Generalized least squares regression equations for estimating magnitudes of annual peak flows with selected recurrence intervals from 1.5 to 500 years were developed for each region. Average standard errors of estimate range from 34 to 131 percent. Average standard errors of prediction range from 35 to 135 percent. Several statistics for evaluating and comparing the errors in these estimates are described. Limitations of the equations are described. Methods for applying the regional equations for various circumstances are listed and examples are given.

  12. THE PEAKS AND GEOMETRY OF FITNESS LANDSCAPES

    PubMed Central

    CRONA, KRISTINA; GREENE, DEVIN; BARLOW, MIRIAM

    2012-01-01

    Fitness landscapes are central in the theory of adaptation. Recent work compares global and local properties of fitness landscapes. It has been shown that multi-peaked fitness landscapes have a local property called reciprocal sign epistasis interactions. The converse is not true. We show that no condition phrased in terms of reciprocal sign epistasis interactions only, implies multiple peaks. We give a sufficient condition for multiple peaks phrased in terms of two-way interactions. This result is surprising since it has been claimed that no sufficient local condition for multiple peaks exist. We show that our result cannot be generalized to sufficient conditions for three or more peaks. Our proof depends on fitness graphs, where nodes represent genotypes and where arrows point toward more fit genotypes. We also use fitness graphs in order to give a new brief proof of the equivalent characterizations of fitness landscapes lacking genetic constraints on accessible mutational trajectories. We compare a recent geometric classification of fitness landscape based on triangulations of polytopes with qualitative aspects of gene interactions. One observation is that fitness graphs provide information not contained in the geometric classification. We argue that a qualitative perspective may help relating theory of fitness landscapes and empirical observations. PMID:23036916

  13. Achieving high energy absorption capacity in cellular bulk metallic glasses

    PubMed Central

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-01-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed. PMID:25973781

  14. Demand Side Management: An approach to peak load smoothing

    NASA Astrophysics Data System (ADS)

    Gupta, Prachi

    A preliminary national-level analysis was conducted to determine whether Demand Side Management (DSM) programs introduced by electric utilities since 1992 have made any progress towards their stated goal of reducing peak load demand. Estimates implied that DSM has a very small effect on peak load reduction and there is substantial regional and end-user variability. A limited scholarly literature on DSM also provides evidence in support of a positive effect of demand response programs. Yet, none of these studies examine the question of how DSM affects peak load at the micro-level by influencing end-users' response to prices. After nearly three decades of experience with DSM, controversy remains over how effective these programs have been. This dissertation considers regional analyses that explore both demand-side solutions and supply-side interventions. On the demand side, models are estimated to provide in-depth evidence of end-user consumption patterns for each North American Electric Reliability Corporation (NERC) region, helping to identify sectors in regions that have made a substantial contribution to peak load reduction. The empirical evidence supports the initial hypothesis that there is substantial regional and end-user variability of reductions in peak demand. These results are quite robust in rapidly-urbanizing regions, where air conditioning and lighting load is substantially higher, and regions where the summer peak is more pronounced than the winter peak. It is also evident from the regional experiences that active government involvement, as shaped by state regulations in the last few years, has been successful in promoting DSM programs, and perhaps for the same reason we witness an uptick in peak load reductions in the years 2008 and 2009. On the supply side, we estimate the effectiveness of DSM programs by analyzing the growth of capacity margin with the introduction of DSM programs. The results indicate that DSM has been successful in offsetting the

  15. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy

    SciTech Connect

    Assmann, W., E-mail: walter.assmann@lmu.de; Reinhardt, S.; Lehrack, S.

    2015-02-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measuredmore » by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by

  16. Reducing microwave absorption with fast frequency modulation.

    PubMed

    Qin, Juehang; Hubler, A

    2017-05-01

    We study the response of a two-level quantum system to a chirp signal, using both numerical and analytical methods. The numerical method is based on numerical solutions of the Schrödinger solution of the two-level system, while the analytical method is based on an approximate solution of the same equations. We find that when two-level systems are perturbed by a chirp signal, the peak population of the initially unpopulated state exhibits a high sensitivity to frequency modulation rate. We also find that the aforementioned sensitivity depends on the strength of the forcing, and weaker forcings result in a higher sensitivity, where the frequency modulation rate required to produce the same reduction in peak population would be lower. We discuss potential applications of this result in the field of microwave power transmission, as it shows applying fast frequency modulation to transmitted microwaves used for power transmission could decrease unintended absorption of microwaves by organic tissue.

  17. SPANISH PEAKS WILDERNESS STUDY AREA, COLORADO.

    USGS Publications Warehouse

    Budding, Karin E.; Kluender, Steven E.

    1984-01-01

    A geologic and geochemical investigation and a survey of mines and prospects were conducted to evaluate the mineral-resource potential of the Spanish Peaks Wilderness Study Area, Huerfano and Las Animas Counties, in south-central Colorado. Anomalous gold, silver, copper, lead, and zinc concentrations in rocks and in stream sediments from drainage basins in the vicinity of the old mines and prospects on West Spanish Peak indicate a substantiated mineral-resource potential for base and precious metals in the area surrounding this peak; however, the mineralized veins are sparse, small in size, and generally low in grade. There is a possibility that coal may underlie the study area, but it would be at great depth and it is unlikely that it would have survived the intense igneous activity in the area. There is little likelihood for the occurrence of oil and gas because of the lack of structural traps and the igneous activity.

  18. Peak wavelength shifts and opponent color theory

    NASA Astrophysics Data System (ADS)

    Ashdown, Ian; Salsbury, Marc

    2007-09-01

    We adapt the tenets of Hering's opponent color theory to the processing of data obtained from a tristimulus colorimeter to independently determine the intensity and possible peak wavelength shift of a narrowband LED. This information may then be used for example in an optical feedback loop to maintain constant intensity and chromaticity for a light source consisting of two LEDs with different peak wavelengths. This approach is particularly useful for LED backlighting of LCD display panels using red, green, and blue LEDs, wherein a tristimulus colorimeter can be used to maintain primary chromaticities to within broadcast standard limits in real time.

  19. Stimulus generalization, discrimination learning, and peak shift in horses.

    PubMed Central

    Dougherty, D M; Lewis, P

    1991-01-01

    Using horses, we investigated three aspects of the stimulus control of lever-pressing behavior: stimulus generalization, discrimination learning, and peak shift. Nine solid black circles, ranging in size from 0.5 in. to 4.5 in. (1.3 cm to 11.4 cm) served as stimuli. Each horse was shaped, using successive approximations, to press a rat lever with its lip in the presence of a positive stimulus, the 2.5-in. (6.4-cm) circle. Shaping proceeded quickly and was comparable to that of other laboratory organisms. After responding was maintained on a variable-interval 30-s schedule, stimulus generalization gradients were collected from 2 horses prior to discrimination training. During discrimination training, grain followed lever presses in the presence of a positive stimulus (a 2.5-in circle) and never followed lever presses in the presence of a negative stimulus (a 1.5-in. [3.8-cm] circle). Three horses met a criterion of zero responses to the negative stimulus in fewer than 15 sessions. Horses given stimulus generalization testing prior to discrimination training produced symmetrical gradients; horses given discrimination training prior to generalization testing produced asymmetrical gradients. The peak of these gradients shifted away from the negative stimulus. These results are consistent with discrimination, stimulus generalization, and peak-shift phenomena observed in other organisms. PMID:1940765

  20. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption

    PubMed Central

    Miller, Leland V.; Krebs, Nancy F.; Hambidge, K. Michael

    2013-01-01

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption. PMID:22617116

  1. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption.

    PubMed

    Miller, Leland V; Krebs, Nancy F; Hambidge, K Michael

    2013-02-28

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption.

  2. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  3. Correlated peak relative light intensity and peak current in triggered lightning subsequent return strokes

    NASA Technical Reports Server (NTRS)

    Idone, V. P.; Orville, R. E.

    1985-01-01

    The correlation between peak relative light intensity L(R) and stroke peak current I(R) is examined for 39 subsequent return strokes in two triggered lightning flashes. One flash contained 19 strokes and the other 20 strokes for which direct measurements were available of the return stroke peak current at ground. Peak currents ranged from 1.6 to 21 kA. The measurements of peak relative light intensity were obtained from photographic streak recordings using calibrated film and microsecond resolution. Correlations, significant at better than the 0.1 percent level, were found for several functional relationships. Although a relation between L(R) and I(R) is evident in these data, none of the analytical relations considered is clearly favored. The correlation between L(R) and the maximum rate of current rise is also examined, but less correlation than between L(R) and I(R) is found. In addition, the peak relative intensity near ground is evaluated for 22 dart leaders, and a mean ratio of peak dart leader to peak return stroke relative light intensity was found to be 0.1 with a range of 0.02-0.23. Using two different methods, the peak current near ground in these dart leaders is estimated to range from 0.1 to 6 kA.

  4. Linear absorptive dielectrics

    NASA Astrophysics Data System (ADS)

    Tip, A.

    1998-06-01

    Starting from Maxwell's equations for a linear, nonconducting, absorptive, and dispersive medium, characterized by the constitutive equations D(x,t)=ɛ1(x)E(x,t)+∫t-∞dsχ(x,t-s)E(x,s) and H(x,t)=B(x,t), a unitary time evolution and canonical formalism is obtained. Given the complex, coordinate, and frequency-dependent, electric permeability ɛ(x,ω), no further assumptions are made. The procedure leads to a proper definition of band gaps in the periodic case and a new continuity equation for energy flow. An S-matrix formalism for scattering from lossy objects is presented in full detail. A quantized version of the formalism is derived and applied to the generation of Čerenkov and transition radiation as well as atomic decay. The last case suggests a useful generalization of the density of states to the absorptive situation.

  5. Vehicular impact absorption system

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.; Wilson, A. H. (Inventor)

    1978-01-01

    An improved vehicular impact absorption system characterized by a plurality of aligned crash cushions of substantially cubic configuration is described. Each consists of a plurality of voided aluminum beverage cans arranged in substantial parallelism within a plurality of superimposed tiers and a covering envelope formed of metal hardware cloth. A plurality of cables is extended through the cushions in substantial parallelism with an axis of alignment for the cushions adapted to be anchored at each of the opposite end thereof.

  6. Systems and Methods for Peak-Seeking Control

    NASA Technical Reports Server (NTRS)

    Ryan, John J (Inventor); Speyer, Jason L (Inventor)

    2013-01-01

    A computerized system and method for peak-seeking-control that uses a unique Kalman filter design to optimize a control loop, in real time, to either maximize or minimize a performance function of a physical object ("plant"). The system and method achieves more accurate and efficient peak-seeking-control by using a time-varying Kalman filter to estimate both the performance function gradient (slope) and Hessian (curvature) based on direct position measurements of the plant, and does not rely upon modeling the plant response to persistent excitation. The system and method can be naturally applied in various applications in which plant performance functions have multiple independent parameters, and it does not depend upon frequency separation to distinguish between system dimensions.

  7. Norfolk Schools Talked to Astronaut Tim Peake

    ERIC Educational Resources Information Center

    Grant, Stephanie

    2016-01-01

    Tim Peake's mission to the International Space Station captured the imagination of the UK and this article describes a live radio link with him, to help him to reach out to pupils across the country and inspire them in STEM subjects. It describes the project, from bidding for the opportunity to host it, to the planning and realisation of the…

  8. Hubbert's Peak: the Impending World oil Shortage

    NASA Astrophysics Data System (ADS)

    Deffeyes, K. S.

    2004-12-01

    Global oil production will probably reach a peak sometime during this decade. After the peak, the world's production of crude oil will fall, never to rise again. The world will not run out of energy, but developing alternative energy sources on a large scale will take at least 10 years. The slowdown in oil production may already be beginning; the current price fluctuations for crude oil and natural gas may be the preamble to a major crisis. In 1956, the geologist M. King Hubbert predicted that U.S. oil production would peak in the early 1970s.1 Almost everyone, inside and outside the oil industry, rejected Hubbert's analysis. The controversy raged until 1970, when the U.S. production of crude oil started to fall. Hubbert was right. Around 1995, several analysts began applying Hubbert's method to world oil production, and most of them estimate that the peak year for world oil will be between 2004 and 2008. These analyses were reported in some of the most widely circulated sources: Nature, Science, and Scientific American.2 None of our political leaders seem to be paying attention. If the predictions are correct, there will be enormous effects on the world economy. Even the poorest nations need fuel to run irrigation pumps. The industrialized nations will be bidding against one another for the dwindling oil supply. The good news is that we will put less carbon dioxide into the atmosphere. The bad news is that my pickup truck has a 25-gallon tank.

  9. Peak Wind Tool for General Forecasting

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Short, David

    2008-01-01

    This report describes work done by the Applied Meteorology Unit (AMU) in predicting peak winds at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45th Weather Squadron requested the AMU develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. Based on observations from the KSC/CCAFS wind tower network , Shuttle Landing Facility (SLF) surface observations, and CCAFS sounding s from the cool season months of October 2002 to February 2007, the AMU created mul tiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence , the temperature inversion depth and strength, wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft.

  10. Six Ways To Foster Peak Performance.

    ERIC Educational Resources Information Center

    Sevilla, Christine; Wells, Timothy D.

    1999-01-01

    Discusses six initiatives that organizations can support to ensure peak performance: individual knowledge portfolios; mentoring and apprenticeship relationships; electronic conferencing systems; organizational knowledge repository; community of practice; reward and recognition. Defines each initiative and describes how to make each one work in an…

  11. Some Phenomenological Aspects of the Peak Experience

    ERIC Educational Resources Information Center

    Rosenblatt, Howard S.; Bartlett, Iris

    1976-01-01

    This article relates the psychological dynamics of "peak experiences" to two concepts, intentionality and paradoxical intention, within the philosophical orientation of phenomenology. A review of early philosophical theories of self (Kant and Hume) is presented and compared with the experiential emphasis found in the phenomenology of Husserl.…

  12. Bayesian peak picking for NMR spectra.

    PubMed

    Cheng, Yichen; Gao, Xin; Liang, Faming

    2014-02-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein-DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method. Copyright © 2013. Production and hosting by Elsevier Ltd.

  13. A "Peake" into Using Social Media

    ERIC Educational Resources Information Center

    Walker, Sarah

    2017-01-01

    In December 2015, the media was full of Tim Peake and his adventures as he set off for the International Space Station as the first British ESA astronaut. The author set up a class blog as well as a Twitter account and created cross-curricular units of work around the "real" experience. Children really raised their game when they were…

  14. An alternative interpretation for cosmic ray peaks

    DOE PAGES

    Kim, Doojin; Park, Jong -Chul

    2015-10-03

    We propose an alternative mechanism based upon dark matter (DM) interpretation for anomalous peak signatures in cosmic ray measurements, assuming an extended dark sector with two DM species. This is contrasted with previous effort to explain various line-like cosmic-ray excesses in the context of DM models where the relevant DM candidate directly annihilates into Standard Model (SM) particles. The heavier DM is assumed to annihilate to an on-shell intermediate state. As the simplest choice, it decays directly into the lighter DM along with an unstable particle which in turn decays to a pair of SM states corresponding to the interestingmore » cosmic anomaly. We show that a sharp continuum energy peak can be readily generated under the proposed DM scenario, depending on dark sector particle mass spectra. Remarkably, such a peak is robustly identified as half the mass of the unstable particle. Furthermore, other underlying mass parameters are analytically related to the shape of energy spectrum. We apply this idea to the two well-known line excesses in the cosmic photon spectrum: 130 GeV γ-ray line and 3.5 keV X-ray line. As a result, each observed peak spectrum is well-reproduced by theoretical expectation predicated upon our suggested mechanism, and moreover, our resulting best fits provide rather improved χ 2 values.« less

  15. Forecasting Strategies for Predicting Peak Electric Load Days

    NASA Astrophysics Data System (ADS)

    Saxena, Harshit

    Academic institutions spend thousands of dollars every month on their electric power consumption. Some of these institutions follow a demand charges pricing structure; here the amount a customer pays to the utility is decided based on the total energy consumed during the month, with an additional charge based on the highest average power load required by the customer over a moving window of time as decided by the utility. Therefore, it is crucial for these institutions to minimize the time periods where a high amount of electric load is demanded over a short duration of time. In order to reduce the peak loads and have more uniform energy consumption, it is imperative to predict when these peaks occur, so that appropriate mitigation strategies can be developed. The research work presented in this thesis has been conducted for Rochester Institute of Technology (RIT), where the demand charges are decided based on a 15 minute sliding window panned over the entire month. This case study makes use of different statistical and machine learning algorithms to develop a forecasting strategy for predicting the peak electric load days of the month. The proposed strategy was tested for a whole year starting May 2015 to April 2016 during which a total of 57 peak days were observed. The model predicted a total of 74 peak days during this period, 40 of these cases were true positives, hence achieving an accuracy level of 70 percent. The results obtained with the proposed forecasting strategy are promising and demonstrate an annual savings potential worth about $80,000 for a single submeter of RIT.

  16. Exciton Absorption in Semiconductor Quantum Wells Driven by a Strong Intersubband Pump Field

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    Optical interband excitonic absorption of semiconductor quantum wells (QW's) driven by a coherent pump field is investigated based on semiconductor Bloch equations. The pump field has a photon energy close to the intersubband spacing between the first two conduction subbands in the QW's. An external weak optical field probes the interband transition. The excitonic effects and pump-induced population redistribution within the conduction subbands in the QW system are included. When the density of the electron-hole pairs in the QW structure is low, the pump field induces an Autler-Townes splitting of the exciton absorption spectrum. The split size and the peak positions of the absorption doublet depend not only on the pump frequency and intensity but also on the carrier density. As the density of the electron-hole pairs is increased, the split contrast (the ratio between the maximum and minimum values) is decreased because the exciton effect is suppressed at higher densities due to the many-body screening.

  17. Ab Initio Theory of Dynamical Core-Hole Screening in Graphite from X-Ray Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Wessely, O.; Katsnelson, M. I.; Eriksson, O.

    2005-04-01

    We have implemented the effect of dynamical core-hole screening, as given by Mahan, Nozières, and De Dominicis, in a first-principles based method and applied the theory to the x-ray absorption (XA) spectrum of graphite. It turns out that two of the conspicuous peaks of graphite are well described, both regarding the position, shape, and relative intensity, whereas one peak is absent in the theory. Only by incorporation of both excitonic and delocalized processes can a full account of the experimental spectrum be obtained theoretically, and we interpret the XA spectrum in graphite to be the result of a well screened and a poor screened process, much in the same way as is done for core level x-ray photoelectron spectroscopy.

  18. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  19. Spanish Peaks, Sangre de Cristo Range, Colorado

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Spanish Peaks, on the eastern flank of the Sangre de Cristo range, abruptly rise 7,000 feet above the western Great Plains. Settlers, treasure hunters, trappers, gold and silver miners have long sighted on these prominent landmarks along the Taos branch of the Santa Fe trail. Well before the westward migration, the mountains figured in the legends and history of the Ute, Apache, Comanche, and earlier tribes. 'Las Cumbres Espanolas' are also mentioned in chronicles of exploration by Spaniards including Ulibarri in 1706 and later by de Anza, who eventually founded San Francisco (California). This exceptional view (STS108-720-32), captured by the crew of Space Shuttle mission STS108, portrays the Spanish Peaks in the context of the southern Rocky Mountains. Uplift of the Sangre de Cristo began about 75 million years ago and produced the long north-trending ridges of faulted and folded rock to the west of the paired peaks. After uplift had ceased (26 to 22 million years ago), the large masses of igneous rock (granite, granodiorite, syenodiorite) that form the Peaks were emplaced (Penn, 1995-2001). East and West Spanish Peaks are 'stocks'-bodies of molten rock that intruded sedimentary layers, cooled and solidified, and were later exposed by erosion. East Peak (E), at 12,708 ft is almost circular and is about 5 1/2 miles long by 3 miles wide, while West Peak (W), at 13,623 ft is roughly 2 3/4 miles long by 1 3/4 miles wide. Great dikes-long stone walls-radiate outward from the mountains like spokes of a wheel, a prominent one forms a broad arc northeast of East Spanish Peak. As the molten rock rose, it forced its way into vertical cracks and joints in the sedimentary strata; the less resistant material was then eroded away, leaving walls of hard rock from 1 foot to 100 feet wide, up to 100 feet high, and as long as 14 miles. Dikes trending almost east-west are also common in the region. For more information visit: Sangres.com: The Spanish Peaks (accessed January 16

  20. Phase change wallboard for peak demand reduction

    SciTech Connect

    George, K.L.; Shepard, M.

    1993-12-31

    After more than a decade of research in university and government laboratories, wallboard impregnated with a phase change material (PCM) appears to be close to commercialization, and could prove to be a powerful peak demand management tool for utilities, particularly in the residential sector. As a lightweight, easily installed thermal storage medium, PCM wallboard could be suitable for both new construction and retrofit applications. Computer simulations performed at Los Alamos National Laboratory (LANL) predicted that PCM wallboard could shift more than 90 percent of the sensible load of a residential air-conditioning system to off-peak periods, and could permit a 30more » percent reduction in equipment capacity. Residential winter peak loads could also be reduced. An Oak Ridge National Laboratory (ORNL) simulation showed that PCM wallboard could reduce peak heating demand by a third in a Tennessee climate. With more than 70 billion square feet of plasterboard produced annually in the US, widespread adoption of PCM wallboard could have a significant impact on peak load, while moderating temperature swings and enhancing comfort in homes and perhaps commercial spaces as well. Energy savings are also possible when PCM wallboard is used to take advantage of solar gain. LANL simulations predict 28 percent heating energy savings in a Boston passive solar house, and 54 percent savings in Denver. ORNL researchers support these findings -- they calculate that moving windows to the south and adding PCM wallboard could save from one-third to one-half of the heating energy needed in a Denver home.« less

  1. A method for estimating peak and time of peak streamflow from excess rainfall for 10- to 640-acre watersheds in the Houston, Texas, metropolitan area

    USGS Publications Warehouse

    Asquith, William H.; Cleveland, Theodore G.; Roussel, Meghan C.

    2011-01-01

    method in terms of excess rainfall (the excess rational method). Both the unit hydrograph method and excess rational method are shown to provide similar estimates of peak and time of peak streamflow. The results from the two methods can be combined by using arithmetic means. A nomograph is provided that shows the respective relations between the arithmetic-mean peak and time of peak streamflow to drainage areas ranging from 10 to 640 acres. The nomograph also shows the respective relations for selected BDF ranging from undeveloped to fully developed conditions. The nomograph represents the peak streamflow for 1 inch of excess rainfall based on drainage area and BDF; the peak streamflow for design storms from the nomograph can be multiplied by the excess rainfall to estimate peak streamflow. Time of peak streamflow is readily obtained from the nomograph. Therefore, given excess rainfall values derived from watershed-loss models, which are beyond the scope of this report, the nomograph represents a method for estimating peak and time of peak streamflow for applicable watersheds in the Houston metropolitan area. Lastly, analysis of the relative influence of BDF on peak streamflow is provided, and the results indicate a 0:04log10 cubic feet per second change of peak streamflow per positive unit of change in BDF. This relative change can be used to adjust peak streamflow from the method or other hydrologic methods for a given BDF to other BDF values; example computations are provided.

  2. Estimation of Pharyngeal Collapsibility During Sleep by Peak Inspiratory Airflow.

    PubMed

    Azarbarzin, Ali; Sands, Scott A; Taranto-Montemurro, Luigi; Oliveira Marques, Melania D; Genta, Pedro R; Edwards, Bradley A; Butler, James; White, David P; Wellman, Andrew

    2017-01-01

    Pharyngeal critical closing pressure (Pcrit) or collapsibility is a major determinant of obstructive sleep apnea (OSA) and may be used to predict the success/failure of non-continuous positive airway pressure (CPAP) therapies. Since its assessment involves overnight manipulation of CPAP, we sought to validate the peak inspiratory flow during natural sleep (without CPAP) as a simple surrogate measurement of collapsibility. Fourteen patients with OSA attended overnight polysomnography with pneumotachograph airflow. The middle third of the night (non-rapid eye movement sleep [NREM]) was dedicated to assessing Pcrit in passive and active states via abrupt and gradual CPAP pressure drops, respectively. Pcrit is the extrapolated CPAP pressure at which flow is zero. Peak and mid-inspiratory flow off CPAP was obtained from all breaths during sleep (excluding arousal) and compared with Pcrit. Active Pcrit, measured during NREM sleep, was strongly correlated with both peak and mid-inspiratory flow during NREM sleep (r = -0.71, p < .005 and r = -0.64, p < .05, respectively), indicating that active pharyngeal collapsibility can be reliably estimated from simple airflow measurements during polysomnography. However, there was no significant relationship between passive Pcrit, measured during NREM sleep, and peak or mid-inspiratory flow obtained from NREM sleep. Flow measurements during REM sleep were not significantly associated with active or passive Pcrit. Our study demonstrates the feasibility of estimating active Pcrit using flow measurements in patients with OSA. This method may enable clinicians to estimate pharyngeal collapsibility without sophisticated equipment and potentially aid in the selection of patients for non- positive airway pressure therapies. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  3. Synthesis, photophysical, and electrochemical properties of wide band gap tetraphenylsilane-carbazole derivatives: Effect of the substitution position and naphthalene side chain

    NASA Astrophysics Data System (ADS)

    Ho, Kar Wei; Ariffin, A.

    2016-12-01

    Four tetraphenylsilane-carbazole derivatives with wide bandgaps (3.38-3.55 eV) were synthesized. The effects of the substitution position and of the presence of naphthalene groups on the photophysical, electrochemical and thermal properties were investigated. The derivatives exhibited maximum absorption peaks ranging from 293 to 304 nm and maximum emission peaks ranging from 347 to 386 nm. Changing the carbazole substitution position on the tetraphenylsilane did not significantly change the photophysical and electrochemical properties. However, p-substituted compounds exhibited higher glass transition temperatures than m-substituted compounds. Naphthalene groups with bulky structures had extended the conjugation lengths that red-shifted both the absorption and emission spectra. The LUMO level was decreased, which reduced the optical bandgap and triplet energy level. However, the naphthalene groups significantly improved the thermal stability by increasing the glass transition temperature of the compounds.

  4. Binding energy of donor impurity states and optical absorption in the Tietz-Hua quantum well under an applied electric field

    NASA Astrophysics Data System (ADS)

    Al, E. B.; Kasapoglu, E.; Sakiroglu, S.; Duque, C. A.; Sökmen, I.

    2018-04-01

    For a quantum well which has the Tietz-Hua potential, the ground and some excited donor impurity binding energies and the total absorption coefficients, including linear and third order nonlinear terms for the transitions between the related impurity states with respect to the structure parameters and the impurity position as well as the electric field strength are investigated. The binding energies were obtained using the effective-mass approximation within a variational scheme and the optical transitions between any two impurity states were calculated by using the density matrix formalism and the perturbation expansion method. Our results show that the effects of the electric field and the structure parameters on the optical transitions are more pronounced. So we can adjust the red or blue shift in the peak position of the absorption coefficient by changing the strength of the electric field as well as the structure parameters.

  5. A naked eye refractive index sensor with a visible multiple peak metamaterial absorber.

    PubMed

    Ma, Heli; Song, Kun; Zhou, Liang; Zhao, Xiaopeng

    2015-03-26

    We report a naked eye refractive index sensor with a visible metamaterial absorber. The visible metamaterial absorber consisting of a silver dendritic/dielectric/metal structure shows multiple absorption peaks. By incorporating a gain material (rhodamine B) into the dielectric layer, the maximal magnitude of the absorption peak can be improved by about 30%. As the metamaterial absorber is sensitive to the refractive index of glucose solutions, it can function as a sensor that quickly responds to variations of the refractive index of the liquid. Meanwhile, since the response is presented via color changes, it can be clearly observed by the naked eyes. Further experiments have confirmed that the sensor can be used repeatedly.

  6. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  7. Harnessing Multiple Internal Reflections to Design Highly Absorptive Acoustic Metasurfaces

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Cummer, Steven A.

    2018-05-01

    The rapid development of metasurfaces has enabled numerous intriguing applications with acoustically thin sheets. Here we report the theory and experimental realization of a nonresonant sound-absorbing strategy using metasurfaces by harnessing multiple internal reflections. We theoretically and numerically show that the higher-order diffraction of thin gradient-index metasurfaces is tied to multiple internal reflections inside the unit cells. Highly absorbing acoustic metasurfaces can be realized by enforcing multiple internal reflections together with a small amount of loss. A reflective gradient-index acoustic metasurface is designed based on the theory, and we further experimentally verify the performance using a three-dimensional printed prototype. Measurements show over 99% energy absorption at the peak frequency and a 95% energy absorption bandwidth of around 600 Hz. The proposed mechanism provides an alternative route for sound absorption without the necessity of high absorption of the individual unit cells.

  8. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    SciTech Connect

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  9. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE PAGES

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    2017-03-06

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  10. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  11. Effect of reservoir storage on peak flow

    USGS Publications Warehouse

    Mitchell, William D.

    1962-01-01

    For observation of small-basin flood peaks, numerous crest-stage gages now are operated at culverts in roadway embankments. To the extent that they obstruct the natural flood plains of the streams, these embankments serve to create detention reservoirs, and thus to reduce the magnitude of observed peak flows. Hence, it is desirable to obtain a factor, I/O, by which the observed outflow peaks may be adjusted to corresponding inflow peaks. The problem is made more difficult by the fact that, at most of these observation sites, only peak stages and discharges are observed, and complete hydrographs are not available. It is postulated that the inflow hydrographs may be described in terms of Q, the instantaneous discharge; A, the size of drainage area; Pe, the amount of rainfall excess; H, the time from beginning of rainfall excess; D, the duration of rainfall excess; and T and k, characteristic times for the drainage area, and indicative of the time lag between rainfall and runoff. These factors are combined into the dimensionless ratios (QT/APe), (H/T), (k/T), and (D/T), leading to families of inflow hydrographs in which the first ratio is the ordinate, the second is the abscissa, and the third and fourth are distinguishing parameters. Sixteen dimensionless inflow hydrographs have been routed through reservoir storage to obtain 139 corresponding outflow hydrographs. In most of the routings it has been assumed that the storage-outflow relation is linear; that is, that storage is some constant, K, times the outflow. The existence of nonlinear storage is recognized, and exploratory nonlinear routings are described, but analyses and conclusions are confined to the problems of linear storage. Comparisons between inflow hydrographs and outflow hydrographs indicate that, at least for linear storage, I/O=f(k/T, D/T, K/T) in which I and O are, respectively, the magnitudes of the inflow and the outflow peaks, and T, k, D, and K are as defined above. Diagrams are presented to

  12. The Peak Flow Working Group: test of portable peak flow meters by explosive decompression.

    PubMed

    Pedersen, O F; Miller, M R

    1997-02-01

    In 1991, 50 new Vitalograph peak flow meters and 27 previously used mini-Wright peak flow meters were tested at three peak flows by use of a calibrator applying explosive decompression. The mini-Wright peak flow meters were also compared with eight new meters. For both makes of meter there was an excellent within-meter and between-meter variation. The accuracy, however, was poor, with a maximal overestimation of true flows of 50 and 70 L.min-1 in the interval from 200 to 400 L.min-1 for the Vitalograph and mini-Wright meters, respectively. The deviation is explained by the physical characteristics of the variable orifice peak flow meters. They have been supplied with equidistant scales, which give non-linear readings.

  13. Effect of gear ratio on peak power and time to peak power in BMX cyclists.

    PubMed

    Rylands, Lee P; Roberts, Simon J; Hurst, Howard T

    2017-03-01

    The aim of this study was to ascertain if gear ratio selection would have an effect on peak power and time to peak power production in elite Bicycle Motocross (BMX) cyclists. Eight male elite BMX riders volunteered for the study. Each rider performed three, 10-s maximal sprints on an Olympic standard indoor BMX track. The riders' bicycles were fitted with a portable SRM power meter. Each rider performed the three sprints using gear ratios of 41/16, 43/16 and 45/16 tooth. The results from the 41/16 and 45/16 gear ratios were compared to the current standard 43/16 gear ratio. Statistically, significant differences were found between the gear ratios for peak power (F(2,14) = 6.448; p = .010) and peak torque (F(2,14) = 4.777; p = .026), but no significant difference was found for time to peak power (F(2,14) = 0.200; p = .821). When comparing gear ratios, the results showed a 45/16 gear ratio elicited the highest peak power,1658 ± 221 W, compared to 1436 ± 129 W and 1380 ± 56 W, for the 43/16 and 41/16 ratios, respectively. The time to peak power showed a 41/16 tooth gear ratio attained peak power in -0.01 s and a 45/16 in 0.22 s compared to the 43/16. The findings of this study suggest that gear ratio choice has a significant effect on peak power production, though time to peak power output is not significantly affected. Therefore, selecting a higher gear ratio results in riders attaining higher power outputs without reducing their start time.

  14. Offset-free rail-to-rail derandomizing peak detect-and-hold circuit

    DOEpatents

    DeGeronimo, Gianluigi; O'Connor, Paul; Kandasamy, Anand

    2003-01-01

    A peak detect-and-hold circuit eliminates errors introduced by conventional amplifiers, such as common-mode rejection and input voltage offset. The circuit includes an amplifier, three switches, a transistor, and a capacitor. During a detect-and-hold phase, a hold voltage at a non-inverting in put terminal of the amplifier tracks an input voltage signal and when a peak is reached, the transistor is switched off, thereby storing a peak voltage in the capacitor. During a readout phase, the circuit functions as a unity gain buffer, in which the voltage stored in the capacitor is provided as an output voltage. The circuit is able to sense signals rail-to-rail and can readily be modified to sense positive, negative, or peak-to-peak voltages. Derandomization may be achieved by using a plurality of peak detect-and-hold circuits electrically connected in parallel.

  15. Triangle singularities and XYZ quarkonium peaks

    SciTech Connect

    Szczepaniak, Adam P.

    2015-06-01

    We discuss analytical properties of partial waves derived from projection of a 4-legged amplitude with crossed-channel exchanges in the kinematic region of the direct channel that corresponds to the XYZ peaks in charmonium and bottomonium. We show that in general partial waves can develop anomalous branch points in the vicinity of the direct channel physical region. In a specific case, when these branch points lie on the opposite side of the unitary cut they pinch the integration contour in a dispersion relation and if the pinch happens close to threshold, the normal threshold cusp is enhanced. We show that this effect only occurs if masses of resonances in the crossed channel are in a specific, narrow range. We estimate the size of threshold enhancements originating from these anomalous singularities in reactions where themore » $$Z_c(3900)$$ and the $$Z_b(10610)$$ peaks have been observed.« less

  16. Peak Oil, Food Systems, and Public Health

    PubMed Central

    Parker, Cindy L.; Kirschenmann, Frederick L.; Tinch, Jennifer; Lawrence, Robert S.

    2011-01-01

    Peak oil is the phenomenon whereby global oil supplies will peak, then decline, with extraction growing increasingly costly. Today's globalized industrial food system depends on oil for fueling farm machinery, producing pesticides, and transporting goods. Biofuels production links oil prices to food prices. We examined food system vulnerability to rising oil prices and the public health consequences. In the short term, high food prices harm food security and equity. Over time, high prices will force the entire food system to adapt. Strong preparation and advance investment may mitigate the extent of dislocation and hunger. Certain social and policy changes could smooth adaptation; public health has an essential role in promoting a proactive, smart, and equitable transition that increases resilience and enables adequate food for all. PMID:21778492

  17. Optical absorption and thermally stimulated depolarization current studies of nickel chloride-doped poly(vinyl alcohol) irradiated with low-level fast neutron doses

    SciTech Connect

    Abd El-Kader, F.H.; Ibrahim, S.S.; Attia, G.

    1993-11-15

    The influence of neutron irradiation on ultraviolet/visible absorption and thermally stimulated depolarization current in nickel chloride-poly(vinyl alcohol) (PVA) cast films has been investigated. The spectral measurements indicate the responsibility of the Ni[sup 2][sup +] ion in its octahedral symmetry. Dopant concentrations higher than 10 wt % NiCl[sub 2] are found to make the samples more resistant to a degradation effect caused by neutron irradiation. The thermally stimulated depolarization currents (TSDC) of pure PVA revealed the existence of the glass transition T[sub g] and space charge relaxation peaks, whereas doped-PVA samples show a new sub-T[sub g] relaxation peak. A proposed mechanismmore » is introduced to account for the neutron effects on both glass transition and space charge relaxation peaks. The peak positions, peak currents, and stored charges of the sub-T[sub g] relaxation peak are strongly affected by both the concentration of the dopant and neutron exposure doses.« less

  18. An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research.

    PubMed

    Yuan, Xueyin; Mayanovic, Robert A

    2017-10-01

    Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of H 2 O and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman

  19. Pubertal Gynecomastia Coincides with Peak Height Velocity

    PubMed Central

    Limony, Yehuda; Friger, Michael; Hochberg, Ze’ev

    2013-01-01

    Objective: Pubertal gynecomastia (PG) occurs in up to 65% of adolescent boys. In this study, we investigated the relationship between the ages at which PG and peak height velocity occur in pubertal boys. Methods: This was a prospective study that was designed to detect PG within three months of its emergence. We examined one hundred and six boys who were followed for short stature and/or delayed puberty at three month intervals, and gynecomastia was observed in 43 of these boys (40.5%). Results: PG occurred in the 43 boys within a year of their peak height velocity, and most of these boys were at Tanner stage 3 for pubic hair and had testicular volumes between 8-10 mL. Conclusion: It is recommended that evaluation of height growth be included in the diagnostic approach to PG in boys with short stature and/or delayed puberty. The coincidence of age of peak height velocity and PG suggests a causal relationship between the two events and a role of insulin-like growth factor-1. Conflict of interest:None declared. PMID:24072080

  20. Acquisition of peak responding: what is learned?

    PubMed

    Balci, Fuat; Gallistel, Charles R; Allen, Brian D; Frank, Krystal M; Gibson, Jacqueline M; Brunner, Daniela

    2009-01-01

    We investigated how the common measures of timing performance behaved in the course of training on the peak procedure in C3H mice. Following fixed interval (FI) pre-training, mice received 16 days of training in the peak procedure. The peak time and spread were derived from the average response rates while the start and stop times and their relative variability were derived from a single-trial analysis. Temporal precision (response spread) appeared to improve in the course of training. This apparent improvement in precision was, however, an averaging artifact; it was mediated by the staggered appearance of timed stops, rather than by the delayed occurrence of start times. Trial-by-trial analysis of the stop times for individual subjects revealed that stops appeared abruptly after three to five sessions and their timing did not change as training was prolonged. Start times and the precision of start and stop times were generally stable throughout training. Our results show that subjects do not gradually learn to time their start or stop of responding. Instead, they learn the duration of the FI, with robust temporal control over the start of the response; the control over the stop of response appears abruptly later.

  1. Acquisition of peak responding: What is learned?

    PubMed Central

    Balci, Fuat; Gallistel, Charles R.; Allen, Brian D.; Frank, Krystal M.; Gibson, Jacqueline M.; Brunner, Daniela

    2009-01-01

    We investigated how the common measures of timing performance behaved in the course of training on the peak procedure in C3H mice. Following fixed interval (FI) pre-training, mice received 16 days of training in the peak procedure. The peak time and spread were derived from the average response rates while the start and stop times and their relative variability were derived from a single-trial analysis. Temporal precision (response spread) appeared to improve in the course of training. This apparent improvement in precision was, however, an averaging artifact; it was mediated by the staggered appearance of timed stops, rather than by the delayed occurrence of start times. Trial-by-trial analysis of the stop times for individual subjects revealed that stops appeared abruptly after three to five sessions and their timing did not change as training was prolonged. Start times and the precision of start and stop times were generally stable throughout training. Our results show that subjects do not gradually learn to time their start or stop of responding. Instead, they learn the duration of the FI, with robust temporal control over the start of the response; the control over the stop of response appears abruptly later. PMID:18950695

  2. Peak picking NMR spectral data using non-negative matrix factorization.

    PubMed

    Tikole, Suhas; Jaravine, Victor; Rogov, Vladimir; Dötsch, Volker; Güntert, Peter

    2014-02-11

    Simple peak-picking algorithms, such as those based on lineshape fitting, perform well when peaks are completely resolved in multidimensional NMR spectra, but often produce wrong intensities and frequencies for overlapping peak clusters. For example, NOESY-type spectra have considerable overlaps leading to significant peak-picking intensity errors, which can result in erroneous structural restraints. Precise frequencies are critical for unambiguous resonance assignments. To alleviate this problem, a more sophisticated peaks decomposition algorithm, based on non-negative matrix factorization (NMF), was developed. We produce peak shapes from Fourier-transformed NMR spectra. Apart from its main goal of deriving components from spectra and producing peak lists automatically, the NMF approach can also be applied if the positions of some peaks are known a priori, e.g. from consistently referenced spectral dimensions of other experiments. Application of the NMF algorithm to a three-dimensional peak list of the 23 kDa bi-domain section of the RcsD protein (RcsD-ABL-HPt, residues 688-890) as well as to synthetic HSQC data shows that peaks can be picked accurately also in spectral regions with strong overlap.

  3. Peak picking NMR spectral data using non-negative matrix factorization

    PubMed Central

    2014-01-01

    Background Simple peak-picking algorithms, such as those based on lineshape fitting, perform well when peaks are completely resolved in multidimensional NMR spectra, but often produce wrong intensities and frequencies for overlapping peak clusters. For example, NOESY-type spectra have considerable overlaps leading to significant peak-picking intensity errors, which can result in erroneous structural restraints. Precise frequencies are critical for unambiguous resonance assignments. Results To alleviate this problem, a more sophisticated peaks decomposition algorithm, based on non-negative matrix factorization (NMF), was developed. We produce peak shapes from Fourier-transformed NMR spectra. Apart from its main goal of deriving components from spectra and producing peak lists automatically, the NMF approach can also be applied if the positions of some peaks are known a priori, e.g. from consistently referenced spectral dimensions of other experiments. Conclusions Application of the NMF algorithm to a three-dimensional peak list of the 23 kDa bi-domain section of the RcsD protein (RcsD-ABL-HPt, residues 688-890) as well as to synthetic HSQC data shows that peaks can be picked accurately also in spectral regions with strong overlap. PMID:24511909

  4. Rapidly variable relatvistic absorption

    NASA Astrophysics Data System (ADS)

    Parker, M.; Pinto, C.; Fabian, A.; Lohfink, A.; Buisson, D.; Alston, W.; Jiang, J.

    2017-10-01

    I will present results from the 1.5Ms XMM-Newton observing campaign on the most X-ray variable AGN, IRAS 13224-3809. We find a series of nine absorption lines with a velocity of 0.24c from an ultra-fast outflow. For the first time, we are able to see extremely rapid variability of the UFO features, and can link this to the X-ray variability from the inner accretion disk. We find a clear flux dependence of the outflow features, suggesting that the wind is ionized by increasing X-ray emission.

  5. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  6. Electromagnetic-radiation absorption by water.

    PubMed

    Lunkenheimer, P; Emmert, S; Gulich, R; Köhler, M; Wolf, M; Schwab, M; Loidl, A

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  7. Electromagnetic-radiation absorption by water

    NASA Astrophysics Data System (ADS)

    Lunkenheimer, P.; Emmert, S.; Gulich, R.; Köhler, M.; Wolf, M.; Schwab, M.; Loidl, A.

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  8. A Search for HI Self-Absorption in the SGPS

    NASA Astrophysics Data System (ADS)

    Kavars, D. W.; Dickey, J. D.; McClure-Griffiths, N. M.; Gaensler, B. M.; Green, A. J.

    2003-12-01

    Using data from the Southern Galactic Plane Survey(SGPS) we present a routine to search for cold HI clouds in the Galaxy, based on their HI self-absorption(HISA) signature. The data was obtained using the Australia Telescope Compact Array and the Parkes Radio Telescope. The SGPS, because of its good angular and velocity resolution, is excellent for searching for HISA clouds. We have already analyzed a few of the more prominent HISA features, finding spin temperatures, Ts ˜ 20K, column densities, NHI ˜ 2 x 1020}cm{-2, and optical depths of ˜ 1. The next step is to search the entire SGPS. A search by eye is possible, but is biased towards the most pronounced features. To better understand the role HISA plays in the ISM, an automated search technique is required. Our routine takes the first and second derivatives of the HI emission brightness temperature with respect to velocity. Due to the sharp drop in the emission profile through a HISA cloud, the derivative profiles show characteristic positive and/or negative peaks. These peaks represent a population of clouds separate from random HI emission fluctuations. By setting thresholds on the derivative maps and defining HISA only if it passes both derivative tests, we can build an unbiased catalog of HISA candidates in the Galaxy. The number distribution can be used to put constraints on the parameters used to find the spin temperature and optical depth, allowing us to more accurately determine the temperature, column density, and optical depth distribution of HISA clouds. We also compare HISA with 12CO emission. In the Inner Galaxy from l=313 deg to l=338 deg we find 30-50% of HISA is associated with 12CO at a brightness temperature of at least 1K. This work was supported by NSF grant AST 97-32695 to the University of Minnesota.

  9. Two-photon absorption spectra of luminescent conducting polymers measured over wide spectral range

    NASA Astrophysics Data System (ADS)

    Meyer, Ron K.; Liess, Martin; Benner, Robert E.; Gellermann, Werner; Vardeny, Z. Valy; Ozaki, Masanori; Yoshino, Katsumi; Ding, Yi W.; Barton, Thomas J.

    1997-12-01

    We report the two-photon absorption (TPA) spectra of poly(2,5-dibutoxy-p-phenylene acetylene) (PPA-DBO), poly(2,5-dioctyloxy-p-phenylene vinylene) (PPV-DOO), and poly(3-hexylthiophene) in the spectral range extending from 576 nm to 846 nm. Using the Z-scan technique on the polymers in solution, we measured a strong two-photon allowed transition in all three materials which we attribute to the mAg essential state. In the case of PPA-DBO and PPV-DOO, TPA peaks were coincident with dispersion in the nonlinear refractive indices as detected by reduced aperture Z scan. In all three polymers this peak occurs at approximately 1.3 the bandgap energy. The excitonic nature of the excited electronic states in PPA-DBO is indicated by the lack of a TPA band at or near the 1Bu exciton position. Saturation was observed in the nonlinear index of refraction near spectral peaks, as well as an apparent reverse Kramers- Kronig effect.

  10. Inapplicability of small-polaron model for the explanation of infrared absorption spectrum in acetanilide.

    PubMed

    Zeković, Slobodan; Ivić, Zoran

    2009-01-01

    The applicability of small-polaron model for the interpretation of infrared absorption spectrum in acetanilide has been critically reexamined. It is shown that the energy difference between the normal and anomalous peak, calculated by means of small-polaron theory, displays pronounced temperature dependence which is in drastic contradiction with experiment. It is demonstrated that self-trapped states, which are recently suggested to explain theoretically the experimental absorption spectrum in protein, cannot cause the appearance of the peaks in absorption spectrum for acetanilide.

  11. Quantifying peak discharges for historical floods

    USGS Publications Warehouse

    Cook, J.L.

    1987-01-01

    It is usually advantageous to use information regarding historical floods, if available, to define the flood-frequency relation for a stream. Peak stages can sometimes be determined for outstanding floods that occurred many years ago before systematic gaging of streams began. In the United States, this information is usually not available for more than 100-200 years, but in countries with long cultural histories, such as China, historical flood data are available at some sites as far back as 2,000 years or more. It is important in flood studies to be able to assign a maximum discharge rate and an associated error range to the historical flood. This paper describes the significant characteristics and uncertainties of four commonly used methods for estimating the peak discharge of a flood. These methods are: (1) rating curve (stage-discharge relation) extension; (2) slope conveyance; (3) slope area; and (4) step backwater. Logarithmic extensions of rating curves are based on theoretical plotting techniques that results in straight line extensions provided that channel shape and roughness do not change significantly. The slope-conveyance and slope-area methods are based on the Manning equation, which requires specific data on channel size, shape and roughness, as well as the water-surface slope for one or more cross-sections in a relatively straight reach of channel. The slope-conveyance method is used primarily for shaping and extending rating curves, whereas the slope-area method is used for specific floods. The step-backwater method, also based on the Manning equation, requires more cross-section data than the slope-area ethod, but has a water-surface profile convergence characteristic that negates the need for known or estimated water-surface slope. Uncertainties in calculating peak discharge for historical floods may be quite large. Various investigations have shown that errors in calculating peak discharges by the slope-area method under ideal conditions for

  12. Physical performance and peak aerobic power at different body temperatures.

    PubMed

    Bergh, U; Ekblom, B

    1979-05-01

    In eight male subjects we studied the effect of different core (esophageal, (Tes 34.9--38.4 degrees C) and muscle (Tm 35.1--39.3 degrees C) temperature on 1) physical performance (time to exhaustion at a standard maximal rate of work, WT), 2) aerobic power (VO2), 3) heart rate (HR), and 4) blood lactate (LA) concentration during exhaustive combined arm and leg exercise. In three subjects the effects at different mean skin temperatures (Tsk 27 and 31 degrees C, respectively) were also studied. Peak VO2 was positively correlated to both Tes (r = 0.88) and Tm (r = 0.91). None of the subjects attained control VO2max at Tes and Tm lower than 37.5 and 38.0 degrees C, respectively. HR was correlated to both Tes (r = 0.97) and Tm (r = 0.95). Different Tsk did not affect peak VO2 and HR at subnormal body temperatures. Pulmonary ventilation was independent of Tes and Tm in all experimental situations. LA was significantly higher at Tes 37.5 degrees C compared to both Tes 34.9 and 38.5 degrees C, respectively. At Tes less than 37.5 degrees C and Tm less than 38.0 degrees C, there was a linear reduction in WT (20%.degrees C-1), peak VO2 (5--6%.degrees C-1), and HR (8 beats.min-1.degrees C-1) with lowered Tes and Tm.

  13. Enhanced broadband absorption in nanowire arrays with integrated Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Aghaeipour, Mahtab; Pettersson, Håkan

    2018-05-01

    A near-unity unselective absorption spectrum is desirable for high-performance photovoltaics. Nanowire (NW) arrays are promising candidates for efficient solar cells due to nanophotonic absorption resonances in the solar spectrum. The absorption spectra, however, display undesired dips between the resonance peaks. To achieve improved unselective broadband absorption, we propose to enclose distributed Bragg reflectors (DBRs) in the bottom and top parts of indium phosphide (InP) NWs, respectively. We theoretically show that by enclosing only two periods of In0.56Ga0.44As/InP DBRs, an unselective 78% absorption efficiency (72% for NWs without DBRs) is obtained at normal incidence in the spectral range from 300 nm to 920 nm. Under oblique light incidence, the absorption efficiency is enhanced up to about 85% at an incidence angle of 50°. By increasing the number of DBR periods from two to five, the absorption efficiency is further enhanced up to 95% at normal incidence. In this work, we calculated optical spectra for InP NWs, but the results are expected to be valid for other direct band gap III-V semiconductor materials. We believe that our proposed idea of integrating DBRs in NWs offers great potential for high-performance photovoltaic applications.

  14. Monitoring Telluric Absorption with CAMAL

    NASA Astrophysics Data System (ADS)

    Baker, Ashley D.; Blake, Cullen H.; Sliski, David H.

    2017-08-01

    Ground-based astronomical observations may be limited by telluric water vapor absorption, which is highly variable in time and significantly complicates both spectroscopy and photometry in the near-infrared (NIR). To achieve the sensitivity required to detect Earth-sized exoplanets in the NIR, simultaneous monitoring of precipitable water vapor (PWV) becomes necessary to mitigate the impact of variable telluric lines on radial velocity measurements and transit light curves. To address this issue, we present the Camera for the Automatic Monitoring of Atmospheric Lines (CAMAL), a stand-alone, inexpensive six-inch aperture telescope dedicated to measuring PWV at the Fred Lawrence Whipple Observatory on Mount Hopkins. CAMAL utilizes three narrowband NIR filters to trace the amount of atmospheric water vapor affecting simultaneous observations with the MINiature Exoplanet Radial Velocity Array (MINERVA) and MINERVA-Red telescopes. Here, we present the current design of CAMAL, discuss our data analysis methods, and show results from 11 nights of PWV measurements taken with CAMAL. For seven nights of data we have independent PWV measurements extracted from high-resolution stellar spectra taken with the Tillinghast Reflector Echelle Spectrometer (TRES) also located on Mount Hopkins. We use the TRES spectra to calibrate the CAMAL absolute PWV scale. Comparisons between CAMAL and TRES PWV estimates show excellent agreement, matching to within 1 mm over a 10 mm range in PWV. Analysis of CAMAL’s photometric precision propagates to PWV measurements precise to better than 0.5 mm in dry (PWV < 4 mm) conditions. We also find that CAMAL-derived PWVs are highly correlated with those from a GPS-based water vapor monitor located approximately 90 km away at Kitt Peak National Observatory, with a root mean square PWV difference of 0.8 mm.

  15. Metformin Does Not Suppress Serum Thyrotropin by Increasing Levothyroxine Absorption

    PubMed Central

    Al-Alusi, Mostafa A.; Du, Lin; Li, Ning; Yeh, Michael W.; He, Xuemei; Braverman, Lewis E.

    2015-01-01

    Background: Levothyroxine (LT4) absorption is affected by concomitant ingestion of certain minerals, medications, and foods. It has been hypothesized that metformin may suppress serum thyrotropin (TSH) concentrations by enhancing LT4 absorption or by directly affecting the hypothalamic–pituitary axis. This study examined the effect of metformin ingestion on LT4 absorption, as assessed by serum total thyroxine (TT4) concentrations. Methods: A modified Food and Drug Administration LT4 bioequivalence protocol was applied to healthy, metformin-naïve, euthyroid adult volunteers. Following an overnight fast, 600 μg LT4 was administered orally. Serum TT4 concentrations were measured at baseline and at 0.5, 1, 1.5, 2, 4, and 6 h following LT4 administration. Measurements were performed before and after one week of metformin ingestion (850 mg three times daily). Peak serum TT4 concentrations, time to peak TT4 concentrations, and area under the concentration-time curve (AUC) were calculated. Results: Twenty-six subjects (54% men, 27% white, age 33 ± 10 years) were studied. There were no significant differences in peak serum TT4 concentrations (p = 0.13) and time to peak TT4 concentrations (p = 0.19) before and after one week of metformin use. A trend toward reduced TT4 AUC was observed after metformin ingestion (pre-metformin 3893 ± 568 μg/dL-min, post-metformin 3765 ± 588 μg/dL-min, p = 0.09). Conclusions: LT4 absorption is unchanged by concomitant metformin ingestion. Mechanisms other than increased LT4 absorption may be responsible for the suppressed TSH concentrations observed in patients ingesting both drugs. PMID:26191653

  16. [Absorption Characteristics and Simulation of LLM-105 in the Terahertz Range].

    PubMed

    Meng, Zeng-rui; Shang, Li-ping; Du, Yu; Deng, Hu

    2015-07-01

    2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105), a novel explosive with high energy and low sensibility. In order to study the molecular structure characteristics of the explosive, the absorption spectra of LLM-105 in the frequency range of 0.2-2.4 THz were detected by terahertz time-domain spectroscopy (THz-TDS). The results showed that a number of characteristic absorption peaks with different intensity located at 1.27, 1.59, 2.00, 2.08, 2.20, 2.29 THz. The article also simulated the absorption spectra of LLM-105 molecular crystal within 0.2-2.5 THz region by using Materials Studio 6.0 software based on density functional theory (DFT), and the simulated results agreed well with the experimental data except for the peak at 2.29 THz, which verified theoretically the accuracy of the experimental data. In addition, the vibrational modes of the characteristic peaks in the experimental absorption spectra were analyzed and identified, the results showed that the forming of the characteristic absorption peaks and the molecular vibration were closely related, which further provided important laboratory and technology support for the study of the transformation of molecule structure of LLM-105. There was no simulated frequency agreed with the experimental absorption peak at 2.29 THz, which may be caused by the vibration of the crystal lattice or other reasons.

  17. Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot

    NASA Astrophysics Data System (ADS)

    Ahmed, S. Jbara; Zulkafli, Othaman; M, A. Saeed

    2016-05-01

    Based on the Schrödinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients. Project supported by the Ministry of Higher Education and Scientific Research in Iraq, Ibnu Sina Institute and Physics Department of Universiti Teknologi Malaysia (UTM RUG Vote No. 06-H14).

  18. Simulation of Near-Edge X-ray Absorption Fine Structure with Time-Dependent Equation-of-Motion Coupled-Cluster Theory.

    PubMed

    Nascimento, Daniel R; DePrince, A Eugene

    2017-07-06

    An explicitly time-dependent (TD) approach to equation-of-motion (EOM) coupled-cluster theory with single and double excitations (CCSD) is implemented for simulating near-edge X-ray absorption fine structure in molecular systems. The TD-EOM-CCSD absorption line shape function is given by the Fourier transform of the CCSD dipole autocorrelation function. We represent this transform by its Padé approximant, which provides converged spectra in much shorter simulation times than are required by the Fourier form. The result is a powerful framework for the blackbox simulation of broadband absorption spectra. K-edge X-ray absorption spectra for carbon, nitrogen, and oxygen in several small molecules are obtained from the real part of the absorption line shape function and are compared with experiment. The computed and experimentally obtained spectra are in good agreement; the mean unsigned error in the predicted peak positions is only 1.2 eV. We also explore the spectral signatures of protonation in these molecules.

  19. Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength

    NASA Astrophysics Data System (ADS)

    Horikoshi, S.; Matsumoto, N.; Omata, Y.; Kato, T.

    2014-05-01

    Metal nanoparticles (NPs) exhibit localized surface plasmon resonance (LSPR) and thus have potential for use in a wide range of applications. A facile technique for the preparation of NP films using an electron-cyclotron-resonance plasma sputtering method without a dewetting process is described. Field emission scanning electron microscopy (FE-SEM) observations revealed that the Au NPs grew independently as island-like particles during the first stage of sputtering and then coalesced with one another as sputtering time increased to ultimately form a continuous film. A plasmon absorption peak was observed via optical measurement of absorption efficiency. The LSPR peak shifted toward longer wavelengths (red shift) with an increase in sputtering time. The cause of this plasmon peak shift was theoretically investigated using the finite-difference time-domain calculation method. A realistic statistical distribution of the particle shapes based on FE-SEM observations was applied for the analysis, which has not been previously reported. It was determined that the change in the shape of the NPs from spheroidal to oval or slender due to coalescence with neighbouring NPs caused the LSPR peak shift. These results may enable the design of LSPR devices by controlling the characteristics of the nanoparticles, such as their size, shape, number density, and coverage.

  20. Calcium absorption is not increased by caseinophosphopeptides.

    PubMed

    Teucher, Birgit; Majsak-Newman, Gosia; Dainty, Jack R; McDonagh, David; FitzGerald, Richard J; Fairweather-Tait, Susan J

    2006-07-01

    One of the suggested health benefits of caseinophosphopeptides (CPPs) is their ability to enhance calcium absorption. This possibility is based on the assumption that they resist proteolysis in the upper gastrointestinal tract and maintain calcium in a soluble form at alkaline pH in the distal ileum. The effects of CPP-enriched preparations (containing candidate functional food ingredients) on calcium absorption from a calcium lactate drink were tested. A randomized crossover trial was undertaken in 15 adults in whom we measured the absorption of calcium from a calcium lactate drink (drink A: 400 mg Ca as lactate) and 2 preparations enriched with forms of CPP (1.7 g each; drinks B and C). Both drinks B and C contained 400 mg Ca as calcium lactate plus approximately 100 mg CPP-derived calcium). Each volunteer received the 3 drinks in random order. Absorption was measured by the dual-label calcium stable-isotope technique. The quantity of calcium absorbed was significantly lower from drink A (103 mg) than from drink B (117 mg; P = 0.012) or drink C (121 mg; P = 0.002), which indicated a positive effect of the CPPs. However, because the CPP preparations contributed additional calcium besides that found in the calcium lactate (drink A), fractional absorption of calcium from drink B (23%) was slightly but significantly (P = 0.015) lower than that from drink A (26%). The differences in calcium absorption are unlikely to have any biological significance. CPPs are unsuitable as candidate ingredients for functional foods that are designed to deliver improved calcium nutrition.

  1. Neuroscience imaging enabled by new highly tunable and high peak power femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.

    2017-02-01

    Neuroscience applications benefit from recent developments in industrial femtosecond laser technology. New laser sources provide several megawatts of peak power at wavelength of 1040 nm, which enables simultaneous optogenetics photoactivation of tens or even hundreds of neurons using red shifted opsins. Another recent imaging trend is to move towards longer wavelengths, which would enable access to deeper layers of tissue due to lower scattering and lower absorption in the tissue. Femtosecond lasers pumping a non-collinear optical parametric amplifier (NOPA) enable the access to longer wavelengths with high peak powers. High peak powers of >10 MW at 1300 nm and 1700 nm allow effective 3-photon excitation of green and red shifted calcium indicators respectively and access to deeper, sub-cortex layers of the brain. Early results include in vivo detection of spontaneous activity in hippocampus within an intact mouse brain, where neurons express GCaMP6 activated in a 3-photon process at 1320 nm.

  2. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    SciTech Connect

    Pascucci, I.; Simon, M. N.; Edwards, S.

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within themore » circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.« less

  3. Peak expiratory flow rate in handloom weavers.

    PubMed

    Tiwari, R R; Zodpey, S P; Deshpande, S G; Vasudeo, N D

    1998-04-01

    The present cross-sectional study with a comparison group was carried out to investigate peak expiratory flow rate (PEFR) in handloom weavers and to study relationship between reduction in PEFR with age, smoking, duration of cotton dust exposure and respiratory morbidity. This study include 319 handloom weavers and equal number of individuals (group matched for age and pair matched for sex) in comparison group. The decline in PEFR was significantly associated with advancing age, longer duration of exposure to cotton dust, tobacco smoking and presence of respiratory morbidity on univariate analysis, whereas on multivariate analysis longer duration of exposure to cotton dust and tobacco smoking was found to be non significant.

  4. Forecasting peaks of seasonal influenza epidemics.

    PubMed

    Nsoesie, Elaine; Mararthe, Madhav; Brownstein, John

    2013-06-21

    We present a framework for near real-time forecast of influenza epidemics using a simulation optimization approach. The method combines an individual-based model and a simple root finding optimization method for parameter estimation and forecasting. In this study, retrospective forecasts were generated for seasonal influenza epidemics using web-based estimates of influenza activity from Google Flu Trends for 2004-2005, 2007-2008 and 2012-2013 flu seasons. In some cases, the peak could be forecasted 5-6 weeks ahead. This study adds to existing resources for influenza forecasting and the proposed method can be used in conjunction with other approaches in an ensemble framework.

  5. Energy peaks: A high energy physics outlook

    NASA Astrophysics Data System (ADS)

    Franceschini, Roberto

    2017-12-01

    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  6. Calculating weighted estimates of peak streamflow statistics

    USGS Publications Warehouse

    Cohn, Timothy A.; Berenbrock, Charles; Kiang, Julie E.; Mason, Jr., Robert R.

    2012-01-01

    According to the Federal guidelines for flood-frequency estimation, the uncertainty of peak streamflow statistics, such as the 1-percent annual exceedance probability (AEP) flow at a streamgage, can be reduced by combining the at-site estimate with the regional regression estimate to obtain a weighted estimate of the flow statistic. The procedure assumes the estimates are independent, which is reasonable in most practical situations. The purpose of this publication is to describe and make available a method for calculating a weighted estimate from the uncertainty or variance of the two independent estimates.

  7. Octant vectorcardiography - the evaluation by peaks.

    PubMed

    Laufberger, V

    1982-01-01

    From the Frank lead potentials a computer prints out an elementary table. Therein, the electrical space of left ventricle depolarization is divided into eight spatial parts labelled by numbers 1-8 and called octants. Within these octants six peaks are determined labelled with letters ALPR-IS. Their localization is described by six-digit topograms characteristic for each patient. From 300 cases of patients after myocardial infarction, three data bases were compiled enabling every case to be classified into classes, subclasses and types. The follow up of patients according to these principles gives an objective and detailed image about the progress of coronary artery disease.

  8. A Hot Gaseous Galaxy Halo Candidate with Mg X Absorption

    NASA Astrophysics Data System (ADS)

    Qu, Zhijie; Bregman, Joel N.

    2016-12-01

    The hot gas in galaxy halos may account for a significant fraction of missing baryons in galaxies, and some of these gases can be traced by high ionization absorption systems in QSO UV spectra. Using high S/N Hubble Space Telescope/Cosmic Origins Spectrograph spectra, we discovered a high ionization state system at z = 1.1912 in the sightline toward LBQS 1435-0134, and two-component absorption lines are matched for Mg x, Ne viii, Ne VI, O VI, Ne v, O v, Ne IV, O IV, N IV, O III, and H I. Mg x, detected for the first time (5.8σ), is a particularly direct tracer of hot galactic halos, as its peak ion fraction occurs near 106.1 K, about the temperature of a virialized hot galaxy halo of mass ˜ 0.5{M}* . With Mg x and Ne viii, a photoionization model cannot reproduce the observed column densities with path lengths of galaxy halos. For collisional ionization models, one or two-temperature models do not produce acceptable fits, but a three-temperature model or a power-law model can produce the observed results. In the power-law model, {dN}/{dT}={10}4.4+/- 2.2-[Z/X]{T}1.55+/- 0.41 with temperatures in the range of {10}4.39+/- 0.13 {{K}}\\lt T\\lt {10}6.04+/- 0.05 {{K}}, the total hydrogen column density is 8.2× {10}19(0.3 {Z}⊙ /Z) {{cm}}-2 and the positive power-law index indicates most of the mass is at the high temperature end. We suggest that this absorption system is a hot volume-filled galaxy halo rather than interaction layers between the hot halo and cool clouds. The temperature dependence of the column density is likely due to the local mixture of multiple phase gases.

  9. Theoretical modeling of the absorption spectrum of aqueous riboflavin

    NASA Astrophysics Data System (ADS)

    Zanetti-Polzi, Laura; Aschi, Massimiliano; Daidone, Isabella; Amadei, Andrea

    2017-02-01

    In this study we report the modeling of the absorption spectrum of riboflavin in water using a hybrid quantum/classical mechanical approach, the MD-PMM methodology. By means of MD-PMM calculations, with which the effect of riboflavin internal motions and of solvent interactions on the spectroscopic properties can be explicitly taken into account, we obtain an absorption spectrum in very good agreement with the experimental spectrum. In particular, the calculated peak maxima show a consistent improvement with respect to previous computational approaches. Moreover, the calculations show that the interaction with the environment may cause a relevant recombination of the gas-phase electronic states.

  10. PeakVizor: Visual Analytics of Peaks in Video Clickstreams from Massive Open Online Courses.

    PubMed

    Chen, Qing; Chen, Yuanzhe; Liu, Dongyu; Shi, Conglei; Wu, Yingcai; Qu, Huamin

    2016-10-01

    Massive open online courses (MOOCs) aim to facilitate open-access and massive-participation education. These courses have attracted millions of learners recently. At present, most MOOC platforms record the web log data of learner interactions with course videos. Such large amounts of multivariate data pose a new challenge in terms of analyzing online learning behaviors. Previous studies have mainly focused on the aggregate behaviors of learners from a summative view; however, few attempts have been made to conduct a detailed analysis of such behaviors. To determine complex learning patterns in MOOC video interactions, this paper introduces a comprehensive visualization system called PeakVizor. This system enables course instructors and education experts to analyze the "peaks" or the video segments that generate numerous clickstreams. The system features three views at different levels: the overview with glyphs to display valuable statistics regarding the peaks detected; the flow view to present spatio-temporal information regarding the peaks; and the correlation view to show the correlation between different learner groups and the peaks. Case studies and interviews conducted with domain experts have demonstrated the usefulness and effectiveness of PeakVizor, and new findings about learning behaviors in MOOC platforms have been reported.

  11. Curvature of the localized surface plasmon resonance peak.

    PubMed

    Chen, Peng; Liedberg, Bo

    2014-08-05

    Localized surface plasmon resonance (LSPR) occurring in noble metal nanoparticles (e.g., Au) is a widely used phenomenon to report molecular interactions. Traditional LSPR sensors typically monitor shifts in the peak position or extinction in response to local refractive index changes in the close vicinity of the nanoparticle surface. The ability to resolve minute shifts/extinction changes is to a large extent limited by instrumental noise. A new strategy to evaluate LSPR responses utilizing changes in the shape of the extinction spectrum (the curvature) is proposed. The response of curvature to refractive index changes is investigated theoretically using Mie theory and an analytical expression relating the curvature to the refractive index is presented. The experimentally derived curvatures for 13 nm spherical gold nanoparticles (AuNPs) exposed to solvents with different bulk refractive indices confirm the theoretical predictions. Moreover, both the calculated and experimental findings suggest that the curvature is approximately a linear function of refractive index in regimes relevant to bio and chemical sensing. We demonstrate that curvature is superior over peak shift and extinction both in terms of signal-to-noise (S/N) ratio and reliability of LSPR sensors. With a curvature, one could readily monitor submonolayer adsorption of a low molecular weight thiol molecule (M(w) = 458.6) onto 13 nm AuNPs. It is also worthwhile mentioning that curvature is virtually insensitive to instrumental instabilities and artifacts occurring during measurement. Instabilities such as baseline tilt and shift, shift in peak position as well as sharp spikes/steps in the extinction spectra do not induce artifacts in the sensorgrams of curvature.

  12. Aiding the Detection of QRS Complex in ECG Signals by Detecting S Peaks Independently.

    PubMed

    Sabherwal, Pooja; Singh, Latika; Agrawal, Monika

    2018-03-30

    In this paper, a novel algorithm for the accurate detection of QRS complex by combining the independent detection of R and S peaks, using fusion algorithm is proposed. R peak detection has been extensively studied and is being used to detect the QRS complex. Whereas, S peaks, which is also part of QRS complex can be independently detected to aid the detection of QRS complex. In this paper, we suggest a method to first estimate S peak from raw ECG signal and then use them to aid the detection of QRS complex. The amplitude of S peak in ECG signal is relatively weak than corresponding R peak, which is traditionally used for the detection of QRS complex, therefore, an appropriate digital filter is designed to enhance the S peaks. These enhanced S peaks are then detected by adaptive thresholding. The algorithm is validated on all the signals of MIT-BIH arrhythmia database and noise stress database taken from physionet.org. The algorithm performs reasonably well even for the signals highly corrupted by noise. The algorithm performance is confirmed by sensitivity and positive predictivity of 99.99% and the detection accuracy of 99.98% for QRS complex detection. The number of false positives and false negatives resulted while analysis has been drastically reduced to 80 and 42 against the 98 and 84 the best results reported so far.

  13. Method and apparatus for current-output peak detection

    SciTech Connect

    De Geronimo, Gianluigi

    2017-01-24

    A method and apparatus for a current-output peak detector. A current-output peak detector circuit is disclosed and works in two phases. The peak detector circuit includes switches to switch the peak detector circuit from the first phase to the second phase upon detection of the peak voltage of an input voltage signal. The peak detector generates a current output with a high degree of accuracy in the second phase.

  14. MULTIMAGNON ABSORPTION IN MNF2-OPTICAL ABSORPTION SPECTRUM.

    DTIC Science & Technology

    The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with

  15. Estimation of Seismic Attenuation beneath Tateyama Volcano, Central Japan by Using Peak Delay

    NASA Astrophysics Data System (ADS)

    Iwata, K.; Kawakata, H.; Hirano, S.; Doi, I.

    2015-12-01

    The Hida Mountain Range located in central Japan has a lot of active volcanoes. Katsumata et al. (1995, GJI) suggested the presence of regions with low-velocity and low-density as well as low Qanomaly at 5-15 km deep beneath the range. Tateyama volcano is located in the northern part of the range. Iwata et al. (2014, AGU Fall Meeting) quantitatively estimated strength of S-wave attenuation beneath Tateyama volcano using twofold spectral ratios and suggested that regions with high seismic attenuation exist in the south or the southeast of Tateyama volcano. However, it is difficult to estimate the contribution of scattering loss and intrinsic absorption to total attenuation on the basis of this method. In the present study, we focused on the peak delay (Takahashi et al., 2007, GJI) in seismic envelopes. We used seismograms observed at five NIED Hi-net stations near Tateyama volcano for 31 local earthquakes (MJMA2.5-4.0). We found seismograms recorded after passing below the southern part of the Hida Mountain Range show longer peak delay than those recorded before passing below the region, while there are no clear difference in peak delay for pairs of seismograms before and after passing below Tateyama volcano. It suggests that causes of the attenuation beneath Tateyama volcano and the southern part of the Hida Mountain Range are different. We used the peak delay values to evaluate the strength of intrinsic absorption. We assumed that the difference of whole peak delay between two seismograms for the same earthquake was caused by intrinsic absorption beneath the region between the two seismic stations. Wecalculated the change in amplitude and peak delay on the basis of a theory suggested by Azimi et al. (1966, Izvestia, Earth Physics). In case of the two envelopes are quite similar to each other, we conclude that intrinsic absorption is a major cause of total attenuation

  16. Multispectra CWT-based algorithm (MCWT) in mass spectra for peak extraction.

    PubMed

    Hsueh, Huey-Miin; Kuo, Hsun-Chih; Tsai, Chen-An

    2008-01-01

    An important objective in mass spectrometry (MS) is to identify a set of biomarkers that can be used to potentially distinguish patients between distinct treatments (or conditions) from tens or hundreds of spectra. A common two-step approach involving peak extraction and quantification is employed to identify the features of scientific interest. The selected features are then used for further investigation to understand underlying biological mechanism of individual protein or for development of genomic biomarkers to early diagnosis. However, the use of inadequate or ineffective peak detection and peak alignment algorithms in peak extraction step may lead to a high rate of false positives. Also, it is crucial to reduce the false positive rate in detecting biomarkers from ten or hundreds of spectra. Here a new procedure is introduced for feature extraction in mass spectrometry data that extends the continuous wavelet transform-based (CWT-based) algorithm to multiple spectra. The proposed multispectra CWT-based algorithm (MCWT) not only can perform peak detection for multiple spectra but also carry out peak alignment at the same time. The author' MCWT algorithm constructs a reference, which integrates information of multiple raw spectra, for feature extraction. The algorithm is applied to a SELDI-TOF mass spectra data set provided by CAMDA 2006 with known polypeptide m/z positions. This new approach is easy to implement and it outperforms the existing peak extraction method from the Bioconductor PROcess package.

  17. Differential optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S. (Inventor)

    1978-01-01

    A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.

  18. Triple effect absorption cycles

    SciTech Connect

    Erickson, D.C.; Potnis, S.V.; Tang, J.

    1996-12-31

    Triple effect absorption chillers can achieve 50% COP improvement over double-effect systems. However, to translate this potential into cost-effective hardware, the most promising embodiments must be identified. In this study, 12 generic triple effect cycles and 76 possible hermetic loop arrangements of those 12 generic cycles were identified. The generic triple effect cycles were screened based on their pressure and solubility field requirements, generic COPs, risk involved in the component design, and number of components in a high corrosive environment. This screening identified four promising arrangements: Alkitrate Topping cycle, Pressure Staged Envelope cycle, High Pressure Overlap cycle, and Dual Loopmore » cycle. All of these arrangements have a very high COP ({approximately} 1.8), however the development risk and cost involved is different for each arrangement. Therefore, the selection of a particular arrangement will depend upon the specific situation under consideration.« less

  19. Analyzing Water's Optical Absorption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  20. Nonequilibrium quantum absorption refrigerator

    NASA Astrophysics Data System (ADS)

    Du, Jian-Ying; Zhang, Fu-Lin

    2018-06-01

    We study a quantum absorption refrigerator, in which a target qubit is cooled by two machine qubits in a nonequilibrium steady-state. It is realized by a strong internal coupling in the two-qubit fridge and a vanishing tripartite interaction among the whole system. The coherence of a machine virtual qubit is investigated as quantumness of the fridge. A necessary condition for cooling shows that the quantum coherence is beneficial to the nonequilibrium fridge, while it is detrimental as far as the maximum coefficient of performance (COP) and the COP at maximum power are concerned. Here, the COP is defined only in terms of heat currents caused by the tripartite interaction, with the one maintaining the two-qubit nonequilibrium state being excluded. The later can be considered to have no direct involvement in extracting heat from the target, as it is not affected by the tripartite interaction.

  1. Absorption properties of alternative chromophores for use in laser tissue soldering applications.

    PubMed

    Byrd, Brian D; Heintzelman, Douglas L; McNally-Heintzelman, Karen M

    2003-01-01

    The feasibility of using alternative chromophores in laser tissue soldering applications was explored. Two commonly used chromophores, indocyanine green (ICG), and methylene blue (MB) were investigated, as well as three different food colorings: red #40 (RFC), blue #1 (BFC), and green consisting of yellow #5 and blue #1 (GFC). Three experimental studies were conducted: (i) The absorption profiles of the five chromophores, when diluted in deionized water and when bound to protein, were recorded; (ii) the effect of accumulated thermal dosages on the absorption profile of the chromophores was evaluated; and (iii) the stability of the absorption profiles of the chromophore-doped solutions when exposed to ambient light for extended time periods was measured. The peak absorption wavelengths of ICG, MB, RFC, and BFC, were found to be 805 nm, 665 nm, 503 nm, and 630 nm respectively in protein solder. The GFC had two absorption peaks at 426 nm and 630 nm, corresponding to the two dye components comprising this color. The peak absorption wavelength of ICG and MB was dependent on the choice of solvent (deionized water or protein). In contrast, the peak absorption wavelengths of the three chromophores were not dependent on the choice of solvent. ICG and MB showed a significant decrease in absorbance units with increased time and temperature when heated to temperature up to 100 degrees C. A significant decrease in the absorption peak occurred in the ICG and MB samples when exposed to ambient light for a period of 7 days. Negligible change in absorption with accumulated thermal dose up to 100 degrees C or light dose (over a period of 84 days) was observed for any of the three food colorings investigated.

  2. Outreach Plans for Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation 10,500 ft. SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a full kitchen and two bunk rooms with sleeping space for nine persons. We plan to create a unique summer undergraduate education experiences for students of diversity at Storm Peak Laboratory. As stressed by the College Pathways to Science Education Standards [Siebert and McIntosh, 2001], to support changes in K-12 science education transformations must first be made at the college level, including inquiry-oriented opportunities to engage in meaningful research. These workshops will be designed to allow students to experience the excitement of science, increasing their likelihood of pursing careers within the fields of scientific education or research.

  3. Computation of peak discharge at culverts

    USGS Publications Warehouse

    Carter, Rolland William

    1957-01-01

    Methods for computing peak flood flow through culverts on the basis of a field survey of highwater marks and culvert geometry are presented. These methods are derived from investigations of culvert flow as reported in the literature and on extensive laboratory studies of culvert flow. For convenience in computation, culvert flow has been classified into six types, according to the location of the control section and the relative heights of the head-water and tail-water levels. The type of flow which occurred at any site can be determined from the field data and the criteria given in this report. A discharge equation has been developed for each flow type by combining the energy and continuity equations for the distance between an approach section upstream from the culvert and a terminal section within the culvert barrel. The discharge coefficient applicable to each flow type is listed for the more common entrance geometries. Procedures for computing peak discharge through culverts are outlined in detail for each of the six flow types.

  4. NITPICK: peak identification for mass spectrometry data.

    PubMed

    Renard, Bernhard Y; Kirchner, Marc; Steen, Hanno; Steen, Judith A J; Hamprecht, Fred A

    2008-08-28

    The reliable extraction of features from mass spectra is a fundamental step in the automated analysis of proteomic mass spectrometry (MS) experiments. This contribution proposes a sparse template regression approach to peak picking called NITPICK. NITPICK is a Non-greedy, Iterative Template-based peak PICKer that deconvolves complex overlapping isotope distributions in multicomponent mass spectra. NITPICK is based on fractional averaging, a novel extension to Senko's well-known averaging model, and on a modified version of sparse, non-negative least angle regression, for which a suitable, statistically motivated early stopping criterion has been derived. The strength of NITPICK is the deconvolution of overlapping mixture mass spectra. Extensive comparative evaluation has been carried out and results are provided for simulated and real-world data sets. NITPICK outperforms pepex, to date the only alternate, publicly available, non-greedy feature extraction routine. NITPICK is available as software package for the R programming language and can be downloaded from (http://hci.iwr.uni-heidelberg.de/mip/proteomics/).

  5. NITPICK: peak identification for mass spectrometry data

    PubMed Central

    Renard, Bernhard Y; Kirchner, Marc; Steen , Hanno; Steen, Judith AJ; Hamprecht , Fred A

    2008-01-01

    Background The reliable extraction of features from mass spectra is a fundamental step in the automated analysis of proteomic mass spectrometry (MS) experiments. Results This contribution proposes a sparse template regression approach to peak picking called NITPICK. NITPICK is a Non-greedy, Iterative Template-based peak PICKer that deconvolves complex overlapping isotope distributions in multicomponent mass spectra. NITPICK is based on fractional averagine, a novel extension to Senko's well-known averagine model, and on a modified version of sparse, non-negative least angle regression, for which a suitable, statistically motivated early stopping criterion has been derived. The strength of NITPICK is the deconvolution of overlapping mixture mass spectra. Conclusion Extensive comparative evaluation has been carried out and results are provided for simulated and real-world data sets. NITPICK outperforms pepex, to date the only alternate, publicly available, non-greedy feature extraction routine. NITPICK is available as software package for the R programming language and can be downloaded from . PMID:18755032

  6. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.

    PubMed

    Foley, Joe P; Blackney, Donna M; Ennis, Erin J

    2017-11-10

    The origins of the peak capacity concept are described and the important contributions to the development of that concept in chromatography and electrophoresis are reviewed. Whereas numerous quantitative expressions have been reported for one- and two-dimensional separations, most are focused on chromatographic separations and few, if any, quantitative unbiased expressions have been developed for capillary or microchip zone electrophoresis. Making the common assumption that longitudinal diffusion is the predominant source of zone broadening in capillary electrophoresis, analytical expressions for the peak capacity are derived, first in terms of migration time, diffusion coefficient, migration distance, and desired resolution, and then in terms of the remaining underlying fundamental parameters (electric field, electroosmotic and electrophoretic mobilities) that determine the migration time. The latter expressions clearly illustrate the direct square root dependence of peak capacity on electric field and migration distance and the inverse square root dependence on solute diffusion coefficient. Conditions that result in a high peak capacity will result in a low peak capacity per unit time and vice-versa. For a given symmetrical range of relative electrophoretic mobilities for co- and counter-electroosmotic species (cations and anions), the peak capacity increases with the square root of the electric field even as the temporal window narrows considerably, resulting in a significant reduction in analysis time. Over a broad relative electrophoretic mobility interval [-0.9, 0.9], an approximately two-fold greater amount of peak capacity can be generated for counter-electroosmotic species although it takes about five-fold longer to do so, consistent with the well-known bias in migration time and resolving power for co- and counter-electroosmotic species. The optimum lower bound of the relative electrophoretic mobility interval [μ r,Z , μ r,A ] that provides the maximum

  7. Sound absorption of a new oblique-section acoustic metamaterial with nested resonator

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Hou, Hong; Zhang, Yanni; Wu, Jiu Hui

    2018-02-01

    This study designs and investigates high-efficiency sound absorption of new oblique-section nested resonators. Impedance tube experiment results show that different combinations of oblique-section nest resonators have tunable low-frequency bandwidth characteristics. The sound absorption mechanism is due to air friction losses in the slotted region and the sample structure resonance. The acousto-electric analogy model demonstrates that the sound absorption peak and bandwidth can be modulated over an even wider frequency range by changing the geometric size and combinations of structures. The proposed structure can be easily fabricated and used in low-frequency sound absorption applications.

  8. Fluorescent optical position sensor

    DOEpatents

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  9. Peak Wind Tool for General Forecasting

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III

    2010-01-01

    The expected peak wind speed of the day is an important forecast element in the 45th Weather Squadron's (45 WS) daily 24-Hour and Weekly Planning Forecasts. The forecasts are used for ground and space launch operations at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45 WS also issues wind advisories for KSC/CCAFS when they expect wind gusts to meet or exceed 25 kt, 35 kt and 50 kt thresholds at any level from the surface to 300 ft. The 45 WS forecasters have indicated peak wind speeds are challenging to forecast, particularly in the cool season months of October - April. In Phase I of this task, the Applied Meteorology Unit (AMU) developed a tool to help the 45 WS forecast non-convective winds at KSC/CCAFS for the 24-hour period of 0800 to 0800 local time. The tool was delivered as a Microsoft Excel graphical user interface (GUI). The GUI displayed the forecast of peak wind speed, 5-minute average wind speed at the time of the peak wind, timing of the peak wind and probability the peak speed would meet or exceed 25 kt, 35 kt and 50 kt. For the current task (Phase II ), the 45 WS requested additional observations be used for the creation of the forecast equations by expanding the period of record (POR). Additional parameters were evaluated as predictors, including wind speeds between 500 ft and 3000 ft, static stability classification, Bulk Richardson Number, mixing depth, vertical wind shear, temperature inversion strength and depth and wind direction. Using a verification data set, the AMU compared the performance of the Phase I and II prediction methods. Just as in Phase I, the tool was delivered as a Microsoft Excel GUI. The 45 WS requested the tool also be available in the Meteorological Interactive Data Display System (MIDDS). The AMU first expanded the POR by two years by adding tower observations, surface observations and CCAFS (XMR) soundings for the cool season months of March 2007 to April 2009. The POR was expanded

  10. BASIC STUDIES IN PERCUTANEOUS ABSORPTION.

    DTIC Science & Technology

    FATTY ACIDS, *SKIN(ANATOMY), ABSORPTION, ALKYL RADICALS, AMIDES, DIFFUSION, ELECTRON MICROSCOPY, HUMIDITY, LABORATORY ANIMALS, LIPIDS, ORGANIC SOLVENTS, PENETRATION, PRIVATION, PROTEINS, RATS, TEMPERATURE, WATER

  11. Optical Absorption in Liquid Semiconductors

    NASA Astrophysics Data System (ADS)

    Bell, Florian Gene

    An infrared absorption cell has been developed which is suitable for high temperature liquids which have absorptions in the range .1-10('3) cm('-1). The cell is constructed by clamping a gasket between two flat optical windows. This unique design allows the use of any optical windows chemically compatible with the liquid. The long -wavelength limit of the measurements is therefore limited only by the choice of the optical windows. The thickness of the cell can easily be set during assembly, and can be varied from 50 (mu)m to .5 cm. Measurements of the optical absorption edge were performed on the liquid alloy Se(,1-x)Tl(,x) for x = 0, .001, .002, .003, .005, .007, and .009, from the melting point up to 475(DEGREES)C. The absorption was found to be exponential in the photon energy over the experimental range from 0.3 eV to 1.2 eV. The absorption increased linearly with concentration according to the empirical relation (alpha)(,T)(h(nu)) = (alpha)(,1) + (alpha)(,2)x, and the absorption (alpha)(,1) was interpreted as the absorption in the absence of T1. (alpha)(,1) also agreed with the measured absorption in 100% Se at corresponding temperatures and energies. The excess absorption defined by (DELTA)(alpha) = (alpha)(,T)(h(nu))-(alpha)(,1) was interpreted as the absorption associated with Tl and was found to be thermally activated with an activation energy E(,t) = 0.5 eV. The exponential edge is explained as absorption on atoms immersed in strong electric fields surrounding ions. The strong fields give rise to an absorption tail similar to the Franz-Keldysh effect. A simple calculation is performed which is based on the Dow-Redfield theory of absorption in an electric field with excitonic effects included. The excess absorption at low photon energies is proportional to the square of the concentration of ions, which are proposed to exist in the liquid according to the relation C(,i) (PROPORTIONAL) x(' 1/2)(.)e('-E)t('/kT), which is the origin of the thermal activation

  12. Emissions Scenarios and Fossil-fuel Peaking

    NASA Astrophysics Data System (ADS)

    Brecha, R.

    2008-12-01

    Intergovernmental Panel on Climate Change (IPCC) emissions scenarios are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. Built into the assumptions for these scenarios are estimates for ultimately recoverable resources of various fossil fuels. There is a growing chorus of critics who believe that the true extent of recoverable fossil resources is much smaller than the amounts taken as a baseline for the IPCC scenarios. In a climate optimist camp are those who contend that "peak oil" will lead to a switch to renewable energy sources, while others point out that high prices for oil caused by supply limitations could very well lead to a transition to liquid fuels that actually increase total carbon emissions. We examine a third scenario in which high energy prices, which are correlated with increasing infrastructure, exploration and development costs, conspire to limit the potential for making a switch to coal or natural gas for liquid fuels. In addition, the same increasing costs limit the potential for expansion of tar sand and shale oil recovery. In our qualitative model of the energy system, backed by data from short- and medium-term trends, we have a useful way to gain a sense of potential carbon emission bounds. A bound for 21st century emissions is investigated based on two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by "peak oil" adherents, and second, that little is done in the way of climate mitigation policies. If resources, and perhaps more importantly, extraction rates, of fossil fuels are limited compared to assumptions in the emissions scenarios, a situation can arise in which emissions are supply-driven. However, we show that even in this "peak fossil-fuel" limit, carbon emissions are high enough to surpass 550 ppm or 2°C climate protection guardrails. Some

  13. BUFFALO PEAKS WILDERNESS STUDY AREA, COLORADO.

    USGS Publications Warehouse

    Hedlund, D.C.; Wood, R.H.

    1984-01-01

    Field investigations were conducted to evaluate the mineral-resource potential of the Buffalo Peaks Wilderness Study Area, Colorado. On the basis of this study there is a probable mineral-resource potential for silver vein and bedding replacement deposits along the Weston Pass fault zone, for hydrothermal vein-type uranium deposits in the vicinity of the Parkdale iron pit, and for gold vein deposits in the parts of the Granite and Four Mile districts that are within the wilderness study area. A probable barite resource potential occurs at Rough and Tumbling Creek and near Spring Creek on the east side of the study area. There is little promise for the occurrence of energy resources.

  14. Curiosity Drill After Drilling at Telegraph Peak

    NASA Image and Video Library

    2015-03-06

    This view from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover shows the rover's drill just after finishing a drilling operation at a target rock called "Telegraph Peak" on Feb. 24, 2015, the 908th Martian day, or sol, of the rover's work on Mars. Three sols later, a fault-protection action by the rover halted a process of transferring sample powder that was collected during this drilling. The image is in raw color, as recorded directly by the camera, and has not been white-balanced. The fault-protection event, triggered by an irregularity in electrical current, led to engineering tests in subsequent days to diagnose the underlying cause. http://photojournal.jpl.nasa.gov/catalog/PIA19145

  15. Assignment of polarization-dependent peaks in carbon K-edge spectra from biogenic and geologic aragonite.

    PubMed

    Zhou, Dong; Metzler, Rebecca A; Tyliszczak, Tolek; Guo, Jinghua; Abrecht, Mike; Coppersmith, Susan N; Gilbert, P U P A

    2008-10-16

    Many biominerals, including mollusk and echinoderm shells, avian eggshells, modern and fossil bacterial sediments, planktonic coccolithophores, and foraminifera, contain carbonates in the form of biogenic aragonite or calcite. Here we analyze biogenic and geologic aragonite using different kinds of surface- and bulk-sensitive X-ray absorption near-edge structure (XANES) spectroscopy at the carbon K-edge, as well as high-resolution scanning transmission X-ray microscopy (STXM). Besides the well-known main pi* and sigma* carbonate peaks, we observed and fully characterized four minor peaks, at energies between the main pi* and sigma* peaks. As expected, the main peaks are similar in geologic and biogenic aragonite, while the minor peaks differ in relative intensity. In this and previous work, the minor peaks appear to be the ones most affected in biomineralization processes, hence the interest in characterizing them. Peak assignment was achieved by correlation of polarization-dependent behavior of the minor peaks with that of the main pi* and sigma* peaks. The present characterization provides the background for future studies of aragonitic biominerals.

  16. Ridge of Jagged Peaks on Titan

    NASA Image and Video Library

    2016-07-29

    This synthetic-aperture radar image was obtained by NASA's Cassini spacecraft during its T-120 pass over Titan's southern latitudes on June 7, 2016. The area shown here measures about 40 by 60 miles (70 by 100 kilometers) and is centered at about 60 degrees south latitude, 130 degrees west longitude. Radar illuminates the scene from the left at a 28-degree incidence angle. At the center of the image is a bright feature oriented from upper left to lower right. This is interpreted to be a long ridge with jagged peaks, likely created by methane rainfall erosion. Some of the individual peaks rise about 2,400 feet (800 meters) above the valley floor. The ridge has a considerably gentler slope on its left side (which appears brighter here) than on its right. Frequently, mountains shaped like this on Earth are fractured blocks of the planet's crust, thrusted upward and then tilted, creating a shallow slope on one side and a steeper slope on the fractured, faulted edge. Also presented here is an annotated version of the image, along with a radar image of the Dragoon Mountains in Arizona just east of Tucson. The Dragoon feature represents a tilted fault block, formed by spreading that has occurred across the western U.S., and has a similar shape to that of the Titan ridge. The Dragoon radar image was produced using data from NASA's Shuttle Radar Topography Mission (credit: NASA/JPL-Caltech/NGA). Radar illuminates the scene from the left in that image as well. Titan has displayed many features that are strikingly similar to Earth: lakes, seas, rivers, dunes and mountains. Scientists think it possible that, like Earth, the giant moon's crust has experienced familiar processes of uplift and spreading, followed by erosion. http://photojournal.jpl.nasa.gov/catalog/PIA20709

  17. Comparison of five portable peak flow meters

    PubMed Central

    Takara, Glaucia Nency; Ruas, Gualberto; Pessoa, Bruna Varanda; Jamami, Luciana Kawakami; Di Lorenzo, Valéria Amorim Pires; Jamami, Mauricio

    2010-01-01

    OBJECTIVE To compare the measurements of spirometric peak expiratory flow (PEF) from five different PEF meters and to determine if their values are in agreement. Inaccurate equipment may result in incorrect diagnoses of asthma and inappropriate treatments. METHODS Sixty-eight healthy, sedentary and insufficiently active subjects, aged from 19 to 40 years, performed PEF measurements using Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® peak flow meters. The highest value recorded for each subject for each device was compared to the corresponding spirometric values using Friedman’s test with Dunn’s post-hoc (p<0.05), Spearman’s correlation test and Bland-Altman’s agreement test. RESULTS The median and interquartile ranges for the spirometric values and the Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® meters were 428 (263–688 L/min), 450 (350–800 L/min), 420 (310–720 L/min), 380 (300–735 L/min), 400 (310–685 L/min) and 415 (335–610 L/min), respectively. Significant differences were found when the spirometric values were compared to those recorded by the Air Zone® (p<0.001) and Galemed ® (p<0.01) meters. There was no agreement between the spirometric values and the five PEF meters. CONCLUSIONS The results suggest that the values recorded from Galemed® meters may underestimate the actual value, which could lead to unnecessary interventions, and that Air Zone® meters overestimate spirometric values, which could obfuscate the need for intervention. These findings must be taken into account when interpreting both devices’ results in younger people. These differences should also be considered when directly comparing values from different types of PEF meters. PMID:20535364

  18. Comparison of five portable peak flow meters.

    PubMed

    Takara, Glaucia Nency; Ruas, Gualberto; Pessoa, Bruna Varanda; Jamami, Luciana Kawakami; Di Lorenzo, Valéria Amorim Pires; Jamami, Mauricio

    2010-05-01

    To compare the measurements of spirometric peak expiratory flow (PEF) from five different PEF meters and to determine if their values are in agreement. Inaccurate equipment may result in incorrect diagnoses of asthma and inappropriate treatments. Sixty-eight healthy, sedentary and insufficiently active subjects, aged from 19 to 40 years, performed PEF measurements using Air Zone, Assess, Galemed, Personal Best and Vitalograph peak flow meters. The highest value recorded for each subject for each device was compared to the corresponding spirometric values using Friedman's test with Dunn's post-hoc (p<0.05), Spearman's correlation test and Bland-Altman's agreement test. The median and interquartile ranges for the spirometric values and the Air Zone, Assess, Galemed, Personal Best and Vitalograph meters were 428 (263-688 L/min), 450 (350-800 L/min), 420 (310-720 L/min), 380 (300-735 L/min), 400 (310-685 L/min) and 415 (335-610 L/min), respectively. Significant differences were found when the spirometric values were compared to those recorded by the Air Zone(R) (p<0.001) and Galemed (p<0.01) meters. There was no agreement between the spirometric values and the five PEF meters. The results suggest that the values recorded from Galemed meters may underestimate the actual value, which could lead to unnecessary interventions, and that Air Zone meters overestimate spirometric values, which could obfuscate the need for intervention. These findings must be taken into account when interpreting both devices' results in younger people. These differences should also be considered when directly comparing values from different types of PEF meters.

  19. Sample distribution in peak mode isotachophoresis

    SciTech Connect

    Rubin, Shimon; Schwartz, Ortal; Bercovici, Moran, E-mail: mberco@technion.ac.il

    We present an analytical study of peak mode isotachophoresis (ITP), and provide closed form solutions for sample distribution and electric field, as well as for leading-, trailing-, and counter-ion concentration profiles. Importantly, the solution we present is valid not only for the case of fully ionized species, but also for systems of weak electrolytes which better represent real buffer systems and for multivalent analytes such as proteins and DNA. The model reveals two major scales which govern the electric field and buffer distributions, and an additional length scale governing analyte distribution. Using well-controlled experiments, and numerical simulations, we verify andmore » validate the model and highlight its key merits as well as its limitations. We demonstrate the use of the model for determining the peak concentration of focused sample based on known buffer and analyte properties, and show it differs significantly from commonly used approximations based on the interface width alone. We further apply our model for studying reactions between multiple species having different effective mobilities yet co-focused at a single ITP interface. We find a closed form expression for an effective-on rate which depends on reactants distributions, and derive the conditions for optimizing such reactions. Interestingly, the model reveals that maximum reaction rate is not necessarily obtained when the concentration profiles of the reacting species perfectly overlap. In addition to the exact solutions, we derive throughout several closed form engineering approximations which are based on elementary functions and are simple to implement, yet maintain the interplay between the important scales. Both the exact and approximate solutions provide insight into sample focusing and can be used to design and optimize ITP-based assays.« less

  20. Quasi-static energy absorption of hollow microlattice structures

    SciTech Connect

    Liu, YL; Schaedler, TA; Jacobsen, AJ

    2014-12-01

    We present a comprehensive modeling and numerical study focusing on the energy quasi-static crushing behavior and energy absorption characteristics of hollow tube microlattice structures. The peak stress and effective plateau stress of the hollow microlattice structures are deduced for different geometrical parameters which gives volume and mass densities of energy absorption, D-v and D-m, scale with the relative density, (rho) over bar, as D-v similar to (rho) over bar (1) (5) and D-m similar to (rho) over bar (0 5), respectively, fitting very well to the experimental results of both 60 degrees inclined and 90 degrees predominately microlattices. Then themore » strategies for energy absorption enhancement are proposed for the engineering design of microlattice structures. By introducing a gradient in the thickness or radius of the lattice members, the buckle propagation can be modulated resulting in an increase in energy absorption density that can exceed 40%. Liquid filler is another approach to improve energy absorption by strengthening the microtruss via circumference expansion, and the gain may be over 100% in terms of volume density. Insight into the correlations between microlattice architecture and energy absorption performance combined with the high degree of architecture control paves the way for designing high performance microlattice structures for a range of impact and impulse mitigation applications for vehicles and structures. (C) 2014 Elsevier Ltd. All rights reserved.« less

  1. Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska

    USGS Publications Warehouse

    Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.

    1999-01-01

    Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more

  2. [Study of cholesterol concentration based on serum UV-visible absorption spectrum].

    PubMed

    Zhu, Wei-Hua; Zhao, Zhi-Min; Guo, Xin; Chen, Hui

    2009-04-01

    In the present paper, UV-visible absorption spectrum and neural network theory were used for the analysis of cholesterol concentration. Experimental investigation shows that the absorption spectrum has the following characteristics in the wave band of 350-600 nm: (1) There is a stronger absorption peak at 416 nm for the test sample with different cholesterol concentration; (2) There is a shoulder peak between 450 and 500 nm, whose central wavelength is 460 nm; (3) There is a weaker peak at 578 nm; (4) Absorption spectrums shape of different cholesterol concentration is different obviously. The absorption spectrum of serum is the synthesis result of cholesterol and other components (such as sugar), and the information is contained at each wavelength. There is no significant correlation between absorbance and cholesterol content at 416 nm, showing a random relation, so whether cholesterol content is abnormal is not determined by the absorbance peak at 416 nm. Based on the evident correlation between serum absorption spectrum and cholesterol concentration in the wave band of 455-475 nm, a neural network model was built to predict the cholesterol concentration. The correlation coefficient between predicted cholesterol content output A and objectives T reaches 0.968, which can be regarded as better prediction, and it provides a spectra test method of cholesterol concentration.

  3. One- and two-photon absorption spectra of the yellow fluorescent protein citrine: effects of intramolecular electron-vibrational coupling and intermolecular interactions

    NASA Astrophysics Data System (ADS)

    Chen, Fasheng; Zhao, Xinyi; Liang, WanZhen

    2018-04-01

    Both the vibrationally resolved and statistically averaged one-photon absorption (OPA) and two-photon absorption (TPA) spectra of the anionic form of chromophore (AC) in its micro-environment of yellow fluorescent protein (YFP) Citrine have been calculated. The result comparison has been made with those of the AC model compounds in vacuo and methanol solution, which allows us to allocate the individual contribution of the intramolecular electron-vibrational coupling, the electrostatic π-stacking interaction between Tyr203 and AC, and the interaction between AC and its micro-environment to the spectra. The results reveal that the non-Condon vibronic coupling effect is responsible for the blue shift of TPA absorption maximum compared with its OPA counterpart corresponding to S0 → S1, and that the π-stacking interaction between Tyr203 and AC alters the relative intensities of TPA maxima, which further enhances the higher-energy vibronic peaks and weakens the lowest-energy peak. The statically averaged OPA and TPA spectra calculated by quantum mechanics/molecular mechanics (QM/MM) methods based on Born-Oppenheimer molecular dynamics simulation largely deviate the experimental spectral lineshapes, which further verifies the significant contribution of non-Condon vibronic coupling effect on the spectra. The interaction of individual amino acid residue or water close to AC+Tyr203 has different effects on the spectra, which may increase/decrease the excitation energy depending on its position and electronic property.

  4. Absorption in X-ray spectra of high-redshift quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Fiore, Fabrizio; Wilkes, Belinda; Mcdowell, Jonathan; Bechtold, Jill

    1994-01-01

    We present evidence that X-ray absorption is common in high-redshift quasars. We have studied six high-redshift (z approximately 3) quasars with the ROSAT Position Sensitive Proportional Counter (PSPC) of which four are in directions of low Galactic N(sub H). Three out of these four show excess absorption, while only three in approximately 50 z approximately less than 0.4 quasars do, indicating that such absorption must be common, but not ubiquitous, at high redshifts, and that the absorbers must lie at z greater than 0.4. The six quasars were: S5 0014+81, Q0420-388, PKS 0438-436, S4 0636+680. PKS 2000-330, PKS 2126-158, which have redshifts between 2.85 and 3.78. PKS 0438-436 and PKS 2126-158 show evidence for absorption above the local Galactic value at better than 99.999% confidence level. If the absorber is at the redshift of the quasar, then values of N(sub H) = (0.86(+0.49, -0.28)) x 10(exp 22) atoms/sq cm for PKS 0438-436, and N(sub H) = (1.45(+1.20, -0.64)) x 10(exp 22) atoms/ sq cm for PKS 2126-158, are implied, assuming solar abundances. The spectrum of S4 0636+680 also suggests the presence of a similarly large absorption column density at the 98% confidence level. This absorption reverses the trend for the most luminous active galactic nuclei (AGN) to have the least X-ray absorption, so a new mechanism is likely to be responsible. Intervening absorption due to damped Lyman(alpha) systems is a plausible cause. We also suggest, as an intrinsic model, that intracluster material, e.g., a cooling flow, around the quasar could account for both the X-ray spectrum and other properties of these quasars. All the quasars are radio-loud and three are gigahertz peaked (two of the three showing absorption). No excess absorption above the Galactic value is seen toward Q0420-388. This quasar has two damped Lyman(alpha) systems at z = 3.08. The limit on the X-ray column density implies a low ionization fraction, N(H I)/N(H) approximately greater than 4 x 10(exp -3) (3

  5. Differential-optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.

    1977-01-01

    Two-cell spectrophone detects trace amounts of atmospheric pollutants by measuring absorption coefficients of gases with various laser sources. Device measures pressure difference between two tapered cells with differential manometer. Background signal is reduced by balanced window heating and balanced carrier gas absorption in two cells.

  6. Atmospheric absorption of sound - Update

    NASA Technical Reports Server (NTRS)

    Bass, H. E.; Sutherland, L. C.; Zuckerwar, A. J.

    1990-01-01

    Best current expressions for the vibrational relaxation times of oxygen and nitrogen in the atmosphere are used to compute total absorption. The resulting graphs of total absorption as a function of frequency for different humidities should be used in lieu of the graph published earlier by Evans et al (1972).

  7. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  8. Enhancing acoustic signal response and absorption of an underwater coated plate by embedding periodical inhomogeneities.

    PubMed

    Zhang, Yanni; Pan, Jie

    2017-12-01

    An underwater structure is proposed for simultaneous detection and stealth purposes by embedding periodic signal conditioning plates (SCPs) at the interface of two elastic coatings attached to an elastic plate. Results show that the embedded SCPs can enhance sound absorption at frequencies below the coincidence frequency of the plate (f c ). Significantly enhanced absorption occurs at five peaks, of which the peak due to excited localized bending resonance in the outer coating between SCPs is the most significant. When the dilatational velocity of the outer coating equals that of the inner coating, nearly total absorption occurs in a wideband, owing to strong coupling between the localized waveguide resonance in the outer coating and that in the inner coating, and the diffraction waves by the SCPs. Meanwhile, an amplified acoustic signal of over 14 dB is observed at most frequencies within 0 ∼ f c at the coatings' interface close to the SCPs' edges, owing to focused stress formed there. Peaks in the signal response at maximal 30 dB are also observed. These peak frequencies are coincident with or close to the peak frequencies of absorption, demonstrating that significantly enhanced acoustic signal and absorption can be achieved simultaneously through the use of embedded periodic SCPs.

  9. Systematic review: Helicobacter pylori infection and impaired drug absorption.

    PubMed

    Lahner, E; Annibale, B; Delle Fave, G

    2009-02-15

    Impaired acid secretion may affect drug absorption and may be consequent to corporal Helicobacter pylori-gastritis, which may affect the absorption of orally administered drugs. To focus on the evidence of impaired drug absorption associated with H. pylori infection. Data sources were the systematic search of MEDLINE/EMBASE/SCOPUS databases (1980-April 2008) for English articles using the keywords: drug malabsorption/absorption, stomach, Helicobacter pylori, gastritis, gastric acid, gastric pH, hypochlorhydria, gastric hypoacidity. Study selection was made from 2099 retrieved articles, five studies were identified. Data were extracted from selected papers, investigated drugs, study type, main features of subjects, study design, intervention type and results were extracted. In all, five studies investigated impaired absorption of l-dopa, thyroxine and delavirdine in H. pylori infection. Eradication treatment led to 21-54% increase in l-dopa in Parkinson's disease. Thyroxine requirement was higher in hypochlorhydric goitre with H. pylori-gastritis and thyrotropin levels decreased by 94% after treatment. In H. pylori- and HIV-positive hypochlorhydric subjects, delavirdine absorption increased by 57% with orange juice administration and by 150% after eradication. A plausible mechanism of impaired drug absorption is decreased acid secretion in H. pylori-gastritis patients. Helicobacter pylori infection and hypochlorhydria should be considered in prescribing drugs the absorption of which is potentially affected by intragastric pH.

  10. Training and business performance: the mediating role of absorptive capacities.

    PubMed

    Hernández-Perlines, Felipe; Moreno-García, Juan; Yáñez-Araque, Benito

    2016-01-01

    Training has been the focus of considerable conceptual and empirical attention but is considered a relevant factor for competitive edge in companies because it has a positive impact on business performance. This study is justified by the need for deeper analysis of the process involving the transfer of training into performance. This paper's originality lies in the implementation of the absorptive capacities approach as an appropriate conceptual framework for designing a model that reflects the connection between training and business performance through absorptive capacities. Based on the above conceptual framework and using the dual methodological implementation, a new method of analyzing the relationship between training and performance was obtained: efforts in training will not lead to performance without the mediation of absorptive. Training turns into performance if absorptive capacities are involved in this process. The suggested model becomes an appropriate framework for explaining the process of transformation of training into organizational performance, in which absorptive capacities play a key role. The findings obtained can go further owing to fs/QCA: of the different absorptive capacities, that of exploitation is a necessary condition to achieve better organizational performance. Therefore, training based on absorptive capacity will guide and facilitate the design of appropriate human resource strategies so that training results in improved performance. This conclusion is relevant for the development of a new facet of absorptive capacities by relating it to training and resulting in first-level implications for human resource management.

  11. Surface-plasmon mediated total absorption of light into silicon.

    PubMed

    Yoon, Jae Woong; Park, Woo Jae; Lee, Kyu Jin; Song, Seok Ho; Magnusson, Robert

    2011-10-10

    We report surface-plasmon mediated total absorption of light into a silicon substrate. For an Au grating on Si, we experimentally show that a surface-plasmon polariton (SPP) excited on the air/Au interface leads to total absorption with a rate nearly 10 times larger than the ohmic damping rate of collectively oscillating free electrons in the Au film. Rigorous numerical simulations show that the SPP resonantly enhances forward diffraction of light to multiple orders of lossy waves in the Si substrate with reflection and ohmic absorption in the Au film being negligible. The measured reflection and phase spectra reveal a quantitative relation between the peak absorbance and the associated reflection phase change, implying a resonant interference contribution to this effect. An analytic model of a dissipative quasi-bound resonator provides a general formula for the resonant absorbance-phase relation in excellent agreement with the experimental results.

  12. Structural study of aggregated β-carotene by absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Li Ping; Wei, Liang Shu

    2017-10-01

    By UV-visible absorption spectroscope, the aggregated β-carotene in hydrated ethanol was studied in the temperature range of 5 55°C, with different ethanol/water ratio. And the structural evolutions of these aggregates with time were detected. The spectrophotometric analysis showed that the aggregate of β-carotene formed in 1:1 ethanol/water solution transfered from H-type to J-type with temperature increase. In 2:1 ethanol/water solution a new type of aggregate with strong coupling was predicated by the appearing absorption peak located at about 550 nm. In the time scales of 48 houses all the aggregated structures were stable, but the absorption intensity decreased with time. It was concluded that the types of aggregated β-carotene which wouldn't change with time depended on the solvent composition and temperature.

  13. Absorption Cross-Sections of Sodium Diatomic Molecules

    NASA Technical Reports Server (NTRS)

    Fong, Zeng-Shevan

    1985-01-01

    The absorption cross sections of sodium dimers were studied using a heat pipe over operating in the non-heat-pipe mode. Three wavelength regions were observed. They are in the red, the green-blue, and the near ultraviolet regions. The absorption cross section depends on the wavelength of the incident light. Representative peak values for the v"=0 progression in the red and green-blue regions are 2.59 A sup 2 (average value) and 11.77 A sup 2 (T sub ave=624 K). The value for the C greater than X transitions is several tenths A sup 2. The cross sections were measured from absorption spectra taken as a function of temperature.

  14. Electron localization and optical absorption of polygonal quantum rings

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2015-06-01

    We investigate theoretically polygonal quantum rings and focus mostly on the triangular geometry where the corner effects are maximal. Such rings can be seen as short core-shell nanowires, a generation of semiconductor heterostructures with multiple applications. We show how the geometry of the sample determines the electronic energy spectrum, and also the localization of electrons, with effects on the optical absorption. In particular, we show that irrespective of the ring shape low-energy electrons are always attracted by corners and are localized in their vicinity. The absorption spectrum in the presence of a magnetic field shows only two peaks within the corner-localized state domain, each associated with different circular polarization. This picture may be changed by an external electric field which allows previously forbidden transitions, and thus enables the number of corners to be determined. We show that polygonal quantum rings allow absorption of waves from distant ranges of the electromagnetic spectrum within one sample.

  15. Unravelling associations between unassigned mass spectrometry peaks with frequent itemset mining techniques.

    PubMed

    Vu, Trung Nghia; Mrzic, Aida; Valkenborg, Dirk; Maes, Evelyne; Lemière, Filip; Goethals, Bart; Laukens, Kris

    2014-01-01

    Mass spectrometry-based proteomics experiments generate spectra that are rich in information. Often only a fraction of this information is used for peptide/protein identification, whereas a significant proportion of the peaks in a spectrum remain unexplained. In this paper we explore how a specific class of data mining techniques termed "frequent itemset mining" can be employed to discover patterns in the unassigned data, and how such patterns can help us interpret the origin of the unexpected/unexplained peaks. First a model is proposed that describes the origin of the observed peaks in a mass spectrum. For this purpose we use the classical correlative database search algorithm. Peaks that support a positive identification of the spectrum are termed explained peaks. Next, frequent itemset mining techniques are introduced to infer which unexplained peaks are associated in a spectrum. The method is validated on two types of experimental proteomic data. First, peptide mass fingerprint data is analyzed to explain the unassigned peaks in a full scan mass spectrum. Interestingly, a large numbers of experimental spectra reveals several highly frequent unexplained masses, and pattern mining on these frequent masses demonstrates that subsets of these peaks frequently co-occur. Further evaluation shows that several of these co-occurring peaks indeed have a known common origin, and other patterns are promising hypothesis generators for further analysis. Second, the proposed methodology is validated on tandem mass spectrometral data using a public spectral library, where associations within the mass differences of unassigned peaks and peptide modifications are explored. The investigation of the found patterns illustrates that meaningful patterns can be discovered that can be explained by features of the employed technology and found modifications. This simple approach offers opportunities to monitor accumulating unexplained mass spectrometry data for emerging new patterns

  16. Absorption of Thermal Neutrons in Uranium

    DOE R&D Accomplishments Database

    Creutz, E. C.; Wilson, R. R.; Wigner, E. P.

    1941-09-26

    A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.

  17. Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning

    PubMed Central

    Goerner-Potvin, Patricia; Morin, Andreanne; Shao, Xiaojian; Pastinen, Tomi

    2017-01-01

    Motivation: Many peak detection algorithms have been proposed for ChIP-seq data analysis, but it is not obvious which algorithm and what parameters are optimal for any given dataset. In contrast, regions with and without obvious peaks can be easily labeled by visual inspection of aligned read counts in a genome browser. We propose a supervised machine learning approach for ChIP-seq data analysis, using labels that encode qualitative judgments about which genomic regions contain or do not contain peaks. The main idea is to manually label a small subset of the genome, and then learn a model that makes consistent peak predictions on the rest of the genome. Results: We created 7 new histone mark datasets with 12 826 visually determined labels, and analyzed 3 existing transcription factor datasets. We observed that default peak detection parameters yield high false positive rates, which can be reduced by learning parameters using a relatively small training set of labeled data from the same experiment type. We also observed that labels from different people are highly consistent. Overall, these data indicate that our supervised labeling method is useful for quantitatively training and testing peak detection algorithms. Availability and Implementation: Labeled histone mark data http://cbio.ensmp.fr/~thocking/chip-seq-chunk-db/, R package to compute the label error of predicted peaks https://github.com/tdhock/PeakError Contacts: toby.hocking@mail.mcgill.ca or guil.bourque@mcgill.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27797775

  18. Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning.

    PubMed

    Hocking, Toby Dylan; Goerner-Potvin, Patricia; Morin, Andreanne; Shao, Xiaojian; Pastinen, Tomi; Bourque, Guillaume

    2017-02-15

    Many peak detection algorithms have been proposed for ChIP-seq data analysis, but it is not obvious which algorithm and what parameters are optimal for any given dataset. In contrast, regions with and without obvious peaks can be easily labeled by visual inspection of aligned read counts in a genome browser. We propose a supervised machine learning approach for ChIP-seq data analysis, using labels that encode qualitative judgments about which genomic regions contain or do not contain peaks. The main idea is to manually label a small subset of the genome, and then learn a model that makes consistent peak predictions on the rest of the genome. We created 7 new histone mark datasets with 12 826 visually determined labels, and analyzed 3 existing transcription factor datasets. We observed that default peak detection parameters yield high false positive rates, which can be reduced by learning parameters using a relatively small training set of labeled data from the same experiment type. We also observed that labels from different people are highly consistent. Overall, these data indicate that our supervised labeling method is useful for quantitatively training and testing peak detection algorithms. Labeled histone mark data http://cbio.ensmp.fr/~thocking/chip-seq-chunk-db/ , R package to compute the label error of predicted peaks https://github.com/tdhock/PeakError. toby.hocking@mail.mcgill.ca or guil.bourque@mcgill.ca. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  19. Terahertz Absorption by Cellulose: Application to Ancient Paper Artifacts

    NASA Astrophysics Data System (ADS)

    Peccianti, M.; Fastampa, R.; Mosca Conte, A.; Pulci, O.; Violante, C.; Łojewska, J.; Clerici, M.; Morandotti, R.; Missori, M.

    2017-06-01

    Artifacts made of cellulose, such as ancient documents, pose a significant experimental challenge in the terahertz transmission spectra interpretation due to their small optical thickness. In this paper, we describe a method to recover the complex refractive index of cellulose fibers from the terahertz transmission data obtained on single freely standing paper sheets in the (0.2-3.5)-THz range. By using our technique, we eliminate Fabry-Perot effects and recover the absorption coefficient of the cellulose fibers. The obtained terahertz absorption spectra are explained in terms of absorption peaks of the cellulose crystalline phase superimposed to a background contribution due to a disordered hydrogen-bond network. The comparison between the experimental spectra with terahertz vibrational properties simulated by density-functional-theory calculations confirms this interpretation. In addition, evident changes in the terahertz absorption spectra are produced by natural and artificial aging on paper samples, whose final stage is characterized by a spectral profile with only two peaks at about 2.1 and 3.1 THz. These results can be used to provide a quantitative assessment of the state of preservation of cellulose artifacts.

  20. Kitt Peak Speckle Interferometry of Close Visual Binary Stars (Abstract)

    NASA Astrophysics Data System (ADS)

    Gener, R.; Rowe, D.; Smith, T. C.; Teiche, A.; Harshaw, R.; Wallace, D.; Weise, E.; Wiley, E.; Boyce, G.; Boyce, P.; Branston, D.; Chaney, K.; Clark, R. K.; Estrada, C.; Estrada, R.; Frey, T.; Green, W. L.; Haurberg, N.; Jones, G.; Kenney, J.; Loftin, S.; McGieson, I.; Patel, R.; Plummer, J.; Ridgely, J.; Trueblood, M.; Westergren, D.; Wren, P.

    2014-12-01

    (Abstract only) Speckle interferometry can be used to overcome normal seeing limitations by taking many very short exposures at high magnification and analyzing the resulting speckles to obtain the position angles and separations of close binary stars. A typical speckle observation of a close binary consists of 1,000 images, each 20 milliseconds in duration. The images are stored as a multi-plane FITS cube. A portable speckle interferometry system that features an electron-multiplying CCD camera was used by the authors during two week-long observing runs on the 2.1-meter telescope at Kitt Peak National Observatory to obtain some 1,000 data cubes of close binaries selected from a dozen different research programs. Many hundreds of single reference stars were also observed and used in deconvolution to remove undesirable atmospheric and telescope optical effects. The database of well over one million images was reduced with the Speckle Interferometry Tool of platesolve3. A few sample results are provided. During the second Kitt Peak run, the McMath-Pierce 1.6- and 0.8-meter solar telescopes were evaluated for nighttime speckle interferometry, while the 0.8-meter Coude feed was used to obtain differential radial velocities of short arc binaries.

  1. Kitt Peak Speckle Interferometry of Close Visual Binary Stars

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.; Rowe, David; Smith, Thomas C.; Teiche, Alex; Harshaw, Richard; Wallace, Daniel; Weise, Eric; Wiley, Edward; Boyce, Grady; Boyce, Patrick; Branston, Detrick; Chaney, Kayla; Clark, R. Kent; Estrada, Chris; Frey, Thomas; Estrada, Reed; Green, Wayne; Haurberg, Nathalie; Kenney, John; Jones, Greg; Loftin, Sheri; McGieson, Izak; Patel, Rikita; Plummer, Josh; Ridgely, John; Trueblood, Mark; Westergren, Donald; Wren, Paul

    2015-09-01

    Speckle interferometry can be used to overcome normal seeing limitations by taking many very short exposures at high magnification and analyzing the resulting speckles to obtain the position angles and separations of close binary stars. A typical speckle observation of a close binary consists of 1000 images, each 20 milliseconds in duration. The images are stored as a multi-plane FITS cube. A portable speckle interferometry system that features an electronmultiplying CCD camera was used by the authors during two week-long observing runs on the 2.1-meter telescope at Kitt Peak National Observatory to obtain some 1000 data cubes of close binaries selected from a dozen different research programs. Many hundreds of single reference stars were also observed and used in deconvolution to remove undesirable atmospheric and telescope optical effects. The data base of well over one million images was reduced with the Speckle Interferometry Tool of PlateSolve 3. A few sample results are provided. During the second Kitt Peak run, the McMath-Pierce 1.6- and 0.8-meter solar telescopes were evaluated for nighttime speckle interferometry, while the 0.8-meter Coude feed was used to obtain differential radial velocities of short arc binaries.

  2. GRB physics and cosmology with peak energy-intensity correlations

    SciTech Connect

    Sawant, Disha, E-mail: sawant@fe.infn.it; University of Nice, 28 Avenue Valrose, Nice 06103; IRAP Erasmus PhD Program, European Union and INAF - IASF Bologna, Via P. Gobetti 101, Bologna 41125

    Gamma Ray Bursts (GRBs) are immensely energetic explosions radiating up to 10{sup 54} erg of energy isotropically (E{sub iso}) and they are observed within a wide range of redshift (from ∼ 0.01 up to ∼ 9). Such enormous power and high redshift point at these phenomena being highly favorable to investigate the history and evolution of our universe. The major obstacle in their application as cosmological study-tools is to find a way to standardize the GRBs, for instance similar to SNe Ia. With respect to this goal, the correlation between spectral peak energy (E{sub p,i}) and the “intensity” is amore » positively useful and investigated criterion. Moreover, it has been demonstrated that, through the E{sub p,i} – E{sub iso} correlation, the current data set of GRBs can already contribute to the independent evidence of the matter density Ω{sub M} being ∼ 0.3 for a flat universe scenario. We try to inspect and compare the correlations of E{sub p,i} with different intensity indicators (e.g., radiated energy, average and peak luminosity, bolometric vs. monochromatic quantities, etc.) both in terms of intrinsic dispersion and precise estimation of Ω{sub M}. The outcome of such studies are further analyzed in verifying the reliability of the correlations for both GRB physics and their standardization for cosmology.« less

  3. Polyamidoamine dendrimers as novel potential absorption enhancers for improving the small intestinal absorption of poorly absorbable drugs in rats.

    PubMed

    Lin, Yulian; Fujimori, Takeo; Kawaguchi, Naoko; Tsujimoto, Yuiko; Nishimi, Mariko; Dong, Zhengqi; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2011-01-05

    Effects of polyamidoamine (PAMAM) dendrimers on the intestinal absorption of poorly absorbable drugs were examined by an in situ closed loop method in rats. 5(6)-Carboxyfluorescein (CF), fluorescein isothiocyanate-dextrans (FDs) with various molecular weights, calcitonin and insulin were used as model drugs of poorly absorbable drugs. The absorption of CF, FD4 and calcitonin from the rat small intestine was significantly enhanced in the presence of PAMAM dendrimers. The absorption-enhancing effects of PAMAM dendrimers for improving the small intestinal absorption of CF were concentration and generation dependent and a maximal absorption-enhancing effect was observed in the presence of 0.5% (w/v) G2 PAMAM dendrimer. However, G2 PAMAM dendrimer had almost no absorption-enhancing effect on the small intestinal absorption of macromolecular drugs including FD10 and insulin. Overall, the absorption-enhancing effects of G2 PAMAM dendrimer in the small intestine decreased as the molecular weights of drug increased. However, G2 PAMAM dendrimer did not enhance the intestinal absorption of these drugs with different molecular weights in the large intestine. Furthermore, we evaluated the intestinal membrane damage with or without G2 PAMAM dendrimer. G2 PAMAM dendrimer (0.5% (w/v)) significantly increased the activities of lactate dehydrogenase (LDH) and the amounts of protein released from the intestinal membranes, but the activities and amounts of these toxic markers were less than those in the presence of 3% Triton X-100 used as a positive control. Moreover, G2 PAMAM dendrimer at concentrations of 0.05% (w/v) and 0.1% (w/v) did not increase the activities and amounts of these toxic markers. These findings suggested that PAMAM dendrimers at lower concentrations might be potential and safe absorption enhancers for improving absorption of poorly absorbable drugs from the small intestine. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Can You Hear That Peak? Utilization of Auditory and Visual Feedback at Peak Limb Velocity

    ERIC Educational Resources Information Center

    Loria, Tristan; de Grosbois, John; Tremblay, Luc

    2016-01-01

    Purpose: At rest, the central nervous system combines and integrates multisensory cues to yield an optimal percept. When engaging in action, the relative weighing of sensory modalities has been shown to be altered. Because the timing of peak velocity is the critical moment in some goal-directed movements (e.g., overarm throwing), the current study…

  5. Peak high-frequency HRV and peak alpha frequency higher in PTSD.

    PubMed

    Wahbeh, Helané; Oken, Barry S

    2013-03-01

    Posttraumatic stress disorder (PTSD) is difficult to treat and current PTSD treatments are not effective for all people. Despite limited evidence for its efficacy, some clinicians have implemented biofeedback for PTSD treatment. As a first step in constructing an effective biofeedback treatment program, we assessed respiration, electroencephalography (EEG) and heart rate variability (HRV) as potential biofeedback parameters for a future clinical trial. This cross-sectional study included 86 veterans; 59 with and 27 without PTSD. Data were collected on EEG measures, HRV, and respiration rate during an attentive resting state. Measures were analyzed to assess sensitivity to PTSD status and the relationship to PTSD symptoms. Peak alpha frequency was higher in the PTSD group (F(1,84) = 6.14, p = 0.01). Peak high-frequency HRV was lower in the PTSD group (F(2,78) = 26.5, p < 0.00005) when adjusting for respiration rate. All other EEG and HRV measures and respiration were not different between groups. Peak high-frequency HRV and peak alpha frequency are sensitive to PTSD status and may be potential biofeedback parameters for future PTSD clinical trials.

  6. Peak High-Frequency HRV and Peak Alpha Frequency Higher in PTSD

    PubMed Central

    Oken, Barry S.

    2012-01-01

    Posttraumatic stress disorder (PTSD) is difficult to treat and current PTSD treatments are not effective for all people. Despite limited evidence for its efficacy, some clinicians have implemented biofeedback for PTSD treatment. As a first step in constructing an effective biofeedback treatment program, we assessed respiration, electroencephalography (EEG) and heart rate variability (HRV) as potential biofeedback parameters for a future clinical trial. This cross-sectional study included 86 veterans; 59 with and 27 without PTSD. Data were collected on EEG measures, HRV, and respiration rate during an attentive resting state. Measures were analyzed to assess sensitivity to PTSD status and the relationship to PTSD symptoms. Peak alpha frequency was higher in the PTSD group (F(1,84) = 6.14, p = 0.01). Peak high-frequency HRV was lower in the PTSD group (F(2,78) = 26.5, p<0.00005) when adjusting for respiration rate. All other EEG and HRV measures and respiration were not different between groups. Peak high-frequency HRV and peak alpha frequency are sensitive to PTSD status and may be potential biofeedback parameters for future PTSD clinical trials. PMID:23178990

  7. VASQUEZ PEAK WILDERNESS STUDY AREA, AND ST. LOUIS PEAK, AND WILLIAMS FORK ROADLESS AREAS, COLORADO.

    USGS Publications Warehouse

    Theobald, P.K.; Bielski, A.M.

    1984-01-01

    A mineral-resource survey was conducted during the years 1979-82 in the Vasquez Peak Wilderness Study Area and in the St. Louis Peak and Williams Fork Roadless Areas, central Front Range, Colorado. Probable resource potential for the occurrence of copper, lead, zinc, and silver in massive sulfide deposits has been identified in calcareous metamorphic rocks in the northern part of the St. Louis Peak Roadless Area and in the southern part of the Williams Fork Roadless Area. A probable resource potential for vein-type uranium deposits is identified along the Berthoud Pass fault zone in the eastern part of the Vasquez Peak Wilderness Study Area. A large area encompassing the eastern and southeastern part of each of the three areas has probable and substantiated potential for either high-grade lead-zinc-silver vein deposits, or larger, lower-grade clustered vein deposits. A probable resource potential for stockwork molybdenum deposits related to porphyry molybdenum type mineralization exists beneath the lead-zinc-silver-rich veins. The nature of the geologic terrane indicates little likelihood for the occurrence of organic fuels.

  8. Peak phosphorus - peak food? The need to close the phosphorus cycle.

    PubMed

    Rhodes, Christopher J

    2013-01-01

    The peak in the world production of phosphorus has been predicted to occur in 2033, based on world reserves of rock phosphate (URR) reckoned at around 24,000 million tonnes (Mt), with around 18,000 Mt remaining. This figure was reckoned-up to 71,000 Mt, by the USGS, in 2012, but a production maximum during the present century is still highly probable. There are complex issues over what the demand will be for phosphorus in the future, as measured against a rising population (from 7 billion to over 9 billion in 2050), and a greater per capita demand for fertiliser to grow more grain, in part to feed animals and meet a rising demand for meat by a human species that is not merely more populous but more affluent. As a counterweight to this, we may expect that greater efficiencies in the use of phosphorus - including recycling from farms and of human and animal waste - will reduce the per capita demand for phosphate rock. The unseen game changer is peak oil, since phosphate is mined and recovered using machinery powered by liquid fuels refined from crude oil. Hence, peak oil and peak phosphorus might appear as conjoined twins. There is no unequivocal case that we can afford to ignore the likelihood of a supply-demand gap for phosphorus occurring sometime this century, and it would be perilous to do so.

  9. Vanishing absorption and blueshifted emission in FeLoBAL quasars

    NASA Astrophysics Data System (ADS)

    Rafiee, Alireza; Pirkola, Patrik; Hall, Patrick B.; Galati, Natalee; Rogerson, Jesse; Ameri, Abtin

    2016-07-01

    We study the dramatic decrease in iron absorption strength in the iron low-ionization broad absorption line quasar SDSS J084133.15+200525.8. We report on the continued weakening of absorption in the prototype of this class of variable broad absorption line quasar, FBQS J140806.2+305448. We also report a third example of this class, SDSS J123103.70+392903.6; unlike the other two examples, it has undergone an increase in observed continuum brightness (at 3000 Å rest frame) as well as a decrease in iron absorption strength. These changes could be caused by absorber transverse motion or by ionization variability. We note that the Mg II and UV Fe II lines in several FeLoBAL quasars are blueshifted by thousands of km s-1 relative to the H β emission line peak. We suggest that such emission arises in the outflowing winds normally seen only in absorption.

  10. Fast clustering using adaptive density peak detection.

    PubMed

    Wang, Xiao-Feng; Xu, Yifan

    2017-12-01

    Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.

  11. Lava Flow on Mawson Peak, Heard Island

    NASA Image and Video Library

    2017-12-08

    In October 2012, satellites measured subtle signals that suggested volcanic activity on remote Heard Island. These images, captured several months later, show proof of an eruption on Mawson Peak. By April 7, 2013, Mawson's steep-walled summit crater had filled, and a trickle of lava had spilled down the volcano’s southwestern flank. On April 20, the lava flow remained visible and had even widened slightly just below the summit. These natural-color images were collected by the Advanced Land Imager (ALI) on the Earth Observing-1 (EO-1) satellite. Image Credit: NASA Earth Observatory Read more: earthobservatory.nasa.gov/NaturalHazards/view.php?id=81024 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Human behavioral complexity peaks at age 25

    PubMed Central

    Brugger, Peter

    2017-01-01

    Random Item Generation tasks (RIG) are commonly used to assess high cognitive abilities such as inhibition or sustained attention. They also draw upon our approximate sense of complexity. A detrimental effect of aging on pseudo-random productions has been demonstrated for some tasks, but little is as yet known about the developmental curve of cognitive complexity over the lifespan. We investigate the complexity trajectory across the lifespan of human responses to five common RIG tasks, using a large sample (n = 3429). Our main finding is that the developmental curve of the estimated algorithmic complexity of responses is similar to what may be expected of a measure of higher cognitive abilities, with a performance peak around 25 and a decline starting around 60, suggesting that RIG tasks yield good estimates of such cognitive abilities. Our study illustrates that very short strings of, i.e., 10 items, are sufficient to have their complexity reliably estimated and to allow the documentation of an age-dependent decline in the approximate sense of complexity. PMID:28406953

  13. East Peak Fire Burn Scar, Colorado [annotated

    NASA Image and Video Library

    2017-12-08

    On June 22, 2013, the Operational Land Imager (OLI) on Landsat 8 captured this false-color image of the East Peak fire burning in southern Colorado near Trinidad. Burned areas appear dark red, while actively burning areas look orange. Dark green areas are forests; light green areas are grasslands. Lightning ignited the blaze on June 19, 2013. By June 25, it had burned nearly 13,500 acres (5,500 hectares). NASA Earth Observatory image by Jesse Allen and Robert Simmon, using Landsat data from the U.S. Geological Survey. Caption by Adam Voiland. Instrument: Landsat 8 - OLI More images from this event: 1.usa.gov/14DesQC Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. North Twin Peak in super resolution

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This pair of images shows the result of taking a sequence of 25 identical exposures from the Imager for Mars Pathfinder (IMP) of the northern Twin Peak, with small camera motions, and processing them with the Super-Resolution algorithm developed at NASA's Ames Research Center.

    The upper image is a representative input image, scaled up by a factor of five, with the pixel edges smoothed out for a fair comparison. The lower image allows significantly finer detail to be resolved.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    The super-resolution research was conducted by Peter Cheeseman, Bob Kanefsky, Robin Hanson, and John Stutz of NASA's Ames Research Center, Mountain View, CA. More information on this technology is available on the Ames Super Resolution home page at

    http://ic-www.arc.nasa.gov/ic/projects/bayes-group/ group/super-res/

  15. Optical absorption and TEM studies of silver nanoparticle embedded BaO-CaF{sub 2}-P{sub 2}O{sub 5} glasses

    SciTech Connect

    Narayanan, Manoj Kumar, E-mail: manukokkal01@gmail.com; Shashikala, H. D.

    Silver nanoparticle embedded 30BaO-20CaF{sub 2}-50P{sub 2}O{sub 5}-4Ag{sub 2}O-4SnO glasses were prepared by melt-quenching and subsequent heat treatment process. Silver-doped glasses were heat treated at temperatures 500 °C, 525°C and 550 °C for a fixed duration of 10 hours to incorporate metal nanoparticles into the glass matrix. Appearance and shift in peak positions of the surface plasmon resonance (SPR) bands in the optical absorption spectra of heat treated glass samples indicated that both formation and growth of nanoparticle depended on heat treatment temperature. Glass sample heat treated at 525 °C showed a SPR peak around 3 eV, which indicated that sphericalmore » nanoparticles smaller than 20 nm were formed inside the glass matrix. Whereas sample heat treated at 550 °C showed a size dependent red shift in SPR peak due to the presence of silver nanoparticles of size larger than 20 nm. Size of the nanoparticles calculated using full-width at half-maximum (FWHM) of absorption band showed a good agreement with the particle size obtained from transmission electron microscopy (TEM) analysis.« less

  16. Nursing Positions

    MedlinePlus

    ... breast with your other hand. The Clutch or Football Hold This is also a good position for ... same time may also choose this position. The football hold allows babies to take milk more easily — ...

  17. Quantitative Measurement of Local Infrared Absorption and Dielectric Function with Tip-Enhanced Near-Field Microscopy.

    PubMed

    Govyadinov, Alexander A; Amenabar, Iban; Huth, Florian; Carney, P Scott; Hillenbrand, Rainer

    2013-05-02

    Scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared nanospectroscopy (nano-FTIR) are emerging tools for nanoscale chemical material identification. Here, we push s-SNOM and nano-FTIR one important step further by enabling them to quantitatively measure local dielectric constants and infrared absorption. Our technique is based on an analytical model, which allows for a simple inversion of the near-field scattering problem. It yields the dielectric permittivity and absorption of samples with 2 orders of magnitude improved spatial resolution compared to far-field measurements and is applicable to a large class of samples including polymers and biological matter. We verify the capabilities by determining the local dielectric permittivity of a PMMA film from nano-FTIR measurements, which is in excellent agreement with far-field ellipsometric data. We further obtain local infrared absorption spectra with unprecedented accuracy in peak position and shape, which is the key to quantitative chemometrics on the nanometer scale.

  18. Positive Psychology

    ERIC Educational Resources Information Center

    Peterson, Christopher

    2009-01-01

    Positive psychology is a deliberate correction to the focus of psychology on problems. Positive psychology does not deny the difficulties that people may experience but does suggest that sole attention to disorder leads to an incomplete view of the human condition. Positive psychologists concern themselves with four major topics: (1) positive…

  19. The Influence of Different Metal Ions on the Absorption Properties of Nano-Nickel Zinc Ferrite

    PubMed Central

    Ma, Zhijun; Mang, Changye; Weng, Xingyuan; Si, Liwei; Zhao, Haitao

    2018-01-01

    The hydrothermal method was used to dope different amounts of Co2+, Mn2+, and Cu2+ in nano-nickel zinc ferrite powder. X-ray diffraction (XRD), a scanning electron microscopy (TEM), and a vector network analyzer (VNA) were used to explore the influence of doping on particle size, morphology, and electromagnetic wave absorption performance. Pure nanometer cobalt nickel zinc ferrite phase was prepared using the hydrothermal method with an increasing Co2+ content. Results showed that the grain type structure changed from a spherical structure to an irregular quadrilateral structure with the average particle size increasing from 35 nm to 60 nm. The lattice constant increased from 0.8352 to 0.8404 nm with Co2+ doping. The increasing Co2+ can change the position of the absorption peak, increase the bandwidth of the absorber, and improve the performance of the materials in GHz low frequency. The doping ratio of Mn2+ can affect the size of the lattice constant, but nanocrystals are easy to reunite without improving the electromagnetic loss. However, the absorbance performance decreases. For the doping of Cu2+, there is an agglomeration phenomenon. When the doping quantity is 0.15, the absorbing wave performance becomes better. PMID:29641477

  20. The Influence of Different Metal Ions on the Absorption Properties of Nano-Nickel Zinc Ferrite.

    PubMed

    Ma, Zhijun; Mang, Changye; Weng, Xingyuan; Zhang, Qi; Si, Liwei; Zhao, Haitao

    2018-04-11

    The hydrothermal method was used to dope different amounts of Co 2+ , Mn 2+ , and Cu 2+ in nano-nickel zinc ferrite powder. X-ray diffraction (XRD), a scanning electron microscopy (TEM), and a vector network analyzer (VNA) were used to explore the influence of doping on particle size, morphology, and electromagnetic wave absorption performance. Pure nanometer cobalt nickel zinc ferrite phase was prepared using the hydrothermal method with an increasing Co 2+ content. Results showed that the grain type structure changed from a spherical structure to an irregular quadrilateral structure with the average particle size increasing from 35 nm to 60 nm. The lattice constant increased from 0.8352 to 0.8404 nm with Co 2+ doping. The increasing Co 2+ can change the position of the absorption peak, increase the bandwidth of the absorber, and improve the performance of the materials in GHz low frequency. The doping ratio of Mn 2+ can affect the size of the lattice constant, but nanocrystals are easy to reunite without improving the electromagnetic loss. However, the absorbance performance decreases. For the doping of Cu 2+ , there is an agglomeration phenomenon. When the doping quantity is 0.15, the absorbing wave performance becomes better.

  1. Measurement of Absorption Coefficient of Paraformaldehyde and Metaldehyde with Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Xia, T.; Chen, Q.; Sun, Q.; Deng, Y.; Wang, C.

    2018-03-01

    The characteristic absorption spectra of paraformaldehyde and metaldehyde in the terahertz frequency region are obtained by terahertz time-domain spectroscopy (THz-TDS). In order to reduce the absorption of terahertz (THz) wave by water vapor in the air and the background noise, the measurement system was filled with dry air and the measurements were conducted at the temperature of 24°C. Meanwhile, the humidity was controlled within 10% RH. The THz frequency domain spectra of samples and their references from 0 to 2.5 THz were analyzed via Fourier transform. The refractive index and absorption coefficients of the two aldehydes were calculated by the model formulas. From 0.1 to 2.5 THz, there appear two weak absorption peaks at 1.20 and 1.66 THz in the absorption spectra of paraformaldehyde. Only one distinct absorption peak emerges at 1.83 THz for metaldehyde. There are significant differences between the terahertz absorption coefficients of paraformaldehyde and metaldehyde, which can be used as "fingerprints" to identify these substances. Furthermore, the relationship between the average absorption coefficients and mass concentrations was investigated and the average absorption coefficient-mass concentration diagrams of paraformaldehyde and metaldehyde were shown. For paraformaldehyde, there is a linear relationship between the average absorption coefficient and the natural logarithm of mass concentration. For metaldehyde, there exists a simpler linear relationship between the average absorption coefficient and the mass concentration. Because of the characteristics of THz absorption of paraformaldehyde and metaldehyde, the THz-TDS can be applied to the qualitative and quantitative detection of the two aldehydes to reduce the unpredictable hazards due to these substances.

  2. KiDS-450: cosmological constraints from weak-lensing peak statistics - II: Inference from shear peaks using N-body simulations

    NASA Astrophysics Data System (ADS)

    Martinet, Nicolas; Schneider, Peter; Hildebrandt, Hendrik; Shan, HuanYuan; Asgari, Marika; Dietrich, Jörg P.; Harnois-Déraps, Joachim; Erben, Thomas; Grado, Aniello; Heymans, Catherine; Hoekstra, Henk; Klaes, Dominik; Kuijken, Konrad; Merten, Julian; Nakajima, Reiko

    2018-02-01

    We study the statistics of peaks in a weak-lensing reconstructed mass map of the first 450 deg2 of the Kilo Degree Survey (KiDS-450). The map is computed with aperture masses directly applied to the shear field with an NFW-like compensated filter. We compare the peak statistics in the observations with that of simulations for various cosmologies to constrain the cosmological parameter S_8 = σ _8 √{Ω _m/0.3}, which probes the (Ωm, σ8) plane perpendicularly to its main degeneracy. We estimate S8 = 0.750 ± 0.059, using peaks in the signal-to-noise range 0 ≤ S/N ≤ 4, and accounting for various systematics, such as multiplicative shear bias, mean redshift bias, baryon feedback, intrinsic alignment, and shear-position coupling. These constraints are ˜ 25 per cent tighter than the constraints from the high significance peaks alone (3 ≤ S/N ≤ 4) which typically trace single-massive haloes. This demonstrates the gain of information from low-S/N peaks. However, we find that including S/N < 0 peaks does not add further information. Our results are in good agreement with the tomographic shear two-point correlation function measurement in KiDS-450. Combining shear peaks with non-tomographic measurements of the shear two-point correlation functions yields a ˜20 per cent improvement in the uncertainty on S8 compared to the shear two-point correlation functions alone, highlighting the great potential of peaks as a cosmological probe.

  3. Absorption of electromagnetic radiation in a quantum wire with an anisotropic parabolic potential in a transverse magnetic field

    SciTech Connect

    Karpunin, V. V., E-mail: karpuninvv@mail.ru; Margulis, V. A., E-mail: theorphysics@mrsu.ru

    2016-06-15

    An analytical expression for the coefficient of absorption of electromagnetic radiation by electrons in a quantum wire in a magnetic field is derived. The case of a magnetic field transverse with respect to the wire axis is considered. The resonance character of absorption is shown, and the resonance frequencies as functions of the field are determined. The effect of the scattering of electrons at optical phonons is studied, and it is shown that scattering is responsible for additional resonance absorption peaks.

  4. Research Opportunities at Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation of 3210 m MSL (Borys and Wetzel, 1997). SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. The ridge-top location produces almost daily transition from free tropospheric to boundary layer air which occurs near midday in both summer and winter seasons. Long-term observations at SPL document the role of orographically induced mixing and convection on vertical pollutant transport and dispersion. During winter, SPL is above cloud base 25% of the time, providing a unique capability for studying aerosol-cloud interactions (Borys and Wetzel, 1997). A comprehensive set of continuous aerosol measurements was initiated at SPL in 2002. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a cold room for precipitation and cloud rime ice sample handling and ice crystal microphotography, a 150 m2 roof deck area for outside sampling equipment, a full kitchen and two bunk rooms with sleeping space for nine persons. The laboratory is currently well equipped for aerosol and cloud measurements. Particles are sampled from an insulated, 15 cm diameter manifold within approximately 1 m of its horizontal entry point through an outside wall. The 4 m high vertical section outside the building is capped with an inverted can to exclude large particles.

  5. [Studying the fertility peak in Beijing].

    PubMed

    Zhong, L

    1989-07-01

    Beijing, China, is experiencing a baby boom in response to 2 periods of large population increase in the mid-1950s and early 1960s. The average number of annual births was 220,000 in the first period and 269,000 in the second period. The causes of the large increase in the population in the first period were an improvement of health conditions which led to a reduction in mortality, immigration flow, and an erroneous population policy. The causes in the second period were recuperative fertility after three years of natural calamity and increased fertility among immigrants. Net migration had an important role in population growth these two periods; it also will have an important impact in future population changes. According to population projections, another baby boom is expected to occur before the end of the end of the century. During the up-coming baby boom period, 1.54 million births are expected, 190,000 per annum. The average increase in population size is expected to 127,000 per year. In the peak year, it may be around 200,000. Thanks to the family planning (FP) program the occurrence of the third baby boom in Beijing has been postponed and the duration will be shortened. From 1972 to 1982, 2.57 million births was averted due to FP, which drastically reduced pressure on the demand for resources and on the momentum of the next baby boom. Another baby booms is not expected during the early half of the 21st century, although an elevated birth rate within the range of normal fluctuation is predicted. The projection was based on the assumption of restricted migration and the enforcement of the FP program. The realization of the projected population will depend on deferred marriage, deferred child-bearing, prolonged birth spacing, the prevention of high parity fertility, the maintenance of the current population policy, and control over the reproductive behavior of the new migrant population.

  6. ITALIAN PEAK AND ITALIAN PEAK MIDDLE ROADLESS AREAS, IDAHO AND MONTANA.

    USGS Publications Warehouse

    Skipp, Betty; Lambeth, Robert H.

    1984-01-01

    The Italian Peak and Italian Peak Middle Roadless Areas, in southwestern Montana and east-central Idaho, contain areas of probable mineral-resource potential based on combined geologic, geophysical, and geochemical studies and prospect examination. Small areas along the western, southern, and northeastern boundaries of the roadless areas have probable mineral resource potential for zinc, lead, silver, and uranium. An area of probable resource potential just east of and including a part of the Birch Creek mining district, may contain stratabound and fault-controlled silver and base metals, even though geochemical anomalies are low, and extensive prospecting has not identified any significant mineralization. The roadless areas are a part of the overthrust belt, and oil and gas possibilities must be assessed.

  7. Relationship between height and width of resonance peaks in a whispering gallery mode resonator immersed in water and sucrose solutions

    NASA Astrophysics Data System (ADS)

    Teraoka, Iwao; Yao, Haibei; Huiyi Luo, Natalie

    2017-06-01

    We employed a recently developed whispering gallery mode (WGM) dip sensor made of silica to obtain spectra for many resonance peaks in water and solutions of sucrose at different concentrations and thus having different refractive indices (RI). The apparent Q factor was estimated by fitting each peak profile in the busy resonance spectrum by a Lorentzian or a sum of Lorentzians. A plot of the Q factor as a function the peak height for all the peaks analyzed indicates a straight line with a negative slope as the upper limit, for each of water and the solutions. A coupling model for a resonator and a pair of fiber tapers to feed and pick up light, developed here, supports the presence of the upper limit. We also found that the round-trip attenuation of WGM was greater than the one estimated from light absorption by water, and the difference increased with the concentration of sucrose.

  8. Automatic quality assessment and peak identification of auditory brainstem responses with fitted parametric peaks.

    PubMed

    Valderrama, Joaquin T; de la Torre, Angel; Alvarez, Isaac; Segura, Jose Carlos; Thornton, A Roger D; Sainz, Manuel; Vargas, Jose Luis

    2014-05-01

    The recording of the auditory brainstem response (ABR) is used worldwide for hearing screening purposes. In this process, a precise estimation of the most relevant components is essential for an accurate interpretation of these signals. This evaluation is usually carried out subjectively by an audiologist. However, the use of automatic methods for this purpose is being encouraged nowadays in order to reduce human evaluation biases and ensure uniformity among test conditions, patients, and screening personnel. This article describes a new method that performs automatic quality assessment and identification of the peaks, the fitted parametric peaks (FPP). This method is based on the use of synthesized peaks that are adjusted to the ABR response. The FPP is validated, on one hand, by an analysis of amplitudes and latencies measured manually by an audiologist and automatically by the FPP method in ABR signals recorded at different stimulation rates; and on the other hand, contrasting the performance of the FPP method with the automatic evaluation techniques based on the correlation coefficient, FSP, and cross correlation with a predefined template waveform by comparing the automatic evaluations of the quality of these methods with subjective evaluations provided by five experienced evaluators on a set of ABR signals of different quality. The results of this study suggest (a) that the FPP method can be used to provide an accurate parameterization of the peaks in terms of amplitude, latency, and width, and (b) that the FPP remains as the method that best approaches the averaged subjective quality evaluation, as well as provides the best results in terms of sensitivity and specificity in ABR signals validation. The significance of these findings and the clinical value of the FPP method are highlighted on this paper. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Investigation on optical absorption properties of ion irradiated single walled carbon nanotubes

    SciTech Connect

    Vishalli,, E-mail: vishalli-2008@yahoo.com; Dharamvir, Keya, E-mail: keya@pu.ac.in; Kaur, Ramneek

    2015-08-28

    In the present study change in the optical absorption properties of single walled carbon nanotubes (SWCNTs) under nickel ion (60 MeV) irradiation at various fluences has been investigated. Langmuir Blodgett technique is used to deposit SWCNT thin film of uniform thickness. AFM analysis shows a network of interconnected bundles of nanotubes. UV-Vis-NIR absorption spectra indicate that the sample mainly contain SWCNTs of semiconducting nature. It has been found in absorption spectra that there is decrease in the intensity of the characteristic SWCNT peaks with increase in fluence. At fluence value 1×10{sup 14} ions/cm{sup 2} there is almost complete suppression of themore » characteristic SWCNTs peaks.The decrease in the optical absorption with increase in fluence is due to the increase in the disorder in the system which leads to the decrease in optically active states.« less

  10. Gamma radiation-induced blue shift of resonance peaks of Bragg gratings in pure silica fibres

    SciTech Connect

    Faustov, A V; Mégret, P; Wuilpart, M

    2016-02-28

    We report the first observation of a significant gamma radiation-induced blue shift of the reflection/transmission peak of fibre Bragg gratings inscribed into pure-silica core fibres via multiphoton absorption of femtosecond pulses. At a total dose of ∼100 kGy, the shift is ∼20 pm. The observed effect is attributable to the ionising radiation-induced decrease in the density of the silica glass when the rate of colour centre formation is slow. We present results of experimental measurements that provide the key parameters of the dynamics of the gratings for remote dosimetry and temperature sensing. (laser crystals and braggg ratings)

  11. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    SciTech Connect

    Smith, K. L.; Shields, G. A.; Salviander, S.

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotatingmore » ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.« less

  12. Equivalent peak resolution: characterization of the extent of separation for two components based on their relative peak overlap.

    PubMed

    Dvořák, Martin; Svobodová, Jana; Dubský, Pavel; Riesová, Martina; Vigh, Gyula; Gaš, Bohuslav

    2015-03-01

    Although the classical formula of peak resolution was derived to characterize the extent of separation only for Gaussian peaks of equal areas, it is often used even when the peaks follow non-Gaussian distributions and/or have unequal areas. This practice can result in misleading information about the extent of separation in terms of the severity of peak overlap. We propose here the use of the equivalent peak resolution value, a term based on relative peak overlap, to characterize the extent of separation that had been achieved. The definition of equivalent peak resolution is not constrained either by the form(s) of the concentration distribution function(s) of the peaks (Gaussian or non-Gaussian) or the relative area of the peaks. The equivalent peak resolution value and the classically defined peak resolution value are numerically identical when the separated peaks are Gaussian and have identical areas and SDs. Using our new freeware program, Resolution Analyzer, one can calculate both the classically defined and the equivalent peak resolution values. With the help of this tool, we demonstrate here that the classical peak resolution values mischaracterize the extent of peak overlap even when the peaks are Gaussian but have different areas. We show that under ideal conditions of the separation process, the relative peak overlap value is easily accessible by fitting the overall peak profile as the sum of two Gaussian functions. The applicability of the new approach is demonstrated on real separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Absorption Mode FT-ICR Mass Spectrometry Imaging

    SciTech Connect

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  14. Sound absorption characteristics of aluminum foam with spherical cells

    NASA Astrophysics Data System (ADS)

    Li, Yunjie; Wang, Xinfu; Wang, Xingfu; Ren, Yuelu; Han, Fusheng; Wen, Cuie

    2011-12-01

    Aluminum foams were fabricated by an infiltration process. The foams possess spherical cells with a fixed porosity of 65% and varied pore sizes which ranged from 1.3 to 1.9 mm. The spherical cells are interconnected by small pores or pore openings on the cell walls that cause the foams show a characteristic of open cell structures. The sound absorption coefficient of the aluminum foams was measured by a standing wave tube and calculated by a transfer function method. It is shown that the sound absorption coefficient increases with an increase in the number of pore openings in the unit area or with a decrease of the diameter of the pore openings in the range of 0.3 to 0.4 mm. If backed with an air cavity, the resonant absorption peaks in the sound absorption coefficient versus frequency curves will be shifted toward lower frequencies as the cavity depth is increased. The samples with the same pore opening size but different pore size show almost the same absorption behavior, especially in the low frequency range. The present results are in good agreement with some theoretical predictions based on the acoustic impedance measurements of metal foams with circular apertures and cylindrical cavities and the principle of electroacoustic analogy.

  15. Distributed Bragg Reflectors With Reduced Optical Absorption

    DOEpatents

    Klem, John F.

    2005-08-16

    A new class of distributed Bragg reflectors has been developed. These distributed Bragg reflectors comprise interlayers positioned between sets of high-index and low-index quarter-wave plates. The presence of these interlayers is to reduce photon absorption resulting from spatially indirect photon-assisted electronic transitions between the high-index and low-index quarter wave plates. The distributed Bragg reflectors have applications for use in vertical-cavity surface-emitting lasers for use at 1.55 .mu.m and at other wavelengths of interest.

  16. Broadband absorption with gradient metasurfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Hoyeong; Chalabi, Hamidreza; Alù, Andrea

    2018-03-01

    A metasurface with appropriately designed transverse spatial inhomogeneities can provide the desired phase redistribution in response to an incident wave with arbitrary incident angle. This property of gradient metasurfaces has been used to modify light propagation in unusual manners, to transform the impinging optical wavefront with large flexibility. In this work, we show how gradient metasurfaces can be tailored to offer high absorption in thin absorptive layers, and how to design realistic metasurfaces for this purpose using dielectric materials.

  17. Inner chromatogram projection (ICP) for resolution of GC-MS data with embedded chromatographic peaks.

    PubMed

    Wang, Zhi-Guo; Chen, Zeng-Ping; Gong, Fan; Wu, Hai-Long; Yu, Ru-Qin

    2002-05-01

    The chromatographic peak located inside another peak in the time direction is called an embedded or inner peak in contradistinction with the embedding peak, which is called an outer peak. The chemical components corresponding to inner and outer peaks are called inner and outer components, respectively. This special case of co-eluting chromatograms was investigated using chemometric approaches taking GC-MS as an example. A novel method, named inner chromatogram projection (ICP), for resolution of GC-MS data with embedded chromatographic peaks is derived. Orthogonal projection resolution is first utilized to obtain the chromatographic profile of the inner component. Projection of the two-way data matrix columnwise-normalized along the time direction to the normalized profile of the inner component found is subsequently performed to find the selective m/z points, if they exist, which represent the chromatogram of the outer component by itself. With the profiles obtained, the mass spectra can easily be found by means of a least-squares procedure. The results for both simulated data and real samples demonstrate that the proposed method is capable of achieving satisfactory resolution performance not affected by the shapes of chromatograms and the relative positions of the components involved.

  18. Dispersion-convolution model for simulating peaks in a flow injection system.

    PubMed

    Pai, Su-Cheng; Lai, Yee-Hwong; Chiao, Ling-Yun; Yu, Tiing

    2007-01-12

    A dispersion-convolution model is proposed for simulating peak shapes in a single-line flow injection system. It is based on the assumption that an injected sample plug is expanded due to a "bulk" dispersion mechanism along the length coordinate, and that after traveling over a distance or a period of time, the sample zone will develop into a Gaussian-like distribution. This spatial pattern is further transformed to a temporal coordinate by a convolution process, and finally a temporal peak image is generated. The feasibility of the proposed model has been examined by experiments with various coil lengths, sample sizes and pumping rates. An empirical dispersion coefficient (D*) can be estimated by using the observed peak position, height and area (tp*, h* and At*) from a recorder. An empirical temporal shift (Phi*) can be further approximated by Phi*=D*/u2, which becomes an important parameter in the restoration of experimental peaks. Also, the dispersion coefficient can be expressed as a second-order polynomial function of the pumping rate Q, for which D*(Q)=delta0+delta1Q+delta2Q2. The optimal dispersion occurs at a pumping rate of Qopt=sqrt[delta0/delta2]. This explains the interesting "Nike-swoosh" relationship between the peak height and pumping rate. The excellent coherence of theoretical and experimental peak shapes confirms that the temporal distortion effect is the dominating reason to explain the peak asymmetry in flow injection analysis.

  19. SEISMICITY OF THE LASSEN PEAK AREA, CALIFORNIA: 1981-1983.

    USGS Publications Warehouse

    Walter, Stephen R.; Rojas, Vernonica; Kollmann, Auriel

    1984-01-01

    Over 700 earthquakes occurred in the vicinity of Lassen Peak, California, from February 1981 through December 1983. These earthquakes define a broad, northwest-trending seismic zone that extends from the Sierra Nevada through the Lassen Peak area and either terminates or is offset to the northeast about 20 kilometers northwest of Lassen Peak. Approximately 25% of these earthquakes are associated with the geothermal system south of Lassen Peak. Earthquakes in the geothermal area generally occur at depths shallower than 6 kilometers.

  20. Electromagnetically induced absorption in detuned stub waveguides: a simple analytical and experimental model

    NASA Astrophysics Data System (ADS)

    Mouadili, A.; El Boudouti, E. H.; Soltani, A.; Talbi, A.; Djafari-Rouhani, B.; Akjouj, A.; Haddadi, K.

    2014-12-01

    We give an analytical and experimental demonstration of a classical analogue of the electromagnetic induced absorption (EIA) in a simple photonic device consisting of two stubs of lengths d1 and d2 grafted at the same site along a waveguide. By detuning the lengths of the two stubs (i.e. δ = d2 - d1) we show that: (i) the amplitudes of the electromagnetic waves in the two stubs can be written following the two resonators model where each stub plays the role of a radiative resonator with low Q factor. The destructive interference between the waves in the two stubs may give rise to a sharp resonance peak with high Q factor in the transmission as well as in the absorption. (ii) The transmission coefficient around the resonance induced by the stubs can be written following a Fano-like form. In particular, we give an explicit expression of the position, width and Fano parameter of the resonances as a function of δ. (iii) By taking into account the loss in the waveguides, we show that at the transmission resonance, the transmission (reflection) increases (decreases) as a function of δ. Whereas the absorption goes through a maximum around 0.5 for a threshold value δth which depends on the attenuation in the system and then falls to zero. (iv) We give a comparison between the phase of the determinant of the scattering matrix, the so-called Friedel phase and the phase of the transmission amplitude. (v) The effect of the boundary conditions at the end of the resonators on the EIA resonance is also discussed. The analytical results are obtained by means of the Green's function method, whereas the experiments are carried out using coaxial cables in the radio-frequency regime. These results should have important consequences for designing integrated devices such as narrow-frequency optical or microwave filters and high-speed switches.

  1. 7 CFR 457.163 - Nursery peak inventory endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Nursery peak inventory endorsement. 457.163 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.163 Nursery peak inventory endorsement. Nursery Crop Insurance Peak Inventory Endorsement This endorsement is not continuous and must be...

  2. Peak water limits to freshwater withdrawal and use

    PubMed Central

    Gleick, Peter H.; Palaniappan, Meena

    2010-01-01

    Freshwater resources are fundamental for maintaining human health, agricultural production, economic activity as well as critical ecosystem functions. As populations and economies grow, new constraints on water resources are appearing, raising questions about limits to water availability. Such resource questions are not new. The specter of “peak oil”—a peaking and then decline in oil production—has long been predicted and debated. We present here a detailed assessment and definition of three concepts of “peak water”: peak renewable water, peak nonrenewable water, and peak ecological water. These concepts can help hydrologists, water managers, policy makers, and the public understand and manage different water systems more effectively and sustainably. Peak renewable water applies where flow constraints limit total water availability over time. Peak nonrenewable water is observable in groundwater systems where production rates substantially exceed natural recharge rates and where overpumping or contamination leads to a peak of production followed by a decline, similar to more traditional peak-oil curves. Peak “ecological” water is defined as the point beyond which the total costs of ecological disruptions and damages exceed the total value provided by human use of that water. Despite uncertainties in quantifying many of these costs and benefits in consistent ways, more and more watersheds appear to have already passed the point of peak water. Applying these concepts can help shift the way freshwater resources are managed toward more productive, equitable, efficient, and sustainable use. PMID:20498082

  3. Reward Value Effects on Timing in the Peak Procedure

    ERIC Educational Resources Information Center

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2009-01-01

    Three experiments examined the effect of motivational variables on timing in the peak procedure. In Experiment 1, rats received a 60-s peak procedure that was coupled with long-term, between-phase changes in reinforcer magnitude. Increases in reinforcer magnitude produced a leftward shift in the peak that persisted for 20 sessions of training. In…

  4. Cost and sensitivity of restricted active-space calculations of metal L-edge X-ray absorption spectra.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2016-02-15

    The restricted active-space (RAS) approach can accurately simulate metal L-edge X-ray absorption spectra of first-row transition metal complexes without the use of any fitting parameters. These characteristics provide a unique capability to identify unknown chemical species and to analyze their electronic structure. To find the best balance between cost and accuracy, the sensitivity of the simulated spectra with respect to the method variables has been tested for two models, [FeCl6 ](3-) and [Fe(CN)6 ](3-) . For these systems, the reference calculations give deviations, when compared with experiment, of ≤1 eV in peak positions, ≤30% for the relative intensity of major peaks, and ≤50% for minor peaks. When compared with these deviations, the simulated spectra are sensitive to the number of final states, the inclusion of dynamical correlation, and the ionization potential electron affinity shift, in addition to the selection of the active space. The spectra are less sensitive to the quality of the basis set and even a double-ζ basis gives reasonable results. The inclusion of dynamical correlation through second-order perturbation theory can be done efficiently using the state-specific formalism without correlating the core orbitals. Although these observations are not directly transferable to other systems, they can, together with a cost analysis, aid in the design of RAS models and help to extend the use of this powerful approach to a wider range of transition metal systems. © 2015 Wiley Periodicals, Inc.

  5. Relativistic jet feedback - II. Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies

    NASA Astrophysics Data System (ADS)

    Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole P. H.

    2018-04-01

    We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilizing cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low-frequency power laws inferred from the radio observations. These new computational models replace a power-law model for the free-free optical depth a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low-frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low-frequency spectra discovered by Callingham et al. may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure, and distribution of gas in the host galaxy.

  6. Tunability of temperature-dependent absorption in a graphene-based hybrid nanostructure cavity

    NASA Astrophysics Data System (ADS)

    Rashidi, Arezou; Namdar, Abdolrahman

    2018-04-01

    Enhanced absorption is obtained in a hybrid nanostructure composed of graphene and one-dimensional photonic crystal as a cavity in the visible wavelength range thanks to the localized electric field around the defect layers. The temperature-induced wavelength shift is revealed in the absorption spectra in which the peak wavelength is red-shifted by increasing the temperature. This temperature dependence comes from the thermal expansion and thermo-optical effects in the constituent layers of the structure. Moreover, the absorption peaks can be adjusted by varying the incident angle. The results show that absorption is sensitive to TE/TM polarization and its peak values for the TE mode are higher than the TM case. Also, the peak wavelength is blue-shifted by increasing the incident angle for both polarizations. Finally, the possibility of tuning the absorption using the electro-optical response of graphene sheets is discussed in detail. We believe our study may be beneficial for designing tunable graphene-based temperature-sensitive absorbers.

  7. Can physical activity improve peak bone mass?

    PubMed

    Specker, Bonny; Minett, Maggie

    2013-09-01

    The pediatric origin of osteoporosis has led many investigators to focus on determining factors that influence bone gain during growth and methods for optimizing this gain. Bone responds to bone loading activities by increasing mass or size. Overall, pediatric studies have found a positive effect of bone loading on bone size and accrual, but the types of loads necessary for a bone response have only recently been investigated in human studies. Findings indicate that responses vary by sex, maturational status, and are site-specific. Estrogen status, body composition, and nutritional status also may influence the bone response to loading. Despite the complex interrelationships among these various factors, it is prudent to conclude that increased physical activity throughout life is likely to optimize bone health.

  8. [Using 2-DCOS to identify the molecular spectrum peaks for the isomer in the multi-component mixture gases Fourier transform infrared analysis].

    PubMed

    Zhao, An-Xin; Tang, Xiao-Jun; Zhang, Zhong-Hua; Liu, Jun-Hua

    2014-10-01

    The generalized two-dimensional correlation spectroscopy and Fourier transform infrared were used to identify hydrocarbon isomers in the mixed gases for absorption spectra resolution enhancement. The Fourier transform infrared spectrum of n-butane and iso-butane and the two-dimensional correlation infrared spectrum of concentration perturbation were used for analysis as an example. The all band and the main absorption peak wavelengths of Fourier transform infrared spectrum for single component gas showed that the spectra are similar, and if they were mixed together, absorption peaks overlap and peak is difficult to identify. The synchronous and asynchronous spectrum of two-dimensional correlation spectrum can clearly identify the iso-butane and normal butane and their respective characteristic absorption peak intensity. Iso-butane has strong absorption characteristics spectrum lines at 2,893, 2,954 and 2,893 cm(-1), and n-butane at 2,895 and 2,965 cm(-1). The analysis result in this paper preliminary verified that the two-dimensional infrared correlation spectroscopy can be used for resolution enhancement in Fourier transform infrared spectrum quantitative analysis.

  9. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  10. RADIOACTIVE IRON ABSORPTION BY GASTRO-INTESTINAL TRACT

    PubMed Central

    Hahn, P. F.; Bale, W. F.; Ross, J. F.; Balfour, W. M.; Whipple, G. H.

    1943-01-01

    Iron absorption is a function of the gastro-intestinal mucosal epithelium. The normal non-anemic dog absorbs little iron but chronic anemia due to blood loss brings about considerable absorption—perhaps 5 to 15 times normal. In general the same differences are observed in man (1). Sudden change from normal to severe anemia within 24 hours does not significantly increase iron absorption. As the days pass new hemoglobin is formed. The body iron stores are depleted and within 7 days iron absorption is active, even when the red cell hematocrit is rising. Anoxemia of 50 per cent normal oxygen concentration for 48 hours does not significantly enhance iron absorption. In this respect it resembles acute anemia. Ordinary doses of iron given 1 to 6 hours before radio-iron will cause some "mucosa block"—that is an intake of radio-iron less than anticipated. Many variables which modify peristalsis come into this reaction. Iron given by vein some days before the dose of radio-iron does not appear to inhibit iron absorption. Plasma radio-iron absorption curves vary greatly. The curves may show sharp peaks in 1 to 2 hours when the iron is given in an empty stomach but after 6 hours when the radio-iron is given with food. Duration time of curves also varies widely, the plasma iron returning to normal in 6 to 12 hours. Gastric, duodenal, or jejunal pouches all show very active absorption of iron. The plasma concentration peak may reach a maximum before the solution of iron is removed from the gastric pouch—another example of "mucosa block." Absorption and distribution of radio-iron in the body of growing pups give very suggestive experimental data. The spleen, heart, upper gastro-intestinal tract, marrow, and pancreas show more radio-iron than was expected. The term "physiological saturation" with iron may be applied to the gastro-intestinal mucosal epithelium and explain one phase of acceptance or refusal of ingested iron. Desaturation is a matter of days not hours, whereas

  11. Positive Psychotherapy

    ERIC Educational Resources Information Center

    Seligman, Martin E. P.; Rashid, Tayyab; Parks, Acacia C.

    2006-01-01

    Positive psychotherapy (PPT) contrasts with standard interventions for depression by increasing positive emotion, engagement, and meaning rather than directly targeting depressive symptoms. The authors have tested the effects of these interventions in a variety of settings. In informal student and clinical settings, people not uncommonly reported…

  12. Fat-soluble vitamin intestinal absorption: absorption sites in the intestine and interactions for absorption.

    PubMed

    Goncalves, Aurélie; Roi, Stéphanie; Nowicki, Marion; Dhaussy, Amélie; Huertas, Alain; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-04-01

    The interactions occurring at the intestinal level between the fat-soluble vitamins A, D, E and K (FSVs) are poorly documented. We first determined each FSV absorption profile along the duodenal-colonic axis of mouse intestine to clarify their respective absorption sites. We then investigated the interactions between FSVs during their uptake by Caco-2 cells. Our data show that vitamin A was mostly absorbed in the mouse proximal intestine, while vitamin D was absorbed in the median intestine, and vitamin E and K in the distal intestine. Significant competitive interactions for uptake were then elucidated among vitamin D, E and K, supporting the hypothesis of common absorption pathways. Vitamin A also significantly decreased the uptake of the other FSVs but, conversely, its uptake was not impaired by vitamins D and K and even promoted by vitamin E. These results should be taken into account, especially for supplement formulation, to optimise FSV absorption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Peak leg muscle power, peak VO2 and its correlates with physical activity in 57 to 70-year-old women.

    PubMed

    Boussuge, P-Y; Rance, M; Bedu, M; Duche, P; Praagh, E Van

    2006-01-01

    The two aims of this study were first to measure short-term muscle power (STMP) by means of a cycling force-velocity test (cycling peak power: CPP) and a vertical jump test (jumping peak performance: JPP) and second, to examine the relationships between physical activity (PA) level, peak oxygen uptake (peak VO2) and STMP in healthy elderly women. Twenty-three independent community-dwelling elderly women (mean age: 64+/-4.4) performed on separate days, a peak oxygen uptake test on cycle ergometer, a cycling force-velocity test and a vertical jump test. A questionnaire (QUANTAP) was used to assess lifespan exercise habits. Four indices expressed in kJ day(-1) kg(-1) were calculated. Two indices represented average past PA level: 1/quantity of habitual physical activity (QHPA), 2/quantity of sports activities (QSA). Two indices represented the actual PA level: 3/actual quantity of habitual physical activity (AQHPA), 4/actual quantity of sports activities (AQSA). CPP (6.3+/-1.2 W kg(-1)) was closely correlated to JPP (14.8+/-3.4 cm) (r=0.80, P<0.001). AQHPA and AQSA were only positively associated with peak VO2 (ml min(-1) kg(-1)) (r=0.49; r=0.50, P<0.05, respectively). Past PA level was not related to fitness measurements. Results show that in this population: (1) jumping peak performance was closely related to CPP measured in the laboratory; (2) the cardio-respiratory fitness was related to the actual habitual physical activity level; (3) only age and anthropometric variables explained the actual performances in multivariate analysis.

  14. A Massive Central Peak and a Low Peak Ring in Gale Crater - Important Influences on the Formation of Mt. Sharp

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2015-01-01

    The Curiosity rover is exploring 155 km diameter Gale crater and Mt. Sharp, Gale's high central mound. This study addresses the central peak and proposed peak ring, and their influence on the overall morphology of the mountain.

  15. Specific Intensity for Peaking: Is Race Pace the Best Option?

    PubMed Central

    Munoz, Iker; Seiler, Stephen; Alcocer, Alberto; Carr, Natasha; Esteve-Lanao, Jonathan

    2015-01-01

    Background: The peaking period for endurance competition is characterized for a relative increase of the intensity of training, after a longer period of training relatively dominated by lower intensity and higher volume Objectives: The present study was designed to compare physiological and 10 km performance effects of high intensity training (HIT) versus race pace interval training (RP) during peaking for competition in well-trained runners. Patients and Methods: 13 athletes took part in the study, they were divided into two groups: HIT and RP. HIT performed short intervals at ~105% of the maximal aerobic velocity (MAV), while RP trained longer intervals at a speed of ~90% of the MAV (a speed approximating 10 km race pace). After 12 weeks of baseline training, the athletes trained for 6 weeks under one of the two peaking regimes. Subjects performed 10 km prior to and after the intervention period. The total load of training was matched between groups during the treatment phase. Subjects completed a graded treadmill running test until volitional exhaustion prior to each 10 km race. MAV was determined as the minimal velocity eliciting maximal oxygen consumption (VO2max). Results: Both groups significantly improved their 10 km time (35 minutes 29 seconds ± 1 minutes 41 seconds vs 34 minutes 53 seconds ± 1 minutes 55 seconds, P < 0.01 for HIT; 35 minutes 27 seconds ± 1 minutes 40 seconds vs 34 minutes 53 seconds ± 1 minutes 18 seconds P < 0.01 for RP). VO2max increased after HIT (69 ± 3.6 vs 71.5 ± 4.2 ml.Kg-1.min-1, P < 0.05); while it didn’t for RP (68.4 ± 6 vs 69.8 ± 3 ml.Kg-1.min-1, p>0.05). In contrast, running economy decreased significantly after HIT (210 ± 6 ml.Kg-1.km-1 vs 218 ± 9, P < 0.05). Conclusions: A 6 week period of training at either 105% of MAV or 90% of MAV yielded similar performance gains in a 10km race performed at ~90% MAV. Therefore, the physiological impact of HIT training seems to be positive for VO2max but negative for running

  16. Gas compression in lungs decreases peak expiratory flow depending on resistance of peak flowmeter.

    PubMed

    Pedersen, O F; Pedersen, T F; Miller, M R

    1997-11-01

    It has recently been shown (O. F. Pedersen T. R. Rasmussen, O. Omland, T. Sigsgaard, P. H. Quanjer. and M. R. Miller. Eur. Respir. J. 9: 828-833, 1996) that the added resistance of a mini-Wright peak flowmeter decreases peak expiratory flow (PEF) by approximately 8% compared with PEF measured by a pneumotachograph. To explore the reason for this, 10 healthy men (mean age 43 yr, range 33-58 yr) were examined in a body plethysmograph with facilities to measure mouth flow vs. expired volume as well as the change in thoracic gas volume (Vb) and alveolar pressure (PA). The subjects performed forced vital capacity maneuvers through orifices of different sizes and also a mini-Wright peak flowmeter. PEF with the meter and other added resistances were achieved when flow reached the perimeter of the flow-Vb curves. The mini-Wright PEF meter decreased PEF from 11.4 +/- 1.5 to 10.3 +/- 1.4 (SD) l/s (P < 0.001), PA increased from 6.7 +/- 1.9 to 9.3 +/- 2.7 kPa (P < 0.001), an increase equal to the pressure drop across the meter, and caused Vb at PEF to decrease by 0.24 +/- 0.09 liter (P < 0.001). We conclude that PEF obtained with an added resistance like a mini-Wright PEF meter is a wave-speed-determined maximal flow, but the added resistance causes gas compression because of increased PA at PEF. Therefore, Vb at PEF and, accordingly, PEF decrease.

  17. Memory Effect Manifested by a Boson Peak in Metallic Glass.

    PubMed

    Luo, P; Li, Y Z; Bai, H Y; Wen, P; Wang, W H

    2016-04-29

    We explore the correlation between a boson peak and structural relaxation in a typical metallic glass. Consistent with enthalpy recovery, a boson peak shows a memory effect in an aging-and-scan procedure. Single-step isothermal aging produces a monotonic decrease of enthalpy and boson peak intensity; for double-step isothermal aging, both enthalpy and boson peak intensity experience, coincidently, an incipient increase to a maximum and a subsequent decrease toward the equilibrium state. Our results indicate a direct link between slow structural relaxation and fast boson peak dynamics, which presents a profound understanding of the two dynamic behaviors in glass.

  18. Role of peak current in conversion of patients with ventricular fibrillation.

    PubMed

    Anantharaman, Venkataraman; Wan, Paul Weng; Tay, Seow Yian; Manning, Peter George; Lim, Swee Han; Chua, Siang Jin Terrance; Mohan, Tiru; Rabind, Antony Charles; Vidya, Sudarshan; Hao, Ying

    2017-07-01

    Peak currents are the final arbiter of defibrillation in patients with ventricular fibrillation (VF). However, biphasic defibrillators continue to use energy in joules for electrical conversion in hopes that their impedance compensation properties will address transthoracic impedance (TTI), which must be overcome when a fixed amount of energy is delivered. However, optimal peak currents for conversion of VF remain unclear. We aimed to determine the role of peak current and optimal peak levels for conversion in collapsed VF patients. Adult, non-pregnant patients presenting with non-traumatic VF were included in the study. All defibrillations that occurred were included. Impedance values during defibrillation were used to calculate peak current values. The endpoint was return of spontaneous circulation (ROSC). Of the 197 patients analysed, 105 had ROSC. Characteristics of patients with and without ROSC were comparable. Short duration of collapse < 10 minutes correlated positively with ROSC. Generally, patients with average or high TTI converted at lower peak currents. 25% of patients with high TTI converted at 13.3 ± 2.3 A, 22.7% with average TTI at 18.2 ± 2.5 A and 18.6% with low TTI at 27.0 ± 4.7 A (p = 0.729). Highest peak current conversions were at < 15 A and 15-20 A. Of the 44 patients who achieved first-shock ROSC, 33 (75.0%) received < 20 A peak current vs. > 20 A for the remaining 11 (25%) patients (p = 0.002). For best effect, priming biphasic defibrillators to deliver specific peak currents should be considered. Copyright: © Singapore Medical Association

  19. Role of peak current in conversion of patients with ventricular fibrillation

    PubMed Central

    Anantharaman, Venkataraman; Wan, Paul Weng; Tay, Seow Yian; Manning, Peter George; Lim, Swee Han; Chua, Siang Jin Terrance; Mohan, Tiru; Rabind, Antony Charles; Vidya, Sudarshan; Hao, Ying

    2017-01-01

    INTRODUCTION Peak currents are the final arbiter of defibrillation in patients with ventricular fibrillation (VF). However, biphasic defibrillators continue to use energy in joules for electrical conversion in hopes that their impedance compensation properties will address transthoracic impedance (TTI), which must be overcome when a fixed amount of energy is delivered. However, optimal peak currents for conversion of VF remain unclear. We aimed to determine the role of peak current and optimal peak levels for conversion in collapsed VF patients. METHODS Adult, non-pregnant patients presenting with non-traumatic VF were included in the study. All defibrillations that occurred were included. Impedance values during defibrillation were used to calculate peak current values. The endpoint was return of spontaneous circulation (ROSC). RESULTS Of the 197 patients analysed, 105 had ROSC. Characteristics of patients with and without ROSC were comparable. Short duration of collapse < 10 minutes correlated positively with ROSC. Generally, patients with average or high TTI converted at lower peak currents. 25% of patients with high TTI converted at 13.3 ± 2.3 A, 22.7% with average TTI at 18.2 ± 2.5 A and 18.6% with low TTI at 27.0 ± 4.7 A (p = 0.729). Highest peak current conversions were at < 15 A and 15–20 A. Of the 44 patients who achieved first-shock ROSC, 33 (75.0%) received < 20 A peak current vs. > 20 A for the remaining 11 (25%) patients (p = 0.002). CONCLUSION For best effect, priming biphasic defibrillators to deliver specific peak currents should be considered. PMID:28741007

  20. Optical absorption, TL and IRSL of basic plagioclase megacrysts from the pinacate (Sonora, Mexico) quaternary alkalic volcanics.

    PubMed

    Chernov, V; Paz-Moreno, F; Piters, T M; Barboza-Flores, M

    2006-01-01

    The paper presents the first results of an investigation on optical absorption (OA), thermally and infrared stimulated luminescence (TL and IRSL) of the Pinacate plagioclase (labradorite). The OA spectra reveal two bands with maxima at 1.0 and 3.2 eV connected with absorption of the Fe3+ and Fe2+ and IR absorption at wavelengths longer than 2700 nm. The ultraviolet absorption varies exponentially with the photon energy following the 'vitreous' empirical Urbach rule indicating exponential distribution of localised states in the forbidden band. The natural TL is peaked at 700 K. Laboratory beta irradiation creates a very broad TL peak with maximum at 430 K. The change of the 430 K TL peak shape under the thermal cleaning procedure and dark storage after irradiation reveals a monotonous increasing of the activation energy that can be explained by the exponential distribution of traps. The IRSL response is weak and exhibits a typical decay behaviour.

  1. Study on peak shape fitting method in radon progeny measurement.

    PubMed

    Yang, Jinmin; Zhang, Lei; Abdumomin, Kadir; Tang, Yushi; Guo, Qiuju

    2015-11-01

    Alpha spectrum measurement is one of the most important methods to measure radon progeny concentration in environment. However, the accuracy of this method is affected by the peak tailing due to the energy losses of alpha particles. This article presents a peak shape fitting method that can overcome the peak tailing problem in most situations. On a typical measured alpha spectrum curve, consecutive peaks overlap even their energies are not close to each other, and it is difficult to calculate the exact count of each peak. The peak shape fitting method uses combination of Gaussian and exponential functions, which can depict features of those peaks, to fit the measured curve. It can provide net counts of each peak explicitly, which was used in the Kerr method of calculation procedure for radon progeny concentration measurement. The results show that the fitting curve fits well with the measured curve, and the influence of the peak tailing is reduced. The method was further validated by the agreement between radon equilibrium equivalent concentration based on this method and the measured values of some commercial radon monitors, such as EQF3220 and WLx. In addition, this method improves the accuracy of individual radon progeny concentration measurement. Especially for the (218)Po peak, after eliminating the peak tailing influence, the calculated result of (218)Po concentration has been reduced by 21 %. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The formation of peak rings in large impact craters.

    PubMed

    Morgan, Joanna V; Gulick, Sean P S; Bralower, Timothy; Chenot, Elise; Christeson, Gail; Claeys, Philippe; Cockell, Charles; Collins, Gareth S; Coolen, Marco J L; Ferrière, Ludovic; Gebhardt, Catalina; Goto, Kazuhisa; Jones, Heather; Kring, David A; Le Ber, Erwan; Lofi, Johanna; Long, Xiao; Lowery, Christopher; Mellett, Claire; Ocampo-Torres, Rubén; Osinski, Gordon R; Perez-Cruz, Ligia; Pickersgill, Annemarie; Poelchau, Michael; Rae, Auriol; Rasmussen, Cornelia; Rebolledo-Vieyra, Mario; Riller, Ulrich; Sato, Honami; Schmitt, Douglas R; Smit, Jan; Tikoo, Sonia; Tomioka, Naotaka; Urrutia-Fucugauchi, Jaime; Whalen, Michael; Wittmann, Axel; Yamaguchi, Kosei E; Zylberman, William

    2016-11-18

    Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust. Copyright © 2016, American Association for the Advancement of Science.

  3. Rapid identification of Chinese Sauce liquor from different fermentation positions with FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Changwen; Wei, Jiping; Zhou, Qun; Sun, Suqin

    2008-07-01

    FT-IR and two-dimensional correlation spectroscopy (2D-IR) technology were applied to discriminate Chinese Sauce liquor from different fermentation positions (top, middle and bottom of fermentation cellar) for the first time. The liquors at top, middle and bottom of fermentation cellar, possessed the characteristic peaks at 1731 cm -1, 1733 cm -1 and 1602 cm -1, respectively. In the 2D correlation infrared spectra, the differences were amplified. A strong auto-peak at 1725 cm -1 showed in the 2D spectra of the Top Liquor, which indicated that the liquor might contain some ester compounds. Different from Top Liquor, three auto-peaks at 1695, 1590 and 1480 cm -1 were identified in 2D spectra of Middle Liquor, which were the characteristic absorption of acid, lactate. In 2D spectra of Bottom Liquor, two auto-peaks at 1570 and 1485 cm -1 indicated that lactate was the major component. As a result, FT-IR and 2D-IR correlation spectra technology provided a rapid and effective method for the quality analysis of the Sauce liquor.

  4. Automatic peak selection by a Benjamini-Hochberg-based algorithm.

    PubMed

    Abbas, Ahmed; Kong, Xin-Bing; Liu, Zhi; Jing, Bing-Yi; Gao, Xin

    2013-01-01

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into [Formula: see text]-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx.

  5. Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm

    PubMed Central

    Abbas, Ahmed; Kong, Xin-Bing; Liu, Zhi; Jing, Bing-Yi; Gao, Xin

    2013-01-01

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into -values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. PMID

  6. WaVPeak: picking NMR peaks through wavelet-based smoothing and volume-based filtering.

    PubMed

    Liu, Zhi; Abbas, Ahmed; Jing, Bing-Yi; Gao, Xin

    2012-04-01

    Nuclear magnetic resonance (NMR) has been widely used as a powerful tool to determine the 3D structures of proteins in vivo. However, the post-spectra processing stage of NMR structure determination usually involves a tremendous amount of time and expert knowledge, which includes peak picking, chemical shift assignment and structure calculation steps. Detecting accurate peaks from the NMR spectra is a prerequisite for all following steps, and thus remains a key problem in automatic NMR structure determination. We introduce WaVPeak, a fully automatic peak detection method. WaVPeak first smoothes the given NMR spectrum by wavelets. The peaks are then identified as the local maxima. The false positive peaks are filtered out efficiently by considering the volume of the peaks. WaVPeak has two major advantages over the state-of-the-art peak-picking methods. First, through wavelet-based smoothing, WaVPeak does not eliminate any data point in the spectra. Therefore, WaVPeak is able to detect weak peaks that are embedded in the noise level. NMR spectroscopists need the most help isolating these weak peaks. Second, WaVPeak estimates the volume of the peaks to filter the false positives. This is more reliable than intensity-based filters that are widely used in existing methods. We evaluate the performance of WaVPeak on the benchmark set proposed by PICKY (Alipanahi et al., 2009), one of the most accurate methods in the literature. The dataset comprises 32 2D and 3D spectra from eight different proteins. Experimental results demonstrate that WaVPeak achieves an average of 96%, 91%, 88%, 76% and 85% recall on (15)N-HSQC, HNCO, HNCA, HNCACB and CBCA(CO)NH, respectively. When the same number of peaks are considered, WaVPeak significantly outperforms PICKY. WaVPeak is an open source program. The source code and two test spectra of WaVPeak are available at http://faculty.kaust.edu.sa/sites/xingao/Pages/Publications.aspx. The online server is under construction. statliuzhi

  7. WaVPeak: picking NMR peaks through wavelet-based smoothing and volume-based filtering

    PubMed Central

    Liu, Zhi; Abbas, Ahmed; Jing, Bing-Yi; Gao, Xin

    2012-01-01

    Motivation: Nuclear magnetic resonance (NMR) has been widely used as a powerful tool to determine the 3D structures of proteins in vivo. However, the post-spectra processing stage of NMR structure determination usually involves a tremendous amount of time and expert knowledge, which includes peak picking, chemical shift assignment and structure calculation steps. Detecting accurate peaks from the NMR spectra is a prerequisite for all following steps, and thus remains a key problem in automatic NMR structure determination. Results: We introduce WaVPeak, a fully automatic peak detection method. WaVPeak first smoothes the given NMR spectrum by wavelets. The peaks are then identified as the local maxima. The false positive peaks are filtered out efficiently by considering the volume of the peaks. WaVPeak has two major advantages over the state-of-the-art peak-picking methods. First, through wavelet-based smoothing, WaVPeak does not eliminate any data point in the spectra. Therefore, WaVPeak is able to detect weak peaks that are embedded in the noise level. NMR spectroscopists need the most help isolating these weak peaks. Second, WaVPeak estimates the volume of the peaks to filter the false positives. This is more reliable than intensity-based filters that are widely used in existing methods. We evaluate the performance of WaVPeak on the benchmark set proposed by PICKY (Alipanahi et al., 2009), one of the most accurate methods in the literature. The dataset comprises 32 2D and 3D spectra from eight different proteins. Experimental results demonstrate that WaVPeak achieves an average of 96%, 91%, 88%, 76% and 85% recall on 15N-HSQC, HNCO, HNCA, HNCACB and CBCA(CO)NH, respectively. When the same number of peaks are considered, WaVPeak significantly outperforms PICKY. Availability: WaVPeak is an open source program. The source code and two test spectra of WaVPeak are available at http://faculty.kaust.edu.sa/sites/xingao/Pages/Publications.aspx. The online server is under

  8. Extremely asymmetric diffraction as a method of determining magneto-optical constants for X-rays near absorption edges

    SciTech Connect

    Andreeva, M. A., E-mail: Mandreeva1@yandex.ru; Repchenko, Yu. L., E-mail: kent160@mail.ru; Smekhova, A. G.

    2015-06-15

    The spectral dependence of the Bragg peak position under conditions of extremely asymmetric diffraction has been analyzed in the kinematical and dynamical approximations of the diffraction theory. Simulations have been performed for the L{sub 3} absorption edge of yttrium in a single-crystal YFe{sub 2} film; they have shown that the magneto-optical constants (or, equivalently, the dispersion corrections to the atomic scattering factor) for hard X-rays can be determined from this dependence. Comparison with the experimental data obtained for a Nb(4 nm)/YFe{sub 2}(40 nm〈110〉)/Fe(1.5 nm)/Nb(50 nm)/sapphire sample at the European Synchrotron Radiation Facility has been made.

  9. Features of an annealing-induced thermoluminescence peak in α-Al2O3:C,Mg

    NASA Astrophysics Data System (ADS)

    Kalita, J. M.; Chithambo, M. L.

    2017-08-01

    We report the thermoluminescence glow curves of beta irradiated single crystal α-Al2O3:C,Mg after annealing at 700 and 900 °C. A glow curve measured at 1 °C/s from samples irradiated to 1 Gy following annealing at 700 and 900 °C shows a high intensity peak at 163 °C and seven secondary peaks of weaker intensity at 43, 73, 100, 195, 280, 329 and 370 °C. Comparing the position of the peaks in the annealed samples with those in an un-annealed one, it is observed that the peak at 100 °C appears only after annealing at and above 700 °C. Kinetic analysis of this annealing-induced peak was carried out using the initial rise, whole glow peak, peak shape, curve fitting and variable heating rate methods. The order of kinetics of the peak was determined as first order using various methods including the Tm-Tstop technique and the dependence of Tm on irradiation dose. The activation energy of the peak is about 1.01 eV and the frequency factor of the order of 1012 s-1. The peak was found to be affected by thermal quenching in analysis based on change of peak intensity with heating rate. The activation energy of thermal quenching was evaluated as 1.06 ± 0.08 eV. We speculate that the annealing-induced peak is due to formation of a new electron trap after destruction of the F22+(2 Mg) centre when the sample is annealed at 700 °C. The annealing-induced peak fades with storage between irradiation and measurement. It was also concluded that electrons from traps corresponding to secondary peaks get re-trapped at the main electron trap.

  10. Amorphous chalcogenides as random octahedrally bonded solids: I. Implications for the first sharp diffraction peak, photodarkening, and Boson peak

    NASA Astrophysics Data System (ADS)

    Lukyanov, Alexey; Lubchenko, Vassiliy

    2017-09-01

    We develop a computationally efficient algorithm for generating high-quality structures for amorphous materials exhibiting distorted octahedral coordination. The computationally costly step of equilibrating the simulated melt is relegated to a much more efficient procedure, viz., generation of a random close-packed structure, which is subsequently used to generate parent structures for octahedrally bonded amorphous solids. The sites of the so-obtained lattice are populated by atoms and vacancies according to the desired stoichiometry while allowing one to control the number of homo-nuclear and hetero-nuclear bonds and, hence, effects of the mixing entropy. The resulting parent structure is geometrically optimized using quantum-chemical force fields; by varying the extent of geometric optimization of the parent structure, one can partially control the degree of octahedrality in local coordination and the strength of secondary bonding. The present methodology is applied to the archetypal chalcogenide alloys AsxSe1-x. We find that local coordination in these alloys interpolates between octahedral and tetrahedral bonding but in a non-obvious way; it exhibits bonding motifs that are not characteristic of either extreme. We consistently recover the first sharp diffraction peak (FSDP) in our structures and argue that the corresponding mid-range order stems from the charge density wave formed by regions housing covalent and weak, secondary interactions. The number of secondary interactions is determined by a delicate interplay between octahedrality and tetrahedrality in the covalent bonding; many of these interactions are homonuclear. The present results are consistent with the experimentally observed dependence of the FSDP on arsenic content, pressure, and temperature and its correlation with photodarkening and the Boson peak. They also suggest that the position of the FSDP can be used to infer the effective particle size relevant for the configurational equilibration in

  11. Separation of overlapping vibrational peaks in terahertz spectra using two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Ishii, Shinya; Otani, Chiko

    2014-07-01

    In this study, the terahertz (THz) absorption spectra of poly(3-hydroxybutyrate) (PHB) were measured during isothermal crystallization at 90-120 °C. The temporal changes in the absorption spectra were analyzed using two-dimensional correlation spectroscopy (2DCOS). In the asynchronous plot, cross peaks were observed around 2.4 THz, suggesting that two vibrational modes overlap in the raw spectrum. By comparing this to the peak at 2.9 THz corresponding to the stretching mode of the helical structure of PHB and the assignment obtained using polarization spectroscopy, we concluded that the high-frequency band could be attributed to the vibration of the helical structure and the low-frequency band to the vibration between the helical structures. The exact frequencies of the overlapping vibrational bands and their assignments provide a new means to inspect the thermal behavior of the intermolecular vibrational modes. The large red-shift of the interhelix vibrational mode suggests a large anharmonicity in the vibrational potential.

  12. Peak-discharge frequency and potential extreme peak discharge for natural streams in the Brazos River basin, Texas

    USGS Publications Warehouse

    Raines, Timothy H.

    1998-01-01

    The potential extreme peak-discharge curves as related to contributing drainage area were estimated for each of the three hydrologic regions from measured extreme peaks of record at 186 sites with streamflow-gaging stations and from measured extreme peaks at 37 sites without streamflow-gaging stations in and near the Brazos River Basin. The potential extreme peak-discharge curves generally are similar for hydrologic regions 1 and 2, and the curve for region 3 consistently is below the curves for regions 1 and 2, which indicates smaller peak discharges.

  13. Structural parameter effect of porous material on sound absorption performance of double-resonance material

    NASA Astrophysics Data System (ADS)

    Fan, C.; Tian, Y.; Wang, Z. Q.; Nie, J. K.; Wang, G. K.; Liu, X. S.

    2017-06-01

    In view of the noise feature and service environment of urban power substations, this paper explores the idea of compound impedance, fills some porous sound-absorption material in the first resonance cavity of the double-resonance sound-absorption material, and designs a new-type of composite acoustic board. We conduct some acoustic characterizations according to the standard test of impedance tube, and research on the influence of assembly order, the thickness and area density of the filling material, and back cavity on material sound-absorption performance. The results show that the new-type of acoustic board consisting of aluminum fibrous material as inner structure, micro-porous board as outer structure, and polyester-filled space between them, has good sound-absorption performance for low frequency and full frequency noise. When the thickness, area density of filling material and thickness of back cavity increase, the sound absorption coefficient curve peak will move toward low frequency.

  14. Tunable multi-band absorption in metasurface of graphene ribbons based on composite structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Jiao, Zheng; Bao, Jie

    2017-05-01

    A tunable multiband absorption based on a graphene metasurface of composite structure at mid-infrared frequency was investigated by the finite difference time domain method. The composite structure were composed of graphene ribbons and a gold-MgF2 layer which was sandwiched in between two dielectric slabs. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. And the absorption of the composite structure can be tuned by the chemical potential of graphene at certain frequencies. The impedance matching was used to study the perfect absorption of the structure in our paper. The results show that multi-band absorption can be obtained and some absorption peaks of the composite structure can be tuned through the changing not only of the width of graphene ribbons and gaps, but also the dielectric and the chemical potential of graphene. However, another peak was hardly changed by parameters due to a different resonant mechanism in proposed structure. This flexibily tunable multiband absorption may be applied to optical communications such as optical absorbers, mid infrared stealth devices and filters.

  15. Architecture for Absorption Based Heaters

    SciTech Connect

    Moghaddam, Saeed; Chugh, Devesh

    An absorption based heater is constructed on a fluid barrier heat exchanging plate such that it requires little space in a structure. The absorption based heater has a desorber, heat exchanger, and absorber sequentially placed on the fluid barrier heat exchanging plate. The vapor exchange faces of the desorber and the absorber are covered by a vapor permeable membrane that is permeable to a refrigerant vapor but impermeable to an absorbent. A process fluid flows on the side of the fluid barrier heat exchanging plate opposite the vapor exchange face through the absorber and subsequently through the heat exchanger. Themore » absorption based heater can include a second plate with a condenser situated parallel to the fluid barrier heat exchanging plate and opposing the desorber for condensation of the refrigerant for additional heating of the process fluid.« less

  16. Absorption of Orally Administered Hyaluronan.

    PubMed

    Kimura, Mamoru; Maeshima, Takuya; Kubota, Takumi; Kurihara, Hitoshi; Masuda, Yasunobu; Nomura, Yoshihiro

    2016-12-01

    Hyaluronan (HA) has been utilized as a supplement. However, the absorption of orally administrated HA remains controversial. The degradation and absorption of HA in the intestine were investigated in this study. HA excretion into the feces, degradation in the intestinal tract, absorption through the large intestine, and translocation to the blood and skin were examined. HA administered orally was not detected in rat feces. HA was degraded by cecal content, but not by artificial gastric juice and intestinal juice. Oligosaccharide HA passed through excised large intestine sacs. Furthermore, disaccharides, tetrasaccharides, and polysaccharides HA were distributed to the skin of rats following oral administration of high molecular weight HA (300 kDa). The results of the study suggest that orally administered HA is degraded to oligosaccharides by intestinal bacteria, and oligosaccharide HA is absorbed in the large intestine and is subsequently distributed throughout the tissues, including the skin.

  17. Thermodynamic derivatives of infrared absorptance

    NASA Technical Reports Server (NTRS)

    Broersma, S.; Walls, W. L.

    1974-01-01

    Calculation of the concentration, pressure, and temperature dependence of the spectral absorptance of a vibrational absorption band. A smooth thermodynamic dependence was found for wavelength intervals where the average absorptance is less than 0.65. Individual rotational lines, whose parameters are often well known, were used as bases in the calculation of medium resolution spectra. Two modes of calculation were combined: well-separated rotational lines plus interaction terms, or strongly overlapping lines that were represented by a compound line of similar shape plus corrections. The 1.9- and 6.3-micron bands of H2O and the 4.3-micron band of CO2 were examined in detail and compared with experiment.

  18. Gold nanoparticles generated through "green route" bind Hg2+ with a concomitant blue shift in plasmon absorption peak.

    PubMed

    Radhakumary, C; Sreenivasan, K

    2011-07-21

    We discuss here a quick, simple, economic and ecofriendly method through a completely green route for the selective detection of Hg(2+) in aqueous samples. Here we exploited the ability of chitosan to generate gold nanoparticles and subsequently to act as a stabilizer for the formed nanoparticles. When chitosan stabilized gold nanoparticles (CH-Au NPs) are interacted with Hg(2+) a blue shift for its localized surface plasmon resonance absorbance (LSPR) band is observed. The blue shift is reasoned to be due to the formation of a thin layer of mercury over gold. A concentration as low as 0.01 ppm to a maximum of 100 ppm Hg(2+) can be detected based on this blue shift of the CH-Au NPs. While all other reported methods demand complex reaction steps and costly chemicals, the method we reported here is a simple, rapid and selective approach for the detection of Hg(2+). Our results also show that the CH-Au NPs have excellent selectivity to Hg(2+) over common cations namely, Pb(2+), Cd(2+), Mn(2+), Fe(2+), Ag(1+), Ce(4+), Ni(2+), and Cu(2+).

  19. The effects of the electric and intense laser field on the binding energies of donor impurity states (1s and 2p±) and optical absorption between the related states in an asymmetric parabolic quantum well

    NASA Astrophysics Data System (ADS)

    Kasapoglu, E.; Sakiroglu, S.; Sökmen, I.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2016-10-01

    We have calculated the effects of electric and intense laser fields on the binding energies of the ground and some excited states of conduction electrons coupled to shallow donor impurities as well as the total optical absorption coefficient for transitions between 1s and 2p± electron-impurity states in a asymmetric parabolic GaAs/Ga1-x AlxAs quantum well. The binding energies were obtained using the effective-mass approximation within a variational scheme. Total absorption coefficient (linear and nonlinear absorption coefficient) for the transitions between any two impurity states were calculated from first- and third-order dielectric susceptibilities derived within a perturbation expansion for the density matrix formalism. Our results show that the effects of the electric field, intense laser field, and the impurity location on the binding energy of 1s-impurity state are more pronounced compared with other impurity states. If the well center is changed to be Lc<0 (Lc>0), the effective well width decreases (increases), and thus we can obtain the red or blue shift in the resonant peak position of the absorption coefficient by changing the intensities of the electric and non-resonant intense laser field as well as dimensions of the well and impurity positions.

  20. Particle in cell simulation of peaking switch for breakdown evaluation

    SciTech Connect

    Umbarkar, Sachin B.; Bindu, S.; Mangalvedekar, H.A.

    2014-07-01

    Marx generator connected to peaking capacitor and peaking switch can generate Ultra-Wideband (UWB) radiation. A new peaking switch is designed for converting the existing nanosecond Marx generator to a UWB source. The paper explains the particle in cell (PIC) simulation for this peaking switch, using MAGIC 3D software. This peaking switch electrode is made up of copper tungsten material and is fixed inside the hermitically sealed derlin material. The switch can withstand a gas pressure up to 13.5 kg/cm{sup 2}. The lower electrode of the switch is connected to the last stage of the Marx generator. Initially Marx generator (withoutmore » peaking stage) in air; gives the output pulse with peak amplitude of 113.75 kV and pulse rise time of 25 ns. Thus, we design a new peaking switch to improve the rise time of output pulse and to pressurize this peaking switch separately (i.e. Marx and peaking switch is at different pressure). The PIC simulation gives the particle charge density, current density, E counter plot, emitted electron current, and particle energy along the axis of gap between electrodes. The charge injection and electric field dependence on ionic dissociation phenomenon are briefly analyzed using this simulation. The model is simulated with different gases (N{sub 2}, H{sub 2}, and Air) under different pressure (2 kg/cm{sup 2}, 5 kg/cm{sup 2}, 10 kg/cm{sup 2}). (author)« less

  1. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  2. In Situ Nondestructive Analysis of Kalanchoe pinnata Leaf Surface Structure by Polarization-Modulation Infrared Reflection-Absorption Spectroscopy.

    PubMed

    Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki; Enami, Shinichi; Shimoaka, Takafumi; Hasegawa, Takeshi

    2017-12-14

    The outermost surface of the leaves of land plants is covered with a lipid membrane called the cuticle that protects against various stress factors. Probing the molecular-level structure of the intact cuticle is highly desirable for understanding its multifunctional properties. We report the in situ characterization of the surface structure of Kalanchoe pinnata leaves using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Without sample pretreatment, PM-IRRAS measures the IR spectra of the leaf cuticle of a potted K. pinnata plant. The peak position of the CH 2 -related modes shows that the cuticular waxes on the leaf surface are mainly crystalline, and the alkyl chains are highly packed in an all-trans zigzag conformation. The surface selection rule of PM-IRRAS revealed the average orientation of the cuticular molecules, as indicated by the positive and negative signals of the IR peaks. This unique property of PM-IRRAS revealed that the alkyl chains of the waxes and the main chains of polysaccharides are oriented almost perpendicular to the leaf surface. The nondestructive, background-free, and environmental gas-free nature of PM-IRRAS allows the structure and chemistry of the leaf cuticle to be studied directly in its native environment.

  3. Predicting rheological behavior and baking quality of wheat flour using a GlutoPeak test.

    PubMed

    Rakita, Slađana; Dokić, Ljubica; Dapčević Hadnađev, Tamara; Hadnađev, Miroslav; Torbica, Aleksandra

    2018-06-01

    The purpose of this research was to gain an insight into the ability of the GlutoPeak instrument to predict flour functionality for bread making, as well as to determine which of the GlutoPeak parameters show the best potential in predicting dough rheological behavior and baking performance. Obtained results showed that GlutoPeak parameters correlated better with the indices of extensional rheological tests which consider constant dough hydration than with those which were performed at constant dough consistency. The GlutoPeak test showed that it is suitable for discriminating wheat varieties of good quality from those of poor quality, while the most discriminating index was maximum torque (MT). Moreover, MT value of 50 BU and aggregation energy value of 1,300 GPU were set as limits of wheat flour quality. The backward stepwise regression analysis revealed that a high-level prediction of indices which are highly affected by protein content (gluten content, flour water absorption, and dough tenacity) was achieved by using the GlutoPeak indices. Concerning bread quality, a moderate prediction of specific loaf volume and an intense level prediction of breadcrumb textural properties were accomplished by using the GlutoPeak parameters. The presented results indicated that the application of this quick test in wheat transformation chain for the assessment of baking quality would be useful. Baking test is considered as the most reliable method for assessing wheat-baking quality. However, baking test requires trained stuff, time, and large sample amount. These disadvantages have led to a growing demand to develop new rapid tests which would enable prediction of baked product quality with a limited flour size. Therefore, we tested the possibility of using a GlutoPeak tester to predict loaf volume and breadcrumb textural properties. Discrimination of wheat varieties according to quality with a restricted flour amount was also examined. Furthermore, we proposed the limit

  4. Catalog of Narrow Mg II Absorption Lines in the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei

    2015-12-01

    Using the Data Release 9 Quasar spectra from the Baryonic Oscillation Spectroscopic Survey, which does not include quasar spectra from the Sloan Digital Sky Survey Data Release 7, we detect narrow Mg ii λλ2796, 2803 absorption doublets in the spectral data redward of 1250 Å (quasar rest frame) until the red wing of the Mg ii λ2800 emission line. Our survey is limited to quasar spectra with a median signal-to-noise ratio < {{S}}/{{N}}> ≥slant 4 pixel-1 in the surveyed spectral region, resulting in a sample that contains 43,260 quasars. We have detected a total of 18,598 Mg ii absorption doublets with 0.2933 ≤ zabs ≤ 2.6529. About 75% of absorbers have an equivalent width at rest frame of {W}rλ 2796≥slant 1 \\mathringA . About 75% of absorbers have doublet ratios ({DR}={W}rλ 2796/{W}rλ 2803) in the range of 1 ≤ DR ≤ 2, and about 3.2% lie outside the range of 1 - σDR ≤ DR ≤ 2 + σDR. We characterize the detection false positives/negatives by the frequency of detected Mg ii absorption doublets in the limits of the S/N of the spectral data. The S/N = 4.5 limit is assigned a completeness fraction of 53% and tends to be complete when the S/N is greater than 4.5. The redshift number densities of all of the detected Mg ii absorbers moderately increase from z ≈ 0.4 to z ≈ 1.5, which parallels the evolution of the cosmic star formation rate density. Limiting our investigation to those quasars whose emission redshift can be determined from narrow emission lines, the relative velocities (β) of Mg ii absorbers have a complex distribution which probably consists of three classes of Mg ii absorbers: (1) cosmologically intervening absorbers; (2) environmental absorbers that reside within the quasar host galaxies or galaxy clusters; (3) quasar outflow absorbers. After subtracting contributions from cosmologically intervening absorbers and environmental absorbers, the β distribution of the Mg iiabsorbers might mainly be contributed by the quasar outflow

  5. Absorption-heat-pump system

    DOEpatents

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  6. An Inexpensive Optical Absorption Experiment

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2006-09-01

    This optical absorption experiment can be put together in only a few minutes with materials found in most secondary or undergraduate stockrooms. The absorption material is the partly transparent flexible anti-static plastic material used to package solid-state devices. The detector is a hand-held photographic exposure meter of the type that was in common use before the advent of point-and-shoot cameras. A graph of the intensity of the transmitted light as a function of the number of sheets of the material is a decreasing exponential. The emphasis of the experiment is on the mathematical form.

  7. Narrow absorption lines with two observations from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei; Cao, Yue

    2015-07-01

    We assemble 3524 quasars from the Sloan Digital Sky Survey (SDSS) with repeated observations to search for variations of the narrow C IV λ λ 1548,1551 and Mg II λ λ 2796,2803 absorption doublets in spectral regions shortward of 7000 Å in the observed frame, which corresponds to time-scales of about 150-2643 d in the quasar rest frame. In these quasar spectra, we detect 3580 C IV absorption systems with zabs = 1.5188-3.5212 and 1809 Mg II absorption systems with zabs = 0.3948-1.7167. In term of the absorber velocity (β) distribution in the quasar rest frame, we find a substantial number of C IV absorbers with β < 0.06, which might be connected to absorption of quasar outflows. The outflow absorption peaks at υ ≈ 2000 km s^{-1} and drops rapidly below this peak value. Among 3580 C IV absorption systems, 52 systems (˜1.5 per cent) show obvious variations in equivalent widths in the absorber rest frame (Wr): 16 enhanced, 16 emerged, 12 weakened and 8 disappeared systems, respectively. We find that changes in Wrλ1548 are related neither to the time-scales of the two SDSS observations nor to absorber velocities in the quasar rest frame. Variable absorption in low-ionization species is important to constrain the physical conditions of the absorbing gas. There are two variable Mg II absorption systems measured from SDSS spectra detected by Hacker et al. However, in our Mg II absorption sample, we find that neither shows variable absorption with confident levels of >4σ for λ2796 lines and >3σ for λ2803 lines.

  8. Simultaneous multielement atomic absorption spectrometry with graphite furnace atomization

    NASA Astrophysics Data System (ADS)

    Harnly, James M.; Miller-Ihli, Nancy J.; O'Haver, Thomas C.

    The extended analytical range capability of a simultaneous multielement atomic absorption continuum source spectrometer (SIMAAC) was tested for furnace atomization with respect to the signal measurement mode (peak height and area), the atomization mode (from the wall or from a platform), and the temperature program mode (stepped or ramped atomization). These parameters were evaluated with respect to the shapes of the analytical curves, the detection limits, carry-over contamination and accuracy. Peak area measurements gave more linear calibration curves. Methods for slowing the atomization step heating rate, the use of a ramped temperature program or a platform, produced similar calibration curves and longer linear ranges than atomization with a stepped temperature program. Peak height detection limits were best using stepped atomization from the wall. Peak area detection limits for all atomization modes were similar. Carry-over contamination was worse for peak area than peak height, worse for ramped atomization than stepped atomization, and worse for atomization from a platform than from the wall. Accurate determinations (100 ± 12% for Ca, Cu, Fe, Mn, and Zn in National Bureau of Standards' Standard Reference Materials Bovine Liver 1577 and Rice Flour 1568 were obtained using peak area measurements with ramped atomization from the wall and stepped atomization from a platform. Only stepped atomization from a platform gave accurate recoveries for K. Accurate recoveries, 100 ± 10%, with precisions ranging from 1 to 36 % (standard deviation), were obtained for the determination of Al, Co, Cr, Fe, Mn, Mo, Ni. Pb, V and Zn in Acidified Waters (NBS SRM 1643 and 1643a) using stepped atomization from a platform.

  9. R Peak Detection Method Using Wavelet Transform and Modified Shannon Energy Envelope

    PubMed Central

    2017-01-01

    Rapid automatic detection of the fiducial points—namely, the P wave, QRS complex, and T wave—is necessary for early detection of cardiovascular diseases (CVDs). In this paper, we present an R peak detection method using the wavelet transform (WT) and a modified Shannon energy envelope (SEE) for rapid ECG analysis. The proposed WTSEE algorithm performs a wavelet transform to reduce the size and noise of ECG signals and creates SEE after first-order differentiation and amplitude normalization. Subsequently, the peak energy envelope (PEE) is extracted from the SEE. Then, R peaks are estimated from the PEE, and the estimated peaks are adjusted from the input ECG. Finally, the algorithm generates the final R features by validating R-R intervals and updating the extracted R peaks. The proposed R peak detection method was validated using 48 first-channel ECG records of the MIT-BIH arrhythmia database with a sensitivity of 99.93%, positive predictability of 99.91%, detection error rate of 0.16%, and accuracy of 99.84%. Considering the high detection accuracy and fast processing speed due to the wavelet transform applied before calculating SEE, the proposed method is highly effective for real-time applications in early detection of CVDs. PMID:29065613

  10. R Peak Detection Method Using Wavelet Transform and Modified Shannon Energy Envelope.

    PubMed

    Park, Jeong-Seon; Lee, Sang-Woong; Park, Unsang

    2017-01-01

    Rapid automatic detection of the fiducial points-namely, the P wave, QRS complex, and T wave-is necessary for early detection of cardiovascular diseases (CVDs). In this paper, we present an R peak detection method using the wavelet transform (WT) and a modified Shannon energy envelope (SEE) for rapid ECG analysis. The proposed WTSEE algorithm performs a wavelet transform to reduce the size and noise of ECG signals and creates SEE after first-order differentiation and amplitude normalization. Subsequently, the peak energy envelope (PEE) is extracted from the SEE. Then, R peaks are estimated from the PEE, and the estimated peaks are adjusted from the input ECG. Finally, the algorithm generates the final R features by validating R-R intervals and updating the extracted R peaks. The proposed R peak detection method was validated using 48 first-channel ECG records of the MIT-BIH arrhythmia database with a sensitivity of 99.93%, positive predictability of 99.91%, detection error rate of 0.16%, and accuracy of 99.84%. Considering the high detection accuracy and fast processing speed due to the wavelet transform applied before calculating SEE, the proposed method is highly effective for real-time applications in early detection of CVDs.

  11. Combining multiple ChIP-seq peak detection systems using combinatorial fusion.

    PubMed

    Schweikert, Christina; Brown, Stuart; Tang, Zuojian; Smith, Phillip R; Hsu, D Frank

    2012-01-01

    Due to the recent rapid development in ChIP-seq technologies, which uses high-throughput next-generation DNA sequencing to identify the targets of Chromatin Immunoprecipitation, there is an increasing amount of sequencing data being generated that provides us with greater opportunity to analyze genome-wide protein-DNA interactions. In particular, we are interested in evaluating and enhancing computational and statistical techniques for locating protein binding sites. Many peak detection systems have been developed; in this study, we utilize the following six: CisGenome, MACS, PeakSeq, QuEST, SISSRs, and TRLocator. We define two methods to merge and rescore the regions of two peak detection systems and analyze the performance based on average precision and coverage of transcription start sites. The results indicate that ChIP-seq peak detection can be improved by fusion using score or rank combination. Our method of combination and fusion analysis would provide a means for generic assessment of available technologies and systems and assist researchers in choosing an appropriate system (or fusion method) for analyzing ChIP-seq data. This analysis offers an alternate approach for increasing true positive rates, while decreasing false positive rates and hence improving the ChIP-seq peak identification process.

  12. [Fluorescence peak shift corresponding to high chlorophyll concentrations in inland water].

    PubMed

    Duan, Hong-Tao; Ma, Rong-Hua; Zhang, Yuan-Zhi; Zhang, Bai

    2009-01-01

    Hyperspectral remote sensing offers the potential to detect water quality variables such as Chl-a by using narrow spectral channels of less than 10 nm, which could otherwise be masked by broadband satellites such as Landsat TM. Fluorescence peak of the red region is very important for the remote sensing of inland and coastal waters, which is unique to phytoplankton Chl-a that takes place in this region. Based on in situ water sampling and field spectral measurement from 2004 to 2006 in Nanhu Lake, the features of the spectral reflectance were analyzed in detail with peak position shift. The results showed: An exponential fitting model, peak position = a(Chl-a)b, was developed between chlorophyll-a concentration and fluorescence peak shift, where a varies between 686.11 and 686.29, while b between 0.0062 and 0.0065. It was found that the better the spectral resolution, the higher the precision of the model. Except that, the average of peak shift showed a high correlation with the average of different Chl-a grades, and the determination coefficient (R2) was higher than 0.81. It contributed significantly to the increase in the accuracy of the derivation of chlorophyll values from remote sensing data in Nanhu Lake. There is satisfactory correspondence between hyperspectral models and chl-a concentration, therefore, it is possible to monitor the water quality of Nanhu lake throngh the hyperspetral remote sensing data.

  13. Position indicator

    DOEpatents

    Tanner, David E.

    1981-01-01

    A nuclear reactor system is described in which a position indicator is provided for detecting and indicating the position of a movable element inside a pressure vessel. The movable element may be a valve element or similar device which moves about an axis. Light from a light source is transmitted from a source outside the pressure vessel to a first region inside the pressure vessel in alignment with the axis of the movable element. The light is redirected by a reflector prism to a second region displaced radially from the first region. The reflector prism moves in response to movement of the movable element about its axis such that the second region moves arcuately with respect to the first region. Sensors are arrayed in an arc corresponding to the arc of movement of the second region and signals are transmitted from the sensors to the exterior of the reactor vessel to provide indication of the position of the movable element.

  14. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  15. Delocalization of positive charge in π-stacked multi-benzene rings in multilayered cyclophanes.

    PubMed

    Fujitsuka, Mamoru; Tojo, Sachiko; Shibahara, Masahiko; Watanabe, Motonori; Shinmyozu, Teruo; Majima, Tetsuro

    2011-02-10

    In the present study, delocalization of a positive charge in π-stacked multi-benzene rings in multilayered para- and meta-cyclophanes, in which benzene rings are connected by propyl chains to form a chromophore array with the face-to-face structure, was investigated by means of transient absorption spectroscopy during the pulse radiolysis using dichloroethane as a solvent. The local excitation and charge resonance (CR) bands were successfully observed. It was revealed that the CR band shifted to the longer wavelength side with the number of the benzene rings. The stabilization energy estimated from the peak position of the CR band showed the efficient charge delocalization over the cyclophanes. Furthermore, the CR bands showed the slight spectral change attributable to the change in distribution of the conformers. The substantially long lifetime of the CR band can be explained on the basis of the smaller charge distribution on the outer layers of the multilayered cyclophanes.

  16. Discovery of the correlation between peak episodic jet power and X-ray peak luminosity of the soft state in black hole transients

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Yu, W.

    2015-08-01

    Episodic jets are usually observed in the intermediate state of black hole transients during their X-ray outbursts. Here we report the discovery of a strong positive correlation between the peak radio power of the episodic jet Pjet and the corresponding peak X-ray luminosity Lx of the soft state (in Eddington units) in a complete sample of the outbursts of black hole transients observed during the RXTE era of which data are available, which follows the relation log Pjet = (2.2 ± 0.3) + (1.6 ± 0.2) × log Lx. The transient ultraluminous X-ray source in M31 and HLX-1 in EXO 243-49 fall on the relation if they contain stellar-mass black hole and either stellar-mass black hole or intermediate-mass black hole, respectively. Besides, a significant correlation between the peak power of the episodic jet and the rate of increase of the X-ray luminosity dLx/dt during the rising phase of those outbursts is also found, following log Pjet = (2.0 ± 0.4) + (0.7 ± 0.2) × log dLx/dt. In GX 339-4 and H 1743-322 in which data for two outbursts are available, measurements of the peak radio power of the episodic jet and the X-ray peak luminosity (and its rate of change) shows similar positive correlations between outbursts, which demonstrate the dominant role of accretion over black hole spin in generating episodic jet power. On the other hand, no significant difference is seen among the systems with different measured black hole spin in current sample. This implies that the power of the episodic jet is strongly affected by non-stationary accretion instead of black hole spin characterized primarily by the rate of change of the mass accretion rate.

  17. Metal powder absorptivity: Modeling and experiment

    DOE PAGES

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.; ...

    2016-08-10

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  18. Metal powder absorptivity: Modeling and experiment

    SciTech Connect

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  19. Peak fitting and integration uncertainties for the Aerodyne Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Othman, A.; Haskins, J. D.; Allan, J. D.; Sierau, B.; Worsnop, D. R.; Lohmann, U.; Mensah, A. A.

    2015-04-01

    The errors inherent in the fitting and integration of the pseudo-Gaussian ion peaks in Aerodyne High-Resolution Aerosol Mass Spectrometers (HR-AMS's) have not been previously addressed as a source of imprecision for these instruments. This manuscript evaluates the significance of these uncertainties and proposes a method for their estimation in routine data analysis. Peak-fitting uncertainties, the most complex source of integration uncertainties, are found to be dominated by errors in m/z calibration. These calibration errors comprise significant amounts of both imprecision and bias, and vary in magnitude from ion to ion. The magnitude of these m/z calibration errors is estimated for an exemplary data set, and used to construct a Monte Carlo model which reproduced well the observed trends in fits to the real data. The empirically-constrained model is used to show that the imprecision in the fitted height of isolated peaks scales linearly with the peak height (i.e., as n1), thus contributing a constant-relative-imprecision term to the overall uncertainty. This constant relative imprecision term dominates the Poisson counting imprecision term (which scales as n0.5) at high signals. The previous HR-AMS uncertainty model therefore underestimates the overall fitting imprecision. The constant relative imprecision in fitted peak height for isolated peaks in the exemplary data set was estimated as ~4% and the overall peak-integration imprecision was approximately 5%. We illustrate the importance of this constant relative imprecision term by performing Positive Matrix Factorization (PMF) on a~synthetic HR-AMS data set with and without its inclusion. Finally, the ability of an empirically-constrained Monte Carlo approach to estimate the fitting imprecision for an arbitrary number of known overlapping peaks is demonstrated. Software is available upon request to estimate these error terms in new data sets.

  20. Peak experiences of psilocybin users and non-users.

    PubMed

    Cummins, Christina; Lyke, Jennifer

    2013-01-01

    Maslow (1970) defined peak experiences as the most wonderful experiences of a person's life, which may include a sense of awe, well-being, or transcendence. Furthermore, recent research has suggested that psilocybin can produce experiences subjectively rated as uniquely meaningful and significant (Griffiths et al. 2006). It is therefore possible that psilocybin may facilitate or change the nature of peak experiences in users compared to non-users. This study was designed to compare the peak experiences of psilocybin users and non-users, to evaluate the frequency of peak experiences while under the influence of psilocybin, and to assess the perceived degree of alteration of consciousness during these experiences. Participants were recruited through convenience and snowball sampling from undergraduate classes and at a musical event. Participants were divided into three groups, those who reported a peak experience while under the influence of psilocybin (psilocybin peak experience: PPE), participants who had used psilocybin but reported their peak experiences did not occur while they were under the influence of psilocybin (non-psilocybin peak experience: NPPE), and participants who had never used psilocybin (non-user: NU). A total of 101 participants were asked to think about their peak experiences and complete a measure evaluating the degree of alteration of consciousness during that experience. Results indicated that 47% of psilocybin users reported their peak experience occurred while using psilocybin. In addition, there were significant differences among the three groups on all dimensions of alteration of consciousness. Future research is necessary to identify factors that influence the peak experiences of psilocybin users in naturalistic settings and contribute to the different characteristics of peak experiences of psilocybin users and non-users.

  1. Controlling coulomb interactions in infrared stereometamaterials for unity light absorption

    NASA Astrophysics Data System (ADS)

    Mudachathi, Renilkumar; Moritake, Yuto; Tanaka, Takuo

    2018-05-01

    We investigate the influence of near field interactions between the constituent 3D split ring resonators on the absorbance and resonance frequency of a stereo metamaterial based perfect light absorber. The experimental and theoretical analyses reveal that the magnetic resonance red shifts and broadens for both the decreasing vertical and lateral separations of the constituents within the metamaterial lattice, analogous to plasmon hybridization. The strong interparticle interactions for higher density reduce the effective cross-section per resonator, which results in weak light absorption observed in both experimental and theoretical analyses. The red shift of the magnetic resonance with increasing lattice density is an indication of the dominating electric dipole interactions and we analyzed the metamaterial system in an electrostatic point of view to explain the observed resonance shift and decreasing absorption peak. From these analyses, we found that the fill factor introduces two competing factors determining the absorption efficiency such as coulomb interactions between the constituent resonators and their number density in a given array structure. We predicted unity light absorption for a fill factor of 0.17 balancing these two opposing factors and demonstrate an experimental absorbance of 99.5% at resonance with our 3D device realized using residual stress induced bending of 2D patterns.

  2. Sub-band-gap absorption in Ga2O3

    NASA Astrophysics Data System (ADS)

    Peelaers, Hartwin; Van de Walle, Chris G.

    2017-10-01

    β-Ga2O3 is a transparent conducting oxide that, due to its large bandgap of 4.8 eV, exhibits transparency into the UV. However, the free carriers that enable the conductivity can absorb light. We study the effect of free carriers on the properties of Ga2O3 using hybrid density functional theory. The presence of free carriers leads to sub-band-gap absorption and a Burstein-Moss shift in the onset of absorption. We find that for a concentration of 1020 carriers, the Fermi level is located 0.23 eV above the conduction-band minimum. This leads to an increase in the electron effective mass from 0.27-0.28 me to 0.35-0.37 me and a sub-band-gap absorption band with a peak value of 0.6 × 103 cm-1 at 3.37 eV for light polarized along the x or z direction. Both across-the-gap and free-carrier absorption depend strongly on the polarization of the incoming light. We also provide parametrizations of the conduction-band shape and the effective mass as a function of the Fermi level.

  3. A novel multiplex absorption spectrometer for time-resolved studies

    NASA Astrophysics Data System (ADS)

    Lewis, Thomas; Heard, Dwayne E.; Blitz, Mark A.

    2018-02-01

    A Time-Resolved Ultraviolet/Visible (UV/Vis) Absorption Spectrometer (TRUVAS) has been developed that can simultaneously monitor absorption at all wavelengths between 200 and 800 nm with millisecond time resolution. A pulsed photolysis laser (KrF 248 nm) is used to initiate chemical reactions that create the target species. The absorption signals from these species evolve as the composition of the gas in the photolysis region changes over time. The instrument can operate at pressures over the range ˜10-800 Torr and can measure time-resolved absorbances <10-4 in the UV (300 nm) and even lower in the visible (580 nm) 2.3 × 10-5, with the peak of sensitivity at ˜500 nm. The novelty of this setup lies in the arrangement of the multipass optics. Although appearing similar to other multipass optical systems (in particular the Herriott cell), there are fundamental differences, most notably the ability to adjust each mirror to maximise the overlap between the probe beam and the photolysis laser. Another feature which aids the sensitivity and versatility of the system is the use of 2 high-throughput spectrographs coupled with sensitive line-array CCDs, which can measure absorbance from ˜200 to 800 nm simultaneously. The capability of the instrument is demonstrated via measurements of the absorption spectrum of the peroxy radical, HOCH2CH2O2, and its self-reaction kinetics.

  4. The Mysterious 6565 Å Absorption Feature of the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Sethi, Shiv K.; Shchekinov, Yuri; Nath, Biman B.

    2017-12-01

    We consider various possible scenarios to explain the recent observation of what has been called a broad Hα absorption in our Galactic halo, with peak optical depth τ ≃ 0.01 and equivalent width W≃ 0.17 \\mathringA . We show that the absorbed feature cannot arise from the circumgalactic and ISM Hα absorption. As the observed absorption feature is quite broad ({{Δ }}λ ≃ 30 \\mathringA ), we also consider CNO lines that lie close to Hα as possible alternatives to explain the feature. We show that such lines could also not account for the observed feature. Instead, we suggest that it could arise from diffuse interstellar bands (DIBs) carriers or polyaromatic hydrocarbons (PAHs) absorption. While we identify several such lines close to the Hα transition, we are unable to determine the molecule responsible for the observed feature, partly because of selection effects that prevent us from identifying DIBs/PAHs features close to Hα using local observations. Deep integration of a few extragalactic sources with high spectral resolution might allow us to distinguish between different possible explanations.

  5. Point source sulphur dioxide peaks and hospital presentations for asthma.

    PubMed

    Donoghue, A M; Thomas, M

    1999-04-01

    To examine the effect on hospital presentations for asthma of brief exposures to sulphur dioxide (SO2) (within the range 0-8700 micrograms/m3) emanating from two point sources in a remote rural city of 25,000 people. A time series analysis of SO2 concentrations and hospital presentations for asthma was undertaken at Mount Isa where SO2 is released into the atmosphere by a copper smelter and a lead smelter. The study examined 5 minute block mean SO2 concentrations and daily hospital presentations for asthma, wheeze, or shortness of breath. Generalised linear models and generalised additive models based on a Poisson distribution were applied. There was no evidence of any positive relation between peak SO2 concentrations and hospital presentations or admissions for asthma, wheeze, or shortness of breath. Brief exposures to high concentrations of SO2 emanating from point sources at Mount Isa do not cause sufficiently serious symptoms in asthmatic people to require presentation to hospital.

  6. Oxygen detection using the laser diode absorption technique

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Fox, C. W.

    1991-01-01

    Accurate measurement of the concentration and flow rate of gaseous oxygen is becoming of greater importance. The detection technique presented is based on the principal of light absorption by the Oxygen A-Band. Oxygen molecules have characteristics which attenuate radiation in the 759-770 nm wavelength range. With an ability to measure changes in the relative light transmission to less than 0.01 percent, a sensitive optical gas detection system was configured. This system is smaller in size and light in weight, has low energy requirements and has a rapid response time. In this research program, the application of temperature tuning laser diodes and their ability to be wavelength shifted to a selected absorption spectral peak has allowed concentrations as low as 1300 ppm to be detected.

  7. Soft x-ray absorption spectra of ilmenite family.

    PubMed

    Agui, A; Mizumaki, M; Saitoh, Y; Matsushita, T; Nakatani, T; Fukaya, A; Torikai, E

    2001-03-01

    We have carried out soft x-ray absorption spectroscopy to study the electronic structure of ilmenite family, such as MnTiO3, FeTiO3, and CoTiO3 at the soft x-ray beamline, BL23SU, at the SPring-8. The Ti and M L2,3 absorption spectra of MTiO3 (M=Mn, Fe, and Co) show spectra of Ti4+ and M2+ electron configurations, respectively. Except the Fe L2,3 spectrum, those spectra were understood within the O(h) symmetry around the transition metal ions. The Fe L3-edge spectrum clearly shows a doublet peak at the L3 edge, which is attributed to Fe2+ state, moreover the very high-resolution the L-edge spectra of transition metals show fine structures. The spectra of those ilmenites are compared.

  8. 15. INTERIOR, DETAIL OF SKYLIGHT AT ROOF PEAK, ORIGINAL BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR, DETAIL OF SKYLIGHT AT ROOF PEAK, ORIGINAL BUILDING - Newport News & Old Point Railway & Electric Company, Trolley Barn & Administration Building, 3400 Victoria Boulevard, Hampton, Hampton, VA

  9. Bayesian approach for peak detection in two-dimensional chromatography.

    PubMed

    Vivó-Truyols, Gabriel

    2012-03-20

    A new method for peak detection in two-dimensional chromatography is presented. In a first step, the method starts with a conventional one-dimensional peak detection algorithm to detect modulated peaks. In a second step, a sophisticated algorithm is constructed to decide which of the individual one-dimensional peaks have been originated from the same compound and should then be arranged in a two-dimensional peak. The merging algorithm is based on Bayesian inference. The user sets prior information about certain parameters (e.g., second-dimension retention time variability, first-dimension band broadening, chromatographic noise). On the basis of these priors, the algorithm calculates the probability of myriads of peak arrangements (i.e., ways of merging one-dimensional peaks), finding which of them holds the highest value. Uncertainty in each parameter can be accounted by adapting conveniently its probability distribution function, which in turn may change the final decision of the most probable peak arrangement. It has been demonstrated that the Bayesian approach presented in this paper follows the chromatographers' intuition. The algorithm has been applied and tested with LC × LC and GC × GC data and takes around 1 min to process chromatograms with several thousands of peaks.

  10. Automatic poisson peak harvesting for high throughput protein identification.

    PubMed

    Breen, E J; Hopwood, F G; Williams, K L; Wilkins, M R

    2000-06-01

    High throughput identification of proteins by peptide mass fingerprinting requires an efficient means of picking peaks from mass spectra. Here, we report the development of a peak harvester to automatically pick monoisotopic peaks from spectra generated on matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) mass spectrometers. The peak harvester uses advanced mathematical morphology and watershed algorithms to first process spectra to stick representations. Subsequently, Poisson modelling is applied to determine which peak in an isotopically resolved group represents the monoisotopic mass of a peptide. We illustrate the features of the peak harvester with mass spectra of standard peptides, digests of gel-separated bovine serum albumin, and with Escherictia coli proteins prepared by two-dimensional polyacrylamide gel electrophoresis. In all cases, the peak harvester proved effective in its ability to pick similar monoisotopic peaks as an experienced human operator, and also proved effective in the identification of monoisotopic masses in cases where isotopic distributions of peptides were overlapping. The peak harvester can be operated in an interactive mode, or can be completely automated and linked through to peptide mass fingerprinting protein identification tools to achieve high throughput automated protein identification.

  11. Individual vision and peak distribution in collective actions

    NASA Astrophysics Data System (ADS)

    Lu, Peng

    2017-06-01

    People make decisions on whether they should participate as participants or not as free riders in collective actions with heterogeneous visions. Besides of the utility heterogeneity and cost heterogeneity, this work includes and investigates the effect of vision heterogeneity by constructing a decision model, i.e. the revised peak model of participants. In this model, potential participants make decisions under the joint influence of utility, cost, and vision heterogeneities. The outcomes of simulations indicate that vision heterogeneity reduces the values of peaks, and the relative variance of peaks is stable. Under normal distributions of vision heterogeneity and other factors, the peaks of participants are normally distributed as well. Therefore, it is necessary to predict distribution traits of peaks based on distribution traits of related factors such as vision heterogeneity and so on. We predict the distribution of peaks with parameters of both mean and standard deviation, which provides the confident intervals and robust predictions of peaks. Besides, we validate the peak model of via the Yuyuan Incident, a real case in China (2014), and the model works well in explaining the dynamics and predicting the peak of real case.

  12. Alkali absorption and citrate excretion in calcium nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  13. Position Papers.

    ERIC Educational Resources Information Center

    McCoy, William H.

    Five position papers from the American Association of Community and Junior College's (AACJC) task force on small and rural community colleges are presented. On the issue of equal opportunity for the small/rural college, the task force asserts that public policy-making bodies must provide for comprehensiveness in curriculum and in services in all…

  14. Positively Adolescent!

    ERIC Educational Resources Information Center

    Williamson, Sue

    2000-01-01

    Believes that music teachers should reassess their views toward adolescent behavior in the music classroom by learning to see their behavior in a positive light. Describes teaching strategies that build on four adolescent behaviors: (1) desire for peer acceptance; (2) abundant energy; (3) love of fun; and (4) limited time-managing skills. (CMK)

  15. Golgi Positioning

    PubMed Central

    Yadav, Smita; Linstedt, Adam D.

    2011-01-01

    The Golgi apparatus in mammalian cells is positioned near the centrosome-based microtubule-organizing center (Fig. 1). Secretory cargo moves inward in membrane carriers for delivery to Golgi membranes in which it is processed and packaged for transport outward to the plasma membrane. Cytoplasmic dynein motor proteins (herein termed dynein) primarily mediate inward cargo carrier movement and Golgi positioning. These motors move along microtubules toward microtubule minus-ends embedded in centrosomes. Centripetal motility is controlled by a host of regulators whose precise functions remain to be determined. Significantly, a specific Golgi receptor for dynein has not been identified. This has impaired progress toward elucidation of membrane-motor-microtubule attachment in the periphery and, after inward movement, recycling of the motor for another round. Pericentrosomal positioning of the Golgi apparatus is dynamic. It is regulated during critical cellular processes such as mitosis, differentiation, cell polarization, and cell migration. Positioning is also important as it aligns the Golgi along an axis of cell polarity. In certain cell types, this promotes secretion directed to the proximal plasma membrane domain thereby maintaining specializations critical for diverse processes including wound healing, immunological synapse formation, and axon determination. PMID:21504874

  16. Hydrogen peroxide vapor cross sections: A flow cell study using laser absorption in the near infrared

    NASA Astrophysics Data System (ADS)

    Rhodes, B. L.; Ronney, P. D.; DeSain, J. D.

    2018-01-01

    The absorption spectra of vapors of concentrated hydrogen peroxide/water mixtures (without a carrier gas) were characterized at wavelengths from 1390 to 1470 nm utilizing a near-infrared diode laser. Low pressures were employed to examine these spectral features near the Doppler-broadened limit. An advantageous portion of the spectra near 1420 nm containing several distinct H2O2 peaks and one well-known H2O peak (for calibration) was identified and the cross-sections of these peaks determined. These cross section values can be employed to measure vapor-phase concentrations of H2O2 in propulsion, atmospheric chemistry, and sterilization applications.

  17. MRS of pilocytic astrocytoma: The peak at 2 ppm may not be NAA.

    PubMed

    Tamrazi, Benita; Nelson, Marvin D; Blüml, Stefan

    2017-08-01

    To determine whether the chemical shift of residual N-acetylaspartate (NAA) signal in pilocytic astrocytomas (PA) is consistent with the position of the NAA peak in controls. MR spectra from 27 pediatric World Health Organization (WHO) grade I pilocytic astrocytoma patients, fifteen patients with WHO grade II and high-grade (III-IV) astrocytomas, and 36 controls were analyzed. All spectra were acquired with a short echo time (35 ms), single voxel point-resolved spectroscopy sequence on clinical 3 tesla scanners. Fully automated LCModel software was used for processing, which included the fitting of peak positions for NAA and creatine (Cr). The chemical shift difference between the NAA and Cr peaks was significantly smaller (by 0.016 ± 0.005 parts per million, P < 1e-10) in PAs than in controls and was also smaller than what was observed in infiltrative astrocytomas. The chemical shift position of the residual NAA peak in PAs is not consistent with NAA. The signal likely originates from an N-acetyl group of one or more other chemicals such as N-acetylated sugars. Magn Reson Med 78:452-456, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Dependence of the absorption and optical surface plasmon scattering of MoS₂ nanoparticles on aspect ratio, size, and media.

    PubMed

    Yadgarov, Lena; Choi, Charina L; Sedova, Anastasiya; Cohen, Ayala; Rosentsveig, Rita; Bar-Elli, Omri; Oron, Dan; Dai, Hongjie; Tenne, Reshef

    2014-04-22

    The optical and electronic properties of suspensions of inorganic fullerene-like nanoparticles of MoS2 are studied through light absorption and zeta-potential measurements and compared to those of the corresponding microscopic platelets. The total extinction measurements show that, in addition to excitonic peaks and the indirect band gap transition, a new peak is observed at 700-800 nm. This spectral peak has not been reported previously for MoS2. Comparison of the total extinction and decoupled absorption spectrum indicates that this peak largely originates from scattering. Furthermore, the dependence of this peak on nanoparticle size, shape, and surface charge, as well as solvent refractive index, suggests that this transition arises from a plasmon resonance.

  19. Prebiotics and the absorption of minerals: a review of experimental and human data

    USDA-ARS?s Scientific Manuscript database

    Dietary factors, including calcium and vitamin D intake, absorption, and status, lifestyle factors including physical activity, and genetics interact to determine peak bone mass. The current recommended dietary intake of calcium (adequate intake, AI) of 1300 mg/day in the United States for adolescen...

  20. X-Ray Absorption near Edge Structure Spectroscopy of Nanodiamonds from the Allende Meteorite

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.; Hill, H.; Jacobsen, C.; Wirick, S.

    2000-01-01

    Carbon X-ray Absorption Near Edge Structure Spectroscopy shows Allende DM nanodiamonds have two pre-edge peaks, consistent with other small diamonds, but fail to show a diamond exciton which is seen in 3.6 nm diamond thin films.

  1. IUE detector saturation and the new 2800 A absorption feature 'discovered' by Karim, Hoyle, and Wickramasinghe

    NASA Astrophysics Data System (ADS)

    Savage, B. D.; Sitko, M. L.

    1984-03-01

    The 2800 A feature of Karim et al. (1983) is shown to be the result of IUE detector saturation effects in overexposed spectra. A properly exposed spectrum and an overexposed one are shown. The latter shows a broad absorption peak at 2800 A while the former does not.

  2. Research on filling process of fuel and oxidant during detonation based on absorption spectrum technology

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-12-01

    Research on detonation process is of great significance for the control optimization of pulse detonation engine. Based on absorption spectrum technology, the filling process of fresh fuel and oxidant during detonation is researched. As one of the most important products, H2O is selected as the target of detonation diagnosis. Fiber distributed detonation test system is designed to enable the detonation diagnosis under adverse conditions in detonation process. The test system is verified to be reliable. Laser signals at different working frequency (5Hz, 10Hz and 20Hz) are detected. Change of relative laser intensity in one detonation circle is analyzed. The duration of filling process is inferred from the change of laser intensity, which is about 100~110ms. The peak of absorption spectrum is used to present the concentration of H2O during the filling process of fresh fuel and oxidant. Absorption spectrum is calculated, and the change of absorption peak is analyzed. Duration of filling process calculated with absorption peak consisted with the result inferred from the change of relative laser intensity. The pulse detonation engine worked normally and obtained the maximum thrust at 10Hz under experiment conditions. The results are verified through H2O gas concentration monitoring during detonation.

  3. Absorption and subjective effects of caffeine from coffee, cola and capsules.

    PubMed

    Liguori, A; Hughes, J R; Grass, J A

    1997-11-01

    Coffee is often perceived as producing greater pharmacological effects than cola. The present study compared the magnitude and rapidity of peak caffeine levels and subjective effects between coffee and cola. Thirteen users of both coffee and cola (mean daily caffeine consumption = 456 mg) ingested 400 mg caffeine via 12 oz unsweetened coffee, 24 oz sugar-free cola or 2 capsules in a random, double-blind, placebo-controlled, within-subjects design. Subjects provided a saliva sample and completed subjective effect scales 15 min before and 30, 60, 90, 120, 180 and 240 min after ingestion. Mean peak saliva caffeine levels did not differ between coffee (9.7 +/- 1.2 micrograms/ml) and cola (9.8 +/- 0.9 micrograms/ml) and appeared to be greater with these beverages than with the capsule (7.8 +/- 0.6 micrograms/ml; p = NS). Saliva caffeine levels peaked at similar times for coffee (42 +/- 5 min) and cola (39 +/- 5 min) but later for capsule (67 +/- 7 min; p = 0.004). There was no main effect of vehicle or interaction of vehicle and drug on magnitude of peak effect or time to peak increase on self-report scales. In summary, peak caffeine absorption, time to peak absorption, and subjective effects do not appear to be influenced by cola vs. coffee vehicle. Perceived differences in the effects of coffee vs. cola may be due to differences in dose, time of day, added sweetener, environmental setting or contingencies.

  4. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    NASA Astrophysics Data System (ADS)

    Guddala, Sriram; Kumar, Raghwendra; Ramakrishna, S. Anantha

    2015-03-01

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm2.

  5. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure

    PubMed Central

    2012-01-01

    The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  6. Peak flowmeter resistance decreases peak expiratory flow in subjects with COPD.

    PubMed

    Miller, M R; Pedersen, O F

    2000-07-01

    Previous studies have shown that the added resistance of a mini-Wright peak expiratory flow (PEF) meter reduced PEF by approximately 8% in normal subjects because of gas compression reducing thoracic gas volume at PEF and thus driving elastic recoil pressure. We undertook a body plethysmographic study in 15 patients with chronic obstructive pulmonary disease (COPD), age 65.9 +/- 6.3 yr (mean +/- SD, range 53-75 yr), to examine whether their recorded PEF was also limited by the added resistance of a PEF meter. The PEF meter increased alveolar pressure at PEF (Ppeak) from 3.7 +/- 1.4 to 4.7 +/- 1.5 kPa (P = 0.01), and PEF was reduced from 3.6 +/- 1.3 l/s to 3.2 +/- 0.9 l/s (P = 0.01). The influence of flow limitation on PEF and Ppeak was evaluated by a simple four-parameter model based on the wave-speed concept. We conclude that added external resistance in patients with COPD reduced PEF by the same mechanisms as in healthy subjects. Furthermore, the much lower Ppeak in COPD patients is a consequence of more severe flow limitation than in healthy subjects and not of deficient muscle strength.

  7. Combined "dual" absorption and fluorescence smartphone spectrometers.

    PubMed

    Arafat Hossain, Md; Canning, John; Ast, Sandra; Cook, Kevin; Rutledge, Peter J; Jamalipour, Abbas

    2015-04-15

    A combined "dual" absorption and fluorescence smartphone spectrometer is demonstrated. The optical sources used in the system are the white flash LED of the smartphone and an orthogonally positioned and interchangeable UV (λex=370  nm) and blue (λex=450  nm) LED. The dispersive element is a low-cost, nano-imprinted diffraction grating coated with Au. Detection over a 300 nm span with 0.42 nm/pixel resolution was carried out with the camera CMOS chip. By integrating the blue and UV excitation sources into the white LED circuitry, the entire system is self-contained within a 3D printed case and powered from the smartphone battery; the design can be scaled to add further excitation sources. Using a customized app, acquisition of absorption and fluorescence spectra are demonstrated using a blue-absorbing and green-emitting pH-sensitive amino-naphthalimide-based fluorescent probe and a UV-absorbing and blue-emitting Zn2+-sensitive fluoro-ionophore.

  8. 42. Peaks of Otter, Abbott Lake. View across lake to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Peaks of Otter, Abbott Lake. View across lake to peaks of Outter Lodge, completed in 1964. Construction of the lake got underway in 1964. Looking east-northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  9. Comment on ``heating rate effects in thermoluminescent glow-peaks''

    NASA Astrophysics Data System (ADS)

    Horowitz, Y.

    1993-12-01

    In a recent article, Kitis et al. [Nucl. Instr. and Meth. B 73 (1993) 367] discuss the effect of heating rate on three well-known thermoluminescence (TL) glow peaks; the 110°C glow peak of Norwegian quartz, the 210°C "dosimetry" glow peak of LiF:Mg,Ti (peak 5 in TLD-700) and the 250°C glow peak of natural Cap 2 : MBLE. The authors state that they focus their attention on "single, well-separated, glow peaks" in order to "test the theory", presumably charge detrapping kinetic theory. To achieve this rather elusive goal for the 210°C peak in LiF:Mg,Ti, the authors employ a 140°C/60 min post-irradiation anneal to depopulate the low temperature peaks. There is, however, substantial evidence in the TL literature over the past three decades that an anneal of this duration at elevated temperatures induces various thermally activated clustering and precipitation processes leading to trap modification and possible creation of new traps.

  10. Forest Peak Research Natural Area: guidebook supplement 33.

    Treesearch

    Reid Schuller; Ronald L. Exeter

    2007-01-01

    This guidebook describes the Forest Peak Research Natural Area (RNA), a 62.8-ha (153.3-ac) tract containing a mature Douglas-fir (Pseudotsuga menziesii) forest and a grass bald within the Willamette Valley Foothill Ecoregion. Forest Peak RNA also contains an undisturbed third-order stream reach.

  11. Psychological Preparation for Peak Performance in Sports Competition

    ERIC Educational Resources Information Center

    Ohuruogu, Ben; Jonathan, Ugwuanyi I.; Ikechukwu, Ugwu Jude

    2016-01-01

    This paper attempts to make an overview of various techniques, sport psychologist adopt in psychological preparation of athletes for peak performance. To attain peak performance in sports competitions, coaches and athletes should not base their prospect on physical training on sport skills alone rather should integrate both the mental and physical…

  12. Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence

    SciTech Connect

    Kaplan, A. F. H.

    The modulation of the angle-dependent Fresnel absorptivity across wavy molten steel surfaces during laser materials processing, like drilling, cutting, or welding, has been calculated. The absorptivity is strongly altered by the grazing angle of incidence of the laser beam on the processing front. Owing to its specific Brewster-peak characteristics, the 10.64 {mu}m wavelength CO{sub 2}-laser shows an opposite trend with respect to roughness and angle-of-incidence compared to lasers in the wavelength range of 532-1070 nm. Plateaus or rings of Brewster-peak absorptivity can lead to hot spots on a wavy surface, often in close proximity to cold spots caused by shadowmore » domains.« less

  13. Positive Psychologists on Positive Constructs

    ERIC Educational Resources Information Center

    Lyubomirsky, Sonja

    2012-01-01

    Comments on the original article by McNulty and Fincham (see record 2011-15476-001). In their article, the authors offered compelling evidence that constructs such as forgiveness and optimism can have both beneficial and adverse consequences, depending on the context. Their caution about labeling particular psychological processes as "positive" is…

  14. Peak Lower Extremity Landing Kinematics in Dancers and Nondancers.

    PubMed

    Hansberger, Bethany L; Acocello, Shellie; Slater, Lindsay V; Hart, Joseph M; Ambegaonkar, Jatin P

    2018-04-01

    = 0.97, P = .60 and Wilks λ = 0.97, P = .66, respectively), or hip (Wilks λ = 0.99, P = .91 and Wilks λ = 1.00, P = .93, respectively) kinematics, and no group × activity interactions were noted for ankle frontal-plane (Wilks λ = 0.92, P = .29) and sagittal- and frontal-plane knee (Wilks λ = 0.99, P = .81 and Wilks λ = 0.98, P = .77, respectively) and hip (Wilks λ = 0.88, P = .13 and Wilks λ = 0.85, P = .08, respectively) kinematics. A group × activity interaction (Wilks λ = 0.76, P = .02) was present for ankle sagittal-plane kinematics. Main-effects testing revealed different ankle frontal-plane angles across groups ( F 2,28 = 3.78, P = .04), with male nondancers having greater ankle inversion than female nondancers ( P = .05).   Irrespective of activity type or footwear, female nondancers landed with similar hip and knee kinematics but greater peak ankle eversion and less peak ankle dorsiflexion (ie, positions associated with greater ACL injury risk). Ankle kinematics may differ between groups due to different landing strategies and training used by dancers. Dancers' training should be examined to determine if it results in a reduced occurrence of biomechanics related to ACL injury during SL landing.

  15. Peak velocity of elbow joint during hair combing activity for normal subject

    NASA Astrophysics Data System (ADS)

    Che-Nan, Hasyatun; Rambely, Azmin Sham

    2018-04-01

    Study of upper limb movements is very important for clinical assessment and diagnosis purposes. Thus it requires the analysis of motion. Therefore this study intend to investigate peak velocity of elbow joint during hair-combing activity. Twenty healthy subjects with three trials and age range 20 - 59 years old (n = 60) performed a complete cycle of hand reaching, forward transport, combing, back transport and returning the hand to its initial position. This activity was analyzed using Vicon motion-analysis system, which consisted of three infra-red and high speed cameras. Mean total movement times was recorded at 5.2s for the whole phases. Peak velocities during reaching and forward transport were found to be decreasing in value for the healthy subject. This obtained results provide information on kinematic analysis especially on movement times and peak velocities for clinical, assessment and diagnosis purposes.

  16. Measurements of ion stopping around the Bragg peak in high-energy-density plasmas

    SciTech Connect

    Frenje, J. A.; Grabowski, P. E.; Li, C. K.

    2015-11-09

    For the first time, quantitative measurements of ion stopping at energies about the Bragg peak (or peak ion stopping, which occurs at an ion velocity comparable to the average thermal electron velocity), and its dependence on electron temperature (T e) and electron number density (n e) in the range of 0.5 – 4.0 keV and 3 × 10 22 – 3 × 10 23 cm -3 have been conducted, respectively. It is experimentally demonstrated that the position and amplitude of the Bragg peak varies strongly with T e with n e. As a result, the importance of including quantum diffractionmore » is also demonstrated in the stopping-power modeling of High-Energy-Density Plasmas.« less

  17. Rattler model of the boson peak at silica surfaces.

    PubMed

    Steurer, Wolfram; Tosatti, Erio

    2012-10-28

    Recent experiments unveiled two new aspects of the low-energy excitation spectrum of silica glass--commonly termed as the "boson peak" region. The first is that at low temperature the silica surface exhibits a different, softer boson peak than the bulk. The second is a giant thermal blueshift of the surface boson peak frequency causing it to cross and overcome the bulk peak with increasing temperature. Here we present a simple lattice model that reproduces this behavior in all its aspects. Each site consists of rigid tetrahedral units softly connected so as to be able to rotate anharmonically as "rattlers" in their cages. As shown by simulations, the model dynamics exhibits a boson-like peak, which has lower frequency at the surface where rattlers have a weaker restoring force. Upon heating however the larger angular freedom of surface units allows them to rattle more than in the bulk, leading to a steeper frequency increase similar to experiment.

  18. A High Peak Current Source for the CEBAF Injector

    SciTech Connect

    Yunn, Byung; Sinclair, Charles; Krafft, Geoffrey

    1992-07-01

    The CEBAF accelerator can drive high power IR and UV FELs, if a high peak current source is added to the existing front end. We present a design for a high peak current injector which is compatible with simultaneous operation of the accelerator for cw nulear physics (NP) beam. The high peak current injector provides 60 A peak current in 2 psec long bunches carrying 120 pC charge at 7.485 MHz. At 10 MeV that beam is combined with 5 MeV NP beam (0.13pC, 2 psec long bunches at 1497 MHz) in an energy combination chicane for simultaneous acceleration inmore » the injector linac. The modifications to the low-energy NP transport are described. Results of optical and beam dynamics calculations for both high peak current and NP beams in combined operation are presented.« less

  19. The gas-phase absorption spectrum of a neutral GFP model chromophore.

    PubMed

    Lammich, L; Petersen, M Axman; Nielsen, M Brøndsted; Andersen, L H

    2007-01-01

    We have studied the gas-phase absorption properties of the green fluorescent protein (GFP) chromophore in its neutral (protonated) charge state in a heavy-ion storage ring. To accomplish this we synthesized a new molecular chromophore with a charged NH(3) group attached to a neutral model chromophore of GFP. The gas-phase absorption cross section of this chromophore molecule as a function of the wavelength is compared to the well-known absorption profile of GFP. The chromophore has a maximum absorption at 415 +/- 5 nm. When corrected for the presence of the charged group attached to the GFP model chromophore, the unperturbed neutral chromophore is predicted to have an absorption maximum at 399 nm in vacuum. This is very close to the corresponding absorption peak of the protein at 397 nm. Together with previous data obtained with an anionic GFP model chromophore, the present data show that the absorption of GFP is primarily determined by intrinsic chromophore properties. In other words, there is strong experimental evidence that, in terms of absorption, the conditions in the hydrophobic interior of this protein are very close to those in vacuum.

  20. Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles

    SciTech Connect

    Liberman, V.; Sworin, M.; Kingsborough, R. P.

    2013-02-07

    Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above {approx}50 MW/cm{sup 2}. Due to reduced laser damage in single-pulse experiments, the observed intrinsic nonlinear absorption coefficients are the highest reported to date for Au nanoparticles. We find size dependence to the nonlinear absorption enhancement for Au nanoparticles, peaking in magnitude for 80-nm nanospheres and falling off at larger sizes. The nonlinear absorption coefficientsmore » for Au and Ag spheres are comparable in magnitude. On the other hand, the nonlinear absorption for Ag disks, when corrected for volume fraction, is several times higher. These trends in nonlinear absorption are correlated to local electric field enhancement through quasi-static mean-field theory. Through variable size aperture measurements, we also separate nonlinear scattering from nonlinear absorption. For all materials tested, we find that nonlinear scattering is highly directional and that its magnitude is comparable to that of nonlinear absorption. These results indicate methods to improve the efficacy of plasmonic nanoparticles as optical limiters in pulsed laser systems.« less

  1. Intersubband absorption in Si(1-x)Ge(x/Si superlattices for long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Rajakarunanayake, Yasantha; Mcgill, Tom C.

    1990-01-01

    Researchers calculated the absorption strengths for intersubband transitions in n-type Si(1-x)Ge(x)/Si superlattices. These transitions can be used for the detection of long-wavelength infrared radiation. A significant advantage in Si(1-x)Ge(x)/Si supperlattice detectors is the ability to detect normally incident light; in Ga(1-x)Al(x)As/GaAs superlattices, intersubband absorption is possible only if the incident light contains a polarization component in the growth direction of the superlattice. Researchers present detailed calculation of absorption coefficients, and peak absorption wavelengths for (100), (111) and (110) Si(1-x)Ge(x)/Si superlattices. Peak absorption strengths of about 2000 to 6000 cm(exp -1) were obtained for typical sheet doping concentrations (approx. equals 10(exp 12)cm(exp -2)). Absorption comparable to that in Ga(1-x)Al(x)As/GaAs superlattice detectors, compatibility with existing Si technology, and the ability to detect normally incident light make these devices promising for future applications.

  2. Bicarbonate absorption stimulates active calcium absorption in the rat proximal tubule.

    PubMed Central

    Bomsztyk, K; Calalb, M B

    1988-01-01

    To evaluate the effect of luminal bicarbonate on calcium reabsorption, rat proximal tubules were perfused in vivo. Perfusion solution contained mannitol to reduce water flux to zero. Total Ca concentration was measured by atomic absorption spectrometry, Ca ion concentration in the tubule lumen (CaL2+) and the peritubular capillary (CaP2+), and luminal pH (pHL) with ion-selective microelectrodes and transepithelial voltage (VTE) with conventional microelectrodes. When tubules were perfused with buffer-free Cl-containing solution, net Ca absorption (JCa) averaged 3.33 pmol/min. Even though VTE was 1.64 mV lumen-positive, CaL2+, 1.05 mM, did not fall below the concentration in the capillary blood, 1.07 mM. When 27 mM of Cl was replaced with HCO3, there was luminal fluid acidification. Despite a decrease in VTE and CaL2+, JCa increased to 7.13 pmol/min, indicating that the enhanced JCa could not be accounted for by the reduced electrochemical gradient, delta CCa. When acetazolamide or an analogue of amiloride was added to the HCO3 solution, JCa was not different from the buffer-free solution, suggesting that HCO3-stimulated JCa may be linked to acidification. To further test this hypothesis, we used 27 mM Hepes as the luminal buffer. With Hepes there was luminal fluid acidification and JCa was not different from the buffer-free solution but delta CCa was significantly reduced, indicating enhanced active calcium transport. We conclude from the results of the present study that HCO3 stimulates active Ca absorption, a process that may be linked to acidification-mediated HCO3 absorption. PMID:3366902

  3. POSITIONING DEVICE

    DOEpatents

    Wall, R.R.; Peterson, D.L.

    1959-09-15

    A positioner is described for a vertical reactor-control rod. The positioner comprises four grooved friction rotatable members that engage the control rod on all sides and shift it longitudinally. The four friction members are drivingly interconnected for conjoint rotation and comprise two pairs of coaxial members. The members of each pair are urged toward one another by hydraulic or pneumatic pressure and thus grip the control rod so as to hold it in any position or adjust it. Release of the by-draulic or pneumatic pressure permits springs between the friction members of each pair to force them apart, whereby the control rod moves quickly by gravity into the reactor.

  4. Positioning apparatus

    DOEpatents

    Vogel, Max A.; Alter, Paul

    1986-05-06

    An apparatus for precisely positioning materials test specimens within the optimum neutron flux path emerging from a neutron source located in a housing. The test specimens are retained in a holder mounted on the free end of a support pivotably mounted and suspended from a movable base plate. The support is gravity biased to urge the holder in a direction longitudinally of the flux path against the housing. Means are provided for moving the base plate in two directions to effect movement of the holder in two mutually perpendicular directions normal to the axis of the flux path.

  5. Positioning apparatus

    DOEpatents

    Vogel, M.A.; Alter, P.

    1983-07-07

    An apparatus is provided for precisely adjusting the position of an article relative to a beam emerging from a neutron source disposed in a housing. The apparatus includes a support pivotably mounted on a movable base plate and freely suspended therefrom. The support is gravity biased toward the housing and carries an article holder movable in a first direction longitudinally of the axis of said beam and normally urged into engagement against said housing. Means are provided for moving the base plate in two directions to effect movement of the suspended holder in two mutually perpendicular directions, respectively, normal to the axis of the beam.

  6. Positioning apparatus

    DOEpatents

    Vogel, Max A.; Alter, Paul

    1986-01-01

    An apparatus for precisely positioning materials test specimens within the optimum neutron flux path emerging from a neutron source located in a housing. The test specimens are retained in a holder mounted on the free end of a support pivotably mounted and suspended from a movable base plate. The support is gravity biased to urge the holder in a direction longitudinally of the flux path against the housing. Means are provided for moving the base plate in two directions to effect movement of the holder in two mutually perpendicular directions normal to the axis of the flux path.

  7. Iodine Absorption Cells Purity Testing.

    PubMed

    Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej

    2017-01-06

    This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions' spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches).

  8. Ultraviolet absorption experiment MA-059

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hudson, R. D.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.

    1976-01-01

    The ultraviolet absorption experiment performed during the Apollo Soyuz mission involved sending a beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation, all filling the same 3 deg-wide field of view from the Apollo to the Soyuz. The radiation struck a retroreflector array on the Soyuz and was returned to a spectrometer onboard the Apollo. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Information concerning oxygen densities was also obtained by observation of resonantly fluorescent light. The absorption experiments for atomic oxygen and atomic nitrogen were successfully performed at a range of 500 meters, and abundant resonance fluorescence data were obtained.

  9. Landing gear energy absorption system

    NASA Technical Reports Server (NTRS)

    Hansen, Christopher P. (Inventor)

    1994-01-01

    A landing pad system is described for absorbing horizontal and vertical impact forces upon engagement with a landing surface where circumferentially arranged landing struts respectively have a clevis which receives a slidable rod member and where the upper portion of a slidable rod member is coupled to the clevis by friction washers which are force fit onto the rod member to provide for controlled constant force energy absorption when the rod member moves relative to the clevis. The lower end of the friction rod is pivotally attached by a ball and socket to a support plate where the support plate is arranged to slide in a transverse direction relative to a housing which contains an energy absorption material for absorbing energy in a transverse direction.

  10. AERONET derived (BC) aerosol absorption

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2015-12-01

    AERONET is a ground-based sun-/sky-photometer network with good annual statistics at more than 400 sites worldwide. Inversion methods applied to these data define all relevant column aerosol optical properties and reveal even microphysical detail. The extracted data include estimates for aerosol size-distributions and for aerosol refractive indices at four different solar wavelengths. Hereby, the imaginary parts of the refractive indices define the aerosol column absorption. For regional and global averages and radiative impact assessment with off-line radiative transfer, these local data have been extended with distribution patterns offered by AeroCom modeling experiments. Annual and seasonal absorption distributions for total aerosol and estimates for component contributions (such as BC) are presented and associated direct forcing impacts are quantified.

  11. Resonant tube for measurement of sound absorption in gases at low frequency/pressure ratios

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Griffin, W. A.

    1980-01-01

    The paper describes a resonant tube for measuring sound absorption in gases, with specific emphasis on the vibrational relaxation peak of N2, over a range of frequency/pressure ratios from 0.1 to 2500 Hz/atm. The experimental background losses measured in argon agree with the theoretical wall losses except at few isolated frequencies. Rigid cavity terminations, external excitation, and a differential technique of background evaluation were used to minimize spurious contributions to the background losses. Room temperature measurements of sound absorption in binary mixtures of N2-CO2 in which both components are excitable resulted in the maximum frequency/pressure ratio in Hz/atm of 0.063 + 123m for the N2 vibrational relaxation peak, where m is mole percent of added CO2; the maximum ratio for the CO2 peak was 34,500 268m where m is mole percent of added N2.

  12. Peak power, force, and velocity during jump squats in professional rugby players.

    PubMed

    Turner, Anthony P; Unholz, Cedric N; Potts, Neill; Coleman, Simon G S

    2012-06-01

    Training at the optimal load for peak power output (PPO) has been proposed as a method for enhancing power output, although others argue that the force, velocity, and PPO are of interest across the full range of loads. The aim of this study was to examine the influence of load on PPO, peak barbell velocity (BV), and peak vertical ground reaction force (VGRF) during the jump squat (JS) in a group of professional rugby players. Eleven male professional rugby players (age, 26 ± 3 years; height, 1.83 ± 6.12 m; mass, 97.3 ± 11.6 kg) performed loaded JS at loads of 20-100% of 1 repetition maximum (1RM) JS. A force plate and linear position transducer, with a mechanical braking unit, were used to measure PPO, VGRF, and BV. Load had very large significant effects on PPO (p < 0.001, partial η² = 0.915); peak VGRF (p < 0.001, partial η² = 0.854); and peak BV (p < 0.001, partial η² = 0.973). The PPO and peak BV were the highest at 20% 1RM, though PPO was not significantly greater than that at 30% 1RM. The peak VGRF was significantly greater at 1RM than all other loads, with no significant difference between 20 and 60% 1RM. In resistance trained professional rugby players, the optimal load for eliciting PPO during the loaded JS in the range measured occurs at 20% 1RM JS, with decreases in PPO and BV, and increases in VGRF, as the load is increased, although greater PPO likely occurs without any additional load.

  13. Detection of novel visible-light region absorbance peaks in the urine after alkalization in patients with alkaptonuria.

    PubMed

    Tokuhara, Yasunori; Shukuya, Kenichi; Tanaka, Masami; Mouri, Mariko; Ohkawa, Ryunosuke; Fujishiro, Midori; Takahashi, Tomoo; Okubo, Shigeo; Yokota, Hiromitsu; Kurano, Makoto; Ikeda, Hitoshi; Yamaguchi, Seiji; Inagaki, Shinobu; Ishige-Wada, Mika; Usui, Hiromi; Yatomi, Yutaka; Shimosawa, Tatsuo

    2014-01-01

    Alkaptonuria, caused by a deficiency of homogentisate 1,2-dioxygenase, results in the accumulation of homogentisic acid (2,5-dihydroxyphenylacetic acid, HGA) in the urine. Alkaptonuria is suspected when the urine changes color after it is left to stand at room temperature for several hours to days; oxidation of homogentisic acid to benzoquinone acetic acid underlies this color change, which is accelerated by the addition of alkali. In an attempt to develop a facile screening test for alkaptonuria, we added alkali to urine samples obtained from patients with alkaptonuria and measured the absorbance spectra in the visible light region. We evaluated the characteristics of the absorption spectra of urine samples obtained from patients with alkaptonuria (n = 2) and compared them with those of urine specimens obtained from healthy volunteers (n = 5) and patients with phenylketonuria (n = 3), and also of synthetic homogentisic acid solution after alkalization. Alkalization of the urine samples and HGA solution was carried out by the addition of NaOH, KOH or NH4OH. The sample solutions were incubated at room temperature for 1 min, followed by measurement of the absorption spectra. Addition of alkali to alkaptonuric urine yielded characteristic absorption peaks at 406 nm and 430 nm; an identical result was obtained from HGA solution after alkalization. The absorbance values at both 406 nm and 430 nm increased in a time-dependent manner. In addition, the absorbance values at these peaks were greater in strongly alkaline samples (NaOH- KOH-added) as compared with those in weakly alkaline samples (NH4OH-added). In addition, the peaks disappeared following the addition of ascorbic acid to the samples. We found two characteristic peaks at 406 nm and 430 nm in both alkaptonuric urine and HGA solution after alkalization. This new quick and easy method may pave the way for the development of an easy method for the diagnosis of alkaptonuria.

  14. Detection of Novel Visible-Light Region Absorbance Peaks in the Urine after Alkalization in Patients with Alkaptonuria

    PubMed Central

    Tokuhara, Yasunori; Shukuya, Kenichi; Tanaka, Masami; Mouri, Mariko; Ohkawa, Ryunosuke; Fujishiro, Midori; Takahashi, Tomoo; Okubo, Shigeo; Yokota, Hiromitsu; Kurano, Makoto; Ikeda, Hitoshi; Yamaguchi, Seiji; Inagaki, Shinobu; Ishige-Wada, Mika; Usui, Hiromi; Yatomi, Yutaka; Shimosawa, Tatsuo

    2014-01-01

    Background Alkaptonuria, caused by a deficiency of homogentisate 1,2-dioxygenase, results in the accumulation of homogentisic acid (2,5-dihydroxyphenylacetic acid, HGA) in the urine. Alkaptonuria is suspected when the urine changes color after it is left to stand at room temperature for several hours to days; oxidation of homogentisic acid to benzoquinone acetic acid underlies this color change, which is accelerated by the addition of alkali. In an attempt to develop a facile screening test for alkaptonuria, we added alkali to urine samples obtained from patients with alkaptonuria and measured the absorbance spectra in the visible light region. Methods We evaluated the characteristics of the absorption spectra of urine samples obtained from patients with alkaptonuria (n = 2) and compared them with those of urine specimens obtained from healthy volunteers (n = 5) and patients with phenylketonuria (n = 3), and also of synthetic homogentisic acid solution after alkalization. Alkalization of the urine samples and HGA solution was carried out by the addition of NaOH, KOH or NH4OH. The sample solutions were incubated at room temperature for 1 min, followed by measurement of the absorption spectra. Results Addition of alkali to alkaptonuric urine yielded characteristic absorption peaks at 406 nm and 430 nm; an identical result was obtained from HGA solution after alkalization. The absorbance values at both 406 nm and 430 nm increased in a time-dependent manner. In addition, the absorbance values at these peaks were greater in strongly alkaline samples (NaOH- KOH-added) as compared with those in weakly alkaline samples (NH4OH-added). In addition, the peaks disappeared following the addition of ascorbic acid to the samples. Conclusions We found two characteristic peaks at 406 nm and 430 nm in both alkaptonuric urine and HGA solution after alkalization. This new quick and easy method may pave the way for the development of an easy method for the diagnosis of

  15. Photodetector with enhanced light absorption

    DOEpatents

    Kane, James

    1985-01-01

    A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

  16. Physical activity as a long-term predictor of peak oxygen uptake: the HUNT Study.

    PubMed

    Aspenes, Stian Thoresen; Nauman, Javaid; Nilsen, Tom Ivar Lund; Vatten, Lars Johan; Wisløff, Ulrik

    2011-09-01

    A physically active lifestyle and a relatively high level of cardiorespiratory fitness are important for longevity and long-term health. No population-based study has prospectively assessed the association of physical activity levels with long-term peak oxygen uptake (VO(2peak)). 1843 individuals (906 women and 937 men) who were between 18 and 66 yr at baseline and were free from known lung or heart diseases at both baseline (1984-1986) and follow-up (2006-2008) were included in the study. Self-reported physical activity was recorded at both occasions, and VO(2peak) was measured at follow-up. The association of physical activity levels and VO(2peak) was adjusted for age, level of education, smoking status, and weight change from baseline to follow-up, using ANCOVA statistics. The level of physical activity at baseline was strongly associated with VO(2peak) at follow-up 23 yr later in both men and women (Ptrends < 0.001). Compared with individuals who were inactive at baseline, women and men who were highly active at baseline had higher (3.3 and 4.6 mL·kg(-1)·min(-1)) VO(2peak) at follow-up. Women who were inactive at baseline but highly active at follow-up had 3.7 mL·kg(-1)·min(-1) higher VO(2peak) compared with women who were inactive both at baseline and at follow-up. The corresponding comparison in men showed a difference of 5.2 mL·kg(-1)·min(-1) (95% confidence interval = 3.1-7.3) in VO(2peak). Physical activity level at baseline was positively associated with directly measured cardiorespiratory fitness (VO(2peak)) 23 yr later. People who changed from low to high activity during the observation period had substantially higher V˙O(2peak) at follow-up compared with people whose activity remained low.

  17. Evaluation of different time domain peak models using extreme learning machine-based peak detection for EEG signal.

    PubMed

    Adam, Asrul; Ibrahim, Zuwairie; Mokhtar, Norrima; Shapiai, Mohd Ibrahim; Cumming, Paul; Mubin, Marizan

    2016-01-01

    Various peak models have been introduced to detect and analyze peaks in the time domain analysis of electroencephalogram (EEG) signals. In general, peak model in the time domain analysis consists of a set of signal parameters, such as amplitude, width, and slope. Models including those proposed by Dumpala, Acir, Liu, and Dingle are routinely used to detect peaks in EEG signals acquired in clinical studies of epilepsy or eye blink. The optimal peak model is the most reliable peak detection performance in a particular application. A fair measure of performance of different models requires a common and unbiased platform. In this study, we evaluate the performance of the four different peak models using the extreme learning machine (ELM)-based peak detection algorithm. We found that the Dingle model gave the best performance, with 72 % accuracy in the analysis of real EEG data. Statistical analysis conferred that the Dingle model afforded significantly better mean testing accuracy than did the Acir and Liu models, which were in the range 37-52 %. Meanwhile, the Dingle model has no significant difference compared to Dumpala model.

  18. Derived Equivalence Relations of Geometry Skills in Students with Autism: An Application of the PEAK-E Curriculum

    ERIC Educational Resources Information Center

    Dixon, Mark R.; Belisle, Jordan; Stanley, Caleb R.; Daar, Jacob H.; Williams, Leigh Anne

    2016-01-01

    The present study evaluated the efficacy of equivalence-based instruction (EBI) as described in the PEAK-E curriculum (Dixon, 2015) for promoting the emergence of derived geometry skills in two children with high-functioning autism. The results suggested that direct training of shape name (A) to shape property (B) (i.e., A-B relations) was…

  19. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    NASA Astrophysics Data System (ADS)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-03-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20-25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  20. Inelastic neutron scattering study on boson peaks of imidazolium-based ionic liquids

    DOE PAGES

    Kofu, Maiko; Inamura, Yasuhiro; Podlesnyak, Andrey A.; ...

    2015-07-26

    Low energy excitations of 1-alkyl-3-methylimidazolium ionic liquids (ILs) have been investigated by means of neutron spectroscopy. In the spectra of inelastic scattering, a broad excitation peak referred to as a “boson peak” appeared at 1–3 meV in all of the ILs measured. The intensity of the boson peak was enhanced at the Q positions corresponding to the diffraction peaks, reflecting the in-phase vibrational nature of the boson peak. Furthermore the boson peak energy (E BP) was insensitive to the length of the alkyl-chain but changed depending on the radius of the anion. From the correlation among E BP, the anionmore » radius, and the glass transition temperature T g, we conclude that both E BP and T g in ILs are predominantly governed by the inter-ionic Coulomb interaction which is less influenced by the alkyl-chain length. Furthermore, we also found that the E BP is proportional to the inverse square root of the molecular weight as observed in molecular glasses.« less